FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Finsterle, S Zhang, YQ Pan, LH Dobson, P Oglesby, K AF Finsterle, Stefan Zhang, Yingqi Pan, Lehua Dobson, Patrick Oglesby, Ken TI Microhole arrays for improved heat mining from enhanced geothermal systems SO GEOTHERMICS LA English DT Article DE Geothermal energy; Heat extraction; Microholes; Numerical modeling; EGS ID SOULTZ-SOUS-FORETS; POROUS-MEDIA; FLUID-FLOW; RESERVOIR; SIMULATION; TRANSPORT; ROCKS AB Numerical simulations are used to examine whether microhole arrays have the potential to increase the heat mining efficiency and sustainability of enhanced geothermal systems (EGS). Injecting the working fluid from a large number of spatially distributed microholes rather than a few conventionally drilled wells is likely to provide access to a larger reservoir volume with enhanced overall flow distances between the injection and production wells and increased contact area between permeable fractures and the hot rock matrix. More importantly, it reduces the risk of preferential flow and early thermal breakthrough, making microhole array-based EGS a more robust design. Heat recovery factors are calculated for EGS reservoirs with a conventional well configuration and with microhole arrays. The synthetic reservoir has properties similar to those of the EGS test site at Soultz-sous-Forets. The wells and microholes are explicitly included in the numerical model. They intersect a stimulated reservoir region, which is modeled using a dual-permeability approach, as well as a wide-aperture zone, which is incorporated as a discrete feature. Local and global sensitivity analyses are used to examine the robustness of the design for a variety of reservoir and operating conditions. The simulations indicate that the flexibility offered by microhole drilling technology could provide an alternative EGS exploitation option with improved performance. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Finsterle, Stefan; Zhang, Yingqi; Pan, Lehua; Dobson, Patrick] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Oglesby, Ken] Impact Technol LLC, Tulsa, OK 74153 USA. RP Zhang, YQ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 74-120, Berkeley, CA 94720 USA. EM YQZhang@lbl.gov RI Finsterle, Stefan/A-8360-2009; Dobson, Patrick/D-8771-2015; Zhang, Yingqi/D-1203-2015; Pan, Lehua/G-2439-2015 OI Finsterle, Stefan/0000-0002-4446-9906; Dobson, Patrick/0000-0001-5031-8592; FU Lawrence Berkeley National Laboratory under U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program [DE-FOA-0000075] FX The very thoughtful comments and suggestions by two anonymous reviewers and the technical review by Yoojin Jung of Lawrence Berkeley National Laboratory are greatly appreciated. This work was supported by Lawrence Berkeley National Laboratory under U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program, Contract No. DE-FOA-0000075: Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis. NR 40 TC 14 Z9 14 U1 2 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD JUL PY 2013 VL 47 BP 104 EP 115 DI 10.1016/j.geothermics.2013.03.001 PG 12 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA 168DX UT WOS:000320687000011 ER PT J AU DiPippo, R Lippmann, MJ AF DiPippo, Ronald Lippmann, Marcelo J. TI Alfredo Mainieri Protti (1943-2013) Obituary SO GEOTHERMICS LA English DT Biographical-Item C1 [DiPippo, Ronald] Univ Massachusetts Dartmouth, South Dartmouth, MA 02748 USA. [Lippmann, Marcelo J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP DiPippo, R (reprint author), Univ Massachusetts Dartmouth, South Dartmouth, MA 02748 USA. EM RonDiPippo@comcast.net; mjlippmann@lbl.gov NR 1 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 J9 GEOTHERMICS JI Geothermics PD JUL PY 2013 VL 47 BP 127 EP 127 DI 10.1016/j.geothermics.2013.03.005 PG 1 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA 168DX UT WOS:000320687000013 ER PT J AU Wu, W Qin, YF Li, Z Dong, J Dai, JC Lu, CC Guo, XJ Zhao, Y Zhu, Y Zhang, W Hang, B Sha, JH Shen, HB Xia, YK Hu, ZB Wang, XR AF Wu, Wei Qin, Yufeng Li, Zheng Dong, Jing Dai, Juncheng Lu, Chuncheng Guo, Xuejiang Zhao, Yang Zhu, Yong Zhang, Wei Hang, Bo Sha, Jiahao Shen, Hongbing Xia, Yankai Hu, Zhibin Wang, Xinru TI Genome-wide microRNA expression profiling in idiopathic non-obstructive azoospermia: significant up-regulation of miR-141, miR-429 and miR-7-1-3p SO HUMAN REPRODUCTION LA English DT Article DE DNA methylation; male infertility; microRNA; non-obstructive azoospermia; seminal plasma ID SEMINAL PLASMA MICRORNAS; MALE-INFERTILITY; CANCER; SPERMATOGENESIS; DIAGNOSIS; DISEASE; ONCOGENESIS; BIOMARKERS; TISSUES; SYSTEM AB What is the profile of miRNAs in seminal plasma of patients with non-obstructive azoospermia (NOA)? miR-141, miR-429 and miR-7-1-3p are significantly increased in seminal plasma of patients with NOA compared with fertile controls. There is currently an urgent need to develop a noninvasive diagnostic test for NOA. Altered microRNA (miRNA) profiles have been proposed as potential biomarkers for the diagnosis of disease states. A total of 200 subjects (n 100 for NOA, n 100 for fertile control) were recruited to participate in this study. Recruitment took place from May 2008 to June 2010. We employed a strategy consisting of initial screening by TaqMan Low Density Array then further validation with a TaqMan quantitative RTPCR assay. Validation of the profiling results was conducted in two independent phases. In addition, the expression of the three validated seminal plasma miRNAs (sp-miRNAs) was examined in testicular tissues of patients with NOA and of fertile controls. Methylation status and functional analyses were also performed for the identified sp-miRNAs. miR-141, miR-429 and miR-7-1-3p were significantly increased in seminal plasma of patients with NOA compared with fertile controls. As sensitive and specific biomarkers, the profiling of these three identified sp-miRNAs provides a novel noninvasive, semen-based test for NOA diagnosis. The methylation status of these sp-miRNAs was inversely associated with their expression patterns. Additionally, we found that Cbl and Tgf2 were down-regulated by miR-141, while Rb1 and Pik3r3 were down-regulated by miR-7-1-3p. miRNA expression profile was investigated in seminal plasma samples from only a small number of NOA patients. In future investigations, a larger sample size should be adopted and the functional role of the three sp-miRNAs should be further characterized in animal models. Given that sp-miRNAs show reproducible and stable expression levels, they are potentially novel noninvasive biomarkers for the diagnosis of NOA. We propose that the three sp-miRNAs described above may participate in a methylation-miRNA-gene network related to NOA development. This work provides a foundation for interpretation of miRNA changes associated with pathogenesis of NOA and extends the current understanding of human NOA pathogenesis. This work was supported by the following grants: Key Project of National Natural Science Foundation of China (No. 30930079), National Basic Research Program of China (973 Program) (No. 2009CB941703, 2011CB944304), National Natural Science Foundation of China (No. 81072328 and 30901232); Science and Technology Development Fund Key Project of Nanjing Medical University (No. 2012NJMU002) and Priority Academic Program Development of Jiangsu Higher Education Institutions. The funding organizations played no role in the design and conduct of the study, in collection, management, analysis and interpretation of the data, or in the presentation, review or approval of the manuscript. There are no conflicts of interest to be declared. C1 [Wu, Wei; Qin, Yufeng; Lu, Chuncheng; Guo, Xuejiang; Zhang, Wei; Sha, Jiahao; Xia, Yankai; Wang, Xinru] Nanjing Med Univ, Sch Publ Hlth, Inst Toxicol, State Key Lab Reprod Med, Nanjing 210029, Jiangsu, Peoples R China. [Wu, Wei; Qin, Yufeng; Lu, Chuncheng; Xia, Yankai; Wang, Xinru] Nanjing Med Univ, Minist Educ, Key Lab Modern Toxicol, Beijing, Peoples R China. [Wu, Wei] Wuxi Hosp Maternal & Child Hlth Care, Wuxi 214002, Peoples R China. [Li, Zheng; Zhu, Yong] Shanghai Jiao Tong Univ, Sch Med, Renji Hosp, Dept Urol,Shanghai Human Sperm Bank,Shanghai Inst, Shanghai 200001, Peoples R China. [Dong, Jing; Dai, Juncheng; Zhao, Yang; Shen, Hongbing; Hu, Zhibin] Nanjing Med Univ, Ctr Canc, Dept Epidemiol & Biostat, Nanjing 210029, Jiangsu, Peoples R China. [Zhang, Wei] Nanjing Med Univ, Affiliated Hosp 1, Dept Urol, Nanjing 210029, Jiangsu, Peoples R China. [Hang, Bo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. RP Xia, YK (reprint author), Nanjing Med Univ, Inst Toxicol, State Key Lab Reprod Med, 818 East Tianyuan Rd, Nanjing 211166, Jiangsu, Peoples R China. EM yankaixia@njmu.edu.cn RI Guo, Xuejiang/J-9600-2014 OI Guo, Xuejiang/0000-0002-0475-5705 FU Key Project of National Natural Science Foundation of China [30930079]; National Basic Research Program of China (973 Program) [2009CB941703, 2011CB944304]; National Natural Science Foundation of China [81072328, 30901232]; Science and Technology Development Fund Key Project of Nanjing Medical University [2012NJMU002]; Priority Academic Program Development of Jiangsu Higher Education Institutions FX This work was supported by the following grants: Key Project of National Natural Science Foundation of China (No. 30930079), National Basic Research Program of China (973 Program) (No. 2009CB941703, 2011CB944304), National Natural Science Foundation of China (No. 81072328 and 30901232); Science and Technology Development Fund Key Project of Nanjing Medical University (No. 2012NJMU002) and Priority Academic Program Development of Jiangsu Higher Education Institutions. The funding organizations played no role in the design and conduct of the study, in collection, management, analysis and interpretation of the data, or in the presentation, review or approval of the manuscript. NR 50 TC 22 Z9 27 U1 4 U2 27 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0268-1161 J9 HUM REPROD JI Hum. Reprod. PD JUL PY 2013 VL 28 IS 7 BP 1827 EP 1836 DI 10.1093/humrep/det099 PG 10 WC Obstetrics & Gynecology; Reproductive Biology SC Obstetrics & Gynecology; Reproductive Biology GA 170MK UT WOS:000320855600012 PM 23559187 ER PT J AU Li, JV Duenow, JN Kuciauskas, D Kanevce, A Dhere, RG Young, MR Levi, DH AF Li, Jian V. Duenow, Joel N. Kuciauskas, Darius Kanevce, Ana Dhere, Ramesh G. Young, Matthew R. Levi, Dean H. TI Electrical Characterization of Cu Composition Effects in CdS/CdTe Thin-Film Solar Cells With a ZnTe:Cu Back Contact SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Admittance measurement; capacitance-voltage (CV) characteristics; CdTe; charge carrier density; contacts; defect ID LEVEL TRANSIENT SPECTROSCOPY; DEEP-LEVEL; CDTE; THICKNESS; DEFECTS AB We study the effects of Cu composition on the CdTe/ZnTe:Cu back contact and the bulk CdTe. For the back contact, its potential barrier decreases with Cu concentration, while its saturation current density increases. For the bulk CdTe, the hole density increases with Cu concentration. We identify a Cu-related deep level at similar to 0.55 eV whose concentration is significant when the Cu concentration is high. The device performance, which initially improves with Cu concentration then decreases, reflects the interplay between the positive influences (reducing the back-contact potential barrier while increasing the saturation current density of the back contact and hole density in CdTe bulk) and negative influences (increasing deep levels in CdTe) of Cu. C1 [Li, Jian V.; Duenow, Joel N.; Kuciauskas, Darius; Kanevce, Ana; Dhere, Ramesh G.; Young, Matthew R.; Levi, Dean H.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Li, JV (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jian.li@nrel.gov; joel.duenow@nrel.gov; darius.kuciauskas@nrel.gov; Ana.Kanevce@nrel.gov; ramesh.dhere@nrel.gov; matthew.young@nrel.gov; dean.levi@nrel.gov RI Li, Jian/B-1627-2016 FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX Manuscript received May 14, 2012; revised October 16, 2012 and February 5, 2013; accepted March 19, 2013. Date of publication April 29, 2013; date of current version June 18, 2013. This work was supported by the U.S. Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 21 TC 8 Z9 8 U1 3 U2 58 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JUL PY 2013 VL 3 IS 3 BP 1095 EP 1099 DI 10.1109/JPHOTOV.2013.2257919 PG 5 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 170OK UT WOS:000320862500025 ER PT J AU Jin, HH Miller, GM Pety, SJ Griffin, AS Stradley, DS Roach, D Sottos, NR White, SR AF Jin, Henghua Miller, Gina M. Pety, Stephen J. Griffin, Anthony S. Stradley, Dylan S. Roach, Dennis Sottos, Nancy R. White, Scott R. TI Fracture behavior of a self-healing, toughened epoxy adhesive SO INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES LA English DT Article DE Epoxy adhesive; Self-healing; Microcapsule; Fracture toughness ID OPENING METATHESIS POLYMERIZATION; FIBER-REINFORCED COMPOSITES; FILLED EPOXY; RUBBER PARTICLES; MATRIX ADHESION; POLYMERS; MECHANISMS; TOUGHNESS; SIZE; FAILURE AB A self-healing, toughened epoxy adhesive is demonstrated based on a commercial structural adhesive film. Self-healing is achieved via embedded microcapsules containing dicyclopentadiene monomer and solid particles of bis(tricyclohexylphosphine)-benzylidine ruthenium (IV) dichloride (Grubbs') catalyst. Recovery of fracture toughness is assessed through fracture testing of width tapered double cantilever beam (WTDCB) specimens. Healing efficiencies as high as 58% were achieved for 6.6 wt% DCPD microcapsules and 10 mg Grubbs' catalyst. However, virgin fracture toughness is reduced with the addition of ca. 117 mu m diameter microcapsules as a result of suppression of the damage zone as revealed by transmission optical micrographs. The uniform dispersal of microcapsules throughout a rubber toughened epoxy adhesive formulated using EPON 828, piperidine and CTBN alleviated the suppression effect and demonstrated retention of virgin fracture toughness of adhesives. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Jin, Henghua; Miller, Gina M.; Pety, Stephen J.; Griffin, Anthony S.; Stradley, Dylan S.; Sottos, Nancy R.; White, Scott R.] Univ Illinois, Urbana, IL 61801 USA. [Jin, Henghua; Pety, Stephen J.; Griffin, Anthony S.; Stradley, Dylan S.; Sottos, Nancy R.; White, Scott R.] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA. [Roach, Dennis] Sandia Natl Labs, FAA Airworthiness Assurance Ctr, Livermore, CA 94550 USA. RP White, SR (reprint author), Univ Illinois, Urbana, IL 61801 USA. EM swhite@illinois.edu FU National Science Foundation [CMS 05-27965]; Sandia National Laboratories [BPO 378467]; NDSEG fellowship; Department of Defense FX The authors acknowledge funding support from the National Science Foundation (Grant # CMS 05-27965) and Sandia National Laboratories (BPO 378467). Stephen Pety was supported in part by an NDSEG fellowship, which is sponsored by the Department of Defense. In addition, the authors greatly acknowledge Dr. Chris Mangun and Dr. Mary M. Caruso for technical help and discussion. Manufacturing test specimens was accomplished with the help of Kent Elam in the Aerospace Engineering Machine Shop. Fracture testing was completed at the Advanced Materials Testing and Engineering Lab, with assistance of Peter Kurath, Gavin Horn and Rick Rottet. Electron microscopy was performed in the Imaging Technology Group of the Beckman Institute for Advanced Science and Technology, with the assistance of Scott Robinson. NR 45 TC 27 Z9 28 U1 6 U2 99 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0143-7496 J9 INT J ADHES ADHES JI Int. J. Adhes. Adhes. PD JUL PY 2013 VL 44 BP 157 EP 165 DI 10.1016/j.ijadhadh.2013.02.015 PG 9 WC Engineering, Chemical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 165LK UT WOS:000320485200018 ER PT J AU Derode, B Cappa, F Guglielmi, Y Rutqvist, J AF Derode, Benoit Cappa, Frederic Guglielmi, Yves Rutqvist, Jonny TI Coupled seismo-hydromechanical monitoring of inelastic effects on injection-induced fracture permeability SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article DE Inelastic fracture permeability; Microseismicity; Hydromechanical experiment and modeling; Fluid and stress transfer; Strength weakening ID INDUCED SEISMICITY; FAULT ZONE; EARTHQUAKE; STIFFNESS; BEHAVIOR; SYSTEMS; STRESS; FRANCE; MEXICO; SLOPE AB We present in situ measurements of fluid pressure, deformation and seismicity in natural fractures together with coupled hydromechanical simulations. We conducted a step-rate water injection (similar to 3.5 MPa and 1200 s) to induce the local pressurization of a critically stressed fractured carbonate reservoir layer located at 250 m-depth in the Low Noise Underground Laboratory (LSBB), southern France. An observed factor-of-3 increase in the fracture permeability was associated with the injection-induced fluid pressure increase and about 100 triggered seismic events. Both normal opening (a few microns) of the fluid-injected fracture and the associated tilt ( <1 micro-radian) of the fracture near field displayed inelastic behavior highlighting an irreversible fracture shear and dilatant failure, amounting to about 1/3-1/2 of the maximum measured deformations. Using a plane-strain finite-difference coupled hydromechanical model, our calculation shows that tensile failure first occurred in the injection zone and then shear failure spread along fractures into the surrounding unsaturated rock through stress transfer from the injection zone. The most striking result of these model simulations is that the mechanical weakening of the fractures in the near field induced a 2-5 x 10(5) Pa release of the normal stress across the fluid-injected fracture that provoked fracture slip and increase in permeability. A geological exploration of the fracture zone after the experiment showed that no major failure had occurred, and we therefore relate these strength and permeability variations to the slight reactivation (similar to microns) of pre-existing fractures. (C) 2013 Elsevier Ltd..All rights reserved. C1 [Derode, Benoit; Cappa, Frederic] Univ Nice Sophia Antipolis, Geoazur UMR7329, Cote dAzur Observ, F-06560 Sophia Antipolis, France. [Guglielmi, Yves] Aix Marseille Univ, CNRS, IRD, CEREGE,UMR7330, F-13545 Aix En Provence, France. [Cappa, Frederic; Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Derode, B (reprint author), Univ Nice Sophia Antipolis, Geoazur UMR7329, Cote dAzur Observ, 250 Rue Albert Einstein, F-06560 Sophia Antipolis, France. EM derode@geoazur.unice.fr RI Rutqvist, Jonny/F-4957-2015; Cappa, Frederic/B-4014-2017 OI Rutqvist, Jonny/0000-0002-7949-9785; Cappa, Frederic/0000-0003-4859-8024 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work is financed by the ANR "Captage de CO2" through the "HPPP-CO2" Project, by the PACA county through the "PETRO-PRO" Project, and by the ANR "RiskNat" through the "SLAMS" Project. Funding for the contribution by Lawrence Berkeley National Laboratory was provided by the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. We thank the engineers team (D. Boyer, A. Cavaillou, and M. Auguste) of the Laboratoire Souterrain a Bas Bruit de Rustrel (LSBB) (http://lsbb.oca.eu/), and the SITES S.A.S. engineer Herve Caron for their technical support during the experiments. We also thank the anonymous reviewer for the constructive comments and suggestions that improved our paper. NR 39 TC 7 Z9 7 U1 0 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD JUL PY 2013 VL 61 BP 266 EP 274 DI 10.1016/j.ijrmms.2013.03.008 PG 9 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA 165PA UT WOS:000320494600024 ER PT J AU Jordanova, V Borovsky, J Roussev, I AF Jordanova, Vania Borovsky, Joseph Roussev, Ilia TI Special Issue: Dynamics of the Complex Geospace System Preface SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Editorial Material C1 [Jordanova, Vania] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Borovsky, Joseph] Space Sci Inst, Boulder, CO USA. [Roussev, Ilia] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Jordanova, V (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM vania@lanl.gov; jborovsky@spacescience.org; iroussev@ifa.hawaii.edu OI Jordanova, Vania/0000-0003-0475-8743 NR 0 TC 0 Z9 0 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2013 VL 99 SI SI BP V EP V DI 10.1016/S1364-6826(13)00137-5 PG 1 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 165OS UT WOS:000320493800001 ER PT J AU Farrugia, CJ Erkaev, NV Jordanova, VK Lugaz, N Sandholt, PE Muhlbachler, S Torbert, RB AF Farrugia, C. J. Erkaev, N. V. Jordanova, V. K. Lugaz, N. Sandholt, P. E. Muehlbachler, S. Torbert, R. B. TI Features of the interaction of interplanetary coronal mass ejections/magnetic clouds with the Earth's magnetosphere SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Interplanetary coronal mass ejections; Magnetosheath flow; ICME-ICME interactions; 2-Dip geomagnetic storms ID TRANSPOLAR POTENTIAL SATURATION; DAYSIDE MAGNETOPAUSE; PLASMA OBSERVATIONS; MAGNETIC-FIELD; COMPLEX EJECTA; RAM PRESSURE; ART.; SHOCK; MAGNETOSHEATH; SIGNATURES AB The interaction of interplanetary coronal mass ejections (ICMEs) and magnetic clouds (MCs) with the Earth's magnetosphere exhibits various interesting features principally due to interplanetary parameters which change slowly and reach extreme values of long duration. These, in turn, allow us to explore the geomagnetic response to continued and extreme driving of the magnetosphere. In this paper we shall discuss elements of the following: (i) anomalous features of the flow in the terrestrial magnetosheath during ICME/MC passage and (ii) large geomagnetic disturbances when total or partial mergers of ICMEs/MCs pass Earth. In (i) we emphasize two roles played by the upstream Alfven Mach number in solar wind-magnetosphere interactions: (i) It gives rise to wide plasma depletion layers. (ii) It enhances the magnetosheath flow speed on draped magnetic field lines. (By plasma depletion layer we mean a magnetosheath region adjacent to the magnetopause where magnetic forces dominate over hydrodynamic forces.) In (ii) we stress that the ICME mergers elicit geoeffects over and above those of the individual members. In addition, features of the non-linear behavior of the magnetosphere manifest themselves. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Farrugia, C. J.; Lugaz, N.; Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Erkaev, N. V.] Russian Acad Sci, Inst Computat Modeling, Krasnoyark, Russia. [Erkaev, N. V.] Siberian Fed Univ, Krasnoyarsk, Russia. [Jordanova, V. K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sandholt, P. E.] Univ Oslo, Dept Phys, Oslo, Norway. [Muehlbachler, S.] Austrian Res Inst, Vienna, Austria. RP Farrugia, CJ (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM charlie.farrugia@unh.edu RI Lugaz, Noe/C-1284-2008; Erkaev, Nikolai/M-1608-2013; OI Lugaz, Noe/0000-0002-1890-6156; Erkaev, Nikolai/0000-0001-8993-6400; Jordanova, Vania/0000-0003-0475-8743 FU NASA [NNX10AQ29G]; NSF [AGS-1140211]; Austrian Science Fund Project [I193-N16]; RFBR [12-05-00152-a]; U.S. Department of Energy; NASA FX C.J.F. is supported by NASA Grant NNX10AQ29G and NSF Grant AGS-1140211. N.V.E. acknowledges support from Austrian Science Fund Project I193-N16 and RFBR Grant no 12-05-00152-a. N.L. acknowledges support from NSF Grant AGS-1140211. Work at LANL was conducted under the auspices of the U.S. Department of Energy with partial support from NASA and NSF. NR 53 TC 4 Z9 4 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2013 VL 99 SI SI BP 14 EP 26 DI 10.1016/j.jastp.2012.11.014 PG 13 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 165OS UT WOS:000320493800003 ER PT J AU Moore, TE Burch, JL Daughton, WS Fuselier, SA Hasegawa, H Petrinec, SM Pu, ZY AF Moore, T. E. Burch, J. L. Daughton, W. S. Fuselier, S. A. Hasegawa, H. Petrinec, S. M. Pu, Zuyin TI Multiscale studies of the three-dimensional dayside X-line SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Reconnection; Magnetosphere; Multiscale; Plasma; Magnetic ID MAGNETIC RECONNECTION; CLUSTER OBSERVATIONS; MAGNETOPAUSE; FIELD; BOUNDARY AB We review recent experience from the Cluster, Double Star, and THEMIS missions for lessons that apply to the upcoming Magnetospheric Multiscale Mission (MMS) being developed for launch in 2014. On global scales, simulation and statistical studies lead to mean configurations of dayside reconnection, implying specific relative alignments of the inflow magnetic fields and X-line, with implications for MMS operations designed to maximize the number of close encounters with the diffusion region. At intermediate MHD-to-ion scales, reconstruction of features created by one or two X-lines have developed to the point where data from a cluster of spacecraft can determine their temporal trends and the approximate three-dimensional X-line structure. Recent petascale particle-in-cell (PIC) simulations of reconnection encompass three spatial dimensions with excellent resolution, and make striking predictions of electron scale physics that creates complex interacting flux ropes under component reconnection. High time resolution measurements from MMS will determine the detailed electron scale kinetics embedded within the global and MHD-ion scale contexts. These developments will lead to the refinement of our three-dimensional multiscale picture of reconnection, yielding improved understanding of the global, MHD, and local physics controlling the onset or quenching, variability, and mean rate of reconnection. This in turn will enable improved predictability of the structural features created by transient reconnection, and their space weather consequences. Published by Elsevier Ltd. C1 [Moore, T. E.] NASA, Goddard SFC, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Burch, J. L.; Fuselier, S. A.] Southwest Res Inst, San Antonio, TX 78238 USA. [Daughton, W. S.] Los Alamos Natl Labs, Los Alamos, NM 87545 USA. [Petrinec, S. M.] Lockheed Martin ATC, Palo Alto, CA 94304 USA. [Pu, Zuyin] Beijing Univ, Dept Geophys, Beijing 100871, Peoples R China. RP Moore, TE (reprint author), NASA, Goddard SFC, Heliophys Sci Div, Code 670,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM t.e.moore@nasa.gov; jburch@swri.org; daughton@lanl.gov; hase@stp.isas.jaxa.jp; steven.m.petrinec@lmco.com; zypu@pku.edu.cn RI Hasegawa, Hiroshi/A-1192-2007; Moore, Thomas/D-4675-2012; Daughton, William/L-9661-2013; NASA MMS, Science Team/J-5393-2013 OI Hasegawa, Hiroshi/0000-0002-1172-021X; Moore, Thomas/0000-0002-3150-1137; NASA MMS, Science Team/0000-0002-9504-5214 FU NASA Magnetospheric Multiscale project at Goddard Space Flight Center FX This work was supported by the NASA Magnetospheric Multiscale project at Goddard Space Flight Center. The authors are grateful to the ISROSES Conference organizers for the opportunity to present this material in draft form there. NR 39 TC 12 Z9 12 U1 0 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2013 VL 99 SI SI BP 32 EP 40 DI 10.1016/j.jastp.2012.10.004 PG 9 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 165OS UT WOS:000320493800005 ER PT J AU Ilie, R Skoug, RM Funsten, HO Liemohn, MW Bailey, JJ Gruntman, M AF Ilie, R. Skoug, R. M. Funsten, H. O. Liemohn, M. W. Bailey, J. J. Gruntman, M. TI The impact of geocoronal density on ring current development SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Inner magnetosphere; Ring current; Geocorona; Modeling ID ENERGETIC NEUTRAL ATOMS; CHARGE-EXCHANGE; PLASMA SHEET; CURRENT IONS; INNER MAGNETOSPHERE; MAGNETIC STORM; ELECTRIC-FIELD; HYDROGEN; DECAY; RADIATION AB Long-term ring current decay following a magnetic storm is mainly due to charge exchange collisions of ring current ions with geocoronal neutral atoms forming energetic neutral atoms (ENAs) that leave the ring current system. Therefore, the density distribution of these cold and tenuous neutral hydrogen atoms plays a key role in the ring current recovery. TWINS ENA images provide a direct measurement of these ENA losses and therefore insight into the dynamics of the ring current decay through interactions with the geocorona. To assess the influence of geocoronal neutrals on ring current decay, we compare the predicted ENA emission using five different geocoronal models and the HEIDI ring current model to simulate the July 22, 2009 storm. We show that for high energy H+ (>= 100 keV), all geocoronal models predict similar decay rates of the ring current ions. However, for low energy ions (<= 100 key), the decay rate varies significantly depending on the geocoronal density model. Comparison with TWINS ENA images shows that the location of the peak ENA enhancements is highly dependent on the distribution of geocoronal hydrogen density. The ring current topology depends greatly on the hydrogen model used, therefore knowing the H-distribution is very important in understanding how the ring current recovers following a magnetic storm. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Ilie, R.; Skoug, R. M.; Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Liemohn, M. W.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Bailey, J. J.; Gruntman, M.] Univ So Calif, Los Angeles, CA USA. RP Ilie, R (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM rilie@lanl.gov RI Liemohn, Michael/H-8703-2012; Funsten, Herbert/A-5702-2015; Gruntman, Mike/A-5426-2008 OI Liemohn, Michael/0000-0002-7039-2631; Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X FU U.S. Department of Energy; NFS [NSF IAA 1027008]; NASA TWINS project FX Work at Los Alamos was performed under the auspices of the U.S. Department of Energy with financial support from the NFS grant NSF IAA 1027008 and the NASA TWINS project. We gratefully acknowledge the dedicated work of the TWINS team, especially Phil Valek and Jillian Redfern from Southwest Research Institute for providing the data. Special thanks to Natasha Buzulukova and Mei-Ching Fok from NASA Goddard for providing the ENA tool. NR 51 TC 10 Z9 10 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2013 VL 99 SI SI BP 92 EP 103 DI 10.1016/j.jastp.2012.03.010 PG 12 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 165OS UT WOS:000320493800014 ER PT J AU Phillips, C AF Phillips, Cynthia TI Best papers, IPDPS 2010 SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Editorial Material C1 Sandia Natl Labs, Livermore, CA 94550 USA. RP Phillips, C (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM caphill@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD JUL PY 2013 VL 73 IS 7 SI SI BP 897 EP 897 DI 10.1016/j.jpdc.2013.05.002 PG 1 WC Computer Science, Theory & Methods SC Computer Science GA 168BA UT WOS:000320679500001 ER PT J AU Tang, W Desai, N Buettner, D Lan, ZL AF Tang, Wei Desai, Narayan Buettner, Daniel Lan, Zhiling TI Job scheduling with adjusted runtime estimates on production supercomputers SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Job scheduling; Runtime estimates; Walltime prediction AB The estimate of a parallel job's running time (walltime) is an important attribute used by resource managers and job schedulers in various scenarios, such as backfilling and short-job-first scheduling. This value is provided by the user, however, and has been repeatedly shown to be inaccurate. We studied the workload characteristic based on a large amount of historical data (over 275,000 jobs in two and a half years) from a production leadership-class computer. Based on that study, we proposed a set of walltime adjustment schemes producing more accurate estimates. To ensure the utility of these schemes on production systems, we analyzed their potential impact in scheduling and evaluated the schemes with an event-driven simulator. Our experimental results show that our method can achieve not only better overall estimation accuracy but also improved overall system performance. Specifically, the average estimation accuracy of the tested workload can be improved by up to 35%, and the system performance in terms of average waiting time and weighted average waiting time can be improved by up to 22% and 28%, respectively. (c) 2013 Elsevier Inc. All rights reserved. C1 [Tang, Wei; Lan, Zhiling] IIT, Chicago, IL 60616 USA. [Desai, Narayan; Buettner, Daniel] Argonne Natl Lab, Argonne, IL 60439 USA. RP Tang, W (reprint author), IIT, Chicago, IL 60616 USA. EM wtang6@iit.edu FU National Science Foundation [CNS-0834514, CNS-0720549, CCF-0702737]; US Department of Energy [DE-AC02-06CH11357] FX This work was supported in part by National Science Foundation grants CNS-0834514, CNS-0720549, and CCF-0702737. The work at Argonne National Laboratory was supported by the US Department of Energy, under Contract DE-AC02-06CH11357. We gratefully acknowledge the use of the resources of the Argonne Leadership Computing Facility at Argonne National Laboratory. NR 31 TC 6 Z9 6 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD JUL PY 2013 VL 73 IS 7 SI SI BP 926 EP 938 DI 10.1016/j.jpdc.2013.02.006 PG 13 WC Computer Science, Theory & Methods SC Computer Science GA 168BA UT WOS:000320679500004 ER PT J AU Oliker, L Yelick, K AF Oliker, Leonid Yelick, Katherine TI Best paper awards: 26th international parallel and distributed processing symposium (IPDPS 2012) SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Editorial Material C1 [Oliker, Leonid] Lawrence Berkeley Natl Lab, Berkeley, CA USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Oliker, L (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM loliker@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD JUL PY 2013 VL 73 IS 7 SI SI BP 986 EP 986 DI 10.1016/j.jpdc.2013.03.001 PG 1 WC Computer Science, Theory & Methods SC Computer Science GA 168BA UT WOS:000320679500009 ER PT J AU Ma, T Bosilca, G Bouteiller, A Dongarra, JJ AF Ma, Teng Bosilca, George Bouteiller, Aurelien Dongarra, Jack J. TI Kernel-assisted and topology-aware MPI collective communications on multicore/many-core platforms SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE MPI; Multicore; Cluster; HPC; Collective communication; Hierarchical AB Multicore Clusters, which have become the most prominent form of High Performance Computing (HPC) systems, challenge the performance of MPI applications with non-uniform memory accesses and shared cache hierarchies. Recent advances in MPI collective communications have alleviated the performance issue exposed by deep memory hierarchies by carefully considering the mapping between the collective topology and the hardware topologies, as well as the use of single-copy kernel assisted mechanisms. However, on distributed environments, a single level approach cannot encompass the extreme variations not only in bandwidth and latency capabilities, but also in the capability to support duplex communications or operate multiple concurrent copies. This calls for a collaborative approach between multiple layers of collective algorithms, dedicated to extracting the maximum degree of parallelism from the collective algorithm by consolidating the intra- and inter-node communications. In this work, we present HierKNEM, a kernel-assisted topology-aware collective framework, and the mechanisms deployed by this framework to orchestrate the collaboration between multiple layers of collective algorithms. The resulting scheme maximizes the overlap of intra- and inter-node communications. We demonstrate experimentally, by considering three of the most used collective operations (Broadcast, Allgather and Reduction), that (1) this approach is immune to modifications of the underlying process-core binding; (2) it outperforms state-of-art MPI libraries (Open MPI, MPICH2 and MVAPICH2) demonstrating up to a 30x speedup for synthetic benchmarks, and up to a 3x acceleration for a parallel graph application (ASP); (3) it furthermore demonstrates a linear speedup with the increase of the number of cores per compute node, a paramount requirement for scalability on future many-core hardware. (c) 2013 Elsevier Inc. All rights reserved. C1 [Ma, Teng] Univ Tennessee, Dept EECS, Knoxville, TN 37996 USA. [Bosilca, George; Bouteiller, Aurelien; Dongarra, Jack J.] Univ Tennessee, Knoxville, TN USA. [Dongarra, Jack J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Dongarra, Jack J.] Univ Manchester, Manchester, Lancs, England. RP Ma, T (reprint author), Univ Tennessee, Dept EECS, Knoxville, TN 37996 USA. EM xiaok1981@gmail.com RI Dongarra, Jack/E-3987-2014 FU CNRS; RENATER FX Experiments presented in this paper were carried out using the Grid'5000 experimental testbed, being developed under the INRIA ALADDIN development action with support from CNRS, RENATER and several Universities as well as other funding bodies (see https://www.grid5000.fr). NR 21 TC 4 Z9 4 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD JUL PY 2013 VL 73 IS 7 SI SI BP 1000 EP 1010 DI 10.1016/j.jpdc.2013.01.015 PG 11 WC Computer Science, Theory & Methods SC Computer Science GA 168BA UT WOS:000320679500011 ER PT J AU Wiel, SV Weaver, BP Stepan, T AF Wiel, Scott Vander Weaver, Brian P. Stepan, Thomas TI More Pitfalls of Accelerated Tests Discussion SO JOURNAL OF QUALITY TECHNOLOGY LA English DT Editorial Material C1 [Wiel, Scott Vander; Weaver, Brian P.; Stepan, Thomas] Los Alamos Natl Lab, Los Alamos, NM USA. RP Wiel, SV (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC QUALITY CONTROL-ASQC PI MILWAUKEE PA 600 N PLANKINTON AVE, MILWAUKEE, WI 53203 USA SN 0022-4065 J9 J QUAL TECHNOL JI J. Qual. Technol. PD JUL PY 2013 VL 45 IS 3 BP 238 EP 239 PG 2 WC Engineering, Industrial; Operations Research & Management Science; Statistics & Probability SC Engineering; Operations Research & Management Science; Mathematics GA 172RY UT WOS:000321023800008 ER PT J AU Collins, DH Freels, JK Huzurbazar, AV Warr, RL Weaver, BP AF Collins, David H. Freels, Jason K. Huzurbazar, Aparna V. Warr, Richard L. Weaver, Brian P. TI Accelerated Test Methods for Reliability Prediction SO JOURNAL OF QUALITY TECHNOLOGY LA English DT Article DE Accelerated Degradation Test; Accelerated Life Test; Design of Experiments; Highly Accelerated Testing; Reliability Analysis; Reliability Growth ID TO-FAILURE DISTRIBUTION; DEGRADATION; MODELS AB Perusal of quality- and reliability-engineering literature indicates some confusion over the meaning of accelerated life testing (ALT), highly accelerated life testing (HALT), highly accelerated stress screening (HASS), and highly accelerated stress auditing (HASA). In addition, there is a significant conflict between testing as part of an iterative process of finding and removing defects and testing as a means of estimating or predicting product reliability. We review the basics of these testing methods and describe how they relate to statistical methods for estimation and prediction of reliability and reliability growth. We also outline potential synergies to help reconcile statistical and engineering approaches to accelerated testing, resulting in better product quality at lower cost. C1 [Collins, David H.; Huzurbazar, Aparna V.; Weaver, Brian P.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Freels, Jason K.; Warr, Richard L.] Air Force Inst Technol, Wright Patterson AFB, OH 45433 USA. RP Collins, DH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM dcollins@lanl.gov; Jason.freels@afit.edu; aparna@lanl.gov; richard.warr@afit.edu; theguz@lanl.gov FU U.S. Department of Energy/National Nuclear Security Administration Enhanced Surveillance Campaign at the Los Alamos National Laboratory [C8] FX The work of Collins, Huzurbazar, and Weaver was funded by the U.S. Department of Energy/National Nuclear Security Administration Enhanced Surveillance Campaign (C8) at the Los Alamos National Laboratory. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, Department of Energy, or the U.S. Government. NR 53 TC 2 Z9 2 U1 3 U2 41 PU AMER SOC QUALITY CONTROL-ASQC PI MILWAUKEE PA 600 N PLANKINTON AVE, MILWAUKEE, WI 53203 USA SN 0022-4065 J9 J QUAL TECHNOL JI J. Qual. Technol. PD JUL PY 2013 VL 45 IS 3 BP 244 EP 259 PG 16 WC Engineering, Industrial; Operations Research & Management Science; Statistics & Probability SC Engineering; Operations Research & Management Science; Mathematics GA 172RY UT WOS:000321023800010 ER PT J AU Burr, T Hamada, MS Myers, K Skurikhin, M AF Burr, Tom Hamada, Michael S. Myers, Kary Skurikhin, Misha TI Point-Source Detection Using Gamma-Ray Spectra in Radiation-portal Monitoring SO JOURNAL OF QUALITY TECHNOLOGY LA English DT Article DE Background Suppression; Mahalanobis Distance; Scan Statistic; Spectral Distance; Time Series ID SUPPRESSION AB Problem: Radiation detection systems are deployed at U.S. borders to guard against illicit entry of radioactive material. Unfortunately, nuisance alarms due to naturally occurring radioactive material (NORM) reduce detection probabilities for threat sources. This paper evaluates to what extent gamma counts for a range of energies (i.e., a gamma spectrum) deployed in primary screening can detect threat-point sources, with attention to background-suppression effects. Approach: It is assumed that most NORM sources are more spatially distributed than a point source and that most threat sources are distributed more like a point source. Therefore, we seek a high-alarm probability for vehicle profiles that exhibit a point-like shift in spectral shape. The proposed approach uses variation of the gamma spectral shape over time as a moving vehicle carrying a point source is screened. Results: The paper uses data from approximately 2000 real vehicle screenings to develop alarm thresholds and to evaluate detection probabilities of injected threat sources from both NORM and threat isotopes. It is shown that transforming the raw gamma spectra is advantageous and that using the Mahalanobis distance to detect the point-like shift in spectral shape is superior to a spectral distance used in the literature. C1 [Burr, Tom; Hamada, Michael S.; Myers, Kary; Skurikhin, Misha] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Burr, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM tburr@lanl.gov; hamada@lanl.gov; kary@lanl.gov; misha@lanl.gov FU Department of Homeland Security under DOE [DE-AC52-06NA25396] FX We acknowledge the Department of Homeland Security for funding the production of this material under DOE contract DE-AC52-06NA25396 for the management and operation of Los Alamos National Laboratory. NR 16 TC 0 Z9 0 U1 1 U2 4 PU AMER SOC QUALITY CONTROL-ASQC PI MILWAUKEE PA 600 N PLANKINTON AVE, MILWAUKEE, WI 53203 USA SN 0022-4065 J9 J QUAL TECHNOL JI J. Qual. Technol. PD JUL PY 2013 VL 45 IS 3 BP 285 EP 296 PG 12 WC Engineering, Industrial; Operations Research & Management Science; Statistics & Probability SC Engineering; Operations Research & Management Science; Mathematics GA 172RY UT WOS:000321023800013 ER PT J AU Ping, LH Joseph, SB Anderson, JA Abrahams, MR Salazar-Gonzalez, JF Kincer, LP Treurnicht, FK Arney, L Ojeda, S Zhang, M Keys, J Potter, EL Chu, HT Moore, P Salazar, MG Iyer, S Jabara, C Kirchherr, J Mapanje, C Ngandu, N Seoighe, C Hoffman, I Gao, F Tang, YY Labranche, C Lee, B Saville, A Vermeulen, M Fiscus, S Morris, L Karim, SA Haynes, BF Shaw, GM Korber, BT Hahn, BH Cohen, MS Montefiori, D Williamson, C Swanstrom, R AF Ping, Li-Hua Joseph, Sarah B. Anderson, Jeffrey A. Abrahams, Melissa-Rose Salazar-Gonzalez, Jesus F. Kincer, Laura P. Treurnicht, Florette K. Arney, Leslie Ojeda, Suany Zhang, Ming Keys, Jessica Potter, E. Lake Chu, Haitao Moore, Penny Salazar, Maria G. Iyer, Shilpa Jabara, Cassandra Kirchherr, Jennifer Mapanje, Clement Ngandu, Nobubelo Seoighe, Cathal Hoffman, Irving Gao, Feng Tang, Yuyang Labranche, Celia Lee, Benhur Saville, Andrew Vermeulen, Marion Fiscus, Susan Morris, Lynn Karim, Salim Abdool Haynes, Barton F. Shaw, George M. Korber, Bette T. Hahn, Beatrice H. Cohen, Myron S. Montefiori, David Williamson, Carolyn Swanstrom, Ronald CA CAPRISA 002 Acute Infect Study Team Ctr HIV-AIDS Vaccine Immunology TI Comparison of Viral Env Proteins from Acute and Chronic Infections with Subtype C Human Immunodeficiency Virus Type 1 Identifies Differences in Glycosylation and CCR5 Utilization and Suggests a New Strategy for Immunogen Design SO JOURNAL OF VIROLOGY LA English DT Article ID N-LINKED GLYCOSYLATION; NEUTRALIZING ANTIBODY-RESPONSES; MONOCYTE-DERIVED MACROPHAGES; HIV-1 GP120; HETEROSEXUAL TRANSMISSION; ENVELOPE GLYCOPROTEINS; VERTICAL TRANSMISSION; CORECEPTOR FUNCTION; R5 ENVELOPES; V1/V2 DOMAIN AB Understanding human immunodeficiency virus type 1 (HIV-1) transmission is central to developing effective prevention strategies, including a vaccine. We compared phenotypic and genetic variation in HIV-1 env genes from subjects in acute/early infection and subjects with chronic infections in the context of subtype C heterosexual transmission. We found that the transmitted viruses all used CCR5 and required high levels of CD4 to infect target cells, suggesting selection for replication in T cells and not macrophages after transmission. In addition, the transmitted viruses were more likely to use a maraviroc-sensitive conformation of CCR5, perhaps identifying a feature of the target T cell. We confirmed an earlier observation that the transmitted viruses were, on average, modestly under-glycosylated relative to the viruses from chronically infected subjects. This difference was most pronounced in comparing the viruses in acutely infected men to those in chronically infected women. These features of the transmitted virus point to selective pressures during the transmission event. We did not observe a consistent difference either in heterologous neutralization sensitivity or in sensitivity to soluble CD4 between the two groups, suggesting similar conformations between viruses from acute and chronic infection. However, the presence or absence of glycosylation sites had differential effects on neutralization sensitivity for different antibodies. We suggest that the occasional absence of glycosylation sites encoded in the conserved regions of env, further reduced in transmitted viruses, could expose specific surface structures on the protein as antibody targets. C1 [Ping, Li-Hua; Joseph, Sarah B.; Anderson, Jeffrey A.; Kincer, Laura P.; Arney, Leslie; Ojeda, Suany; Keys, Jessica; Potter, E. Lake; Jabara, Cassandra; Tang, Yuyang; Fiscus, Susan; Cohen, Myron S.; Swanstrom, Ronald] Univ N Carolina, UNC Ctr AIDS Res, Chapel Hill, NC 27599 USA. [Ping, Li-Hua; Joseph, Sarah B.; Anderson, Jeffrey A.; Kincer, Laura P.; Arney, Leslie; Ojeda, Suany; Keys, Jessica; Potter, E. Lake; Chu, Haitao; Jabara, Cassandra; Tang, Yuyang; Swanstrom, Ronald] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. [Anderson, Jeffrey A.; Hoffman, Irving; Cohen, Myron S.] Univ N Carolina, Sch Med, Div Infect Dis, Chapel Hill, NC USA. [Abrahams, Melissa-Rose; Treurnicht, Florette K.; Ngandu, Nobubelo; Williamson, Carolyn] Univ Cape Town, Div Med Virol, Inst Infect Dis & Mol Med, ZA-7925 Cape Town, South Africa. [Abrahams, Melissa-Rose; Treurnicht, Florette K.; Ngandu, Nobubelo; Williamson, Carolyn] Natl Hlth Lab Serv, Cape Town, South Africa. [Salazar-Gonzalez, Jesus F.; Salazar, Maria G.] Univ Alabama Birmingham, Dept Med, Birmingham, AL 35294 USA. [Zhang, Ming; Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Zhang, Ming] Univ Georgia, Dept Epidemiol & Biostat, Athens, GA 30602 USA. [Keys, Jessica] Univ N Carolina, Dept Epidemiol, Chapel Hill, NC USA. [Chu, Haitao] Univ N Carolina, Dept Biostat, Chapel Hill, NC USA. [Moore, Penny; Morris, Lynn] Natl Inst Communicable Dis, Ctr HIV & STIs, Johannesburg, South Africa. [Iyer, Shilpa; Shaw, George M.; Hahn, Beatrice H.] Univ Penn, Dept Med, Philadelphia, PA 19104 USA. [Iyer, Shilpa; Shaw, George M.; Hahn, Beatrice H.] Univ Penn, Dept Microbiol, Philadelphia, PA 19104 USA. [Jabara, Cassandra] Univ N Carolina, Dept Biol, Chapel Hill, NC USA. [Kirchherr, Jennifer; Gao, Feng; Haynes, Barton F.] Duke Univ, Dept Med, Duke Human Vaccine Inst, Durham, NC USA. [Mapanje, Clement] UNC Project, Lilongwe, Malawi. [Seoighe, Cathal] Natl Univ Ireland, Galway, Ireland. [Labranche, Celia; Montefiori, David] Duke Univ, Dept Surg, Durham, NC USA. [Lee, Benhur] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA USA. [Saville, Andrew; Vermeulen, Marion] South African Natl Blood Serv, Weltevreden Pk, South Africa. [Fiscus, Susan] Univ N Carolina, Dept Microbiol & Immunol, Chapel Hill, NC USA. [Karim, Salim Abdool] Univ KwaZulu Natal, Doris Duke Med Res Inst, Ctr AIDS Program Res South Africa, Durban, South Africa. [Korber, Bette T.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Swanstrom, Ronald] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC USA. RP Swanstrom, R (reprint author), Univ N Carolina, UNC Ctr AIDS Res, Chapel Hill, NC 27599 USA. EM risunc@med.unc.edu RI Abdool Karim, Salim Safurdeen/N-5947-2013; Lee, Benhur/A-8554-2016; OI Abdool Karim, Salim Safurdeen/0000-0002-4986-2133; Lee, Benhur/0000-0003-0760-1709; Moore, Penny/0000-0001-8719-4028; , Carolyn/0000-0003-0125-1226; Chu, Haitao/0000-0003-0932-598X; Korber, Bette/0000-0002-2026-5757 FU National Institutes of Health [U01 AI067854 [CHAVI], R01 AI10273, R37 AI44667, R01 AI092218]; UNC Center for AIDS Research [P30 AI50410]; UCLA Center for AIDS Research [P30 AI028697] FX This work was funded by awards from the National Institutes of Health (U01 AI067854 [CHAVI]), R01 AI10273 and R37 AI44667 to R.S., and R01 AI092218 to B.L. We also received support from the UNC Center for AIDS Research (P30 AI50410) and the UCLA Center for AIDS Research (P30 AI028697). NR 110 TC 41 Z9 41 U1 1 U2 18 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD JUL PY 2013 VL 87 IS 13 BP 7218 EP 7233 DI 10.1128/JVI.03577-12 PG 16 WC Virology SC Virology GA 160JT UT WOS:000320116500003 PM 23616655 ER PT J AU Lynch, DJ Matamala, R Iversen, CM Norby, RJ Gonzalez-Meler, MA AF Lynch, Douglas J. Matamala, Roser Iversen, Colleen M. Norby, Richard J. Gonzalez-Meler, Miquel A. TI Stored carbon partly fuels fine-root respiration but is not used for production of new fine roots SO NEW PHYTOLOGIST LA English DT Article DE 13 C; fine roots; free-air CO2 enrichment (FACE); post-carboxylation fractionation; root respiration; root turnover; stored carbon (C); Liquidambar styraciflua ID MATURE DECIDUOUS FOREST; AIR CO2 ENRICHMENT; SOIL RESPIRATION; TEMPERATE FOREST; ELEVATED CO2; ATMOSPHERIC CO2; HETEROTROPHIC COMPONENTS; NITROGEN AVAILABILITY; FAGUS-SYLVATICA; RESIDENCE TIMES AB The relative use of new photosynthate compared to stored carbon (C) for the production and maintenance of fine roots, and the rate of C turnover in heterogeneous fine-root populations, are poorly understood. We followed the relaxation of a 13C tracer in fine roots in a Liquidambar styraciflua plantation at the conclusion of a free-air CO2 enrichment experiment. Goals included quantifying the relative fractions of new photosynthate vs stored C used in root growth and root respiration, as well as the turnover rate of fine-root C fixed during [CO2] fumigation. New fine-root growth was largely from recent photosynthate, while nearly one-quarter of respired C was from a storage pool. Changes in the isotopic composition of the fine-root population over two full growing seasons indicated heterogeneous C pools; <10% of root C had a residence time <3months, while a majority of root C had a residence time >2yr. Compared to a one-pool model, a two-pool model for C turnover in fine roots (with 5 and 0.37yr-1 turnover times) doubles the fine-root contribution to forest NPP (9-13%) and supports the 50% root-to-soil transfer rate often used in models. C1 [Lynch, Douglas J.; Gonzalez-Meler, Miquel A.] Univ Illinois, Dept Biol Sci, Chicago, IL 60607 USA. [Matamala, Roser] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Iversen, Colleen M.; Norby, Richard J.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Iversen, Colleen M.; Norby, Richard J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Lynch, DJ (reprint author), Univ Illinois, Dept Biol Sci, Chicago, IL 60607 USA. EM dlynch3@uic.edu RI Norby, Richard/C-1773-2012; OI Norby, Richard/0000-0002-0238-9828; Gonzalez-Meler, Miquel/0000-0001-5388-7969 FU United States Department of Energy, Office of Science, Biological and Environmental Research program; United States Department of Energy [DE-AC05-00OR22725]; US Department of Energy [ER65188]; National Science Foundation [DEB-0919276]; National Science Foundation IGERT Grant [DGE-0549245]; US Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science Division [DE-AC02-06CH11357] FX We thank three anonymous reviewers for comments that improved an earlier draft of the manuscript. Thanks to Jessica Rucks at the Stable Isotope Laboratory at UIC for laboratory assistance. The ORNL FACE site was supported by the United States Department of Energy, Office of Science, Biological and Environmental Research program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the United States Department of Energy under contract DE-AC05-00OR22725. M. A. G-M. was supported by the US Department of Energy contract ER65188 and National Science Foundation DEB-0919276. D.J.L. was supported by National Science Foundation IGERT Grant DGE-0549245 'Landscape Ecological and Anthropogenic Processes'. R. M. was supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science Division, under contract DE-AC02-06CH11357. NR 64 TC 25 Z9 29 U1 7 U2 105 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD JUL PY 2013 VL 199 IS 2 BP 420 EP 430 DI 10.1111/nph.12290 PG 11 WC Plant Sciences SC Plant Sciences GA 167GC UT WOS:000320618400012 PM 23646982 ER PT J AU Xiao, BP Reece, CE Kelley, MJ AF Xiao, B. P. Reece, C. E. Kelley, M. J. TI Superconducting surface impedance under radiofrequency field SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Particle accelerator; Superconducting RF accelerator; Surface impedance AB Based on BCS theory with moving Cooper pairs, the electron states distribution at 0 K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure. (C) 2013 Elsevier B. V. All rights reserved. C1 [Xiao, B. P.; Reece, C. E.; Kelley, M. J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Xiao, B. P.; Kelley, M. J.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Kelley, MJ (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM reece@jlab.org; mkelley@jlab.org FU US DOE [DE-AC05-06OR23177] FX Authored by Jefferson Science Associates, LLC under US DOE Contract No. DE-AC05-06OR23177. The US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for US Government purposes. The authors acknowledge the helpful discussions on this work with G. Ciovati, A. Gurevich, and F. He. NR 12 TC 8 Z9 9 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL PY 2013 VL 490 BP 26 EP 31 DI 10.1016/j.physc.2013.04.003 PG 6 WC Physics, Applied SC Physics GA 166YP UT WOS:000320597400005 ER PT J AU Norris, AL Serpersu, EH AF Norris, Adrianne L. Serpersu, Engin H. TI Ligand promiscuity through the eyes of the aminoglycoside N3 acetyltransferase IIa SO PROTEIN SCIENCE LA English DT Article DE aminoglycosides; acetyltransferase; protein dynamics; ligand promiscuity; isothermal titration calorimetry; nuclear magnetic resonance; aminoglycoside modification; antibiotic resistance; intrinsically disordered proteins ID ISOTHERMAL TITRATION CALORIMETRY; COENZYME-A BINDING; MODIFYING ENZYMES; BISUBSTRATE INHIBITORS; SOLVENT REARRANGEMENT; RIBOSOMAL-RNA; PHOSPHOTRANSFERASE(3')-IIIA; DYNAMICS; NMR; GENES AB Aminoglycoside-modifying enzymes (AGMEs) are expressed in many pathogenic bacteria and cause resistance to aminoglycoside (AG) antibiotics. Remarkably, the substrate promiscuity of AGMEs is quite variable. The molecular basis for such ligand promiscuity is largely unknown as there is not an obvious link between amino acid sequence or structure and the antibiotic profiles of AGMEs. To address this issue, this article presents the first kinetic and thermodynamic characterization of one of the least promiscuous AGMEs, the AG N3 acetyltransferase-IIa (AAC-IIa) and its comparison to two highly promiscuous AGMEs, the AG N3-acetyltransferase-IIIb (AAC-IIIb) and the AG phosphotransferase(3)-IIIa (APH). Despite having similar antibiotic selectivities, AAC-IIIb and APH catalyze different reactions and share no homology to one another. AAC-IIa and AAC-IIIb catalyze the same reaction and are very similar in both amino acid sequence and structure. However, they demonstrate strong differences in their substrate profiles and kinetic and thermodynamic properties. AAC-IIa and APH are also polar opposites in terms of ligand promiscuity but share no sequence or apparent structural homology. However, they both are highly dynamic and may even contain disordered segments and both adopt well-defined conformations when AGs are bound. Contrary to this AAC-IIIb maintains a well-defined structure even in apo form. Data presented herein suggest that the antibiotic promiscuity of AGMEs may be determined neither by the flexibility of the protein nor the size of the active site cavity alone but strongly modulated or controlled by the effects of the cosubstrate on the dynamic and thermodynamic properties of the enzyme. C1 [Norris, Adrianne L.; Serpersu, Engin H.] Univ Tennessee, Dept Biochem Cell & Mol Biol, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Oak Ridge Natl Lab, Knoxville, TN 37996 USA. RP Serpersu, EH (reprint author), Univ Tennessee, Dept Biochem Cell & Mol Biol, M407 Walters Life Sci Bldg, Knoxville, TN 37996 USA. EM Serpersu@utk.edu FU National Science Foundation [MCB 01110741] FX Grant sponsor: National Science Foundation; Grant number: MCB 01110741 (EHS). NR 42 TC 2 Z9 4 U1 3 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2013 VL 22 IS 7 BP 916 EP 928 DI 10.1002/pro.2273 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 171QR UT WOS:000320944600007 PM 23640799 ER PT J AU Aronson, EL Dubinsky, EA Helliker, BR AF Aronson, Emma L. Dubinsky, Eric A. Helliker, Brent R. TI Effects of nitrogen addition on soil microbial diversity and methane cycling capacity depend on drainage conditions in a pine forest soil SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Fertilization; Methane; Methanogen; Methanotroph; Microarray; Diversity; qPCR ID METHANOTROPHIC BACTERIA; ATMOSPHERIC METHANE; OXIDIZING BACTERIA; EMISSIONS; CONSUMPTION; OXIDATION; EXCHANGE; BIOGEOGRAPHY; SEDIMENTS; OXIDE AB Two forested study sites, one well and one poorly drained, were used for investigation of the effects of variation in drainage, microclimate, and addition of inorganic nitrogen (N) on the whole soil microbial community and its methane cycling capacity. Both sites were capable of consuming and releasing large quantities of methane. The composition of the soil microbial community was investigated using the 3rd generation PhyloChip, a bacterial and archaeal 16S rRNA gene microarray. The PhyloChip was also used to target the composition of methane- and some N-cycling microorganisms. Relative abundance of functional genes involved in methane production and consumption was evaluated with qPCR. Soil drainage condition determined the microbial community structure within and between sites. Greater community structure variation, richness of methanotrophs, and higher abundances of both methanotrophs and methanogens were all found in the poorly drained site, as was higher soil moisture and C content and methane release. In the poorly drained site, high N (67 kg NH4NO3 ha(-1) yr(-1)) increased methanotroph and methanogen abundance, overall taxonomic richness of Bacteria and Archaea, and richness of nitrifiers and methanotrophs. In the well drained site, high N decreased taxonomic richness. Results may indicate that high N concentrations stimulated oxidative reactions, including ammonia and methane oxidation and nitrification in the short term. The resultant increase in release of methane from the high N plots of the poorly-drained site may have been due to indirect inhibition of methane oxidation by the increase in other oxidative reactions. Alternatively, both methanogens and methanotrophs may have been stimulated by high N. Well-drained site high N decreased the taxonomic richness of the soil, but did not impact methane-cycling microbes. These findings begin to bridge the gap between microbial-scale community dynamics and ecosystem-scale ecological functions. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Aronson, Emma L.; Helliker, Brent R.] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA. [Dubinsky, Eric A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Aronson, EL (reprint author), Univ Calif Irvine, Dept Ecol & Evolutionary Biol, 321 Steinhaus, Irvine, CA 92697 USA. EM earonson@uci.edu RI Dubinsky, Eric/D-3787-2015 OI Dubinsky, Eric/0000-0002-9420-6661 FU Air and Waste Management Association's Air Pollution Education and Research Grant; NASA Graduate Student Researchers Program; Garden Club of America's Kissel Scholarship; NOAA Climate and Global Change Postdoctoral Fellowship FX Grant and fellowship funding was provided by the Air and Waste Management Association's Air Pollution Education and Research Grant, the NASA Graduate Student Researchers Program, the Garden Club of America's Kissel Scholarship, and the NOAA Climate and Global Change Postdoctoral Fellowship. The authors thank Drs. Brenda Casper and Peter Petraitis and the CasperPetriatis-Helliker lab group at the University of Pennsylvania; Dr. Mary Firestone, Rebecca Daly and the Firestone lab at UC Berkeley; Dr. Gary Anderson and the Anderson lab at LBNL; and Drs. John Dighton and Dennis Gray at the Rutgers University Pinelands Field Station. NR 50 TC 2 Z9 5 U1 11 U2 125 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD JUL PY 2013 VL 62 BP 119 EP 128 DI 10.1016/j.soilbio.2013.03.005 PG 10 WC Soil Science SC Agriculture GA 164QY UT WOS:000320425800016 ER PT J AU Liu, HG Poon, BK Saldin, DK Spence, JCH Zwart, PH AF Liu, Haiguang Poon, Billy K. Saldin, Dilano K. Spence, John C. H. Zwart, Peter H. TI Three-dimensional single-particle imaging using angular correlations from X-ray laser data SO ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES LA English DT Article ID FREE-ELECTRON LASER; PROTEIN NANOCRYSTALLOGRAPHY; MACROMOLECULAR STRUCTURES; SCATTERING PROFILES; SPHERICAL-HARMONICS; ZERNIKE POLYNOMIALS; DIFFRACTION DATA; CRYSTALLOGRAPHY; COMPUTATION; SYMMETRIES AB Femtosecond X-ray pulses from X-ray free-electron laser sources make it feasible to conduct room-temperature solution scattering experiments far below molecular rotational diffusion timescales. Owing to the ultra-short duration of each snapshot in these fluctuation scattering experiments, the particles are effectively frozen in space during the X-ray exposure. In contrast to standard small-angle scattering experiments, the resulting scattering patterns are anisotropic. The intensity fluctuations observed in the diffraction images can be used to obtain structural information embedded in the average angular correlation of the Fourier transform of the scattering species, of which standard small-angle scattering data are a subset. The additional information contained in the data of these fluctuation scattering experiments can be used to determine the structure of macromolecules in solution without imposing symmetry or spatial restraints during model reconstruction, reducing ambiguities normally observed in solution scattering studies. In this communication, a method that utilizes fluctuation X-ray scattering data to determine low-resolution solution structures is presented. The method is validated with theoretical data calculated from several representative molecules and applied to the reconstruction of nanoparticles from experimental data collected at the Linac Coherent Light Source. C1 [Liu, Haiguang; Spence, John C. H.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Poon, Billy K.; Zwart, Peter H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Saldin, Dilano K.] Univ Wisconsin, Dept Phys, Milwaukee, WI 53211 USA. RP Zwart, PH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM phzwart@lbl.gov FU Laboratory Directed Research and Development (LDRD) from Berkeley Laboratory by Office of Science, of the US Department of Energy [DE-AC02-05CH11231]; Human Frontier Science Program (HFSP) [024940]; NSF [MCB-1158138]; Research Growth Initiative (RGI) of the University of Wisconsin-Milwaukee FX HL, BKP and PHZ were supported by Laboratory Directed Research and Development (LDRD) funding from Berkeley Laboratory, provided by the Director, Office of Science, of the US Department of Energy under Contract No. DE-AC02-05CH11231. JCHS and HL acknowledge funding from the Human Frontier Science Program (HFSP) award No. 024940. DKS acknowledges support from NSF grant No. MCB-1158138 and the Research Growth Initiative (RGI) of the University of Wisconsin-Milwaukee. We thank Dr N. Zatsepin for stimulating discussions. The authors express gratitude to their peers who made experimental data available to the general public via the CXIDB. NR 46 TC 17 Z9 18 U1 3 U2 44 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-2733 J9 ACTA CRYSTALLOGR A JI Acta Crystallogr. Sect. A PD JUL PY 2013 VL 69 BP 365 EP 373 DI 10.1107/S0108767313006016 PN 4 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 167BB UT WOS:000320604100001 PM 23778093 ER PT J AU Peppernick, SJ Joly, AG Beck, KM Hess, WP Wang, JY Wang, YC Wei, WD AF Peppernick, Samuel J. Joly, Alan G. Beck, Kenneth M. Hess, Wayne P. Wang, Jinyong Wang, Yi-Chung Wei, W. David TI Photoemission electron microscopy of a plasmonic silver nanoparticle trimer SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID ELECTROMAGNETIC SCATTERING; MAXWELLS EQUATIONS; NUMERICAL-SOLUTION; POLYSTYRENE; NANOPRISMS; DYNAMICS AB We present a combined experimental and theoretical study to investigate the spatial distribution of photoelectrons emitted from silver-coated polystyrene nanoparticles. We use two-photon photoemission electron microscopy (2P-PEEM) to image electron emission from a silver-capped aggregate trimer. Finite difference time domain (FDTD) simulations are performed to model the intensity distributions of the electromagnetic near fields resulting from femtosecond laser excitation of localized surface plasmon oscillations in the trimer structure. We demonstrate that the predicted FDTD near-field intensity distribution reproduces the 2P-PEEM photoemission pattern. C1 [Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, Jinyong; Wang, Yi-Chung; Wei, W. David] Univ Florida, Dept Chem, Gainesville, FL 32611 USA. [Wang, Jinyong; Wang, Yi-Chung; Wei, W. David] Univ Florida, Ctr Nanostruct Elect Mat, Gainesville, FL 32611 USA. RP Hess, WP (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM wayne.hess@pnnl.gov; wei@chem.ufl.edu.gov FU Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; NSF CCI Center for Nanostructured Electronic Materials [CHE-1038015] FX The authors were supported by the Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. J.W., Y.W. and W. D. W. acknowledge the support from the NSF CCI Center for Nanostructured Electronic Materials under Award No. CHE-1038015. W. D. W. acknowledges and appreciates the generous support from ORAU for the Ralph E. Powe Junior Faculty Enhancement Award, Sigma Xi for the Junior Faculty Research Award from the Florida Chapter and the University of Florida for startup assistance. Materials fabrication and characterization were conducted at Nanoscale Research Facility (NRF) and Major Analytical Instrumentation Center (MAIC) at UF. 2P-PEEM measurement was performed using the EMSL through a user proposal (No. 40065). NR 29 TC 1 Z9 1 U1 2 U2 68 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 EI 1432-0630 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD JUL PY 2013 VL 112 IS 1 BP 35 EP 39 DI 10.1007/s00339-012-7316-5 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 162OG UT WOS:000320274100006 ER PT J AU Odziomek, K Gajewicz, A Haranczyk, M Puzyn, T AF Odziomek, K. Gajewicz, A. Haranczyk, M. Puzyn, T. TI Reliability of environmental fate modeling results for POPs based on various methods of determining the air/water partition coefficient (log K-AW) SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Air-water partition coefficient; Multimedia mass modeling; QSPR; POPs ID PERSISTENT ORGANIC POLLUTANTS; MASS-BALANCE MODELS; PHYSICOCHEMICAL PROPERTIES; APPLICABILITY DOMAIN; BRITISH-COLUMBIA; TRANSPORT; PREDICTION; CANADA; BIOACCUMULATION; PARAMETERS AB Air-water partition coefficient (K-AW) is one of the key parameters determining environmental behavior of Persistent Organic Pollutants (POPs). Experimentally measured values of K-AW are still unavailable for majority of POPs, thus alternative methods of supplying data, including Quantitative Structure-Property Relationships (QSPR) modeling, are often in use. In this paper, applicability of two QSPR methods of predicting K-AW were compared with each other in the context of further application of the predicted data in environmental transport and fate studies. According to the first (indirect) method, K-AW is calculated from previously predicted values of octanol-water (K-OW) and octanol-air (K-OA) partition coefficients. In the second (direct) approach, K-AW is calculated, based on the estimated value of Henry's law constant (K-H) and then adjusted to ensure its consistency with the other two partition coefficients (K-OW and K-OA). Although the indirect method carries theoretically twice as much error as the direct method, when the predicted values of K-AW are then utilized as an input to the environmental fate model The OECD P-OV and LRTP Screening Tool, ver. 2.2, the indirect method elicits much higher and therefore much more restrictive values of overall persistence (P-OV) and transfer efficiency (TE) than its equivalent (direct method). High uncertainties related to the application of the direct method result mainly from the necessary adjustment procedure. (C) 2013 Published by Elsevier Ltd. C1 [Odziomek, K.; Gajewicz, A.; Puzyn, T.] Univ Gdansk, Lab Environm Chemometr, Fac Chem, PL-80952 Gdansk, Poland. [Haranczyk, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Puzyn, T (reprint author), Univ Gdansk, Lab Environm Chemometr, Fac Chem, Sobieskiego 18-19, PL-80952 Gdansk, Poland. EM t.puzyn@qsar.eu.org RI Haranczyk, Maciej/A-6380-2014; OI Haranczyk, Maciej/0000-0001-7146-9568; Puzyn, Tomasz/0000-0003-0449-8339 FU U. S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Polish Ministry of Science and Higher Education [530-8180-D202-12] FX This research was supported in part (to M.H.) by the U. S. Department of Energy under contract DE-AC02-05CH11231.; This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.; This work was supported by the Polish Ministry of Science and Higher Education (Grant No. 530-8180-D202-12). NR 41 TC 5 Z9 5 U1 1 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUL PY 2013 VL 73 BP 177 EP 184 DI 10.1016/j.atmosenv.2013.02.052 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 165NP UT WOS:000320490900020 ER PT J AU Wang, YG Huang, JY Hopke, PK Rattigan, OV Chalupa, DC Utell, MJ Holsen, TM AF Wang, Yungang Huang, Jiaoyan Hopke, Philip K. Rattigan, Oliver V. Chalupa, David C. Utell, Mark J. Holsen, Thomas M. TI Effect of the shutdown of a large coal-fired power plant on ambient mercury species SO CHEMOSPHERE LA English DT Article DE Coal-fired power plant (CFPP); Mercury; Positive Matrix Factorization (PMF); Conditional probability function (CPF); Gas-particle partitioning coefficient ID REACTIVE GASEOUS MERCURY; ATMOSPHERIC MERCURY; SCIENTIFIC UNCERTAINTIES; INORGANIC MERCURY; BLACK CARBON; PARTICLE; DEPOSITION; SPECIATION; EMISSIONS; ROCHESTER AB In the spring of 2008, a 260 MWe coal-fired power plant (CFPP) located in Rochester, New York was closed over a 4 month period. Using a 2-years data record, the impacts of the shutdown of the CFPP on nearby ambient concentrations of three Hg species were quantified. The arithmetic average ambient concentrations of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate mercury (PBM) during December 2007-November 2009 were 1.6 ng m(-3), 5.1 pg m(-3), and 8.9 pg m(-3) respectively. The median concentrations of GEM, GOM, and PBM significantly decreased by 12%, 73%, and 50% after the CFPP closed (Mann-Whitney test, p < 0.001). Positive Matrix Factorization (EPA PMF v4.1) identified six factors including O-3-rich, traffic, gas phase oxidation, wood combustion, nucleation, and CFPP. When the CFPP was closed, median concentrations of GEM, GOM, and PBM apportioned to the CFPP factor significantly decreased by 25%, 74%, and 67%, respectively, compared to those measured when the CFPP was still in operation (Mann-Whitney test, p < 0.001). Conditional probability function (CPF) analysis showed the greatest reduction in all three Hg species was associated with northwesterly winds pointing toward the CFPP. These changes were clearly attributable to the closure of the CFPP. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Wang, Yungang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Huang, Jiaoyan; Holsen, Thomas M.] Clarkson Univ, Dept Civil & Environm Engn, Potsdam, NY 13699 USA. [Hopke, Philip K.; Holsen, Thomas M.] Clarkson Univ, Ctr Air Resource Engn & Sci, Potsdam, NY 13699 USA. [Rattigan, Oliver V.] New York State Dept Environm Conservat, Div Air Resources, Albany, NY 12233 USA. [Chalupa, David C.; Utell, Mark J.] Univ Rochester, Med Ctr, Dept Environm Med, Rochester, NY 14642 USA. RP Hopke, PK (reprint author), Clarkson Univ, Ctr Air Resource Engn & Sci, Potsdam, NY 13699 USA. EM hopkepk@clarkson.edu RI Hopke, Philip/C-6020-2008 OI Hopke, Philip/0000-0003-2367-9661 FU New York State Energy Research and Development Authority (NYSERDA) [8650, 10604]; United States Environmental Protection Agency (US EPA) through Science to Achieve Results (STAR) [RD83241501]; Syracuse Center of Excellence Collaborative Activities for Research and Technology Innovation (CARTI) Project award; US EPA [X-83232501-0]; Electric Power Research Institute [W06325]; US EPA Atmospheric Clean Air Markets Division; NADP Hg Monitoring Network [EP08H000271]; EPA FX This work was supported by the New York State Energy Research and Development Authority (NYSERDA) through Contracts 8650 and 10604; the United States Environmental Protection Agency (US EPA) through Science to Achieve Results (STAR) Grant RD83241501; a Syracuse Center of Excellence Collaborative Activities for Research and Technology Innovation (CARTI) Project award, which is supported by a grant from the US EPA (Award No: X-83232501-0); the Electric Power Research Institute under Agreement W06325; the US EPA Atmospheric Clean Air Markets Division and NADP Hg Monitoring Network (EP08H000271). Although the research described in this article has been funded in part by the EPA, it has not been subjected to the Agency's required peer and policy review and, therefore, does not necessarily reflect the views of the Agency and no official endorsement should be inferred. We gratefully acknowledge the substantial assistance from Mr. Dirk Felton and Mr. Tom Everts at NYSDEC. NR 49 TC 13 Z9 16 U1 3 U2 45 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD JUL PY 2013 VL 92 IS 4 BP 360 EP 367 DI 10.1016/j.chemosphere.2013.01.024 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA 161RX UT WOS:000320212100004 PM 23422172 ER PT J AU Li, J Wilson, N Zelazny, A Meyer, J Zhong, Z Muehleman, C AF Li, J. Wilson, N. Zelazny, A. Meyer, J. Zhong, Z. Muehleman, C. TI Assessment of diffraction-enhanced synchrotron imaging for cartilage degeneration of the human knee joint SO CLINICAL ANATOMY LA English DT Article DE diffraction-enhanced imaging; cartilage imaging; synovial joints; osteoarthritis ID ARTICULAR-CARTILAGE; OSTEOARTHRITIS; RADIOGRAPHY; LESIONS; BONE AB Diffraction-enhanced imaging (DEI) is a radiographic technology that harnesses the X-ray refraction and scatter rejection properties that are not available with conventional radiography. Here, we test the efficacy of planar DEI to render images from which cartilage degeneration, characteristic of osteoarthritis, can be detected. DEI was carried out on human cadaveric intact knee joints at the X-15 beamline at the National Synchrotron Light Source. The gross specimens and the DEI images were graded separately for levels of cartilage degeneration on six individual surfaces: anterior and posterior femoral and tibial on both medial and lateral sides. There was a significant correlation between the actual levels of cartilage degeneration and what was observed in their respective DEI images (P < 0.05) for all six articular surfaces. Some articular surfaces (patellar surfaces, in particular) could not be visualized because of overlap with superimposed bone. Sensitivity for the graded articular surfaces was 0.73 and specificity was 0.92 (Grade 0 being no lesion and Grades 1-6 being increasing gradations of lesions). Chondrocalcinosis was also observed in DEI images to a far greater extent compared with the conventional radiographs. DEI renders images that are significantly correlated with their actual gross morphology. Detection of lesions was better for more severe grades of degeneration than for partial focal lesions. Although some articular surfaces could not be visualized because of superimposed bone, we feel that DEI has potential for the diagnosis of cartilage lesions and chondrocalcinosis. Clin. Anat. 26:621-629, 2013. (c) 2012 Wiley Periodicals, Inc. C1 [Li, J.; Wilson, N.; Muehleman, C.] Rush Univ, Med Ctr, Dept Biochem, Chicago, IL 60612 USA. [Zelazny, A.; Meyer, J.] Rush Univ, Med Ctr, Dept Radiol, Chicago, IL 60612 USA. [Zhong, Z.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Muehleman, C.] Rush Univ, Dept Anat & Cell Biol, Med Ctr, Chicago, IL 60612 USA. [Muehleman, C.] Rush Univ, Dept Orthoped Surg, Med Ctr, Chicago, IL 60612 USA. RP Muehleman, C (reprint author), Rush Univ, Med Ctr, Dept Biochem, 1735 W Harrison St, Chicago, IL 60612 USA. EM carol_muehleman@rush.edu RI Wilson, Nicole/C-4049-2008 OI Wilson, Nicole/0000-0002-0844-1885 FU NIH [R01-AR048292] FX Grant sponsor: NIH; Grant number: R01-AR048292 NR 19 TC 6 Z9 6 U1 1 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0897-3806 J9 CLIN ANAT JI Clin. Anat. PD JUL PY 2013 VL 26 IS 5 BP 621 EP 629 DI 10.1002/ca.22106 PG 9 WC Anatomy & Morphology SC Anatomy & Morphology GA 166HE UT WOS:000320544500015 PM 22674682 ER PT J AU D'Angelo, S Mignone, F Deantonio, C Di Niro, R Bordoni, R Marzari, R De Bellis, G Not, T Ferrara, F Bradbury, A Santoro, C Sblattero, D AF D'Angelo, Sara Mignone, Flavio Deantonio, Cecilia Di Niro, Roberto Bordoni, Roberta Marzari, Roberto De Bellis, Gianluca Not, Tarcisio Ferrara, Fortunato Bradbury, Andrew Santoro, Claudio Sblattero, Daniele TI Profiling celiac disease antibody repertoire SO CLINICAL IMMUNOLOGY LA English DT Article DE Celiac disease; Autoantibody; Autoantigen; Protein microarray; ORF-display libraries; Next generation sequencing ID AUTOANTIGENIC SPERM PROTEIN; TISSUE TRANSGLUTAMINASE; PHAGE-DISPLAY; ALPHA-FODRIN; SJOGRENS-SYNDROME; AUTOANTIBODIES; IDENTIFICATION; CANCER; GLUTEN; ASSAY AB The aim of this study was to dissect the autoantibody response in celiac disease (CD) that remains largely unknown, with the goal of identifying the disease-specific autoantigenic protein pattern or the so called epitome. Sera from CD patients were used to select immunoreactive antigens from a cDNA phage-display library. Candidate genes were identified, the corresponding protein's produced and their immunoreactivity validated With sera from CD patients and controls. Thirteen CD-specific antigens were identified and further validated by protein microarray. The specificity for 6 of these antigens was confirmed by ELISA. Furthermore we showed that this antibody response was not abolished on a gluten free diet and was not shared with other autoimmune diseases. These antigens appear to be CD specific and independent of gluten induction. The utility of this panel extends beyond its diagnostic value and it may drive the attention to new targets for unbiased screens in autoimmunity research. (C) 2013 Elsevier Inc. All rights reserved. C1 [D'Angelo, Sara; Deantonio, Cecilia; Santoro, Claudio; Sblattero, Daniele] Univ Eastern Piedmont Amedeo Avogadro, Dept Hlth Sci, Novara, Italy. [D'Angelo, Sara; Deantonio, Cecilia; Santoro, Claudio; Sblattero, Daniele] Univ Eastern Piedmont Amedeo Avogadro, IRCAD, Novara, Italy. [Mignone, Flavio] Univ Eastern Piedmont Amedeo Avogadro, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Di Niro, Roberto] Yale Univ, Dept Lab Med, Sch Med, New Haven, CT 06510 USA. [Bordoni, Roberta; De Bellis, Gianluca] Natl Res Council ITB CNR, Inst Biomed Technol, Milan, Italy. [Marzari, Roberto] Univ Trieste, Dept Life Sci, Trieste, Italy. [Not, Tarcisio] Univ Trieste, Inst Child Hlth IRCCS Burlo Garofolo, Dept Med Sci, Trieste, Italy. [D'Angelo, Sara; Ferrara, Fortunato; Bradbury, Andrew] Los Alamos Natl Lab, Los Alamos, NM USA. RP Santoro, C (reprint author), Univ Piemonte Orientale, Dip Sci Salute, Via Solaroli 17, I-28100 Novara, Italy. EM csantoro@med.unipmn.it; sblatter@med.unipmn.it RI De Bellis, Gianluca/H-9725-2013; OI De Bellis, Gianluca/0000-0002-1622-4477; Not, Tarcisio/0000-0003-1059-3009; Bradbury, Andrew/0000-0002-5567-8172 FU Fondazione Cariplo Bando Ricerca Biomedica 2009; EC Marie Curie Research Training Network [MRTN-CT-20010-289964]; Compagnia San Paolo; MIUR FIRBNG-Lab RBLA03ER38; IRCCS Burlo Garofolo [RF 35/07]; Regione Piemonte Ricerca Sanitaria and Piattaforma Immonc FX This work was supported by: Fondazione Cariplo Bando Ricerca Biomedica 2009; EC Marie Curie Research Training Network [contract no. MRTN-CT-20010-289964]; Compagnia San Paolo; MIUR FIRB NG-Lab RBLA03ER38; IRCCS Burlo Garofolo RF 35/07; Regione Piemonte Ricerca Sanitaria and Piattaforma Immonc. NR 52 TC 11 Z9 11 U1 1 U2 26 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1521-6616 J9 CLIN IMMUNOL JI Clin. Immunol. PD JUL PY 2013 VL 148 IS 1 BP 99 EP 109 DI 10.1016/j.clim.2013.04.009 PG 11 WC Immunology SC Immunology GA 164RN UT WOS:000320427300012 PM 23685219 ER PT J AU Kotava, N Knoll, A Hagen, H AF Kotava, Natallia Knoll, Aaron Hagen, Hans TI Morse-Smale decomposition of multivariate transfer function space for separably-sampled volume rendering SO COMPUTER AIDED GEOMETRIC DESIGN LA English DT Article DE Topology; Morse theory; Volume rendering; Multidimensional transfer functions ID VISUALIZATION AB We present a topology-guided technique for improving performance of multifield volume rendering with peak finding and preintegration with 2D transfer functions. We apply Morse-Smale decomposition to segment the multidimensional transfer function domain. This segmentation helps to reduce the number of cases where sampling in transfer function space should be performed, effectively reducing the rendering cost for equivalent sampling quality. We show that the overall performance is increased depending on the topology of a transfer function. (C) 2012 Elsevier B.V. All rights reserved. C1 [Kotava, Natallia; Hagen, Hans] Univ Kaiserslautern, D-67663 Kaiserslautern, Germany. [Knoll, Aaron] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kotava, N (reprint author), Univ Kaiserslautern, Gottlieb Daimler Str, D-67663 Kaiserslautern, Germany. EM kotava@rhrk.uni-kl.de; knoll@mcs.anl.gov; hagen@informatik.uni-kl.de NR 31 TC 1 Z9 1 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8396 EI 1879-2332 J9 COMPUT AIDED GEOM D JI Comput. Aided Geom. Des. PD JUL PY 2013 VL 30 IS 6 SI SI BP 549 EP 556 DI 10.1016/j.cagd.2012.03.020 PG 8 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 160WA UT WOS:000320150000004 ER PT J AU Norgard, G Bremer, PT AF Norgard, Gregory Bremer, Peer-Timo TI Robust computation of Morse-Smale complexes of bilinear functions SO COMPUTER AIDED GEOMETRIC DESIGN LA English DT Article DE Morse-Smale complex; Bilinear; Combinatorial topology ID PRACTICAL APPROACH AB The Morse-Smale (MS) complex has proven to be a useful tool in extracting and visualizing features from scalar-valued data. However, existing algorithms to compute the MS complex are restricted to either piecewise linear or discrete scalar fields. This paper presents a new combinatorial algorithm to compute MS complexes for two-dimensional piecewise bilinear functions defined on quadrilateral meshes. We derive a new invariant of the gradient flow within a bilinear cell and use it to develop a provably correct computation, unaffected by numerical instabilities. This includes a combinatorial algorithm to detect and classify critical points as well as a way to determine the asymptotes of cell-based saddles and their intersection with cell edges. Finally, we introduce a simple data structure to compute and store integral lines on quadrilateral meshes which by construction prevents intersections and allows to enforce constraints on the gradient flow that preserve known invariants. (C) 2012 Elsevier B.V. All rights reserved. C1 [Norgard, Gregory] Numer Corp, Loveland, CO 80538 USA. [Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Bremer, PT (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-422, Livermore, CA 94551 USA. EM gregnorgard@gmail.com; ptbremer@acm.org FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 23 TC 1 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8396 EI 1879-2332 J9 COMPUT AIDED GEOM D JI Comput. Aided Geom. Des. PD JUL PY 2013 VL 30 IS 6 SI SI BP 577 EP 587 DI 10.1016/j.cagd.2012.03.017 PG 11 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 160WA UT WOS:000320150000007 ER PT J AU Williams, SJ Hlawitschka, M Dillard, SE Thoma, D Hamann, B AF Williams, S. J. Hlawitschka, M. Dillard, S. E. Thoma, D. Hamann, B. TI Multi-region Delaunay complex segmentation SO COMPUTER AIDED GEOMETRIC DESIGN LA English DT Article DE Medial axis; Segmentation; Surface reconstruction; Feature extraction ID IMAGE SEGMENTATION; WATERSHEDS AB We focus on the problem of segmenting scattered point data into multiple regions in a single segmentation pass. To solve this problem, we begin with a set of potential boundary points and use a Delaunay triangulation to complete the boundaries. We then use information from the triangulation and its dual Voronoi complex to determine for each face whether it resembles a boundary or interior face, allowing a user to choose a specific segmentation by keeping only faces where our parameter is above a threshold. The resulting algorithm has time complexity in O (nd), where n is the number of Delaunay simplices. (C) 2012 Elsevier B.V. All rights reserved. C1 [Williams, S. J.; Hlawitschka, M.; Hamann, B.] Univ Calif Davis, Dept Comp Sci, Inst Data Anal & Visualizat, Davis, CA 95616 USA. [Williams, S. J.; Thoma, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hlawitschka, M.] Univ Leipzig, Sci Visualizat Grp, Leipzig, Germany. [Dillard, S. E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Williams, SJ (reprint author), Univ Calif Davis, Dept Comp Sci, Inst Data Anal & Visualizat, Davis, CA 95616 USA. EM sjwill@ucdavis.edu; hlawitschka@ucdavis.edu; scott.dillard@pnl.gov; thoma@lanl.gov; hamann@cs.ucdavis.edu FU LANL-UC Davis Materials Design Institute; National Science Foundation [CCF-0702817]; Los Alamos National Laboratory, Materials Design Institute FX We acknowledge the support of the LANL-UC Davis Materials Design Institute, and especially the support and comments made by Sriram Swaminarayan, Billy Sanders, and Dan Thoma. We thank the National Science Foundation (CCF-0702817) and the Los Alamos National Laboratory, Materials Design Institute for supporting this research. NR 16 TC 0 Z9 0 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8396 J9 COMPUT AIDED GEOM D JI Comput. Aided Geom. Des. PD JUL PY 2013 VL 30 IS 6 SI SI BP 588 EP 596 DI 10.1016/j.cagd.2012.03.016 PG 9 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 160WA UT WOS:000320150000008 ER PT J AU Norgard, G Bremer, PT AF Norgard, Gregory Bremer, Peer-Timo TI Ridge-Valley graphs: Combinatorial ridge detection using Jacobi sets SO COMPUTER AIDED GEOMETRIC DESIGN LA English DT Article DE Ridge extraction; Combinatorial algorithm; Jacobi set ID LAGRANGIAN COHERENT STRUCTURES; DIFFUSION TENSOR MRI; ANISOTROPY CREASES; IMAGES AB Ridges are one of the key features of interest in areas such as computer vision and image processing. Even though a significant amount of research has been directed to defining and extracting ridges some fundamental challenges remain. For example, the most popular ridge definition (height ridge) is not invariant under monotonic transformations and its global structure is typically ignored during numerical computations. Furthermore, many existing algorithms are based on numerical heuristics and are rarely guaranteed to produce consistent results. This paper reexamines a slightly different ridge definition that is consistent with all desired invariants. Nevertheless, we show that this definition results in similar structures compared to height ridges and that both formulations are equivalent for quadratic functions. Furthermore, this definition can be cast in the form of a degenerate Jacobi set, which allows insights into the global structure of ridges. In particular, we introduce the Ridge-Valley graph as the complete description of all ridges in an image. Finally, using the connection to Jacobi sets we describe a new combinatorial algorithm to extract the Ridge-Valley graph from sampled images guaranteed to produce a valid structure. (C) 2012 Elsevier B.V. All rights reserved. C1 [Norgard, Gregory] Numer Corp, Loveland, CO 80538 USA. [Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Bremer, PT (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-422, Livermore, CA 94551 USA. EM gregnorgard@gmail.com; ptbremer@acm.org FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 34 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8396 EI 1879-2332 J9 COMPUT AIDED GEOM D JI Comput. Aided Geom. Des. PD JUL PY 2013 VL 30 IS 6 SI SI BP 597 EP 608 DI 10.1016/j.cagd.2012.03.015 PG 12 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 160WA UT WOS:000320150000009 ER PT J AU Pett-Ridge, J Petersen, DG Nuccio, E Firestone, MK AF Pett-Ridge, Jennifer Petersen, Dorthe G. Nuccio, Erin Firestone, Mary K. TI Influence of oxic/anoxic fluctuations on ammonia oxidizers and nitrification potential in a wet tropical soil SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE nitrifiers; Puerto Rico; redox oscillation; oxygen depletion; archaea; amoA AB Ammonia oxidation is a key process in the global nitrogen cycle. However, in tropical soils, little is known about ammonia-oxidizing microorganisms and how characteristically variable oxygen regimes affect their activity. We investigated the influence of brief anaerobic periods on ammonia oxidation along an elevation, moisture, and oxygen availability gradient in wet tropical soils. Soils from three forest types were incubated for up to 36weeks in lab microcosms under three regimes: (1) static aerobic; (2) static anaerobic; and (3) fluctuating (aerobic/anaerobic). Nitrification potential was measured in field-fresh soils and incubated soils. The native ammonia-oxidizing community was also characterized, based on diversity assessments (clone libraries) and quantification of the ammonia monooxygenase -subunit (amoA) gene. These relatively low pH soils appear to be dominated by ammonia-oxidizing archaea (AOA), and AOA communities in the three soil types differed significantly in their ability to oxidize ammonia. Soils from an intermediate elevation, and those incubated with fluctuating redox conditions, tended to have the highest nitrification potential following an influx of oxygen, although all soils retained the capacity to nitrify even after long anoxic periods. Together, these results suggest that wet tropical soil AOA are tolerant of extended periods of anoxia. C1 [Pett-Ridge, Jennifer] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Pett-Ridge, Jennifer; Petersen, Dorthe G.; Nuccio, Erin; Firestone, Mary K.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Pett-Ridge, J (reprint author), Lawrence Livermore Natl Lab, POB 808,L-231, Livermore, CA 94551 USA. EM pettridge2@llnl.gov FU DOE Global Change Education Program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Carlsberg Foundation; Danish National Research Foundation; Max Planck Society; DOE Genomic Sciences Program [FOA DE-PS02-09ER09-25, 0016377]; UC Toxic Substances Teaching and Research Program; Kearney Foundation for Soil Science FX For part of this research, JPR was supported by a graduate fellowship from the DOE Global Change Education Program; writing and analysis were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The contributions of DGP were supported by a postdoctoral grant from the Carlsberg Foundation, the Danish National Research Foundation and the Max Planck Society. EEN was supported by the DOE Genomic Sciences Program (FOA DE-PS02-09ER09-25 award #0016377), a graduate fellowship by the UC Toxic Substances Teaching and Research Program and the Kearney Foundation for Soil Science. We thank A. Thompson and D. Herman for technical assistance, W. Silver for advice and assistance with site access and also C. Gubry-Rangin for affiliating the Puerto Rican sequences with the pH amoA database from Gubry-Rangin et al. (2011). NR 0 TC 15 Z9 15 U1 4 U2 66 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0168-6496 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD JUL PY 2013 VL 85 IS 1 BP 179 EP 194 DI 10.1111/1574-6941.12111 PG 16 WC Microbiology SC Microbiology GA 166LQ UT WOS:000320556500016 PM 23556538 ER PT J AU Siering, PL Wolfe, GV Wilson, MS Yip, AN Carey, CM Wardman, CD Shapiro, RS Stedman, KM Kyle, J Yuan, T Nostrand, JD He, Z Zhou, J AF Siering, P. L. Wolfe, G. V. Wilson, M. S. Yip, A. N. Carey, C. M. Wardman, C. D. Shapiro, R. S. Stedman, K. M. Kyle, J. Yuan, T. Nostrand, J. D. He, Z. Zhou, J. TI Microbial biogeochemistry of Boiling Springs Lake: a physically dynamic, oligotrophic, low-pH geothermal ecosystem SO GEOBIOLOGY LA English DT Article ID VOLCANIC-NATIONAL-PARK; ACID-MINE DRAINAGE; FUNCTIONAL GENE DIVERSITY; GEOCHIP-BASED ANALYSIS; YELLOWSTONE LAKE; HOT-SPRINGS; NEW-ZEALAND; SP-NOV; PHYLOGENETIC DIVERSITY; COMMUNITY COMPOSITION AB Boiling Springs Lake (BSL) in Lassen Volcanic National Park, California, is North America's largest hot spring, but little is known about the physical, chemical, and biological features of the system. Using a remotely operated vessel, we characterized the bathymetry and near-surface temperatures at sub-meter resolution. The majority of the 1.2ha, pH 2.2 lake is 10m deep and 50-52 degrees C, but temperatures reach 93 degrees C locally. We extracted DNA from water and sediments collected from warm (52 degrees C) and hot (73-83 degrees C) sites separated by 180m. Gene clone libraries and functional gene microarray (GeoChip 3.0) were used to investigate the BSL community, and uptake of radiolabeled carbon sources was used to assess the relative importance of heterotrophic vs. autotrophic production. Microbial assemblages are similar in both sites despite the strong temperature differential, supporting observations of a dynamic, convectively mixed system. Bacteria in the Actinobacteria and Aquificales phyla are abundant in the water column, and Archaea distantly related to known taxa are abundant in sediments. The functional potential appears similar across a 5-year time span, indicating a stable community with little inter-annual variation, despite the documented seasonal temperature cycle. BSL water-derived DNA contains genes for complete C, N, and S cycles, and low hybridization to probes for N and S oxidation suggests that reductive processes dominate. Many of the detected genes for these processes were from uncultivated bacteria, suggesting novel organisms are responsible for key ecosystem services. Selection imposed by low nutrients, low pH, and high temperature appear to result in low diversity and evenness of genes for key functions involved in C, N, and S cycling. Conversely, organic degradation genes appear to be functionally redundant, and the rapid assimilation of radiolabeled organic carbon into BSL cells suggests the importance of allochthonous C fueling heterotrophic production in the BSL C cycle. C1 [Siering, P. L.; Wilson, M. S.; Yip, A. N.; Carey, C. M.; Wardman, C. D.] Humboldt State Univ, Dept Biol Sci, Arcata, CA 95521 USA. [Wolfe, G. V.] Calif State Univ Chico, Dept Biol Sci, Chico, CA 95929 USA. [Shapiro, R. S.] Calif State Univ Chico, Dept Geosci & Environm Sci, Chico, CA 95929 USA. [Stedman, K. M.; Kyle, J.] Portland State Univ, Dept Biol, Portland, OR 97207 USA. [Stedman, K. M.; Kyle, J.] Portland State Univ, Ctr Life Extreme Environm, Portland, OR 97207 USA. [Yuan, T.; Nostrand, J. D.; He, Z.; Zhou, J.] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Yuan, T.; Nostrand, J. D.; He, Z.; Zhou, J.] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Zhou, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Siering, PL (reprint author), Humboldt State Univ, Dept Biol Sci, Arcata, CA 95521 USA. EM pls13@humboldt.edu FU National Science Foundation [MCB-0702018, MCB-0702069, MCB-07020 20]; HSU Howard Hughes Medical Institute [52002680]; NASA Astrobiology Institute's Directors Discretionary Fund [NNA11AC01G]; NASA Astrobiology Institute Post-doctoral Fellowship program FX Funding was provided by the National Science Foundation (nos. MCB-0702018, MCB-0702069, and MCB-07020 20), HSU Howard Hughes Medical Institute undergraduate science education grant (no. 52002680), and a grant from the NASA Astrobiology Institute's Directors Discretionary Fund grant no. NNA11AC01G. Jennifer Kyle was supported by the NASA Astrobiology Institute Post-doctoral Fellowship program. We are indebted to PSU mechanical engineering students, who designed and built the ROV as part of a capstone project in 2008 under the direction of Dr. Faryar Etesami, PSU. We thank Laura Ramos for GPS data collection, and 'Mile Brian' Peasley for assistance with the GIS programming and drafting. Data files relating to this project have been deposited with the Lassen Volcanic National Park Geographic Information System (LAVO GIS). We also acknowledge Billie Reeder (CSUC) for help with ROV and sediment data collection, Dave Brown & Rachel Teasdale (CSUC) for additional T data, Jose De La Torre (SFSU) for sharing unpublished results, and the NPS LVNP staff, Louise Johnson and Michael Magnuson, for their generous efforts assisting with site access and use of LVNP Science Center facilities for sample processing. The authors of this manuscript have no conflict of interest to declare with respect to publication of this manuscript. NR 98 TC 7 Z9 7 U1 5 U2 77 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1472-4677 J9 GEOBIOLOGY JI Geobiology PD JUL PY 2013 VL 11 IS 4 BP 356 EP 376 DI 10.1111/gbi.12041 PG 21 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA 166KH UT WOS:000320552800005 PM 23679065 ER PT J AU Elbaz, L Garzon, FH AF Elbaz, Lior Garzon, Fernando H. TI Increasing the site density of non-precious metal catalysts in fuel cell electrodes SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE Dipyrromethane; Non-precious metal catalyst; Oxygen reduction; Electropolymerization ID ELECTROPOLYMERIZATION; POLYPYRROLE; PORPHYRIN; PYRROLE AB Development of new non-precious metal based catalysts for fuel cells is crucial for the viability of the technology. This class of catalysts has relatively low turnover frequencies for oxygen reduction reaction (ORR) when compared to platinum. One way to compensate for it is to increase the catalyst site density. In this work, a model system for a high site density catalytic layer for polymer electrolyte fuel cells was synthesized and characterized. Dipyrromethane was electropolymerized on glassy carbon and glass/ITO electrodes to form a ligand matrix of up to 200 nm in thickness, to which, cobalt was introduced during the electropolymerization process. Thin polymeric sheets were observed after the electrochemical synthesis and the cobalt density in the matrix was found to be 9.84 x 10(21) cobalt atoms cm(-3). ORR activity was demonstrated with oxygen reduction occurring at E-1/2 = 0.45 V and has an onset potential of 0.62 V vs. RHE. (C) 2013 Elsevier B.V. All rights reserved. C1 [Elbaz, Lior; Garzon, Fernando H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Elbaz, L (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM lior.elbaz@hotmail.com FU U.S. Department of Energy Fuel Cell Technologies Program FX The authors wish to thank the U.S. Department of Energy Fuel Cell Technologies Program for providing funding for this work. NR 17 TC 3 Z9 3 U1 1 U2 48 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD JUL 1 PY 2013 VL 700 BP 65 EP 69 DI 10.1016/j.jelechem.2013.04.013 PG 5 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 164NQ UT WOS:000320417200011 ER PT J AU Kelleher, NL Pasa-Tolic, L AF Kelleher, Neil L. Pasa-Tolic, Ljiljana TI 25(th) ASMS Sanibel Conference on Top Down Mass Spectrometry SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article C1 [Kelleher, Neil L.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kelleher, Neil L.] Northwestern Univ, Dept Mol Biosci, Evanston, IL USA. [Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kelleher, NL (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM n-kelleher@northwestern.edu NR 0 TC 1 Z9 1 U1 1 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD JUL PY 2013 VL 24 IS 7 BP 983 EP 985 DI 10.1007/s13361-013-0640-y PG 3 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 162RW UT WOS:000320284000002 PM 23673522 ER PT J AU Chen, XW Alonso, AP Shachar-Hill, Y AF Chen, Xuewen Alonso, Ana P. Shachar-Hill, Yair TI Dynamic metabolic flux analysis of plant cell wall synthesis SO METABOLIC ENGINEERING LA English DT Article DE Dynamic metabolic flux analysis; Plant cell wall; Sucrose invertase; Metabolic engineering; Bioenergy crops ID BIDIRECTIONAL REACTION STEPS; POTATO-TUBER TISSUE; SUCROSE SYNTHASE; PHENYLPROPANOID PATHWAY; ARABIDOPSIS-THALIANA; LABELING EXPERIMENTS; STATISTICAL-ANALYSIS; MASS-SPECTROMETRY; BIOSYNTHESIS; NETWORKS AB The regulation of plant cell wall synthesis pathways remains poorly understood. This has become a bottleneck in designing bioenergy crops. The goal of this study was to analyze the regulation of plant cell wall precursor metabolism using metabolic flux analysis based on dynamic labeling experiments. Arabidopsis T87 cells were cultured heterotrophically with C-13 labeled sucrose. The time course of C-13 labeling patterns in cell wall precursors and related sugar phosphates was monitored using liquid chromatography tandem mass spectrometry until steady state labeling was reached. A kinetic model based on mass action reaction mechanisms was developed to simulate the carbon flow in the cell wall synthesis network. The kinetic parameters of the model were determined by fitting the model to the labeling time course data, cell wall composition, and synthesis rates. A metabolic control analysis was performed to predict metabolic regulations that may improve plant biomass composition for biofuel production. Our results describe the routes and rates of carbon flow from sucrose to cell wall precursors. We found that sucrose invertase is responsible for the entry of sucrose into metabolism and UDP-glucose-4-epimerase plays a dominant role in UDP-Gal synthesis in heterotrophic Aradidopsis cells under aerobic conditions. We also predicted reactions that exert strong regulatory influence over carbon flow to cell wall synthesis and its composition. (C) 2013 Elsevier Inc. All rights reserved. C1 [Chen, Xuewen; Shachar-Hill, Yair] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Chen, Xuewen; Shachar-Hill, Yair] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Alonso, Ana P.] Ohio State Univ, Dept Mol Genet, Columbus, OH 43210 USA. RP Chen, XW (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM xwchen@msu.edu FU DOE Center for Plant and Microbial Complex Carbohydrates [DE-FG02-09ER-20097]; Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX The authors would like to thank Drs. Dan Jones and Lijun Chen (MSU Mass Spectrometry Facility) for expert help with instrumental analyses; Dr. Hart Poskar for his effort on developing previous versions of the model; Tina M. Martin, Rebecca J. Piasecki and Russell W LaClair for their technical support in cell cultures, enzyme assays and LC-MS/MS analyses; We are also grateful to Dr. Thomas Maiwald for his assistance on PottersWheel. The Glycosyl composition analysis was performed at the DOE-funded (DE-FG02-09ER-20097) Center for Plant and Microbial Complex Carbohydrates. This work was supported by the Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). NR 62 TC 14 Z9 14 U1 4 U2 67 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 J9 METAB ENG JI Metab. Eng. PD JUL PY 2013 VL 18 BP 78 EP 85 DI 10.1016/j.ymben.2013.04.006 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 165JC UT WOS:000320478800009 PM 23644173 ER PT J AU Hang, B Sarker, AH Havel, C Saha, S Hazra, TK Schick, S Jacob, P Rehan, VK Chenna, A Sharan, D Sleiman, M Destaillats, H Gundel, LA AF Hang, Bo Sarker, Altaf H. Havel, Christopher Saha, Saikat Hazra, Tapas K. Schick, Suzaynn Jacob, Peyton, III Rehan, Virender K. Chenna, Ahmed Sharan, Divya Sleiman, Mohamad Destaillats, Hugo Gundel, Lara A. TI Thirdhand smoke causes DNA damage in human cells SO MUTAGENESIS LA English DT Article ID ENVIRONMENTAL TOBACCO-SMOKE; CIGARETTE-SMOKE; COMET ASSAY; 4-(METHYLNITROSAMINO)-1-(3-PYRIDYL)-1-BUTANONE NNK; INDIVIDUAL CELLS; N-NITROSAMINES; LUNG-CANCER; INDOOR AIR; EXPOSURE; NICOTINE AB Exposure to thirdhand smoke (THS) is a newly described health risk. Evidence supports its widespread presence in indoor environments. However, its genotoxic potential, a critical aspect in risk assessment, is virtually untested. An important characteristic of THS is its ability to undergo chemical transformations during aging periods, as demonstrated in a recent study showing that sorbed nicotine reacts with the indoor pollutant nitrous acid (HONO) to form tobacco-specific nitrosamines (TSNAs) such as 4-(methylnitrosamino)-4-(3-pyridyl)butanal (NNA) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The goal of this study was to assess the genotoxicity of THS in human cell lines using two in vitro assays. THS was generated in laboratory systems that simulated short (acute)- and long (chronic)-term exposures. Analysis by liquid chromatographytandem mass spectrometry quantified TSNAs and common tobacco alkaloids in extracts of THS that had sorbed onto cellulose substrates. Exposure of human HepG2 cells to either acute or chronic THS for 24h resulted in significant increases in DNA strand breaks in the alkaline Comet assay. Cell cultures exposed to NNA alone showed significantly higher levels of DNA damage in the same assay. NNA is absent in freshly emitted secondhand smoke, but it is the main TSNA formed in THS when nicotine reacts with HONO long after smoking takes place. The long ampliconquantitative PCR assay quantified significantly higher levels of oxidative DNA damage in hypoxanthine phosphoribosyltransferase 1 (HPRT) and polymerase (POLB) genes of cultured human cells exposed to chronic THS for 24h compared with untreated cells, suggesting that THS exposure is related to increased oxidative stress and could be an important contributing factor in THS-mediated toxicity. The findings of this study demonstrate for the first time that exposure to THS is genotoxic in human cell lines. C1 [Hang, Bo; Sarker, Altaf H.; Sharan, Divya] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Havel, Christopher; Schick, Suzaynn; Jacob, Peyton, III] Univ Calif San Francisco, San Francisco Gen Hosp Med Ctr, Dept Med, San Francisco, CA 94110 USA. [Saha, Saikat; Hazra, Tapas K.] Univ Texas Med Branch, Div Pulm & Crit Care Med, Galveston, TX 77555 USA. [Rehan, Virender K.] UCLA, David Geffen Sch Med, Harbor UCLA Med Ctr, Los Angeles Biomed Res Inst, Torrance, CA 90502 USA. [Chenna, Ahmed] Monogram Biosci Inc, San Francisco, CA 94080 USA. [Sleiman, Mohamad; Destaillats, Hugo; Gundel, Lara A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Hang, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Dept Canc & DNA Damage Responses, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM Bo_Hang@lbl.gov FU University of California Tobacco-Related Disease Research Program (TRDRP), under U.S. Department of Energy [19XT-0070, 20PT-0184, DE-AC02-05CH11231]; TRDRP [20KT-0051] FX This work was supported by the Grant 19XT-0070 (to B. H.) and Grant 20PT-0184 (California Thirdhand Smoke Consortium) from the University of California Tobacco-Related Disease Research Program (TRDRP), under U.S. Department of Energy (Contract no. DE-AC02-05CH11231). M. S. was supported by TRDRP New Investigator Grant 20KT-0051. Instrumentation and analytical chemistry at UCSF were supported by the National Institutes of Health (S10 RR026437 to P.J.) and (P30 DA012393 to Reese T. Jones, PI). NR 48 TC 38 Z9 41 U1 5 U2 55 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0267-8357 EI 1464-3804 J9 MUTAGENESIS JI Mutagenesis PD JUL PY 2013 VL 28 IS 4 BP 381 EP 391 DI 10.1093/mutage/get013 PG 11 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 165EE UT WOS:000320465100002 PM 23462851 ER PT J AU Bohac, DL Hewett, MJ Kapphahn, KI Novacheck, J Grimsrud, DT Apte, MG Gundel, LA AF Bohac, David L. Hewett, Martha J. Kapphahn, Kristopher I. Novacheck, Joshua Grimsrud, David T. Apte, Michael G. Gundel, Lara A. TI Secondhand Smoke Exposure in the Nonsmoking Section: How Much Protection? SO NICOTINE & TOBACCO RESEARCH LA English DT Article ID ENVIRONMENTAL TOBACCO-SMOKE; BARS; RESTAURANTS; HEALTH; CAFES; PUBS AB Secondhand smoke (SHS) exposure continues to be a problem in bars and restaurants where smoking is permitted. This study measures the relative SHS exposure reduction in nonsmoking sections of establishments that allow some smoking. Measurements were conducted simultaneously in the smoking and nonsmoking sections of 14 Minnesota hospitality venues. All of the 16 two-hr visits included photometer measurements of fine particles (PM2.5) and 12 of the visits also included measurements of 4 gas-phase tracers of SHS. The median ratio of nonsmoking/smoking section PM2.5 concentrations was 0.65 with an interquartile range (IQR) of 0.490.72. Measurements conducted after implementation of a smoking ban at 13 of the venues resulted in a smoking section PM2.5 post-ban/pre-ban ratio of 0.06 (IQR 0.020.16). The median nonsmoking/smoking section ratios for gas-phase compound were 0.67 (IQR 0.350.78) for pyridine, 0.52 (IQR 0.300.70) for pyrrole, 0.43 (IQR 0.350.84) for 3-EP, and 0.27 (IQR 0.160.47) for nicotine. These results are consistent with the expectations of differential removal: the lowest ratios are for the least volatile, most strongly sorbing gases and the highest ratios for less sorbing gases and PM2.5. Designated nonsmoking sections in establishments that allow some smoking resulted in a median PM2.5 reduction of 35% compared with a 94% reduction after a smoking ban. The only adequate protection from cigarette smoke exposure is to eliminate smoking in indoor spaces. C1 [Bohac, David L.; Hewett, Martha J.; Kapphahn, Kristopher I.; Novacheck, Joshua] Ctr Energy & Environm, Minneapolis, MN 55401 USA. [Grimsrud, David T.] Univ Minnesota, Dept Bioprod Engn, St Paul, MN 55108 USA. [Grimsrud, David T.] Univ Minnesota, Dept Biosyst Engn, St Paul, MN 55108 USA. [Apte, Michael G.; Gundel, Lara A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bohac, DL (reprint author), Ctr Energy & Environm, 212 3rd Ave North,Suite 560, Minneapolis, MN 55401 USA. EM dbohac@mncee.org FU ClearWay MinnesotaSM [RC 2006-0050] FX This work was supported by ClearWay MinnesotaSM (RC 2006-0050). NR 21 TC 2 Z9 2 U1 1 U2 12 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1462-2203 J9 NICOTINE TOB RES JI Nicotine Tob. Res. PD JUL PY 2013 VL 15 IS 7 BP 1265 EP 1272 DI 10.1093/ntr/nts263 PG 8 WC Substance Abuse; Public, Environmental & Occupational Health SC Substance Abuse; Public, Environmental & Occupational Health GA 165EG UT WOS:000320465300011 PM 23239842 ER PT J AU Bertelli, N Wallace, G Bonoli, PT Harvey, RW Smirnov, AP Baek, SG Parker, RR Phillips, CK Valeo, EJ Wilson, JR Wright, JC AF Bertelli, N. Wallace, G. Bonoli, P. T. Harvey, R. W. Smirnov, A. P. Baek, S. G. Parker, R. R. Phillips, C. K. Valeo, E. J. Wilson, J. R. Wright, J. C. TI The effects of the scattering by edge plasma density fluctuations on lower hybrid wave propagation SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 13th Joint Varenna-Lausanne International Workshop on the Theory of Fusion Plasmas CY AUG 27-31, 2012 CL Varenna, ITALY ID SCRAPE-OFF LAYER; ALCATOR C-MOD; CURRENT DRIVE; TURBULENCE; TRANSPORT; TOKAMAKS AB Scattering effects induced by edge density fluctuations on lower hybrid (LH) wave propagation are investigated. The scattering model used here is based on the work of Bonoli and Ott (1982 Phys. Fluids 25 361). It utilizes an electromagnetic wave kinetic equation solved by a Monte Carlo technique. This scattering model has been implemented in GENRAY, a ray-tracing code which explicitly simulates wave propagation, as well as collisionless and collisional damping processes, over the entire plasma discharge, including the scrape-off layer that extends from the separatrix to the vessel wall. A numerical analysis of the LH wave trajectories and the power deposition profile with and without scattering is presented for Alcator C-Mod discharges. Comparisons between the measured hard x-ray emission on Alcator C-Mod and simulations of the data obtained from the synthetic diagnostic included in the GENRAY/CQL3D package are shown, with and without the combination of scattering and collisional damping. Implications of these results on LH current drive are discussed. C1 [Bertelli, N.; Phillips, C. K.; Valeo, E. J.; Wilson, J. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Wallace, G.; Bonoli, P. T.; Baek, S. G.; Parker, R. R.; Wright, J. C.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Harvey, R. W.] CompX, Del Mar, CA 92014 USA. [Smirnov, A. P.] Moscow MV Lomonosov State Univ, Moscow, Russia. RP Bertelli, N (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM nbertell@pppl.gov RI Smirnov, Alexander /A-4886-2014 NR 34 TC 17 Z9 17 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JUL PY 2013 VL 55 IS 7 AR 074003 DI 10.1088/0741-3335/55/7/074003 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 163XZ UT WOS:000320373200004 ER PT J AU Veranda, M Bonfiglio, D Cappello, S Chacon, L Escande, DF AF Veranda, M. Bonfiglio, D. Cappello, S. Chacon, L. Escande, D. F. TI Impact of helical boundary conditions on nonlinear 3D magnetohydrodynamic simulations of reversed-field pinch SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 13th Joint Varenna-Lausanne International Workshop on the Theory of Fusion Plasmas CY AUG 27-31, 2012 CL Varenna, ITALY ID MHD; BIFURCATION; PLASMAS AB Helical self-organized reversed-field pinch (RFP) regimes emerge both numerically-in 3D visco-resistive magnetohydrodynamic (MHD) simulations-and experimentally, as in the RFX-mod device at high current (I-P above 1 MA). These states, called quasi-single helicity (QSH) states, are characterized by the action of a MHD mode that impresses a quasi-helical symmetry to the system, thus allowing a high degree of magnetic chaos healing. This is in contrast with the multiple helicity (MH) states, where magnetic fluctuations create a chaotic magnetic field degrading the confinement properties of the RFP. This paper reports an extensive numerical study performed in the frame of 3D visco-resistive MHD which considers the effect of helical magnetic boundary conditions, i.e. of a finite value of the radial magnetic field at the edge (magnetic perturbation, MP). We show that the system can be driven to a selected QSH state starting from both spontaneous QSH and MH regimes. In particular, a high enough MP can force a QSH helical self-organization with a helicity different from the spontaneous one. Moreover, MH states can be turned into QSH states with a selected helicity. A threshold in the amplitude of MP is observed above which is able to influence the system. Analysis of the magnetic topology of these simulations indicates that the dominant helical mode is able to temporarily sustain conserved magnetic structures in the core of the plasma. The region occupied by conserved magnetic surfaces increases reducing secondary modes' amplitude to experimental-like values. C1 [Veranda, M.; Bonfiglio, D.; Cappello, S.] Assoc Euratom ENEA, Consorzio RFX, Padua, Italy. [Chacon, L.] Los Alamos Natl Lab, Los Alamos, NM USA. [Escande, D. F.] Aix Marseille Univ, CNRS, UMR 6633, Lab PIIM, Marseille, France. RP Veranda, M (reprint author), Assoc Euratom ENEA, Consorzio RFX, Padua, Italy. EM marco.veranda@igi.cnr.it RI Bonfiglio, Daniele/I-9398-2012; Cappello, Susanna/H-9968-2013; OI Bonfiglio, Daniele/0000-0003-2638-317X; Cappello, Susanna/0000-0002-2022-1113; Escande, Dominique/0000-0002-0460-8385; Chacon, Luis/0000-0002-4566-8763 NR 27 TC 11 Z9 11 U1 5 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JUL PY 2013 VL 55 IS 7 AR 074015 DI 10.1088/0741-3335/55/7/074015 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 163XZ UT WOS:000320373200016 ER PT J AU Der, BS Jha, RK Lewis, SM Thompson, PM Guntas, G Kuhlman, B AF Der, Bryan S. Jha, Raamesh K. Lewis, Steven M. Thompson, Peter M. Guntas, Gurkan Kuhlman, Brian TI Combined computational design of a zinc-binding site and a protein-protein interaction: One open zinc coordination site was not a robust hotspot for de novo ubiquitin binding SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE computational interface design; de novo; heterodimer; metal coordination; zinc binding; protein-protein interaction ID DEPENDENT ROTAMER LIBRARY; PROLACTIN RECEPTOR; RECOGNITION SITES; GROWTH-HORMONE; INTERFACES; PAIR; HOMODIMER; AFFINITY; BARSTAR; DOMAINS AB We computationally designed a de novo protein-protein interaction between wild-type ubiquitin and a redesigned scaffold. Our strategy was to incorporate zinc at the designed interface to promote affinity and orientation specificity. A large set of monomeric scaffold surfaces were computationally engineered with three-residue zinc coordination sites, and the ubiquitin residue H68 was docked to the open coordination site to complete a tetrahedral zinc site. This single coordination bond was intended as a hotspot and polar interaction for ubiquitin binding, and surrounding residues on the scaffold were optimized primarily as hydrophobic residues using a rotamer-based sequence design protocol in Rosetta. From thousands of independent design simulations, four sequences were selected for experimental characterization. The best performing design, called Spelter, binds tightly to zinc (Kd<10 nM) and binds ubiquitin with a Kd of 20 mu M in the presence of zinc and 68 mu M in the absence of zinc. Mutagenesis studies and nuclear magnetic resonance chemical shift perturbation experiments indicate that Spelter interacts with H68 and the target surface on ubiquitin; however, H68 does not form a hotspot as intended. Instead, mutation of H68 to alanine results in tighter binding. Although a 3/1 zinc coordination arrangement at an interface cannot be ruled out as a means to improve affinity, our study led us to conclude that 2/2 coordination arrangements or multiple-zinc designs are more likely to promote high-affinity protein interactions. Proteins 2013; 81:1245-1255. (c) 2013 Wiley Periodicals, Inc. C1 [Der, Bryan S.; Jha, Raamesh K.; Lewis, Steven M.; Thompson, Peter M.; Guntas, Gurkan; Kuhlman, Brian] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA. [Jha, Raamesh K.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Kuhlman, Brian] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. RP Kuhlman, B (reprint author), Univ N Carolina, Sch Med, Dept Biochem & Biophys, Campus Box, Chapel Hill, NC 27599 USA. EM bkuhlman@email.unc.edu OI Thompson, Peter/0000-0001-7562-6049; Jha, Ramesh/0000-0001-5904-3441 FU National Institutes of Health [GM073960, T32GM008570]; National Science Foundation graduate research fellowship [2009070950, 2008072760]; University of North Carolina Royster Society Pogue fellowship FX Grant sponsor: National Institutes of Health; Grant numbers: GM073960 and T32GM008570; Grant sponsor: National Science Foundation graduate research fellowship; Grant numbers: 2009070950 (to B. D.) and 2008072760 (to P. T.); Grant sponsor: University of North Carolina Royster Society Pogue fellowship (to S. L. and B.D). NR 62 TC 6 Z9 6 U1 0 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUL PY 2013 VL 81 IS 7 BP 1245 EP 1255 DI 10.1002/prot.24280 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 165HK UT WOS:000320474100014 PM 23504819 ER PT J AU Tice, JD Bassett, TA Desai, AV Apblett, CA Kenis, PJA AF Tice, Joshua D. Bassett, Thomas A. Desai, Amit V. Apblett, Christopher A. Kenis, Paul J. A. TI A monolithic poly(dimethylsiloxane) electrostatic actuator for controlling integrated pneumatic microsystems SO SENSORS AND ACTUATORS A-PHYSICAL LA English DT Article DE Electrostatic actuator; Microvalve; Microfluidics; Soft-lithography; Pneumatic microsystems ID NANOTUBE-POLYMER COMPOSITES; LARGE-SCALE INTEGRATION; TRANSPARENT; MICROFLUIDICS; MICROVALVE; MEMBRANE; ADHESION; VALVES; FILMS; MEMS AB Although pneumatic microvalves are widely utilized in microfluidic systems, they are rarely used in portable applications due to the bulky ancillary equipment required for their actuation. The microvalves rely on transducers that convert electrical signals into mechanical forces, and the miniaturization and integration of these transducers has proven to be challenging. Here, we report a strategy for operating pneumatic valves where microscale electrostatic actuators were used to relay commands from electronic ancillaries. Each electrostatic actuator occupied a footprint less than 0.5 mm(2), and was composed entirely of poly(dimethylsiloxane) and multi-walled carbon nanotubes. Similar to typical pneumatic microvalves, the electrostatic actuators were fabricated exclusively with soft-lithographic techniques, which permitted both components to be integrated monolithically. The actuators operated at electric potentials less than 300V, and regulated microchannels pressurized up to similar to 4 kPa, which is sufficient for many microfluidic applications. (c) 2013 Elsevier B.V. All rights reserved. C1 [Tice, Joshua D.; Bassett, Thomas A.; Desai, Amit V.; Kenis, Paul J. A.] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA. [Apblett, Christopher A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Apblett, Christopher A.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Kenis, PJA (reprint author), 600 South Mathews Ave, Urbana, IL 61801 USA. EM kenis@illinois.edu RI Kenis, Paul/S-7229-2016 OI Kenis, Paul/0000-0001-7348-0381 FU Sandia National Laboratories; DOE [LDRD PR 922327]; Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems at the University of Illinois; NSF [DMI-0328162]; Center for Microanalysis of Materials in the Frederick Seitz Materials Research Laboratory Central Facilities at the University of Illinois FX We thank Dr. Gregory Ten Eyck, Andrew Collard, and Christopher Hamlin for performing preliminary fabrication and characterization. Dane Sievers assisted in measuring the sheet resistance of the carbon nanotube electrodes. Dr. James Wentz provided electrical testing equipment. We also gratefully acknowledge financial support from Sandia National Laboratories, funded by the DOE through grant LDRD PR#922327; the Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems at the University of Illinois, funded by the NSF through grant DMI-0328162; and the Center for Microanalysis of Materials in the Frederick Seitz Materials Research Laboratory Central Facilities at the University of Illinois. NR 41 TC 6 Z9 6 U1 2 U2 34 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-4247 J9 SENSOR ACTUAT A-PHYS JI Sens. Actuator A-Phys. PD JUL 1 PY 2013 VL 196 BP 22 EP 29 DI 10.1016/j.sna.2013.03.020 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 161RI UT WOS:000320210600004 ER PT J AU Vlasko-Vlasov, V Benseman, T Welp, U Kwok, WK AF Vlasko-Vlasov, V. Benseman, T. Welp, U. Kwok, W. K. TI Jamming of superconducting vortices in a funnel structure SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID CRITICAL-CURRENT-DENSITY; T-C SUPERCONDUCTORS; TEMPERATURE-DEPENDENCE; TRANSPORT; YBA2CU3O7-DELTA; CRYSTALS; CURRENTS; SYSTEMS; DRIVEN AB We report direct visual evidence of vortex retardation in a funnel structure patterned into a twin free YBCO crystal using laser lithography and ion milling. Magneto-optical images of flux entry with changing applied magnetic field show delayed flux propagation near the narrow end of the funnel which we interpret as a result of the jamming of vortices in the funnel neck. Furthermore, with AC magnetic fields, we observe the formation of macroturbulent flux domains whose motion is arrested at the constricted end of the funnel due to vortex jamming. C1 [Vlasko-Vlasov, V.; Benseman, T.; Welp, U.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Vlasko-Vlasov, V (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. EM vlasko-vlasov@anl.gov FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 36 TC 2 Z9 2 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUL PY 2013 VL 26 IS 7 AR 075023 DI 10.1088/0953-2048/26/7/075023 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 158LW UT WOS:000319973800031 ER PT J AU Polini, A Bai, H Tomsia, AP AF Polini, Alessandro Bai, Hao Tomsia, Antoni P. TI Dental applications of nanostructured bioactive glass and its composites SO WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY LA English DT Review ID BONE TISSUE REGENERATION; DRUG-DELIVERY; IN-VITRO; PERIODONTAL REGENERATION; SCAFFOLDS; RELEASE; MATRIX; DIFFERENTIATION; NANOCOMPOSITE; NANOPARTICLES AB To improve treatments of bone or dental trauma and diseases such as osteoporosis, cancer, and infections, scientists who perform basic research are collaborating with clinicians to design and test new biomaterials for the regeneration of lost or injured tissue. Developed some 40 years ago, bioactive glass (BG) has recently become one of the most promising biomaterials, a consequence of discoveries that its unusual properties elicit specific biological responses inside the body. Among these important properties are the capability of BG to form strong interfaces with both hard and soft tissues, and its release of ions upon dissolution. Recent developments in nanotechnology have introduced opportunities for materials sciences to advance dental and bone therapies. For example, the applications for BG expand as it becomes possible to finely control structures and physicochemical properties of materials at the molecular level. Here, we review how the properties of these materials have been enhanced by the advent of nanotechnology, and how these developments are producing promising results in hard-tissue regeneration and development of innovative BG-based drug delivery systems. WIREs Nanomed Nanobiotechnol 2013, 5:399-410. doi: 10.1002/wnan.1224 For further resources related to this article, please visit the WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article. C1 [Polini, Alessandro; Bai, Hao; Tomsia, Antoni P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Polini, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM apolini@lbl.gov RI Polini, Alessandro/A-2077-2012; Bai, Hao/J-5255-2012; Bai, Hao/D-1713-2017 OI Polini, Alessandro/0000-0002-3188-983X; Bai, Hao/0000-0002-1707-4976; Bai, Hao/0000-0002-3348-6129 FU National Institutes of Health/National Institute of Dental and Craniofacial Research (NIH/NIDCR) [1R01DE015633] FX This work was supported by the National Institutes of Health/National Institute of Dental and Craniofacial Research (NIH/NIDCR) Grant No. 1R01DE015633. NR 85 TC 7 Z9 7 U1 10 U2 54 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1939-5116 J9 WIRES NANOMED NANOBI JI Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol. PD JUL-AUG PY 2013 VL 5 IS 4 BP 399 EP 410 DI 10.1002/wnan.1224 PG 12 WC Nanoscience & Nanotechnology; Medicine, Research & Experimental SC Science & Technology - Other Topics; Research & Experimental Medicine GA 164IV UT WOS:000320403500008 PM 23606653 ER PT J AU Bent, ZW Tran-Gyamfi, MB Langevin, SA Brazel, DM Hamblin, RY Branda, SS Patel, KD Lane, TW VanderNoot, VA AF Bent, Zachary W. Tran-Gyamfi, Mary B. Langevin, Stanley A. Brazel, David M. Hamblin, Rachelle Y. Branda, Steven S. Patel, Kamlesh D. Lane, Todd W. VanderNoot, Victoria A. TI Enriching pathogen transcripts from infected samples: A capture-based approach to enhanced host-pathogen RNA sequencing SO ANALYTICAL BIOCHEMISTRY LA English DT Article DE Capture; RNA-Seq; Transcript enrichment; Next-generation sequencing; Rift Valley fever virus; Francisella tularensis ID FRANCISELLA-TULARENSIS; VIRULENCE; SYSTEMS; CELLS; CHROMATOGRAPHY; EXPRESSION; MODEL; SEQ; DNA AB To fully understand the interactions of a pathogen with its host, it is necessary to analyze the RNA transcripts of both the host and pathogen throughout the course of an infection. Although this can be accomplished relatively easily on the host side, the analysis of pathogen transcripts is complicated by the overwhelming amount of host RNA isolated from an infected sample. Even with the read depth provided by second-generation sequencing, it is extremely difficult to get enough pathogen reads for an effective gene-level analysis. In this study, we describe a novel capture-based technique and device that considerably enriches for pathogen transcripts from infected samples. This versatile method can, in principle, enrich for any pathogen in any infected sample. To test the technique's efficacy, we performed time course tissue culture infections using Rift Valley fever virus and Francisella tularensis. At each time point, RNA sequencing (RNA-Seq) was performed and the results of the treated samples were compared with untreated controls. The capture of pathogen transcripts, in all cases, led to more than an order of magnitude enrichment of pathogen reads, greatly increasing the number of genes hit, the coverage of those genes, and the depth at which each transcript was sequenced. (C) 2013 Elsevier Inc. All rights reserved. C1 [Bent, Zachary W.; Tran-Gyamfi, Mary B.; Langevin, Stanley A.; Brazel, David M.; Hamblin, Rachelle Y.; Branda, Steven S.; Patel, Kamlesh D.; Lane, Todd W.; VanderNoot, Victoria A.] Sandia Natl Labs, Livermore, CA 94551 USA. RP VanderNoot, VA (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM vavande@sandia.gov OI Brazel, David/0000-0001-5361-2498; Lane, Todd/0000-0002-5816-2649 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors thank the staff members of the Vincent J. Coates Sequencing Laboratory for their assistance and insight. NR 32 TC 9 Z9 9 U1 0 U2 35 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-2697 J9 ANAL BIOCHEM JI Anal. Biochem. PD JUL 1 PY 2013 VL 438 IS 1 BP 90 EP 96 DI 10.1016/j.ab.2013.03.008 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 156SW UT WOS:000319845200015 PM 23535274 ER PT J AU Mishra, U Torn, MS Fingerman, K AF Mishra, Umakant Torn, Margaret S. Fingerman, Kevin TI Miscanthus biomass productivity within US croplands and its potential impact on soil organic carbon SO GLOBAL CHANGE BIOLOGY BIOENERGY LA English DT Article DE biofuel; biomass; carbon sequestration; cropland; miscanthus; soil organic carbon ID LAND-USE CHANGE; BIOENERGY PRODUCTION; C-13 ABUNDANCE; ENERGY CROP; WATER-USE; BIOFUELS; SEQUESTRATION; EMISSIONS; MODEL; SCALE AB Interest in bioenergy crops is increasing due to their potential to reduce greenhouse gas emissions and dependence on fossil fuels. We combined process-based and geospatial models to estimate the potential biomass productivity of miscanthus and its potential impact on soil carbon stocks in the croplands of the continental United States. The optimum (climatic potential) rainfed productivity for field-dried miscanthus biomass ranged from 1 to 23Mgbiomassha-1yr-1, with a spatial average of 13Mgha-1yr-1 and a coefficient of variation of 30%. This variation resulted primarily from the spatial heterogeneity of effective rainfall, growing degree days, temperature, and solar radiation interception. Cultivating miscanthus would result in a soil organic carbon (SOC) sequestration at the rate of 0.16-0.82MgCha-1yr-1 across the croplands due to cessation of tillage and increased biomass carbon input into the soil system. We identified about 81millionha of cropland, primarily in the eastern United States, that could sustain economically viable (>10Mgha-1yr-1) production without supplemental irrigation, of which about 14millionha would reach optimal miscanthus growth. To meet targets of the US Energy Independence and Security Act of 2007 using miscanthus as feedstock, 19millionha of cropland would be needed (spatial average 13Mgha-1yr-1) or about 16% less than is currently dedicated to US corn-based ethanol production. C1 [Mishra, Umakant; Torn, Margaret S.] Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Torn, Margaret S.; Fingerman, Kevin] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. RP Mishra, U (reprint author), Argonne Natl Lab, Div Environm Sci, 9700 Cass Ave Bldg 240, Argonne, IL 60439 USA. EM umishra@anl.gov RI Mishra, Umakant/H-8128-2013; Torn, Margaret/D-2305-2015 FU Energy Biosciences Institute, University of California Berkeley; Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division of the US Department of Energy [DE-AC02-05CH11231] FX We thank Atul Jain from the University of Illinois Urbana-Champaign for providing us georeferenced Miscanthus productivity data to validate our estimates. This study was jointly funded by the Energy Biosciences Institute, University of California Berkeley, and the Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 47 TC 17 Z9 17 U1 3 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1757-1693 J9 GCB BIOENERGY JI GCB Bioenergy PD JUL PY 2013 VL 5 IS 4 BP 391 EP 399 DI 10.1111/j.1757-1707.2012.01201.x PG 9 WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 158CX UT WOS:000319947300006 ER PT J AU Tucker, MC Srinivasan, V Ross, PN Weber, AZ AF Tucker, Michael C. Srinivasan, Venkat Ross, Philip N. Weber, Adam Z. TI Performance and cycling of the iron-ion/hydrogen redox flow cell with various catholyte salts SO JOURNAL OF APPLIED ELECTROCHEMISTRY LA English DT Article DE Redox flow cell; Flow battery; Iron hydrogen cell ID BATTERY; PROGRESS AB A redox flow cell utilizing the Fe2+/Fe3+ and H-2/H+ couples is investigated as an energy storage device. A conventional polymer electrolyte fuel cell anode and membrane design is employed, with a cathode chamber containing a carbon felt flooded with aqueous acidic solution of iron salt. The maximum power densities achieved for iron sulfate, iron chloride, and iron nitrate are 148, 207, and 234 mW cm(-2), respectively. It is found that the capacity of the iron nitrate solution decreases rapidly during cycling. Stable cycling is observed for more than 100 h with iron chloride and iron sulfate solutions. Both iron sulfate and iron chloride solutions display moderate discharge polarization and poor charge polarization; therefore, voltage efficiency decreases dramatically with increasing current density. A small self-discharge current occurs when catholyte is circulating through the cathode chamber. As a result, a current density above 100 mA cm(-2) is required to achieve high Coulombic efficiency (> 0.9). C1 [Tucker, Michael C.; Srinivasan, Venkat; Ross, Philip N.; Weber, Adam Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Tucker, MC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mctucker@lbl.gov OI Weber, Adam/0000-0002-7749-1624 FU Fuel Cell Technologies Office, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Stanislaus Grosjean contributed to the design and fabrication of the experimental setup for this study. The authors thank Kyu Taek Cho for helpful discussion and guidance during the initiation of this study. We also thank John Kerr and Vincent S. Battaglia for fruitful discussion. This study was supported in part by the Assistant Secretary for Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, of the U.S. Department of Energy under contract number DE-AC02-05CH11231. NR 24 TC 12 Z9 12 U1 1 U2 46 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0021-891X J9 J APPL ELECTROCHEM JI J. Appl. Electrochem. PD JUL PY 2013 VL 43 IS 7 BP 637 EP 644 DI 10.1007/s10800-013-0553-2 PG 8 WC Electrochemistry SC Electrochemistry GA 163ZN UT WOS:000320378100002 ER PT J AU Roberts, CC Francis, LF AF Roberts, Christine C. Francis, Lorraine F. TI Drying and cracking of soft latex coatings SO JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH LA English DT Article DE Latex film formation; Cracking; Cryogenic scanning electron microscopy; Stress; Minimum film formation temperature ID ATOMIC-FORCE MICROSCOPY; GRANULAR CERAMIC FILMS; THIN-FILMS; STRESS; BEHAVIOR; DEFORMATION; DISPERSIONS; SUSPENSIONS; PARTICLES; PATTERNS AB The minimum film formation temperature (MFFT) is the minimum drying temperature needed for a latex coating to coalesce into an optically clear, dense crack-free film. To better understand the interplay of forces near this critical temperature, cryogenic scanning electron microscopy (cryoSEM) was used to track the latex particle deformation and water migration in coatings dried at temperatures just above and below the MFFT. Although the latex particles completely coalesced at both temperatures by the end of the drying process, it was discovered that particle deformation during the early drying stages was drastically different. Below the MFFT, cracks initiated just as menisci began to recede into the packing of consolidated particles, whereas above the MFFT, partial particle deformation occurred before menisci entered the coating and cracks were not observed. The spacing between cracks measured in coatings dried at varying temperatures decreased with decreasing drying temperature near the MFFT, whereas it was independent of temperature below a critical temperature. Finally, the addition of small amounts of silica aggregates was found to lessen the cracking of latex coatings near the MFFT without adversely affecting their optical clarity. C1 [Roberts, Christine C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Francis, Lorraine F.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. RP Roberts, CC (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ccrober@sandia.gov FU University of Minnesota Industrial Partnership for Research in Interfacial and Materials Engineering (IPRIME); Evonik Industries; University of Minnesota graduate school; NSF through the MRSEC program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was supported by the University of Minnesota Industrial Partnership for Research in Interfacial and Materials Engineering (IPRIME) and Evonik Industries. C. C. R. gratefully acknowledges a Doctoral Dissertation Fellowship sponsored by the University of Minnesota graduate school. CryoSEM was performed with the help of Chris Frethem at the University of Minnesota Characterization Facility, which receives partial support from NSF through the MRSEC program. CryoSEM images were also obtained at the Technion-Israel Institute of Technology under the knowledgeable direction of Prof. Yeshayahu Talmon. Financial support from the University of Minnesota graduate school made this travel possible. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 54 TC 5 Z9 8 U1 3 U2 40 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1547-0091 J9 J COAT TECHNOL RES JI J. Coat. Technol. Res. PD JUL PY 2013 VL 10 IS 4 BP 441 EP 451 DI 10.1007/s11998-012-9425-7 PG 11 WC Chemistry, Applied; Materials Science, Coatings & Films SC Chemistry; Materials Science GA 163CV UT WOS:000320314200001 ER PT J AU Newman, RM Kuntzen, T Weiner, B Berical, A Charlebois, P Kuiken, C Murphy, DG Simmonds, P Bennett, P Lennon, NJ Birren, BW Zody, MC Allen, TM Henn, MR AF Newman, Ruchi M. Kuntzen, Thomas Weiner, Brian Berical, Andrew Charlebois, Patrick Kuiken, Carla Murphy, Donald G. Simmonds, Peter Bennett, Phil Lennon, Niall J. Birren, Bruce W. Zody, Michael C. Allen, Todd M. Henn, Matthew R. TI Whole Genome Pyrosequencing of Rare Hepatitis C Virus Genotypes Enhances Subtype Classification and Identification of Naturally Occurring Drug Resistance Variants SO JOURNAL OF INFECTIOUS DISEASES LA English DT Article DE Hepatitis C virus; pyrosequencing; subtype classification; drug resistance mutations; viral diversity ID OPEN READING FRAME; NS3 PROTEASE; POLYMERASE INHIBITORS; MAXIMUM-LIKELIHOOD; ST-PETERSBURG; IN-VITRO; HCV-RNA; RECOMBINANT; TMC435; SEQUENCES AB Background. Infection with hepatitis C virus (HCV) is a burgeoning worldwide public health problem, with 170 million infected individuals and an estimated 20 million deaths in the coming decades. While 6 main genotypes generally distinguish the global geographic diversity of HCV, a multitude of closely related subtypes within these genotypes are poorly defined and may influence clinical outcome and treatment options. Unfortunately, the paucity of genetic data from many of these subtypes makes time-consuming primer walking the limiting step for sequencing understudied subtypes. Methods. Here we combined long-range polymerase chain reaction amplification with pyrosequencing for a rapid approach to generate the complete viral coding region of 31 samples representing poorly defined HCV subtypes. Results. Phylogenetic classification based on full genome sequences validated previously identified HCV subtypes, identified a recombinant sequence, and identified a new distinct subtype of genotype 4. Unlike conventional sequencing methods, use of deep sequencing also facilitated characterization of minor drug resistance variants within these uncommon or, in some cases, previously uncharacterized HCV subtypes. Conclusions. These data aid in the classification of uncommon HCV subtypes while also providing a high-resolution view of viral diversity within infected patients, which may be relevant to the development of therapeutic regimens to minimize drug resistance. C1 [Newman, Ruchi M.; Weiner, Brian; Charlebois, Patrick; Lennon, Niall J.; Birren, Bruce W.; Zody, Michael C.; Henn, Matthew R.] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA. [Kuntzen, Thomas; Berical, Andrew; Allen, Todd M.] MIT, Ragon Inst MGH, Boston, MA USA. [Kuntzen, Thomas; Berical, Andrew; Allen, Todd M.] Harvard, Boston, MA USA. [Kuiken, Carla] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Kuntzen, Thomas] Univ Zurich Hosp, Dept Gastroenterol & Hepatol, Zurich, Switzerland. [Murphy, Donald G.] Inst Natl Sante Publ Quebec, Lab Sante Publ Quebec, Quebec City, PQ, Canada. [Simmonds, Peter] Univ Edinburgh, Ctr Infect Dis, Coventry, W Midlands, England. [Bennett, Phil] Univ Warwick, Coventry CV4 7AL, W Midlands, England. RP Newman, RM (reprint author), Broad Inst MIT & Harvard, Cambridge Ctr 7, Cambridge, MA 02142 USA. EM rnewman@broadinstitute.org RI Allen, Todd/F-5473-2011 FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200900018C, HHSN272200900006C, R01-AI067926, U19-AI082630]; Deutsche Forschungsgemeinschaft [DFG KU2250/1-1] FX This work was supported by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services (contract HHSN272200900018C to B. W. B., contract HHSN272200900006C to B. W. B., grant R01-AI067926 to T. M. A., and grant U19-AI082630 to T. M. A.; and the Deutsche Forschungsgemeinschaft (grant DFG KU2250/1-1 to T. K.). NR 44 TC 18 Z9 22 U1 2 U2 14 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0022-1899 J9 J INFECT DIS JI J. Infect. Dis. PD JUL 1 PY 2013 VL 208 IS 1 BP 17 EP 31 DI 10.1093/infdis/jis679 PG 15 WC Immunology; Infectious Diseases; Microbiology SC Immunology; Infectious Diseases; Microbiology GA 156NX UT WOS:000319830300006 PM 23136221 ER PT J AU Guo, H Chien, CC He, Y AF Guo, Hao Chien, Chih-Chun He, Yan TI Theories of Linear Response in BCS Superfluids and How They Meet Fundamental Constraints SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Superconductivity; BCS theory; Linear response theory; Gauge invariance; Sum rules; Thermodynamics; Spin; Cooper pairs; Compressibility; Ward identity ID GAUGE-INVARIANCE; SUPERCONDUCTORS AB We address the importance of symmetry and symmetry breaking on linear response theories of fermionic BCS superfluids. The linear response theory of a noninteracting Fermi gas is reviewed and several consistency constraints are verified. The challenge to formulate linear response theories of BCS superfluids consistent with density and spin conservation laws comes from the presence of a broken U(1)(EM) symmetry associated with electromagnetism (EM) and we discuss two routes for circumventing this. The first route follows Nambu's integral-equation approach for the EM vertex function, but this method is not specific for BCS superfluids. We focus on the second route based on a consistent-fluctuation-of-the order-parameter (CFOP) approach where the gauge transformation and the fluctuations of the order parameter are treated on equal footing. The CFOP approach allows one to explicitly verify several important constraints: The EM vertex satisfies not only a Ward identity which guarantees charge conservation but also a Q-limit Ward identity associated with the compressibility sum rule. In contrast, the spin degrees of freedom associated with another U(1) (z) symmetry are not affected by the Cooper-pair condensation that breaks only the U(1)(EM) symmetry. As a consequence the collective modes from the fluctuations of the order parameter only couple to the density response function but decouple from the spin response function, which reflects the different fates of the two U(1) symmetries in the superfluid phase. Our formulation lays the ground work for applications to more general theories of BCS-Bose Einstein Condensation (BEC) crossover both above and below T (c) . C1 [Guo, Hao] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China. [Guo, Hao] Univ Hong Kong, Dept Phys, Hong Kong 999077, Hong Kong, Peoples R China. [Chien, Chih-Chun] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [He, Yan] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA. [He, Yan] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Chien, CC (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM chienchihchun@gmail.com RI He, Yan/B-1594-2012 FU National Natural Science Foundation of China [11204032]; Natural Science Foundation of Jiangsu Province, China [SBK201241926]; US Department of Energy through the LANL/LDRD Program FX We thank Prof. K. Levin for helping prepare this paper. Hao Guo thanks the support by National Natural Science Foundation of China (Grants No. 11204032) and Natural Science Foundation of Jiangsu Province, China (SBK201241926). C. C. C. acknowledges the support of the US Department of Energy through the LANL/LDRD Program. NR 24 TC 12 Z9 12 U1 0 U2 9 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2013 VL 172 IS 1-2 BP 5 EP 46 DI 10.1007/s10909-012-0853-7 PG 42 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 155SR UT WOS:000319769000001 ER PT J AU Guo, H Chien, CC He, Y AF Guo, Hao Chien, Chih-Chun He, Yan TI Theories of Linear Response in BCS Superfluids and How They Meet Fundamental Constraints (vol 172, pg 5, 2013) SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Correction C1 [Guo, Hao] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China. [Guo, Hao] Univ Hong Kong, Dept Phys, Hong Kong 999077, Hong Kong, Peoples R China. [Chien, Chih-Chun] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [He, Yan] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA. [He, Yan] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Chien, CC (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM chienchihchun@gmail.com NR 1 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUL PY 2013 VL 172 IS 1-2 BP 175 EP 176 DI 10.1007/s10909-013-0865-y PG 2 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 155SR UT WOS:000319769000012 ER PT J AU Holt, JD Menendez, J Schwenk, A AF Holt, J. D. Menendez, J. Schwenk, A. TI The role of three-nucleon forces and many-body processes in nuclear pairing SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID LOW-MOMENTUM INTERACTIONS; SHELL-MODEL; PHASE AB We present microscopic valence-shell calculations of pairing gaps in the calcium isotopes, focusing on the role of three-nucleon (3N) forces and many-body processes. In most cases, we find a reduction in pairing strength when the leading chiral 3N forces are included, compared to results with low-momentum two-nucleon (NN) interactions only. This is in agreement with a recent energy density functional study. At the NN level, calculations that include particle-particle and hole-hole ladder contributions lead to smaller pairing gaps compared with experiment. When particle-hole contributions as well as the normal-ordered one- and two-body parts of 3N forces are consistently included to third order, we find reasonable agreement with experimental three-point mass differences. This highlights the important role of 3N forces and many-body processes for pairing in nuclei. Finally, we relate pairing gaps to the evolution of nuclear structure in neutron-rich calcium isotopes and study the predictions for the 2(+) excitation energies, in particular for Ca-54. C1 [Holt, J. D.; Menendez, J.; Schwenk, A.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Holt, J. D.; Menendez, J.; Schwenk, A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Holt, J. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Holt, J. D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Holt, JD (reprint author), Tech Univ Darmstadt, Inst Kernphys, Petersenstr 30, D-64289 Darmstadt, Germany. EM jason.holt@physik.tu-darmstadt.de; javier.menendez@physik.tu-darmstadt.de; schwenk@physik.tu-darmstadt.de RI Menendez, Javier/A-3533-2016; OI Menendez, Javier/0000-0002-1355-4147; Holt, Jason/0000-0003-4833-7959 FU BMBF [06DA70471]; DFG [SFB 634]; Helmholtz Association through the Helmholtz Alliance Program [HA216/EMMI]; US DOE [DE-FC02-07ER41457, DE-FG02-96ER40963] FX We thank S K Bogner, T Duguet, T Lesinski, and V Soma for useful discussions. This work was supported by the BMBF under contract no. 06DA70471, the DFG through grant SFB 634, the Helmholtz Association through the Helmholtz Alliance Program, contract HA216/EMMI 'Extremes of Density and Temperature: Cosmic Matter in the Laboratory', and the US DOE grants DE-FC02-07ER41457 (UNEDF SciDAC collaboration) and DE-FG02-96ER40963. Computations were performed with an allocation of advanced computing resources on Kraken at the National Institute for Computational Sciences and at the Julich Supercomputing Center. NR 70 TC 22 Z9 22 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUL PY 2013 VL 40 IS 7 AR 075105 DI 10.1088/0954-3899/40/7/075105 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 162EV UT WOS:000320249200013 ER PT J AU Ren, YF Li, T Yu, DT Jin, SD Robertazzi, T AF Ren, Yufei Li, Tan Yu, Dantong Jin, Shudong Robertazzi, Thomas TI Design and testbed evaluation of RDMA-based middleware for high-performance data transfer applications SO JOURNAL OF SYSTEMS AND SOFTWARE LA English DT Article DE Distributed systems; Middleware; Remote Direct Memory Access AB Providing high-speed data transfer is vital to various data-intensive applications supported by data center networks. We design a middleware layer of high-speed communication based on Remote Direct Memory Access (RDMA) that serves as the common substrate to accelerate various data transfer tools, such as FTP, HTTP, file copy, sync and remote file I/O. This middleware offers better end-to-end bandwidth performance than the traditional TCP-based alternatives, while it hides the heterogeneity of the underlying high-speed architecture. This paper describes this middleware's function modules, including resource abstraction and task synchronization and scheduling, that maximize the parallelism and performance of RDMA operations. For networks without RDMA hardware acceleration, we integrate Linux kernel optimization techniques to reduce data copy and processing in the middleware. We provide a reference implementation of the popular file-transfer protocol over this RDMA-based middleware layer, called RFTP. Our experimental results show that our RFTP outperforms several TCP-based FTP tools, such as GridFTP, while it maintains very low CPU consumption on a variety of data center platforms. Furthermore, those results confirm that our RFTP tool achieves near line-speed performance in both LAN and WAN, and scales consistently from 10 Gbps Ethernet to 40 Gbps Ethernet and InfiniBand environments. (C) 2013 Elsevier Inc. All rights reserved. C1 [Ren, Yufei; Li, Tan; Jin, Shudong; Robertazzi, Thomas] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Yu, Dantong] Brookhaven Natl Lab, Upton, NY 11973 USA. [Yu, Dantong] Brookhaven Natl Lab, Grid Comp Grp, Upton, NY 11973 USA. [Jin, Shudong] SUNY Stony Brook, Ctr Wireless & Informat Technol, Stony Brook, NY 11794 USA. [Robertazzi, Thomas] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA. RP Ren, YF (reprint author), SUNY Stony Brook, Stony Brook, NY 11794 USA. EM yufei.ren@stonybrook.edu; tan.li@stonybrook.edu; dtyu@bnl.gov; shujin@notes.cc.sunysb.edu; tom@ece.sunysb.edu FU United States Department of Energy [DE-SC0003361]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; The American Recovery and Reinvestment Act FX The authors are grateful to the facility donation of Mellanox Technologies, Inc. and Fusion-io, Inc. The authors have benefited from the numerous technical discussions with Todd Wilde from Mellanox, David McMillen from System Fabric Works, Inc., and David Strohmeyer from Intel. This work is supported by United States Department of Energy, Grant No. DE-SC0003361.; This research used resources of the ESnet Advanced Network Initiative (ANI) Testbed, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231, funded through The American Recovery and Reinvestment Act of 2009. NR 28 TC 1 Z9 1 U1 1 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0164-1212 J9 J SYST SOFTWARE JI J. Syst. Softw. PD JUL PY 2013 VL 86 IS 7 BP 1850 EP 1863 DI 10.1016/j.jss.2013.01.070 PG 14 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 156TU UT WOS:000319847600012 ER PT J AU Essuman, E Walker, LR Maziasz, J Pint, BA AF Essuman, E. Walker, L. R. Maziasz, J. Pint, B. A. TI Oxidation behaviour of cast Ni-Cr alloys in steam at 800 degrees C SO MATERIALS SCIENCE AND TECHNOLOGY LA English DT Article DE Steam oxidation; Cast Ni base alloys; Internal oxidation ID HIGH-TEMPERATURE OXIDATION; WATER-VAPOR; INTERNAL OXIDATION; BASE ALLOYS; MATERIALS TECHNOLOGY; FORMING ALLOYS; CORROSION; SCALES; PLANTS; EVAPORATION AB To evaluate the steam oxidation resistance of cast Ni base alloy candidates for advanced steam turbine casings, laboratory experiments were conducted at 800 degrees C. Alloys ranged from weaker, solid solution strengthened alloys 230 and 625 to stronger, precipitation strengthened alloys 105, 263 and 740, which are more difficult to fabricate and join. In general, these Ni-Cr based alloys exhibit low mass gains and form thin, protective Cr rich external oxides in 17 bar steam or 1 bar air. However, Al and Ti in these alloys internally oxidise in all cases. After 5000 h exposures, the average and maximum internal oxide penetration depths were measured, and the values were ranked based on the alloy Al + Ti contents. The middle range of Al + Ti compositions investigated, such as for alloys 617, 263, 282 and 740, showed the deepest penetrations. Further characterisation of the reaction products by electron microprobe showed a complex behaviour including significant Ti incorporation into the scale formed in both steam and air, and Ti rich oxide at both the gas and metal interfaces. Based on the Al and Ti contents, the internal oxidation observed in these alloys in steam was atypical. C1 [Essuman, E.; Walker, L. R.; Maziasz, J.; Pint, B. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008; OI Pint, Bruce/0000-0002-9165-3335; Maziasz, Philip/0000-0001-8207-334X FU UT-Battelle, LLC [DE-AC05-00OR22725]; US Department of Energy; US Department of Energy, Fossil Energy Advanced Research Materials Program FX This manuscript has been authored by UT-Battelle, LLC, under contract no. DE-AC05-00OR22725 with the US Department of Energy. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, worldwide licence to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes.; The authors would like to thank G. Garner, T. Lowe, M. Howell, H. Longmire and H. Meyer for assistance with the experimental work. The alloys were cast at NETL-Albany by P. Jablonski. M. P. Brady and I. G. Wright provided many helpful comments on the manuscript. The research was sponsored by the US Department of Energy, Fossil Energy Advanced Research Materials Program. NR 39 TC 9 Z9 9 U1 5 U2 32 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0267-0836 J9 MATER SCI TECH-LOND JI Mater. Sci. Technol. PD JUL PY 2013 VL 29 IS 7 BP 822 EP 827 DI 10.1179/1743284712Y.0000000103 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 161XS UT WOS:000320227600009 ER PT J AU Pint, BA Haynes, JA AF Pint, B. A. Haynes, J. A. TI Effect of water vapour content on thermal barrier coating lifetime SO MATERIALS SCIENCE AND TECHNOLOGY LA English DT Article DE TBC lifetime; Pt diffusion coating; Pt aluminide coating; MCrAlY; Water vapour; High temperature oxidation; Yttria stabilised zirconia; Thermally grown alumina ID HIGH-TEMPERATURE OXIDATION; NI-PT-AL; CYCLIC OXIDATION; SUBSTRATE COMPOSITION; BOND COATINGS; TBC SYSTEMS; SCALE; ALUMINIDE; BEHAVIOR; ALLOYS AB Furnace cycle testing was conducted in air with 10, 50 and 90 vol.-% water vapour and compared to prior results in dry O-2. The first series of experiments examined Pt diffusion and Pt modified aluminised bond coatings on second generation superalloy N5 at 1150 degrees C with commercially vapour deposited yttria stabilised zirconia (YSZ) top coats. Compared to dry O-2, the average lifetimes with Pt diffusion coatings were unaffected by the addition of water vapour, while the Pt modified aluminide coating average lifetime was reduced by >50% with 10% water vapour, but less reduction was observed with higher water contents. The second series of experiments examined MCrAlY and MCrAlYHfSi bond coatings and air plasma sprayed YSZ top coatings on superalloy X4 cycled at 1100 degrees C. Compared to dry O-2, the addition of 10% water vapour decreased the lifetime of MCrAlY by 28%. Higher average lifetimes were observed with Hf in the bond coating. C1 [Pint, B. A.; Haynes, J. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 FU US Department of Energy, Office of Coal and Power R&D, Office of Fossil Energy FX The authors would like to thank G. W. Garner, T. M. Lowe, K. M. Cooley and H. Longmire for assistance with the experimental work. Plating of Pt was conducted at Tennessee Technological University by Professor Y. Zhang. B. Hazel and B. Nagaraj at General Electric Aircraft Engines provided the N5 substrate material and coated the specimens with EB-PVD YSZ, and Stony Brook University applied the HVOF and APS coatings. The X4 substrates were provided by K. Murphy at Howmet. A. Vande Put provided helpful comments on the manuscript. The present research was sponsored by the US Department of Energy, Office of Coal and Power R&D, Office of Fossil Energy (R. Dennis, program manager). This paper is based on a presentation made at the 8th International Charles Parsons Turbine Conference organised by the Institute of Materials, Minerals and Mining at Portsmouth, UK on 5-8 September 2011. NR 38 TC 6 Z9 6 U1 3 U2 22 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0267-0836 J9 MATER SCI TECH-LOND JI Mater. Sci. Technol. PD JUL PY 2013 VL 29 IS 7 BP 828 EP 834 DI 10.1179/1743284712Y.0000000104 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 161XS UT WOS:000320227600010 ER PT J AU Vishnivetskaya, TA Fisher, LS Brodie, GA Phelps, TJ AF Vishnivetskaya, Tatiana A. Fisher, L. Suzanne Brodie, Greg A. Phelps, Tommy J. TI Microbial Communities Involved in Biological Ammonium Removal from Coal Combustion Wastewaters SO MICROBIAL ECOLOGY LA English DT Article ID SULFATE-REDUCING BACTERIA; RIBOSOMAL-RNA ANALYSIS; SEQUENCE ALIGNMENT; SP-NOV.; MARINE; MERCURY; GENOME; PLANCTOMYCETE; CRENARCHAEOTA; DENITRIFICANS AB The efficiency of a novel integrated treatment system for biological removal of ammonium, nitrite, nitrate, and heavy metals from fossil power plant effluent was evaluated. Microbial communities were analyzed using bacterial and archaeal 16S rRNA gene clone libraries (Sanger sequences) and 454 pyrosequencing technology. While seasonal changes in microbial community composition were observed, the significant (P = 0.001) changes in bacterial and archaeal communities were consistent with variations in ammonium concentration. Phylogenetic analysis of 16S rRNA gene sequences revealed an increase of potential ammonium-oxidizing bacteria (AOB), Nitrosomonas, Nitrosococcus, Planctomycetes, and OD1, in samples with elevated ammonium concentration. Other bacteria, such as Nitrospira, Nitrococcus, Nitrobacter, Thiobacillus, epsilon-Proteobacteria, Firmicutes, and Acidobacteria, which play roles in nitrification and denitrification, were also detected. The AOB oxidized 56 % of the ammonium with the concomitant increase in nitrite and ultimately nitrate in the trickling filters at the beginning of the treatment system. Thermoprotei within the phylum Crenarchaeota thrived in the splitter box and especially in zero-valent iron extraction trenches, where an additional 25 % of the ammonium was removed. The potential ammonium-oxidizing Archaea (AOA) (Candidatus Nitrosocaldus) were detected towards the downstream end of the treatment system. The design of an integrated treatment system consisting of trickling filters, zero-valent iron reaction cells, settling pond, and anaerobic wetlands was efficient for the biological removal of ammonium and several other contaminants from wastewater generated at a coal burning power plant equipped with selective catalytic reducers for nitrogen oxide removal. C1 [Vishnivetskaya, Tatiana A.; Phelps, Tommy J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Fisher, L. Suzanne; Brodie, Greg A.] Tennessee Valley Author, Knoxville, TN 37902 USA. RP Phelps, TJ (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008,MS 6036,1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM phelpstj@ornl.gov OI Vishnivetskaya, Tatiana/0000-0002-0660-023X FU U. S. Department of Energy Office of Fossil Energy; U. S. Department of Energy [DE-AC05-00OR22725]; U. S. Department of Energy Office of Science Biological and Environmental Research, Environmental Remediation Sciences Program FX This research was sponsored by the U. S. Department of Energy Office of Fossil Energy and Office of Science Biological and Environmental Research, Environmental Remediation Sciences Program and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725. We thank Zamin Yang and Marilyn Kerley for help with 454 FLX pyrosequencing and Sanger sequencing, respectively. We would also like to thank Alan Mays, David Lane, Mark Wolfe, and Roy Quinn of TVA for help with sampling and maintaining the ATOXIC/ASSET field sites. NR 51 TC 4 Z9 4 U1 1 U2 75 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-3628 J9 MICROB ECOL JI Microb. Ecol. PD JUL PY 2013 VL 66 IS 1 BP 49 EP 59 DI 10.1007/s00248-012-0152-5 PG 11 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA 159LX UT WOS:000320048000006 PM 23314095 ER PT J AU Mayer, BP Chinn, SC Maxwell, RS Reimer, JA AF Mayer, Brian P. Chinn, Sarah C. Maxwell, Robert S. Reimer, Jeffrey A. TI Solid state NMR investigation of gamma-irradiated composite siloxanes: Probing the silica/polysiloxane interface SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE Cross polarization; Nuclear magnetic resonance; Interface; Spectroscopy; Composite materials; Radiation ID FILLED SILICONE ELASTOMER; RUBBER; POLYMER; SPECTROSCOPY; PDMS; POLYDIMETHYLSILOXANES; RADIOLYSIS; MOBILITY; H-1-NMR; SURFACE AB We employ silicon-proton (Si-29{H-1}) cross polarization magic-angle spinning (CP-MAS) to probe directly the interface of a silica-filled polysiloxane elastomer subjected to gamma radiation. Using a traditional spin-lock CP experiment in conjunction with a silicon-edited proton rotating-frame longitudinal relaxation sequence, the full suite of CP build-up parameters are extracted for six resolvable silicon chemical shifts. The data, represented by three parameters, T-HX, T-1 rho(H), and M-infinity, are interpreted by means of a model where the simultaneous effects of silica surface hydroxyl modification, interfacial water content, and radiation-induced chemistries are considered responsible for the observed macroscopic behavior of these engineering materials. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Mayer, Brian P.; Chinn, Sarah C.; Maxwell, Robert S.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. [Reimer, Jeffrey A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Mayer, BP (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave L-091, Livermore, CA 94550 USA. EM mayer22@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX B. Mayer would like to thank J. P. Lewicki for helpful discussions during the preparation of this manuscript. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 39 TC 3 Z9 3 U1 2 U2 52 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD JUL PY 2013 VL 98 IS 7 BP 1362 EP 1368 DI 10.1016/j.polymdegradstab.2013.03.021 PG 7 WC Polymer Science SC Polymer Science GA 161SN UT WOS:000320213700010 ER PT J AU Breault, RW AF Breault, Ronald W. TI SPECIAL ISSUE: Selected Papers from the 2010 NETL Multiphase Flow Workshop Preface SO POWDER TECHNOLOGY LA English DT Editorial Material C1 US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Ronald.Breault@NETL.DOE.GOV OI Breault, Ronald/0000-0002-5552-4050 NR 0 TC 0 Z9 0 U1 2 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD JUL PY 2013 VL 242 SI SI BP 1 EP 1 DI 10.1016/j.powtec.2013.01.048 PG 1 WC Engineering, Chemical SC Engineering GA 153XO UT WOS:000319636300001 ER PT J AU Gidaspow, D Li, F Huang, J AF Gidaspow, Dimitri Li, Fang Huang, Jing TI A CFD simulator for multiphase flow in reservoirs and pipes SO POWDER TECHNOLOGY LA English DT Article DE Computational fluid dynamics; Mud; Gas; Oil; Multiphase CFD model; Friction factors AB A computational fluid dynamics (CFD) code for flow of oil, gas and sand in reservoirs and pipes was developed to help understand the flow in wild wells that are drilled for offshore oil production. In the reservoir, there is a large entrance effect produced by turbulence. In the pipe, the code computed turbulent velocity profiles and Reynolds stresses similar to fully developed single phase turbulent flow. The Fanning friction factor for oil flow at a Reynolds number of about 16,000 is 0.004, compared with the single phase turbulent friction factor of 0.007. The computed low frequency oscillations are consistent with wild well behavior. (C) 2013 Elsevier B.V. All rights reserved. C1 [Gidaspow, Dimitri; Li, Fang] IIT, Chicago, IL 60616 USA. [Huang, Jing] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Gidaspow, D (reprint author), IIT, Chicago, IL 60616 USA. EM gidaspow@iit.edu NR 10 TC 1 Z9 1 U1 2 U2 21 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD JUL PY 2013 VL 242 SI SI BP 2 EP 12 DI 10.1016/j.powtec.2013.01.047 PG 11 WC Engineering, Chemical SC Engineering GA 153XO UT WOS:000319636300002 ER PT J AU Gopalan, B Shaffer, F AF Gopalan, Balaji Shaffer, Frank TI Higher order statistical analysis of Eulerian particle velocity data in CFB risers as measured with high speed particle imaging SO POWDER TECHNOLOGY LA English DT Article DE Fluidization; Granular Temperature; High Speed Imaging; Eulerian Velocity ID CIRCULATING FLUIDIZED-BED; NEAR-WALL REGION; GRANULAR TEMPERATURE; KINETIC-THEORY; FLOW; PROFILES; STRESSES; DENSE AB Velocities of individual particles have been measured in gas-particle flow fields within the risers of two circulating fluidized bed (CFB), one with a 0305 m diameter riser at the National Energy Technology Laboratory (NETL) and one with a 0.20 m diameter riser at Particle Solid Research Inc. (PSRI). The risers were operated at moderate to high particle concentrations (solid fluxes up to 400 kg/m(2)s). The NETL riser was operated in the core-annulus regime. The PSRI riser was operated in both the core-annulus and dense up-flow regimes. HDPE particles with a mean diameter of 800 pm were used in the NETL riser and FCC particles with a mean diameter of 80 pm were used in the PSRI riser. Particle velocities were measured with a high speed particle imaging velocimetry (HSPIV) system developed by the NETL. The HSPIV measurement technique has the ability to measure the velocities and trajectories of thousands of particles simultaneously in flows of high particle concentration. In this study, particle velocities are measured in a small two-dimensional field-of-view with dimensions in the range of 1-5 mm wide by 1-10 mm high, with a depth of about 1 mm. The size of the field-of-view is chosen to be similar to the size of CFD grid cells in models used by NETL and small enough that gradients of the mean particle velocity are small over the field-of-view, but large enough to achieve high data sample rates (at least ten velocity vectors per camera frame). In this study sample rates for particle velocity vectors were in the range of 0.1 to 1 million per second. This sample rate provides the high temporal resolution necessary to resolve the complete temporal domain of particle velocity. Particle velocities in each camera frame (at each point in time) are averaged to yield a pointwise instantaneous particle velocity. Using a recently developed particle velocity decomposition technique (Gopalan and Shaffer, 2011 [15]) the pointwise particle velocity time series is decomposed into a varying mean Eulerian component and a random fluctuating component. Statistics of the Eulerian velocity, namely the mean, RMS, skewness and kurtosis, and the granular temperature of the random fluctuating component are presented in this study. Results show that the vertical component of the overall mean Eulerian velocity decreases with increasing mass flux in both the core-annulus and dense up-flow regimes. The root mean square (RMS) of the Eulerian velocity in the horizontal direction is independent of the radial location in the NETL riser. In the PSRI riser, for both the core-annulus and dense upflow regime, the RMS of the horizontal Eulerian velocity decreases monotonically from the center of the riser to the wall. The radial profile of the RMS of the vertical Eulerian velocity for the PSRI riser is parabolic with a peak near r/R similar to 0.5-0.6 for the dense upflow regime. For the core-annulus regime the radial profile of the RMS of the vertical Eulerian velocity is relatively flat for both the NETL and PSRI risers, with a slight decrease near the wall in the PSRI riser. The skewness of the PDF of Eulerian velocity is near zero in the horizontal direction for the dense upflow regime in the PSRI riser, the only Eulerian velocity distribution for which the Gaussian approximation is appropriate. The skewness trends of the vertical velocity distribution are more complex and require further experimental confirmation. The kurtosis of the PDF of the Eulerian velocity is always higher in the horizontal direction than the vertical direction except at the wall of the riser. The 80 mu m FCC particles in the PSRI riser showed much higher granular temperature than the 800 mu m particles in the NETL riser. The granular temperature decreases monotonically for all conditions from the center of the riser to the wall, granular temperature is anisotropic for all conditions in both risers. The radial profile of anisotropy of granular temperature is relatively flat over most of the NETL and PSRI risers with values in the range of 0.3 to 0.6. Near the wall it decreases for the PSRI riser, while increasing for the NETL riser. (C) 2013 Published by Elsevier B.V. C1 [Gopalan, Balaji] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Gopalan, Balaji; Shaffer, Frank] US DOE, Natl Energy Technol Lab, Washington, DC 20585 USA. RP Shaffer, F (reprint author), US DOE, Natl Energy Technol Lab, Washington, DC 20585 USA. EM Franklin.Shaffer@netl.doe.gov RI Gopalan, Balaji/I-4169-2013 FU Oak Ridge Institute of Science and Education (ORISE) FX We thank the management of NETL for providing direction in this research and for providing the necessary resources, including one of the best high speed cameras available. In particular we would like to thank Bill Rogers and Chris Guenther. We also thank the PSRI team in Chicago for providing unique experimental facilities for studying particle flow fields, and for their unprecedented expertise in this field. Also the author Balaji Gopalan, would like to thank the Oak Ridge Institute of Science and Education (ORISE) for sponsoring his work through a fellowship grant. NR 34 TC 7 Z9 7 U1 3 U2 26 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD JUL PY 2013 VL 242 SI SI BP 13 EP 26 DI 10.1016/j.powtec.2013.01.046 PG 14 WC Engineering, Chemical SC Engineering GA 153XO UT WOS:000319636300003 ER PT J AU Gel, A Garg, R Tong, C Shahnam, M Guenther, C AF Gel, A. Garg, R. Tong, C. Shahnam, M. Guenther, C. TI Applying uncertainty quantification to multiphase flow computational fluid dynamics SO POWDER TECHNOLOGY LA English DT Article DE Multiphase flow; Computational fluid dynamics (CFD); Non-intrusive parametric uncertainty quantification and propagation; Surrogate models; Data-fitted response surface ID MAGNETIC-RESONANCE MEASUREMENTS; VERIFICATION; VALIDATION; SIMULATION AB Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable. (C) 2013 Elsevier B.V. All rights reserved. C1 [Gel, A.; Garg, R.; Shahnam, M.; Guenther, C.] Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Gel, A.] ALPEMI Consulting LLC, Phoenix, AZ 85044 USA. [Garg, R.] UPS Energy & Construct Inc, Morgantown, WV 26505 USA. [Tong, C.] Lawrence Livermore Natl Lab, CASC, Livermore, CA 94551 USA. RP Gel, A (reprint author), Natl Energy Technol Lab, Morgantown, WV 26505 USA. EM aike@alpemi.com RI Garg, Rahul/I-4174-2013 FU National Energy Technology Laboratory under the RES [DE-FE0004000]; agency of the United States Government FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in advanced numerical simulation of multiphase flow under the RES contract DE-FE0004000. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 27 TC 10 Z9 10 U1 1 U2 33 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD JUL PY 2013 VL 242 SI SI BP 27 EP 39 DI 10.1016/j.powtec.2013.01.045 PG 13 WC Engineering, Chemical SC Engineering GA 153XO UT WOS:000319636300004 ER PT J AU Weber, JM Mei, JS AF Weber, Justin M. Mei, Joseph S. TI Bubbling fluidized bed characterization using Electrical Capacitance Volume Tomography (ECVT) SO POWDER TECHNOLOGY LA English DT Article DE Fluidization; Fluidized bed; Electrical capacitance volume tomography; Bubble properties; Solid fraction; Multiphase flow ID DIGITAL IMAGE-ANALYSIS; GAS; SIZE; FREQUENCY; DIAMETER; PRESSURE; BEHAVIOR; VELOCITY; LIQUID AB Understanding the fundamentals of gas-solid fluidized beds and, in general, multiphase flows has been a significant task since the conception of gas-solid fluidization and fluid particle systems. Various measurement techniques have been applied in an attempt to better understand the fundamentals of the complex gas-solid flow structures that form in fluidized beds. This information may potentially provide a better design, scale-up, and operation of these systems as well as lead to accurate performance predictions of multiphase flow systems. Electrical Capacitance Volume Tomography (ECVT) has now reached a point of development where these multiphase flow structures can be imaged accurately and reliably in three dimensions at good resolutions and sampling rates to provide significant insight into the internal gas-solid flow structures. A 10 cm ECVT sensor was used in order to investigate the bubble behavior of a 10 cm diameter bubbling fluidized bed (BFB) of 185 micron glass beads at various fluidization velocities. Three dimensional images of gas-solid flow structures as well as time average vertical and radial solid fraction profiles are presented in this paper, and average bubble diameter and bubble frequency are discussed and compared to various correlations available in the published literature. Published by Elsevier B.V. C1 [Weber, Justin M.; Mei, Joseph S.] US DOE, Morgantown, WV 26507 USA. RP Mei, JS (reprint author), US DOE, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM JOSEPH.MEI@netl.doe.gov FU agency of the United States Government FX This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 28 TC 19 Z9 19 U1 1 U2 27 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD JUL PY 2013 VL 242 SI SI BP 40 EP 50 DI 10.1016/j.powtec.2013.01.044 PG 11 WC Engineering, Chemical SC Engineering GA 153XO UT WOS:000319636300005 ER PT J AU Ludlow, JC Panday, R Shadle, LJ AF Ludlow, J. Christopher Panday, Rupen Shadle, Lawrence J. TI Standpipe models for diagnostics and control of a circulating fluidized bed SO POWDER TECHNOLOGY LA English DT Article DE Circulating fluidized bed; Standpipe bed height; Solids circulation rate; Multi-phase gas solids flow; Standpipe pressure profile ID FLOW AB Two models for a Circulating Fluidized Bed (CFB) standpipe were formulated, implemented and validated to estimate critical CFB operational parameters. The first model continuously estimates standpipe bed height using incremental pressure measurements within the standpipe. The second model estimates variations in the void fraction along the standpipe using the Ergun equation in conjunction with the overall pressure drop across the bed, solids circulation rate and the standpipe aeration flows introduced at different locations of the pipe. The importance of different standpipe parameters obtained from these models is discussed in terms of successful operation of the overall CFB system. Finally, the applications of these models are shown in improving the solids circulation rate measurement and in calculating riser inventory. Published by Elsevier B.V. C1 [Ludlow, J. Christopher; Panday, Rupen; Shadle, Lawrence J.] Natl Energy Technol Lab, Morgantown, WV 26508 USA. RP Shadle, LJ (reprint author), Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26508 USA. EM lshadl@netl.doe.gov OI Shadle, Lawrence/0000-0002-6283-3628 NR 15 TC 4 Z9 5 U1 0 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD JUL PY 2013 VL 242 SI SI BP 51 EP 64 DI 10.1016/j.powtec.2013.01.016 PG 14 WC Engineering, Chemical SC Engineering GA 153XO UT WOS:000319636300006 ER PT J AU Shaffer, F Gopalan, B Breault, RW Cocco, R Karri, SBR Hays, R Knowlton, T AF Shaffer, Frank Gopalan, Balaji Breault, Ronald W. Cocco, Ray Karri, S. B. Reddy Hays, Roy Knowlton, Ted TI High speed imaging of particle flow fields in CFB risers SO POWDER TECHNOLOGY LA English DT Article DE High speed imaging; Fluidization; Circulating fluidized beds; Particle tracking ID CIRCULATING FLUIDIZED-BEDS; GRANULAR TEMPERATURE; SOLIDS; TURBULENT; WALL AB Particle flows of high particle concentration are important in many fields, including chemical processing, pharmaceutical processing, energy conversion and powder transport. Circulating fluidized beds (CFB) are widely employed in industry because they enhance reaction rates and heat transfer through rapid mixing of particles at high particle concentrations and high particle flow rates. However, despite decades of research and industrial application, the real time behavior of particle flow fields in CFB's is still not well understood. One of the reasons is that experimental data is difficult to acquire in such harsh, opaque environments. In this study, a new high speed particle imaging velocimetry (high speed PIV) technology, developed by the USDOE National Energy Technology Laboratory (NETL), is applied to observe and measure the real time behavior of individual particle motion inside the risers of CFB's. High speed PIV data acquired in three pilot scale CFB units at two laboratories: two CFB's with 0.305 m diameter risers and one CFB with a 0.2 m diameter riser. The high speed PIV system records high speed videos of particle motion with excellent spatial and temporal clarity. The high speed videos are analyzed to measure the concentration and the two-dimensional motion (velocity and trajectory) of individual particles. Data sample rates for velocity vectors are in the range of 0.1 to 3 million vectors per second thereby providing full resolution of the temporal domain of particle velocity. To see and measure particle motion inside the CFB risers at high particle concentrations, a custom borescope was inserted into the risers. The CFB risers were operated over a wide range of industrially relevant conditions: superficial gas velocities from 6.5 to 18.3 m/s with solid fluxes from 20 to 400 kg/m(2)/s. The particles used in the CFBs included fluid cracking catalyst (FCC) with a mean diameter of 70 mu m, high density polyethylene (HDPE) with a mean diameter of 750 mu m, and glass beads with mean diameters of 170 and 650 mu m. High speed videos and high speed PIV data enabled careful study of the real time behavior of gas-particle flow fields in CFB risers. In all of the CFBs of this study, one or more "jets" of high speed gas were observed at any time in the CFB risers. The jets move around the riser and appear to wander from one location against the riser wall to another. The jets have width range of 1/10 to 1/2 of the riser diameter. When a jet moves away from an area, the void is immediately filled with large clusters of particles. The clusters have sizes up to several riser diameters and contain significant percentages of the total particle flow. Clusters reduce mixing and interaction of particles with the transport gas, and therefore may inhibit reaction rates. Shearing of the clusters by high speed jets gives rise to cluster shapes that are either undulating or in the form of long, thin vertical strands which are often called streamers. The well known core-annulus concentration profile does not exist in real time, but rather is a long time averaged phenomenon. The data and insight from this work should be valuable for design and operation of risers, and for development of computational fluid dynamic (CFD) models of riser flow fields. Published by Elsevier B.V. C1 [Shaffer, Frank; Gopalan, Balaji; Breault, Ronald W.] US DOE, Natl Energy Technol Lab, Washington, DC 20585 USA. RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, Washington, DC 20585 USA. EM ronald.breault@netl.doe.gov RI Gopalan, Balaji/I-4169-2013; OI Breault, Ronald/0000-0002-5552-4050 NR 39 TC 28 Z9 30 U1 14 U2 79 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0032-5910 EI 1873-328X J9 POWDER TECHNOL JI Powder Technol. PD JUL PY 2013 VL 242 SI SI BP 86 EP 99 DI 10.1016/j.powtec.2013.01.012 PG 14 WC Engineering, Chemical SC Engineering GA 153XO UT WOS:000319636300010 ER PT J AU Breault, RW Li, TW Nicoletti, P AF Breault, Ronald W. Li, Tingwen Nicoletti, Phillip TI Mass transfer effects in a gasification riser SO POWDER TECHNOLOGY LA English DT Article DE Mass transfer; Gasification; Circulating fluidized bed (CFB) technology; Clean Coal Power Initiative (CCPI) ID CIRCULATING FLUIDIZED-BEDS; FLOW; PARTICLES; CFB AB In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) riser reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. [1-3]. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics. Published by Elsevier B.V. C1 [Breault, Ronald W.; Li, Tingwen; Nicoletti, Phillip] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Li, Tingwen; Nicoletti, Phillip] UPS Corp, Morgantown, WV 26507 USA. RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM ronald.breault@netl.doe.gov RI madha nia, suci/K-9554-2014; OI madha nia, suci/0000-0001-7396-9945; Breault, Ronald/0000-0002-5552-4050; Li, Tingwen/0000-0002-1900-308X NR 22 TC 1 Z9 1 U1 1 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0032-5910 EI 1873-328X J9 POWDER TECHNOL JI Powder Technol. PD JUL PY 2013 VL 242 SI SI BP 108 EP 116 DI 10.1016/j.powtec.2013.01.010 PG 9 WC Engineering, Chemical SC Engineering GA 153XO UT WOS:000319636300012 ER PT J AU Ryan, EM DeCroix, D Breault, R Xu, W Huckaby, ED Saha, K Dartevelle, S Sun, X AF Ryan, E. M. DeCroix, D. Breault, R. Xu, W. Huckaby, E. D. Saha, K. Dartevelle, S. Sun, X. TI Multi-phase CFD modeling of solid sorbent carbon capture system SO POWDER TECHNOLOGY LA English DT Article DE Carbon capture; Multi-phase; Computational fluid dynamics; Fluidized bed; Reactive transport ID FLUIDIZED-BEDS; FLOWS AB Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT (R) and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT (R) Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT (R) Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions. (C) 2013 Elsevier B.V. All rights reserved. C1 [Ryan, E. M.] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA. [DeCroix, D.; Dartevelle, S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Breault, R.; Huckaby, E. D.; Saha, K.] Natl Energy Technol Lab, Morgantown, WV USA. [Xu, W.; Sun, X.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Ryan, EM (reprint author), Boston Univ, Dept Mech Engn, Boston, MA 02215 USA. EM ryanem@bu.edu RI Xu, Wei/M-2742-2013; Ryan, Emily/I-8183-2015; OI Ryan, Emily/0000-0001-6111-3269; Breault, Ronald/0000-0002-5552-4050 FU U.S. Department of Energy, Office of Fossil Energy's Carbon Capture Simulation Initiative through the National Energy Technology Laboratory; agency of the United States Government FX This work was funded by the U.S. Department of Energy, Office of Fossil Energy's Carbon Capture Simulation Initiative through the National Energy Technology Laboratory.; This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 19 TC 9 Z9 9 U1 1 U2 39 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD JUL PY 2013 VL 242 SI SI BP 117 EP 134 DI 10.1016/j.powtec.2013.01.009 PG 18 WC Engineering, Chemical SC Engineering GA 153XO UT WOS:000319636300013 ER PT J AU Horner, RM Clark, CE AF Horner, Robert M. Clark, Corrie E. TI Characterizing variability and reducing uncertainty in estimates of solar land use energy intensity SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Land occupation; Photovoltaics; Concentrating solar power; Energy intensity; Electricity; Renewable ID ELECTRICITY-GENERATION; ENVIRONMENTAL IMPACTS; GEOTHERMAL-ENERGY; TECHNOLOGIES; ETHANOL; SYSTEMS AB Estimates of the amount of land used for a defined amount of utility-scale electricity generation in the solar power industry, referred to here as solar land use energy intensity (LUEI), are important to decision makers for evaluating the environmental impact of energy technology choices. However, these estimates for solar LUEI are calculated using three difficult-to-compare metrics and vary by as much as 4 orders of magnitude (0.042-64 m(2)/MWh) across the available literature. This study reduces, characterizes, and explicates the uncertainty in these values for photovoltaic (PV) and concentrated solar power (CSP) technologies through a harmonization process. In this harmonization process, a common metric is identified and data existing in other forms are converted to the metric, where possible; standard algorithms for calculating solar LUEI are developed; gaps and deficiencies in the literature calculations are identified and remedied; and differences among the resulting estimates are characterized and analyzed. The resulting range of harmonized solar LUEI estimates is reduced to 2 orders of magnitude [5-55 (m(2)y)/MWh]. Due to variables such as technology and location, there is a significant amount of irreducible variability in general solar LUEI estimates. However, this variability does not necessarily represent uncertainty, as most of it can be explained by choices in calculation input parameters. This study finds that key solar technology- and location-dependent parameters such as insolation, packing factor, system efficiency, and capacity factor all vary widely across studies, and thus all share in the overall variability of solar LUEI. Only land use at the site of solar electricity generation facilities is considered because lifecycle land use beyond the site (for manufacturing, disposal, etc.) is not widely accounted for in the existing literature. This study provides a basis for moving forward with standardized and comparable solar land use studies and for filling gaps in lifecycle solar LUEI. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Horner, Robert M.; Clark, Corrie E.] Argonne Natl Lab, Washington, DC 20024 USA. RP Horner, RM (reprint author), Argonne Natl Lab, 955 Enfant Plaza SW,Suite 6000, Washington, DC 20024 USA. EM rhorner@anl.gov; ceclark@anl.gov FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Program (SETP) [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Program (SETP), under contract DE-AC02-06CH11357. It was developed as part of the SETP's Market Transformation subprogram which identifies and prioritizes significant barriers to commercialization of solar technologies beyond traditional cost issues. SETP staff helped define the objectives of this work and reviewed and commented on this article. NR 39 TC 5 Z9 6 U1 4 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD JUL PY 2013 VL 23 BP 129 EP 137 DI 10.1016/j.rser.2013.01.014 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 155ZN UT WOS:000319789600010 ER PT J AU Bianchi, M Liu, HH Birkholzer, JT AF Bianchi, Marco Liu, Hui-Hai Birkholzer, Jens T. TI Equivalent diffusion coefficient of clay-rich geological formations: comparison between numerical and analytical estimates SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Article DE Diffusion; Upscaling; Diffusion coefficient; Heterogeneous media; Anisotropy ID HETEROGENEOUS POROUS-MEDIA; CALLOVO-OXFORDIAN CLAY; HYDRAULIC CONDUCTIVITY; STOCHASTIC-ANALYSIS; SOLUTE TRANSPORT; OPALINUS CLAY; SPATIAL VARIABILITY; MEUSE/HAUTE-MARNE; MONT TERRI; MACRODISPERSION AB Laboratory experiments in rock samples collected from clay-rich formations indicate that the effective molecular diffusion coefficient (D) is a heterogeneous and anisotropic property. Since laboratory measurements of D are representative of a very small volume, upscaling is necessary in order to incorporate these data in large-scale numerical models of diffusive transport. In this work we address the problem of the estimating the equivalent diffusion coefficient (D (eq) ), in terms of total diffusive flux, in a three-dimensional domain characterized by a heterogeneous and anisotropic spatial distribution of D. D (eq) was estimated from the results of steady-state diffusive transport simulations through several realizations of the D field. The ensemble averages of D (eq) from fields with different degrees of heterogeneity and anisotropy were then compared with estimates from analytical upscaling expressions based on stochastic as well as power-averaging approaches. These expressions are largely based on similar expressions developed for calculating the effective hydraulic conductivity in heterogeneous and anisotropic domains. Comparisons showed that stochastic expressions provide accurate estimates of D (eq) only for fields characterized by low heterogeneity. Within the range of heterogeneity and anisotropy considered, our results showed that a power-averaging expression is very accurate in predicting D (eq) especially when the parameter p (i) is estimated through fitting of the numerical results. Nonetheless, the relationship between this parameter and the anisotropy ratio is linear. C1 [Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Bianchi, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,Blgd 74, Berkeley, CA 94720 USA. EM mbianchi@lbl.gov RI Birkholzer, Jens/C-6783-2011 OI Birkholzer, Jens/0000-0002-7989-1912 FU Used Fuel Disposition Campaign, Office of Nuclear Energy, of the U.S. Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National Lab FX Funding for this work was provided by the Used Fuel Disposition Campaign, Office of Nuclear Energy, of the U.S. Department of Energy under Contract Number DE-AC02-05CH11231 with the Lawrence Berkeley National Lab. We thank the Associate Editor and two anonymous referees for their careful review of this manuscript. NR 57 TC 3 Z9 3 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1436-3240 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD JUL PY 2013 VL 27 IS 5 BP 1081 EP 1091 DI 10.1007/s00477-012-0646-1 PG 11 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA 155MN UT WOS:000319752500005 ER PT J AU Li, XY Hu, BX AF Li, Xinya Hu, Bill X. TI Proper orthogonal decomposition reduced model for mass transport in heterogenous media SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Article DE Model reduction; Proper orthogonal decomposition; Galerkin projection; Mass transport ID KARHUNEN-LOEVE EXPANSION; IDENTIFICATION; REDUCTION; DYNAMICS; SYSTEMS AB Numerical models with fine discretization normally demand large computational time and space, which lead to computational burden for state estimations or model parameter inversion calculation. This article presented a reduced implicit finite difference scheme that based on proper orthogonal decomposition (POD) for two-dimensional transient mass transport in heterogeneous media. The reduction of the original full model was achieved by projecting the high-dimension full model to a low-dimension space created by POD bases, and the bases are derived from the snapshots generated from the model solutions of the forward simulations. The POD bases were extracted from the ensemble of snapshots by singular value decomposition. The dimension of the Jacobian matrix was then reduced after Galerkin projection. Thus, the reduced model can accurately reproduce and predict the original model's transport process with significantly decreased computational time. This scheme is practicable with easy implementation of the partial differential equations. The POD method is illustrated and validated through synthetic cases with various heterogeneous permeability field scenarios. The accuracy and efficiency of the reduced model are determined by the optimal selection of the snapshots and POD bases. C1 [Li, Xinya] Pacific NW Natl Lab, Hydrol Energy & Environm Directorate, Richland, WA 99352 USA. [Hu, Bill X.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. RP Hu, BX (reprint author), Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. EM bill.x.hu@gmail.com NR 27 TC 3 Z9 3 U1 2 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1436-3240 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD JUL PY 2013 VL 27 IS 5 BP 1181 EP 1191 DI 10.1007/s00477-012-0653-2 PG 11 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA 155MN UT WOS:000319752500012 ER PT J AU Gray, DD Ogretim, E Bromhal, GS AF Gray, Donald D. Ogretim, Egemen Bromhal, Grant S. TI Darcy Flow in a Wavy Channel Filled with a Porous Medium SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Wavy channel; Porous media; Darcy's law; Flow in a fracture ID FRACTURES AB Flow in channels bounded by wavy or corrugated walls is of interest in both technological and geological contexts. This paper presents an analytical solution for the steady Darcy flow of an incompressible fluid through a homogeneous, isotropic porous medium filling a channel bounded by symmetric wavy walls. This packed channel may represent an idealized packed fracture, a situation which is of interest as a potential pathway for the leakage of carbon dioxide from a geological sequestration site. The channel walls change from parallel planes, to small amplitude sine waves, to large amplitude nonsinusoidal waves as certain parameters are increased. The direction of gravity is arbitrary. A plot of piezometric head against distance in the direction of mean flow changes from a straight line for parallel planes to a series of steeply sloping sections in the reaches of small aperture alternating with nearly constant sections in the large aperture bulges. Expressions are given for the stream function, specific discharge, piezometric head, and pressure. C1 [Gray, Donald D.; Ogretim, Egemen; Bromhal, Grant S.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Gray, Donald D.; Ogretim, Egemen] W Virginia Univ, Dept Civil & Environm Engn, Morgantown, WV 26506 USA. RP Gray, DD (reprint author), W Virginia Univ, Dept Civil & Environm Engn, Morgantown, WV 26506 USA. EM gray@cemr.wvu.edu; Egemen.ogretim@gediz.edu.tr; Bromhal@netl.doe.gov FU National Energy Technology Laboratory under the RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in CO2 capture under the RES contract DE-FE0004000. NR 14 TC 2 Z9 2 U1 2 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD JUL PY 2013 VL 98 IS 3 BP 743 EP 753 DI 10.1007/s11242-013-0170-x PG 11 WC Engineering, Chemical SC Engineering GA 159HL UT WOS:000320036400014 ER PT J AU Wenzel, T AF Wenzel, Tom TI The effect of recent trends in vehicle design on US societal fatality risk per vehicle mile traveled, and their projected future relationship with vehicle mass SO ACCIDENT ANALYSIS AND PREVENTION LA English DT Article DE Fatality risk; Logistic regression; Vehicle mass; Vehicle footprint; Side airbags; ESC; Compatibility ID DRIVER CASUALTY RATES; ACCIDENT RECORD; SAFETY IMPACTS; GREAT-BRITAIN; PICKUP TRUCKS; BRITISH INDEX; CAR MODELS; SUVS AB The National Highway Traffic Safety Administration (NHTSA) recently updated its 2003 and 2010 logistic regression analyses of the effect of a reduction in light-duty vehicle mass on US fatality risk per vehicle mile traveled (VMT). The current NHTSA analysis is the most thorough investigation of this issue to date. LBNL's assessment of the analysis indicates that the estimated effect of mass reduction on risk is smaller than in the previous studies, and statistically non-significant for all but the lightest cars. The effects three recent trends in vehicle designs and technologies have on societal fatality risk per VMT are estimated, and whether these changes might affect the relationship between vehicle mass and fatality risk in the future. Side airbags are found to reduce fatality risk in cars, but not necessarily light trucks or CUVs/minivans, struck in the side by another light-duty vehicle; reducing the number of fatalities in cars struck in the side is predicted to reduce the estimated detrimental effect of footprint reduction, but increase the detrimental effect of mass reduction, in cars on societal fatality risk. Better alignment of light truck bumpers with those of other vehicles appears to result in a statistically significant reduction in risk imposed on car occupants; however, reducing this type of fatality will likely have little impact on the estimated effect of mass or footprint reduction on risk. Finally, shifting light truck drivers into safer, car-based vehicles, such as sedans, CUVs, and minivans, would result in larger reductions in societal fatalities than expected from even substantial reductions in the masses of light trucks. A strategy of shifting drivers from truck-based to car-based vehicles would reduce fuel use and greenhouse gas emissions, while improving societal safety. (C) 2013 Elsevier Ltd. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Wenzel, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,90R2000, Berkeley, CA 94720 USA. EM TPWenzel@lbl.gov NR 20 TC 2 Z9 2 U1 1 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0001-4575 J9 ACCIDENT ANAL PREV JI Accid. Anal. Prev. PD JUL PY 2013 VL 56 BP 71 EP 81 DI 10.1016/j.aap.2013.03.019 PG 11 WC Ergonomics; Public, Environmental & Occupational Health; Social Sciences, Interdisciplinary; Transportation SC Engineering; Public, Environmental & Occupational Health; Social Sciences - Other Topics; Transportation GA 153WK UT WOS:000319633000007 PM 23631906 ER PT J AU Morgan, SW King, JC Pope, CL AF Morgan, Sarah W. King, Jeffrey C. Pope, Chad L. TI Simulation of neutron radiograph images at the Neutron Radiography Reactor SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Characteristic curve; Neutron radiography; Transfer method radiography; Image simulation AB The ability to accurately simulate potential radiographic images produced by a radiographic facility can improve the facility's ability to design experiments and evaluate images. The image simulation methods detailed in this paper predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in a Monte Carlo beamline model. The image simulation method utilizes a characteristic curve relating foil activity to optical density for the film and foil combination in use at the Neutron Radiography Reactor. The simulation validation compared a radiograph of a polyethylene step block to a simulated radiograph of the same step block. The simulation accurately predicts the optical density in each region of a radiograph of the step block. The simulated radiograph predicts the average optical density of the actual radiograph more accurately for the thinner steps, resulting in step averaged optical density differences between the actual and simulated images of -11.6% for the thinnest step versus a difference of -34.7% for the thickest step, possibly due to the greater accuracy of the higher optical density region of the characteristic curve. Applying the scanner calibration curve to the calculated optical density values decreases the difference between the actual radiograph pixel values and the simulated pixel values for each step except the thinnest step. The step averaged differences between the corrected and actual images increase from -11.6% to -17.0% for the thinnest step and decrease from -34.7% to +7.7% for the thickest step after the calibration curve is applied. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Morgan, Sarah W.; King, Jeffrey C.] Colorado Sch Mines, Nucl Sci & Engn Program, Golden, CO 80401 USA. [Pope, Chad L.] Idaho Natl Lab, Scoville, ID 83415 USA. RP King, JC (reprint author), Colorado Sch Mines, Nucl Sci & Engn Program, 1500 Illinois St, Golden, CO 80401 USA. EM kingjc@mines.edu FU Idaho National Laboratory FX The authors wish to acknowledge Doug Porter, Sean Cunningham, Glen Pappiouannou, and Fred Gholson of the Idaho National Laboratory for their assistance in completing the experiments necessary for this research. This project was funded by a grant from the Idaho National Laboratory. NR 20 TC 1 Z9 1 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD JUL PY 2013 VL 57 BP 341 EP 349 DI 10.1016/j.anucene.2013.02.010 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 154AD UT WOS:000319643000041 ER PT J AU Song, GL Liu, MH AF Song, Guang-Ling Liu, Minghong TI Corrosion and electrochemical evaluation of an Al-Si-Cu aluminum alloy in ethanol solutions SO CORROSION SCIENCE LA English DT Article DE Al alloy; Ethanol fuel; Corrosion ID SN-BI ALLOYS; IMPEDANCE SPECTROSCOPY; ACETIC-ACID; BEHAVIOR; FUEL; PROTECTION AB The corrosion of aluminum alloy AlSi8Cu3Fe(Zn) in ethanol and ethanol solutions containing 10 vol.% water and 10 vol.% acetic acid, respectively, was investigated by means of electrochemical impedance spectroscopy (EIS), polarization curve, immersion, optical microscopy, scanning electron microscopy and element mapping. The Al alloy in the ethanol and its solutions exhibited a capacitive loop in the measured Nyquist EIS spectra at high frequencies, which can be attributed to the ethanol's dielectric response. Addition of 10 vol.% acetic acid increased the ethanol corrosivity more significantly than the same amount of water addition. The Al-Si-Cu-Mg precipitated zones in the alloy were susceptible to corrosion attack due to the micro-galvanic effect by the Cu-containing precipitates. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Song, Guang-Ling] GM Global Res & Dev, Chem Sci & Mat Syst Lab, Warren, MI 48090 USA. [Liu, Minghong] Meda Engn & Tech Serv, Southfield, MI 48075 USA. RP Song, GL (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd,POB 2008,MS-6156, Oak Ridge, TN 37831 USA. EM songg@ornl.gov RI Song, Guang-Ling/D-9540-2013 OI Song, Guang-Ling/0000-0002-9802-6836 NR 29 TC 15 Z9 16 U1 4 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD JUL PY 2013 VL 72 BP 73 EP 81 DI 10.1016/j.corsci.2013.03.009 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 153XV UT WOS:000319637000010 ER PT J AU Zhou, S Kyle, GP Yu, S Clarke, LE Eom, J Luckow, P Chaturvedi, V Zhang, XL Edmonds, JA AF Zhou, Sheng Kyle, G. Page Yu, Sha Clarke, Leon E. Eom, Jiyong Luckow, Patrick Chaturvedi, Vaibhav Zhang, Xiliang Edmonds, James A. TI Energy use and CO2 emissions of China's industrial sector from a global perspective SO ENERGY POLICY LA English DT Article DE Industry energy; CO2 emission; Saturation effect ID STRATEGIES; FRAMEWORK; DEMAND AB The industrial sector has accounted for more than 50% of China's final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China's per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Zhou, Sheng; Zhang, Xiliang] Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China. [Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick; Chaturvedi, Vaibhav; Edmonds, James A.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Zhou, S (reprint author), Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China. EM zhshinet@tsinghua.edu.cn RI Eom, Jiyong/A-1161-2014 FU Ministry of Science and Technology (MOST) of China [2012BAC20B01]; China Scholar Council (CSC); Integrated Assessment Research Program in the Office of Science of the U.S. Department of Energy [DE-AC05-76RL01830] FX This study is supported by the Ministry of Science and Technology (MOST) of China (Grant no. 2012BAC20B01), and also supported by China Scholar Council (CSC). The authors are grateful for research support provided by the Integrated Assessment Research Program in the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. The views and opinions expressed in this paper are those of the authors alone. NR 57 TC 11 Z9 13 U1 0 U2 63 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD JUL PY 2013 VL 58 BP 284 EP 294 DI 10.1016/j.enpol.2013.03.014 PG 11 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 147OV UT WOS:000319177800029 ER PT J AU Cassata, WS Renne, PR AF Cassata, William S. Renne, Paul R. TI Systematic variations of argon diffusion in feldspars and implications for thermochronometry SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID AR-40/AR-39 K-FELDSPAR; THERMAL-EXPANSION; PHASE-TRANSITION; ALKALI FELDSPARS; PLAGIOCLASE FELDSPARS; HIGH ALBITE; X-RAY; DISPLACIVE TRANSFORMATION; INTERMEDIATE PLAGIOCLASE; CALCIC PLAGIOCLASE AB Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1-1 mm grains of similar to 200-400 degrees C (assuming a 10 degrees C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and compression. The resulting implications for accurately extrapolating laboratory-derived diffusion parameters to natural settings and over geologic time are discussed. We find that considerable inaccuracies may exist in published thermal histories obtained using multiple diffusion domain (MDD) models fit to Arrhenius plots for exsolved alkali feldspar, where the inferred Ar partial retention zones may be spuriously hot. (C) 2013 Elsevier Ltd. All rights reserved. C1 Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. Berkeley Geochronol Ctr, Berkeley, CA 94709 USA. RP Cassata, WS (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM cassata2@llnl.gov; prenne@bgc.org FU U.S. National Science Foundation Petrology and Geochemistry Program [EAR-0838572]; Ann and Gordon Getty Foundation; National Science Foundation Graduate Research Fellowship FX David Shuster, Tim Becker, Al Deino, and Greg Balco are thanked for laboratory assistance, Sean Mulcahy and Kent Ross for electron microprobe assistance, Simon Kelley for providing access to his UV-laserprobe facilities and assistance acquiring in situ data on the Bushveld Complex plagioclase crystals, Becky Smith for orienting cleavage flakes using EBSD, and Darren Mark and Kevin Righter for generously providing samples. We are grateful to Rudy Wenk for helpful discussions regarding feldspar structures and for access to his collection of plagioclase samples. W. Hames, I. Villa, and an anonymous reviewer are thanked for thoughtful and constructive reviews of the manuscript, and C. Hall is thanked for handling the manuscript. We acknowledge financial support from the U.S. National Science Foundation Petrology and Geochemistry Program (grant EAR-0838572) and the Ann and Gordon Getty Foundation. W.S. Cassata was supported by a National Science Foundation Graduate Research Fellowship. NR 134 TC 25 Z9 25 U1 2 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2013 VL 112 BP 251 EP 287 DI 10.1016/j.gca.2013.02.030 PG 37 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 144WP UT WOS:000318972800016 ER PT J AU Kobayashi, H Lorente, S Anderson, R Bejan, A AF Kobayashi, H. Lorente, S. Anderson, R. Bejan, A. TI Underground heat flow patterns for dense neighborhoods with heat pumps SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Constructal; Heat pump; Urban design; Ground coupled ID CONSTRUCTAL LAW; DESIGN; EXCHANGER; EVOLUTION; SYSTEMS; WELLS AB In this paper we consider the placement of buildings with ground coupled heat pumps on a densely populated area. The assemblies of pipes that constitute the ground heat exchangers occupy volumes that are shaped as parallelepipeds, the short dimension of which is vertical. Viewed from above, the assemblies occupy rectangular areas with variable shapes. Two area sizes are considered: few large areas surrounded by many smaller areas. The area shapes are viewed systematically such that the total heat transfer rate between ground and buried assemblies is maximum. For each shape of the large assembly, the best shape of each smaller assembly is the most slender that can be installed on its available territory. This feature of the neighborhood design does not change when the volume fraction occupied by all the assemblies increases. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Kobayashi, H.] Ajinomoto Co Inc, Prod &Technol Adm Ctr, Engn Technol Dept, Kawasaki Ku, Kawasaki, Kanagawa 210, Japan. [Kobayashi, H.; Bejan, A.] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. [Lorente, S.] Univ Toulouse, UPS, INSA, LMDC, F-31077 Toulouse 04, France. [Anderson, R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Bejan, A (reprint author), Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. EM abejan@duke.edu FU Ajinomoto Co. Inc.; National Renewable Energy Laboratory, Golden, Colorado [XXL-1-40325-01] FX We thank Ajinomoto Co. Inc. for supporting Mr. H. Kobayashi's work at Duke University. Profs. Bejan and Lorente's work was supported by a subcontract (XXL-1-40325-01) from the National Renewable Energy Laboratory, Golden, Colorado. NR 20 TC 2 Z9 2 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD JUL PY 2013 VL 62 BP 632 EP 637 DI 10.1016/j.ijheatmasstransfer.2013.03.030 PG 6 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 146IT UT WOS:000319085500068 ER PT J AU Tasora, A Anitescu, M Negrini, S Negrut, D AF Tasora, A. Anitescu, M. Negrini, S. Negrut, D. TI A compliant visco-plastic particle contact model based on differential variational inequalities SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS LA English DT Article DE Variational inequalities; Contacts; Plasticity; Friction ID RIGID-BODY DYNAMICS; FRICTIONAL CONTACT; LARGE-SCALE AB This work describes an approach to simulate contacts between three-dimensional shapes with compliance and damping using the framework of the differential variational inequality theory. Within the context of non-smooth dynamics, we introduce an extension to the classical set-valued model for frictional contacts between rigid bodies, allowing contacts to experience local compliance, viscosity, and plasticization. Different types of yield surfaces can be defined for various types of contact, a versatile approach that contains the classic dry Coulomb friction as a special case. The resulting problem is a differential variational inequality that can be solved, at each integration time step, as a variational inequality over a convex set. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Tasora, A.] Univ Parma, Dipartimento Ingn Ind, I-43100 Parma, Italy. [Anitescu, M.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Negrini, S.] Politecn Milan, Dept Mech Engn, I-20126 Milan, Italy. [Negrut, D.] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA. RP Tasora, A (reprint author), Univ Parma, Dipartimento Ingn Ind, I-43100 Parma, Italy. EM alessandro.tasora@unipr.it; anitescu@mcs.anl.gov; silvia.negrini@mail.polimi.it; negrut@cae.wisc.edu FU National Science Foundation [CMMI0840442]; Ferrari Automotive and TP Engineering; U.S. Department of Energy [DE-AC02-06CH11357] FX Financial support for D. Negrut was provided in part by the National Science Foundation Award CMMI0840442. A. Tasora thanks Ferrari Automotive and TP Engineering for financial support. Mihai Anitescu was supported by U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 29 TC 6 Z9 6 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7462 J9 INT J NONLIN MECH JI Int. J. Non-Linear Mech. PD JUL PY 2013 VL 53 SI SI BP 2 EP 12 DI 10.1016/j.ijnonlinmec.2013.01.010 PG 11 WC Mechanics SC Mechanics GA 152QD UT WOS:000319545300002 ER PT J AU Terrani, KA Parish, CM Shin, D Pint, BA AF Terrani, Kurt A. Parish, Chad M. Shin, Dongwon Pint, Bruce A. TI Protection of zirconium by alumina- and chromia-forming iron alloys under high-temperature steam exposure SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STAINLESS-STEEL; ZR SYSTEM; FE-ZR; DIFFUSION; ZIRCALOY-4; OXIDATION; ENVIRONMENTS; PRESSURE AB The viability of advanced oxidation-resistant Fe-base alloys to protect zirconium from rapid oxidation in high-temperature steam environments has been examined. Specimens were produced such that outer layers of FeCrAl ferritic alloy and Type 310 austenitic stainless steel were incorporated on the surface of zirconium metal slugs. The specimens were exposed to high-temperature 0.34 MPa steam at 1200 and 1300 degrees C. The primary degradation mechanism for the protective layer was interdiffusion with the zirconium, as opposed to high-temperature oxidation in steam. The FeCrAl layer experienced less degradation and protected the zirconium at 1300 degrees C for 8 h. Constituents of the Fe-base alloys rapidly diffused into the zirconium and resulted in the formation of various intermetallic layers at the interface and precipitates inside the bulk zirconium. The nature of this interaction for FeCrAl and 310SS has been characterized by use of microscopic techniques as well as computational thermodynamics. Finally, a reactor physics discussion on the applicability of these protective layers in light-water-reactor nuclear fuel structures is offered. Published by Elsevier B.V. C1 [Terrani, Kurt A.] Oak Ridge Natl Lab, Fuel Cycle & Isotopes Div, Oak Ridge, TN 37831 USA. [Parish, Chad M.; Shin, Dongwon; Pint, Bruce A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Terrani, KA (reprint author), Oak Ridge Natl Lab, Fuel Cycle & Isotopes Div, Oak Ridge, TN 37831 USA. EM terranika@ornl.gov RI Pint, Bruce/A-8435-2008; Parish, Chad/J-8381-2013; Shin, Dongwon/C-6519-2008 OI Pint, Bruce/0000-0002-9165-3335; Shin, Dongwon/0000-0002-5797-3423 FU ORNL's Shared Research Equipment (ShaRE) User Facility; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Advanced Fuels Campaign of the Fuel Cycle R&D program in the Office of Nuclear Energy, U.S. Department of Energy; Laboratory Directed RD funds at ORNL FX The authors would like to thank C. Schaich, A. Frederick, J. Mayotte, and J. Keiser at ORNL for assistance with the experimental work. The reactivity calculations presented here were performed by Nathan George of the University of Tennessee, Knoxville. Use of the JEOL 6500 FEG-SEM was supported by ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The work presented in this paper was supported partially by the Advanced Fuels Campaign of the Fuel Cycle R&D program in the Office of Nuclear Energy, U.S. Department of Energy as well as by Laboratory Directed R&D funds at ORNL. NR 33 TC 16 Z9 16 U1 4 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2013 VL 438 IS 1-3 BP 64 EP 71 DI 10.1016/j.jnucmat.2013.03.006 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 151SY UT WOS:000319481700011 ER PT J AU Dayal, P Bhattacharyya, D Mook, WM Fu, EG Wang, YQ Carr, DG Anderoglu, O Mara, NA Misra, A Harrison, RP Edwards, L AF Dayal, P. Bhattacharyya, D. Mook, W. M. Fu, E. G. Wang, Y. -Q Carr, D. G. Anderoglu, O. Mara, N. A. Misra, A. Harrison, R. P. Edwards, L. TI Effect of double ion implantation and irradiation by Ar and He ions on nano-indentation hardness of metallic alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID NANOINDENTATION AB In this study, the authors have investigated the combined effect of a double layer of implantation on four different metallic alloys, ODS steel MA957, Zircaloy-4, Ti-6Al-4V titanium alloy and stainless steel 316, by ions of two different species - He and Ar - on the hardening of the surface as measured by nanoindentation. The data was collected for a large number of indentations using the Continuous Stiffness Method or "CSM" mode, applying the indents on the implanted surface. Careful analysis of the data in the present investigations show that the relative hardening due to individual implantation layers can be used to obtain an estimate of the relative hardening effect of a combination of two separate implanted layers of two different species. This combined hardness was found to lie between the square root of the sum of the squares of individual hardening effects, (Delta H-A(2) + Delta H-B(2))(0.5) as the lower limit and the sum of the individual hardening effects, (Delta H-A + Delta H-B) as the upper limit, within errors, for all depths measured. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved. C1 [Dayal, P.; Bhattacharyya, D.; Carr, D. G.; Harrison, R. P.; Edwards, L.] Australian Nucl Sci & Technol Org, Inst Mat Engn, Lucas Heights, NSW 2234, Australia. [Mook, W. M.; Mara, N. A.; Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87544 USA. [Fu, E. G.; Wang, Y. -Q; Anderoglu, O.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Bhattacharyya, D (reprint author), Australian Nucl Sci & Technol Org, Inst Mat Engn, Lucas Heights, NSW 2234, Australia. EM dhb@ansto.gov.au RI Mara, Nathan/J-4509-2014; Misra, Amit/H-1087-2012; Carr, David/G-2530-2010; Edwards, Lyndon/D-1916-2013; OI Carr, David/0000-0003-1134-5496; Edwards, Lyndon/0000-0001-7526-6020; Mara, Nathan/0000-0002-9135-4693 FU Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; DOE, Office of Science, Office of Basic Energy Sciences, USA; DOE, Office of Science, Office of Basic Energy Sciences FX The ion irradiation work at Los Alamos National Laboratory (LANL) was supported through Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by DOE, Office of Science, Office of Basic Energy Sciences, USA. Access to the Center for Integrated Nanotechnologies (CINT) at LANL for nanoindentation is acknowledged. CINT is a DOE, Office of Science, Office of Basic Energy Sciences funded user facility. The help of Pat Dickerson in preparing FIB TEM samples is also greatly appreciated. The enormous help of Tim Palmer and Clint Jennison of the Metallography Lab at the Institute of Materials Engineering in ANSTO in preparing the samples for irradiation is also gratefully acknowledged. NR 20 TC 15 Z9 16 U1 3 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2013 VL 438 IS 1-3 BP 108 EP 115 DI 10.1016/j.jnucmat.2013.02.078 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 151SY UT WOS:000319481700017 ER PT J AU Ortega, LH Kaminski, MD Zeng, ZT Cunnane, J AF Ortega, Luis H. Kaminski, Michael D. Zeng, Zuotao Cunnane, James TI Nuclear fuel cycle waste stream immobilization with cermets for improved thermal properties and waste consolidation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID GLASSES AB In the pursuit of methods to improve nuclear waste form thermal properties and combine potential nuclear fuel cycle wastes, a bronze alloy was combined with an alkali, alkaline earth metal bearing ceramic to form a cermet. The alloy was prepared from copper and tin (10 mass%) powders. Pre-sintered ceramic consisting of cesium, strontium, barium and rubidium alumino-silicates was mixed with unalloyed bronze precursor powders and cold pressed to 300 x 10(3) kPa, then sintered at 600 degrees C and 800 degrees C under hydrogen. Cermets were also prepared that incorporated molybdenum, which has a limited solubility in glass, under similar conditions. The cermet thermal conductivities were seven times that of the ceramic alone. These improved thermal properties can reduce thermal gradients within the waste forms thus lowering internal temperature gradients and thermal stresses, allowing for larger waste forms and higher waste loadings. These benefits can reduce the total number of waste packages necessary to immobilize a given amount of high level waste and immobilize troublesome elements. Published by Elsevier B.V. C1 [Ortega, Luis H.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Kaminski, Michael D.; Cunnane, James] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Zeng, Zuotao] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Ortega, LH (reprint author), Texas A&M Univ, Dept Nucl Engn, 3133 TAMU, College Stn, TX 77843 USA. EM bertortega@tamu.edu; kaminski@anl.gov; zeng@anl.gov; cunnane@anl.gov OI Ortega, Luis/0000-0003-4917-3167 FU US DOE Fuel Cycle R&D Separations and Waste Form Campaign FX This work has been funded by US DOE Fuel Cycle R&D Separations and Waste Form Campaign. NR 18 TC 0 Z9 0 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2013 VL 438 IS 1-3 BP 126 EP 133 DI 10.1016/j.jnucmat.2013.02.081 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 151SY UT WOS:000319481700019 ER PT J AU Park, ES Kim, DH Kim, HJ Bae, JC Huh, MY AF Park, E. S. Kim, D. H. Kim, H. J. Bae, J. C. Huh, M. Y. TI Plastic stress-strain behavior of a Zr-based bulk metallic glass at high strain rates in the supercooled liquid region SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Bulk metallic glass; Plastic stress-strain curve; Solid metal lubricant; Strain rate ID DEFORMATION-BEHAVIOR; MECHANICAL-BEHAVIOR; AMORPHOUS-ALLOYS; TEMPERATURES; STATE AB The stress-strain curves of Zr-based bulk metallic glass (BMG) at high strain rates were determined by the compression test at a temperature in the supercooled liquid region. Using solid metal lubricant (SML) sheets, the compression test was successfully carried out without failure up to a strain of 0.68, even at a strain rate of 10/s. The finite element method calculations were carried out for clarifying the role of the SML during compression tests. Published by Elsevier B.V. C1 [Park, E. S.; Kim, D. H.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Kim, H. J.; Bae, J. C.] Korea Inst Ind Technol, Liquid Proc & Casting Technol R&D Dept, Inchon 406130, South Korea. [Huh, M. Y.] Korea Univ, Dept Mat Sci & Engn, Seoul 136701, South Korea. RP Park, ES (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. EM espark@ameslab.gov NR 19 TC 5 Z9 5 U1 0 U2 33 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 1 PY 2013 VL 574 BP 54 EP 59 DI 10.1016/j.msea.2013.03.014 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 146JT UT WOS:000319088100008 ER PT J AU Morrow, BM McCabe, RJ Cerreta, EK Tome, CN AF Morrow, B. M. McCabe, R. J. Cerreta, E. K. Tome, C. N. TI Variability in EBSD statistics for textured zirconium SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Electron backscatter diffraction (EBSD); Twinning; Zirconium ID ELECTRON BACKSCATTER DIFFRACTION; TWIN STATISTICS; MAGNESIUM AB Zirconium is an important structural material, and, as with other hexagonal close-packed (HCP) metals, the mechanical properties depend on both slip and twinning. Electron backscatter diffraction (EBSD) from two-dimensional (2D) metallographic sections has previously been used to identify and quantify deformation twinning to support development of physically based plasticity models for HCP metals. However, the stereological assumptions used to generate twin statistics from a single 2D section have not been fully validated against potential sources of measurement artifacts or biases potentially arising from the strong initial material textures and crystallographic nature of twinning. This work addresses these concerns by comparing results from three orthogonal directions in a deformed sample. Few differences are observed in the twin statistics based on viewing direction. Statistical variability of microstructures is a bigger factor in the comparison of twin statistics than viewing direction. {10 (1) over bar2} twinning does not occur homogeneously throughout the microstructure during a compression test. However, useful twin statistics can be successfully extracted from a single metallographic section. Published by Elsevier B.V. C1 [Morrow, B. M.; McCabe, R. J.; Cerreta, E. K.; Tome, C. N.] Los Alamos Natl Lab, MST Div, Los Alamos, NM 87545 USA. RP Morrow, BM (reprint author), Los Alamos Natl Lab, MST Div, POB 1663, Los Alamos, NM 87545 USA. EM morrow@lanl.gov RI Morrow, Benjamin/F-3509-2012; Tome, Carlos/D-5058-2013; OI Morrow, Benjamin/0000-0003-1925-4302; McCabe, Rodney /0000-0002-6684-7410 FU Department of Energy, Basic Energy Science Project [FWP 06SCPE401] FX This work was fully funded by the Department of Energy, Basic Energy Science Project FWP 06SCPE401. All microscopy was performed at the Electron Microscopy Laboratory at Los Alamos National Laboratory. Louis Vernon helped to process the local twin fraction data. NR 20 TC 9 Z9 9 U1 1 U2 24 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 1 PY 2013 VL 574 BP 157 EP 162 DI 10.1016/j.msea.2013.02.043 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 146JT UT WOS:000319088100021 ER PT J AU Floyd, J Alpy, N Moisseytse, A Haubensack, D Rodriguez, G Sienicki, J Avakian, G AF Floyd, J. Alpy, N. Moisseytse, A. Haubensack, D. Rodriguez, G. Sienicki, J. Avakian, G. TI A numerical investigation of the sCO(2) recompression cycle off-design behaviour, coupled to a sodium cooled fast reactor, for seasonal variation in the heat sink temperature SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID DIOXIDE BRAYTON CYCLE; EFFICIENCY AB Supercritical CO2 cycles are particularly attractive for Generation IV Sodium-Cooled Fast Reactors (SFRs) as they can be simple and compact, but still offer steam-cycle equivalent efficiency while also removing potential for Na/H2O reactions. However, CO2 thermophysical properties are very sensitive close to the critical point which raises, in particular, questions about the compressor and so cycle off-design behaviour when subject to inevitable temperature increases that result from seasonal variations in the heat sink temperature. This publication reports the numerical investigation of such an issue that has been performed using the Plant Dynamics Code (ANL, USA), the cycle being optimised for the next French SFR, ASTRID (1500 MWth), as a test-case. On design, the net plant efficiency is 42.2% for a high pressure (25 MPa) turbine with an inlet temperature of 515 degrees C and considering a cycle low temperature of 35 degrees C. The off-design cycle behaviour is studied based on preliminary designs for the main components and assuming the use of a fixed heat sink flow rate. First results obtained using a common fixed shaft speed for all turbomachines, without any other active control, show no stability issues and roughly constant density (and volumetric flow rate) at the main compressor inlet for the range of heat sink temperature considered (21-40 degrees C). This occurs because the new stationary states are found without requiring a significant shift of mass to the higher pressure level, meaning the compressor inlet pressure rises in concert with temperature. A significant fall in the loop thermal power and efficiency is observed however, which analysis reveals to be caused by a fall in pressure ratio that is an inevitable result of the non-ideal nature of sCO(2). Indeed the difference in the compressors off-design performance (the recompression cycle arrangement features 2 parallel compressors) is such that more mass-flow is attracted in the bypass line, which has a negative impact on cycle efficiency. A second series of results are taken for which the main compressor speed alone is controlled (between 50 and 56 rev/s) and successfully maintains a constant thermal power across the sodium-CO2 heat exchanger. The resulting higher pressure ratio (compared to the fixed speed results) and greater flow rate through the main compressor also lead to higher cycle efficiencies that are close to the optimum achievable for a given heat sink temperature. The series of tests reveals that to achieve a constant thermal power and high efficiency with the sCO(2) cycle at elevated heat sink temperatures, a degree-of-freedom in the compressor performance is necessary. (C) 2013 Elsevier B.V. All rights reserved. C1 [Floyd, J.; Alpy, N.; Haubensack, D.; Avakian, G.] CEA, DEN, Dept Etud Reacteurs, Serv Etud Syst Innovants, F-13108 St Paul Les Durance, France. [Moisseytse, A.; Sienicki, J.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Rodriguez, G.] CEA, DEN, Dept Technol Nucl, F-13108 St Paul Les Durance, France. RP Alpy, N (reprint author), CEA, DEN, Dept Etud Reacteurs, Serv Etud Syst Innovants, F-13108 St Paul Les Durance, France. EM jeremy.floyd@cea.fr; nicolas.alpy@cea.fr; amoissey@anl.gov; david.haubensack@cea.fr; gilles.rodriguez@cea.fr; sienicki@ani.gov; gilles.avakian@cea.fr NR 46 TC 13 Z9 13 U1 2 U2 25 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD JUL PY 2013 VL 260 BP 78 EP 92 DI 10.1016/j.nucengdes.2013.03.024 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 154BF UT WOS:000319645800008 ER PT J AU Mohanty, S Majumdar, S Srinivasan, M AF Mohanty, Subhasish Majumdar, Saurindranath Srinivasan, Makuteswara TI Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID PREDICTION; CODE AB High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite. (C) 2013 Elsevier B.V. All rights reserved. C1 [Mohanty, Subhasish; Majumdar, Saurindranath] Argonne Natl Lab, Argonne, IL 60439 USA. [Srinivasan, Makuteswara] US Nucl Regulatory Commiss, Washington, DC 20555 USA. RP Mohanty, S (reprint author), Argonne Natl Lab, South Cass Ave, Argonne, IL 60439 USA. EM smohanty@anl.gov FU U.S. Nuclear Regulatory Commission (U.S. NRC) [V6218] FX The work was supported by the U.S. Nuclear Regulatory Commission (U.S. NRC) under contract NRC Job Code V6218 during FY2011. The views expressed in this paper are not necessarily those of the U.S. Nuclear Regulatory Commission. NR 17 TC 5 Z9 5 U1 3 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD JUL PY 2013 VL 260 BP 145 EP 154 DI 10.1016/j.nucengdes.2013.03.003 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 154BF UT WOS:000319645800013 ER PT J AU Meng, WZ AF Meng, Wuzheng TI Coil-dominated combined function magnet design SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Magnet; Combined function; Complex potential; Accelerator magnet AB Most coil-dominated combined function magnets are built by stacking multipole coils around the beam aperture, which result in unnecessary cancellations of currents. This article suggests that conductor positions can be computed analytically based upon the combined potentials, so that significant ampere-turns can be reduced. The two dimensional complex potential theory is the base of this method. Examples are demonstrated. Detailed formulas are laid out and ready for various applications. (c) 2013 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Meng, WZ (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM meng@bnl.gov NR 13 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2013 VL 715 BP 39 EP 47 DI 10.1016/j.nima.2013.02.033 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 148NS UT WOS:000319252300005 ER PT J AU Smith, MB McClish, M Achtzehn, T Andrews, HR Baginski, MJ Best, DJ Budden, BS Clifford, ETH Dallmann, NA Dathy, C Frank, JM Graham, SA Ing, H Stonehill, LC AF Smith, M. B. McClish, M. Achtzehn, T. Andrews, H. R. Baginski, M. J. Best, D. J. Budden, B. S. Clifford, E. T. H. Dallmann, N. A. Dathy, C. Frank, J. M. Graham, S. A. Ing, H. Stonehill, L. C. TI Assessment of photon detectors for a handheld gamma-ray and neutron spectrometer using Cs2LiYCl6:Ce (CLYC) scintillator SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Cs2LiYCl6; Radiation detectors; Scintillators; Photon detectors ID SPECTROSCOPY; CRYSTALS; READOUT; PURE AB The coupling of Cs2LiYCl6:Ce (CLYC) scintillator to silicon photon converters has been evaluated with the goal of investigating replacements for the traditional photomultiplier tube (PMT) in small handheld spectrometers. Energy spectra produced under irradiation by a range of gamma-ray and neutron sources were collected with CLYC mounted to several avalanche photodiodes, PIN photodiodes, and silicon photomultipliers. The performance for both gamma rays and neutrons was compared to that obtained by coupling CLYC to PMTs. None of the silicon devices evaluated provide comparable performance to that of a PMT with CLYC. This is attributed to the photon-detection efficiency of the silicon detectors over the wavelength range of CLYC emissions, as well as the noise characteristics of the devices. (c) 2013 Elsevier B.V. All rights reserved. C1 [Smith, M. B.; Achtzehn, T.; Andrews, H. R.; Clifford, E. T. H.; Graham, S. A.; Ing, H.] Bubble Technol Ind, Chalk River, ON K0J 1J0, Canada. [McClish, M.] Radiat Monitoring Devices, Watertown, MA 02472 USA. [Baginski, M. J.; Best, D. J.] SCI Technol Inc, Huntsville, AL 35803 USA. [Budden, B. S.; Dallmann, N. A.; Stonehill, L. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dathy, C.; Frank, J. M.] St Gobain Crystals, Hiram, OH 44234 USA. RP Smith, MB (reprint author), Bubble Technol Ind, POB 100, Chalk River, ON K0J 1J0, Canada. EM smithm@bubbletech.ca OI Smith, Martin/0000-0003-0834-1574 FU US Department of Homeland Security, Domestic Nuclear Detection Office [HSHQDC-10-C-00178] FX This work has been supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded Contract HSHQDC-10-C-00178. This support does not constitute an express or implied endorsement on the part of the Government. NR 15 TC 3 Z9 3 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2013 VL 715 BP 92 EP 97 DI 10.1016/j.nima.2013.03.023 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 148NS UT WOS:000319252300012 ER PT J AU Mitchell, CE Qiang, J Ryne, RD AF Mitchell, Chad E. Qiang, Ji Ryne, Robert D. TI A fast method for computing 1-D wakefields due to coherent synchrotron radiation SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Coherent synchrotron radiation; Light source simulation; Green function AB A method for computing the free-space longitudinal wakefield due to coherent synchrotron radiation (CSR) in a one-dimensional model is developed using a fast integrated Green function approach. This approach accurately captures the short-range behavior of the CSR interaction and does not require the numerical differentiation of a noisy longitudinal charge density. The transient wakefields that occur near bend entry and exit are included. This method can also be generalized to include the effect of upstream radiation that propagates through multiple lattice elements before interacting with the bunch. Published by Elsevier B.V. C1 [Mitchell, Chad E.; Qiang, Ji; Ryne, Robert D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Mitchell, CE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM ChadMitchell@lbl.gov FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the Office of Science of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 18 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2013 VL 715 BP 119 EP 125 DI 10.1016/j.nima.2013.03.013 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 148NS UT WOS:000319252300016 ER PT J AU Khan, MI Aydemir, K Siddiqui, MRH Alwarthan, AA Kaduk, JA Marshall, CL AF Khan, M. Ishaque Aydemir, Kadir Siddiqui, M. Rafiq H. Alwarthan, Abdulrahman A. Kaduk, James A. Marshall, Christopher L. TI Effect of gamma-ray irradiation on the properties of nanostructured oxovanadate based oxidative dehydrogenation catalysts SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article DE Oxidative dehydrogenation; Catalysis; Propylene; Framework-materials; Polyoxovanadates; gamma-Ray irradiation ID OXIDE CLUSTERS; MIXED OXIDES; PROPANE; TRANSITION; ADDITIVES; RADIATION; ALUMINA; H2O; CO; CL AB Effect of varying doses of gamma-ray irradiation on the catalytic oxidative dehydrogenation properties of a nanostructured oxovanadate based material is described for the first time. gamma-ray irradiation enhanced catalysts' selectivity to propylene during the oxidative dehydrogenation of propane. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Khan, M. Ishaque; Aydemir, Kadir; Kaduk, James A.] IIT, Dept Biol & Chem Sci, Chicago, IL 60616 USA. [Siddiqui, M. Rafiq H.; Alwarthan, Abdulrahman A.] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia. [Marshall, Christopher L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Khan, MI (reprint author), IIT, Dept Biol & Chem Sci, 3101 S Dearborn St,Life Sci Bldg,Room 178, Chicago, IL 60616 USA. EM khan@iit.edu RI Siddiqui, M Rafiq/E-9030-2010; Marshall, Christopher/D-1493-2015 OI Siddiqui, M Rafiq/0000-0002-4703-0333; Marshall, Christopher/0000-0002-1285-7648 NR 28 TC 0 Z9 0 U1 1 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD JUL PY 2013 VL 88 BP 56 EP 59 DI 10.1016/j.radphyschem.2013.02.040 PG 4 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 152PS UT WOS:000319544200010 ER PT J AU Saili, KS Tilton, SC Waters, KM Tanguay, RL AF Saili, Katerine S. Tilton, Susan C. Waters, Katrina M. Tanguay, Robert L. TI Global gene expression analysis reveals pathway differences between teratogenic and non-teratogenic exposure concentrations of bisphenol A and 17 beta-estradiol in embryonic zebrafish SO REPRODUCTIVE TOXICOLOGY LA English DT Article DE Bisphenol A; 17 beta-Estradiol; Microarray; Zebrafish; Prothrombin; CREB ID BREAST-CANCER CELLS; ESTROGEN-RECEPTOR; ENDOCRINE DISRUPTOR; WIDESPREAD EXPOSURE; ARYL-HYDROCARBON; DATA-MANAGEMENT; MESSENGER-RNA; DANIO-RERIO; ACTIVATION; CREB AB Transient developmental exposure to 0.1 mu M bisphenol A (BPA) results in larval zebrafish hyperactivity and learning impairments in the adult, while exposure to 80 mu M BPA results in teratogenic responses, including craniofacial abnormalities and edema. The mode of action underlying these effects is unclear. We used global gene expression analysis to identify candidate genes and signaling pathways that mediate BPA's developmental toxicity in zebrafish. Exposure concentrations were selected and anchored to the positive control, 17 beta-estradiol (E2), based on previously determined behavioral or teratogenic phenotypes. Functional analysis of differentially expressed genes revealed distinct expression profiles at 24 h post fertilization for 0.1 mu M versus 80 mu M BPA and 0.1 mu M versus 15 mu M E2 exposure, identification of prothrombin activation as a top canonical pathway impacted by both 0.1 mu M BPA and 0.1 mu M E2 exposure, and suppressed expression of several genes involved in nervous system development and function following 0.1 mu M BPA exposure. (c) 2013 Elsevier Inc. All rights reserved. C1 [Saili, Katerine S.; Tanguay, Robert L.] Oregon State Univ, Environm Hlth Sci Ctr, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA. [Tilton, Susan C.; Waters, Katrina M.] Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA. RP Tanguay, RL (reprint author), Oregon State Univ, Dept Environm & Mol Toxicol, 28645 East Hwy 34, Corvallis, OR 97333 USA. EM Robert.Tanguay@oregonstate.edu FU NIH [T32 ES7060, P30 ES000210, R21 ES018970]; United States Environmental Protection Agency (US EPA) Science to Achieve Results (STAR) Graduate Fellowship (KSS); DOE [DE-AC05-76RLO1830] FX We thank Margaret Corvi for sample collection assistance; Jane La Du for imaging assistance; Eric Johnson, Can Buchner, Carrie Barton, and Greg Gonnerman for providing fish husbandry; and Siba Das, Sean Bugel, and Fred Tilton for critical review of the manuscript. This work was supported by NIH Grants T32 ES7060, P30 ES000210, and R21 ES018970, and a United States Environmental Protection Agency (US EPA) Science to Achieve Results (STAR) Graduate Fellowship (KSS). The Pacific Northwest National Laboratory is a multi-program national laboratory operated by Battelle Memorial Institute for the DOE under contract number DE-AC05-76RLO1830. The funding sources were not involved in any part of the design, execution, analysis, or publication of this study. The US EPA has not officially endorsed this publication and the views expressed herein do not necessarily reflect the views of the US EPA. NR 43 TC 11 Z9 11 U1 2 U2 52 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0890-6238 J9 REPROD TOXICOL JI Reprod. Toxicol. PD JUL PY 2013 VL 38 BP 89 EP 101 DI 10.1016/j.reprotox.2013.03.009 PG 13 WC Reproductive Biology; Toxicology SC Reproductive Biology; Toxicology GA 152MG UT WOS:000319535200010 PM 23557687 ER PT J AU Goodrich, A Hacke, P Wang, Q Sopori, B Margolis, R James, TL Woodhouse, M AF Goodrich, Alan Hacke, Peter Wang, Qi Sopori, Bhushan Margolis, Robert James, Ted L. Woodhouse, Michael TI A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Crystalline silicon; Photovoltaics; Solar energy; Economics ID SURFACE RECOMBINATION VELOCITY; MINORITY-CARRIER LIFETIMES; SOLAR-CELL EFFICIENCY; CRYSTALLINE SILICON; P-TYPE; CZOCHRALSKI SILICON; MULTICRYSTALLINE SILICON; SATURATION CURRENT; SI; DEGRADATION AB As an initial investigation into the current and potential economics of one of today's most widely deployed photovoltaic technologies, we have engaged in a detailed analysis of manufacturing costs for each step within the wafer-based monocrystalline silicon (c-Si) PV module supply chain. At each step we find several pathways that could lead to further reductions in manufacturing costs. After aggregating the performance and cost considerations for a series of known technical improvement opportunities, we project a pathway for commercial-production c-Si modules to have typical sunlight power conversion efficiencies of 19-23%, and we calculate that they might be sustainably sold at ex-factory gate prices of $0.60-$0.70 per peak Watt (DC power, current U.S. dollars). This may not be the lower bound to the cost curve for c-Si, however, because the roadmap described in this paper is constrained by the boundary conditions set by the wire sawing of wafers and their incorporation into manufacturing equipment that is currently being developed for commercial-scale production. Within these boundary conditions, we find that the benefit of reducing the wafer thickness from today's standard 180 mu m to the handling limit of 80 mu m could be around $0.05 per peak Watt (W-p), when the calculation is run at minimum sustainable polysilicon prices (which we calculate to be around $23/kg). At that minimum sustainable polysilicon price, we also calculate that the benefit of completely eliminating or completely recycling kerf loss could be up to $0.08/W-p. These downward adjustments to the long run wafer price are used within the cost projections for three advanced cell architectures beyond today's standard c-Si solar cell. Presumably, the higher efficiency cells that are profiled must be built upon a foundation of higher quality starting wafers. The prevailing conventional wisdom is that this should add cost at the ingot and wafering step either due to lower production yields when having to sell wafers that are doped with an alternative element other than the standard choice of boron, or in additional capital equipment costs associated with removing problematic boron-oxygen pairs. However, from our survey it appears that there does not necessarily need to be an assumption of a higher wafer price if cell manufacturers should wish to use n-type wafers derived from the phosphorus dopant. And as for making p-type wafers with the traditional boron dopant, the potential price premium for higher lifetimes via the magnetic Czochralski approach is calculated to be very small, and can ostensibly be offset by the higher expected cell efficiencies that would result from using the higher quality wafers. With this final consideration, the projected minimum sustainable price requirements for three advanced c-Si solar cells are incorporated into a final bill of materials for a polysilicon-to-module manufacturing facility located within the United States. (C) 2013 Elsevier B.V. All rights reserved. C1 [Goodrich, Alan; Hacke, Peter; Wang, Qi; Sopori, Bhushan; Margolis, Robert; James, Ted L.; Woodhouse, Michael] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Goodrich, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Alan.Goodrich@nrel.gov; Michael.Woodhouse@nrel.gov NR 167 TC 109 Z9 112 U1 14 U2 123 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD JUL PY 2013 VL 114 BP 110 EP 135 DI 10.1016/j.solmat.2013.01.030 PG 26 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 151UW UT WOS:000319486700016 ER PT J AU Laghumavarapu, RB Liang, BLL Bittner, ZS Navruz, TS Hubbard, SM Norman, A Huffaker, DL AF Laghumavarapu, Ramesh B. Liang, Baolai L. Bittner, Zachary S. Navruz, Tugba S. Hubbard, Seth M. Norman, Andrew Huffaker, Diana L. TI GaSb/InGaAs quantum dot-well hybrid structure active regions in solar cells SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Quantum dot (QD); Quantum well (QW); Intermediate band solar cells (IBSC); Gallium antimonide (GaSb); Photovoltaics (PV); Quantum dot-well (QDW) solar cells ID EFFICIENCY; BEAM AB GaSb/InGaAs quantum dot-well (QDW) hybrid active regions with type-II band alignment are explored for increasing the infrared absorption in GaAs solar cells. Analyzed GaAs p-i-n structures comprise five layers of either GaSb quantum dot (QD), InGaAs quantum well (QW) or GaSb/InGaAs QDW layers in the I-region. It is found that the QDW solar cells outperform the QW and QD solar cells beyond GaAs band edge. In QDW solar cells an increase in efficiency is observed over QD solar cells due to additional QW absorption. An analysis of bulk response degradation in QDW solar cell is also presented. Improved photoresponse in QDW solar cells over QW and QD solar cells proves the potential for QDW hybrid structures in achieving high efficiency intermediate band solar cells. (C) 2013 Elsevier B.V. All rights reserved. C1 [Laghumavarapu, Ramesh B.; Huffaker, Diana L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Liang, Baolai L.; Huffaker, Diana L.] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. [Bittner, Zachary S.; Hubbard, Seth M.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Navruz, Tugba S.] Gazi Univ, Fac Engn & Architecture, Dept Elect & Elect Engn, TR-06570 Ankara, Turkey. [Norman, Andrew] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Laghumavarapu, RB (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. EM laghu77@gmail.com RI Norman, Andrew/F-1859-2010 OI Norman, Andrew/0000-0001-6368-521X FU US Department of Energy [DE-EE0005325]; Air Force Office of Scientific Research [AFINASSB01]; Department of Defense [NSSEFF N00244-09-1-0091] FX The authors greatly acknowledge the financial support of this research from US Department of Energy (through Grant number DE-EE0005325), Air Force Office of Scientific Research (through Grant number AFINASSB01) and Department of Defense (NSSEFF N00244-09-1-0091). Authors would like to thank Charles J. Reyner for useful discussions during the preparation of this manuscript. The authors gratefully acknowledge the use of the SPM facility at the Nano and Pico Characterization Laboratory at the California NanoSystems Institute. NR 28 TC 14 Z9 14 U1 1 U2 88 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD JUL PY 2013 VL 114 BP 165 EP 171 DI 10.1016/j.solmat.2013.02.027 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 151UW UT WOS:000319486700022 ER PT J AU Greenhawt, M Weiss, C Conte, ML Doucet, M Engler, A Camargo, CA AF Greenhawt, Matthew Weiss, Christopher Conte, Marisa L. Doucet, Marlie Engler, Amy Camargo, Carlos A., Jr. TI Racial and Ethnic Disparity in Food Allergy in the United States: A Systematic Review SO JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE LA English DT Review DE Food allergy; Food sensitization; 95% Predictive Decision Points; Serum IgE; Race; Ethnicity; Children; Prevalence; Anaphylaxis; Disparity; Epinephrine; Black; African American AB BACKGROUND: The prevalence of food allergy is rising among US children. Little is known about racial/ethnic disparities in food allergy. OBJECTIVE: We performed a systematic literature review to understand racial/ethnic disparities in food allergy in the United States. METHODS: We searched PubMed/MEDLINE, Embase, and Scopus for original data about racial/ethnic disparities in the diagnosis, prevalence, treatment, or clinical course of food allergy or sensitization, with a particular focus on black (African American) race. Articles were analyzed by study methodology, racial/ethnic composition, food allergy definition, outcomes, summary statistic used, and covariate adjustment. RESULTS: Twenty of 645 identified articles met inclusion criteria. The studies used multiple differing criteria to define food allergy, including self-report, sensitization assessed by serum food-specific IgE to selected foods without corroborating history, discharge codes, clinic chart review, and event-reporting databases. None used oral food challenge. In 12 studies, black persons (primarily children) had significantly increased adjusted odds of food sensitization or significantly higher proportion or odds of food allergy by self-report, discharge codes, or clinic-based chart review than white children. Major differences in study methodology and reporting precluded calculation of a pooled estimate of effect. CONCLUSION: Sparse and methodologically limited data exist about racial/ethnic disparity in food allergy in the United States. Available data lack a common definition for food allergy and use indirect measures of allergy, not food challenge. Although data suggest an increased risk of food sensitization, self-reported allergy, or clinic-based diagnosis of food allergy among black children, no definitive racial/ethnic disparity could be found among currently available studies. (C) 2013 American Academy of Allergy, Asthma & Immunology C1 [Greenhawt, Matthew] Univ Michigan, Sch Med, Dept Internal Med, Div Allergy & Clin Immunol, Ann Arbor, MI USA. [Greenhawt, Matthew] Univ Michigan Hlth Syst, Ann Arbor, MI 48106 USA. [Weiss, Christopher] Global Food Protect Inst, Battle Creek, MI USA. [Conte, Marisa L.] Univ Michigan, Taubman Hlth Sci Lib, Ann Arbor, MI 48109 USA. [Doucet, Marlie] Ctr Dis Control & Prevent, Oak Ridge Inst Sci & Educ Fellow, Div Adolescent, Atlanta, GA USA. [Doucet, Marlie] Ctr Dis Control & Prevent, Sch Hlth, Atlanta, GA USA. [Engler, Amy] Stanford Univ, Dept Human Biol, Palo Alto, CA 94304 USA. [Camargo, Carlos A., Jr.] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Emergency Med, Boston, MA USA. [Camargo, Carlos A., Jr.] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Med,Div Rheumatol Allergy & Immunol, Boston, MA USA. RP Greenhawt, M (reprint author), Univ Michigan Hlth Syst, Div Allergy & Clin Immunol, 24 Frank Lloyd Wright Dr Lobby H-2100,Box 442, Ann Arbor, MI 48106 USA. EM mgreenha@med.umich.edu OI Greenhawt, Matthew/0000-0002-2365-9372; Conte, Marisa/0000-0001-7377-163X FU Centers for Disease Control and Prevention [214-2010-M-37396]; Food Allergy Research and Education; Michigan Institute for Clinical and Health Research; NIH [UL1RR024986] FX Supported by the Centers for Disease Control and Prevention contract 214-2010-M-37396 with the Food Allergy & Anaphylaxis Network (now the Food Allergy Research and Education) and the Michigan Institute for Clinical and Health Research, NIH UL1RR024986 (M.L.C. and M.G.). The findings and conclusions in this paper are those of the authors and do not necessarily represent the official positions of the Centers for Disease Control and Prevention (CDC) or Food Allergy Research and Education. NR 42 TC 10 Z9 10 U1 3 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-2198 EI 2213-2201 J9 J ALLER CL IMM-PRACT JI J. Allergy Clin. Immunol.-Pract. PD JUL-AUG PY 2013 VL 1 IS 4 BP 378 EP 386 DI 10.1016/j.jaip.2013.04.009 PG 9 WC Allergy; Immunology SC Allergy; Immunology GA V38WW UT WOS:000209374500009 PM 24565543 ER PT J AU Guo, HW Ward, TZ AF Guo, Hangwen Ward, Thomas Z. TI Fabrication of Spatially Confined Complex Oxides SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Materials Science; Issue 77; Physics; Chemistry; Chemical Engineering; Mechanical Engineering; Nanotechnology; electrical transport properties in solids; condensed matter physics; thin films (theory; deposition and growth); conductivity (solid state); Pulsed laser deposition; oxides thin films; photolithography; wire-bonding; thin film; etching; fabrication; nanofabrication AB Complex materials such as high Tc superconductors, multiferroics, and colossal magnetoresistors have electronic and magnetic properties that arise from the inherent strong electron correlations that reside within them. These materials can also possess electronic phase separation in which regions of vastly different resistive and magnetic behavior can coexist within a single crystal alloy material. By reducing the scale of these materials to length scales at and below the inherent size of the electronic domains, novel behaviors can be exposed. Because of this and the fact that spin-charge-lattice-orbital order parameters each involve correlation lengths, spatially reducing these materials for transport measurements is a critical step in understanding the fundamental physics that drives complex behaviors. These materials also offer great potential to become the next generation of electronic devices (1-3). Thus, the fabrication of low dimensional nano-or micro-structures is extremely important to achieve new functionality. This involves multiple controllable processes from high quality thin film growth to accurate electronic property characterization. Here, we present fabrication protocols of high quality microstructures for complex oxide manganite devices. Detailed descriptions and required equipment of thin film growth, photo-lithography, and wire-bonding are presented. C1 [Guo, Hangwen; Ward, Thomas Z.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Guo, Hangwen] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Ward, TZ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM wardtz@ornl.gov RI Ward, Thomas/I-6636-2016 OI Ward, Thomas/0000-0002-1027-9186 FU US DOE, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX This effort was wholly supported by the US DOE, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. NR 17 TC 0 Z9 0 U1 1 U2 4 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD JUL PY 2013 IS 77 AR UNSP e50573 DI 10.3791/50573 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA V36RG UT WOS:000209227900048 PM 23851706 ER PT J AU Martin, JE AF Martin, James E. TI Field-Structured Polymer Composites SO MACROMOLECULAR SYMPOSIA LA English DT Proceedings Paper CT Polymer Networks Conference (PNG) CY AUG 12-16, 2012 CL WY DE composites; magnetic permeability; thermal conductivity ID BIAXIAL FIELD; SIMULATION AB The use of multiaxial magnetic fields to create particle composites with controlled structures and properties is discussed. These field-structured composites can have greatly enhanced isotropic or anisotropic properties, and have applications to sensing, actuation, and thermal transport. In this article the synthesis of these materials is discussed, and a variety of composite structures are shown. The magnetic permeability and thermal conductivity are given as specific examples of the utility of multiaxial field structuring. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Martin, JE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jmartin@sandia.gov NR 16 TC 0 Z9 0 U1 0 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1022-1360 EI 1521-3900 J9 MACROMOL SYMP JI Macromol. Symp. PD JUL PY 2013 VL 329 IS 1 BP 162 EP 172 DI 10.1002/masy.201200108 PG 11 WC Polymer Science SC Polymer Science GA AG5BR UT WOS:000335434600020 ER PT J AU Kim, T Vazquez, H Hybertsen, MS Venkataraman, L AF Kim, Taekyeong Vazquez, Hector Hybertsen, Mark S. Venkataraman, Latha TI Conductance of Molecular Junctions Formed with Silver Electrodes SO NANO LETTERS LA English DT Article DE Single-molecule electronics; Ag-molecular junctions; density functional theory; oligophenyls; tunneling decay ID METAL WORK FUNCTION; SINGLE; RESISTANCE; CIRCUITS; CONTACTS; NANOWIRE; AU; AG AB We compare the conductance of a series of amine-terminated oligophenyl and alkane molecular junctions formed with Ag and Au electrodes using the scanning tunneling microscope based break-junction technique. For these molecules that conduct through the highest occupied molecular orbital, junctions formed with Au electrodes are more conductive than those formed with Ag electrodes, consistent with the lower work function for Ag. The measured conductance decays exponentially with molecular backbone length with a decay constant that is essentially the same for Ag and Au electrodes. However, the formation and evolution of molecular junctions upon elongation are very different for these two metals. Specifically, junctions formed with Ag electrodes sustain significantly longer elongation when compared with Au due to a difference in the initial gap opened up when the metal point-contact is broken. Using this observation and density functional theory calculations of junction structure and conductance we explain the trends observed in the single molecule junction conductance. Our work thus opens a new path to the conductance measurements of a single molecule junction in Ag electrodes. C1 [Kim, Taekyeong; Vazquez, Hector; Venkataraman, Latha] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Hybertsen, MS (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM mhyberts@bnl.gov; lv2117@columbia.edu RI Vazquez, Hector/G-5788-2014; OI Vazquez, Hector/0000-0002-3865-9922; Hybertsen, Mark S/0000-0003-3596-9754; Venkataraman, Latha/0000-0002-6957-6089 FU NSF [DMR-1122594]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Nanoscience and Engineering center by the New York State Office of Science, Technology, and Academic Research (NYSTAR); Packard Foundation FX This work was supported primarily by the NSF under award number DMR-1122594. Part of this work was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. H.V. was supported through the Nanoscience and Engineering center by the New York State Office of Science, Technology, and Academic Research (NYSTAR). L.V. thanks the Packard Foundation for support. NR 32 TC 41 Z9 41 U1 5 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2013 VL 13 IS 7 BP 3358 EP 3364 DI 10.1021/nl401654s PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 184IW UT WOS:000321884300058 PM 23731268 ER PT J AU Jordan, NN Leamer, NK Nowak, G Gaydos, JC AF Jordan, N. N. Leamer, N. K. Nowak, G. Gaydos, J. C. TI ESTIMATING CHLAMYDIA AND GONORRHOEA BURDEN WITHIN THE US ARMY - A REVIEW OF PASSIVE SURVEILLANCE SYSTEMS TO IDENTIFY INCIDENT INFECTIONS SO SEXUALLY TRANSMITTED INFECTIONS LA English DT Meeting Abstract C1 [Jordan, N. N.; Leamer, N. K.] US Army Inst Publ Hlth, Aberdeen Proving Ground, MD USA. [Leamer, N. K.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Nowak, G.] Navy Marine Corps Public Hlth Ctr, Norfolk, VA USA. [Gaydos, J. C.] Armed Forces Hlth Surveillance Ctr, Silver Spring, MD USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU BMJ PUBLISHING GROUP PI LONDON PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND SN 1368-4973 EI 1472-3263 J9 SEX TRANSM INFECT JI Sex. Transm. Infect. PD JUL PY 2013 VL 89 SU 1 MA P3.316 BP A248 EP A248 DI 10.1136/sextrans-2013-051184.0770 PG 1 WC Infectious Diseases SC Infectious Diseases GA V40VR UT WOS:000209506600162 ER PT J AU Tsai, AY Dueger, E Macalino, GE Montano, SM Mbuchi, M Puplampu, N McClelland, RS Sanchez, JL AF Tsai, A. Y. Dueger, E. Macalino, G. E. Montano, S. M. Mbuchi, M. Puplampu, N. McClelland, R. S. Sanchez, J. L. TI NEISSERIA GONORRHOEAE (GC) RESISTANCE SURVEILLANCE IN SELECTED POPULATIONS OF FIVE COUNTRIES SO SEXUALLY TRANSMITTED INFECTIONS LA English DT Meeting Abstract C1 [Tsai, A. Y.; Sanchez, J. L.] Armed Forces Hlth Surveillance Ctr, Silver Spring, MD USA. [Tsai, A. Y.] US Army Publ Hlth Command, Postgrad Res Participat Program, Oak Ridge Inst Sci & Educ, Aberdeen Proving Ground, MD USA. [Dueger, E.] US Naval Med Res Unit 3, Cairo, Egypt. [Dueger, E.] US Ctrs Dis Control & Prevent CDC, Global Dis Detect Branch, Atlanta, GA USA. [Macalino, G. E.] Uniformed Serv Univ Hlth Sci, IDCRP, Bethesda, MD 20814 USA. [Montano, S. M.] US Naval Med Res Unit 6, Lima, Peru. [Mbuchi, M.] US Army Med Res Unit Kenya, Nairobi, Kenya. [Puplampu, N.] US Naval Med Res Unit 3 Dttachment, Accra, Ghana. [McClelland, R. S.] Univ Washington, Seattle, WA 98195 USA. [Sanchez, J. L.] Henry M Jackson Fdn Adv Mil Med Inc, Bethesda, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU BMJ PUBLISHING GROUP PI LONDON PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND SN 1368-4973 EI 1472-3263 J9 SEX TRANSM INFECT JI Sex. Transm. Infect. PD JUL PY 2013 VL 89 SU 1 MA P3.276 BP A235 EP A235 DI 10.1136/sextrans-2013-051184.0732 PG 1 WC Infectious Diseases SC Infectious Diseases GA V40VR UT WOS:000209506600124 ER PT J AU Williams, R McKane, A AF Williams, Robert McKane, Aimee TI Global overview-the systems approach to energy efficiency in industry SO WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT LA English DT Article AB The energy systems that support industrial processes can be found in all types of industry and include compressed air, pumping, and fan systems (collectively known as motor systems), steam systems, and process heating systems. They are integral to the operation of industrial facilities by providing the essential conversion of energy into useful work, energized fluids or heat required for production processes. Improving the efficiency of industrial energy systems does not require major investment in new processes or equipment. Barriers to systems optimization are often behavioral rather than financial, with system inefficiencies frequently attributable to lack of knowledge. Measurement of the efficiency of motor and steam systems is not done and projects capable of improving systems efficiency do not attract the attention of company managers. In developed countries, where energy efficiency is now an important component of climate policy, measures capable of driving systems level improvements, have been introduced, but, to date, their impacts have been limited. The challenge for policy makers worldwide is to bring about a lasting change in industrial management behavior that recognizes the benefits of systems optimization. The International Standards Organization 50001 Energy Management Standard will afford industrial managers with an opportunity to address systems optimization within the organizing framework of an energy management system standard, thus supporting continuous improvement in energy performance. (C) 2013 John Wiley & Sons, Ltd. C1 [McKane, Aimee] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM williams.robert1020@yahoo.com NR 15 TC 1 Z9 1 U1 1 U2 6 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-8396 EI 2041-840X J9 WIRES ENERGY ENVIRON JI Wiley Interdiscip. Rev. Energy Environ. PD JUL-AUG PY 2013 VL 2 IS 4 BP 363 EP 373 DI 10.1002/wene.72 PG 11 WC Energy & Fuels SC Energy & Fuels GA AQ9WJ UT WOS:000343208400001 ER PT J AU Eisenlohr, P Diehl, M Lebensohn, RA Roters, F AF Eisenlohr, P. Diehl, M. Lebensohn, R. A. Roters, F. TI A spectral method solution to crystal elasto-viscoplasticity at finite strains SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Microstructures; Crystal plasticity; Numerical algorithms; Finite elements; High-resolution periodic volume element ID FAST FOURIER-TRANSFORMS; POLYCRYSTAL PLASTICITY; NONLINEAR COMPOSITES; NUMERICAL-METHOD; TRANSIENT CREEP; COLUMNAR ICE; DEFORMATION; BEHAVIOR; STRESS; FIELDS AB A significant improvement over existing models for the prediction of the macromechanical response of structural materials can be achieved by means of a more refined treatment of the underlying micromechanics. For this, achieving the highest possible spatial resolution is advantageous, in order to capture the intricate details of complex microstructures. Spectral methods, as an efficient alternative to the widely used finite element method (FEM), have been established during the last decade and their applicability to the case of polycrystalline materials has already been demonstrated. However, until now, the existing implementations were limited to infinitesimal strain and phenomenological crystal elasto-viscoplasticity. This work presents the extension of the existing spectral formulation for polycrystals to the case of finite strains, not limited to a particular constitutive law, by considering a general material model implementation. By interfacing the exact same material model to both, the new spectral implementation as well as a FEM-based solver, a direct comparison of both numerical strategies is possible. Carrying out this comparison, and using a phenomenological constitutive law as example, we demonstrate that the spectral method solution converges much faster with mesh/grid resolution, fulfills stress equilibrium and strain compatibility much better, and is able to solve the micromechanical problem for, e.g., a 256(3) grid in comparable times as required by a 64(3) mesh of linear finite elements. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Eisenlohr, P.; Diehl, M.; Roters, F.] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany. [Lebensohn, R. A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Eisenlohr, P (reprint author), Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany. EM p.eisenlohr@mpie.de RI Lebensohn, Ricardo/A-2494-2008; Eisenlohr, Philip/E-6866-2010; Diehl, Martin/A-2831-2016 OI Lebensohn, Ricardo/0000-0002-3152-9105; Eisenlohr, Philip/0000-0002-8220-5995; Diehl, Martin/0000-0002-3738-7363 FU Materials innovation institute M2i [M41.2.10410]; Max Planck Society FX The authors benefitted from many fruitful discussions with Prof. Bob Svendsen and Dr. Pratheek Shanthraj. The present work was generously supported by a Humboldt Research Award and the US DOE Office of Advanced Scientific Computing Research (ASCR) through the Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx) (RAL) and in part carried out under project number M41.2.10410 (MD) in the framework of the Research Program of the Materials innovation institute M2i (www.m2i.nl). The code development was performed as part of the "Computational Mechanics of Polycrystals - CMCPi" initiative, a joint research group between the Max-Planck-Institut fur Eisenforschung, Dusseldorf, and the Fraunhofer Institut fur Werkstoffmechanik, Freiburg. The associated financial support from the Max Planck Society is gratefully acknowledged. NR 33 TC 65 Z9 65 U1 6 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD JUL PY 2013 VL 46 SI SI BP 37 EP 53 DI 10.1016/j.ijplas.2012.09.012 PG 17 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 148JI UT WOS:000319240400003 ER PT J AU Kitayama, K Tome, CN Rauch, EF Gracio, JJ Barlat, F AF Kitayama, K. Tome, C. N. Rauch, E. F. Gracio, J. J. Barlat, F. TI A crystallographic dislocation model for describing hardening of polycrystals during strain path changes. Application to low carbon steels SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Crystallographic dislocation model; Strain hardening; Strain path change; Low carbon steels ID WORK-HARDENING/SOFTENING BEHAVIOR; SIMPLE SHEAR; MECHANICAL-BEHAVIOR; BCC POLYCRYSTALS; SINGLE-CRYSTALS; FCC CRYSTALS; IF STEEL; PLASTICITY; DEFORMATION; ALUMINUM AB Polycrystal aggregates subjected to plastic forming exhibit large changes in the yield stress and extended transients in the flow stress following strain path changes. Since these effects are related to the rearrangement of the dislocation structure induced during previous loading, here we propose a crystallographically-based dislocation hardening model for capturing such behavior. The model is implemented in the polycrystal code VPSC and is applied to simulate strain path changes in low carbon steel. The path changes consist of tension followed by shear at different angles with respect to the preload direction, and forward simple shear followed by reverse shear. The results are compared to experimental data and highlight the role that directional dislocation structures induced during preload play during the reload stage. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Kitayama, K.; Gracio, J. J.; Barlat, F.] Univ Aveiro, Dept Mech Engn, Ctr Mech Technol & Automat, P-3810193 Aveiro, Portugal. [Tome, C. N.] Los Alamos Natl Lab, MST Div, Los Alamos, NM 87545 USA. [Rauch, E. F.] INPG UJF, Sci & Ingn Mat & Proc CNRS UMR 5266, F-38402 St Martin Dheres, France. [Barlat, F.] Pohang Univ Sci & Technol, Grad Inst Ferrous Technol, Mat Mech Lab, Pohang 790784, South Korea. RP Gracio, JJ (reprint author), Univ Aveiro, Dept Mech Engn, Ctr Mech Technol & Automat, P-3810193 Aveiro, Portugal. EM jgracio@ua.pt RI RAUCH, Edgar/C-9852-2011; Research Unit, TEMA/H-9264-2012; Group, GAME/B-3464-2014; Tome, Carlos/D-5058-2013; OI Barlat, Frederic/0000-0002-4463-3454; Gracio, Jose/0000-0002-0343-4387 FU US Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering [FWP 06SCPE401DOE-BES]; Portuguese Foundation of Science and Technology (FCT) [PEst-C/EME/UI0481/2011, PTDC/EME-PME/116683/2010] FX CT acknowledges support from US Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering, Project FWP 06SCPE401DOE-BES. JG, FB and KK, acknowledge support from Portuguese Foundation of Science and Technology (FCT) projects PEst-C/EME/UI0481/2011 and PTDC/EME-PME/116683/2010. NR 41 TC 31 Z9 31 U1 2 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD JUL PY 2013 VL 46 SI SI BP 54 EP 69 DI 10.1016/j.ijplas.2012.09.004 PG 16 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 148JI UT WOS:000319240400004 ER PT J AU Heo, Y Augenbroe, G Choudhary, R AF Heo, Yeonsook Augenbroe, Godfried Choudhary, Ruchi TI Quantitative risk management for energy retrofit projects SO JOURNAL OF BUILDING PERFORMANCE SIMULATION LA English DT Article DE risk analysis; energy efficiency projects; building energy models; Bayesian calibration; energy service companies AB This article presents a risk analysis method based on Bayesian calibration of building energy models. The Bayesian approach enables probabilistic outputs from the energy model, which are used to quantify risks associated with investing in energy conservation measures in existing buildings. This article demonstrates the applicability of the proposed methodology to support energy saving contracts in the context of the energy service company industry. A case study illustrates the importance of quantifying relative risks by comparing the probabilistic outputs derived from the Bayesian approach with standard practices endorsed by International Performance Measurement and Verification Protocol and ASHRAE guideline 14. C1 [Heo, Yeonsook] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Augenbroe, Godfried] Georgia Inst Technol, Coll Architecture, Atlanta, GA 30332 USA. [Choudhary, Ruchi] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. RP Heo, Y (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yheo@anl.gov FU Energy Efficient Cities Initiative (EECi) at the University of Cambridge; NSF-EFRI SEED FX This study was partly funded by grants from the Energy Efficient Cities Initiative (EECi) at the University of Cambridge and the NSF-EFRI SEED grant 'Risk-conscious Design and Retrofit of Buildings for Low Energy' awarded to the Georgia Institute of Technology. NR 30 TC 3 Z9 3 U1 1 U2 24 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1940-1493 J9 J BUILD PERFORM SIMU JI J. Build. Perf. Simul. PD JUL 1 PY 2013 VL 6 IS 4 SI SI BP 257 EP 268 DI 10.1080/19401493.2012.706388 PG 12 WC Construction & Building Technology SC Construction & Building Technology GA 150FT UT WOS:000319376300001 ER PT J AU Kuprat, AP Kabilan, S Carson, JP Corley, RA Einstein, DR AF Kuprat, A. P. Kabilan, S. Carson, J. P. Corley, R. A. Einstein, D. R. TI A bidirectional coupling procedure applied to multiscale respiratory modeling SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Computational fluid dynamics; Multiscale coupling; Pulmonary airflows; Krylov subspace; Modified Newton-Raphson ID EXPIRATORY FLOW LIMITATION; PRESSURE-VOLUME CURVES; MECHANICAL VENTILATION; BRONCHIAL TREE; DYNAMIC-MODEL; HUMAN-LUNG; AIR-FLOW; SIMULATIONS; POPULATIONS; AIRWAYS AB In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton's method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets of ODEs. In both the simplified geometry and in the imaging-based geometry, the performance of the method was comparable to that of monolithic schemes, in most cases requiring only a single CFD evaluation per time step. Thus, this new accelerator allows us to begin combining pulmonary CFD models with lower-dimensional models of pulmonary mechanics with little computational overhead. Moreover, because the CFD and lower-dimensional models are totally separate, this framework affords great flexibility in terms of the type and breadth of the adopted lower-dimensional model, allowing the biomedical researcher to appropriately focus on model design. (c) 2012 Elsevier Inc. All rights reserved. C1 [Kuprat, A. P.; Kabilan, S.; Carson, J. P.; Corley, R. A.; Einstein, D. R.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Kuprat, AP (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM andrew.kuprat@pnnl.gov; senthil.kabilan@pnnl.gov; james.carson@pnnl.gov; rick.corley@pnnl.gov; daniel.einstein@pnnl.gov OI Kuprat, Andrew/0000-0003-4159-918X FU National Heart and Blood Institute Award [1R01HL073598]; National Institutes of Health (NIH) Bioengineering Research Partnership Grant [R01-HL073598] FX Research funded by the National Heart and Blood Institute Award 1R01HL073598.; We would like to thank Neil Carlson for access to the original NACCEL FORTRAN subroutine. We would like to thank Professor C. Keith Miller for the idea of applying a partial NACCEL correction at the end of a timestep. We also gratefully acknowledge Drs. Robb Glenny and Sudhaker Pipavath, UW for the human CT images. This work was financially supported by National Institutes of Health (NIH) Bioengineering Research Partnership Grant R01-HL073598 (Richard A. Corley, PI). NR 44 TC 7 Z9 7 U1 0 U2 25 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 1 PY 2013 VL 244 BP 148 EP 167 DI 10.1016/j.jcp.2012.10.021 PG 20 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 151JO UT WOS:000319456900010 ER PT J AU Pathak, S Doherty, RD Rollett, AD Michler, J Wasmer, K AF Pathak, Siddhartha Doherty, Roger D. Rollett, Anthony D. Michler, Johann Wasmer, Kilian TI Caught in the act: Grain-switching and quadrijunction formation in annealed aluminum SO SCRIPTA MATERIALIA LA English DT Article DE Grain-switching; Quadrijunction; Metallurgy; Grain growth ID GROWTH; STABILITY AB Contrary to current understanding, an apparently stable single-phase quadrijunction, and one lacking any low-energy grain boundary member, has been experimentally observed during grain switching in large (similar to mm) grained pure annealed aluminum. Electropolishing below the quadrijunction revealed a 3-D microstructure characterized by a rapidly shrinking grain with a faceted boundary indicating a significant anisotropy of energy and/or mobility. This unusual occurrence is described in detail in the expectation that a reasonable model for this observation might be found. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Pathak, Siddhartha; Michler, Johann; Wasmer, Kilian] Swiss Fed Lab Mat Sci & Technol, EMPA, CH-3602 Thun, Switzerland. [Doherty, Roger D.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Rollett, Anthony D.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. RP Pathak, S (reprint author), Los Alamos Natl Lab, MPA CINT Ctr Integrated Nanotechnol, POB 1663,MS K771, Los Alamos, NM 87545 USA. EM pathak@lanl.gov RI Michler, Johann/B-4672-2010; Rollett, Anthony/A-4096-2012; Wasmer, Kilian/B-7662-2009 OI Michler, Johann/0000-0001-8860-4068; Rollett, Anthony/0000-0003-4445-2191; Wasmer, Kilian/0000-0002-3294-3244 FU LANL FX The authors thank Shraddha Vachhani (Drexel University) and Peter Ramseier (Empa) for help with sample preparation, and funding from the Director's Postdoctoral Fellowship program at LANL during the writing of this manuscript. NR 11 TC 0 Z9 0 U1 0 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2013 VL 69 IS 1 BP 37 EP 40 DI 10.1016/j.scriptamat.2013.03.014 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 152QB UT WOS:000319545100010 ER PT J AU Yu, Q Sun, J Morris, JW Minor, AM AF Yu, Qian Sun, Jun Morris, John W., Jr. Minor, Andrew M. TI Source mechanism of non-basal < c plus a > slip in Ti alloy SO SCRIPTA MATERIALIA LA English DT Article DE Dislocation dynamics; Titanium alloys; Compression test; Transmission electron microscopy (TEM); In situ TEM observation ID SINGLE-CRYSTALS; DEFORMATION-BEHAVIOR; DISLOCATION SOURCE; HCP METALS; TITANIUM; POLYCRYSTALS; SYSTEMS AB The operation of < c + a > slip is explored using in situ mechanical testing in a transmission electron microscope by compressing a single-crystal Ti alloy oriented along the [0001] direction. In this direction < c + a > slip is the preferred slip mode. We observed the operation of a < c + a > dislocation source while simultaneously measuring the mechanical response. Our results show that < c + a > dislocations could operate as single-arm sources. A model for the source mechanism of < c + a > slip is proposed based on the experimental observations. (c) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Yu, Qian; Morris, John W., Jr.; Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yu, Qian; Minor, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Sun, Jun] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. RP Yu, Q (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM qyu@lbl.gov RI Foundry, Molecular/G-9968-2014 FU US Office of Naval Research [N00014-12-1-0413]; National Center for Electron Microscopy at Lawrence Berkeley National Laboratory; U.S. Department of Energy [DE-AC02-05CH11231]; NSFC [50831004]; 973 program of China [2010CB631003] FX We gratefully acknowledge funding from the US Office of Naval Research under Grant No. N00014-12-1-0413. The authors also acknowledge support of the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy under Contract # DE-AC02-05CH11231. J.S. gratefully acknowledges financial support of the Grants from NSFC (50831004), the 973 program of China (2010CB631003). The authors thank F. Allen for helpful suggestions on the manuscript. NR 19 TC 6 Z9 6 U1 2 U2 64 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2013 VL 69 IS 1 BP 57 EP 60 DI 10.1016/j.scriptamat.2013.03.009 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 152QB UT WOS:000319545100015 ER PT J AU Olsen, RJ Beckner, M Stone, MB Pfeifer, P Wexler, C Taub, H AF Olsen, Raina J. Beckner, Matthew Stone, Matthew B. Pfeifer, Peter Wexler, Carlos Taub, Haskell TI Quantum excitation spectrum of hydrogen adsorbed in nanoporous carbons observed by inelastic neutron scattering SO CARBON LA English DT Article ID DENSITY-FUNCTIONAL THEORY; METAL-ORGANIC FRAMEWORKS; MOLECULAR-HYDROGEN; TRANSLATIONAL DYNAMICS; ACTIVATED CARBON; NANOTUBE BUNDLES; H-2; ADSORPTION; SPECTROSCOPY; DEPENDENCE AB Inelastic neutron scattering spectra have been collected over a wide range of momentum transfer from H-2 adsorbed in several high-porosity carbon substrates. We show theoretical spectra which consider the relationship between rotational and translational transitions in the highly anisotropic adsorption environment, proving that different rotational excitations contain different amount of recoil broadening and motivating a new analysis method which considers both types of transitions at once. Spectra for most of the samples, including two activated carbons, are very similar to one another, supporting models of nanoporous carbons which are quite similar on the sub-nanometer scale. The exception is the low-energy side of the rotational peak, indicating important differences in the initial distribution of motion. We also find more subtle differences in the spectra which may be linked to differences in sample heterogeneity and surface rugosity. One sample does have a very different spectrum, which is not explained by standard models of this system. We also observe a significantly reduced effective mass in the spectrum of recoil transitions and evidence of coupling of rotational and translational motion resulting from periodic variations in orientation of the rotational states. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Olsen, Raina J.; Beckner, Matthew; Pfeifer, Peter; Wexler, Carlos; Taub, Haskell] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. [Olsen, Raina J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Stone, Matthew B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Olsen, RJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM olsenrj@ornl.gov RI Stone, Matthew/G-3275-2011; BL18, ARCS/A-3000-2012; OI Stone, Matthew/0000-0001-7884-9715; Beckner, Matthew/0000-0003-2066-0324 FU Department of Energy Office of Basic Energy Science (DOE-BES) [DE-FG02-07ER46411]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Foundation (NSF) [DMR-0705974, DGE-1069091]; DOE Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards under the EERE Fuel Cell Technologies Program; DOE [DEAC05-06OR23100] FX We would like to thank Enrique Robles for capable experimental assistance. This research was supported by the Department of Energy Office of Basic Energy Science (DOE-BES) under contract DE-FG02-07ER46411. Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. H.T. was supported by the National Science Foundation (NSF) under contract number DMR-0705974 and DGE-1069091. R.J.O. was also supported in part by the DOE Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards under the EERE Fuel Cell Technologies Program, administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DEAC05-06OR23100. All opinions expressed in this paper are the authors' and do not necessarily reflect the policies and views of DOE, ORAU, or ORISE. NR 37 TC 3 Z9 3 U1 0 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD JUL PY 2013 VL 58 BP 46 EP 58 DI 10.1016/j.carbon.2013.02.026 PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 142ZB UT WOS:000318835000003 ER PT J AU Nemeth, N Walker, A Baker, E Murthy, P Bratton, R AF Nemeth, Noel Walker, Andrew Baker, Eric Murthy, Pappu Bratton, Robert TI Large-scale Weibull analysis of H-451 nuclear-grade graphite rupture strength SO CARBON LA English DT Article ID POLYGRANULAR GRAPHITES; FRACTURE STATISTICS; CERAMICS AB A Weibull analysis was performed of the strength distribution and size effects for 2000 specimens of H-451 nuclear-grade graphite. The data, generated elsewhere, measured the tensile and four-point-flexure room-temperature rupture strength of specimens cut from a single extruded graphite log. Strength variation versus specimen location, size, and orientation relative to the parent body were compared. In our study, data were progressively and extensively pooled into larger data sets to discriminate overall trends from local variations and investigate the strength distribution. Issues regarding size effect, Weibull parameter consistency, and nonlinear stress-strain response were investigated using the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life) and WeibPar codes. Overall, the Weibull distribution described the behavior of the pooled data very well. The Weibull modulus was shown to be clearly consistent between different tensile specimen sizes and orientations. However, the issue regarding the smaller-than-expected size effect remained. This exercise illustrated that a conservative approach using a two-parameter Weibull distribution is best for designing graphite components with low probability of failure for the in-core structures in the proposed Generation IV high-temperature gas-cooled nuclear reactors. This exercise also demonstrated the continuing need to better understand the mechanisms driving stochastic strength response. Published by Elsevier Ltd. C1 [Nemeth, Noel; Murthy, Pappu] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Walker, Andrew] Wright State Univ, Dayton, OH 45435 USA. [Baker, Eric] Connecticut Reserve Technol, Gates Mills, OH 44040 USA. [Bratton, Robert] US DOE, Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Nemeth, N (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM noel.n.nemeth@nasa.gov NR 33 TC 7 Z9 7 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD JUL PY 2013 VL 58 BP 208 EP 225 DI 10.1016/j.carbon.2013.02.054 PG 18 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 142ZB UT WOS:000318835000021 ER PT J AU Constantinescu, EM Sandu, A AF Constantinescu, Emil M. Sandu, Adrian TI Extrapolated Multirate Methods for Differential Equations with Multiple Time Scales SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Multirate time integration; Extrapolation methods; Multiscale; Linear stability ID HIGH-RESOLUTION SCHEMES; CONSERVATION-LAWS; VARYING TIME; ONE-STEP; STABILITY; SYSTEMS AB In this paper we construct extrapolated multirate discretization methods that allows one to efficiently solve problems that have components with different dynamics. This approach is suited for the time integration of multiscale ordinary and partial differential equations and provides highly accurate discretizations. We analyze the linear stability properties of the multirate explicit and linearly implicit extrapolated methods. Numerical results with multiscale ODEs illustrate the theoretical findings. C1 [Constantinescu, Emil M.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Sandu, Adrian] Virginia Polytech Inst & State Univ, Dept Comp Sci, Blacksburg, VA 24061 USA. RP Constantinescu, EM (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM emconsta@mcs.anl.gov; asandu@cs.vt.edu FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; National Science Foundation [NSF CCF-0515170]; NSF [NSF CCF-0515170, NSF OCI-0904397, NSF CCF-0916493, NSF DMS-0915047] FX Emil Constantinescu was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357, and by the National Science Foundation through award NSF CCF-0515170. The work of Adrian Sandu was supported in part by NSF through the awards NSF CCF-0515170, NSF OCI-0904397, NSF CCF-0916493, and NSF DMS-0915047. NR 33 TC 7 Z9 7 U1 1 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 EI 1573-7691 J9 J SCI COMPUT JI J. Sci. Comput. PD JUL PY 2013 VL 56 IS 1 BP 28 EP 44 DI 10.1007/s10915-012-9662-z PG 17 WC Mathematics, Applied SC Mathematics GA 142GH UT WOS:000318784600003 ER PT J AU Park, SH Yoon, SH Lee, CS AF Park, Su Han Yoon, Seung Hyun Lee, Chang Sik TI HC and CO emissions reduction by early injection strategy in a bioethanol blended diesel-fueled engine with a narrow angle injection system SO APPLIED ENERGY LA English DT Article DE Narrow angle injector; Diesel-bioethanol blended fuels; Hydrocarbon; Carbon monoxide; Early injection combustion strategy ID COMPRESSION IGNITION ENGINE; EXHAUST EMISSIONS; COMBUSTION CHARACTERISTICS; BIODIESEL; PERFORMANCE; ATOMIZATION AB The main purpose of this study was to investigate how a narrow angle injector affects the combustion and exhaust emissions characteristics in a single-cylinder diesel engine fueled by diesel-bioethanol blends. This study focused on reducing HC and CO emissions in the exhaust emissions by the bioethanol blending of diesel. A narrow angle injector with an injection angle of 70 degrees was used and compared with a conventional angle injector having a 156 degrees injection angle. The bioethanol was blended with the conventional diesel up to 30% with 5% biodiesel. Experiments revealed that, in a narrow angle injector, the premixed combustion duration increased with bioethanol contents unlike the similar value of conventional injector. The premixed combustion phasing decreased with the increase of bioethanol in both injectors. The variation in the peak combustion pressure of the narrow angle injector was smaller than that of a conventional injector. In addition, the narrow angle injector induced a higher indicated mean effective pressure (IMEP) and a shorter ignition delay compared to the conventional injector. In terms of exhaust emissions characteristics, the low and stable ISHC and ISCO emissions can be achieved through the application of narrow angle injector to the diesel-bioethanol blends combustion. By the early injection combustion strategy, ISHC and ISCO emissions are significantly reduced. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Park, Su Han] Argonne Natl Lab, Adv Photon Sources, Xray Sci Div, Time Resolved Res Grp, Lemont, IL 60439 USA. [Yoon, Seung Hyun] Yeungnam Coll Sci & Technol, Div Automot Engn, Taegu 705703, South Korea. [Lee, Chang Sik] Hanyang Univ, Sch Mech Engn, Seoul 133791, South Korea. RP Lee, CS (reprint author), Hanyang Univ, Sch Mech Engn, 17 Haengdang Dong, Seoul 133791, South Korea. EM cslee@hanyang.ac.kr FU Second Brain Korea 21 Project; National Research Foundation of Korea (NRF); Korea government (MEST) [2012007015] FX This work was supported by the Second Brain Korea 21 Project and was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. 2012007015). NR 36 TC 10 Z9 10 U1 2 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD JUL PY 2013 VL 107 BP 81 EP 88 DI 10.1016/j.apenergy.2013.02.015 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 137SC UT WOS:000318456700007 ER PT J AU Siriwardane, RV Ksepko, E Tian, HJ Poston, J Simonyi, T Sciazko, M AF Siriwardane, Ranjani V. Ksepko, Ewelina Tian, Hanjing Poston, James Simonyi, Thomas Sciazko, Marek TI Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal SO APPLIED ENERGY LA English DT Article DE Bimetallic oxygen carriers for chemical looping combustion; CLC with coal derived synthesis gas; CLC and steam gasification of coal ID CHEMICAL-LOOPING COMBUSTION; SOLID FUELS; CUFE2O4; HYDROGEN; NIO; REDUCTION; BENTONITE; KINETICS; H2S AB The objective of this work was to prepare supported bimetallic Fe-Cu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with Fe-Cu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most Fe-Cu/support oxygen carriers. Bimetallic Fe-Cu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 degrees C to 900 degrees C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported Fe-Cu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800-900 degrees C and might be successfully used up to 900 degrees C for coal CLC reaction in the presence of steam. Published by Elsevier Ltd. C1 [Siriwardane, Ranjani V.; Tian, Hanjing; Poston, James; Simonyi, Thomas] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Ksepko, Ewelina; Sciazko, Marek] Inst Chem Proc Coal, PL-41803 Zabrze, Poland. [Tian, Hanjing; Simonyi, Thomas] URS, Morgantown, WV 26505 USA. RP Siriwardane, RV (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 10940, Morgantown, WV 26507 USA. EM ranjani.siriwardane@netl.doe.gov RI Ksepko, Ewelina/D-7806-2016 FU Polish Ministry of Higher Education and Science [685/N-USA/2010/0] FX This study was financed by the Polish Ministry of Higher Education and Science, Project No. 685/N-USA/2010/0. The research work was conducted at the U.S. Department of Energy, National Energy Technology Laboratory. NR 34 TC 28 Z9 29 U1 3 U2 62 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD JUL PY 2013 VL 107 BP 111 EP 123 DI 10.1016/j.apenergy.2013.01.063 PG 13 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 137SC UT WOS:000318456700010 ER PT J AU Nagase, T Anada, S Rack, PD Noh, JH Yasuda, H Mori, H Egami, T AF Nagase, Takeshi Anada, Satoshi Rack, Philip D. Noh, Joo Hyon Yasuda, Hidehiro Mori, Hirotaro Egami, Takeshi TI MeV electron-irradiation-induced structural change in the bcc phase of Zr-Hf-Nb alloy with an approximately equiatomic ratio SO INTERMETALLICS LA English DT Article DE Irradiation effects; Phase transformation; Vapor deposition; Defects: point defects ID METALLIC GLASSES; FLUCTUATION MICROSCOPY; ELEMENTS; PROBE AB The microstructure and phase stability of a Zr-Hf-Nb alloy with an approximately equiatomic ratio of Zr, Hf, and Nb was investigated. A body-centered cubic (bcc) solid solution was formed in specimens produced by sputtering. MeV electron-irradiation-induced structural changes were investigated in the bcc phase of the Zr-Hf-Nb alloy using high-voltage electron microscopy (HVEM). The polycrystalline phase with a bcc structure showed high phase stability against irradiation damage, and no structural changes due to irradiation damage were observed at 298 K. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Nagase, Takeshi; Yasuda, Hidehiro; Mori, Hirotaro] Osaka Univ, Res Ctr Ultra High Voltage Electron Microscopy, Ibaraki, Osaka 5670047, Japan. [Nagase, Takeshi; Anada, Satoshi] Osaka Univ, Grad Sch Engn, Div Mat & Mfg Sci, Suita, Osaka 5650871, Japan. [Rack, Philip D.; Noh, Joo Hyon; Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Nagase, T (reprint author), Osaka Univ, Res Ctr Ultra High Voltage Electron Microscopy, 7-1 Mihogaoka, Ibaraki, Osaka 5670047, Japan. EM t-nagase@uhvem.osaka-u.ac.jp RI Nagase, Takeshi/M-1189-2015; OI Nagase, Takeshi/0000-0003-4868-0773; Rack, Philip/0000-0002-9964-3254 FU Center of Excellence for Advanced Structural and Functional Materials Design of the MEXT, Japan; Joint Institute for Advanced Materials at the University of Tennessee; Oak Ridge National Laboratory; Department of Energy, Office of Basic Sciences, through the EPSCoR grant [DE-FG02-08ER46528] FX This study was supported by the Priority Assistance for the Formation of Worldwide Renowned Centers of Research-The Global COE Program (Project: Center of Excellence for Advanced Structural and Functional Materials Design) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. PDR and JHN acknowledge the support from the Joint Institute for Advanced Materials at the University of Tennessee and the Oak Ridge National Laboratory. TE acknowledges the support from the Department of Energy, Office of Basic Sciences, through the EPSCoR grant, DE-FG02-08ER46528. NR 22 TC 12 Z9 12 U1 3 U2 33 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0966-9795 J9 INTERMETALLICS JI Intermetallics PD JUL PY 2013 VL 38 BP 70 EP 79 DI 10.1016/j.intermet.2013.02.009 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 137WD UT WOS:000318468000013 ER PT J AU Aryal, S Gao, MC Ouyang, L Rulis, P Ching, WY AF Aryal, S. Gao, M. C. Ouyang, L. Rulis, P. Ching, W. Y. TI Ab initio studies of Mo-based alloys: Mechanical, elastic, and vibrational properties SO INTERMETALLICS LA English DT Article DE Molybdenum silicides; Elastic properties; Mechanical properties, theory; Ab initio calculations ID SI-B ALLOYS; GENERALIZED GRADIENT APPROXIMATION; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; SINGLE-CRYSTALS; ULTRASOFT PSEUDOPOTENTIALS; INTERMETALLIC ALLOYS; TEMPERATURE FRACTURE; ELECTRONIC-STRUCTURE; FATIGUE PROPERTIES AB Mo-based alloys hold great potential as structural materials for applications at ultra-high temperatures. In order to reliably predict mechanical and thermodynamic properties of Mo-based alloys, the Mo-Si-B model system is studied using first-principles density functional theory methods. Specifically, five intermetallic compounds MoSi2, Mo5Si3, Mo3Si, Mo5SiB2 and MO2B are chosen, and their equilibrium lattice parameters, elastic properties, phonon spectra, and thermodynamic properties are calculated and compared, most of them for the first time. It is shown that for the calculated properties where the measured data are available, the predicted results are in very good agreement with available experiments, thus validate our computational methodologies. Our comprehensive and systematic calculations reveal many interesting and previously unknown features in the mechanical and vibrational properties of these alloys in relation to their structure and composition. It is shown that boron in the Mo-Si-B system enhances elastic and bulk properties without compromising ductility. MoSi2, which has the largest Si concentration, also has the largest elastic anisotropy compared with the other four crystals. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Aryal, S.; Rulis, P.; Ching, W. Y.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Gao, M. C.] Natl Energy Technol Lab, Albany, OR 97321 USA. [Gao, M. C.] URS Corp, Albany, OR 97321 USA. [Ouyang, L.] Tennessee State Univ, Dept Math & Phys, Nashville, TN 37209 USA. RP Ching, WY (reprint author), Univ Missouri, Dept Phys & Astron, 5100 Rockhill Rd, Kansas City, MO 64110 USA. EM chingw@umkc.edu FU U.S. Department of Energy [DE-FE0004007]; Office of Science of DOE [DE-AC03-76SF00098]; Innovative Processing and Technologies Program of the National Energy Technology Laboratory's (NETL) Strategic Center for Coal under the RES contract [DE-FE-0004000] FX This work is supported by the U.S. Department of Energy under the Grant No. DE-FE0004007. This research used the resources of NERSC supported by the Office of Science of DOE under the contract No. DE-AC03-76SF00098. MCG acknowledge support from the Innovative Processing and Technologies Program of the National Energy Technology Laboratory's (NETL) Strategic Center for Coal under the RES contract DE-FE-0004000. We thank Dr. R. Sakidja for insightful discussion. NR 52 TC 11 Z9 11 U1 1 U2 49 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0966-9795 J9 INTERMETALLICS JI Intermetallics PD JUL PY 2013 VL 38 BP 116 EP 125 DI 10.1016/j.intermet.2013.03.002 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 137WD UT WOS:000318468000019 ER PT J AU Dooley, JJ AF Dooley, James J. TI A note on good research practice SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Editorial Material C1 Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Dooley, JJ (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM jj.dooley@pnnl.gov OI Dooley, James/0000-0002-2824-4344 NR 6 TC 10 Z9 10 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2013 VL 15 BP 1 EP 2 DI 10.1016/j.ijggc.2013.02.003 PG 2 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 136VO UT WOS:000318391700001 ER PT J AU Liu, HH Zhang, GX Yi, ZL Wang, YX AF Liu, Hui-Hai Zhang, Guoxiang Yi, ZhenLian Wang, Yingxue TI A permeability-change relationship in the dryout zone for CO2 injection into saline aquifers SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 geological sequestration; Multiphase flow; Injectivity; Permeability ID FRACTAL FLOW PATTERNS; HYDRAULIC CONDUCTIVITY; SALT-PRECIPITATION; UNSATURATED SOILS; MODEL AB Injectivity is critical for injection of CO2 into saline aquifers. Previous model studies indicate that injectivity can be impaired by salt precipitation near the injection well. These results are largely determined by the relationships between permeability and salt precipitation. In this study, we develop a new relationship for permeability change owing to salt precipitation near a CO2 injection well. This relationship differs from previous relationships in that it considers the fact that the salt precipitation occurs only in pore space occupied by brine during the precipitation process, and in that it is based on well-established relative-permeability relationships for two-phase flow in porous media. Using this relationship, we can link permeability change to the effects of saturation in a CO2-brine system and the pore-size distribution of porous media. Its usefulness is demonstrated by the good agreement between predicted results and observations from a laboratory experiment. The developed methodology, in principle, can also be applied to other two-phase flow systems involving chemical-reaction-induced permeability changes. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Liu, Hui-Hai; Yi, ZhenLian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhang, Guoxiang; Wang, Yingxue] Shell Int E&P Inc, Houston, TX USA. RP Liu, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM hhliu@lbl.gov FU DOE [DE-AC02-05CH11231] FX The initial version of the paper was carefully reviewed by Drs. Tianfu Xu and Dan Hawkes. We also appreciated constructive comments from two anonymous reviewers for JGGC. The work was performed under DOE contract DE-AC02-05CH11231. NR 23 TC 11 Z9 13 U1 2 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2013 VL 15 BP 42 EP 47 DI 10.1016/j.ijggc.2013.01.034 PG 6 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 136VO UT WOS:000318391700005 ER PT J AU Miller, QRS Thompson, CJ Loring, JS Windisch, CF Bowden, ME Hoyt, DW Hu, JZ Arey, BW Rosso, KM Schaef, HT AF Miller, Q. R. S. Thompson, C. J. Loring, J. S. Windisch, C. F. Bowden, M. E. Hoyt, D. W. Hu, J. Z. Arey, B. W. Rosso, K. M. Schaef, H. T. TI Insights into silicate carbonation processes in water-bearing supercritical CO2 fluids SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Supercritical CO2; Silicate carbonation; Carbon sequestration; Calcite ID AMORPHOUS CALCIUM-CARBONATE; MAS NMR-SPECTROSCOPY; X-RAY-DIFFRACTION; WOLLASTONITE CARBONATION; MINERAL CARBONATION; VIBRATIONAL SPECTROSCOPY; GEOLOGICAL SEQUESTRATION; RAMAN-SPECTROSCOPY; DIOXIDE; MONTMORILLONITE AB Subsurface injection of CO2 is commonplace in certain industries, yet deployment at the scale required for emission reduction is unprecedented and therefore requires a high degree of predictability. Accurate modeling of subsurface geochemical processes related to geologic carbon sequestration requires experimentally derived data for mineral reactions. Most work in this area has focused on aqueous-dominated systems in which dissolved CO2 reacts to form crystalline carbonate minerals. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet supercritical fluid phase. We studied the carbonation of wollastonite [CaSiO3] exposed to variably hydrated supercritical CO2 (scCO(2)) at 50, 55 and 70 degrees C and 90, 120 and 160 bar. Reactions were followed by three novel in situ high pressure techniques, which demonstrated increased dissolved water concentrations in the scCO(2) resulted in increased wollastonite carbonation approaching similar to 50 wt.%. Overall, the X-ray diffraction and infrared and magic angle nuclear magnetic resonance spectroscopies experiments conducted in this study allow detailed examination of mechanisms impacting carbonation rates. These include the development of amorphous passivating layers, thin liquid water films, and amorphous hydrated carbonate phases. Collectively, these results emphasize the importance of understanding geochemical processes occurring in wet scCO(2) fluids. (c) 2013 Published by Elsevier B.V. C1 [Miller, Q. R. S.] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. [Thompson, C. J.; Loring, J. S.; Bowden, M. E.; Hoyt, D. W.; Hu, J. Z.; Arey, B. W.; Rosso, K. M.; Schaef, H. T.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Windisch, C. F.] Cent Missouri State Univ, Dept Chem & Phys, Warrensburg, MO 64093 USA. RP Schaef, HT (reprint author), Pacific NW Natl Lab, POB 999,MS K8-98, Richland, WA 99352 USA. EM todd.schaef@pnnl.gov RI Hoyt, David/H-6295-2013; Hu, Jian Zhi/F-7126-2012 FU Carbon Sequestration Initiative, a Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy Office of Fossil Energy; DOE by Battelle Memorial Institute [DE-AC06-76RLO-1830] FX The authors would like to thank Natalio Saenz and James Colman who helped prepare and analyze the polished cross sections. We would also like to thank Professor Richard Riman from Rutgers, The State University of New Jersey, for supplying the wollastonite. Furthermore, we would like to acknowledge two anonymous reviewers for their thorough and thoughtful comments that helped improve the manuscript. This work was supported by the Carbon Sequestration Initiative, a Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL) and the U.S. Department of Energy Office of Fossil Energy. Part of this work was performed at EMSL, a national scientific user facility at PNNL that is managed by the DOE's office of Biological and Environmental Research. PNNL is operated for DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RLO-1830. NR 81 TC 20 Z9 20 U1 6 U2 70 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2013 VL 15 BP 104 EP 118 DI 10.1016/j.ijggc.2013.02.005 PG 15 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 136VO UT WOS:000318391700013 ER PT J AU Lakshminarayana, G Weis, EM Lira, AC Caldino, U Williams, DJ Hehlen, MP AF Lakshminarayana, G. Weis, Eric M. Lira, A. C. Caldino, Ulises Williams, Darrick J. Hehlen, Markus P. TI Cross Relaxation in rare-earth-doped oxyfluoride glasses SO JOURNAL OF LUMINESCENCE LA English DT Article DE Rare-earth luminescence; Oxyfluoride glass; Cross-relaxation; Multiphonon relaxation; Judd-Ofelt analysis; Hypersensitivity ID LUMINESCENCE PROPERTIES; IONS; CRYSTALLIZATION; TRANSITIONS; INTENSITIES; SYSTEMS AB The excited-state relaxation dynamics of Tb3+, Sm3+, and Eu3+ doped into a 50SiO(2)-20Al(2)O(3)-10Na(2)O-20LaF(3) (mol%) oxyfluoride glass are studied. Multiphonon relaxation of the primary emitting states in Tb3+ (D-5(3) and D-5(4)), Sm3+ ((4)G(5/2)), and Eu3+ (D-5(0)) was found to be negligible in the present host. The relaxation of Tb3+ (D-5(4)) and Eu3+ (D-5(0)) is dominated by radiative decay. For Tb3+ (D-5(3)) and Sm3+ ((4)G(5/2)) in contrast, radiative relaxation is in competition with several non-radiative cross-relaxation processes. This competition was found to be particularly pronounced for the D-5(3) excited state in Tb3+, where a 124-fold decrease of the (D-5(3)-> F-7(5))/(D-5(4)-> F-7(5)) emission intensity ratio and a similar to 10-fold shortening of the D-5(3) lifetime was observed upon increasing the Tb3+ concentration from 0.01% to 1%. The Tb3+ concentration dependence of D-5(3) also points to some degree of ion aggregation in the "as quenched" glasses. A Judd-Ofelt intensity analysis was performed for Sm3+ and used to estimate the relative magnitude of (4)G(5/2) cross-relaxation processes. Four cross-relaxation processes in particular were identified to account for 92% of the total (4)G(5/2) non-radiative decay, and a 11% quantum efficiency was estimated for the (4)G(5/2) excited state. Non-exponentiality in the D-5(0) decay of Eu3+ is evidence for several Eu3+ coordination environments in the glass host that manifest in different D-5(0) decay constants because of the hypersensitivity of the D-5(0)-> F-7(2) transition. (C) 2013 Elsevier B.V. All rights reserved. C1 [Lakshminarayana, G.; Weis, Eric M.; Hehlen, Markus P.] Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, Los Alamos, NM 87545 USA. [Lira, A. C.] Univ Autonoma Estado Mexico, Unidad Acad Profes Nezahualcoyotl, Nezahualcoyotl 57000, Estado De Mexic, Mexico. [Caldino, Ulises] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Mexico City 09340, DF, Mexico. [Williams, Darrick J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Hehlen, MP (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, POB 1663, Los Alamos, NM 87545 USA. EM hehlen@lanl.gov RI Lira, Alicia/O-6173-2015; OI Lira, Alicia/0000-0002-9630-1494; Gandham, Lakshminarayana/0000-0002-1458-9368 FU U.S. Department of Energy; Los Alamos Laboratory Directed Research and Development (LDRD) program; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the U.S. Department of Energy and the Los Alamos Laboratory Directed Research and Development (LDRD) program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. NR 31 TC 21 Z9 21 U1 2 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 J9 J LUMIN JI J. Lumines. PD JUL PY 2013 VL 139 BP 132 EP 142 DI 10.1016/j.jlumin.2013.02.039 PG 11 WC Optics SC Optics GA 135YY UT WOS:000318327800021 ER PT J AU Bacon, LP Strybel, TZ AF Bacon, L. Paige Strybel, Thomas Z. TI Assessment of the validity and intrusiveness of online-probe questions for situation awareness in a simulated air-traffic-management task with student air-traffic controllers SO SAFETY SCIENCE LA English DT Article DE Situation awareness measurement; Online probe technique; SPAM; Intrusiveness; Validity ID DYNAMIC-SYSTEMS; ERRORS AB Online-probe techniques for measuring situation awareness (SA) represent an alternative to offline-probe methods in which operators are queried about the situation during scenario freezes with displays blanked. Online-probe queries are administered while the task is ongoing and displays active. However, online-probes techniques have not been validated to the same extent as offline probes, and have been criticized because asking questions about the current or future situation while the task is active could change the operator's subsequent awareness of the situation. The present investigation examined the possibility of the intrusiveness of the online-probe technique to an operator's SA. Twelve student air-traffic controllers (ATCos) served as participants and managed traffic in six 30-min scenarios in which online probes were administered regularly. Off-nominal flight-plan deviations followed some probe queries. Three pre-event question types were administered prior to scheduled flight-plan deviations. These pre-event questions were either relevant to the deviating event and subsequent conflict, relevant to conflicts but not the deviating event, or unrelated to both conflicts and the deviating event. The type of pre-event question preceding a flight-plan deviation did not change the time to detect the deviating event nor the number of losses of separation (LOS) created by the deviation. Moreover, online probes were related to measures of sector safety. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Bacon, L. Paige; Strybel, Thomas Z.] Calif State Univ Long Beach, Dept Psychol, Ctr Human Factors Adv Aeronaut Technol CHAAT, Long Beach, CA 90840 USA. RP Bacon, LP (reprint author), Battelle Seattle Res Ctr, 1100 Dexter Ave North,Suite 400, Seattle, WA 98109 USA. EM bacon.lpaige@gmail.com FU NASA, Group 5 University Research Center: Center for Human Factors in Advanced Aeronautics Technologies [NNX09AU66A] FX This project was supported by NASA cooperative agreement NNX09AU66A, Group 5 University Research Center: Center for Human Factors in Advanced Aeronautics Technologies (Brenda Collins, Technical Monitor). NR 30 TC 8 Z9 8 U1 1 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-7535 J9 SAFETY SCI JI Saf. Sci. PD JUL PY 2013 VL 56 SI SI BP 89 EP 95 DI 10.1016/j.ssci.2012.06.019 PG 7 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 136WN UT WOS:000318394200011 ER PT J AU Zhang, HL Fontes, CJ AF Zhang, Hong Lin Fontes, Christopher J. TI Relativistic distorted-wave collision strengths for the 16 Delta n=0 optically allowed transitions with n=2 in the 67 Be-like ions with 26 <= Z <= 92 SO ATOMIC DATA AND NUCLEAR DATA TABLES LA English DT Article ID HIGHLY-CHARGED IONS; POSSIBLE N=2-N=3 TRANSITIONS; C-LIKE IONS; OSCILLATOR-STRENGTHS; ELECTRON-IMPACT; ATOMIC DATA; EXCITATION; IRON; 8-LESS-THAN-OR-EQUAL-TO-Z-LESS-THAN-OR-EQUAL-TO-92; COMPLEX AB Relativistic distorted-wave collision strengths have been calculated for the 16 Delta n = 0 optically allowed transitions with n = 2 in the 67 Be-like ions with nuclear charge number Z in the range 26 <= Z <= 92. The calculations were made for the four final, or scattered, electron energies E' = 0.20, 0.42, 0.80, and 1.40, where E' is in units of Z(eff)(2) Ry with Z(eff) = Z - 2.5. In the present calculation, an improved "top-up" method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb-Bethe approximation used in previous work by Zhang and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 52 (1992) 143]. In that earlier work, collision strengths were also provided for Be-like ions, but for a more comprehensive data set consisting of all 45 Delta n = 0 transitions, six scattered energies, and the 85 ions with Z in the range 8 <= Z <= 92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [HI. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 52 (1992) 143] and are presented here to replace those earlier results. (C) 2013 Elsevier Inc. All rights reserved. C1 [Zhang, Hong Lin; Fontes, Christopher J.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. RP Zhang, HL (reprint author), Los Alamos Natl Lab, Computat Phys Div, POB 1663, Los Alamos, NM 87545 USA. EM zhang@lanl.gov FU U.S. Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 29 TC 9 Z9 9 U1 0 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0092-640X J9 ATOM DATA NUCL DATA JI Atom. Data Nucl. Data Tables PD JUL PY 2013 VL 99 IS 4 BP 416 EP 430 DI 10.1016/j.adt.2012.04.004 PG 15 WC Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Physics GA 136VP UT WOS:000318391800002 ER PT J AU Zhong, ZP Talamo, A Gohar, Y AF Zhong, Zhaopeng Talamo, Alberto Gohar, Yousry TI Monte Carlo and deterministic computational methods for the calculation of the effective delayed neutron fraction SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Effective delayed neutron fraction; MCNP; MCNPX; PARTISN AB The effective delayed neutron fraction beta(eff) plays an important role in kinetics and static analysis of the reactor physics experiments. It is used as reactivity unit referred to as "dollar". Usually, it is obtained by computer simulation due to the difficulty in measuring it experimentally. In 1965, Keepin proposed a method, widely used in the literature, for the calculation of the effective delayed neutron fraction beta(eff). This method requires calculation of the adjoint neutron flux as a weighting function of the phase space inner products and is easy to implement by deterministic codes. With Monte Carlo codes, the solution of the adjoint neutron transport equation is much more difficult because of the continuous-energy treatment of nuclear data. Consequently, alternative methods, which do not require the explicit calculation of the adjoint neutron flux, have been proposed. In 1997, Bretscher introduced the k-ratio method for calculating the effective delayed neutron fraction; this method is based on calculating the multiplication factor of a nuclear reactor core with and without the contribution of delayed neutrons. The multiplication factor set by the delayed neutrons (the delayed multiplication factor) is obtained as the difference between the total and the prompt multiplication factors. Using Monte Carlo calculation Bretscher evaluated the beta(eff) as the ratio between the delayed and total multiplication factors (therefore the method is often referred to as the k-ratio method). In the present work, the k-ratio method is applied by Monte Carlo (MCNPX) and deterministic (PARTISN) codes. In the latter case, the ENDF/B nuclear data library of the fuel isotopes (U-235 and U-238) has been processed by the NJOY code with and without the delayed neutron data to prepare multi-group WIMSD neutron libraries for the lattice physics code DRAGON, which. was used to generate the PARTISN macroscopic cross sections. In recent years Meulekamp and van der Marck in 2006 and Nauchi and Kameyama in 2005 proposed new methods for the effective delayed neutron fraction calculation with only one Monte Carlo computer simulation, compared with the k-ratio method which require two criticality calculations. In this paper, the Meulekamp/Marck and Nauchi/Kameyama methods are applied for the first time by the MCNPX computer code and the results obtained by all different methods are compared. Published by Elsevier B.V. C1 [Zhong, Zhaopeng; Talamo, Alberto; Gohar, Yousry] Argonne Natl Lab, Lemont, IL 60439 USA. RP Zhong, ZP (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. EM zzhong@anl.gov OI talamo, alberto/0000-0001-5685-0483 FU Office of Global Nuclear Material Threat Reduction US Department of Energy [DE-AC02-06CH11357] FX This work has been supported by the Office of Global Nuclear Material Threat Reduction US Department of Energy under Contract DE-AC02-06CH11357. NR 21 TC 5 Z9 5 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2013 VL 184 IS 7 BP 1660 EP 1665 DI 10.1016/j.cpc.2013.02.009 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 134EW UT WOS:000318194000003 ER PT J AU Certik, O Pask, JE Vackar, J AF Certik, Ondrej Pask, John E. Vackar, Jiri TI dftatom: A robust and general Schrodinger and Dirac solver for atomic structure calculations SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Atomic structure; Electronic structure; Schrodinger equation; Dirac equation; Kohn-Sham equations; Density functional theory; Shooting method; Fortran 95 ID ELECTRONIC-STRUCTURE CALCULATIONS; DOUBLE-MINIMUM; VARIABLE TRANSFORMATION; EQUATION; ELEMENT; FIELDS; STATE; CODE AB A robust and general solver for the radial Schrodinger, Dirac, and Kohn-Sham equations is presented. The formulation admits general potentials and meshes: uniform, exponential, or other defined by nodal distribution and derivative functions. For a given mesh type, convergence can be controlled systematically by increasing the number of grid points. Radial integrations are carried out using a combination of asymptotic forms, Runge-Kutta, and implicit Adams methods. Eigenfunctions are determined by a combination of bisection and perturbation methods for robustness and speed. An outward Poisson integration is employed to increase accuracy in the core region, allowing absolute accuracies of 10(-8) Hartree to be attained for total energies of heavy atoms such as uranium. Detailed convergence studies are presented and computational parameters are provided to achieve accuracies commonly required in practice. Comparisons to analytic and current-benchmark density-functional results for atomic number Z = 1-92 are presented, verifying and providing a refinement to current benchmarks. An efficient, modular Fortran 95 implementation, dftatom, is provided as open source, including examples, tests, and wrappers for interface to other languages; wherein particular emphasis is placed on the independence (no global variables), reusability, and generality of the individual routines. C1 [Certik, Ondrej; Vackar, Jiri] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Certik, Ondrej] Univ Nevada, Reno, NV 89557 USA. [Certik, Ondrej] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague 2, Czech Republic. [Pask, John E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Certik, O (reprint author), Univ Nevada, 1664 N Virginia St, Reno, NV 89557 USA. EM ondrej.certik@gmail.com; pask1@llnl.gov; vackar@fzu.cz RI Vackar, Jiri/G-9507-2014 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Czech Science Foundation [LC06040, GACR 101/09/1630] FX This work was performed, in part, under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This research was partly supported by the LC06040 research center project and GACR 101/09/1630 of the Czech Science Foundation. NR 46 TC 4 Z9 4 U1 2 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2013 VL 184 IS 7 BP 1777 EP 1791 DI 10.1016/j.cpc.2013.02.014 PG 15 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 134EW UT WOS:000318194000014 ER PT J AU Cousins, BR Le Borne, S Linke, A Rebholz, LG Wang, Z AF Cousins, Benjamin R. Le Borne, Sabine Linke, Alexander Rebholz, Leo G. Wang, Zhen TI Efficient linear solvers for incompressible flow simulations using Scott-Vogelius finite elements SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS LA English DT Article DE Scott-Vogelius elements; linear solvers; static condensation; augmented Lagrangian preconditioning; H-Lu ID NAVIER-STOKES EQUATIONS; MASS CONSERVATION; PARA-VERSION; MATRICES; DISCRETIZATIONS AB Recent research has shown that in some practically relevant situations like multiphysics flows (Galvin et al., Comput Methods Appl Mech Eng, to appear) divergence-free mixed finite elements may have a significantly smaller discretization error than standard nondivergence-free mixed finite elements. To judge the overall performance of divergence-free mixed finite elements, we investigate linear solvers for the saddle point linear systems arising in ((P-k)(d), P-k-1(disc)) Scott-Vogelius finite element implementations of the incompressible Navier-Stokes equations. We investigate both direct and iterative solver methods. Due to discontinuous pressure elements in the case of Scott-Vogelius (SV) elements, considerably more solver strategies seem to deliver promising results than in the case of standard mixed finite elements such as Taylor-Hood elements. For direct methods, we extend recent preliminary work using sparse banded solvers on the penalty method formulation to finer meshes and discuss extensions. For iterative methods, we test augmented Lagrangian and H-LU preconditioners with GMRES, on both full and statically condensed systems. Several numerical experiments are provided that show these classes of solvers are well suited for use with SV elements and could deliver an interesting overall performance in several applications. (C) 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 29: 1217-1237, 2013 C1 [Cousins, Benjamin R.; Rebholz, Leo G.] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA. [Le Borne, Sabine] Tennessee Technol Univ, Dept Math, Cookeville, TN 38505 USA. [Linke, Alexander] Free Univ Berlin, Dept Math, D-14195 Berlin, Germany. [Wang, Zhen] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Sci Comp Grp, Oak Ridge, TN 37831 USA. RP Rebholz, LG (reprint author), Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA. EM rebholz@clemson.edu FU National Science Foundation [DMS0914478, DMS-0913017, DMS1112593]; DFG Research Center MATHEON, Berlin; Laney Graduate School of Arts and Science (Emory University), Computational Science Research and Partnerships (SciDAC) Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy [DE-AC05-000R22725]; UT-Battelle, LLC FX Contract grant sponsor: National Science Foundation; contract grant number: DMS0914478 (B.C.), DMS-0913017(S.L.B.) and DMS1112593 (L.G.R.); Contract grant sponsor: DFG Research Center MATHEON, Berlin (A.L.); Contract grant sponsor: Laney Graduate School of Arts and Science (Emory University), Computational Science Research and Partnerships (SciDAC) Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy; contract grant number: DE-AC05-000R22725 with UT-Battelle, LLC(Z.W.) NR 40 TC 3 Z9 3 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0749-159X EI 1098-2426 J9 NUMER METH PART D E JI Numer. Meth. Part Differ. Equ. PD JUL PY 2013 VL 29 IS 4 BP 1217 EP 1237 DI 10.1002/num.21752 PG 21 WC Mathematics, Applied SC Mathematics GA 133YV UT WOS:000318177700007 ER PT J AU Groth, KM Swiler, LP AF Groth, Katrina M. Swiler, Laura P. TI Bridging the gap between HRA research and HRA practice: A Bayesian network version of SPAR-H SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Human reliability analysis (HRA); Bayesian network (BN); SPAR-H; Causality; Context uncertainty ID HUMAN RELIABILITY-ANALYSIS; BELIEF NETWORKS; VALIDATION; SYSTEMS AB The shortcomings of Human Reliability Analysis (HRA) have been a topic of discussion for over two decades. Repeated attempts to address these limitations have resulted in over 50 HRA methods, and the HRA research community continues to develop new methods. However, there remains a gap between the methods developed by HRA researchers and those actually used by HRA practitioners. Bayesian Networks (BNs) have become an increasingly popular part of the risk and reliability analysis framework over the past decade. BNs provide a framework for addressing many of the shortcomings of HRA from a researcher perspective and from a practitioner perspective. Several research groups have developed advanced HRA methods based on BNs, but none of these methods has been adopted by HRA practitioners in the U.S. nuclear power industry or at the U.S. Nuclear Regulatory Commission. In this paper we bridge the gap between HRA research and HRA practice by building a BN version of the widely used SPAR-H method. We demonstrate how the SPAR-H BN can be used by HRA practitioners, and we also demonstrate how it can be modified to incorporate data and information from research to advance HRA practice. The SPAR-H BN can be used as a starting point for translating HRA research efforts and advances in scientific understanding into real, timely benefits for HRA practitioners. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Groth, Katrina M.; Swiler, Laura P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Groth, KM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM kgroth@sandia.gov OI Groth, Katrina/0000-0002-0835-7798 FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 47 TC 19 Z9 19 U1 3 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD JUL PY 2013 VL 115 BP 33 EP 42 DI 10.1016/j.ress.2013.02.015 PG 10 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 133IT UT WOS:000318132800004 ER PT J AU GhattyVenkataKrishna, PK Chavali, N Uberbacher, EC AF GhattyVenkataKrishna, Pavan K. Chavali, Neelima Uberbacher, Edward C. TI Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase SO CHEMICAL PAPERS LA English DT Article DE acetylcholine; acetylcholineterase; active site; gorge; aromatic residues ID MOLECULAR-DYNAMICS SIMULATIONS; TORPEDO-CALIFORNICA; LIQUID WATER; X-RAY; PROTEINS; BINDING; DISEASE AB The presence of an unusually large number of aromatic residues in the active site gorge of acetylcholinesterase is a subject of great interest. Flexibility of these residues has been suspected to be a key player in controlling the ligand traversal in the gorge. This raises the question of whether the over-representation of aromatic residues in the gorge implies higher-than-normal flexibility of these residues. The current study suggests that it does not. Large changes in the hydrophobic cross-sectional area due to dihedral oscillations are probably the reason of their presence in the gorge. (C) 2013 Institute of Chemistry, Slovak Academy of Sciences C1 [GhattyVenkataKrishna, Pavan K.; Uberbacher, Edward C.] Oak Ridge Natl Lab, Computat Biol & Bioinformat Grp, Oak Ridge, TN 37830 USA. [Chavali, Neelima] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA. RP GhattyVenkataKrishna, PK (reprint author), Oak Ridge Natl Lab, Computat Biol & Bioinformat Grp, Oak Ridge, TN 37830 USA. EM pkc@ornl.gov FU U.S. DOE [DE-AC05-00OR22725]; UT-Battelle; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was sponsored by the U.S. DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC managing contractor for Oak Ridge. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank the reviewers for their comments which greatly improved the manuscript. PKG thanks Dr. Aloke Kumar for useful discussions. NR 22 TC 2 Z9 2 U1 1 U2 9 PU VERSITA PI WARSAW PA SOLIPSKA 14A-1, 02-482 WARSAW, POLAND SN 0366-6352 J9 CHEM PAP JI Chem. Pap. PD JUL PY 2013 VL 67 IS 7 BP 677 EP 681 DI 10.2478/s11696-013-0354-4 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 123XE UT WOS:000317424400001 ER PT J AU Mitri, FG AF Mitri, F. G. TI Arbitrary scattering of an acoustical high-order Bessel trigonometric (non-vortex) beam by a compressible soft fluid sphere SO ULTRASONICS LA English DT Article DE Arbitrary acoustic scattering; Bessel nonvortex beams; Fluid sphere; Discrete spherical harmonics transform ID PLANE-PROGRESSIVE WAVES; SONAR CROSS-SECTIONS; RADIATION FORCE; ELECTROMAGNETIC-FIELDS; RESONANCE EXCITATION; DIELECTRIC SPHERE; SOUND-SCATTERING; ELASTIC SPHERE; RIGID SPHERE; SHELLS AB The present analysis extends the previous work on the axial acoustic scattering of a high-order Bessel trigonometric beam (HOBTB) from a fluid sphere [F. G. Mitri, J. Appl. Phys. 109 (2011) 014916] to the generalized case of arbitrary scattering from a fluid sphere placed off-axially. The scattered pressure is expressed using a generalized partial-wave series expansion involving the beam-shape coefficients (BSCs), the scattering coefficients of the fluid sphere, and the half-conical angle of the beam. The BSCs are evaluated using the numerical discrete spherical harmonics transform (DSHT). The properties of the off-axial acoustic scattering by a fluid red blood sphere (RBS), chosen as an example to illustrate the analysis, are discussed. 3D numerical computations for the directivity patterns in the near and far-field regions reveal unexplored phenomena that may be useful in applications related to particle entrapment, manipulation or rotation of soft matter using acoustic HOBTBs. Other potential applications may include medical or nondestructive ultrasound imaging with contrast agents, or monitoring of the manufacturing processes of sample soft matter systems with HOBTBs. (C) 2012 Elsevier B. V. All rights reserved. C1 Los Alamos Natl Lab, Acoust & Sensors Technol Team, Los Alamos, NM 87545 USA. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Acoust & Sensors Technol Team, MPA 11,MS D429, Los Alamos, NM 87545 USA. EM mitri@lanl.gov FU Los Alamos National Laboratory [LDRD-X9N9, 20100595PRD1] FX The financial support provided through a Director's fellowship (LDRD-X9N9, Project # 20100595PRD1) from the Los Alamos National Laboratory is gratefully acknowledged. Disclosure: this unclassified publication, with the following reference No. LA-UR 13-20526, has been approved for unlimited public release under DUSA ENSCI. NR 57 TC 16 Z9 16 U1 1 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0041-624X J9 ULTRASONICS JI Ultrasonics PD JUL PY 2013 VL 53 IS 5 BP 956 EP 961 DI 10.1016/j.ultras.2012.12.008 PG 6 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA 120PW UT WOS:000317184400005 PM 23395450 ER PT J AU Pantea, C Osterhoudt, CF Sinha, DN AF Pantea, Cristian Osterhoudt, Curtis F. Sinha, Dipen N. TI Determination of acoustical nonlinear parameter beta of water using the finite amplitude method SO ULTRASONICS LA English DT Article DE Nonlinear acoustics; Water ID PLANE SOUND-WAVES; BIOLOGICAL MEDIA; HARMONIC-GENERATION; ELASTIC-CONSTANTS; B/A; MIXTURES AB The acoustic nonlinearity of water is investigated using a variation of the finite amplitude method with harmonic generation. The finite amplitude method provides information on the coefficient of nonlinearity, beta, through the ratio of the amplitude of the fundamental and that of the second harmonic. The pressure of both the fundamental, p(1), and that of the second harmonic, p(2), are determined experimentally at different transmitter-receiver separation distances, eliminating the need for knowledge of the sound absorption in the medium. It was found that the experimental relationship between the slope of p(2)(x)/p(1)(2)(x) and transmitter-receiver separation distance, x, follows a linear relationship only in the near-field, in good agreement with theoretical predictions. A beta of 3.5 +/- 0.1 is determined for water at room temperature, in good agreement with previous results from both the isentropic equation of state and finite amplitude method. Published by Elsevier B.V. C1 [Pantea, Cristian; Sinha, Dipen N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Osterhoudt, Curtis F.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. RP Pantea, C (reprint author), Los Alamos Natl Lab, MS D429, Los Alamos, NM 87545 USA. EM pantea@lanl.gov RI Pantea, Cristian/D-4108-2009; OI Pantea, Cristian/0000-0002-0805-8923 NR 33 TC 15 Z9 19 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0041-624X J9 ULTRASONICS JI Ultrasonics PD JUL PY 2013 VL 53 IS 5 BP 1012 EP 1019 DI 10.1016/j.ultras.2013.01.008 PG 8 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA 120PW UT WOS:000317184400012 PM 23453558 ER PT J AU Huang, Q Cosimbescu, L Koech, P Choi, D Lemmon, JP AF Huang, Qian Cosimbescu, Lelia Koech, Phillip Choi, Daiwon Lemmon, John P. TI Composite organic radical-inorganic hybrid cathode for lithium-ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Hybrid cathode; PTMA/LiFePO4 composite; High pulse power; Organic radical; Lithium-ion battery ID RECHARGEABLE BATTERIES; BEHAVIOR; ELECTRODES; POLYMERS AB A new organic radical-inorganic hybrid cathode comprised of poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA)/LiFePO4 composite system was developed and reported for the first time. The hybrid electrodes' voltammetry contains three pairs of reversible redox peaks indicating the combination of electrochemical characteristics between LiFePO4 and PTMA electrodes and shows a decrease in voltage gap between oxidation and reduction that corresponds to an improvement in the rate and reversibility of the redox couples. Results from electrochemical impedance spectroscopy show lower charge-transfer resistance of cycled hybrid cathodes suggesting an enhanced electrode/electrolyte interface formed in hybrid systems which leads to faster migration of Li ions through the interface and longer cycle life capability when compared with pure LiFePO4 or PTMA cathode system. Optimizing the hybrid cathode's ratio of PTMA/LiFePO4 yields a significant improvement in high pulse power performance (30 mAh cm(-3)) over the pure PTMA (16 mAh cm(-3)) or LiFePO4 (3.0 mAh cm(-3)) cathode. Further characterization of the hybrid electrodes using SEM showed a more compact surface morphology after high rate pulse experiments. The demonstrated properties of hybrid cathodes are promising for transportation and other high pulse power applications that require long cycle life and low cost. (C) 2013 Published by Elsevier B.V. C1 [Huang, Qian; Cosimbescu, Lelia; Koech, Phillip; Choi, Daiwon; Lemmon, John P.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Lemmon, JP (reprint author), Pacific NW Natl Lab, 908 Battelle Blvd,POB 999, Richland, WA 99354 USA. EM John.Lemmon@pnl.gov RI Choi, Daiwon/B-6593-2008; OI Koech, Phillip/0000-0003-2996-0593 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; Batteries for Advanced Transportation Technologies (BATT) Program [24134] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No 24134 under the Batteries for Advanced Transportation Technologies (BATT) Program. The authors would thank Bruce W. Arey of the Environmental Molecular Sciences Laboratory (EMSL) for the SEM characterization. NR 25 TC 4 Z9 4 U1 3 U2 128 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2013 VL 233 BP 69 EP 73 DI 10.1016/j.jpowsour.2013.01.076 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 115QM UT WOS:000316827000010 ER PT J AU Cronin, JS Chen-Wiegart, YCK Wang, J Barnett, SA AF Cronin, J. Scott Chen-Wiegart, Yu-chen Karen Wang, Jun Barnett, Scott A. TI Three-dimensional reconstruction and analysis of an entire solid oxide fuel cell by full-field transmission X-ray microscopy SO JOURNAL OF POWER SOURCES LA English DT Article DE SOFC; Electrode; Microstructure; X-ray tomography; Reconstruction; 3D ID MICROSTRUCTURE DEGRADATION; ELECTRON-MICROSCOPY; COMPOSITE CATHODES; YSZ ANODE; PERFORMANCE; TEMPERATURE; TOMOGRAPHY AB An entire active region of an anode-supported solid oxide fuel cell was structurally analyzed by X-ray computed nano-tomography using full-field transmission X-ray microscopy (NANO-TXM). A total three-dimensional volume of similar to 38,500 mu m(3) was imaged, from which Ni-YSZ anode functional layer (similar to 3650 mu m(3)) and LSM-YSZ cathode functional layer (similar to 4100 mu m(3)) volumes were reconstructed. These were among the largest-volume electrode reconstructions ever reported, while at the same time exhibiting high spatial resolution of 50 nm. Comparison with electrode microstructures measured using other imaging methods demonstrates that the larger NANO-TXM-measured volumes provided significantly more accurate phase connectivity information. A microstructure-based electrochemical model prediction agreed well with the measured full-cell electrochemical data. The results suggest that low LSM connectivity and slow oxygen reduction reaction kinetics in the cathode were a major limitation to the overall cell performance. (C) 2013 Elsevier B.V. All rights reserved. C1 [Cronin, J. Scott; Barnett, Scott A.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Chen-Wiegart, Yu-chen Karen; Wang, Jun] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. RP Barnett, SA (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM s-bamett@northwestern.edu RI Barnett, Scott/B-7502-2009 FU National Science Foundation Ceramics program [DMR-0907639]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors gratefully acknowledge the financial support from the National Science Foundation Ceramics program through grant DMR-0907639. Furthermore, efforts by Kyle Yakal-Kremski for electrode visualization and Prof. Eric Maire who provided us with the ImageJ plug-in for tortuosity calculations are greatly appreciated. We thank Dr. Fernando Camino (BNL) for assisting the development of the sample preparation procedure using FIB/SEM at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 32 TC 36 Z9 36 U1 4 U2 121 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2013 VL 233 BP 174 EP 179 DI 10.1016/j.jpowsour.2013.01.060 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 115QM UT WOS:000316827000025 ER PT J AU Li, L Dunn, JB Zhang, XX Gaines, L Chen, RJ Wu, F Amine, K AF Li, Li Dunn, Jennifer B. Zhang, Xiao Xiao Gaines, Linda Chen, Ren Jie Wu, Feng Amine, Khalil TI Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment SO JOURNAL OF POWER SOURCES LA English DT Article DE Spent lithium-ion batteries; Acid leaching; Cathode active materials; Organic acids; Environmental assessment ID HYDROMETALLURGICAL PROCESS; SECONDARY BATTERIES; ELECTRIC VEHICLES; COBALT; WASTE; NICKEL; CATHODES; CATALYST AB A leaching process for the recovery of cobalt and lithium from spent lithium-ion batteries (LIB) is developed in this work. Three different organic acids, namely citric acid, malic acid and aspartic acid, are used as leaching reagents in the presence of hydrogen peroxide. The cathode active materials before and after acid leaching are characterized by X-ray diffraction and scanning electron microscopy. Recovery of cobalt and lithium is optimized by varying the leachant and H2O2 concentrations, the solid-to-liquid ratio, and the reaction temperature and duration. Whereas leaching with citric and malic acids recovered in excess of 90% of cobalt and lithium, leaching with aspartic acid recovered significantly less of these metals. The leaching mechanism likely begins with the dissolution of the active material (LiCoO2) in the presence of H2O2 followed by chelation of Co(II) and Li with citrate, malate or aspartate. An environmental analysis of the process indicates that it may be less energy and greenhouse gas intensive to recover Co from spent LIBs than to produce virgin cobalt oxide. (C) 2013 Elsevier B.V. All rights reserved. C1 [Li, Li; Zhang, Xiao Xiao; Chen, Ren Jie; Wu, Feng] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing 100081, Peoples R China. [Dunn, Jennifer B.; Gaines, Linda] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Li, Li; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Wu, F (reprint author), Beijing Inst Technol, Sch Chem Engn & Environm, Beijing 100081, Peoples R China. EM wufeng863@bit.edu.cn; amine@anl.gov RI Amine, Khalil/K-9344-2013 FU International S&T Cooperation Program of China [2010DFB63370]; Chinese National 973 Program [2009CB220106]; Beijing Nova Program [Z121103002512029]; Beijing Excellent Youth Scholars funding; Chinese Education Ministry [NCET-12-0050]; Vehicle Technology Program of the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy [DE-AC02-06CH11357] FX The experimental work of this study was supported by the International S&T Cooperation Program of China (2010DFB63370), the Chinese National 973 Program (2009CB220106), Beijing Nova Program (Z121103002512029), Beijing Excellent Youth Scholars funding, and the New Century Educational Talents Plan of the Chinese Education Ministry (NCET-12-0050). The analysis work, especially the life-cycle analysis work, was supported by the Vehicle Technology Program of the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, under contract DE-AC02-06CH11357. The authors would like to thank Dr. Michael Wang and Dr. John Sullivan of Argonne National Laboratory for helpful discussions in the development of this paper. NR 31 TC 41 Z9 46 U1 11 U2 140 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2013 VL 233 BP 180 EP 189 DI 10.1016/j.jpowsour.2012.12.089 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 115QM UT WOS:000316827000026 ER PT J AU Bettge, M Li, Y Sankaran, B Rago, ND Spila, T Haasch, RT Petrov, I Abraham, DP AF Bettge, Martin Li, Yan Sankaran, Bharat Rago, Nancy Dietz Spila, Timothy Haasch, Richard T. Petrov, Ivan Abraham, Daniel P. TI Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium-ion; Atomic layer deposition; Al2O3; Coating; Secondary ion mass spectrometry; Layered oxide ID ATOMIC LAYER DEPOSITION; LINI0.8CO0.15AL0.05O2 CATHODES; ELECTROCHEMICAL INTERCALATION; COMPOSITE ELECTRODES; GRAPHITE ANODE; BATTERIES; LI; PERFORMANCE; DEGRADATION; LICOO2 AB Practical high-capacity Li-ion cells containing Li1.2Ni0.15Mn0.55Co0.1O2-based positive and graphite-based negative electrodes show substantial capacity loss and impedance rise when repeatedly cycled to, or held for extended periods, at voltages exceeding 4.5 V. Their performance can be effectively improved by modifying the positive electrode. The positive composite electrodes are modified here in two different ways: by (i) alumina coatings of up to similar to 4 nm applied via atomic layer deposition (ALD), and (ii) addition of nanoscale alumina powder. Thicknesses of the ALD coatings are estimated via X-ray photoelectron spectroscopy (XPS). Electrochemical cycling reveals that capacity retention is better, and impedance rise is smaller for cells containing ALD-coated electrodes. Cells with alumina-powder modified electrodes show also improved capacity retention, but without improvements in impedance. Improved capacity retention is primarily due to reduced Li trapping on the negative electrode. Lower impedance growth, in ALD modified cells, is attributed to improved electro-mechanical integrity and altered surface films inside the positive electrode. The alumina coating inhibits, but does not prevent, transition metal dissolution. The coating also reduces electrolyte oxidation. Significant accumulation of Al on the negative electrode indicates electrochemical crosstalk between the electrodes and chemical instability of the ALD coatings during extended cycling. (C) 2013 Elsevier B.V. All rights reserved. C1 [Bettge, Martin; Li, Yan; Rago, Nancy Dietz; Abraham, Daniel P.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Li, Yan] Univ Rochester, Mat Sci Program, Rochester, NY 14627 USA. [Sankaran, Bharat; Spila, Timothy; Haasch, Richard T.; Petrov, Ivan] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. RP Abraham, DP (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave Lemont, Argonne, IL 60439 USA. EM bettge@anl.gov; liy@anl.gov; bharat.sankaran@gmail.com; dietz@anl.gov; tspila@illinois.edu; r-haasch@illinois.edu; petrov@illinois.edu; abraham@anl.gov RI Li, Yan/H-2957-2012; Petrov, Ivan/D-4910-2011 OI Li, Yan/0000-0002-9801-7243; Petrov, Ivan/0000-0002-2955-4897 FU U.S. Department of Energy's Vehicle Technologies Program [DE-AC02-06CH11357]; DOE Vehicle Technologies Program (VTP) within the core funding of the Applied Battery Research (ABR) for Transportation Program; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Support from the U.S. Department of Energy's Vehicle Technologies Program, specifically from Peter Faguy and Dave Howell, is gratefully acknowledged. We also acknowledge valuable discussions with D. Dees, J. Bareno, and Y. Zhu (at Argonne). The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up non-exclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. We are grateful to B. Polzin, A. Jansen, and S. Trask from the U.S. Department of Energy's (DOE) Cell Fabrication Facility (CFF), Argonne. The CFF is fully supported by the DOE Vehicle Technologies Program (VTP) within the core funding of the Applied Battery Research (ABR) for Transportation Program. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The work was carried out in part in the Frederick Seitz Materials Research laboratory Central Facilities, University of Illinois at Urbana-Champaign (UIUC). We're grateful to E. Sammann (at UIUC) for his many significant suggestions and comments. NR 54 TC 73 Z9 74 U1 20 U2 292 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2013 VL 233 BP 346 EP 357 DI 10.1016/j.jpowsour.2013.01.082 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 115QM UT WOS:000316827000048 ER PT J AU Zapata-Solvas, E Jayaseelan, DD Lin, HT Brown, P Lee, WE AF Zapata-Solvas, E. Jayaseelan, D. D. Lin, H. T. Brown, P. Lee, W. E. TI Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article DE Spark plasma sintering (SPS); Electrical discharge machining (EDM); Flexural strength; Fracture surface; High temperature; Oxidation ID THERMO-PHYSICAL PROPERTIES; DIBORIDE-BASED CERAMICS; ZIRCONIUM DIBORIDE; HYPERSONIC APPLICATIONS; FRACTURE-TOUGHNESS; MATRIX COMPOSITES; SHOCK RESISTANCE; MICROSTRUCTURE; DENSIFICATION; STRENGTH AB Flexural strengths at room temperature, at 1400 degrees C in air and at room temperature after 1 h oxidation at 1400 degrees C were determined for ZrB2- and HfB2-based ultra-high temperature ceramics (UHTCs). Defects caused by electrical discharge machining (EDM) lowered measured strengths significantly and were used to calculate fracture toughness via a fracture mechanics approach. ZrB2 with 20 vol.% SiC had room temperature strength of 700 +/- 90 MPa, fracture toughness of 6.4 +/- 0.6 MPa, Vickers hardness at 9.8N load of 21.1 +/- 0.6 GPa, 1400 degrees C strength of 400 +/- 30 MPa and room temperature strength after 1 h oxidation at 1400 degrees C of 678 +/- 15 MPa with an oxide layer thickness of 45 +/- 5 mu m. HfB2 with 20 vol.% SiC showed room temperature strength of 620 +/- 50 MPa, fracture toughness of 5.0 +/- 0.4 MPa, Vickers hardness at 9.8 N load of 27.0 +/- 0.6 GPa, 1400 degrees C strength of 590 +/- 150 MPa and room temperature strength after 1 h oxidation at 1400 degrees C of 660 +/- 25 MPa with an oxide layer thickness of 12 +/- 1 mu m. 2 wt.% La2O3 addition to UHTCs slightly reduced mechanical performance while increasing tolerance to property degradation after oxidation and effectively aided internal stress relaxation during spark plasma sintering (SPS) cooling, as quantified by X-ray diffraction (XRD). Slow crack growth was suggested as the failure mechanism at high temperatures as a consequence of sharp cracks formation during oxidation. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Zapata-Solvas, E.; Jayaseelan, D. D.; Lee, W. E.] Univ London Imperial Coll Sci Technol & Med, Ctr Adv Struct Ceram, London SW7 2AZ, England. [Lin, H. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Brown, P.] Dstl, Salisbury SP4 0JQ, Wilts, England. RP Zapata-Solvas, E (reprint author), CSIC Univ Sevilla, Inst Ciencia Mat Sevilla, C Amer Vespucio 49, Seville 41092, Spain. EM ezapata@us.es RI Zapata-Solvas, Eugenio/O-9151-2014 OI Zapata-Solvas, Eugenio/0000-0002-6162-8788 FU JAE-DOC program of CSIC, Spain; European Union; DSTL, UK [DSTLX-1000015413] FX The authors' acknowledge Prof. Mike Reece, Nanoforce Technology Ltd., Queen Mary, University of London, UK for providing access to the SPS facility. EZS acknowledges the support of 'Fundacion Ramon Areces, Spain' and the Centre for Advanced Structural Ceramics (CASC) for his postdoctoral fellowship to stay at Imperial College London to carry out this work, UK. EZS also acknowledges current support through a contract from the JAE-DOC program of CSIC, Spain, co-funded by the European Union FSE. DDJ acknowledges the support of DSTL, UK for providing the financial support for this work under contract number DSTLX-1000015413. NR 55 TC 28 Z9 29 U1 6 U2 125 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD JUL PY 2013 VL 33 IS 7 BP 1373 EP 1386 DI 10.1016/j.jeurceramsoc.2012.12.009 PG 14 WC Materials Science, Ceramics SC Materials Science GA 111LI UT WOS:000316522400015 ER PT J AU Xu, ZJ AF Xu, Zhijie TI A REDUCED-BOUNDARY-FUNCTION METHOD FOR LONGITUDINAL SOLUTION DISPERSION IN SYMMETRIC CONFINED FLOWS SO CHEMICAL ENGINEERING COMMUNICATIONS LA English DT Article DE Homogenization; Multiscale; Reduced-boundary function; Transport; Upscaling AB We present a reduced-boundary-function method for longitudinal solute transport in symmetric laminar flows. Flow is confined by two flat plates separated by a distance of 2a or by a tube with a radius of a (Figure 1). The standard advection-diffusion equation is mapped onto the boundary (r=a and r=0, where r is the distance from the centerline shown in Figure 1). The original problem of solving c(x,r,t) is reduced to solve the solutions of c at the boundary, and the problem dimensionality is reduced from 3 to 2. Final results show that the boundary concentration ca(x,t)=c(x, r=a,t) is advected at the mean velocity with a dispersion equal to the molecular diffusion. The centerline concentration c0(x,t)=c(x,r=0,t) is also advected at the mean velocity, but with a dispersion much larger than the Taylor dispersion. The cross-sectional average concentration is in agreement with the classical Taylor dispersion by neglecting higher order contributions. This study is relevant to the upscaling of solute transport. C1 [Xu, Zhijie] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Xu, ZJ (reprint author), Pacific NW Natl Lab, Computat Math Grp, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM zhijie.xu@pnnl.gov RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 NR 14 TC 1 Z9 1 U1 0 U2 8 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0098-6445 J9 CHEM ENG COMMUN JI Chem. Eng. Commun. PD JUL 1 PY 2013 VL 200 IS 7 BP 853 EP 862 DI 10.1080/00986445.2012.712582 PG 10 WC Engineering, Chemical SC Engineering GA 105YR UT WOS:000316109100001 ER PT J AU Liu, J Zhong, C Du, XT Wu, YT Xu, PZ Liu, JB Hu, WB AF Liu, Jie Zhong, Cheng Du, Xintong Wu, Yating Xu, Peizhi Liu, Jinbo Hu, Wenbin TI Pulsed electrodeposition of Pt particles on indium tin oxide substrates and their electrocatalytic properties for methanol oxidation SO ELECTROCHIMICA ACTA LA English DT Article DE Pt catalysts; Pulsed electrodeposition; Surface morphology; Methanol oxidation; Indium tin oxide ID GOLD NANOPARTICLES; AMMONIA OXIDATION; FUEL-CELLS; PLATINUM NANOPARTICLES; HYDROGEN-PEROXIDE; ITO; GROWTH; CARBON; DEPOSITION; SURFACES AB The platinum (Pt) particle electrocatalysts supported on the indium tin oxide (ITO) substrate were prepared by the pulsed electrodeposition for the methanol oxidation. The effect of the lower potential pulse duration (t(1)) of the electrodeposition on the surface morphology and structure of the Pt particles was investigated by the X-ray diffraction and scanning electron microscopy. The amount of the Pt loading was determined by an inductively coupled plasma method, and the electrocatalytic activity of the prepared Pt electrocatalysts on the ITO for the methanol oxidation was characterized by cyclic voltammetry. The results showed that the A has a significant influence on the surface morphology of the Pt particles on the ITO substrate. As the t(1) decreases from 1 to 0.01 s, the deposited Pt particles on the ITO exhibit flower-, nanosheet-, prickly and smooth spherical-like morphology in turn. Furthermore, there is a remarkable effect of the surface morphology of the Pt particles on the electrocatalytic activity for the methanol oxidation. Among all these morphologies, the flower- and nanosheet-like Pt particles on the ITO have a much higher mass specific activity (MA) for the methanol oxidation, and the Pt particles with prickly surface followed while the smooth spherical Pt particles have the lowest MA. In particular, the dispersed Pt nanosheets prepared at t(1) of 0.5 s has the highest MA. The much improved MA of the dispersed Pt nanosheets is attributed not only to the large electrochemically active surface area (ECSA) achieved, but also to the high electrocatalytic activity per unit ECSA related to its special morphology. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Liu, Jie; Zhong, Cheng; Du, Xintong; Wu, Yating; Xu, Peizhi; Hu, Wenbin] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China. [Liu, Jinbo] Texas A&M Univ Kingsville, Dept Chem, Kingsville, TX 78363 USA. [Liu, Jinbo] ALS Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Zhong, C (reprint author), Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China. EM chengz@sjtu.edu.cn; material_hu@163.com RI Zhong, Cheng/E-7733-2012; OI Zhong, Cheng/0000-0003-1852-5860; Liu, Jie/0000-0003-0193-1336 FU National Science Foundation for Distinguished Young Scholars of China [51125016]; Shanghai Municipal Education Commission; "Chen Guang" project; Shanghai Education Development Foundation, Shanghai Jiao Tong University [IPP6090, IPP6093, S050ITP5011] FX The authors thank Drs. Y.J. Zhou, S. Xu and W. Li in the Instrumental Analysis Center of Shanghai Jiao Tong University for the ICP and SEM analysis. This work was supported by the National Science Foundation for Distinguished Young Scholars of China (51125016), and partially supported by "Chen Guang" project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (11CG12), Shanghai Jiao Tong University (IPP6090, IPP6093 and S050ITP5011). NR 50 TC 26 Z9 27 U1 5 U2 110 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD JUN 30 PY 2013 VL 100 BP 164 EP 170 DI 10.1016/j.electacta.2013.03.152 PG 7 WC Electrochemistry SC Electrochemistry GA 165OE UT WOS:000320492400022 ER PT J AU Guo, H Chien, CC He, Y Levin, K AF Guo, Hao Chien, Chih-Chun He, Yan Levin, K. TI FUNDAMENTAL CONSTRAINTS ON LINEAR RESPONSE THEORIES OF FERMI SUPERFLUIDS ABOVE AND BELOW T-c SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Review DE BCS theory; linear response theory; BCS-BEC crossover; gauge invariance; superfluids; Fermi gases; pairing fluctuations ID SUPERCONDUCTIVITY; GAS; TEMPERATURE AB We present fundamental constraints required for a consistent linear response theory of fermionic superfluids and address temperatures both above and below the transition temperature Tc. We emphasize two independent constraints, one associated with gauge invariance (and the related Ward identity) and another associated with the compressibility sum rule, both of which are satisfied in strict BCS theory. However, we point out that it is the rare many body theory which satisfies both of these. Indeed, well studied quantum Hall systems and random-phase approximations to the electron gas are found to have difficulties with meeting these constraints. We summarize two distinct theoretical approaches which are, however, demonstrably compatible with gauge invariance and the compressibility sum rule. The first of these involves an extension of BCS theory to a mean field description of the BCS-Bose Einstein condensation crossover. The second is the simplest Nozieres Schmitt-Rink (NSR) treatment of pairing correlations in the normal state. As a point of comparison we focus on the compressibility kappa of each and contrast the predictions above Tc. We note here that despite the compliance with sum rules, this NSR based scheme leads to an unphysical divergence in kappa at the transition. Because of the delicacy of the various consistency requirements, the results of this paper suggest that avoiding this divergence may repair one problem while at the same time introducing others. C1 [Guo, Hao] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China. [Guo, Hao] Univ Hong Kong, Dept Phys, Hong Kong 999077, Hong Kong, Peoples R China. [Chien, Chih-Chun] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [He, Yan] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA. [He, Yan; Levin, K.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [He, Yan; Levin, K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Guo, H (reprint author), Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China. EM chihchun@lanl.gov RI He, Yan/B-1594-2012 FU National Natural Science Foundation of China [11204032]; Natural Science Foundation of Jiangsu Province, China [SBK201241926]; U.S. Department of Energy through the LANL/LDRD Program; NSF-MRSEC [0820054] FX Hao Guo thanks the support by National Natural Science Foundation of China (Grants No. 11204032) and Natural Science Foundation of Jiangsu Province, China (SBK201241926). C. C. C. acknowledges the support of the U.S. Department of Energy through the LANL/LDRD Program. Additional support (KL) is via NSF-MRSEC Grant 0820054. NR 33 TC 4 Z9 4 U1 0 U2 6 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD JUN 30 PY 2013 VL 27 IS 16 AR 1330010 DI 10.1142/S0217979213300107 PG 20 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 159OU UT WOS:000320056000001 ER PT J AU Choi, S Pisano, AP Zohdi, TI AF Choi, Sun Pisano, Albert P. Zohdi, Tarek I. TI An analysis of evaporative self-assembly of micro particles in printed picoliter suspension droplets SO THIN SOLID FILMS LA English DT Article DE Evaporative self-assembly; Non-equilibrium assembly; Micro particle; Picoliter droplets; Particle simulation ID ORDERED 2-DIMENSIONAL ARRAYS; HYDROPHOBIC SURFACES; COLLOIDAL CRYSTALS; PHOTONIC CRYSTALS; NANOPARTICLES; FABRICATION; CRYSTALLIZATION; MICROSPHERES; DISPERSIONS; ARRANGEMENT AB We report systematic experimental and computational studies to analyze evaporative self-assembly of micro particles in printed picoliter suspension droplets. Evaporative self-assembly of micro particles in picoliter droplets is enabled by a droplet-printing system for small-scale particle suspension droplets. Experiments were performed to study the regime where particle interactive forces become comparable to hydrodynamic, evaporative forces of an evaporating droplet. A particle-based computational method was developed to calculate the particle-to-particle clustering time. In this study, we verify that there is a time-scale competition between particle-to-particle clustering and evaporation of the liquid medium that determines the final morphology of micro particle assemblies. (C) 2013 Elsevier B.V. All rights reserved. C1 [Choi, Sun; Pisano, Albert P.] Univ Calif Berkeley, BSAC, Berkeley, CA 94720 USA. [Choi, Sun; Pisano, Albert P.; Zohdi, Tarek I.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Pisano, Albert P.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. RP Choi, S (reprint author), Univ Calif Berkeley, Div Earth Sci, LBNL, Berkeley, CA 94720 USA. EM SChoi@lbl.gov FU Center for Nanoscale Mechatronics & Manufacturing (CNMM), one of the 21st Century Frontier Research Programs [2009K000069]; Ministry of Education, Science and Technology, Korea; Samsung Scholarship Foundation FX This work was supported by a grant (2009K000069) from the Center for Nanoscale Mechatronics & Manufacturing (CNMM), one of the 21st Century Frontier Research Programs, which are supported by Ministry of Education, Science and Technology, Korea. We also acknowledge technical support from Jeffrey Clarkson for measuring light intensity of optical microscope in Berkeley Marvell Nanofabrication Laboratory. S. Choi also gives thanks for his graduate fellowship from Samsung Scholarship Foundation. NR 63 TC 7 Z9 7 U1 4 U2 48 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUN 30 PY 2013 VL 537 BP 180 EP 189 DI 10.1016/j.tsf.2013.04.047 PG 10 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 151JK UT WOS:000319456400028 ER PT J AU Van Berkel, GJ Kertesz, V AF Van Berkel, Gary J. Kertesz, Vilmos TI Continuous-flow liquid microjunction surface sampling probe connected on-line with high-performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID ELECTROSPRAY MASS-SPECTROMETRY; THIN TISSUE-SECTIONS; DRUG DISTRIBUTION; SYSTEM; METABOLITES; DESORPTION; MS/MS; MS AB RATIONALE A continuous-flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by mass spectrometry. Demonstrated here is the on-line coupling of such a probe with high-performance liquid chromatography/mass spectrometry (HPLC/MS) enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (similar to 0.5 mm diameter spots) manner. METHODS A continuous-flow liquid microjunction surface sampling probe was connected to a six-port, two-position valve for extract collection and injection to an HPLC column. A QTRAP (R) 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive electrospray ionization (ESI) mode was used for all experiments. The system operation was tested with the extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues, caffeine from a coffee bean, cocaine from paper currency, and proteins from dried sheep blood spots on paper. RESULTS Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. CONCLUSIONS Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous-flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA. C1 [Van Berkel, Gary J.; Kertesz, Vilmos] Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. EM vanberkelgj@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 FU AB Sciex [CRADA NFE-10-02966]; U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Government [DE-AC05-00OR22725] FX This project was supported by AB Sciex through a Cooperative Research and Development Agreement (CRADA NFE-10-02966). The QTRAP (R) 5500 used in this work was provided on loan from AB Sciex as part of the CRADA. Drs Jimmy Flarakos, Paul Moench and Alexandre Catoire (Novartis, East Hanover, NJ, USA) are thanked for providing the whole-body rat thin tissue sections through a Work for Others project with Novartis Institutes for Biomedical Research, Inc. Drs Karuna Chourey and Greg Hurst (Oak Ridge National Laboratory) are thanked for assisting with the protein database search and identification. Dr Zhongqi Zhang (Amgen, Inc.) is thanked for providing the MagTran software. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725. This manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U. S. Government retains a paid-up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for U.S. Government purposes. NR 27 TC 24 Z9 24 U1 1 U2 63 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD JUN 30 PY 2013 VL 27 IS 12 BP 1329 EP 1334 DI 10.1002/rcm.6580 PG 6 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 146EH UT WOS:000319071700006 PM 23681810 ER PT J AU Harribey, T Breil, J Maire, PH Shashkov, M AF Harribey, Thibault Breil, Jerome Maire, Pierre-Henri Shashkov, Mikhail TI A swept-intersection-based remapping method in a ReALE framework SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE ReALE; cell-centered scheme; Lagrangian hydrodynamics; Voronoi mesh; polygonal mesh AB A complete reconnection-based arbitrary LagrangianEulerian (ReALE) strategy devoted to the computation of hydrodynamic applications for compressible fluid flows is presented here. In ReALE, we replace the rezoning phase of classical ALE method by a rezoning where we allow the connectivity between cells of the mesh to change. This leads to a polygonal mesh that recovers the Lagrangian features in order to follow more efficiently the flow. Those reconnections allow to deal with complex geometries and high vorticity problems contrary to ALE method. For optimizing the remapping phase, we have modified the idea of swept-integration-based. The new method is called swept-intersection-based remapping method. We demonstrate that our method can be applied to several numerical examples representative of hydrodynamic experiments.Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Harribey, Thibault; Breil, Jerome] Univ Bordeaux, CEA, CNRS, CELIA,UMR5107, F-33400 Talence, France. [Maire, Pierre-Henri] CEA, CESTA, F-33114 Le Barp, France. [Shashkov, Mikhail] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Breil, J (reprint author), Univ Bordeaux, CEA, CNRS, CELIA,UMR5107, F-33400 Talence, France. EM breil@celia.ubordeaux1.fr RI Maire, Pierre-Henri/H-6219-2013 OI Maire, Pierre-Henri/0000-0002-4180-8220 FU US Department of Energy's National Nuclear Security Administration by Los Alamos National Security, LLC, at Los Alamos National Laboratory [DE-AC52-06NA25396]; US DOE NNSA's Advanced Simulation and Computing (ASC) Program; US DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research FX The work of the last author was performed under the auspices of the US Department of Energy's National Nuclear Security Administration by Los Alamos National Security, LLC, at Los Alamos National Laboratory, under contract DE-AC52-06NA25396. The last author gratefully acknowledges the partial support of the US DOE NNSA's Advanced Simulation and Computing (ASC) Program and the partial support of the US DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research. NR 11 TC 5 Z9 5 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD JUN 30 PY 2013 VL 72 IS 6 BP 697 EP 708 DI 10.1002/fld.3763 PG 12 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 139FI UT WOS:000318566800005 ER PT J AU Murillo, MS Weisheit, J Hansen, SB Dharma-wardana, MWC AF Murillo, Michael S. Weisheit, Jon Hansen, Stephanie B. Dharma-wardana, M. W. C. TI Partial ionization in dense plasmas: Comparisons among average-atom density functional models SO PHYSICAL REVIEW E LA English DT Article ID EQUATION-OF-STATE; STRONGLY COUPLED PLASMAS; CORRELATION POTENTIALS; LIQUID-METALS; ELECTRON-GAS; ION-ION; X-RAY; PRESSURE IONIZATION; FINITE TEMPERATURES; MOLECULAR-DYNAMICS AB Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter. C1 [Murillo, Michael S.] Los Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87545 USA. [Weisheit, Jon] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Hansen, Stephanie B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hansen, Stephanie B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Dharma-wardana, M. W. C.] Natl Res Council Canada, Inst Microstruct Sci, Ottawa, ON K1A 0R6, Canada. RP Murillo, MS (reprint author), Los Alamos Natl Lab, Computat Phys & Methods Grp, POB 1663, Los Alamos, NM 87545 USA. EM murillo@lanl.gov FU Lawrence Livermore National Laboratory; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Sandia, a multiprogram laboratory; US Department of Energy [DE-AC04-94AL85000] FX The work of M. S. M. was supported by a research contract to Los Alamos National Laboratory from Lawrence Livermore National Laboratory. The work of J.W. was supported by research contracts to the University of Pittsburgh from Lawrence Livermore National Laboratory. The work of M.S.M. and J.W. was part of the Cimarron Collaboration based at Lawrence Livermore National Laboratory. The work of S. B. H. was performed in part under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and supported in part by Sandia, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under Contract No. DE-AC04-94AL85000. We wish to thank several colleagues for comments and advice received during the course of this collaboration, including especially Brian Wilson and Stephen Libby. Fianlly, we would also like to thank one of the anonymous referees for greatly improving this manuscript. NR 93 TC 27 Z9 27 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD JUN 28 PY 2013 VL 87 IS 6 AR UNSP 063113 DI 10.1103/PhysRevE.87.063113 PG 19 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 173RG UT WOS:000321096000011 PM 23848795 ER PT J AU Rekapalli, B Giblock, P Reardon, C AF Rekapalli, Bhanu Giblock, Paul Reardon, Christopher TI PoPLAR: Portal for Petascale Lifescience Applications and Research SO BMC BIOINFORMATICS LA English DT Article ID INFERENCE; PLATFORM; MRBAYES; SCIENCE; MODELS; BLAST AB Background: We are focusing specifically on fast data analysis and retrieval in bioinformatics that will have a direct impact on the quality of human health and the environment. The exponential growth of data generated in biology research, from small atoms to big ecosystems, necessitates an increasingly large computational component to perform analyses. Novel DNA sequencing technologies and complementary high-throughput approaches-such as proteomics, genomics, metabolomics, and meta-genomics-drive data-intensive bioinformatics. While individual research centers or universities could once provide for these applications, this is no longer the case. Today, only specialized national centers can deliver the level of computing resources required to meet the challenges posed by rapid data growth and the resulting computational demand. Consequently, we are developing massively parallel applications to analyze the growing flood of biological data and contribute to the rapid discovery of novel knowledge. Methods: The efforts of previous National Science Foundation (NSF) projects provided for the generation of parallel modules for widely used bioinformatics applications on the Kraken supercomputer. We have profiled and optimized the code of some of the scientific community's most widely used desktop and small-cluster-based applications, including BLAST from the National Center for Biotechnology Information (NCBI), HMMER, and MUSCLE; scaled them to tens of thousands of cores on high-performance computing (HPC) architectures; made them robust and portable to next-generation architectures; and incorporated these parallel applications in science gateways with a web-based portal. Results: This paper will discuss the various developmental stages, challenges, and solutions involved in taking bioinformatics applications from the desktop to petascale with a front-end portal for very-large-scale data analysis in the life sciences. Conclusions: This research will help to bridge the gap between the rate of data generation and the speed at which scientists can study this data. The ability to rapidly analyze data at such a large scale is having a significant, direct impact on science achieved by collaborators who are currently using these tools on supercomputers. C1 [Rekapalli, Bhanu; Giblock, Paul; Reardon, Christopher] Univ Tennessee, Oak Ridge Natl Lab, Joint Inst Computat Sci, Oak Ridge, TN 37831 USA. RP Rekapalli, B (reprint author), Univ Tennessee, Oak Ridge Natl Lab, Joint Inst Computat Sci, 1 Bethel Valley Rd,Bldg 5100, Oak Ridge, TN 37831 USA. EM brekapal@utk.edu FU National Science Foundation (NSF) [EPS-0919436, OCI-1053575] FX This research used resources at the Joint Institute for Computational Sciences; Extreme Science and Engineering Discovery Environment (XSEDE), funded by the National Science Foundation (NSF); and also supported in part by the NSF grants EPS-0919436 and OCI-1053575. We would like to thank Mark Miller and Terri Schwartz for guidance during code development, and also thank Suresh Marru for technical assistance in adding the PoPLAR science gateway to XSEDE. NR 30 TC 2 Z9 2 U1 3 U2 10 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD JUN 28 PY 2013 VL 14 SU 9 AR UNSP S3 DI 10.1186/1471-2105-14-S9-S3 PG 12 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 184OM UT WOS:000321901100003 PM 23902523 ER PT J AU Levander, AX Yu, KM Novikov, SV Liliental-Weber, Z Foxon, CT Dubon, OD Wu, J Walukiewicz, W AF Levander, A. X. Yu, K. M. Novikov, S. V. Liliental-Weber, Z. Foxon, C. T. Dubon, O. D. Wu, J. Walukiewicz, W. TI Local structure of amorphous GaN1-xAsx semiconductor alloys across the composition range SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ABSORPTION FINE-STRUCTURE; RANDOM SOLID-SOLUTIONS; SOLAR-CELL; A-SI; FILMS; BAND; SPECTROSCOPY; CRYSTALLINE; GA1-XINXAS; EXAFS AB Typically only dilute (up to similar to 10%) highly mismatched alloys can be grown due to the large differences in atomic size and electronegativity of the host and the alloying elements. We have overcome the miscibility gap of the GaN1-xAsx system using low temperature molecular beam epitaxy. In the intermediate composition range (0.10 < x < 0.75), the resulting alloys are amorphous. To gain a better understanding of the amorphous structure, the local environment of the As and Ga atoms was investigated using extended x-ray absorption fine structure (EXAFS). The EXAFS analysis shows a high concentration of dangling bonds compared to the crystalline binary endpoint compounds of the alloy system. The disorder parameter was larger for amorphous films compared to crystalline references, but comparable with other amorphous semiconductors. By examining the Ga local environment, the dangling bond density and disorder associated with As-related and N-related bonds could be decoupled. The N-related bonds had a lower dangling bond density and lower disorder. (C) 2013 AIP Publishing LLC. C1 [Levander, A. X.; Yu, K. M.; Liliental-Weber, Z.; Dubon, O. D.; Wu, J.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Levander, A. X.; Dubon, O. D.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Novikov, S. V.; Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. RP Walukiewicz, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM W_Walukiewicz@lbl.gov RI Wu, Junqiao/G-7840-2011; OI Wu, Junqiao/0000-0002-1498-0148; Yu, Kin Man/0000-0003-1350-9642; Novikov, Sergei/0000-0002-3725-2565 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. DOE [DE-AC02-05CH11231]; EPSRC [EP/I004203/1, EP/G046867/1, EP/G030634/1]; DOE Office of Biological and Environmental Research; National Institutes of Health, National Center for Research Resources, Biomedical Technology Program [P41RR001209] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. DOE under Contract No. DE-AC02-05CH11231. The growth work at the University of Nottingham was supported by the EPSRC (Grant Nos. EP/I004203/1, EP/G046867/1, and EP/G030634/1). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. The SSRL Structural Molecular Biology Program was supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program (P41RR001209). NR 30 TC 4 Z9 4 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 28 PY 2013 VL 113 IS 24 AR 243505 DI 10.1063/1.4812277 PG 6 WC Physics, Applied SC Physics GA 174HY UT WOS:000321147300013 ER PT J AU Nittala, K Mhin, S Dunnigan, KM Robinson, DS Ihlefeld, JF Kotula, PG Brennecka, GL Jones, JL AF Nittala, Krishna Mhin, Sungwook Dunnigan, Katherine M. Robinson, Douglas S. Ihlefeld, Jon F. Kotula, Paul G. Brennecka, Geoff L. Jones, Jacob L. TI Phase and texture evolution in solution deposited lead zirconate titanate thin films: Formation and role of the Pt3Pb intermetallic phase SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CHEMICAL SOLUTION DEPOSITION; CAPACITOR APPLICATIONS; CRYSTALLIZATION; PZT; TRANSFORMATION; DIFFRACTION; PYROCHLORE; TRANSITION; SILICON; LAYERS AB Solution deposition is widely used for the fabrication of lead zirconate titanate (PZT) thin films on platinized silicon substrates. However, phase and texture evolution during the crystallization process is not well understood, particularly due to the difficulty in tracking changes in the thin films in situ during heating. In this work, we characterized phase and texture evolution in situ during heating and crystallization of PZT thin films using high-energy X-ray diffraction. Films were pyrolyzed at either 300 degrees C or 400 degrees C and heated at various rates between 0.5 degrees C/s and similar to 150 degrees C/s. For films that were pyrolyzed at 300 degrees C, the most rapid heating rates first induced strong intensities from a transient Pt3Pb phase. The Pt3Pb phase inherited the texture of the pre-existing platinum layer. Combined with other observations, the results suggest the conversion of the platinum to the intermetallic phase near the interface due to the interdiffusion of lead. In all experimental variations, the pyrochlore phase was observed to form concurrently with the disappearance of the Pt3Pb phase after which the perovskite phase ultimately crystallized. For films that were pyrolyzed at 400 degrees C, the Pt3Pb phase was not observed at any of the heating rates; instead, the pyrochlore phase was first observed, followed by the perovskite phase. Independent of the pyrolysis temperature or observation of Pt3Pb, a 111-dominant crystallographic texture formed in the perovskite phase when crystallized using fast heating rates. These results demonstrate that 111 textures in solution-derived PZT thin films are not correlated with the observation of Pt3Pb or other intermetallic or transient phases. (C) 2013 AIP Publishing LLC. C1 [Nittala, Krishna; Mhin, Sungwook; Dunnigan, Katherine M.; Jones, Jacob L.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Robinson, Douglas S.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ihlefeld, Jon F.; Kotula, Paul G.; Brennecka, Geoff L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Jones, JL (reprint author), Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. EM jacob_jones@ncsu.edu RI Ihlefeld, Jon/B-3117-2009; Kotula, Paul/A-7657-2011; Brennecka, Geoff/J-9367-2012 OI Kotula, Paul/0000-0002-7521-2759; Brennecka, Geoff/0000-0002-4476-7655 FU National Institute of NanoEngineering (NINE); Laboratory Directed Research and Development programs at Sandia; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. DOE [DE-AC02-06CH11357]; U.S. National Science Foundation [DMR-1207293] FX This work was supported by the National Institute of NanoEngineering (NINE) and Laboratory Directed Research and Development programs at Sandia. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Jones and Mhin acknowledge partial support for this work from the U.S. National Science Foundation through Award No. DMR-1207293. NR 33 TC 12 Z9 12 U1 0 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 28 PY 2013 VL 113 IS 24 AR 244101 DI 10.1063/1.4811687 PG 11 WC Physics, Applied SC Physics GA 174HY UT WOS:000321147300023 ER PT J AU Gleason, AE Mao, WL Zhao, JY AF Gleason, A. E. Mao, W. L. Zhao, J. Y. TI Sound velocities for hexagonally close-packed iron compressed hydrostatically to 136GPa from phonon density of states SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE sound velocity; NRIXS; hydrostatic; hcp-iron ID EARTHS INNER-CORE; HIGH-PRESSURE; LIGHT-ELEMENTS; BIRCHS LAW; HCP-IRON; GPA; FE; DIFFRACTION; GIGAPASCALS; ELASTICITY AB The phonon density of states of pure iron (Fe-57) was measured under hydrostatic conditions using nuclear resonant inelastic X-ray scattering (NRIXS) at pressures up to 136GPa. Extracting shear (V-s) and compressional (V-p) wave speeds from the Debye velocity and equation of state, we find the hydrostatic shear wave speed trend above previously collected NRIXS data under nonhydrostatic conditions by roughly 5%-6% in the measured pressure range. Using the Birch Murnaghan finite strain approach to fit pressure-dependent adiabatic bulk and shear moduli, we extrapolated our velocities to inner Earth core densities and found that our shear wave speeds are 3% higher than those in previous studies. Our results on pure iron provide a more accurate and precise baseline to which added complications (e.g., Ni concentration, inclusion of various light elements, and temperature effects) can be considered when comparing experimental elasticity measurements to inner core seismic data. C1 [Gleason, A. E.; Mao, W. L.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Mao, W. L.] SLAC Natl Accelerator Lab, Dept Photon Sci, Menlo Pk, CA USA. [Zhao, J. Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gleason, AE (reprint author), Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. EM ariannag@stanford.edu RI Mao, Wendy/D-1885-2009 FU Geophysics Program at NSF [EAR0738873]; Office of Basic Energy Sciences of the U.S. Department of Energy; NSF Division of Materials Research [DE-AC02-06CH11357, W-31-109-Eng-38]; Office of Basic Energy Sciences, U.S. Dept. of Energy [DE-AC02-05CH11231]; COMPRES through NSF FX A.E.G. and W. L. M. were supported by the Geophysics Program at NSF (EAR0738873). Portions of this work were performed at Sectors 16-ID-D, 16-BM-D, and 3-ID-B within XOR, Advanced Photon Source, ANL, supported by the Office of Basic Energy Sciences of the U.S. Department of Energy and by NSF Division of Materials Research under DE-AC02-06CH11357 and W-31-109-Eng-38. Beamline 12.2.2 of the Advanced Light Source, LBNL, is supported by the Office of Basic Energy Sciences, U.S. Dept. of Energy, under DE-AC02-05CH11231 and in part by COMPRES through NSF. The authors are grateful for helpful discussion and assistance from H.-K. Mao (Geophysical Laboratory), L. Gao (APS), and J.-F. Shu (Geophysical Laboratory). The authors thank two anonymous reviewers for their comments. NR 45 TC 5 Z9 6 U1 2 U2 30 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 28 PY 2013 VL 40 IS 12 BP 2983 EP 2987 DI 10.1002/grl.50588 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 185FJ UT WOS:000321951300019 ER PT J AU Ben-Naim, E Daub, EG Johnson, PA AF Ben-Naim, E. Daub, E. G. Johnson, P. A. TI Recurrence statistics of great earthquakes SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE earthquake clustering; statistical seismology; earthquake hazard ID CALIFORNIA; SEQUENCE AB We investigate the sequence of great earthquakes over the past century. To examine whether the earthquake record includes temporal clustering, we identify aftershocks and remove those from the record. We focus on the recurrence time, defined as the time between two consecutive earthquakes. We study the variance in the recurrence time and the maximal recurrence time. Using these quantities, we compare the earthquake record with sequences of random events, generated by numerical simulations, while systematically varying the minimal earthquake magnitude M-min. Our analysis shows that the earthquake record is consistent with a random process for magnitude thresholds 7.0M(min)8.3, where the number of events is larger. Interestingly, the earthquake record deviates from a random process at magnitude threshold 8.4M(min)8.5, where the number of events is smaller; however, this deviation is not strong enough to conclude that great earthquakes are clustered. Overall, the findings are robust both qualitatively and quantitatively as statistics of extreme values and moment analysis yield remarkably similar results. C1 [Ben-Naim, E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Ben-Naim, E.; Daub, E. G.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA. [Daub, E. G.; Johnson, P. A.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Daub, E. G.] Univ Grenoble 1, Inst Sci Terre, Grenoble, France. RP Ben-Naim, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. EM ebn@lanl.gov RI Ben-Naim, Eli/C-7542-2009; OI Ben-Naim, Eli/0000-0002-2444-7304; Johnson, Paul/0000-0002-0927-4003 FU DOE [DE-AC52-06NA25396] FX We thank Robert Guyer, Robert Ecke, Joan Gomberg, and Thorne Lay for comments. We gratefully acknowledge support for this research through DOE grant DE-AC52-06NA25396. NR 22 TC 6 Z9 6 U1 3 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 28 PY 2013 VL 40 IS 12 BP 3021 EP 3025 DI 10.1002/grl.50605 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 185FJ UT WOS:000321951300026 ER PT J AU Kassianov, E Barnard, J Pekour, M Berg, LK Michalsky, J Lantz, K Hodges, G AF Kassianov, Evgueni Barnard, James Pekour, Mikhail Berg, Larry K. Michalsky, Joseph Lantz, Kathy Hodges, Gary TI Do diurnal aerosol changes affect daily average radiative forcing? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE diurnal variability of aerosol; remote sensing; time-averaged direct aerosol radiative forcing; Two-Column Aerosol Project (TCAP) ID VARIABILITY; ATMOSPHERE AB Strong diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing. C1 [Kassianov, Evgueni; Barnard, James; Pekour, Mikhail; Berg, Larry K.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Michalsky, Joseph] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Lantz, Kathy; Hodges, Gary] Univ Colorado Boulder, CIRES, Boulder, CO USA. RP Kassianov, E (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-24, Richland, WA 99352 USA. EM Evgueni.Kassianov@pnnl.gov RI Berg, Larry/A-7468-2016 OI Berg, Larry/0000-0002-3362-9492 FU Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE); DOE [DE-A06-76RLO 1830]; NOAA GOES-R Cal/Val Activities within NOAA's National Environmental Satellite, Data, and Information Service FX This work has been supported by the Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE) as part of the Atmospheric Radiation Measurement (ARM) and Atmospheric System Research (ASR) Programs. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under contract DE-A06-76RLO 1830. The MFRSR-NOAA measurements were supported by NOAA GOES-R Cal/Val Activities within NOAA's National Environmental Satellite, Data, and Information Service. The authors thank one anonymous reviewer for his/her comments. NR 20 TC 10 Z9 10 U1 4 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 28 PY 2013 VL 40 IS 12 BP 3265 EP 3269 DI 10.1002/grl.50567 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 185FJ UT WOS:000321951300069 ER PT J AU Zhang, L Kok, JF Henze, DK Li, QB Zhao, C AF Zhang, Li Kok, Jasper F. Henze, Daven K. Li, Qinbin Zhao, Chun TI Improving simulations of fine dust surface concentrations over the western United States by optimizing the particle size distribution SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE fine dust; particle size distribution; GEOS-Chem ID MINERAL DUST; GOCART MODEL; SEA-SALT; AEROSOLS; IMPACT; EMISSIONS; TRANSPORT; POLLUTION; SULFATE; TRENDS AB To improve estimates of remote contributions of dust to fine particulate matter (PM2.5) in the western United States, new dust particle size distributions (PSDs) based upon scale-invariant fragmentation theory (Kok_PSD) with constraints from in situ measurements (IMP_PSD) are implemented in a chemical transport model (GEOS-Chem). Compared to initial simulations, this leads to reductions in the mass of emitted dust particles with radii <1.8 mu m by 40%-60%. Consequently, the root-mean-square error in simulated fine dust concentrations compared to springtime surface observations in the western United States is reduced by 67%-81%. The ratio of simulated fine to coarse PM mass is also improved, which is not achievable by reductions in total dust emissions. The IMP_PSD best represents the PSD of dust transported from remote sources and reduces modeled PM2.5 concentrations up to 5 mu g/m(3) over the western United States, which is important when considering sources contributing to nonattainment of air quality standards. C1 [Zhang, Li; Henze, Daven K.] Univ Colorado, Dept Chem Engn, Boulder, CO 80309 USA. [Zhang, Li; Li, Qinbin] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Kok, Jasper F.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY USA. [Zhao, Chun] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Zhang, L (reprint author), Univ Colorado, Dept Chem Engn, 1111 Engn Dr,ECME 114, Boulder, CO 80309 USA. EM li.zhang@colorado.edu RI Chem, GEOS/C-5595-2014; Zhao, Chun/A-2581-2012; Kok, Jasper/A-9698-2008; ZHANG, LI/C-6743-2015 OI Zhao, Chun/0000-0003-4693-7213; Kok, Jasper/0000-0003-0464-8325; FU EPA-STAR [RD-83503701-0]; NSF [AGS 1137716]; U.S. Department of Energy FX L. Zhang and D. K. Henze recognize support from EPA-STAR grant RD-83503701-0. J. F. Kok was supported by NSF grant AGS 1137716. C. Zhao was partially supported by the Earth System Modeling Program of the U. S. Department of Energy in scope of the project "Investigations on the Magnitude and Probabilities of Abrupt Climate Transitions." NR 34 TC 12 Z9 12 U1 2 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 28 PY 2013 VL 40 IS 12 BP 3270 EP 3275 DI 10.1002/grl.50591 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 185FJ UT WOS:000321951300070 ER PT J AU Gu, L Liu, C Guo, ZF AF Gu, Lei Liu, Cong Guo, Zhefeng TI Structural Insights into A beta 42 Oligomers Using Site-directed Spin Labeling SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID AMYLOID-BETA-PROTEIN; ALZHEIMERS-DISEASE; AGGREGATION BEHAVIOR; SIDE-CHAINS; SHEET; PEPTIDE; FIBRILS; MOTION; SPECTROSCOPY; EPR AB Oligomerization of the 42-residue peptide A beta 42 plays a key role in the pathogenesis of Alzheimer disease. Despite great academic and medical interest, the structures of these oligomers have not been well characterized. Site-directed spin labeling combined with electron paramagnetic resonance spectroscopy is a powerful approach for studying structurally ill-defined systems, but its application in amyloid oligomer structure study has not been systematically explored. Here we report a comprehensive structural study on a toxic A beta 42 oligomer, called globulomer, using site-directed spin labeling complemented by other techniques. Transmission electron microscopy shows that these oligomers are globular structures with diameters of similar to 7-8 nm. Circular dichroism shows primarily beta-structures. X-ray powder diffraction suggests a highly ordered intrasheet hydrogen-bonding network and a heterogeneous intersheet packing. Residue-level mobility analysis on spin labels introduced at 14 different positions shows a structured state and a disordered state at all labeling sites. Side chain mobility analysis suggests that structural order increases from N- to C-terminal regions. Intermolecular distance measurements at 14 residue positions suggest that C-terminal residues Gly-29-Val-40 form a tightly packed core with intermolecular distances in a narrow range of 11.5-12.5 angstrom. These intermolecular distances rule out the existence of fibril-like parallel in-register beta-structures and strongly suggest an antiparallel beta-sheet arrangement in A beta 42 globulomers. C1 [Gu, Lei; Guo, Zhefeng] Univ Calif Los Angeles, Dept Neurol, Brain Res Inst, Inst Mol Biol, Los Angeles, CA 90095 USA. [Liu, Cong] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Guo, ZF (reprint author), Univ Calif Los Angeles, Dept Neurol, 710 Westwood Plaza, Los Angeles, CA 90095 USA. EM zhefeng@ucla.edu RI Guo, Zhefeng/A-2069-2013 FU Alzheimer's Association [NIRG-09-133555]; American Health Assistance Foundation [A2010362] FX This work was supported by the Alzheimer's Association (Grant NIRG-09-133555) and American Health Assistance Foundation (Grant A2010362). NR 59 TC 19 Z9 22 U1 1 U2 25 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUN 28 PY 2013 VL 288 IS 26 BP 18673 EP 18683 DI 10.1074/jbc.M113.457739 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 176WB UT WOS:000321335800004 PM 23687299 ER PT J AU Johnson, LM Gao, L Shields, CW Smith, M Efimenko, K Cushing, K Genzer, J Lopez, GP AF Johnson, Leah M. Gao, Lu Shields, C. Wyatt Smith, Margret Efimenko, Kirill Cushing, Kevin Genzer, Jan Lopez, Gabriel P. TI Elastomeric microparticles for acoustic mediated bioseparations SO JOURNAL OF NANOBIOTECHNOLOGY LA English DT Article DE Cell separation; Continuous cell sorting; Acoustofluidics; Particle synthesis; Ultrasound standing wave ID MICROFLUIDIC CHANNELS; POLY(DIMETHYLSILOXANE); SEPARATION; PARTICLES; FLOW; ACOUSTOPHORESIS; MICROCHANNELS; CELLS AB Background: Acoustophoresis has been utilized successfully in applications including cell trapping, focusing, and purification. One current limitation of acoustophoresis for cell sorting is the reliance on the inherent physical properties of cells (e.g., compressibility, density) instead of selecting cells based upon biologically relevant surface-presenting antigens. Introducing an acoustophoretic cell sorting approach that allows biochemical specificity may overcome this limitation, thus advancing the value of acoustophoresis approaches for both the basic research and clinical fields. Results: The results presented herein demonstrate the ability for negative acoustic contrast particles (NACPs) to specifically capture and transport positive acoustic contrast particles (PACPs) to the antinode of an ultrasound standing wave. Emulsification and post curing of pre-polymers, either polydimethylsiloxane (PDMS) or polyvinylmethylsiloxane (PVMS), within aqueous surfactant solution results in the formation of stable NACPs that focus onto pressure antinodes. We used either photochemical reactions with biotin-tetrafluorophenyl azide (biotin-TFPA) or end-functionalization of Pluronic F108 surfactant to biofunctionalize NACPs. These biotinylated NACPs bind specifically to streptavidin polystyrene microparticles (as cell surrogates) and transport them to the pressure antinode within an acoustofluidic chip. Conclusion: To the best of our knowledge, this is the first demonstration of using NACPs as carriers for transport of PACPs in an ultrasound standing wave. By using different silicones (i.e., PDMS, PVMS) and curing chemistries, we demonstrate versatility of silicone materials for NACPs and advance the understanding of useful approaches for preparing NACPs. This bioseparation scheme holds potential for applications requiring rapid, continuous separations such as sorting and analysis of cells and biomolecules. C1 [Johnson, Leah M.; Shields, C. Wyatt; Smith, Margret; Lopez, Gabriel P.] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA. [Gao, Lu; Lopez, Gabriel P.] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. [Gao, Lu; Shields, C. Wyatt; Genzer, Jan; Lopez, Gabriel P.] Duke Univ, NSF Res Triangle Mat Res Sci & Engn Ctr, Durham, NC 27708 USA. [Efimenko, Kirill; Genzer, Jan] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Cushing, Kevin; Lopez, Gabriel P.] Univ New Mexico, Ctr Biomed Engn, Albuquerque, NM 87131 USA. [Cushing, Kevin] Los Alamos Natl Lab, Natl Flow Cytometry Resource, Los Alamos, NM 87545 USA. RP Lopez, GP (reprint author), Duke Univ, Dept Biomed Engn, 101 Sci Dr,3361 CIEMAS, Durham, NC 27708 USA. EM gabriel.lopez@duke.edu FU National Science Foundation (NSF, through the Research Triangle MRSEC) [DMR-1121107, CBET-10-50176]; NSF Graduate Research Fellowship [1106401] FX This work was supported by the National Science Foundation (NSF, through the Research Triangle MRSEC: DMR-1121107 and CBET-10-50176). LMJ thanks The Hartwell Foundation (Biomedical Research Fellowship) and CWS is grateful for a NSF Graduate Research Fellowship (1106401). MS thanks the Pratt Research Fellows program at Duke University. KC thanks the National Institutes of Health (NIH RR020064, NIH RR001315). We thank Zijian Zhou at Duke University for the images of the acoustofluidic chip. NR 22 TC 16 Z9 16 U1 9 U2 57 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1477-3155 J9 J NANOBIOTECHNOL JI J. Nanobiotechnol. PD JUN 28 PY 2013 VL 11 AR 22 DI 10.1186/1477-3155-11-22 PG 8 WC Biotechnology & Applied Microbiology; Nanoscience & Nanotechnology SC Biotechnology & Applied Microbiology; Science & Technology - Other Topics GA 180FI UT WOS:000321578600003 PM 23809852 ER PT J AU Eudes, A Juminaga, D Baidoo, EEK Collins, FW Keasling, JD Loque, D AF Eudes, Aymerick Juminaga, Darmawi Baidoo, Edward E. K. Collins, F. William Keasling, Jay D. Loque, Dominique TI Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli SO MICROBIAL CELL FACTORIES LA English DT Article DE Avenanthramide; Tranilast; BAHD; Antioxidant; Anti-inflammatory; Tyrosine; Anthranilate; Hydroxycinnamate; Biological synthesis; Escherichia coli ID L-TYROSINE PRODUCTION; DIABETIC CARDIOMYOPATHY; 4-COUMARATE-COA LIGASE; ANTIALLERGIC DRUG; CAFFEIC ACID; GENE FAMILY; IN-VITRO; AVENANTHRAMIDES; OATS; BIOSYNTHESIS AB Background: Oats contain hydroxycinnamoyl anthranilates, also named avenanthramides (Avn), which have beneficial health properties because of their antioxidant, anti-inflammatory, and antiproliferative effects. The microbial production of hydroxycinnamoyl anthranilates is an eco-friendly alternative to chemical synthesis or purification from plant sources. We recently demonstrated in yeast (Saccharomyces cerevisiae) that coexpression of 4-coumarate: CoA ligase (4CL) from Arabidopsis thaliana and hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT) from Dianthus caryophyllusenabled the biological production of several cinnamoyl anthranilates upon feeding with anthranilate and various cinnamates. Using engineering strategies to overproduce anthranilate and hydroxycinnamates, we describe here an entire pathway for the microbial synthesis of two Avns from glucose in Escherichia coli. Results: We first showed that coexpression of HCBT and Nt4CL1 from tobacco in the E. coli anthranilate-accumulating strain W3110 trpD9923 allowed the production of Avn D [N-(4'-hydroxycinnamoyl)-anthranilic acid] and Avn F [N-(3',4'-dihydroxycinnamoyl)-anthranilic acid] upon feeding with p-coumarate and caffeate, respectively. Moreover, additional expression in this strain of a tyrosine ammonia-lyase from Rhodotorula glutinis (RgTAL) led to the conversion of endogenous tyrosine into p-coumarate and resulted in the production of Avn D from glucose. Second, a 135-fold improvement in Avn D titer was achieved by boosting tyrosine production using two plasmids that express the eleven genes necessary for tyrosine synthesis from erythrose 4-phosphate and phosphoenolpyruvate. Finally, expression of either the p-coumarate 3-hydroxylase Sam5 from Saccharothrix espanensis or the hydroxylase complex HpaBC from E. coli resulted in the endogenous production of caffeate and biosynthesis of Avn F. Conclusion: We established a biosynthetic pathway for the microbial production of valuable hydroxycinnamoyl anthranilates from an inexpensive carbon source. The proposed pathway will serve as a platform for further engineering toward economical and sustainable bioproduction of these pharmaceuticals and other related aromatic compounds. C1 [Eudes, Aymerick; Juminaga, Darmawi; Baidoo, Edward E. K.; Keasling, Jay D.; Loque, Dominique] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Eudes, Aymerick; Keasling, Jay D.; Loque, Dominique] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Juminaga, Darmawi; Keasling, Jay D.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Juminaga, Darmawi; Keasling, Jay D.] Univ Calif Berkeley, Synthet Biol Inst, Berkeley, CA 94720 USA. [Collins, F. William] Agr & Agri Food Canada, Eastern Cereal & Oilseed Res Ctr, Ottawa, ON K1A 0C5, Canada. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Loque, D (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA. EM dloque@lbl.gov RI Keasling, Jay/J-9162-2012; Loque, Dominique/A-8153-2008 OI Keasling, Jay/0000-0003-4170-6088; FU Amyris; LS9; Lygos; Afingen; U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; U.S. Department of Energy FX JDK has financial conflicts of interest in Amyris, LS9, and Lygos. DL has financial conflicts of interest in Afingen.; Authors are thankful to Dr. Carsten Rautengarten for providing the Nt4CL1 cDNA clone and Sabin Russell for language editing of the manuscript. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. NR 63 TC 12 Z9 13 U1 2 U2 36 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1475-2859 J9 MICROB CELL FACT JI Microb. Cell. Fact. PD JUN 28 PY 2013 VL 12 AR 62 DI 10.1186/1475-2859-12-62 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 183YI UT WOS:000321852800001 PM 23806124 ER PT J AU Abdel-Naby, SA Ciappina, MF Pindzola, MS Colgan, J AF Abdel-Naby, Sh. A. Ciappina, M. F. Pindzola, M. S. Colgan, J. TI Nuclear-recoil differential cross sections for the two-photon double ionization of helium SO PHYSICAL REVIEW A LA English DT Article ID DOUBLE PHOTOIONIZATION; PERTURBATION-THEORY; HE AB The time-dependent close-coupling method is used to calculate fully differential cross sections for the two-photon double ionization of the He(1s(2) S-1(e)) ground state at a photon energy of 44 eV and the He(1s2s S-1,3(e)) excited states at a photon energy of 34 eV. The total and triple-differential cross sections for the ground state are in good agreement with available calculations. We also used the time-dependent close-coupling method to calculate fully differential nuclear-recoil cross sections of He2+ for the two-photon double ionization of He in the ground and excited states at the same photon energies. The nuclear-recoil differential cross sections of He2+ for the ground state are in good agreement with the measurements recorded with a reaction microscope at the free-electron laser facility in Hamburg (FLASH). C1 [Abdel-Naby, Sh. A.; Ciappina, M. F.; Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Abdel-Naby, Sh. A.] Beni Suef Univ, Dept Phys, Bani Suwayf, Egypt. [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Abdel-Naby, SA (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RI Abdel-Naby, Shahin/G-1295-2014; OI Abdel-Naby, Shahin/0000-0002-9268-3587; Ciappina, Marcelo/0000-0002-1123-6460; Colgan, James/0000-0003-1045-3858 FU US Department of Energy; US National Science Foundation FX This work was supported in part by grants from the US Department of Energy and the US National Science Foundation. Computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, California, the National Institute for Computational Sciences in Knoxville, Tennessee, and the Oak Ridge Leadership Computing Facility in Oak Ridge, Tennessee. NR 47 TC 7 Z9 7 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN 28 PY 2013 VL 87 IS 6 AR 063425 DI 10.1103/PhysRevA.87.063425 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 173AH UT WOS:000321049200005 ER PT J AU Akers, C Laird, AM Fulton, BR Ruiz, C Bardayan, DW Buchmann, L Christian, G Davids, B Erikson, L Fallis, J Hager, U Hutcheon, D Martin, L Murphy, AS Nelson, K Spyrou, A Stanford, C Ottewell, D Rojas, A AF Akers, C. Laird, A. M. Fulton, B. R. Ruiz, C. Bardayan, D. W. Buchmann, L. Christian, G. Davids, B. Erikson, L. Fallis, J. Hager, U. Hutcheon, D. Martin, L. Murphy, A. St. J. Nelson, K. Spyrou, A. Stanford, C. Ottewell, D. Rojas, A. TI Measurement of Radiative Proton Capture on F-18 and Implications for Oxygen-Neon Novae SO PHYSICAL REVIEW LETTERS LA English DT Article ID REACTION-RATES; CLASSICAL NOVAE; ISAC AB The rate of the F-18(p, gamma)Ne-19 reaction affects the final abundance of the gamma-ray observable radioisotope F-18, produced in novae. However, no successful measurement of this reaction exists and the rate used is calculated from incomplete information on the contributing resonances. Of the two resonances thought to play a significant role, one has a radiative width estimated from the assumed analogue state in the mirror nucleus, F-19. The second does not have an analogue state assignment at all, resulting in an arbitrary radiative width being assumed. Here, we report the first successful direct measurement of the F-18(p, gamma)Ne-19 reaction. The strength of the 665 keV resonance (E-x = 7.076 MeV) is found to be over an order of magnitude weaker than currently assumed in nova models. Reaction rate calculations show that this resonance therefore plays no significant role in the destruction of F-18 at any astrophysical energy. C1 [Akers, C.; Ruiz, C.; Buchmann, L.; Christian, G.; Davids, B.; Fallis, J.; Hutcheon, D.; Martin, L.; Ottewell, D.; Rojas, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Akers, C.; Laird, A. M.; Fulton, B. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Bardayan, D. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Erikson, L.] Pacific Northwest Natl Lab, Richland, WA 99354 USA. [Hager, U.] Colorado Sch Mines, Golden, CO 80401 USA. [Murphy, A. St. J.] Univ Edinburgh, SUPA, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Nelson, K.] McMaster Univ, Hamilton, ON L8S 4L8, Canada. [Spyrou, A.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Spyrou, A.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Stanford, C.] Univ Waterloo, Waterloo, ON N2L 3G1, Canada. RP Akers, C (reprint author), TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. RI Hager, Ulrike/O-1738-2016 FU Science and Technology Funding Council; National Science Foundation [PHY 11-02511, PHY 08-22648] FX The authors would like to thank the beam delivery and ISAC operations groups at TRIUMF and the Natural Sciences & Engineering Research Council of Canada. The UK authors would like to acknowledge the support of the Science and Technology Funding Council. A. S. was supported by the National Science Foundation under Grants No. PHY 11-02511 and No. PHY 08-22648 (Joint Institute for Nuclear Astrophysics). We are also extremely grateful for the invaluable assistance in beam production from Marik Dombsky and Pierre Bricault. Anuj Parikh and Jordi Jose also provided the authors with valuable correspondence. Lastly, thanks to Richard deBoer and the other AZURE developers for giving the authors access to their R-Matrix minimization code. NR 27 TC 12 Z9 12 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 28 PY 2013 VL 110 IS 26 AR 262502 DI 10.1103/PhysRevLett.110.262502 PG 5 WC Physics, Multidisciplinary SC Physics GA 173SC UT WOS:000321098200006 PM 23848867 ER PT J AU Bortolon, A Heidbrink, WW Kramer, GJ Park, JK Fredrickson, ED Lore, JD Podesta, M AF Bortolon, A. Heidbrink, W. W. Kramer, G. J. Park, J. -K. Fredrickson, E. D. Lore, J. D. Podesta, M. TI Mitigation of Alfven Activity in a Tokamak by Externally Applied Static 3D Fields SO PHYSICAL REVIEW LETTERS LA English DT Article AB The application of static magnetic field perturbations to a tokamak plasma is observed to alter the dynamics of high-frequency bursting Alfven modes that are driven unstable by energetic ions. In response to perturbations with an amplitude of delta B/B similar to 0.01 at the plasma boundary, the mode amplitude is reduced, the bursting frequency is increased, and the frequency chirp is smaller. For modes of weaker bursting character, the magnetic perturbation induces a temporary transition to a saturated continuous mode. Calculations of the perturbed distribution function indicate that the 3D perturbation affects the orbits of fast ions that resonate with the bursting modes. The experimental evidence represents an important demonstration of the possibility of controlling fast-ion instabilities through "phase-space engineering" of the fast-ion distribution function, by means of externally applied perturbation fields. C1 [Bortolon, A.; Heidbrink, W. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bortolon, A.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Kramer, G. J.; Park, J. -K.; Fredrickson, E. D.; Podesta, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lore, J. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bortolon, A (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. EM abortolon@pppl.gov RI Bortolon, Alessandro/H-5764-2015; OI Bortolon, Alessandro/0000-0002-0094-0209; Lore, Jeremy/0000-0002-9192-465X FU US DOE [DE-FG02-06ER54867, DE-AC02-09CH11466, DOE-DE-SC0008309] FX The authors thank the NSTX team for their support. This work was supported by the US DOE (Contracts No. DE-FG02-06ER54867, No. DE-AC02-09CH11466, and No. DOE-DE-SC0008309). NR 18 TC 10 Z9 10 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 28 PY 2013 VL 110 IS 26 AR 265008 DI 10.1103/PhysRevLett.110.265008 PG 5 WC Physics, Multidisciplinary SC Physics GA 173SC UT WOS:000321098200012 PM 23848889 ER PT J AU Kemper, AF Sentef, M Moritz, B Kao, CC Shen, ZX Freericks, JK Devereaux, TP AF Kemper, A. F. Sentef, M. Moritz, B. Kao, C. C. Shen, Z. X. Freericks, J. K. Devereaux, T. P. TI Mapping of unoccupied states and relevant bosonic modes via the time-dependent momentum distribution SO PHYSICAL REVIEW B LA English DT Article ID RESOLUTION COMPTON-SCATTERING; DENSITY-WAVE; ELECTRON AB The unoccupied states of complex materials are difficult to measure, yet they play a key role in determining their properties. We propose a technique that can measure the unoccupied states, called time-resolved Compton scattering, which measures the time-dependent momentum distribution (TDMD). Using a nonequilibrium Keldysh formalism, we study the TDMD for electrons coupled to a lattice in a pump-probe setup. We find a direct relation between temporal oscillations in the TDMD and the dispersion of the underlying unoccupied states, suggesting that both can be measured by time-resolved Compton scattering. We demonstrate the experimental feasibility by applying the method to a model of MgB2 with realistic material parameters. C1 [Kemper, A. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Kemper, A. F.; Sentef, M.; Moritz, B.; Shen, Z. X.; Devereaux, T. P.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Moritz, B.] Univ Illinois, Dept Phys, De Kalb, IL 60115 USA. [Moritz, B.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Kao, C. C.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Shen, Z. X.; Devereaux, T. P.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Freericks, J. K.] Georgetown Univ, Dept Phys, Washington, DC 20057 USA. RP Kemper, AF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM afkemper@lbl.gov RI Sentef, Michael/L-5717-2013; Moritz, Brian/D-7505-2015; Kemper, Alexander/F-8243-2016; OI Sentef, Michael/0000-0002-7946-0282; Moritz, Brian/0000-0002-3747-8484; Kemper, Alexander/0000-0002-5426-5181; Freericks, James/0000-0002-6232-9165 FU US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-76SF00515, DE-FG02-08ER46542, DE-FG02-08ER46540, DE-SC0007091]; McDevitt bequest at Georgetown University; US DOE, Office of Science [DE-AC02-05CH11231] FX A.F.K., M.S., B.M. and T.P.D. were supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-76SF00515. J.K.F. was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-FG02-08ER46542 and by the McDevitt bequest at Georgetown University. The collaboration was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under Contract Nos. DE-FG02-08ER46540 and DE-SC0007091. This work was made possible by the resources of the National Energy Research Scientific Computing Center which is supported by the US DOE, Office of Science, under Contract No. DE-AC02-05CH11231. We gratefully acknowledge discussions with P. S. Kirchmann, J. Sobota, M. Wolf, and S. Yang. NR 24 TC 13 Z9 13 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 28 PY 2013 VL 87 IS 23 AR UNSP 235139 DI 10.1103/PhysRevB.87.235139 PG 7 WC Physics, Condensed Matter SC Physics GA 173EN UT WOS:000321061000001 ER PT J AU Olalde-Velasco, P Jimenez-Mier, J Denlinger, J Yang, WL AF Olalde-Velasco, P. Jimenez-Mier, J. Denlinger, J. Yang, W. -L. TI Atomic multiplets at the L-2,L-3 edge of 3d transition metals and the ligand K edge in x-ray absorption spectroscopy of ionic systems SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; SPECTRA; OXYGEN; FLUORIDES; OXIDES; EMISSION; DIFLUORIDES; BEAMLINE; FIELD AB Experimental X-ray absorption spectra at the fluorine K and transition metal L-2,L-3 absorption edges of the MF2 (M = Cr-Ni) family are presented. Ligand field calculations in D-4h symmetry show very good agreement with the transition metal L-2,L-3 XAS spectra. To successfully explain nominal Cr2+ L-2,L-3 XAS spectrum in CrF2, the inclusion of Cr+ and Cr3+ was needed implying the presence of a disproportionation reaction. The multiplet calculations were then modified to remove the structure of the 2p hole in the calculated M 2p -> 3d absorption spectra. These results for the 3d(n+1) states are in one to one correspondence with the leading edge structures found at the fluorine K edge. A direct comparison with the metal L-2,L-3 edges also indicates that there is evidence of the metal multiplet at the fluorine K pre-edge structures. C1 [Olalde-Velasco, P.; Denlinger, J.; Yang, W. -L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Jimenez-Mier, J.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. RP Olalde-Velasco, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM paulolalde@gmail.com; jimenez@nucleares.unam.mx RI Jimenez-Mier, Jose/A-5081-2009; Yang, Wanli/D-7183-2011 OI Jimenez-Mier, Jose/0000-0002-5939-9568; Yang, Wanli/0000-0003-0666-8063 FU DOE [DE-AC03-76sF0009]; CONACyT Mexico [56764] FX P.O.V. would like to acknowledge support from Centro de Ciencias de la Complejidad-UNAM and ALS-SSG during partial preparation of this manuscript. The Advanced Light Source is supported by DOE(DE-AC03-76sF0009). P.O.V. and J.J.M. would like to thank the support of CONACyT Mexico, respectively, under postdoctoral scholarship and under research Grant No. 56764. NR 36 TC 8 Z9 8 U1 1 U2 47 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 28 PY 2013 VL 87 IS 24 AR 245136 DI 10.1103/PhysRevB.87.245136 PG 8 WC Physics, Condensed Matter SC Physics GA 173ER UT WOS:000321061400003 ER PT J AU Xie, Y Kent, PRC AF Xie, Yu Kent, P. R. C. TI Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION-METAL CARBIDES; MAX PHASES; M(N+1)AX(N) PHASES; ION BATTERIES; GRAPHENE; STABILITY; NITRIDES; TI3ALC2; SOLIDS; TI2ALC AB Density functional theory simulations with conventional (PBE) and hybrid (HSE06) functionals were performed to investigate the structural and electronic properties of MXene monolayers, Tin+1Cn and Tin+1Nn (n = 1-9) with surfaces terminated by O, F, H, and OH groups. We find that PBE and HSE06 give similar results. Without functional groups, MXenes have magnetically ordered ground states. All the studied materials are metallic except for Ti2CO2, which we predict to be semiconducting. The calculated density of states at the Fermi level of the thicker MXenes (n >= 5) is much higher than for thin MXenes, indicating that properties such as electronic conductivity and surface chemistry will be different. In general, the carbides and nitrides behave differently with the same functional groups. C1 [Xie, Yu; Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kent, P. R. C.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Xie, Y (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM yxe@ornl.gov RI Kent, Paul/A-6756-2008; Xie, Yu/E-5875-2011 OI Kent, Paul/0000-0001-5539-4017; Xie, Yu/0000-0002-7782-5428 FU Fluid Interface Reactions, Structures and Transport (FIRST) Center; Energy Frontier Research Center by the US Department of Energy, Office of Science, Office of Basic Energy Sciences; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We thank Yury Gogotsi for helpful discussions and for bringing MXenes to our attention. V. Mochalin made helpful comments on the manuscript. This work was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 41 TC 84 Z9 86 U1 23 U2 192 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN 28 PY 2013 VL 87 IS 23 AR 235441 DI 10.1103/PhysRevB.87.235441 PG 10 WC Physics, Condensed Matter SC Physics GA 173EN UT WOS:000321061000009 ER PT J AU Woo, KM Yu, SS Barnard, JJ AF Woo, K. M. Yu, S. S. Barnard, J. J. TI Techniques for correcting velocity and density fluctuations of ion beams in ion inducti on accelerators SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB It is well known that the imperfection of pulse power sources that drive the linear induction accelerators can lead to time-varying fluctuation in the accelerating voltages, which in turn leads to longitudinal emittance growth. We show that this source of emittance growth is correctable, even in space-charge dominated beams with significant transients induced by space-charge waves. Two correction methods are proposed, and their efficacy in reducing longitudinal emittance is demonstrated with three-dimensional particle-in-cell simulations. C1 [Woo, K. M.; Yu, S. S.] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Yu, S. S.; Barnard, J. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Barnard, J. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Woo, KM (reprint author), Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. NR 12 TC 1 Z9 1 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN 28 PY 2013 VL 16 IS 6 AR 062804 DI 10.1103/PhysRevSTAB.16.062804 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 173SO UT WOS:000321099500002 ER PT J AU Pulk, A Cate, JHD AF Pulk, Arto Cate, Jamie H. D. TI Control of Ribosomal Subunit Rotation by Elongation Factor G SO SCIENCE LA English DT Article ID MESSENGER-RNA TRANSLOCATION; EF-G; GTP HYDROLYSIS; CONFORMATIONAL-CHANGES; INTERSUBUNIT ROTATION; INTERMEDIATE STATES; PROTEIN-SYNTHESIS; KINETIC-ANALYSIS; SWITCH-I; MOVEMENT AB Protein synthesis by the ribosome requires the translocation of transfer RNAs and messenger RNA by one codon after each peptide bond is formed, a reaction that requires ribosomal subunit rotation and is catalyzed by the guanosine triphosphatase (GTPase) elongation factor G (EF-G). We determined 3 angstrom resolution x-ray crystal structures of EF-G complexed with a nonhydrolyzable guanosine 5'-triphosphate (GTP) analog and bound to the Escherichia coli ribosome in different states of ribosomal subunit rotation. The structures reveal that EF-G binding to the ribosome stabilizes switch regions in the GTPase active site, resulting in a compact EF-G conformation that favors an intermediate state of ribosomal subunit rotation. These structures suggest that EF-G controls the translocation reaction by cycles of conformational rigidity and relaxation before and after GTP hydrolysis. C1 [Pulk, Arto; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Cate, JHD (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Calif Inst Quantitat Biosci, 229 Stanley Hall, Berkeley, CA 94720 USA. EM jcate@lbl.gov OI Pulk, Arto/0000-0001-8793-3038 FU NIH [R01-GM65050]; NIH project MINOS [R01GM105404]; U.S. Department of Energy [DEAC02-05CH11231] FX We thank J. Doudna for helpful discussions and comments, J. Holton and G. Meigs for help with x-ray data collection, and P. Afonine and J. Headd for advice on crystallographic refinement. This work was supported by NIH grant R01-GM65050 to J. H. D. C., by the NIH project MINOS grant R01GM105404 for the Structural Integrated Biology for Life Sciences (SIBYLS) and 8.3.1 beam lines at the Advanced Light Source (ALS), and by the U.S. Department of Energy (DEAC02-05CH11231 for the SIBYLS and 8.3.1 beam-lines at the ALS). Coordinates for the ribosomes have been deposited in the Protein Data Bank (PDB): 4KIX, 4KIY, 4KIZ, 4KJ0, 4KJ1, 4KJ2, 4KJ3, 4KJ4, 4KJ5, 4KJ6, 4KJ7, 4KJ8, 4KJ9, 4KJA, 4KJB, and 4KJC. NR 56 TC 77 Z9 78 U1 1 U2 31 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JUN 28 PY 2013 VL 340 IS 6140 BP 1544 EP + AR 1235970 DI 10.1126/science.1235970 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 172ME UT WOS:000321007000033 PM 23812721 ER PT J AU Rowley, DB Forte, AM Moucha, R Mitrovica, JX Simmons, NA Grand, SP AF Rowley, David B. Forte, Alessandro M. Moucha, Robert Mitrovica, Jerry X. Simmons, Nathan A. Grand, Stephen P. TI Dynamic Topography Change of the Eastern United States Since 3 Million Years Ago SO SCIENCE LA English DT Article ID ATLANTIC COASTAL-PLAIN; SEA-LEVEL CHANGE; PASSIVE MARGIN; NEW-JERSEY; RECORD; PLIOCENE; FLUCTUATIONS; COREHOLES; PLATFORM; DRIVEN AB Sedimentary rocks from Virginia through Florida record marine flooding during the mid-Pliocene. Several wave-cut scarps that at the time of deposition would have been horizontal are now draped over a warped surface with a maximum variation of 60 meters. We modeled dynamic topography by using mantle convection simulations that predict the amplitude and broad spatial distribution of this distortion. The results imply that dynamic topography and, to a lesser extent, glacial isostatic adjustment account for the current architecture of the coastal plain and proximal shelf. This confounds attempts to use regional stratigraphic relations as references for longer-term sea-level determinations. Inferences of Pliocene global sea-level heights or stability of Antarctic ice sheets therefore cannot be deciphered in the absence of an appropriate mantle dynamic reference frame. C1 [Rowley, David B.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Forte, Alessandro M.] Univ Quebec, GEOTOP, Montreal, PQ H3C 3P8, Canada. [Moucha, Robert] Syracuse Univ, Dept Earth Sci, Heroy Geol Lab 204, Syracuse, NY 13244 USA. [Mitrovica, Jerry X.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Simmons, Nathan A.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. [Grand, Stephen P.] Univ Texas Austin, Jackson Sch Geol Sci, Austin, TX 78712 USA. RP Rowley, DB (reprint author), Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. EM drowley@uchicago.edu RI Simmons, Nathan/J-9022-2014; Grand, Stephen/B-4238-2011; OI Rowley, David/0000-0001-9767-9029 FU Canadian Institute for Advanced Research (CIFAR); Natural Sciences and Engineering Research Council of Canada; Canada Research Chair Program; U.S. Department of Energy [DE-AC52-07NA27344]; NSF [EAR0309189, OCE-1202632]; Harvard University; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX D.B.R., A. M. F., and J.X.M. thank the Canadian Institute for Advanced Research (CIFAR) for research support and a postdoctoral fellowship to R. M. and members of the Earth Systems Evolution Program of CIFAR for discussions and encouragement. We also acknowledge funding from Natural Sciences and Engineering Research Council of Canada and the Canada Research Chair Program (A. M. F.), the U.S. Department of Energy under contract DE-AC52-07NA27344 (N.A.S.), NSF grants EAR0309189 (S. P. G.) and OCE-1202632 (J.X.M.), and Harvard University (J.X.M.). Work by N.A.S. is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Data are available online in the supplementary materials. D. B. R. was responsible for the geology and data integration and thanks T. Komacek for help compiling Pliocene marine localities along the Coastal Plain; A. M. F. and R. M. were responsible for the dynamic topography calculations; J.X.M. for glacial isostatic adjustment calculations; and N.A.S. and S. P. G., for the global seismic tomography, which, working together with A. M. F., yielded the buoyancy field that underlies the dynamic topography calculations. NR 41 TC 56 Z9 56 U1 6 U2 48 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 28 PY 2013 VL 340 IS 6140 BP 1560 EP 1563 DI 10.1126/science.1229180 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 172ME UT WOS:000321007000038 PM 23686342 ER PT J AU Barnard, ES Hoke, ET Connor, ST Groves, JR Kuykendall, T Yan, Z Samulon, EC Bourret-Courchesne, ED Aloni, S Schuck, PJ Peters, CH Hardin, BE AF Barnard, Edward S. Hoke, Eric T. Connor, Stephen T. Groves, James R. Kuykendall, Tevye Yan, Zewu Samulon, Eric C. Bourret-Courchesne, Edith D. Aloni, Shaul Schuck, P. James Peters, Craig H. Hardin, Brian E. TI Probing carrier lifetimes in photovoltaic materials using subsurface two-photon microscopy SO SCIENTIFIC REPORTS LA English DT Article ID TIME-RESOLVED PHOTOLUMINESCENCE; CDTE SINGLE-CRYSTALS; FLUORESCENCE MICROSCOPY; SURFACE RECOMBINATION; SOLAR-CELLS; GAAS; EFFICIENCY; RESOLUTION; GAN AB Accurately measuring the bulk minority carrier lifetime is one of the greatest challenges in evaluating photoactive materials used in photovoltaic cells. One-photon time-resolved photoluminescence decay measurements are commonly used to measure lifetimes of direct bandgap materials. However, because the incident photons have energies higher than the bandgap of the semiconductor, most carriers are generated close to the surface, where surface defects cause inaccurate lifetime measurements. Here we show that two-photon absorption permits sub-surface optical excitation, which allows us to decouple surface and bulk recombination processes even in unpassivated samples. Thus with two-photon microscopy we probe the bulk minority carrier lifetime of photovoltaic semiconductors. We demonstrate how the traditional one-photon technique can underestimate the bulk lifetime in a CdTe crystal by 10x and show that two-photon excitation more accurately measures the bulk lifetime. Finally, we generate multi-dimensional spatial maps of optoelectronic properties in the bulk of these materials using two-photon excitation. C1 [Barnard, Edward S.; Kuykendall, Tevye; Aloni, Shaul; Schuck, P. James] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Barnard, Edward S.; Hoke, Eric T.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.; Hardin, Brian E.] PLANT PV Inc, Oakland, CA USA. [Yan, Zewu; Samulon, Eric C.; Bourret-Courchesne, Edith D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Barnard, ES (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM esbarnard@lbl.gov; pjschuck@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH1123]; Department of Energy [DE-EE0005332, DE-EE0005953] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH1123. This material is based upon work supported by the Department of Energy under Award Numbers DE-EE0005332 and DE-EE0005953. NR 31 TC 18 Z9 18 U1 0 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUN 28 PY 2013 VL 3 AR 2098 DI 10.1038/srep02098 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 172WQ UT WOS:000321036900011 PM 23807197 ER PT J AU Gretarsson, H Clancy, JP Singh, Y Gegenwart, P Hill, JP Kim, J Upton, MH Said, AH Casa, D Gog, T Kim, YJ AF Gretarsson, H. Clancy, J. P. Singh, Yogesh Gegenwart, P. Hill, J. P. Kim, Jungho Upton, M. H. Said, A. H. Casa, D. Gog, T. Kim, Young-June TI Magnetic excitation spectrum of Na2IrO3 probed with resonant inelastic x-ray scattering SO PHYSICAL REVIEW B LA English DT Article AB The low energy excitations in Na2IrO3 have been investigated using resonant inelastic x-ray scattering (RIXS). A magnetic excitation branch can be resolved, whose dispersion reaches a maximum energy of about 35 meV at the Gamma point. The momentum dependence of the excitation energy is much larger along the Gamma-X direction compared to that along the Gamma-Y direction. The observed dispersion relation is consistent with a recent theoretical prediction based on the Heisenberg-Kitaev model. At high temperatures, we find large contributions from lattice vibrational modes to our RIXS spectra, suggesting that a strong electron-lattice coupling is present in Na2IrO3. C1 [Gretarsson, H.; Clancy, J. P.; Kim, Young-June] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Singh, Yogesh] Indian Inst Sci Educ & Res Mohali, Manauli 140306, PO, India. [Gegenwart, P.] Univ Gottingen, Inst Phys 1, D-37077 Gottingen, Germany. [Hill, J. P.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Kim, Jungho; Upton, M. H.; Said, A. H.; Casa, D.; Gog, T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gretarsson, H (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM yjkim@physics.utoronto.ca RI Kim, Young-June /G-7196-2011; singh, yogesh/F-7160-2016; Casa, Diego/F-9060-2016; Gegenwart, Philipp/A-7291-2017 OI Kim, Young-June /0000-0002-1172-8895; FU NSERC; CFI; OMRI; U.S. DOE [DE-AC02-06CH11357] FX We would like to thank G. Khaliullin, G. Jackeli, B. J. Kim, and S. Johnston for valuable discussions. Research at the University of Toronto was supported by the NSERC, CFI, and OMRI. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 36 TC 40 Z9 40 U1 2 U2 48 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 28 PY 2013 VL 87 IS 22 AR 220407 DI 10.1103/PhysRevB.87.220407 PG 5 WC Physics, Condensed Matter SC Physics GA 173EJ UT WOS:000321060600001 ER PT J AU Mahjouri-Samani, M Zhou, YS Fan, L Gao, Y Xiong, W More, KL Jiang, L Lu, YF AF Mahjouri-Samani, M. Zhou, Y. S. Fan, L. Gao, Y. Xiong, W. More, K. L. Jiang, L. Lu, Y. F. TI Laser-assisted solid-state synthesis of carbon nanotube/silicon core/shell structures SO NANOTECHNOLOGY LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; LITHIUM-ION BATTERIES; MECHANICAL-PROPERTIES; NANOTUBES; SILICON; CAPACITY; ELECTRONICS; MOBILITY; ANODES AB A single-step solid-state synthetic approach was developed for the synthesis of silicon-coated carbon nanotube (CNT) core/shell structures. This was achieved through laser-induced melting and evaporation of CNT-deposited Si substrates using a continuous wavelength CO2 laser. The synthesis location of the CNT/Si structures was defined by the laser-irradiated spots. The thickness of the coating was controlled by tuning the laser power and synthesis time during the coating process. This laser-based synthetic technique provides a convenient approach for solid-state, controllable, gas-free, simple and cost-effective fabrication of CNT/Si core/shell structures. C1 [Mahjouri-Samani, M.; Zhou, Y. S.; Fan, L.; Gao, Y.; Xiong, W.; Lu, Y. F.] Univ Nebraska, Dept Elect Engn, Lincoln, NE 68588 USA. [More, K. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Jiang, L.] Beijing Inst Technol, Dept Mech & Automat Engn, Beijing 100081, Peoples R China. RP Mahjouri-Samani, M (reprint author), Univ Nebraska, Dept Elect Engn, Lincoln, NE 68588 USA. EM ylu2@unl.edu RI Gao, Yang/M-9866-2013; Mahjouri-Samani, Masoud/Q-2239-2015; More, Karren/A-8097-2016 OI Mahjouri-Samani, Masoud/0000-0002-6080-7450; More, Karren/0000-0001-5223-9097 FU National Science Foundation [CMMI 0852729, 1068510, 1129613]; Nebraska Center for Energy Science Research (NCESR); Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Facility; Office of Basic Energy Sciences, US Department of Energy FX This research work was financially supported by the National Science Foundation (CMMI 0852729, 1068510, 1129613), Nebraska Center for Energy Science Research (NCESR), and in part by Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. The authors are grateful to Dr David B Geohegan (ORNL) for his valuable discussions and comments. NR 36 TC 2 Z9 2 U1 3 U2 77 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD JUN 28 PY 2013 VL 24 IS 25 AR 255604 DI 10.1088/0957-4484/24/25/255604 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 159EY UT WOS:000320029000013 PM 23727730 ER PT J AU Ren, F Zhou, XD Liu, YC Wang, YQ Cai, GX Xiao, XH Dai, ZG Li, WQ Yan, SJ Wu, W Zhang, C Ni, HW Jiang, CZ AF Ren, Feng Zhou, Xiao-Dong Liu, Yi-Chao Wang, Yong-Qiang Cai, Guang-Xu Xiao, Xiang-Heng Dai, Zhi-Gao Li, Wen-Qing Yan, Shao-Jian Wu, Wei Zhang, Chao Ni, Hong-Wei Jiang, Chang-Zhong TI Fabrication and properties of TiO2 nanofilms on different substrates by a novel and universal method of Ti-ion implantation and subsequent annealing SO NANOTECHNOLOGY LA English DT Article ID VISIBLE-LIGHT IRRADIATION; TITANIUM-DIOXIDE; RAMAN-SCATTERING; NANOPHASE TIO2; ANATASE TIO2; PHOTOCATALYSTS; SPECTRUM; TRANSFORMATION; NANOPARTICLES; NANOCRYSTALS AB We report a new, novel and universal method to fabricate high-quality titanium dioxide (TiO2) nanofilms on different substrates by a solid phase growth process of ion implantation and subsequent annealing in oxygen atmosphere. Ti ions were implanted into fused silica, soda lime glass, Z-cut quartz, or (0001) alpha-sapphire by a metal vapor vacuum arc (MEVVA) ion source implanter to fluences of 0.75, 1.5 and 3 x 10(17) ions cm(-2) with a nominal accelerating voltage of 20 kV. To understand the influence of the annealing temperature, time, and substrate on the formation and phase transformation of the TiO2 nanofilms, the Ti-ion-implanted substrates were annealed in oxygen atmosphere from 500 to 1000 degrees C for 1-6 h. The formation of TiO2 nanofilms resulted from the slow out-diffusion of implanted Ti ions from the substrates which were then oxidized at the surfaces. The thickness and phase of the nanofilms can be tailored by controlling the implantation and annealing parameters. Since the TiO2 nanofilms are formed under high temperature and low growth rate, they show good crystallinity and antibacterial properties, with good film adhesion and stability, suggesting that the TiO2 nanofilms formed by this method have great potential in applications such as antibacterial and self-cleaning transparent glass. C1 [Ren, Feng; Zhou, Xiao-Dong; Liu, Yi-Chao; Cai, Guang-Xu; Xiao, Xiang-Heng; Dai, Zhi-Gao; Li, Wen-Qing; Yan, Shao-Jian; Wu, Wei; Jiang, Chang-Zhong] Wuhan Univ, Ctr Ion Beam Applicat, Sch Phys & Technol, Wuhan 430072, Peoples R China. [Ren, Feng; Zhou, Xiao-Dong; Liu, Yi-Chao; Cai, Guang-Xu; Xiao, Xiang-Heng; Dai, Zhi-Gao; Li, Wen-Qing; Yan, Shao-Jian; Wu, Wei; Jiang, Chang-Zhong] Wuhan Univ, Ctr Electron Microscopy, Wuhan 430072, Peoples R China. [Wang, Yong-Qiang] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Zhang, Chao; Ni, Hong-Wei] Wuhan Univ Sci & Technol, Sch Met & Mat, Wuhan 430081, Peoples R China. RP Ren, F (reprint author), Wuhan Univ, Ctr Ion Beam Applicat, Sch Phys & Technol, Wuhan 430072, Peoples R China. EM yqwang@lanl.gov; czjiang@whu.edu.cn RI Ren, Feng/F-9778-2014; Jiang, Changzhong/O-6273-2014; Wu, Wei/B-6255-2009; OI Ren, Feng/0000-0002-9557-5995; Wu, Wei/0000-0002-7672-7965; xiao, xiangheng/0000-0001-9111-1619 FU National Basic Research Program of China (973 Program) [2009CB939704]; Natural Science Foundation of China [51171132, 11175133, 11005082, 5120115]; Chinese Ministry of Education [201000141120042, 31100]; Hubei Provincial Natural Science Foundation [2012FFA042]; Fundamental Research Funds for the Central Universities; Center for Integrated Nanotechnologies (CINT) FX The author thanks the National Basic Research Program of China (973 Program, 2009CB939704), the Natural Science Foundation of China (51171132, 11175133, 11005082, 5120115), the Foundations from Chinese Ministry of Education (201000141120042, 31100), Hubei Provincial Natural Science Foundation (2012FFA042), and the Fundamental Research Funds for the Central Universities for financial support. Partial support for Y Q Wang was provided by the Center for Integrated Nanotechnologies (CINT), a US Department of Energy nanoscience user center jointly operated by Los Alamos and Sandia National Laboratories. NR 32 TC 8 Z9 9 U1 3 U2 53 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUN 28 PY 2013 VL 24 IS 25 AR 255603 DI 10.1088/0957-4484/24/25/255603 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 159EY UT WOS:000320029000012 PM 23727692 ER PT J AU Satoh, Y Yokota, T Sudo, T Kondo, M Lai, A Kincade, PW Kouro, T Iida, R Kokame, K Miyata, T Habuchi, Y Matsui, K Tanaka, H Matsumura, I Oritani, K Kohwi-Shigematsu, T Kanakura, Y AF Satoh, Yusuke Yokota, Takafumi Sudo, Takao Kondo, Motonari Lai, Anne Kincade, Paul W. Kouro, Taku Iida, Ryuji Kokame, Koichi Miyata, Toshiyuki Habuchi, Yoko Matsui, Keiko Tanaka, Hirokazu Matsumura, Itaru Oritani, Kenji Kohwi-Shigematsu, Terumi Kanakura, Yuzuru TI The Satb1 Protein Directs Hematopoietic Stem Cell Differentiation toward Lymphoid Lineages SO IMMUNITY LA English DT Article ID MAR-BINDING PROTEIN; BONE-MARROW; GENE-EXPRESSION; STROMAL CELLS; RAG1 LOCUS; PROGENITORS; PROMOTE; TRANSCRIPTION; IDENTIFICATION; LYMPHOPOIESIS AB How hematopoietic stem cells (HSCs) produce particular lineages is insufficiently understood. We searched for key factors that direct HSC to lymphopoiesis. Comparing gene expression profiles for HSCs and early lymphoid progenitors revealed that Satb1, a global chromatin regulator, was markedly induced with lymphoid lineage specification. HSCs from Satb1-deficient mice were defective in lymphopoietic activity in culture and failed to reconstitute T lymphopoiesis in wild-type recipients. Furthermore, Satb1 transduction of HSCs and embryonic stem cells robustly promoted their differentiation toward lymphocytes. Whereas genes that encode Ikaros, E2A, and Notch1 were unaffected, many genes involved in lineage decisions were regulated by Satb1. Satb1 expression was reduced in aged HSCs with compromised lymphopoietic potential, but forced Satb1 expression partly restored that potential. Thus, Satb1 governs the initiating process central to the replenishing of lymphoid lineages. Such activity in lymphoid cell generation may be of clinical importance and useful to overcome immunosenescence. C1 [Satoh, Yusuke; Yokota, Takafumi; Sudo, Takao; Habuchi, Yoko; Matsui, Keiko; Tanaka, Hirokazu; Matsumura, Itaru; Oritani, Kenji; Kanakura, Yuzuru] Osaka Univ, Grad Sch Med, Dept Hematol & Oncol, Suita, Osaka 5650871, Japan. [Kondo, Motonari; Lai, Anne] Duke Univ, Med Ctr, Dept Immunol, Durham, NC 27710 USA. [Kincade, Paul W.; Iida, Ryuji] Oklahoma Med Res Fdn, Immunobiol & Canc Program, Oklahoma City, OK 73104 USA. [Kouro, Taku; Iida, Ryuji] Natl Inst Biomed Innovat, Lab Immune Modulat, Ibaraki, Osaka 5670085, Japan. [Kokame, Koichi; Miyata, Toshiyuki] Natl Cerebral & Cardiovasc Ctr, Dept Mol Pathogenesis, Suita, Osaka 5658565, Japan. [Kohwi-Shigematsu, Terumi] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Cell & Mol Biol, Berkeley, CA 94720 USA. RP Yokota, T (reprint author), Osaka Univ, Grad Sch Med, Dept Hematol & Oncol, Suita, Osaka 5650871, Japan. EM yokotat@bldon.med.osaka-u.ac.jp FU Mitsubishi Pharma Research Foundation; National Institutes of Health [AI020069, HL107138-03, R37 CA039681] FX We thank T. Nakano for discussion of the results. This work was supported in part by a grant from Mitsubishi Pharma Research Foundation and grants AI020069, HL107138-03, and R37 CA039681 from the National Institutes of Health. NR 36 TC 27 Z9 28 U1 0 U2 6 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1074-7613 EI 1097-4180 J9 IMMUNITY JI Immunity PD JUN 27 PY 2013 VL 38 IS 6 BP 1105 EP 1115 DI 10.1016/j.immuni.2013.05.014 PG 11 WC Immunology SC Immunology GA AA2TR UT WOS:000330947500007 PM 23791645 ER PT J AU Lin, ZH Dong, J Greene, DL AF Lin, Zhenhong Dong, Jing Greene, David L. TI Hydrogen vehicles: Impacts of DOE technical targets on market acceptance and societal benefits SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen; Alternative fuel vehicle; Energy; Greenhouse gas; Public policy; Electric vehicle ID PLUG-IN HYBRID AB Hydrogen vehicles (H2V), including H-2 internal combustion engine, fuel cell and fuel cell plug-in hybrid, could greatly reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. The U.S. Department of Energy has adopted targets for vehicle component technologies to address key technical barriers to widespread commercialization of H(2)Vs. This study estimates the market acceptance of H(2)Vs and the resulting societal benefits and subsidy in 41 scenarios that reflect a wide range of progress in meeting these technical targets. Important results include: (1) H(2)Vs could reach 20-70% market shares by 2050, depending on progress in achieving the technical targets. With a basic hydrogen infrastructure (similar to 5% hydrogen availability), the H2V market share is estimated to be 2-8%. Fuel cell and hydrogen costs are the most important factors affecting the long-term market shares of H(2)Vs. (2) Meeting all technical targets on time could result in about an 80% cut in petroleum use and a 62% (or 72% with aggressive electricity de-carbonization) reduction in GHG in 2050. (3) The required hydrogen infrastructure subsidy is estimated to range from $22 to $47 billion and the vehicle subsidy from $4 to $17 billion. (4) Long-term H2V market shares, societal benefits and hydrogen subsidies appear to be highly robust against delay in one target, if all other targets are met on time. R&D diversification could provide insurance for greater societal benefits. (5) Both H(2)Vs and plug-in electric vehicles could exceed 50% market shares by 2050, if all targets are met on time. The overlapping technology, the fuel cell plug-in hybrid electric vehicle, appears attractive both in the short and long runs, but for different reasons. Copyright (c) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Lin, Zhenhong; Greene, David L.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA. [Dong, Jing] Iowa State Univ, Ames, IA 50011 USA. RP Lin, ZH (reprint author), Oak Ridge Natl Lab, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM linz@ornl.gov; jingdong@iastate.edu; dlgreene@ornl.gov FU U.S. Department of Energy's Fuel Cell Technologies Office; Vehicle Technologies Office FX The authors thank the support of the U.S. Department of Energy's Fuel Cell Technologies Office (Fred Joseck) and Vehicle Technologies Office (Jake Ward). The authors assume sole responsibilities for content and viewpoints expressed in this paper. NR 15 TC 5 Z9 5 U1 1 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUN 27 PY 2013 VL 38 IS 19 BP 7973 EP 7985 DI 10.1016/j.ijhydene.2013.04.120 PG 13 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 177XA UT WOS:000321407500026 ER PT J AU Klebanoff, LE Keller, JO AF Klebanoff, L. E. Keller, J. O. TI 5 years of hydrogen storage research in the U.S. DOE Metal Hydride Center of Excellence (MHCoE) (vol 38, pg 4533, 2013) SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Correction C1 [Klebanoff, L. E.; Keller, J. O.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Klebanoff, LE (reprint author), Sandia Natl Labs, POB 969,MS 9161,7011 East Ave, Livermore, CA 94551 USA. EM lekleba@sandia.gov NR 1 TC 2 Z9 2 U1 4 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUN 27 PY 2013 VL 38 IS 19 BP 8022 EP 8022 DI 10.1016/j.ijhydene.2013.04.105 PG 1 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 177XA UT WOS:000321407500031 ER PT J AU Houf, WG Winters, WS AF Houf, W. G. Winters, W. S. TI Simulation of high-pressure liquid hydrogen releases SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Liquid hydrogen jet releases; Hydrogen codes and standards; Dilution distances ID FLOW AB Sandia National Laboratories is working with stakeholders to develop scientific data for use by standards development organizations to create hydrogen codes and standards for the safe use of liquid hydrogen. Knowledge of the concentration field and flammability envelope for high-pressure hydrogen leaks is an issue of importance for the safe use of liquid hydrogen. Sandia National Laboratories is engaged in an experimental and analytical program to characterize and predict the behavior of liquid hydrogen releases. This paper presents a model for computing hydrogen dilution distances for cold hydrogen releases. Model validation is presented for leaks of room temperature and 80 K high-pressure hydrogen gas. The model accounts for a series of transitions that occurs from a stagnate location in the tank to a point in the leak jet where the concentration of hydrogen in air at the jet centerline has dropped to 4% by volume. The leaking hydrogen is assumed to be a simple compressible substance with thermodynamic equilibrium between hydrogen vapor, hydrogen liquid and air. For the multi-phase portions of the jet near the leak location the REFPROP equation of state models developed by NIST are used to account for the thermodynamics. Further downstream, the jet develops into an atmospheric gas jet where the thermodynamics are described as a mixture of ideal gases (hydrogen-air mixture). Simulations are presented for dilution distances in under-expanded high-pressure leaks from the saturated vapor and saturated liquid portions of a liquid hydrogen storage tank at 10.34 barg (150 PSIG). Copyright (c) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Houf, W. G.; Winters, W. S.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Houf, WG (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM will@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program under the Safety, Codes, and Standards subprogram FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000.; This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program under the Safety, Codes, and Standards subprogram element managed by Antonio Ruiz. NR 21 TC 2 Z9 2 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUN 27 PY 2013 VL 38 IS 19 BP 8092 EP 8099 DI 10.1016/j.ijhydene.2013.01.052 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 177XA UT WOS:000321407500040 ER PT J AU Houf, WG Evans, GH Ekoto, IW Merilo, EG Groethe, MA AF Houf, W. G. Evans, G. H. Ekoto, I. W. Merilo, E. G. Groethe, M. A. TI Hydrogen fuel-cell forklift vehicle releases in enclosed spaces SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen fuel-cell forklift; Simulations; Experimental validation; Hydrogen codes and standards ID DYNAMICS AB Sandia National Laboratories has worked with stakeholders and original equipment manufacturers (OEMs) to develop scientific data that can be used to create risk-informed hydrogen codes and standards for the safe operation of indoor hydrogen fuel-cell forklifts. An important issue is the possibility of an accident inside a warehouse or other enclosed space, where a release of hydrogen from the high-pressure gaseous storage tank could occur. For such scenarios, computational fluid dynamics (CFD) simulations have been used to model the release and dispersion of gaseous hydrogen from the vehicle and to study the behavior of the ignitable hydrogen cloud inside the warehouse or enclosure. The overpressure arising as a result of ignition and subsequent deflagration of the hydrogen cloud within the warehouse has been studied for different ignition delay times and ignition locations. Both ventilated and unventilated warehouses have been considered in the analysis. Experiments have been performed in a scaled warehouse test facility and compared with simulations to validate the results of the computational analysis. Copyright (c) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Houf, W. G.; Evans, G. H.; Ekoto, I. W.] Sandia Natl Labs, Livermore, CA 94551 USA. [Merilo, E. G.; Groethe, M. A.] SRI Int, Menlo Pk, CA 94025 USA. RP Ekoto, IW (reprint author), Sandia Natl Labs, 7011 East Ave,MS 9052, Livermore, CA 94551 USA. EM iekoto@sandia.gov FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program under the Safety, Codes, and Standards subprogram element FX This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program under the Safety, Codes, and Standards subprogram element managed by Antonio Ruiz. NR 17 TC 4 Z9 4 U1 2 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUN 27 PY 2013 VL 38 IS 19 BP 8179 EP 8189 DI 10.1016/j.ijhydene.2012.05.115 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 177XA UT WOS:000321407500049 ER PT J AU Petitpas, G Aceves, SM AF Petitpas, G. Aceves, S. M. TI Modeling of sudden hydrogen expansion from cryogenic pressure vessel failure SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Room temperature pressure vessel; Cryogenic pressure vessel; Failure; Sudden release; Expansion energy ID STORAGE; VEHICLES; RELEASE; SIMULATION AB We have modeled sudden hydrogen expansion from a cryogenic pressure vessel. This model considers real gas equations of state, single and two-phase flow, and the specific "vessel within vessel" geometry of cryogenic vessels. The model can solve sudden hydrogen expansion for initial pressures up to 1210 bar and for initial temperatures ranging from 27 to 400 K. For practical reasons, our study focuses on hydrogen release from 345 bar, with temperatures between 62 K and 300 K. The pressure vessel internal volume is 151 L. The results indicate that cryogenic pressure vessels may offer a safety advantage with respect to compressed hydrogen vessels because i) the vacuum jacket protects the pressure vessel from environmental damage, ii) hydrogen, when released, discharges first into an intermediate chamber before reaching the outside environment, and working temperature is typically much lower and thus the hydrogen has less energy. Results indicate that key expansion parameters such as pressure, rate of energy release, and thrust are all considerably lower for a cryogenic vessel within vessel geometry as compared to ambient temperature compressed gas vessels. Future work will focus on taking advantage of these favorable conditions to attempt fail-safe cryogenic vessel designs that do not harm people or property even after catastrophic failure of the inner pressure vessel. Copyright (c) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Petitpas, G.; Aceves, S. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Petitpas, G (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-792, Livermore, CA 94550 USA. EM petitpas1@llnl.gov FU DOE, Office of Fuel Cell Technologies; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This project was funded by DOE, Office of Fuel Cell Technologies, Antonio Ruiz, Technology Development Manager. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 19 TC 6 Z9 6 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUN 27 PY 2013 VL 38 IS 19 BP 8190 EP 8198 DI 10.1016/j.ijhydene.2012.03.166 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 177XA UT WOS:000321407500050 ER PT J AU Lo, MH Wu, CM Ma, HY Famiglietti, JS AF Lo, Min-Hui Wu, Chien-Ming Ma, Hsi-Yen Famiglietti, James S. TI The response of coastal stratocumulus clouds to agricultural irrigation in California SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE irrigation; Stratocumulus; land surface model; general circulation model ID LOWER-TROPOSPHERIC STABILITY; TOPPED BOUNDARY-LAYERS; SUBTROPICAL STRATOCUMULUS; STRATIFORM CLOUDS; RADIATION BUDGET; SURFACE CLIMATE; UNITED-STATES; LAND-SURFACE; WATER CYCLE; MODEL AB Stratocumulus clouds (SC) often exist over the eastern subtropical oceans during the summer and have significant impacts on the surface radiation budget. Both atmospheric subsidence and lower troposphere stability (LTS) have been found to play important roles in maintaining SC. Using global climate model simulations, we find that irrigation in California's Central Valley results in a decrease of land surface temperature, leading to a smaller land-sea heat contrast, and a corresponding reduction in sea breeze, subsidence, and LTS over the near-coastal region. The decrease in LTS directly drives a reduction in modeled SC coverage, and it would arguably do so in reality because of the well-known link between LTS and SC coverage. Consequently, simulated absorbed surface solar radiation over this region increases by 8W/m(2) (3.7%) due to the reduction in SC cover, resulting in the warming at the Earth's surface. This study has important implications for how SC can change with regard to future climate. In contrast to the general effects of climate change on the formation of SC, our results suggest that irrigation practices in the Central Valley may drive a decrease in nearby SC coverage. C1 [Lo, Min-Hui; Wu, Chien-Ming] Natl Taiwan Univ, Dept Atmospher Sci, Taipei 10617, Taiwan. [Ma, Hsi-Yen] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. [Famiglietti, James S.] Univ Calif Irvine, UC Ctr Hydrol Modeling, Irvine, CA USA. [Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. RP Lo, MH (reprint author), Natl Taiwan Univ, Dept Atmospher Sci, Taipei 10617, Taiwan. EM minhuilo@ntu.edu.tw RI Ma, Hsi-Yen/K-1019-2013; OI LO, MIN-HUI/0000-0002-8653-143X; Wu, Chien-Ming/0000-0001-9295-7181 FU National Science Council Grant [101-2111-M-002-001, 101-2111-M-002-006, NSC-100-2119-M-001-029-MY5]; University of California Office of the President (UCOP) MRPI program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Dominik Wisser and Stefan Siebert for providing the global irrigation datasets. Funding was provided by the National Science Council Grant 101-2111-M-002-001 and 101-2111-M-002-006 to National Taiwan University, NSC-100-2119-M-001-029-MY5, and by the University of California Office of the President (UCOP) MRPI program. The contribution of Hsi-Yen Ma to this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 49 TC 4 Z9 4 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2013 VL 118 IS 12 BP 6044 EP 6051 DI 10.1002/jgrd.50516 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 187OY UT WOS:000322129600010 ER PT J AU de Boer, G Bauer, SE Toto, T Menon, S Vogelmann, AM AF de Boer, G. Bauer, S. E. Toto, T. Menon, Surabi Vogelmann, A. M. TI Evaluation of aerosol-cloud interaction in the GISS ModelE using ARM observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE climate model; aerosol cloud interactions; model evaluation; remote sensing ID GLOBAL CLIMATE MODELS; GENERAL-CIRCULATION MODEL; GROUND-BASED MEASUREMENTS; EFFECTIVE RADIUS; SATELLITE DATA; WATER CLOUDS; PARAMETERIZATION; MICROPHYSICS; SIMULATIONS; VAPOR AB Observations from the US Department of Energy's Atmospheric Radiation Measurement (ARM) program are used to evaluate the ability of the NASA GISS ModelE global climate model in reproducing observed interactions between aerosols and clouds. Included in the evaluation are comparisons of basic meteorology and aerosol properties, droplet activation, effective radius parameterizations, and surfacebased evaluations of aerosolcloud interactions (ACI). Differences between the simulated and observed ACI are generally large, but these differences may result partially from vertical distribution of aerosol in the model, rather than the representation of physical processes governing the interactions between aerosols and clouds. Compared to the current observations, the ModelE often features elevated droplet concentrations for a given aerosol concentration, indicating that the activation parameterizations used may be too aggressive. Additionally, parameterizations for effective radius commonly used in models were tested using ARM observations, and there was no clear superior parameterization for the cases reviewed here. This lack of consensus is demonstrated to result in potentially large, statistically significant differences to surface radiative budgets, should one parameterization be chosen over another. C1 [de Boer, G.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [de Boer, G.] NOAA Earth Syst Res Lab, Div Phys Sci, Boulder, CO USA. [de Boer, G.; Menon, Surabi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bauer, S. E.] Columbia Univ, Earth Inst, New York, NY USA. [Bauer, S. E.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Toto, T.; Vogelmann, A. M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Menon, Surabi] ClimateWorks Fdn, San Francisco, CA USA. RP de Boer, G (reprint author), Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM gijs.deboer@colorado.edu RI Vogelmann, Andrew/M-8779-2014; Bauer, Susanne/P-3082-2014 OI Vogelmann, Andrew/0000-0003-1918-5423; FU Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy as part of their Climate and Earth System Modeling Program [DE-AC02-05CH11231]; FASTER project; National Oceanic and Atmospheric Administration, U.S. Department of Commerce [NA17RJ1229]; National Science Foundation [ARC-1203902]; US Department of Energy [DE-SC0008794]; U.S. DOE [DE-AC02-98CH10886]; NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division FX This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under Contract DE-AC02-05CH11231 as part of their Climate and Earth System Modeling Program and through the FASTER project. LBNL is managed by the University of California under the same grant. This work was prepared in part at the Cooperative Institute for Research in Environmental Sciences (CIRES) with support in part from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce, under cooperative agreement NA17RJ1229 and other grants. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration or the Department of Commerce. GB was supported in part by the National Science Foundation (ARC-1203902) and US Department of Energy (DE-SC0008794). Computing resources were provided by NASA and the US Department of Energy. A.V. wishes to acknowledge funding from the U.S. DOE (contract DE-AC02-98CH10886). 2NFOV retrievals were generously provided by Christine Chiu, and China AMF data were provided by Maureen Cribb and Zanquing Li. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. Data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. NR 45 TC 5 Z9 5 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2013 VL 118 IS 12 BP 6383 EP 6395 DI 10.1002/jgrd.50460 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 187OY UT WOS:000322129600035 ER PT J AU Davies, L Jakob, C Cheung, K Del Genio, A Hill, A Hume, T Keane, RJ Komori, T Larson, VE Lin, Y Liu, X Nielsen, BJ Petch, J Plant, RS Singh, MS Shi, X Song, X Wang, W Whitall, MA Wolf, A Xie, S Zhang, G AF Davies, L. Jakob, C. Cheung, K. Del Genio, A. Hill, A. Hume, T. Keane, R. J. Komori, T. Larson, V. E. Lin, Y. Liu, X. Nielsen, B. J. Petch, J. Plant, R. S. Singh, M. S. Shi, X. Song, X. Wang, W. Whitall, M. A. Wolf, A. Xie, S. Zhang, G. TI A single-column model ensemble approach applied to the TWP-ICE experiment SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE TWP-ICE; Single Column Model; Ensemble ID CLOUD-RESOLVING MODELS; GENERAL-CIRCULATION MODELS; LARGE-SCALE MODELS; BOUNDARY-LAYER; PART I; RADIATIVE PROPERTIES; CONVECTION SCHEME; MOIST CONVECTION; VERSION-3 CAM3; CLIMATE MODELS AB Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only. C1 [Davies, L.] Monash Univ, Sch Math, Melbourne, Vic 3004, Australia. [Jakob, C.] Monash Univ, ARC Ctr Excellence Climate Syst Sci, Melbourne, Vic 3004, Australia. [Cheung, K.] Bur Meteorol, Melbourne, Vic, Australia. [Del Genio, A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Hill, A.; Petch, J.] Met Off, Exeter, Devon, England. [Hume, T.] Bur Meteorol, Ctr Australian Weather & Climate Res, Melbourne, Vic, Australia. [Keane, R. J.] Univ Munich, Inst Meteorol, D-80539 Munich, Germany. [Komori, T.] Japan Meteorol Agcy, Tokyo, Japan. [Larson, V. E.; Nielsen, B. J.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Lin, Y.] Univ Corp Atmospher Res, Boulder, CO USA. [Lin, Y.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Liu, X.; Shi, X.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Plant, R. S.; Whitall, M. A.] Univ Reading, Dept Meteorol, Reading, Berks, England. [Singh, M. S.] MIT, Cambridge, MA 02139 USA. [Song, X.; Zhang, G.] Univ Calif San Diego, San Diego, CA 92103 USA. [Wang, W.] NOAA, IMSG, Natl Ctr Environm Predict, College Pk, MD USA. [Wolf, A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Xie, S.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Davies, L (reprint author), Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia. EM laura.davies@unimelb.edu.au RI Liu, Xiaohong/E-9304-2011; lin, yanluan/A-6333-2015; Xie, Shaocheng/D-2207-2013; Jakob, Christian/A-1082-2010 OI Liu, Xiaohong/0000-0002-3994-5955; Plant, Robert/0000-0001-8808-0022; Xie, Shaocheng/0000-0001-8931-5145; Jakob, Christian/0000-0002-5012-3207 FU Office of Science (BER); U.S. Department of Energy [DE-SC0002731]; U.S. Department of Energy Atmospheric System Research Program; United States Department of Energy [DE-SC0006927, DE-SC0008668]; National Science Foundation [AGS-0968640]; U.S. Department of Energy (DOE), Office of Science, Atmospheric System Research (ASR) program; Battelle Memorial Institute [DE-AC06-76RLO 1830]; National Natural Science Foundation of China [41075039]; U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Atmospheric Radiation Measurement Program of the Office of Science at the DOE FX Davies and Jakob are supported by the Office of Science (BER), U.S. Department of Energy, under grant DE-SC0002731. Many of the other coauthors also participated through support from the U.S. Department of Energy Atmospheric System Research Program. V. Larson and B. Nielsen are grateful for financial support from the United States Department of Energy (grants DE-SC0006927 and DE-SC0008668) and the National Science Foundation (grant AGS-0968640). Support for X. Liu was provided by the U.S. Department of Energy (DOE), Office of Science, Atmospheric System Research (ASR) program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. Dr. Weiguo Wang is partly supported by the National Natural Science Foundation of China under Grant No. 41075039. The contributions of S. Xie to this work were performed under the auspices of the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344 and supported by the Atmospheric Radiation Measurement Program of the Office of Science at the DOE. NR 88 TC 13 Z9 13 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2013 VL 118 IS 12 BP 6544 EP 6563 DI 10.1002/jgrd.50450 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 187OY UT WOS:000322129600047 ER PT J AU Hiranuma, N Brooks, SD Moffet, RC Glen, A Laskin, A Gilles, MK Liu, P Macdonald, AM Strapp, JW McFarquhar, GM AF Hiranuma, N. Brooks, S. D. Moffet, R. C. Glen, A. Laskin, A. Gilles, M. K. Liu, P. Macdonald, A. M. Strapp, J. W. McFarquhar, G. M. TI Chemical characterization of individual particles and residuals of cloud droplets and ice crystals collected on board research aircraft in the ISDAC 2008 study SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE cloud nuclei; STXM; aerosol; mixed phase; residuals ID IN-SITU CHARACTERIZATION; ARCTIC AIR-POLLUTION; MIXED-PHASE CLOUDS; CONDENSATION NUCLEI; AEROSOL-PARTICLES; ATMOSPHERIC AEROSOL; FORMING NUCLEI; MARINE AIR; SPLAT II; M-PACE AB Ambient particles and the dry residuals of mixed-phase cloud droplets and ice crystals were collected during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) near Barrow, Alaska, in spring of 2008. The collected particles were analyzed using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy to identify physico-chemical properties that differentiate cloud-nucleating particles from the total aerosol population. A wide range of individually mixed components was identified in the ambient particles and residuals including organic carbon compounds, inorganics, carbonates, and black carbon. Our results show that cloud droplet residuals differ from the ambient particles in both size and composition, suggesting that both properties may impact the cloud-nucleating ability of aerosols in mixed-phase clouds. The percentage of residual particles which contained carbonates (47%) was almost four times higher than those in ambient samples. Residual populations were also enhanced in sea salt and black carbon and reduced in organic compounds relative to the ambient particles. Further, our measurements suggest that chemical processing of aerosols may improve their cloud-nucleating ability. Comparison of results for various time periods within ISDAC suggests that the number and composition of cloud-nucleating particles over Alaska can be influenced by episodic events bringing aerosols from both the local vicinity and as far away as Siberia. C1 [Hiranuma, N.; Brooks, S. D.; Glen, A.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Moffet, R. C.; Gilles, M. K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Laskin, A.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Liu, P.; Macdonald, A. M.; Strapp, J. W.] Environm Canada, Sci & Technol Branch, Toronto, ON, Canada. [McFarquhar, G. M.] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. RP Brooks, SD (reprint author), Texas A&M Univ, 3150 TAMU, College Stn, TX 77843 USA. EM sbrooks@tamu.edu RI Hiranuma, Naruki/D-3780-2014; Laskin, Alexander/I-2574-2012; OI Hiranuma, Naruki/0000-0001-7790-4807; Laskin, Alexander/0000-0002-7836-8417; McFarquhar, Greg/0000-0003-0950-0135 FU Atmospheric System Research program of the Department of Energy's office of Biological and Environmental Research; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division; National Science Foundation NSF-CAREER program [054875]; Lawrence Berkeley National Laboratory Seaborg Fellowship; BER, DOE [DE-SC0001279, DE-SC0008500]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory; U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RL0] FX The authors gratefully acknowledge financial support provided by the Atmospheric System Research program of the Department of Energy's office of Biological and Environmental Research. Data were obtained from the Atmospheric Radiation Measurement Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. S. Brooks acknowledges National Science Foundation NSF-CAREER program, Award 054875. N. Hiranuma acknowledges a Summer Research Institute Fellow in Interfacial and Condensed Phase Chemical Physics of the Pacific Northwest National Laboratory. R.C. Moffet acknowledges additional financial support from a Lawrence Berkeley National Laboratory Seaborg Fellowship. The work of G. McFarquhar was supported by BER, DOE under grants DE-SC0001279 and DE-SC0008500. The STXM/NEXAFS particle analysis was performed at beamlines 11.0.2 and 5.3.2 at the Advanced Light Source at Lawrence Berkeley National Laboratory. The expertise of A.L. Kilcoyne and T. Tyliszczak for the STXM work is gratefully acknowledged. The work at the Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. The CCSEM/EDX particle analysis was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory. PNNL is operated by the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RL0. NR 87 TC 18 Z9 18 U1 4 U2 66 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2013 VL 118 IS 12 BP 6564 EP 6579 DI 10.1002/jgrd.50484 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 187OY UT WOS:000322129600048 ER PT J AU Ghan, SJ Smith, SJ Wang, MH Zhang, K Pringle, KJ Carslaw, KS Pierce, JR Bauer, SE Adams, PJ AF Ghan, Steven J. Smith, Steven J. Wang, Minghuai Zhang, Kai Pringle, Kirsty J. Carslaw, Kenneth S. Pierce, Jeffrey R. Bauer, Susanne E. Adams, Peter J. TI A simple model of global aerosol indirect effects SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE aerosol; cloud; interactions; indirect; climate ID CLOUD CONDENSATION NUCLEI; GENERAL-CIRCULATION MODEL; CARBON-CYCLE MODELS; CLIMATE MODEL; ORGANIC AEROSOL; MARINE STRATOCUMULUS; UNCERTAINTY ANALYSIS; MICROPHYSICS MODEL; ATMOSPHERE-OCEAN; SENSITIVITY AB Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as -5 W m(-2) and as high as -0.3 W m(-2) are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values. C1 [Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pringle, Kirsty J.; Carslaw, Kenneth S.] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England. [Pierce, Jeffrey R.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Bauer, Susanne E.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Adams, Peter J.] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA. RP Ghan, SJ (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM steve.ghan@pnnl.gov RI Wang, Minghuai/E-5390-2011; Pierce, Jeffrey/E-4681-2013; Carslaw, Ken/C-8514-2009; Adams, Peter/D-7134-2013; Zhang, Kai/F-8415-2010; Ghan, Steven/H-4301-2011 OI Wang, Minghuai/0000-0002-9179-228X; Pierce, Jeffrey/0000-0002-4241-838X; Carslaw, Ken/0000-0002-6800-154X; Adams, Peter/0000-0003-0041-058X; Zhang, Kai/0000-0003-0457-6368; Ghan, Steven/0000-0001-8355-8699 FU Office of Science of the U.S. Department of Energy as part of the Atmospheric System Research Program; U.S. Environmental Protection Agency, Climate Change Division; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830] FX The authors thank colleague Ben Kravitz and reviewers Rob Wood and Chris Golaz for helpful comments. Support for S. Ghan, M. Wang, and K. Zhang was provided by the Office of Science of the U.S. Department of Energy as part of the Atmospheric System Research Program. Support for S. Smith was provided by the U.S. Environmental Protection Agency, Climate Change Division. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 84 TC 19 Z9 19 U1 2 U2 44 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2013 VL 118 IS 12 BP 6688 EP 6707 DI 10.1002/jgrd.50567 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 187OY UT WOS:000322129600057 ER PT J AU Angevine, WM Brioude, J McKeen, S Holloway, JS Lerner, BM Goldstein, AH Guha, A Andrews, A Nowak, JB Evan, S Fischer, ML Gilman, JB Bon, D AF Angevine, Wayne M. Brioude, Jerome McKeen, Stuart Holloway, John S. Lerner, Brian M. Goldstein, Allen H. Guha, Abhinav Andrews, Arlyn Nowak, John B. Evan, Stephanie Fischer, Marc L. Gilman, Jessica B. Bon, Daniel TI Pollutant transport among California regions SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE Lagrangian Particle Dispersion Model (LPDM); FLEXPART; WRF; Tracer transport; California; Agricultural emissions ID LOW-LEVEL WINDS; AIR-QUALITY; MODEL; MESOSCALE; OZONE; SIMULATIONS; EMISSIONS; SYSTEM; VALLEY; NOX AB Several regions within California have significant air quality issues. Transport of pollutants emitted in one region to another region may add to the impact of local emissions. In this work, Lagrangian particle dispersion model simulations show the amounts of tracers that are transported within and among four regions, Southern California, the San Francisco Bay Area, the Central Valley, and the rest of the state. The simulations cover May and June of 2010, the California Research at the Nexus of Air Quality and Climate Change experiment period. Tracers of automobile emissions and one type of agricultural emission are used. Tracer mixing ratios are compared to airborne and ground-based measurements. The age of tracers in each location is also presented. Vertical profiles and diurnal cycles help to clarify the transport process. As is well known, Southern California emissions are transported to the east and affect the desert areas, and Bay Area automobile emissions are an important source of pollutants in the San Joaquin Valley. A novel result is that the Southern California Bight is filled with a mixture of well-aged carbon monoxide tracer from Southern California and the Bay Area. Air over the Bight is also affected by the agricultural emissions represented by the agricultural tracer, dominantly from the Central Valley where its sources are largest. There is no indication of transport from Southern California to the Central Valley. Emissions from the Central Valley do make their way to Southern California, as shown by the agricultural tracer, but automobile emissions from the Valley are insignificant in Southern California. C1 [Angevine, Wayne M.; Brioude, Jerome; McKeen, Stuart; Holloway, John S.; Lerner, Brian M.; Nowak, John B.; Evan, Stephanie; Gilman, Jessica B.; Bon, Daniel] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Angevine, Wayne M.; Brioude, Jerome; McKeen, Stuart; Holloway, John S.; Lerner, Brian M.; Andrews, Arlyn; Nowak, John B.; Evan, Stephanie; Gilman, Jessica B.; Bon, Daniel] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Goldstein, Allen H.; Guha, Abhinav] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Fischer, Marc L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Angevine, WM (reprint author), NOAA, ESRL R CSD4, 325 Broadway, Boulder, CO 80305 USA. EM Wayne.M.Angevine@noaa.gov RI Nowak, John/B-1085-2008; Brioude, Jerome/E-4629-2011; Lerner, Brian/H-6556-2013; Evan, Stephanie/C-2213-2013; Angevine, Wayne/H-9849-2013; Goldstein, Allen/A-6857-2011; Andrews, Arlyn/K-3427-2012; Holloway, John/F-9911-2012; Gilman, Jessica/E-7751-2010; Manager, CSD Publications/B-2789-2015 OI Nowak, John/0000-0002-5697-9807; Lerner, Brian/0000-0001-8721-8165; Angevine, Wayne/0000-0002-8021-7116; Goldstein, Allen/0000-0003-4014-4896; Holloway, John/0000-0002-4585-9594; Gilman, Jessica/0000-0002-7899-9948; FU NOAA; California Energy Commission (CEC) Public Interest Environmental Research Program; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors are grateful to Robert Harley for providing the diurnal cycle of CO and for helpful discussions. Andy Neuman provided helpful comments on the manuscript. We also wish to thank the NOAA P3 crew, flight planners, and scientists, and the crew and scientists of the R/V Atlantis CalNex cruise. The ERA-interim data used to initialize WRF are from the Research Data Archive (RDA), which is maintained by the Computational and Information Systems Laboratory (CISL) at the National Center for Atmospheric Research (NCAR). The original data are available from the RDA (http://dss.ucar.edu) in data set number ds627.0. Data collection at Walnut Grove was supported by NOAA and by the California Energy Commission (CEC) Public Interest Environmental Research Program and the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 32 TC 13 Z9 13 U1 5 U2 35 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2013 VL 118 IS 12 BP 6750 EP 6763 DI 10.1002/jgrd.50490 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 187OY UT WOS:000322129600062 ER PT J AU Chan, AWH Isaacman, G Wilson, KR Worton, DR Ruehl, CR Nah, T Gentner, DR Dallmann, TR Kirchstetter, TW Harley, RA Gilman, JB Kuster, WC deGouw, JA Offenberg, JH Kleindienst, TE Lin, YH Rubitschun, CL Surratt, JD Hayes, PL Jimenez, JL Goldstein, AH AF Chan, Arthur W. H. Isaacman, Gabriel Wilson, Kevin R. Worton, David R. Ruehl, Christopher R. Nah, Theodora Gentner, Drew R. Dallmann, Timothy R. Kirchstetter, Thomas W. Harley, Robert A. Gilman, Jessica B. Kuster, William C. deGouw, Joost A. Offenberg, John H. Kleindienst, Tadeusz E. Lin, Ying H. Rubitschun, Caitlin L. Surratt, Jason D. Hayes, Patrick L. Jimenez, Jose L. Goldstein, Allen H. TI Detailed chemical characterization of unresolved complex mixtures in atmospheric organics: Insights into emission sources, atmospheric processing, and secondary organic aerosol formation SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE semivolatile organic compounds; secondary organic aerosol; urban emissions; unresolved complex mixture; gas chromatography mass spectrometry ID 2-DIMENSIONAL GAS-CHROMATOGRAPHY; AIR-POLLUTION SOURCES; DUTY DIESEL TRUCKS; MASS-SPECTROMETER; VOLATILITY DISTRIBUTION; N-ALKANES; SEMIVOLATILE; HYDROCARBONS; EVOLUTION; PHOTOOXIDATION AB Recent studies suggest that semivolatile organic compounds (SVOCs) are important precursors to secondary organic aerosol (SOA) in urban atmospheres. However, knowledge of the chemical composition of SVOCs is limited by current analytical techniques, which are typically unable to resolve a large number of constitutional isomers. Using a combination of gas chromatography and soft photoionization mass spectrometry, we characterize the unresolved complex mixture (UCM) of semivolatile aliphatic hydrocarbons observed in Pasadena, California (similar to 16km NE of downtown Los Angeles), and Bakersfield, California, during the California Research at the Nexus of Air Quality and Climate Change 2010. To the authors' knowledge, this work represents the most detailed characterization of the UCM in atmospheric samples to date. Knowledge of molecular structures, including carbon number, alkyl branching, and number of rings, provides important constraints on the rate of atmospheric processing, as the relative amounts of branched and linear alkanes are shown to be a function of integrated exposure to hydroxyl radicals. Emissions of semivolatile branched alkanes from fossil fuel-related sources are up to an order of magnitude higher than those of linear alkanes, and the gas-phase OH rate constants of branched alkanes are similar to 30% higher than their linear isomers. Based on a box model considering gas/particle partitioning, emissions, and reaction rates, semivolatile branched alkanes are expected to play a more important role than linear alkanes in the photooxidation of the UCM and subsequent transformations into SOA. Detailed speciation of semivolatile compounds therefore provides essential understanding of SOA sources and formation processes in urban areas. C1 [Chan, Arthur W. H.; Isaacman, Gabriel; Worton, David R.; Ruehl, Christopher R.; Goldstein, Allen H.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Chan, Arthur W. H.] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada. [Wilson, Kevin R.; Ruehl, Christopher R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Worton, David R.] Aerosol Dynam Inc, Berkeley, CA USA. [Nah, Theodora] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Gentner, Drew R.; Dallmann, Timothy R.; Kirchstetter, Thomas W.; Harley, Robert A.; Goldstein, Allen H.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Kirchstetter, Thomas W.; Harley, Robert A.; Goldstein, Allen H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Gilman, Jessica B.; deGouw, Joost A.; Hayes, Patrick L.; Jimenez, Jose L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Gilman, Jessica B.; Kuster, William C.; deGouw, Joost A.] NOAA, Div Chem Sci, Boulder, CO USA. [Offenberg, John H.; Kleindienst, Tadeusz E.] US EPA, Natl Exposure Lab, Off Res & Dev, Res Triangle Pk, NC 27711 USA. [Lin, Ying H.; Rubitschun, Caitlin L.; Surratt, Jason D.] Univ N Carolina, Dept Environm Sci & Engn, Gillings Sch Global Publ Hlth, Chapel Hill, NC USA. [Hayes, Patrick L.; Jimenez, Jose L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Chan, AWH (reprint author), Univ Toronto, Dept Chem Engn & Appl Chem, 200 Coll St, Toronto, ON M5S 3E5, Canada. EM arthurwh.chan@utoronto.ca RI Chan, Arthur/I-2233-2013; Jimenez, Jose/A-5294-2008; de Gouw, Joost/A-9675-2008; Harley, Robert/C-9177-2016; Lin, Ying-Hsuan/J-4023-2014; Offenberg, John/C-3787-2009; Gilman, Jessica/E-7751-2010; Manager, CSD Publications/B-2789-2015; Worton, David/A-8374-2012; Goldstein, Allen/A-6857-2011; Kuster, William/E-7421-2010; Surratt, Jason/D-3611-2009; Isaacman-VanWertz, Gabriel/I-5590-2014 OI Chan, Arthur/0000-0001-7392-4237; Dallmann, Timothy/0000-0002-6520-7796; Jimenez, Jose/0000-0001-6203-1847; de Gouw, Joost/0000-0002-0385-1826; Harley, Robert/0000-0002-0559-1917; Lin, Ying-Hsuan/0000-0001-8904-1287; Offenberg, John/0000-0002-0213-4024; Gilman, Jessica/0000-0002-7899-9948; Worton, David/0000-0002-6558-5586; Goldstein, Allen/0000-0003-4014-4896; Kuster, William/0000-0002-8788-8588; Surratt, Jason/0000-0002-6833-1450; Isaacman-VanWertz, Gabriel/0000-0002-3717-4798 FU National Oceanic and Atmospheric Administration [NA10OAR4310104]; Office of Energy Research, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231]; EPA grant [RD834553]; U.S. Environmental Protection Agency through its Office of Research and Development [EP-D-10-070]; CARB [08-319/11-305]; DOE (BER/ASR) [DE-SC0006035]; CIRES Visiting Fellowship FX This research was supported by the National Oceanic and Atmospheric Administration under award NA10OAR4310104. The Advanced Light Source as well as K.R.W. and T.N. were supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract DE-AC02-05CH11231. Measurements at the Advanced Light Source were also supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy contract DE-AC02-05CH11231. Caldecott tunnel measurements were supported by EPA grant RD834553. The U.S. Environmental Protection Agency through its Office of Research and Development funded and collaborated in the research described here under contract EP-D-10-070 to Alion Science and Technology. The manuscript has been subjected to external peer review and has been cleared for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. P.L.H. and J.L.J. thank CARB 08-319/11-305, DOE (BER/ASR) DE-SC0006035, and a CIRES Visiting Fellowship to P.L.H. The authors would like to thank Sally Newman for use of temperature data. NR 47 TC 24 Z9 24 U1 6 U2 80 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2013 VL 118 IS 12 BP 6783 EP 6796 DI 10.1002/jgrd.50533 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 187OY UT WOS:000322129600065 ER PT J AU Ben Ishai, P Mamontov, E Nickels, JD Sokolov, AP AF Ben Ishai, Paul Mamontov, Eugene Nickels, Jonathan D. Sokolov, Alexei P. TI Influence of Ions on Water Diffusion-A Neutron Scattering Study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID AQUEOUS-SOLUTIONS; RAYLEIGH INTERFEROMETRY; DYNAMICS; HYDRATION; 25-DEGREES-C; COORDINATION; COEFFICIENTS; MOLECULES; CHANNEL; SODIUM AB Using quasielastic neutron scattering spectroscopy, we measured the averaged translational diffusion of water in solutions of biologically relevant salts, NaCl, a kosmotrope, and KCl, a chaotrope. The analysis revealed the striking difference in the influence of these ions on water dynamics. While the averaged water diffusion slows down in the presence of the structure making (kosmotrope) Na+ ion, the diffusion becomes faster in the presence of the structure breaking (chaotrope) K+ ion. The latter means that, despite strong Coulombic interactions introduced by the K+ ions, their disruption of the hydrogen-bonding network is so significant that it leads to faster diffusion of the water molecules. C1 [Ben Ishai, Paul] Hebrew Univ Jerusalem, Dept Appl Phys, IL-91904 Jerusalem, Israel. [Mamontov, Eugene] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Ben Ishai, Paul; Nickels, Jonathan D.; Sokolov, Alexei P.] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. [Ben Ishai, Paul; Nickels, Jonathan D.; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Ben Ishai, P (reprint author), Hebrew Univ Jerusalem, Dept Appl Phys, IL-91904 Jerusalem, Israel. RI Ben Ishai, Paul/A-2230-2013; Mamontov, Eugene/Q-1003-2015; Nickels, Jonathan/I-1913-2012 OI Ben Ishai, Paul/0000-0001-7394-019X; Mamontov, Eugene/0000-0002-5684-2675; Nickels, Jonathan/0000-0001-8351-7846 FU DOE through the EPSCoR program [DE-FG02-08E1146528]; DOE through the Scientific User Facilities Division, Office of Basic Energy Sciences; NSF [CHE-1213444]; Israel Science Foundation (ISF) [465/11] FX This work was supported by the DOE through the EPSCoR program (grant DE-FG02-08E1146528) and through the Scientific User Facilities Division, Office of Basic Energy Sciences. A.P.S. also acknowledges partial financial support from the NSF Chemistry program (CHE-1213444). P.B.I. also acknowledges partial financial support from the Israel Science Foundation (ISF) (Grant No. 465/11). NR 28 TC 11 Z9 11 U1 1 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 27 PY 2013 VL 117 IS 25 BP 7724 EP 7728 DI 10.1021/jp4030415 PG 5 WC Chemistry, Physical SC Chemistry GA 175NA UT WOS:000321236200023 PM 23713450 ER PT J AU Perticaroli, S Nakanishi, M Pashkovski, E Sokolov, AP AF Perticaroli, Stefania Nakanishi, Masahiro Pashkovski, Eugene Sokolov, Alexei P. TI Dynamics of Hydration Water in Sugars and Peptides Solutions SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID DEPOLARIZED LIGHT-SCATTERING; AMINO-ACID SOLUTIONS; AQUEOUS-SOLUTIONS; DIELECTRIC-RELAXATION; MODEL PEPTIDES; PROTEIN; GLUCOSE; REORIENTATION; SPECTROSCOPY; SIMULATIONS AB We analyzed solute and solvent dynamics of sugars and peptides aqueous solutions using extended depolarized light scattering (EDLS) and broadband dielectric spectroscopies (BDS). Spectra measured with both techniques reveal the same mechanism of rotational diffusion of peptides molecules. In the case of sugars, this solute reorientational relaxation can be isolated by EDLS measurements, whereas its contribution to the dielectric spectra is almost negligible. In the presented analysis, we characterize the hydration water in terms of hydration number and retardation ratio xi between relaxation times of hydration and bulk water. Both techniques provide similar estimates of xi. The retardation imposed on the hydration water by sugars is similar to 3.3 +/- 1.3 and involves only water molecules hydrogen-bonded (HB) to solutes (similar to 3 water molecules per sugar OH-group). In contrast, polar peptides cause longer range perturbations beyond the first hydration shell, and xi between 2.8 and 8, increasing with the number of chemical groups engaged in FIB formation. We demonstrate that chemical heterogeneity and specific HB interactions play a crucial role in hydration dynamics around polar solutes. The obtained results help to disentangle the role of excluded volume and enthalpic contributions in dynamics of hydration water at the interface with biological molecules. C1 [Perticaroli, Stefania; Nakanishi, Masahiro; Sokolov, Alexei P.] Oak Ridge Natl Lab, Div Chem & Mat Sci, Oak Ridge, TN 37831 USA. [Perticaroli, Stefania; Nakanishi, Masahiro; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Sokolov, Alexei P.] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. [Pashkovski, Eugene] Unilever R&D Trumbull, Trumbull, CT 06611 USA. RP Perticaroli, S (reprint author), Univ Tennessee, Dept Chem, 552 Buehler Hall,1420 Circle Dr, Knoxville, TN 37996 USA. EM spertica@utk.edu RI Nakanishi, Masahiro/J-9497-2014 OI Nakanishi, Masahiro/0000-0003-0844-8363 FU DOE through the EPSCoR program [DE-FG02-08ER46528]; Spallation Neutron Source (SNS) through UT-Battelle (LLC for the U.S. Department of Energy) [DEAC05-00OR22725]; Unilever corporate research program FX We sincerely thank Professor R. Germani for helpful discussions about HB properties of peptides. This work was supported by DOE through the EPSCoR program (grant DE-FG02-08ER46528) and by Spallation Neutron Source (SNS) through UT-Battelle (LLC for the U.S. Department of Energy under contract No. DEAC05-00OR22725). We also acknowledge the financial support from the Unilever corporate research program. NR 45 TC 17 Z9 17 U1 2 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 27 PY 2013 VL 117 IS 25 BP 7729 EP 7736 DI 10.1021/jp403665w PG 8 WC Chemistry, Physical SC Chemistry GA 175NA UT WOS:000321236200024 PM 23772968 ER PT J AU Zhou, CS Fang, ZGZ Ren, C Li, JZ Lu, J AF Zhou, Chengshang Fang, Zhigang Zak Ren, Chai Li, Jingzhu Lu, Jun TI Effect of Ti Intermetallic Catalysts on Hydrogen Storage Properties of Magnesium Hydride SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDRIDING/DEHYDRIDING PROPERTIES; DESORPTION PROPERTIES; COMPOSITE-MATERIALS; SORPTION PROPERTIES; ROOM-TEMPERATURE; MG; KINETICS; ABSORPTION; SYSTEM; ENERGY AB Magnesium hydride is a promising candidate for solid-state hydrogen storage and thermal energy storage applications. A series of Ti-based intermetallic alloy (TiAl, Ti3Al, TiNi, TiFe, TiNb, TiMn2, and TiVMn)-doped MgH2 materials were systematically investigated in this study to improve its hydrogen storage properties. The dehydrogenation and hydrogenation properties were studied by using both thermogravimetric analysis and pressure-composition-temperature (PCT) isothermal to characterize the temperature of dehydrogenation and the kinetics of both desorption and absorption of hydrogen by these doped MgH2. Results show significant improvements of both dehydrogenation and hydrogenation kinetics as a result of adding the Ti intermetallic alloys as catalysts. In particular, the TiMn2-doped Mg demonstrated extraordinary hydrogen absorption capability at room temperature and 1 bar hydrogen pressure. The PCT experiments also show that the hydrogen equilibrium pressures of MgH2 were not affected by these additives. C1 [Zhou, Chengshang; Fang, Zhigang Zak; Ren, Chai; Li, Jingzhu] Univ Utah, Dept Met Engn, Salt Lake City, UT 84112 USA. [Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Fang, ZGZ (reprint author), Univ Utah, Dept Met Engn, 135 South 1460 East,Room 412, Salt Lake City, UT 84112 USA. EM zak.fang@utah.edu RI Zhou, Chengshang/L-5850-2015 OI Zhou, Chengshang/0000-0001-9016-6618 FU U.S. Department of Energy (DOE) [DE-AR0000173]; National Science Foundation [0933778] FX This research was supported by the U.S. Department of Energy (DOE) under contract number DE-AR0000173 and National Science Foundation (grant no. 0933778). We would like to thank Dr. Yang Ren and Dr. Xiaoyi Zhang of Advanced Photon Source of Argonne National Laboratory for their assistance with the synchrotron XRD analysis. NR 48 TC 35 Z9 37 U1 4 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 27 PY 2013 VL 117 IS 25 BP 12973 EP 12980 DI 10.1021/jp402770p PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 175NC UT WOS:000321236400008 ER PT J AU Qadir, K Kim, SM Seo, H Mun, BS Akgul, FA Liu, Z Park, JY AF Qadir, Kamran Kim, Sun Mi Seo, Hyungtak Mun, Bongjin S. Akgul, Funda Aksoy Liu, Zhi Park, Jeong Young TI Deactivation of Ru Catalysts under Catalytic CO Oxidation by Formation of Bulk Ru Oxide Probed with Ambient Pressure XPS SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; CARBON-MONOXIDE; IN-SITU; SURFACE OXIDE; ATOMIC-SCALE; NOBLE-METALS; NANOPARTICLES; RUTHENIUM; RH; PLATINUM AB The surface science approach of using model catalysts in conjunction with the development of in situ spectroscopic tools, such as ambient pressure X-ray photoelectron spectroscopy (AP-XPS), offers a synergistic strategy for obtaining a substantially better understanding of deactivation phenomena. In this study, we investigated the nature of Ru oxides on a Ru polycrystalline film under oxidizing, reducing, and catalytic CO oxidation reaction conditions. Thus, bulk Ru oxide was easily formed on such Ru catalysts, the growth of which was dependent on reaction temperature. Once formed, such an oxide is irreversible and cannot be completely removed even under reducing conditions at elevated temperatures (200 degrees C). Our reaction studies showed substantial deactivation of the Ru film during catalytic CO oxidation, and its activity could be partially recovered after reduction pretreatment. Such continuous deactivation of a Ru film is correlated with irreversibly formed bulk Ru oxide, as shown by AP-XPS. Such in situ spectroscopic evidence of the transition of oxides to a catalytically inactive state can enable more effective design of catalysts with less deactivation. C1 [Qadir, Kamran; Kim, Sun Mi; Park, Jeong Young] Grad Sch EEWS WCU, Taejon 305701, South Korea. [Qadir, Kamran; Kim, Sun Mi; Park, Jeong Young] Korea Adv Inst Sci & Technol, NanoCentury ICI, Taejon 305701, South Korea. [Qadir, Kamran; Kim, Sun Mi; Park, Jeong Young] Inst for Basic Sci Korea, Ctr Nanomat & Chem React, Taejon 305701, South Korea. [Seo, Hyungtak] Ajou Univ, Dept Mat Sci & Engn, Suwon 443749, South Korea. [Mun, Bongjin S.] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Sch Phys & Chem, Kwangju 500712, South Korea. [Mun, Bongjin S.] Gwangju Inst Sci & Technol, Ertl Ctr Electrochem & Catalysis, Kwangju 500712, South Korea. [Akgul, Funda Aksoy] Nigde Univ, Dept Phys, TR-51240 Nigde, Turkey. [Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Park, JY (reprint author), Grad Sch EEWS WCU, Taejon 305701, South Korea. EM jeongypark@kaist.ac.kr RI Park, Jeong Young/A-2999-2008; Liu, Zhi/B-3642-2009; Qadir, Kamran/S-8459-2016 OI Liu, Zhi/0000-0002-8973-6561; Qadir, Kamran/0000-0002-0378-2488 FU WCU (World Class University) program through the National Research Foundation [31-2008-000-10055-0, 2012R1A2A1A01009249]; Research Center Program of IBS (Institute for Basic Science) [CA1201]; Fundamental R&D Program for Core Technology of Materials; Ministry of Knowledge Economy, Republic of Korea FX This work was supported by the WCU (World Class University) program (31-2008-000-10055-0 and 2012R1A2A1A01009249) through the National Research Foundation, the Research Center Program (CA1201) of IBS (Institute for Basic Science) and from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea. NR 44 TC 13 Z9 13 U1 3 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 27 PY 2013 VL 117 IS 25 BP 13108 EP 13113 DI 10.1021/jp402688a PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 175NC UT WOS:000321236400022 ER PT J AU Wen, XD Martin, RL Scuseria, GE Rudin, SP Batista, ER AF Wen, Xiao-Dong Martin, Richard L. Scuseria, Gustavo E. Rudin, Sven P. Batista, Enrique R. TI A Screened Hybrid DFT Study of Actinide Oxides, Nitrides, and Carbides SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTRONIC-STRUCTURE; URANIUM NITRIDE; UO2 AB A systematic study of the structural, electronic, and magnetic properties of actinide oxides, nitrides, and carbides (AnX(1-2) with X = C, N, O) is performed using the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. Our computed results show that the screened hybrid HSE functional gives a good description of the electronic and structural properties of actinide dioxides (strongly correlated insulators) when compared with available experimental data. However, there are still some problems reproducing the electronic properties of actinide nitrides and carbides (strongly correlated metals). In addition, in order to compare with the results by HSE, the structures, electronic, and magnetic properties of these actinide compounds are also investigated in the PBE and PBE+U approximation. Interestingly, the density of states of UN obtained with PBE compares well with the experimental photoemission spectra, in contrast to the hybrid approximation. This is presumably related to the need of additional screening in the Hartree-Fock exchange term of the metallic phases. C1 [Wen, Xiao-Dong; Martin, Richard L.; Rudin, Sven P.; Batista, Enrique R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Scuseria, Gustavo E.] Rice Univ, Dept Chem, Dept Phys & Astron, Houston, TX 77251 USA. [Scuseria, Gustavo E.] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21589, Saudi Arabia. RP Martin, RL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM rlmartin@lanl.gov RI Wen, Xiaodong/G-5227-2011; Faculty of, Sciences, KAU/E-7305-2017 OI Wen, Xiaodong/0000-0001-8161-9742; FU Heavy Element Chemistry Program at Los Alamos National Laboratory by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; LDRD program at Los Alamos National Laboratory; DOE, Office of Basic Energy Sciences, Heavy Element Chemistry program [DEFG02-04ER15523]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC5206NA25396] FX This work was supported under the Heavy Element Chemistry Program at Los Alamos National Laboratory by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. Portions of the work were also supported by the LDRD program at Los Alamos National Laboratory. X.-D.W. gratefully acknowledges a Seaborg Institute Fellowship. The work at Rice University is supported by DOE, Office of Basic Energy Sciences, Heavy Element Chemistry program, under Grant DEFG02-04ER15523. Some of the calculations were performed on the Chinook computing systems at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at PNNL. Some of the calculations were done on LOBO supercomputer of High Performance Computing at Los Alamos National Laboratory. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC5206NA25396. NR 32 TC 17 Z9 17 U1 1 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 27 PY 2013 VL 117 IS 25 BP 13122 EP 13128 DI 10.1021/jp403141t PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 175NC UT WOS:000321236400024 ER PT J AU Mutz, M Eastwood, E Dadmun, MD AF Mutz, M. Eastwood, Eric Dadmun, M. D. TI Quantifying the Solubility of Boron Nitride Nanotubes and Sheets with Static Light Scattering and Refractometry SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID WALLED CARBON NANOTUBES; POLYMER COMPOSITES; ORGANIC-SOLVENTS; DISPERSION; FUNCTIONALIZATION; PARAMETERS AB The dissolution of nanoparticles, particularly those containing boron, is an important area of interest for polymer nanocomposite formation and material development. In this work, the solubility of boron nitride nanotubes (BNNT), functionalized boron nitride nanotubes (FBNNT), and boron nitride sheets (BN-ZG) is quantified in toluene and THF with static light scattering, refractometry, UV-vis spectroscopy, and physical observations. UV-vis spectroscopy provides a method to determine the concentration and solubility limits of the solutions tested. Using light scattering, the second virial coefficient, A(2), is determined and used to calculate chi, the solute-solvent interaction parameter. The Hildebrand solubility parameter, delta, is then extracted from this data using the Hildebrand-Scatchard Solution Theory. A list of potential good solvents based on the estimated delta value is provided for each nanoparticle. Single-walled carbon nanotubes (SWNTs) and prepolymers (EN4 and EN8) used to synthesize polyurethanes were also tested, because the published delta and molar attraction constants of these materials provided a self-consistent check. The dn/dc of SWNTs and boron-containing particles was measured for the first time in this work. A solvent screen for BN-ZG provides additional information that supports the obtained delta and chi. Three systems were found to have chi values below 0.5 and were thermodynamically soluble: BNNT in THF, EN8 in THF, and EN8 in toluene. C1 [Mutz, M.; Dadmun, M. D.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Eastwood, Eric] Honeywell Kansas City Plant, Kansas City, MO 64131 USA. [Dadmun, M. D.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Mutz, M (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. FU Honeywell Federal Manufacturing and Technologies, LLC; Division of Materials Science and Engineering, U.S. Department of Energy, Office of Basic Energy Sciences FX Funding for this research was provided by Honeywell Federal Manufacturing and Technologies, LLC. M.D. also acknowledges support from the Division of Materials Science and Engineering, U.S. Department of Energy, Office of Basic Energy Sciences. NR 34 TC 3 Z9 3 U1 3 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 27 PY 2013 VL 117 IS 25 BP 13230 EP 13238 DI 10.1021/jp400874f PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 175NC UT WOS:000321236400037 ER PT J AU Alvarez, G AF Alvarez, G. TI Production of minimally entangled typical thermal states with the Krylov-space approach SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM RENORMALIZATION-GROUPS; PHASE-TRANSITIONS; HUBBARD-MODEL; SYSTEMS; ABSENCE AB The minimally entangled typical thermal states algorithm is applied to fermionic systems using the Krylov-space approach to evolve the system in imaginary time. The convergence of local observables is studied in a tight-binding system with a site-dependent potential. The temperature dependence of the superconducting correlations of the attractive Hubbard model is analyzed on chains, showing an exponential decay with distance and exponents proportional to the temperature at low temperatures, as expected. In addition, the nonlocal parity correlator is calculated at finite temperature. Other possible applications of the minimally entangled typical thermal states algorithm to fermionic systems are also discussed. C1 [Alvarez, G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Alvarez, G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Alvarez, G (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. FU Scientific User Facilities Division, Basic Energy Sciences, U.S. Department of Energy (DOE), under with UT-Battelle; DOE FX I would like to thank K. Al-Hassanieh, T. Maier, J. Rincon, E. M. Stoudenmire, and S. R. White for helpful discussions and suggestions. This research was conducted at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, sponsored by the Scientific User Facilities Division, Basic Energy Sciences, U.S. Department of Energy (DOE), under contract with UT-Battelle. I would like to acknowledge support from the DOE early career research program. NR 29 TC 4 Z9 4 U1 2 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 27 PY 2013 VL 87 IS 24 AR 245130 DI 10.1103/PhysRevB.87.245130 PG 6 WC Physics, Condensed Matter SC Physics GA 172JW UT WOS:000321000300007 ER PT J AU Ren, J Zhu, JX AF Ren, Jie Zhu, Jian-Xin TI Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC KAPITZA CONDUCTANCE; RELAXATION; RESISTANCE; TRANSPORT; TEMPERATURES; RECTIFIER; LATTICE; FLOW AB Controlling heat flow by phononic nanodevices has received significant attention recently because of its fundamental and practical implications. Elementary phononic devices such as thermal rectifiers, transistors, and logic gates are essentially based on two intriguing properties: heat diode effect and negative differential thermal conductance. However, little is known about these heat transfer properties across metal-dielectric interfaces, especially at nanoscale. Here we analytically resolve the microscopic mechanism of the nonequilibrium nanoscale energy transfer across metal-dielectric interfaces, where the inelastic electron-phonon scattering directly assists the energy exchange. We demonstrate the emergence of heat diode effect and negative differential thermal conductance in nanoscale interfaces and explain why these novel thermal properties are usually absent in bulk metal-dielectric interfaces. These results will generate exciting prospects for the nanoscale interfacial energy transfer, which should have important implications in designing hybrid circuits for efficient thermal control and open up potential applications in thermal energy harvesting with low-dimensional nanodevices. C1 [Ren, Jie; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Ren, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM renjie@lanl.gov RI Ren, Jie/G-5314-2010 OI Zhu, Jianxin/0000-0001-7991-3918; Ren, Jie/0000-0003-2806-7226 FU National Nuclear Security Administration of the U.S. DOE at LANL [DE-AC52-06NA25396]; LDRD Program at LANL; Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility FX This work was supported by the National Nuclear Security Administration of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396, and the LDRD Program at LANL (J.R.), and in part by the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility (J.-X.Z.). NR 45 TC 17 Z9 17 U1 2 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 27 PY 2013 VL 87 IS 24 AR 241412 DI 10.1103/PhysRevB.87.241412 PG 5 WC Physics, Condensed Matter SC Physics GA 172JW UT WOS:000321000300003 ER PT J AU Lutz, O Neubauer, S Heck, M Kuhr, T Zupanc, A Adachi, I Aihara, H Asner, DM Aushev, T Aziz, T Bakich, AM Belous, K Bhardwaj, V Bhuyan, B Bondar, A Bonvicini, G Bozek, A Bracko, M Browder, TE Chang, P Chekelian, V Chen, A Chen, P Cheon, BG Chistov, R Cho, K Chobanova, V Choi, Y Cinabro, D Dalseno, J Danilov, M Dolezal, Z Drasal, Z Dutta, D Eidelman, S Epifanov, D Farhat, H Fast, JE Feindt, M Gaur, V Gabyshev, N Ganguly, S Gillard, R Goh, YM Golob, B Haba, J Hara, T Hayasaka, K Hayashii, H Hoshi, Y Hou, WS Hsiung, YB Hyun, HJ Iijima, T Ishikawa, A Itoh, R Iwasaki, Y Julius, T Kang, JH Kapusta, P Kato, E Kawasaki, T Kiesling, C Kim, HJ Kim, HO Kim, JB Kim, JH Kim, KT Kim, MJ Kinoshita, K Klucar, J Ko, BR Kodys, P Korpar, S Kouzes, RT Krizan, P Krokovny, P Kronenbitter, B Kumita, T Kuzmin, A Kwon, YJ Lange, JS Lee, SH Li, Y Liu, C Liu, Y Liventsev, D Matvienko, D Miyabayashi, K Miyata, H Mohanty, GB Moll, A Muller, T Muramatsu, N Nakano, E Nakao, M Natkaniec, Z Nayak, M Nedelkovska, E Ng, C Nisar, NK Nishida, S Nitoh, O Ogawa, S Ohshima, T Okuno, S Olsen, SL Onuki, Y Oswald, C Pakhlov, P Pakhlova, G Park, H Park, HK Pedlar, TK Pestotnik, R Petric, M Piilonen, LE Prim, M Ritter, M Rohrken, M Sahoo, H Saito, T Sakai, Y Sandilya, S Santel, D Santelj, L Sanuki, T Sato, Y Schneider, O Schnell, G Schwanda, C Schwartz, AJ Senyo, K Seon, O Sevior, ME Shapkin, M Shebalin, V Shen, CP Shibata, TA Shiu, JG Shwartz, B Sibidanov, A Simon, F Smerkol, P Sohn, YS Sokolov, A Solovieva, E Staric, M Sumihama, M Sumiyoshi, T Tatishvili, G Teramoto, Y Trabelsi, K Tsuboyama, T Uchida, M Uglov, T Unno, Y Uno, S Usov, Y Van Hulse, C Varner, G Vorobyev, V Wagner, MN Wang, CH Wang, J Wang, MZ Wang, P Watanabe, M Watanabe, Y Williams, KM Won, E Yamamoto, H Yamashita, Y Zhang, ZP Zhilich, V Zhulanov, V AF Lutz, O. Neubauer, S. Heck, M. Kuhr, T. Zupanc, A. Adachi, I. Aihara, H. Asner, D. M. Aushev, T. Aziz, T. Bakich, A. M. Belous, K. Bhardwaj, V. Bhuyan, B. Bondar, A. Bonvicini, G. Bozek, A. Bracko, M. Browder, T. E. Chang, P. Chekelian, V. Chen, A. Chen, P. Cheon, B. G. Chistov, R. Cho, K. Chobanova, V. Choi, Y. Cinabro, D. Dalseno, J. Danilov, M. Dolezal, Z. Drasal, Z. Dutta, D. Eidelman, S. Epifanov, D. Farhat, H. Fast, J. E. Feindt, M. Gaur, V. Gabyshev, N. Ganguly, S. Gillard, R. Goh, Y. M. Golob, B. Haba, J. Hara, T. Hayasaka, K. Hayashii, H. Hoshi, Y. Hou, W. -S. Hsiung, Y. B. Hyun, H. J. Iijima, T. Ishikawa, A. Itoh, R. Iwasaki, Y. Julius, T. Kang, J. H. Kapusta, P. Kato, E. Kawasaki, T. Kiesling, C. Kim, H. J. Kim, H. O. Kim, J. B. Kim, J. H. Kim, K. T. Kim, M. J. Kinoshita, K. Klucar, J. Ko, B. R. Kodys, P. Korpar, S. Kouzes, R. T. Krizan, P. Krokovny, P. Kronenbitter, B. Kumita, T. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, S. -H. Li, Y. Liu, C. Liu, Y. Liventsev, D. Matvienko, D. Miyabayashi, K. Miyata, H. Mohanty, G. B. Moll, A. Mueller, T. Muramatsu, N. Nakano, E. Nakao, M. Natkaniec, Z. Nayak, M. Nedelkovska, E. Ng, C. Nisar, N. K. Nishida, S. Nitoh, O. Ogawa, S. Ohshima, T. Okuno, S. Olsen, S. L. Onuki, Y. Oswald, C. Pakhlov, P. Pakhlova, G. Park, H. Park, H. K. Pedlar, T. K. Pestotnik, R. Petric, M. Piilonen, L. E. Prim, M. Ritter, M. Roehrken, M. Sahoo, H. Saito, T. Sakai, Y. Sandilya, S. Santel, D. Santelj, L. Sanuki, T. Sato, Y. Schneider, O. Schnell, G. Schwanda, C. Schwartz, A. J. Senyo, K. Seon, O. Sevior, M. E. Shapkin, M. Shebalin, V. Shen, C. P. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Sibidanov, A. Simon, F. Smerkol, P. Sohn, Y. -S. Sokolov, A. Solovieva, E. Staric, M. Sumihama, M. Sumiyoshi, T. Tatishvili, G. Teramoto, Y. Trabelsi, K. Tsuboyama, T. Uchida, M. Uglov, T. Unno, Y. Uno, S. Usov, Y. Van Hulse, C. Varner, G. Vorobyev, V. Wagner, M. N. Wang, C. H. Wang, J. Wang, M. -Z. Wang, P. Watanabe, M. Watanabe, Y. Williams, K. M. Won, E. Yamamoto, H. Yamashita, Y. Zhang, Z. P. Zhilich, V. Zhulanov, V. CA Belle Collaboration TI Search for B -> h(()*())nu(nu)over-bar with the full Belle Upsilon(4S) data sample SO PHYSICAL REVIEW D LA English DT Article ID DETECTOR AB We report a search for the rare decays B -> h(()*())nu(nu) over bar, where h(()*()) stands for K+, K-S(0), K*(+), K*(0), pi(+), pi(0), rho(+), rho(0) and phi. The results are obtained from a 711 fb(-1) data sample that contains 772 x 10(6) B (B) over bar pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB e(+)e(-) collider. We search for signal candidates by fully reconstructing a hadronic decay of the accompanying B meson and requiring a single h(()*()) meson left on the signal side. No significant signal is observed and we set upper limits on the branching fractions at 90% confidence level. The measurements of B+ -> K*(+)nu(nu) over bar, B+ -> pi(+)nu(nu) over bar, B-0 -> pi(0)nu(nu) over bar and B-0 -> rho(0)nu(nu) over bar provide the world's currently most restrictive limits. C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country UPV EHU, Bilbao 48080, Spain. [Oswald, C.] Univ Bonn, D-53115 Bonn, Germany. [Bondar, A.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Usov, Y.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Bondar, A.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Usov, Y.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Kinoshita, K.; Liu, Y.; Santel, D.; Schwartz, A. J.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Lange, J. S.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Sumihama, M.] Gifu Univ, Gifu 5011193, Japan. [Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Sahoo, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Iwasaki, Y.; Liventsev, D.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Tsuboyama, T.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Schnell, G.] Ikerbasque, Bilbao 48011, Spain. [Bhuyan, B.; Dutta, D.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Nayak, M.] Indian Inst Technol, Chennai 600036, Tamil Nadu, India. [Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Belous, K.; Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia. [Aushev, T.; Chistov, R.; Danilov, M.; Pakhlov, P.; Pakhlova, G.; Solovieva, E.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Klucar, J.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Santelj, L.; Smerkol, P.; Staric, M.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Lutz, O.; Neubauer, S.; Heck, M.; Kuhr, T.; Zupanc, A.; Feindt, M.; Kronenbitter, B.; Mueller, T.; Prim, M.; Roehrken, M.] Karlsruher Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Kim, J. H.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Kim, K. T.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kim, H. J.; Kim, H. O.; Kim, M. J.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Chekelian, V.; Chobanova, V.; Dalseno, J.; Kiesling, C.; Moll, A.; Nedelkovska, E.; Ritter, M.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Danilov, M.; Pakhlov, P.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Uglov, T.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Iijima, T.; Ohshima, T.; Seon, O.; Shen, C. P.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Hayasaka, K.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Bhardwaj, V.; Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Chang, P.; Chen, P.; Hou, W. -S.; Hsiung, Y. B.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Kapusta, P.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Kawasaki, T.; Miyata, H.; Watanabe, M.] Niigata Univ, Niigata 9502181, Japan. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Fast, J. E.; Kouzes, R. T.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, J.] Peking Univ, Beijing 100871, Peoples R China. [Muramatsu, N.] Tohoku Univ, Res Ctr Electron Photon Sci, Sendai, Miyagi 9808578, Japan. [Liu, C.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Olsen, S. L.] Seoul Natl Univ, Seoul 151742, South Korea. [Choi, Y.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Sibidanov, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Aziz, T.; Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan. [Ishikawa, A.; Kato, E.; Saito, T.; Sanuki, T.; Sato, Y.; Yamamoto, H.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.; Epifanov, D.; Ng, C.; Onuki, Y.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Koganei, Tokyo 1848588, Japan. [Li, Y.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Bonvicini, G.; Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Kang, J. H.; Kwon, Y. -J.; Sohn, Y. -S.] Yonsei Univ, Seoul 120749, South Korea. RP Lutz, O (reprint author), Univ Basque Country UPV EHU, Bilbao 48080, Spain. RI Pakhlova, Galina/C-5378-2014; Solovieva, Elena/B-2449-2014; Aihara, Hiroaki/F-3854-2010; Ishikawa, Akimasa/G-6916-2012; Nitoh, Osamu/C-3522-2013; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Krokovny, Pavel/G-4421-2016; Chistov, Ruslan/B-4893-2014 OI Pakhlova, Galina/0000-0001-7518-3022; Solovieva, Elena/0000-0002-5735-4059; Aihara, Hiroaki/0000-0002-1907-5964; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667; Chistov, Ruslan/0000-0003-1439-8390 FU MEXT (Japan); JSPS (Japan); Nagoya's TLPRC (Japan); ARC (Australia); DIISR (Australia); NSFC (China); MSMT (Czechia); Carl Zeiss Foundation (Germany); DFG (Germany); DST (India); INFN (Italy); MEST (Korea); NRF (Korea); GSDC of KISTI (Korea); WCU (Korea); MNiSW (Poland); MES (Russia); RFAAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC (Taiwan); MOE (Taiwan); DOE (USA); NSF (USA) FX We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET4 network support. We acknowledge support from MEXT, JSPS and Nagoya's TLPRC (Japan); ARC and DIISR (Australia); NSFC (China); MSMT (Czechia); the Carl Zeiss Foundation and the DFG (Germany); DST (India); INFN (Italy); MEST, NRF, GSDC of KISTI, and WCU (Korea); MNiSW (Poland); MES and RFAAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE and NSF (USA). NR 33 TC 21 Z9 21 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 27 PY 2013 VL 87 IS 11 AR 111103 DI 10.1103/PhysRevD.87.111103 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 172KE UT WOS:000321001100001 ER PT J AU Kogan, VG AF Kogan, V. G. TI Homes scaling and BCS SO PHYSICAL REVIEW B LA English DT Article ID TEMPERATURE; SUPERCONDUCTORS AB It is argued on the basis of the BCS theory that the zero-T penetration depth satisfies lambda(-2)(0) alpha sigma T-c (sigma is the normal state dc conductivity) not only in the extreme dirty limit xi(0)/l >> 1, but in a broad range of scattering parameters down to xi(0)/l similar to 1 (xi(0) is the zero-T BCS coherence length and l is the mean free path). Hence, the scaling lambda(-2)(0) alpha sigma T-c, sTc, suggested as a new universal property of superconductors [Dordevic, Basov, and Homes, Sci. Rep. 3, 1713 (2013)], finds a natural explanation within the BCS theory. C1 US DOE, Ames Lab, Ames, IA 50011 USA. RP Kogan, VG (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. FU Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358] FX The author is grateful to S. Bud'ko, P. Canfield, R. Prozorov, J. Clem, V. Taufour, and H. Kim for interest and help. Discussions with C. Homes were welcome and encouraging. The Ames Laboratory is supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. NR 11 TC 7 Z9 7 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 27 PY 2013 VL 87 IS 22 AR 220507 DI 10.1103/PhysRevB.87.220507 PG 2 WC Physics, Condensed Matter SC Physics GA 172JS UT WOS:000320999800001 ER PT J AU Jing, YC Hao, Y Litvinenko, VN AF Jing, Yichao Hao, Yue Litvinenko, Vladimir N. TI Compensating effect of the coherent synchrotron radiation in bunch compressors SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID FREE-ELECTRON LASER; EXTREME-ULTRAVIOLET; OPERATION AB Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam line's end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERL's arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beam's quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider. C1 [Jing, Yichao; Hao, Yue; Litvinenko, Vladimir N.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Jing, YC (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM yjing@bnl.gov FU Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; U.S. Department of Energy FX This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. NR 29 TC 8 Z9 8 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN 27 PY 2013 VL 16 IS 6 AR 060704 DI 10.1103/PhysRevSTAB.16.060704 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 172KL UT WOS:000321001800001 ER PT J AU Kaiser, BLD Li, J Sanford, JA Kim, YM Kronewitter, SR Jones, MB Peterson, CT Peterson, SN Frank, BC Purvine, SO Brown, JN Metz, TO Smith, RD Heffron, F Adkins, JN AF Kaiser, Brooke L. Deatherage Li, Jie Sanford, James A. Kim, Young-Mo Kronewitter, Scott R. Jones, Marcus B. Peterson, Christine T. Peterson, Scott N. Frank, Bryan C. Purvine, Samuel O. Brown, Joseph N. Metz, Thomas O. Smith, Richard D. Heffron, Fred Adkins, Joshua N. TI A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection SO PLOS ONE LA English DT Article ID ENTERICA SEROVAR TYPHIMURIUM; MASS-SPECTROMETRY; MICROBIAL ECOLOGY; VIRULENCE FACTORS; MUCIN DYNAMICS; IMMUNE-SYSTEM; SP NOV.; RESISTANCE; PROTEIN; CELLS AB The potential for commensal microorganisms indigenous to a host (the 'microbiome' or 'microbiota') to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics "systems'' approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e. g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium's lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome. C1 [Kaiser, Brooke L. Deatherage; Sanford, James A.; Kim, Young-Mo; Kronewitter, Scott R.; Brown, Joseph N.; Metz, Thomas O.; Smith, Richard D.; Adkins, Joshua N.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Li, Jie; Heffron, Fred] Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR 97201 USA. [Jones, Marcus B.; Peterson, Christine T.; Peterson, Scott N.; Frank, Bryan C.] J Craig Venter Inst, Dept Infect Dis, Rockville, MD USA. [Purvine, Samuel O.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Adkins, JN (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM Joshua.Adkins@pnnl.gov RI Smith, Richard/J-3664-2012; Kim, Young-Mo/D-3282-2009; OI Smith, Richard/0000-0002-2381-2349; Kim, Young-Mo/0000-0002-8972-7593; Adkins, Joshua/0000-0003-0399-0700; Metz, Tom/0000-0001-6049-3968 FU National Institute of Allergy and Infectious Diseases NIH/DHHS [Y1-AI-8401, R01AI022933-022A1]; U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER) [8 P41 GM103493-10]; Pacific Northwest National Laboratory [DE-AC05-76RLO1830] FX (This work was supported in part by the National Institute of Allergy and Infectious Diseases NIH/DHHS through interagency agreement Y1-AI-8401 (project websitewww.SysBEP.org with links to raw data) and Grant R01AI022933-022A1. This work used instrumentation and capabilities developed under support from the National Institute of General Medical Sciences grant 8 P41 GM103493-10 and the U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER). Significant portions of this work were performed in the Environmental Molecular Sciences Laboratory, a DOE/BER national scientific user facility located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the DOE by Battelle under Contract DE-AC05-76RLO1830. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 59 TC 31 Z9 31 U1 2 U2 43 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 26 PY 2013 VL 8 IS 6 AR e67155 DI 10.1371/journal.pone.0067155 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 178DN UT WOS:000321424400076 ER PT J AU Koenigsmann, C Semple, DB Sutter, E Tobierre, SE Wong, SS AF Koenigsmann, Christopher Semple, Dara Bobb Sutter, Eli Tobierre, Sybil E. Wong, Stanislaus S. TI Ambient Synthesis of High-Quality Ruthenium Nanowires and the Morphology-Dependent Electrocatalytic Performance of Platinum-Decorated Ruthenium Nanowires and Nanoparticles in the Methanol Oxidation Reaction SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE direct methanol fuel cells; electrocatctlysis; one-dimensional nanostructures; noble metals; template-based synthesis; morphology-dependent behavior ID OXYGEN REDUCTION REACTION; CO MONOLAYER OXIDATION; FUEL-CELLS; ANODE ELECTROCATALYSTS; ETHANOL OXIDATION; CATALYSTS; RU; PTRU; SIZE; ELECTROOXIDATION AB We report for the first time (a) the synthesis of elemental ruthenium nanowires (Ru NWs), (b) a method for modifying their surfaces with platinum (Pt), and (c) the morphology-dependent methanol oxidation reaction (MOR) performance of high quality Pt modified Ru NW electrocatalysts. The synthesis of our elemental Ru NWs has been accomplished utilizing a template-based method under ambient conditions. As-prepared Ru NWs are crystalline and elementally pure, maintain electrochemical properties analogous to elemental Ru, and can be generated with average diameters ranging from 44 to 280 nm. We rationally examine the morphology-dependent performance of the Ru NWs by comparison with commercial Ru nanoparticle (NP)/carbon (C) systems after decorating the surfaces of these structures With Pt. We have demonstrated that the deposition of Pt onto the Ru NWs (Pt Ru NWs) results in a unique hierarchical structure, wherein the deposited Pt exists as discrete clusters on the surface. By contrast, we find that the Pt-decorated commercial Ru NP/C (Pt similar to Ru NP/C) results in the formation of an alloy-type NP. The Pt Ru NPs (0.61 A/mg of Pt) possess nearly 2-fold higher Pt mass activity than analogous Pt similar to Ru NW electrocatalysts (0.36 A/mg of Pt). On the basis of a long-term durability test, it is apparent that both catalysts undergo significant declines in performance, potentially resulting from aggregation and ripening in the case of Pt Ru NP/C and the effects of catalyst poisoning in the Pt similar to Ru NWs. At the conclusion of the test, both catalysts maintain comparable performance, despite a slightly enhanced performance in Pt similar to Ru NP/C. In addition, the measured mass-normalized MOR activity of the Pt similar to Ru NWs (0.36 A/mg of Pt) was significantly enhanced as compared with supported elemental Pt (Pt NP/C, 0.09 A/mg of Pt) and alloy-type PtRu (PtRu NP/C, 0.24 A/mg of Pt) NPs, both serving as commercial standards. C1 [Koenigsmann, Christopher; Semple, Dara Bobb; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Tobierre, Sybil E.; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM stanislaus.wong@stonybrook.edu FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC02-98CH10886] FX Research (including support for S.S.W. and electrochemical experiments) was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Support for experimental supplies was also provided by Sigma Xi through its Grants-in-Aid of Research Program. We acknowledge Dr. R. R. Adzic and Dr. M. B. Vukmirovic (Brookhaven National Laboratory) for relevant, helpful discussions and assistance with obtaining electrochemical measurements. We also thank Dr. J. Quinn and Dr. A. C. Santulli for their assistance with obtaining SEM and EDAX measurements. Experiments for this manuscript were performed, in part, at the Center for Functional Nanomaterials located at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under Contract DE-AC02-98CH10886. NR 59 TC 19 Z9 19 U1 4 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUN 26 PY 2013 VL 5 IS 12 BP 5518 EP 5530 DI 10.1021/am4007462 PG 13 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 175NI UT WOS:000321237000019 PM 23742154 ER PT J AU Saha, D Payzant, EA Kumbhar, AS Naskar, AK AF Saha, Dipendu Payzant, E. Andrew Kumbhar, Amar S. Naskar, Amit K. TI Sustainable Mesoporous Carbons as Storage and Controlled-Delivery Media for Functional Molecules SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE mesoporous carbon; lignin; soft-templating; drug delivery; sustainable materials ID DRUG-DELIVERY; ADSORPTION; POLYMERS; RELEASE; TRANSFORMATION; SCATTERING; FRAMEWORKS; NANOTUBES; SIEVES; BLOCK AB Here, we report the synthesis of surfactant-templated mesoporous carbons from lignin, which is a biomass-derived polymeric precursor, and their potential use as a controlled-release medium for functional molecules such as pharmaceuticals. To the best of our knowledge, this is the first report on the use of lignin for chemical-activation-free synthesis of functional mesoporous carbon. The synthesized carbons possess the pore widths within the range of 2.5-12.0 nm. In this series of mesoporous carbons, our best result demonstrates a Brunauer-Emmett-Teller (BET) surface area of 418 m(2)/g and a mesopore volume of 0.34 cm(3)/g, which is twice the micropore volume in this carbon. Because of the dominant mesoporosity, this engineered carbon demonstrates adsorption and controlled release of a representative pharmaceutical drug, captopril, in simulated gastric fluid. Large-scale utilization of these sustainable mesoporous carbons in applications involving adsorption, transport, and controlled release of functional molecules is desired for industrial processes that yield lignin as a coproduct. C1 [Saha, Dipendu; Naskar, Amit K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Carbon & Composites Grp, Oak Ridge, TN 37831 USA. [Payzant, E. Andrew] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Kumbhar, Amar S.] Univ N Carolina, Inst Adv Mat NanoSci & Technol, Chapel Hill, NC 27599 USA. RP Naskar, AK (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Carbon & Composites Grp, Oak Ridge, TN 37831 USA. EM naskarak@ornl.gov RI Payzant, Edward/B-5449-2009 OI Payzant, Edward/0000-0002-3447-2060 FU Laboratory Directed Research and Development Program of ORNL; Division of Scientific User Facilities, U.S. Department of Energy FX Research was sponsored by the Laboratory Directed Research and Development Program of ORNL, managed by UT-Battelle, LLC, for the U.S. Department of Energy. Scattering experiments were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory (ORNL) by the Division of Scientific User Facilities, U.S. Department of Energy. We thank Dr. Gerald E. Jellison for support with UV-vis spectroscopy. The authors gratefully acknowledge the generous donation of Pluronic F127 by BASF. NR 34 TC 31 Z9 31 U1 3 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUN 26 PY 2013 VL 5 IS 12 BP 5868 EP 5874 DI 10.1021/am401661f PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 175NI UT WOS:000321237000064 PM 23731336 ER PT J AU Gin, S Ryan, JV Schreiber, DK Neeway, J Cabie, M AF Gin, S. Ryan, J. V. Schreiber, D. K. Neeway, J. Cabie, M. TI Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: Application to a nuclear glass specimen altered 25 years in a granitic environment SO CHEMICAL GEOLOGY LA English DT Article DE Nuclear glass; Atom probe tomography; Interdiffusion; Alteration layers; Long-term rate ID BOROSILICATE GLASSES; WASTE GLASS; WATER PENETRATION; SILICATE-GLASSES; DISSOLUTION RATE; SURFACE-LAYERS; 1ST PRINCIPLES; RICH SOLUTIONS; ION-EXCHANGE; GRAAL MODEL AB We report and discuss results of atom probe tomography (APT) and energy-filtered transmission electron microscopy (EFTEM) applied to a borosilicate glass sample of nuclear interest altered for 25.75 years at 90 degrees C in a confined granitic medium in order to better understand the rate-limiting mechanisms under conditions representative of a deep geological repository for vitrified radioactive waste. The APT technique allows the 3D reconstruction of the elemental distribution at the reactive interphase with sub-nanometer precision. Profiles of the B distribution at pristine glass/hydrated glass interface obtained by different techniques are compared to show the challenge of accurate measurements of diffusion profiles at this buried interface on the nanometer length scale. Our results show that 1) Li from the glass and hydrogen from the solution exhibit anti-correlated 15 nm wide gradients located between the pristine glass and the hydrated glass layer, and 2) boron exhibits an unexpectedly sharp profile (similar to 3 nm width) located just outside of the Li/H interdiffusion layer; this sharp profile is more consistent with a dissolution front than a diffusion-controlled release of boron. The resulting apparent diffusion coefficients derived from the Li and H profiles are D-Li = 1.5 x 10(-22) M-2.s(-1) and D-H = 6.8 x 10(-23) M-2.s(-1). These values are around two orders of magnitude lower than those observed at the very beginning of the alteration process, which suggests that interdiffusion is slowed at high reaction progress by local conditions that could be related to the porous structure of the interphase. As a result, the accessibility of water to the pristine glass could be the rate-limiting step in these conditions. More generally, these findings strongly support the importance of interdiffusion coupled with hydrolysis reactions of the silicate network on the long-term dissolution rate, contrary to what has been suggested by recent interfacial dissolution-precipitation models for silicate minerals. (C) 2013 Elsevier B.V. All rights reserved. C1 [Gin, S.] CPA Marcoule DTCD SECM LCLT, F-30207 Bagnols Sur Ceze, France. [Ryan, J. V.; Schreiber, D. K.; Neeway, J.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Cabie, M.] Aix Marseille Univ, CP2M, F-13397 Marseille, France. RP Gin, S (reprint author), CPA Marcoule DTCD SECM LCLT, F-30207 Bagnols Sur Ceze, France. EM stephane.gin@cea.fr; joe.ryan@pnnl.gov; daniel.schreiber@pnnl.gov; james.neeway@pnnl.gov; martiane.cabie@univ-amu.fr OI Neeway, Jim/0000-0001-7046-8408 FU DOE Offices of Nuclear Energy and Environmental Management; Department of Energy (DOE) Office of Biological and Environmental Research and located at PNNL FX The glass alteration experiment was conducted at CEA of Marcoule and followed for 26 years by Jean-Pierre Mestre. EFTEM analyses were performed at Aix-Marseille Universite. APT analyses and some of the FIB-based sample preparation were performed at the Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy (DOE) Office of Biological and Environmental Research and located at PNNL. This work is part of a jointly funded effort by the DOE Offices of Nuclear Energy and Environmental Management. NR 74 TC 45 Z9 45 U1 9 U2 75 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD JUN 26 PY 2013 VL 349 BP 99 EP 109 DI 10.1016/j.chemgeo.2013.04.001 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 180NL UT WOS:000321601800008 ER PT J AU Sevov, CS Hartwig, JF AF Sevov, Christo S. Hartwig, John F. TI Iridium-Catalyzed, Intermolecular Hydroetherification of Unactivated Aliphatic Alkenes with Phenols SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBOXYLIC-ACIDS; OXIDATIVE ADDITION; ASYMMETRIC HYDROAMINATION; HYDROALKOXYLATION; ALCOHOLS; OLEFINS; ALKYNES; ALKYLATION; COMPLEXES; ALLENES AB Metal-catalyzed addition of an O-H bond to an alkene is a desirable process because it allows for rapid access to ethers from abundant starting materials without the formation of waste, without rearrangements, and with the possibility to control the stereoselectivity. We report the intermolecular,, metal-catalyzed addition of phenols to unactivated alpha-olefins. Mechanistic studies of this rare catalytic reaction revealed a dynamic mixture of resting states that undergo O-H bond oxidative addition and subsequent olefin insertion to form ether products. C1 [Hartwig, John F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Berkeley, CA 94720 USA. RP Hartwig, JF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM jhartwig@berkeley.edu FU U.S. Department of Energy [DE-AC02-05CH11231]; NSF FX We thank the U.S. Department of Energy (DE-AC02-05CH11231) for support, Johnson-Matthey for a gift of [Ir(cod)Cl]2, and Takasago for a gift of (S)-DTBM-Segphos. C.S.S. thanks the NSF for a Graduate Research Fellowship. NR 41 TC 19 Z9 19 U1 6 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 26 PY 2013 VL 135 IS 25 BP 9303 EP 9306 DI 10.1021/ja4052153 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 175NE UT WOS:000321236600018 PM 23758128 ER PT J AU Shokri, A Wang, XB Kass, SR AF Shokri, Alireza Wang, Xue-Bin Kass, Steven R. TI Electron-Withdrawing Trifluoromethyl Groups in Combination with Hydrogen Bonds in Polyols: Bronsted Acids, Hydrogen-Bond Catalysts, and Anion Receptors SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DIELS-ALDER REACTIONS; DIMETHYL-SULFOXIDE SOLUTION; PHOTOELECTRON-SPECTROSCOPY; EQUILIBRIUM ACIDITIES; ASYMMETRIC CATALYSIS; DENSITY FUNCTIONALS; MANNICH REACTIONS; DIOLS; THERMOCHEMISTRY; PHOTODETACHMENT AB Electron-withdrawing trifluoromethyl groups were characterized in combination with hydrogen bond interactions in three polyols (i.e., CF3CH(OH)CH2CH(OH)CF3, 1; (CF3)(2)C(OH)C-(OH)(CF3)(2), 2; ((CF3)(2)C(OH)CH2)(2)CHOH, 3) by pK(a) measurements in DMSO and H2O, negative ion photoelectron spectroscopy and binding constant determinations with Cl-. Their catalytic behavior in several reactions were also examined and compared to a Bronsted acid (HOAc) and a commonly employed thiourea ((3,5-(CF3)(2)C6H3NH)(2)CS). The combination of inductive stabilization and hydrogen bonds was found to afford potent acids which are effective catalysts. It also appears that hydrogen bonds can transmit the inductive effect over distance even in an aqueous environment, and this has far reaching implications. C1 [Shokri, Alireza; Kass, Steven R.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Wang, Xue-Bin] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Wang, Xue-Bin] Washington State Univ, Dept Phys, Richland, WA 99354 USA. RP Wang, XB (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, POB 999,MS K8-88, Richland, WA 99352 USA. EM kass@umn.edu; xuebin.wang@pnnl.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); DOE's Office of Biological and Environmental Research FX We thank Dr. K. Murphy for preparing and separating the two diastereomers of 1. Generous support from the National Science Foundation, the Petroleum Research Fund as administered by the ACS and the Minnesota Supercomputer Institute for Advanced Computational Research are gratefully acknowledged. The photoelectron spectra work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE), and was performed at the EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle for DOE. NR 58 TC 26 Z9 26 U1 1 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 26 PY 2013 VL 135 IS 25 BP 9525 EP 9530 DI 10.1021/ja4036384 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 175NE UT WOS:000321236600054 PM 23725455 ER PT J AU Hoarty, DJ Allan, P James, SF Brown, CRD Hobbs, LMR Hill, MP Harris, JWO Morton, J Brookes, MG Shepherd, R Dunn, J Chen, H Von Marley, E Beiersdorfer, P Chung, HK Lee, RW Brown, G Emig, J AF Hoarty, D. J. Allan, P. James, S. F. Brown, C. R. D. Hobbs, L. M. R. Hill, M. P. Harris, J. W. O. Morton, J. Brookes, M. G. Shepherd, R. Dunn, J. Chen, H. Von Marley, E. Beiersdorfer, P. Chung, H. K. Lee, R. W. Brown, G. Emig, J. TI Observations of the Effect of Ionization-Potential Depression in Hot Dense Plasma SO PHYSICAL REVIEW LETTERS LA English DT Article ID LASER-SHOCKED SOLIDS; TARGETS; SPECTRA; SHIFT; EDGE AB The newly commissioned Orion laser system has been used to study dense plasmas created by a combination of short pulse laser heating and compression by laser driven shocks. Thus the plasma density was systematically varied between 1 and 10 g/cc by using aluminum samples buried in plastic foils or diamond sheets. The aluminum was heated to electron temperatures between 500 and 700 eV allowing the plasma conditions to be diagnosed by K-shell emission spectroscopy. The K-shell spectra show the effect of the ionization potential depression as a function of density. The data are compared to simulated spectra which account for the change in the ionization potential by the commonly used Stewart and Pyatt prescription and an alternative due to Ecker and Kroll suggested by recent x-ray free-electron laser experiments. The experimental data are in closer agreement with simulations using the model of Stewart and Pyatt. C1 [Hoarty, D. J.; Allan, P.; James, S. F.; Brown, C. R. D.; Hobbs, L. M. R.; Hill, M. P.; Harris, J. W. O.; Morton, J.; Brookes, M. G.] AWE Plc, Directorate Res & Appl Sci, Reading RG7 4PR, Berks, England. [Shepherd, R.; Dunn, J.; Chen, H.; Von Marley, E.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chung, H. K.; Brown, G.; Emig, J.] IAEA, Div Phys & Chem Sci, Nucl Data Sect, A-1400 Vienna, Austria. [Lee, R. W.] Univ Calif Berkeley, Inst Mat Dynam Extreme Condit, Berkeley, CA 94720 USA. RP Hoarty, DJ (reprint author), AWE Plc, Directorate Res & Appl Sci, Reading RG7 4PR, Berks, England. OI Hill, Matthew/0000-0002-0307-0624 FU DOE [DE-AC52-07NA-27344] FX The authors would like to thank the laser and facility staff of the Orion laser and D. Lavender for engineering support and the staff of AWE target fabrication. Work at the Lawrence Livermore National Laboratory was performed under the auspices of the DOE under Contract No. DE-AC52-07NA-27344. NR 20 TC 51 Z9 51 U1 2 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2013 VL 110 IS 26 AR 265003 DI 10.1103/PhysRevLett.110.265003 PG 5 WC Physics, Multidisciplinary SC Physics GA 172HE UT WOS:000320990800013 PM 23848885 ER PT J AU Litvinenko, VN Derbenev, YS AF Litvinenko, Vladimir N. Derbenev, Yaroslav S. TI Comment on "Coherent Electron Cooling" Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 [Litvinenko, Vladimir N.] BNL, Upton, NY 11973 USA. [Derbenev, Yaroslav S.] JLab, Newport News, VA 23606 USA. RP Litvinenko, VN (reprint author), BNL, Upton, NY 11973 USA. NR 6 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2013 VL 110 IS 26 AR 269504 DI 10.1103/PhysRevLett.110.269504 PG 2 WC Physics, Multidisciplinary SC Physics GA 172HE UT WOS:000320990800026 PM 23848932 ER PT J AU Stupakov, G Zolotorev, MS AF Stupakov, G. Zolotorev, M. S. TI Comment on "Coherent Electron Cooling" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 [Stupakov, G.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Zolotorev, M. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Beam Phys, Berkeley, CA 94720 USA. RP Stupakov, G (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. NR 3 TC 3 Z9 3 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2013 VL 110 IS 26 AR 269503 DI 10.1103/PhysRevLett.110.269503 PG 1 WC Physics, Multidisciplinary SC Physics GA 172HE UT WOS:000320990800025 PM 23848931 ER PT J AU Xu, HX Stoller, RE Osetsky, YN Terentyev, D AF Xu, Haixuan Stoller, Roger E. Osetsky, Yury N. Terentyev, Dmitry TI Solving the Puzzle of < 100 > Interstitial Loop Formation in bcc Iron SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEUTRON IRRADIATION DAMAGE; HEAVY-ION IRRADIATIONS; FE-CR ALLOYS; DISLOCATION LOOPS; ALPHA-IRON; RADIATION-DAMAGE; THIN-FOILS; MOLYBDENUM; EVOLUTION; CLUSTERS AB The interstitial loop is a unique signature of radiation damage in structural materials for nuclear and other advanced energy systems. Unlike other bcc metals, two types of interstitial loops, 1/2 < 111 > and < 100 >, are formed in bcc iron and its alloys. However, the mechanism by which < 100 > interstitial dislocation loops are formed has remained undetermined since they were first observed more than fifty years ago. We describe our atomistic simulations that have provided the first direct observation of < 100 > loop formation. The process was initially observed using our self-evolving atomistic kinetic Monte Carlo method, and subsequently confirmed using molecular dynamics simulations. Formation of < 100 > loops involves a distinctly atomistic interaction between two 1/2 < 111 > loops, and does not follow the conventional assumption of dislocation theory, which is Burgers vector conservation between the reactants and the product. The process observed is different from all previously proposed mechanisms. Thus, our observations might provide a direct link between experiments and simulations and new insights into defect formation that may provide a basis to increase the radiation resistance of these strategic materials. C1 [Xu, Haixuan; Stoller, Roger E.; Osetsky, Yury N.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Terentyev, Dmitry] CEN SCK, Nucl Mat Sci Inst, B-2400 Mol, Belgium. RP Xu, HX (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM xuh1@ornl.gov RI Xu, Haixuan/C-9841-2009; OI Osetskiy, Yury/0000-0002-8109-0030 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, "Center for Defect Physics," an Energy Frontier Research Center FX Research sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, "Center for Defect Physics," an Energy Frontier Research Center. The authors would like to thank G. M. Stocks, D. J. Bacon, and A. Barashev for their valuable comments on the manuscript. NR 33 TC 29 Z9 29 U1 2 U2 64 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2013 VL 110 IS 26 AR 265503 DI 10.1103/PhysRevLett.110.265503 PG 5 WC Physics, Multidisciplinary SC Physics GA 172HE UT WOS:000320990800016 PM 23848895 ER PT J AU Karrasch, C Hauschild, J Langer, S Heidrich-Meisner, F AF Karrasch, C. Hauschild, J. Langer, S. Heidrich-Meisner, F. TI Drude weight of the spin-1/2 XXZ chain: Density matrix renormalization group versus exact diagonalization SO PHYSICAL REVIEW B LA English DT Article ID HEISENBERG-MODEL; TRANSPORT; INTEGRABILITY; CONDUCTIVITY; TEMPERATURES; STIFFNESS; DYNAMICS; SYSTEMS AB We revisit the problem of the spin Drude weight D of the integrable spin-1/2 XXZ chain using two complementary approaches, exact diagonalization (ED) and the time-dependent density-matrix renormalization group (tDMRG). We pursue two main goals. First, we present extensive results for the temperature dependence of D. By exploiting time translation invariance within tDMRG, one can extract D for significantly lower temperatures than in previous tDMRG studies. Second, we discuss the numerical quality of the tDMRG data and elaborate on details of the finite-size scaling of the ED results, comparing calculations carried out in the canonical and grand-canonical ensembles. Furthermore, we analyze the behavior of the Drude weight as the point with SU(2)-symmetric exchange is approached and discuss the relative contribution of the Drude weight to the sum rule as a function of temperature. C1 [Karrasch, C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA. [Karrasch, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hauschild, J.; Langer, S.; Heidrich-Meisner, F.] Univ Munich, Dept Phys, D-80333 Munich, Germany. [Hauschild, J.; Langer, S.; Heidrich-Meisner, F.] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany. [Langer, S.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Heidrich-Meisner, F.] Univ Erlangen Nurnberg, Inst Theoret Phys 2, D-91054 Erlangen, Germany. RP Karrasch, C (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA. RI Heidrich-Meisner, Fabian/B-6228-2009; Karrasch, Christoph/S-5716-2016 OI Karrasch, Christoph/0000-0002-6475-3584 FU Deutsche Forschungsgemeinschaft [KA3360-1/1]; Nanostructured Thermoelectrics program of LBNL; Deutsche Forschungsgemeinschaft through Research unit FOR 912 [HE-5242/2-2] FX We thank W. Brenig, J. E. Moore, T. Prosen, and F. Verstraete for very helpful discussions and we thank A. Klumper for his comments on a previous version of the manuscript and for sending us data from Ref. 48. We gratefully acknowledge support from to the Deutsche Forschungsgemeinschaft through grant-no. KA3360-1/1 (C.K.) and through Research unit FOR 912 [Grant No. HE-5242/2-2 (J.H. and F.H.-M.)] as well as from the Nanostructured Thermoelectrics program of LBNL (C.K.). NR 71 TC 37 Z9 37 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 26 PY 2013 VL 87 IS 24 AR 245128 DI 10.1103/PhysRevB.87.245128 PG 10 WC Physics, Condensed Matter SC Physics GA 172FO UT WOS:000320985600004 ER PT J AU Kohley, Z Liang, JF Shapira, D Gross, CJ Varner, RL Allmond, JM Kolata, JJ Mueller, PE Roberts, A AF Kohley, Z. Liang, J. F. Shapira, D. Gross, C. J. Varner, R. L. Allmond, J. M. Kolata, J. J. Mueller, P. E. Roberts, A. TI Sub-barrier fusion enhancement with radioactive Te-134 SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION FUSION; NUCLEON-TRANSFER; COULOMB BARRIER; COUPLINGS; ENERGIES; FISSION; NI+SN; MODEL AB The fusion cross sections of radioactive Te-134 + Ca-40 were measured at energies above and below the Coulomb barrier. The evaporation residues produced in the reaction were detected in a zero-degree ionization chamber providing high efficiency for inverse kinematics. Both coupled-channel calculations and comparison with similar Sn + Ca systems indicate an increased sub-barrier fusion probability that is correlated with the presence of positive Q-value neutron transfer channels. In comparison, the measured fusion excitation functions of Te-130 + Ni-58,Ni-64, which have positive Q-value neutron transfer channels, were accurately reproduced by coupled-channel calculations including only inelastic excitations. The results demonstrate that the coupling of transfer channels can lead to enhanced sub-barrier fusion but this is not directly correlated with positive Q-value neutron transfer channels in all cases. C1 [Kohley, Z.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Kohley, Z.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Kohley, Z.; Liang, J. F.; Shapira, D.; Gross, C. J.; Varner, R. L.; Mueller, P. E.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Allmond, J. M.] Oak Ridge Natl Lab, Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Kolata, J. J.; Roberts, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Kohley, Z (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. EM kohley@nscl.msu.edu OI Allmond, James Mitchell/0000-0001-6533-8721 FU DOE Office of Nuclear Physics; NSF [PHY11-02511, PHY09-69456] FX We thank Dr. K. Hagino for the providing the CCFULL code. We also thank the staff members of the Holifield Radioactive Ion Beam Facility for the excellent quality radioactive and stable beams. This research was supported by the DOE Office of Nuclear Physics and NSF Grants No. PHY11-02511 and No. PHY09-69456. NR 52 TC 15 Z9 15 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUN 26 PY 2013 VL 87 IS 6 AR 064612 DI 10.1103/PhysRevC.87.064612 PG 6 WC Physics, Nuclear SC Physics GA 172FY UT WOS:000320986800004 ER PT J AU Sobczyk, JT Zmuda, J AF Sobczyk, Jan T. Zmuda, Jakub TI Impact of nuclear effects on weak pion production at energies below 1 GeV SO PHYSICAL REVIEW C LA English DT Article ID NEUTRINO INTERACTIONS; SCATTERING; EXCITATION; RESONANCES; DEUTERIUM; REGION AB Charged-current single-pion production in scattering off C-12 is investigated for neutrino energies up to 1 GeV. A model of Nieves et al. [Phys. Rev. C 83, 045501 (2011)] is further developed by performing exact integration and avoiding several approximations. The effect of exact integration is investigated both for double-differential and total neutrino-nucleus cross sections. The impact of nuclear effects with in-medium modifications of the Delta(1232) resonance properties as well as an effective field theory nonresonant background contribution are discussed. The dependence of the fraction of Delta(1232) decays into n-particle-n-hole states on incident neutrino energy is estimated. The impact of various ingredients of the model on the ratio of muon to electron neutrino cross sections is investigated in detail. C1 [Sobczyk, Jan T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sobczyk, Jan T.; Zmuda, Jakub] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland. RP Sobczyk, JT (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM jazmuda@ift.uni.wroc.pl RI Sobczyk, Jan/C-9761-2016 FU [4525/PB/IFT/11 (UMO-2011/01/N/ST2/03224)]; [4574/PB/IFT/12 (UMO-2011/01/M/ST2/02578)] FX J.Z. would like to thank L. Alvarez-Ruso, K. Graczyk, and J. Nieves for many fruitful discussions. This work was sponsored by Grants No. 4525/PB/IFT/11 (UMO-2011/01/N/ST2/03224) and No. 4574/PB/IFT/12 (UMO-2011/01/M/ST2/02578). NR 43 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 26 PY 2013 VL 87 IS 6 AR 065503 DI 10.1103/PhysRevC.87.065503 PG 16 WC Physics, Nuclear SC Physics GA 172FY UT WOS:000320986800006 ER PT J AU Cao, C Ford, D Bishnoi, S Proslier, T Albee, B Hommerding, E Korczakowski, A Cooley, L Ciovati, G Zasadzinski, JF AF Cao, C. Ford, D. Bishnoi, S. Proslier, T. Albee, B. Hommerding, E. Korczakowski, A. Cooley, L. Ciovati, G. Zasadzinski, J. F. TI Detection of surface carbon and hydrocarbons in hot spot regions of niobium superconducting rf cavities by Raman spectroscopy SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID AUGMENTED-WAVE METHOD; CRYSTAL-STRUCTURE; HYDROGEN; SYSTEMS AB Raman microscopy/spectroscopy measurements are presented on high purity niobium (Nb) samples, including pieces from hot spot regions of a tested superconducting rf cavity that exhibit a high density of etch pits. Measured spectra are compared with density functional theory calculations of Raman-active, vibrational modes of possible surface Nb-O and Nb-H complexes. The Raman spectra inside particularly rough pits in all Nb samples show clear differences from surrounding areas, exhibiting enhanced intensity and sharp peaks. While some of the sharp peaks are consistent with calculated NbH and NbH2 modes, there is better overall agreement with C-H modes in chain-type hydrocarbons. Other spectra reveal two broader peaks attributed to amorphous carbon. Niobium foils annealed to >2000 degrees C in high vacuum develop identical Raman peaks when subjected to cold working. Regions with enhanced C and O have also been found by SEM/EDX spectroscopy in the hot spot samples and cold-worked foils, corroborating the Raman results. Such regions with high concentrations of impurities are expected to suppress the local superconductivity and this may explain the correlation between hot spots in superconducting rf (SRF) cavities and the observation of a high density of surface pits. The origin of localized high carbon and hydrocarbon regions is unclear at present but it is suggested that particular processing steps in SRF cavity fabrication may be responsible. C1 [Cao, C.; Bishnoi, S.; Albee, B.; Hommerding, E.; Korczakowski, A.; Zasadzinski, J. F.] IIT, Dept Phys, Chicago, IL 60616 USA. [Cao, C.; Proslier, T.; Zasadzinski, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Ford, D.; Cooley, L.] Fermilab Natl Accelerator Lab, Superconducting Mat Dept, Tech Div, Batavia, IL 60510 USA. [Ford, D.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Ciovati, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Zasadzinski, JF (reprint author), IIT, Dept Phys, Chicago, IL 60616 USA. EM zasadzinski@iit.edu RI Cooley, Lance/E-7377-2015 OI Cooley, Lance/0000-0003-3488-2980 FU DOE-HEP through FNAL Laboratory; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; UChicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; United States Department of Energy [DE-AC02-07CH11359] FX This work was supported by DOE-HEP through FNAL Laboratory-University Collaboration to Understand Performance Limits of SRF Cavities. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The calculations were performed at Fermi National Accelerator Laboratory, which is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 37 TC 11 Z9 11 U1 2 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN 26 PY 2013 VL 16 IS 6 AR 064701 DI 10.1103/PhysRevSTAB.16.064701 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 172HI UT WOS:000320991200001 ER PT J AU Moore, DB Beekman, M Disch, S Zschack, P Hausler, I Neumann, W Johnson, DC AF Moore, Daniel B. Beekman, Matt Disch, Sabrina Zschack, Paul Haeusler, Ines Neumann, Wolfgang Johnson, David C. TI Synthesis, Structure, and Properties of Turbostratically Disordered (PbSe)(1.18)(TiSe2)(2) SO CHEMISTRY OF MATERIALS LA English DT Article DE misfit layered compounds; ferecrystals; turbostratic disorder ID MISFIT LAYER COMPOUND; CRYSTAL-STRUCTURE DETERMINATION; TRANSPORT-PROPERTIES; DIFFRACTION; ORIENTATION; SULFIDE AB Synthesis and structural characterization of a turbostratically disordered polymorph of (PbSe)(1.18)(TiSe2)(2) is reported. The structure of this compound consists of an intergrowth between one distorted rock salt structured PbSe bilayer and two transition metal dichalcogenide structured Se-Ti-Se trilayers. In addition to the lattice mismatch, there is extensive rotational disorder between these constituents. The electrical resistivity of (PbSe)(1.18)(TiSe2)(2) is a factor of 9 lower at room temperature, and the Seebeck coefficient is almost double that reported for the crystalline misfit layered compound analogue. C1 [Moore, Daniel B.; Beekman, Matt; Disch, Sabrina; Neumann, Wolfgang; Johnson, David C.] Univ Oregon, Dept Chem, Eugene, OR 97401 USA. [Beekman, Matt] Oregon Inst Technol, Dept Nat Sci, Klamath Falls, OR 97601 USA. [Disch, Sabrina] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Zschack, Paul] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Haeusler, Ines] Humboldt Univ, Inst Phys, D-10099 Berlin, Germany. RP Johnson, DC (reprint author), Univ Oregon, Dept Chem, Eugene, OR 97401 USA. RI Beekman, Matt/I-4470-2014; Disch, Sabrina/K-7185-2013 OI Beekman, Matt/0000-0001-9694-2286; Disch, Sabrina/0000-0002-4565-189X FU National Science Foundation [DMR 0907049, MRI 0923577]; ONR [N000141110193]; National Science Foundation through CCI Grant [CHE-1102637]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge support from the National Science Foundation under Grant DMR 0907049 and Grant MRI 0923577. Co-author W.N. acknowledges support from ONR Award No. N000141110193. Coauthors S.D. and D.C.J. acknowledge support from the National Science Foundation through CCI Grant CHE-1102637. The authors thank Jenia Karapetrova at 33-BM-C and Doug Robinson at 6-ID-D for technical assistance during collection of the synchrotron XRD data. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 29 TC 25 Z9 25 U1 6 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUN 25 PY 2013 VL 25 IS 12 BP 2404 EP 2409 DI 10.1021/cm400090f PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 173QI UT WOS:000321093600005 ER PT J AU Britt, DK Yoon, Y Ercius, P Ewers, TD Alivisatos, AP AF Britt, David K. Yoon, Yoseob Ercius, Peter Ewers, Trevor D. Alivisatos, A. Paul TI Hexameric Octahedral Clusters of PbSe Nanocrystals Grown from Amorphous Lead(II) Carboxylate Nanoparticles SO CHEMISTRY OF MATERIALS LA English DT Article DE nanocrystal synthesis; lead selenide; oriented attachment; electron tomography ID ORIENTED ATTACHMENT; ELECTRON-MICROSCOPY AB We describe the synthesis and three-dimensional structure of a new single-crystalline "hexameric" nanocrystal composed of six near-spherical PbSe nanocrystals arranged at the vertices of an octahedron. We examine the detailed three-dimensional structure of these nanocrystals using electron tomography and demonstrate single-crystal to single-crystal cation exchange to CdSe. We reveal that the growth of these nanocrystals, which form under conditions similar to other anisotropic PbSe nanocrystals, depends on the initial presence of lead oleate particles with approximate diameters of 1.7-3.1 nm that form upon heating lead(II) acetate hydrate in the presence of oleic acid. These lead oleate particles, which are visible by transmission electron microscopy, constitute the beginning of nearly every synthesis of anisotropic PbSe nanocrystals. We show that the lead oleate particles play a definitive role in determining the morphology of the resultant PbSe nanocrystals. We note that the acetate anion, which was previously identified as the key factor in achieving anisotropic PbSe growth, greatly accelerates the formation of the lead oleate particles, and thus appears to be responsible for the subsequent PbSe morphology. However, we demonstrate that acetate is not required for lead oleate particle formation, nor indeed for anisotropic PbSe growth. The potential role of these new particles in other PbSe synthetic preparations from lead(II) oleate is of high interest for future study. C1 [Britt, David K.; Yoon, Yoseob; Ewers, Trevor D.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ercius, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Britt, David/D-4675-2009; Yoon, Yoseob/D-5400-2013; Foundry, Molecular/G-9968-2014; Alivisatos , Paul /N-8863-2015 OI Yoon, Yoseob/0000-0002-8832-897X; Alivisatos , Paul /0000-0001-6895-9048 FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Physical Chemistry of Inorganic Nanostructures Program, Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DE-AC02-05CH11231] FX Electron Microscopy facilities in the National Center for Electron Microscopy (NCEM) at Lawrence Berkeley National Laboratory are supported by the U.S. Department of Energy (DOE) under contract no. DE-AC02-05CH11231. Work on nanocrystal synthesis and characterization was supported by the Physical Chemistry of Inorganic Nanostructures Program, Director, Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract DE-AC02-05CH11231. NR 22 TC 9 Z9 9 U1 2 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUN 25 PY 2013 VL 25 IS 12 BP 2544 EP 2548 DI 10.1021/cm401083g PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 173QI UT WOS:000321093600023 ER PT J AU Abelev, B Adam, J Adamova, D Adare, AM Aggarwal, MM Rinella, GA Agnello, M Agocs, AG Agostinelli, A Ahammed, Z Ahmad, N Masoodi, AA Ahn, SU Ahn, SA Ajaz, M Akindinov, A Aleksandrov, D Alessandro, B Alici, A Alkin, A Avina, EA Alme, J Alt, T Altini, V Altinpinar, S Altsybeev, I Andrei, C Andronic, A Anguelov, V Anielski, J Anson, C Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arbor, N Arcelli, S Arend, A Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Asryan, A Augustinus, A Averbeck, R Awes, TC Aysto, J Azmi, MD Bach, M Badala, A Baek, YW Bailhache, R Bala, R Ferroli, RB Baldisseri, A Pedrosa, FBD Ban, J Baral, RC Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Basu, S Bathen, B Batigne, G Batyunya, B Baumann, C Bearden, IG Beck, H Behera, NK Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bergognon, AAE Berzano, D Betev, L Bhasin, A Bhati, AK Bhom, J Bianchi, N Bianchi, L Bielcik, J Bielcikova, J Bilandzic, A Bjelogrlic, S Blanco, F Blanco, F Blau, D Blume, C Boccioli, M Ringer, S Bogdanov, A Boggild, H Bogolyubsky, M Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Bossu, F Botje, M Botta, E Braidot, E Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Brun, R Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, R Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Villar, EC Camerini, R Roman, VC Romeo, GC Carena, F Carena, W Carlin, N Carminati, F Diaz, AC Castellanos, JC Hernandez, JFC Casula, EAR Catanescu, V Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Chawla, I Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, E Cleymans, J Coccetti, E Colamaria, F Colella, D Collu, A Balbastre, GC del Valle, ZC Connors, ME Contin, G Contreras, JG Cormier, TM Morales, YC Cortese, P Maldonado, IC Cosentino, MR Costa, F Cotallo, ME Crescio, E Crochet, P Alaniz, EC Albino, RC Cuautle, E Cunqueiro, L Dainese, A Dalsgaard, HH Danu, A Das, S Das, D Das, K Das, I Dash, S Dash, A De, S de Barros, GOV De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D Delagrange, H Deloff, A De Marco, N Denes, E De Pasquale, S Deppman, A Erasmo, GD de Rooij, R Corchero, MAD Di Bari, D Dietel, T Di Giglio, C Di Liberto, S Di Mauro, A Di Nezza, P Divia, R Djuvsland, O Dobrin, A Dobrowolski, T Donigus, B Dordic, O Driga, O Dubey, AK Dubla, A Ducroux, L Dupieux, P Majumdar, AKD Elia, D Emschermann, D Engel, H Erazmus, B Erdal, HA Espagnon, B Estienne, M Esumi, S Evans, D Eyyubova, G Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fearick, R Fehlker, D Feldkamp, L Felea, D Feliciello, A Fenton-Olsen, B Feofilov, G Tellez, AF Ferretti, A Festanti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Floratos, E Floris, M Foertsch, S Foka, R Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Girard, MF Gaardhoje, JJ Gagliardi, M Gago, A Gallio, M Gangadharan, DR Ganoti, P Garabatos, C Garcia-Solis, E Gargiulo, C Garishvili, I Gerhard, J Germain, M Geuna, C Gheata, A Gheata, M Ghidini, B Ghosh, P Gianotti, P Girard, MR Giubellino, P Gladysz-Dziadus, E Glassel, R Gomez, R Ferreiro, EG Gonzalez-Trueba, LH Gonzalez-Zamora, P Gorbunov, S Goswami, A Gotovac, S Graczykowski, LK Grajcarek, R Grelli, A Grigoras, C Grigoras, A Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Gros, P Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, E Guernane, R Guerzoni, B Guilbaud, M Gulbrandsen, K Gulkanyan, H Gunji, T Gupta, A Gupta, R Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Han, BH Hanratty, LD Hansen, A Harmanova-Tothova, Z Harris, JW Hartig, M Harton, A Hatzifotiadou, D Hayashi, S Hayrapetyan, A Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Herrmann, N Hess, BA Hetland, KF Hicks, B Hippolyte, B Hori, Y Hristov, P Hrivnacova, I Huang, M Humanic, TJ Hwang, DS Ichou, R Ilkaev, R Ilkiv, I Inaba, M Incani, E Innocenti, PG Innocenti, GM Ippolitov, M Irfan, M Ivan, C Ivanov, V Ivanov, A Ivanov, M Ivanytskyi, O Jacholkowski, A Jacobs, PM Jang, HJ Janik, MA Janik, R Jayarathna, PHSY Jena, S Jha, DM Bustamante, RTJ Jones, PG Jung, H Jusko, A Kaidalov, AB Kalcher, S Kalinak, P Kalliokoski, T Kalweit, A Kang, JH Kaplin, V Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kazantsev, A Kebschull, U Keidel, R Khan, R Khan, SA Khan, MM Khan, KH Khanzadeev, A Kharlov, Y Kileng, B Kim, T Kim, S Kim, M Kim, B Kim, M Kim, JS Kim, JH Kim, DJ Kim, DW Kirsch, S Kisel, I Kiselev, S Kisiel, A Klay, JL Klein, J Klein-Bosing, C Kliemant, M Kluge, A Knichel, ML Knospe, AG Kohler, MK Kollegger, T Kolojvari, A Kompaniets, M Kondratiev, V Kondratyeva, N Konevskikh, A Kovalenko, V Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kramer, F Kravcakova, A Krawutschke, T Krelina, M Kretz, M Krivda, M Krizek, F Krus, M Kryshen, E Krzewicki, M Kucheriaev, Y Kugathasan, T Kuhn, C Kuijer, PG Kulakov, I Kumar, J Kurashvili, R Kurepin, AB Kurepin, A Kuryakin, A Kushpil, V Kushpil, S Kvaerno, H Kweon, MJ Kwon, Y de Guevara, PL Lakomov, I Langoy, R La Pointe, SL Lara, C Lardeux, A La Rocca, P Lea, R Lechman, M Lee, KS Lee, SC Lee, GR Legrand, I Lehnert, J Lenhardt, M Lenti, V Leon, H Monzon, IL Vargas, HL Levai, R Li, S Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loggins, VR Loginov, V Lohner, D Loizides, C Loo, KK Lopez, X Torres, EL Lovhoiden, G Lu, XG Luettig, P Lunardon, M Luo, J Luparello, G Luzzi, C Ma, R Ma, K Madagodahettige-Don, DM Maevskaya, A Mager, M Mahapatra, DP Maire, A Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, R Mamonov, A Manceau, L Mangotra, L Manko, V Manso, F Manzari, V Mao, Y Marchisone, M Mares, J Margagliotti, GV Margotti, A Marin, A Markert, C Marquard, M Martashvili, I Martin, NA Martinengo, P Martinez, MI Davalos, AM Garcia, GM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Matyja, A Mayer, C Mazer, J Mazzoni, MA Meddi, F Menchaca-Rocha, A Perez, JM Meres, M Miake, Y Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitu, C Mizuno, S Mlynarz, J Mohanty, B Molnar, L Zetina, LM Monteno, M Montes, E Moon, T Morando, M De Godoy, DAM Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhuri, S Mukherjee, M Muller, H Munhoz, MG Murray, S Musa, L Musinsky, J Musso, A Nandi, BK Nania, R Nappi, E Nattrass, C Nayak, TK Nazarenko, S Nedosekin, A Nicassio, M Niculescu, M Nielsen, BS Niida, T Nikoidev, S Nikolic, V Nikulin, S Nikulin, V Nilsen, BS Nilsson, MS Noferini, F Nomokonov, P Nooren, G Novitzky, N Nyanin, A Nyatha, A Nygaard, C Nystrand, J Ochirov, A Oeschler, H Oh, S Oh, SK Oleniacz, J Da Silva, ACO Oppedisano, C Velasquez, AO Oskarsson, A Ostrowski, P Otwinowski, J Oyama, K Ozawa, K Pachmayer, Y Pachr, M Padilla, E Pagano, R Paic, G Painke, E Pajares, C Pal, SK Palaha, A Palmeri, A Papikyan, V Pappalardo, GS Park, WJ Passfeld, A Patalakha, DI Paticchio, V Paul, B Pavlinov, A Pawlak, T Peitzmann, T Da Costa, HP De Oliveira, EP Peresunko, D Lara, CEP Perini, D Perrino, D Peryt, W Pesci, A Peskov, V Pestov, Y Petracek, V Petran, M Petris, M Petrov, R Petrovici, M Petta, C Piano, S Pikna, M Pillot, R Pinazza, O Pinsky, L Pitz, N Piyarathna, DB Planinic, M Ploskon, M Pluta, J Pocheptsov, T Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polak, K Polichtchouk, B Pop, A Porteboeuf-Houssais, S Pospisil, V Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puddu, G Punin, V Putis, M Putschke, J Quercigh, E Qvigstad, H Rachevski, A Rademakers, A Raiha, TS Rak, J Rakotozafindrabe, A Ramello, L Reyes, AR Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Read, KF Real, JS Redlich, K Reed, RJ Rehman, A Reichelt, R Reicher, M Reidt, F Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JR Reygers, K Riccati, L Ricci, RA Richert, T Richter, M Riedler, R Riegler, W Riggi, F Cahuantzi, MR Manso, AR Roed, K Rohr, D Rohrich, D Romita, R Ronchetti, F Rosnet, R Rossegger, S Rossi, A Roy, P Roy, C Montero, AJR Rui, R Russo, R Ryabinkin, E Rybicki, A Sadovsky, S Safafik, K Sahoo, R Sahu, PK Saini, J Sakaguchi, H Sakai, S Sakata, D Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Sandor, L Sandoval, A Sano, M Santagati, G Santoro, R Sarkamo, J Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, HR Schmidt, C Schuchmann, S Schukraft, J Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Scott, PA Segato, G Selyuzhenkov, I Senyukov, S Seo, J Serci, S Serradilla, E Sevcenco, A Shabetai, A Shabratova, G Shahoyan, R Sharma, N Sharma, S Rohni, S Shigaki, K Shtejer, K Sibiriak, Y Sicking, E Siddhanta, S Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, T Sinha, BC Sitar, B Sitta, M Skaali, TB Skjerdal, K Smakal, R Smirnov, N Snellings, RJM Sogaard, C Soltz, R Son, H Song, J Song, M Soos, C Soramel, E Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Stolpovskiy, M Strmen, P Suaide, AAP Vasquez, MAS Sugitate, T Suire, C Sultanov, R Sumbera, M Susa, T Symons, TJM de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Takahashi, J Tangaro, MA Takaki, JDT Peloni, AT Martinez, AT Tauro, A Munoz, GT Telesca, A Ter Minasyan, A Terrevoli, C Thader, J Thomas, D Tieulent, R Timmins, AR Tlusty, D Toia, A Torii, H Toscano, L Trubnikov, V Truesdale, D Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ulery, J Ullaland, K Ulrich, J Uras, A Urban, J Urciuoli, GM Usai, GL Vajzer, M Vala, M Palomo, LV Vallero, S Vande Vyvre, P van Leeuwen, M Vannucci, L Vargas, A Varma, R Vasileiou, M Vasiliev, A Vechernin, V Veldhoen, M Venaruzzo, M Vercellin, E Vergara, S Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Vinogradov, Y Vinogradov, A Vinogradov, L Virgili, T Viyogi, YP Vodopyanov, A Voloshin, K Voloshin, S Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, V Wagner, B Wan, R Wang, D Wang, Y Wang, M Wang, Y Watanabe, K Weber, M Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilk, A Williams, MCS Windelband, B Winn, M Karampatsos, LX Yaldo, CG Yamaguchi, Y Yang, S Yang, H Yasnopolskiy, S Yi, J Yin, Z Too, IK Yoon, J Yu, W Yuan, X Yushmanov, I Zaccolo, V Zach, C Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zelnicek, P Zgura, IS Zhalov, M Zhang, X Zhang, H Zhou, E Zhou, Y Zhou, D Zhu, J Zhu, J Zhu, X Zhu, H Zichichi, A Zimmermann, A Zinovjev, G Zoccarato, Y Zynovyev, M Zyzak, M AF Abelev, B. Adam, J. Adamova, D. Adare, A. M. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agocs, A. G. Agostinelli, A. Ahammed, Z. Ahmad, N. Masoodi, A. Ahmad Ahn, S. U. Ahn, S. A. Ajaz, M. Akindinov, A. Aleksandrov, D. Alessandro, B. Alici, A. Alkin, A. Almaraz Avina, E. Alme, J. Alt, T. Altini, V. Altinpinar, S. Altsybeev, I. Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anson, C. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arbor, N. Arcelli, S. Arend, A. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Asryan, A. Augustinus, A. Averbeck, R. Awes, T. C. Aysto, J. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bailhache, R. Bala, R. Ferroli, R. Baldini Baldisseri, A. Pedrosa, F. Baltasar Dos Santos Ban, J. Baral, R. C. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Batyunya, B. Baumann, C. Bearden, I. G. Beck, H. Behera, N. K. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bergognon, A. A. E. Berzano, D. Betev, L. Bhasin, A. Bhati, A. K. Bhom, J. Bianchi, N. Bianchi, L. Bielcik, J. Bielcikova, J. Bilandzic, A. Bjelogrlic, S. Blanco, F. Blanco, F. Blau, D. Blume, C. Boccioli, M. Ringer, S. Bogdanov, A. Boggild, H. Bogolyubsky, M. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Bossu, F. Botje, M. Botta, E. Braidot, E. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Brun, R. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, R. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Calvo Villar, E. Camerini, R. Canoa Roman, V. Romeo, G. Cara Carena, F. Carena, W. Carlin Filho, N. Carminati, F. Diaz, A. Casanova Castellanos, J. Castillo Hernandez, J. F. Castillo Casula, E. A. R. Catanescu, V. Cavicchioli, C. Ceballos Sanchez, C. Cepila, J. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chawla, I. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, E. Cleymans, J. Coccetti, E. Colamaria, F. Colella, D. Collu, A. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contin, G. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortese, P. Cortes Maldonado, I. Cosentino, M. R. Costa, F. Cotallo, M. E. Crescio, E. Crochet, P. Cruz Alaniz, E. Cruz Albino, R. Cuautle, E. Cunqueiro, L. Dainese, A. Dalsgaard, H. H. Danu, A. Das, S. Das, D. Das, K. Das, I. Dash, S. Dash, A. De, S. de Barros, G. O. V. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. Delagrange, H. Deloff, A. De Marco, N. Denes, E. De Pasquale, S. Deppman, A. Erasmo, G. D. de Rooij, R. Diaz Corchero, M. A. Di Bari, D. Dietel, T. Di Giglio, C. Di Liberto, S. Di Mauro, A. Di Nezza, P. Divia, R. Djuvsland, O. Dobrin, A. Dobrowolski, T. Doenigus, B. Dordic, O. Driga, O. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Elia, D. Emschermann, D. Engel, H. Erazmus, B. Erdal, H. A. Espagnon, B. Estienne, M. Esumi, S. Evans, D. Eyyubova, G. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fearick, R. Fehlker, D. Feldkamp, L. Felea, D. Feliciello, A. Fenton-Olsen, B. Feofilov, G. Fernandez Tellez, A. Ferretti, A. Festanti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Floratos, E. Floris, M. Foertsch, S. Foka, R. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. Gallio, M. Gangadharan, D. R. Ganoti, P. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Garishvili, I. Gerhard, J. Germain, M. Geuna, C. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Gianotti, P. Girard, M. R. Giubellino, P. Gladysz-Dziadus, E. Glassel, R. Gomez, R. Ferreiro, E. G. Gonzalez-Trueba, L. H. Gonzalez-Zamora, P. Gorbunov, S. Goswami, A. Gotovac, S. Graczykowski, L. K. Grajcarek, R. Grelli, A. Grigoras, C. Grigoras, A. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Gros, P. Grosse-Oetringhaus, J. F. Grossiord, J. -Y Grosso, R. Guber, E. Guernane, R. Guerzoni, B. Guilbaud, M. Gulbrandsen, K. Gulkanyan, H. Gunji, T. Gupta, A. Gupta, R. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Han, B. H. Hanratty, L. D. Hansen, A. Harmanova-Tothova, Z. Harris, J. W. Hartig, M. Harton, A. Hatzifotiadou, D. Hayashi, S. Hayrapetyan, A. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Herrera Corral, G. Herrmann, N. Hess, B. A. Hetland, K. F. Hicks, B. Hippolyte, B. Hori, Y. Hristov, P. Hrivnacova, I. Huang, M. Humanic, T. J. Hwang, D. S. Ichou, R. Ilkaev, R. Ilkiv, I. Inaba, M. Incani, E. Innocenti, P. G. Innocenti, G. M. Ippolitov, M. Irfan, M. Ivan, C. Ivanov, V. Ivanov, A. Ivanov, M. Ivanytskyi, O. Jacholkowski, A. Jacobs, P. M. Jang, H. J. Janik, M. A. Janik, R. Jayarathna, P. H. S. Y. Jena, S. Jha, D. M. Jimenez Bustamante, R. T. Jones, P. G. Jung, H. Jusko, A. Kaidalov, A. B. Kalcher, S. Kalinak, P. Kalliokoski, T. Kalweit, A. Kang, J. H. Kaplin, V. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kazantsev, A. Kebschull, U. Keidel, R. Khan, R. Khan, S. A. Khan, M. M. Khan, K. H. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, T. Kim, S. Kim, M. Kim, B. Kim, M. Kim, J. S. Kim, J. H. Kim, D. J. Kim, D. W. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Klay, J. L. Klein, J. Klein-Boesing, C. Kliemant, M. Kluge, A. Knichel, M. L. Knospe, A. G. Kohler, M. K. Kollegger, T. Kolojvari, A. Kompaniets, M. Kondratiev, V. Kondratyeva, N. Konevskikh, A. Kovalenko, V. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kramer, F. Kravcakova, A. Krawutschke, T. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Krus, M. Kryshen, E. Krzewicki, M. Kucheriaev, Y. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kulakov, I. Kumar, J. Kurashvili, R. Kurepin, A. B. Kurepin, A. Kuryakin, A. Kushpil, V. Kushpil, S. Kvaerno, H. Kweon, M. J. Kwon, Y. Ladron de Guevara, P. Lakomov, I. Langoy, R. La Pointe, S. L. Lara, C. Lardeux, A. La Rocca, P. Lea, R. Lechman, M. Lee, K. S. Lee, S. C. Lee, G. R. Legrand, I. Lehnert, J. Lenhardt, M. Lenti, V. Leon, H. Monzon, I. Leon Vargas, H. Leon Levai, R. Li, S. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loggins, V. R. Loginov, V. Lohner, D. Loizides, C. Loo, K. K. Lopez, X. Lopez Torres, E. Lovhoiden, G. Lu, X. -G. Luettig, P. Lunardon, M. Luo, J. Luparello, G. Luzzi, C. Ma, R. Ma, K. Madagodahettige-Don, D. M. Maevskaya, A. Mager, M. Mahapatra, D. P. Maire, A. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, D. Malzacher, R. Mamonov, A. Manceau, L. Mangotra, L. Manko, V. Manso, F. Manzari, V. Mao, Y. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Markert, C. Marquard, M. Martashvili, I. Martin, N. A. Martinengo, P. Martinez, M. I. Martinez Davalos, A. Martinez Garcia, G. Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Perez, J. Mercado Meres, M. Miake, Y. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitu, C. Mizuno, S. Mlynarz, J. Mohanty, B. Molnar, L. Montano Zetina, L. Monteno, M. Montes, E. Moon, T. Morando, M. De Godoy, D. A. Moreira Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muhuri, S. Mukherjee, M. Mueller, H. Munhoz, M. G. Murray, S. Musa, L. Musinsky, J. Musso, A. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nicassio, M. Niculescu, M. Nielsen, B. S. Niida, T. Nikoidev, S. Nikolic, V. Nikulin, S. Nikulin, V. Nilsen, B. S. Nilsson, M. S. Noferini, F. Nomokonov, P. Nooren, G. Novitzky, N. Nyanin, A. Nyatha, A. Nygaard, C. Nystrand, J. Ochirov, A. Oeschler, H. Oh, S. Oh, S. K. Oleniacz, J. Da Silva, A. C. Oliveira Oppedisano, C. Velasquez, A. Ortiz Oskarsson, A. Ostrowski, P. Otwinowski, J. Oyama, K. Ozawa, K. Pachmayer, Y. Pachr, M. Padilla, E. Pagano, R. Paic, G. Painke, E. Pajares, C. Pal, S. K. Palaha, A. Palmeri, A. Papikyan, V. Pappalardo, G. S. Park, W. J. Passfeld, A. Patalakha, D. I. Paticchio, V. Paul, B. Pavlinov, A. Pawlak, T. Peitzmann, T. Da Costa, H. Pereira Pereira De Oliveira Filho, E. Peresunko, D. Lara, C. E. Perez Perini, D. Perrino, D. Peryt, W. Pesci, A. Peskov, V. Pestov, Y. Petracek, V. Petran, M. Petris, M. Petrov, R. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, R. Pinazza, O. Pinsky, L. Pitz, N. Piyarathna, D. B. Planinic, M. Ploskon, M. Pluta, J. Pocheptsov, T. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polak, K. Polichtchouk, B. Pop, A. Porteboeuf-Houssais, S. Pospisil, V. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Punin, V. Putis, M. Putschke, J. Quercigh, E. Qvigstad, H. Rachevski, A. Rademakers, A. Raiha, T. S. Rak, J. Rakotozafindrabe, A. Ramello, L. Ramirez Reyes, A. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Read, K. F. Real, J. S. Redlich, K. Reed, R. J. Rehman, A. Reichelt, R. Reicher, M. Reidt, F. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -R Reygers, K. Riccati, L. Ricci, R. A. Richert, T. Richter, M. Riedler, R. Riegler, W. Riggi, F. Rodriguez Cahuantzi, M. Manso, A. Rodriguez Roed, K. Rohr, D. Roehrich, D. Romita, R. Ronchetti, F. Rosnet, R. Rossegger, S. Rossi, A. Roy, P. Roy, C. Rubio Montero, A. J. Rui, R. Russo, R. Ryabinkin, E. Rybicki, A. Sadovsky, S. Safafik, K. Sahoo, R. Sahu, P. K. Saini, J. Sakaguchi, H. Sakai, S. Sakata, D. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Sandor, L. Sandoval, A. Sano, M. Santagati, G. Santoro, R. Sarkamo, J. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, H. R. Schmidt, C. Schuchmann, S. Schukraft, J. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Scott, P. A. Segato, G. Selyuzhenkov, I. Senyukov, S. Seo, J. Serci, S. Serradilla, E. Sevcenco, A. Shabetai, A. Shabratova, G. Shahoyan, R. Sharma, N. Sharma, S. Rohni, S. Shigaki, K. Shtejer, K. Sibiriak, Y. Sicking, E. Siddhanta, S. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, T. Sinha, B. C. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Smakal, R. Smirnov, N. Snellings, R. J. M. Sogaard, C. Soltz, R. Son, H. Song, J. Song, M. Soos, C. Soramel, E. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Stolpovskiy, M. Strmen, P. Suaide, A. A. P. Vasquez, M. A. Subieta Sugitate, T. Suire, C. Sultanov, R. Sumbera, M. Susa, T. Symons, T. J. M. de Toledo, A. Szanto Szarka, I. Szczepankiewicz, A. Szymanski, M. Takahashi, J. Tangaro, M. A. Takaki, J. D. Tapia Peloni, A. Tarantola Martinez, A. Tarazona Tauro, A. Tejeda Munoz, G. Telesca, A. Ter Minasyan, A. Terrevoli, C. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Tlusty, D. Toia, A. Torii, H. Toscano, L. Trubnikov, V. Truesdale, D. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ulery, J. Ullaland, K. Ulrich, J. Uras, A. Urban, J. Urciuoli, G. M. Usai, G. L. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Vande Vyvre, P. van Leeuwen, M. Vannucci, L. Vargas, A. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Veldhoen, M. Venaruzzo, M. Vercellin, E. Vergara, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, Y. Vinogradov, A. Vinogradov, L. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voloshin, K. Voloshin, S. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, V. Wagner, B. Wan, R. Wang, D. Wang, Y. Wang, M. Wang, Y. Watanabe, K. Weber, M. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilk, A. Williams, M. C. S. Windelband, B. Winn, M. Karampatsos, L. Xaplanteris Yaldo, C. G. Yamaguchi, Y. Yang, S. Yang, H. Yasnopolskiy, S. Yi, J. Yin, Z. Yoo, I. -K. Yoon, J. Yu, W. Yuan, X. Yushmanov, I. Zaccolo, V. Zach, C. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zelnicek, P. Zgura, I. S. Zhalov, M. Zhang, X. Zhang, H. Zhou, E. Zhou, Y. Zhou, D. Zhu, J. Zhu, J. Zhu, X. Zhu, H. Zichichi, A. Zimmermann, A. Zinovjev, G. Zoccarato, Y. Zynovyev, M. Zyzak, M. CA ALICE Collaboration TI Charge correlations using the balance function in Pb-Pb collisions at root s(NN)=2.76 TeV SO PHYSICS LETTERS B LA English DT Article DE Balance function; Charge correlations; ALICE LHC ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; NUCLEAR COLLISIONS; THERMAL-MODEL; PARTICLE-PRODUCTION; COALESCENCE MODEL; COLLABORATION; PERSPECTIVE; RESONANCES; PARTON AB In high-energy heavy-ion collisions, the correlations between the emitted particles can be used as a probe to gain insight into the charge creation mechanisms. In this Letter, we report the first results of such studies using the electric charge balance function in the relative pseudorapidity (Delta eta) and azimuthal angle (Delta phi) in Pb-Pb collisions at root s(NN) = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The width of the balance function decreases with growing centrality (i.e. for more central collisions) in both projections. This centrality dependence is not reproduced by HIJING, while AMPT, a model which incorporates strings and parton rescattering, exhibits qualitative agreement with the measured correlations in Delta phi but fails to describe the correlations in Delta eta. A thermal blast-wave model incorporating local charge conservation and tuned to describe the p(T) spectra and v(2) measurements reported by ALICE, is used to fit the centrality dependence of the width of the balance function and to extract the average separation of balancing charges at freeze-out. The comparison of our results with measurements at lower energies reveals an ordering with root s(NN): the balance functions become narrower with increasing energy for all centralities. This is consistent with the effect of larger radial flow at the LHC energies but also with the late stage creation scenario of balancing charges. However, the relative decrease of the balance function widths in Delta eta and Delta phi, with centrality from the highest SPS to the LHC energy exhibits only small differences. This observation cannot be interpreted solely within the framework where the majority of the charge is produced at a later stage in the evolution of the heavy-ion collision. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Grigoryan, A.; Gulkanyan, H.; Hayrapetyan, A.; Papikyan, V.] Yerevan Phys Inst, AI Alikhanyan Natl Sci Lab Fdn, Yerevan 375036, Armenia. [Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Grinyov, B.; Ivanytskyi, O.; Martynov, Y.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Das, S.] Bose Inst, Dept Phys, Kolkata, India. [Das, S.] Bose Inst, Ctr Astroparticle Phys & Space Sci, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Cai, X.; Li, S.; Luo, J.; Ma, K.; Mao, Y.; Wan, R.; Wang, D.; Wang, Y.; Wang, M.; Yin, Z.; Yuan, X.; Zhang, X.; Zhang, H.; Zhou, D.; Zhu, J.; Zhu, X.; Zhu, H.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Ceballos Sanchez, C.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol Desarrollo Nucl CEADEN, Havana, Cuba. [Blanco, F.; Cotallo, M. E.; Diaz Corchero, M. A.; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] CIEMAT, E-28040 Madrid, Spain. [Canoa Roman, V.; Contreras, J. G.; Crescio, E.; Cruz Albino, R.; Gomez, R.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest & Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico. [Canoa Roman, V.; Contreras, J. G.; Crescio, E.; Cruz Albino, R.; Gomez, R.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest & Estudios Avanzados CINVESTAV, Merida, Mexico. [Alici, A.; Ferroli, R. Baldini; Cifarelli, L.; Coccetti, E.; De Caro, A.; De Gruttola, D.; Noferini, F.; Preghenella, R.; Santoro, R.; Zichichi, A.] Ctr Fermi, Museo Stor Fis, Rome, Italy. [Alici, A.; Ferroli, R. Baldini; Cifarelli, L.; Coccetti, E.; De Caro, A.; De Gruttola, D.; Noferini, F.; Preghenella, R.; Santoro, R.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Geuna, C.; Da Costa, H. Pereira; Rakotozafindrabe, A.; Yang, H.] CEA, IRFU, Saclay, France. [Ajaz, M.; Khan, K. H.] COMSATS Inst Informat Technol, Islamabad, Pakistan. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.; Watanabe, K.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.; Watanabe, K.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Ahmad, N.; Masoodi, A. Ahmad; Azmi, M. D.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Altinpinar, S.; Dash, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Langoy, R.; Lien, J.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Roed, K.; Roehrich, D.; Skjerdal, K.; Ullaland, K.; Wagner, B.; Yang, S.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Anson, C.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.; Truesdale, D.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Han, B. H.; Hwang, D. S.; Kim, S.; Kim, J. H.; Son, H.] Sejong Univ, Dept Phys, Seoul, South Korea. [Dordic, O.; Eyyubova, G.; Kvaerno, H.; Lindal, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.] Univ Oslo, Dept Phys, Oslo, Norway. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Bruna, E.; Bufalino, S.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Marchisone, M.; Masera, M.; Milano, L.; Padilla, E.; Russo, R.; Vasquez, M. A. Subieta; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Agnello, M.; Alessandro, B.; Arnaldi, R.; Bala, R.; Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Bruna, E.; Bufalino, S.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Feliciello, A.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Manceau, L.; Marchisone, M.; Masera, M.; Milano, L.; Monteno, M.; Musso, A.; Oppedisano, C.; Padilla, E.; Prino, F.; Riccati, L.; Russo, R.; Scomparin, E.; Vasquez, M. A. Subieta; Toscano, L.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Incani, E.; Puddu, G.; Serci, S.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Cicalo, C.; Collu, A.; De Falco, A.; Incani, E.; Masoni, A.; Puddu, G.; Serci, S.; Siddhanta, S.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, R.; Contin, G.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Camerini, R.; Contin, G.; Fragiacomo, E.; Grion, N.; Lea, R.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Di Liberto, S.; Mazzoni, M. A.; Meddi, F.; Urciuoli, G. M.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Barbera, R.; Jacholkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Sahu, P. K.; Santagati, G.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Badala, A.; Barbera, R.; Jacholkowski, A.; La Rocca, P.; Palmeri, A.; Pappalardo, G. S.; Petta, C.; Riggi, F.; Sahu, P. K.; Santagati, G.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Agostinelli, A.; Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Romeo, G. Cara; Cifarelli, L.; Cindolo, E.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Caffarri, D.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Segato, G.; Soramel, E.; Toia, A.; Viesti, G.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy. [Bogolyubsky, M.; Caffarri, D.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Kharlov, Y.; Lunardon, M.; Morando, M.; Moretto, S.; Patalakha, D. I.; Polichtchouk, B.; Rossi, A.; Sadovsky, S.; Scarlassara, F.; Segato, G.; Soramel, E.; Stolpovskiy, M.; Toia, A.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, R.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, R.; Virgili, T.] Ist Nazl Fis Nucl, Grp Collegato, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Ist Nazl Fis Nucl, Grp Collegato, Alessandria, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Nicassio, M.; Perrino, D.; Tangaro, M. A.; Terrevoli, C.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; de Cataldo, G.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Elia, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Lenti, V.; Mastroserio, A.; Nappi, E.; Nicassio, M.; Paticchio, V.; Perrino, D.; Tangaro, M. A.; Terrevoli, C.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Dobrin, A.; Gros, P.; Ljunggren, H. M.; Velasquez, A. Ortiz; Oskarsson, A.; Richert, T.; Sogaard, C.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Betev, L.; Boccioli, M.; Brun, R.; Buncic, R.; Carena, F.; Carena, W.; Carminati, F.; Cavicchioli, C.; Chapeland, S.; Cheshkov, C.; Barroso, V. Chibante; Chochula, P.; Cifarelli, L.; del Valle, Z. Conesa; Costa, F.; Di Mauro, A.; Divia, R.; Erazmus, B.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, C.; Grigoras, A.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hayrapetyan, A.; Hristov, P.; Innocenti, P. G.; Kalweit, A.; Uysal, A. Karasu; Kluge, A.; Kugathasan, T.; Lechman, M.; Legrand, I.; Lippmann, C.; Luzzi, C.; Mager, M.; Martinengo, P.; Molnar, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Oeschler, H.; Perini, D.; Peskov, V.; Pinazza, O.; Poghosyan, M. G.; Quercigh, E.; Rademakers, A.; Revol, J. -R; Riedler, R.; Riegler, W.; Rossegger, S.; Rossi, A.; Safafik, K.; Santoro, R.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Simonetti, G.; Soos, C.; Szczepankiewicz, A.; Martinez, A. Tarazona; Tauro, A.; Telesca, A.; Vande Vyvre, P.; Volpe, G.; von Haller, B.; Wessels, J. P.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Krawutschke, T.] Fachhsch Koln, Cologne, Germany. [Alme, J.; Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Broz, M.; Janik, R.; Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Agostinelli, A.; Bielcik, J.; Cepila, J.; Krelina, M.; Krus, M.; Pachr, M.; Petracek, V.; Petran, M.; Pospisil, V.; Smakal, R.; Tlusty, D.; Vajzer, M.; Wagner, V.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bombara, M.; Harmanova-Tothova, Z.; Kravcakova, A.; Putis, M.; Urban, J.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Alt, T.; Bach, M.; de Cuveland, J.; Gerhard, J.; Gorbunov, S.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Lindenstruth, V.; Painke, E.; Rettig, F.; Rohr, D.; Toia, A.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Ahn, S. U.; Baek, Y. W.; Jung, H.; Kim, M.; Kim, J. S.; Kim, D. W.; Lee, K. S.; Lee, S. C.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea. Gauhati Univ, Dept Phys, Gauhati, India. [Agostinelli, A.; Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Morreale, A.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.; Viinikainen, J.] Helsinki Inst Phys, Jyvaskyla, Finland. [Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Morreale, A.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Sakaguchi, H.; Shigaki, K.; Sugitate, T.] Hiroshima Univ, Hiroshima, Japan. [Behera, N. K.; Jena, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Nandi, B. K.; Nyatha, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Mishra, A. N.; Sahoo, R.] Indian Inst Technol Indore, Indore, Madhya Pradesh, India. [Das, I.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia; Palomo, L. Valencia] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Bogolyubsky, M.; Kharlov, Y.; Patalakha, D. I.; Polichtchouk, B.; Sadovsky, S.; Stolpovskiy, M.] Inst High Energy Phys, Protvino, Russia. [Finogeev, D.; Guber, E.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A. B.; Kurepin, A.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Bjelogrlic, S.; de Rooij, R.; Dubla, A.; Grelli, A.; La Pointe, S. L.; Lodato, D. F.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Snellings, R. J. M.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Yang, H.; Zhou, Y.] NIKHEF H, Natl Inst Subat Phys, Utrecht, Netherlands. [Bjelogrlic, S.; de Rooij, R.; Dubla, A.; Grelli, A.; La Pointe, S. L.; Lodato, D. F.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Snellings, R. J. M.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Akindinov, A.; Kaidalov, A. B.; Kiselev, S.; Mal'Kevich, D.; Nedosekin, A.; Sultanov, R.; Voloshin, K.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Ban, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Baral, R. C.; Mahapatra, D. P.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Mares, J.; Polak, K.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Mitu, C.; Niculescu, M.; Sevcenco, A.; Stan, I.; Zgura, I. S.] Inst Space Sci, Bucharest, Romania. [Breitner, T.; Engel, H.; Kebschull, U.; Lara, C.; Ulrich, J.; Zelnicek, P.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaeuser, H.; Arend, A.; Arslandok, M.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Hartig, M.; Heckel, S. T.; Kliemant, M.; Kramer, F.; Kulakov, I.; Lehnert, J.; Vargas, H. Leon; Luettig, P.; Marquard, M.; Pitz, N.; Rascanu, B. T.; Reichelt, R.; Renfordt, R.; Schuchmann, S.; Peloni, A. Tarantola; Ulery, J.; Yu, W.; Zyzak, M.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Kalweit, A.; Mager, M.; Oeschler, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Anielski, J.; Bathen, B.; Dietel, T.; Emschermann, D.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Boesing, C.; Passfeld, A.; Sicking, E.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Wilk, A.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Cuautle, E.; Jimenez Bustamante, R. T.; Ladron de Guevara, P.; Maldonado Cervantes, I.; Velasquez, A. Ortiz; Paic, G.; Peskov, V.; Simatovic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Almaraz Avina, E.; Belmont-Moreno, E.; Cruz Alaniz, E.; Gonzalez-Trueba, L. H.; Leon, H.; Martinez Davalos, A.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Molnar, L.; Roy, C.; Castro, X. Sanchez; Senyukov, S.] Univ Strasbourg, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Batyunya, B.; Grigoryan, S.; Malinina, L.; Nomokonov, P.; Pocheptsov, T.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res, Dubna, Russia. [Ulrich, J.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Ahn, S. U.; Ahn, S. A.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Uysal, A. Karasu] KTO Karatay Univ, Konya, Turkey. [Baek, Y. W.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P.; Ichou, R.; Lopez, X.; Manso, F.; Marchisone, M.; Porteboeuf-Houssais, S.; Rosnet, R.; Vulpescu, B.; Zhang, X.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Univ Blaise Pascal, CNRS IN2P3, Clermont Ferrand, France. [Arbor, N.; Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.] Univ Grenoble 1, CNRS, Inst Polytech Grenoble, LPSC, Grenoble, France. [Bianchi, L.; Diaz, A. Casanova; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ricci, R. A.; Vannucci, L.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Braidot, E.; Cosentino, M. R.; Fenton-Olsen, B.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Sakai, S.; Symons, T. J. M.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abelev, B.; Garishvili, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.; Ter Minasyan, A.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, R.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Mohanty, B.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Dalsgaard, H. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nygaard, C.; Sogaard, C.; Zaccolo, V.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Botje, M.; Christakoglou, P.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Adamova, D.; Bielcikova, J.; Kushpil, V.; Kushpil, S.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Awes, T. C.; Ganoti, P.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Nilsen, B. S.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Chawla, I.; Rathee, D.; Sharma, N.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Floratos, E.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Azmi, M. D.; Bossu, F.; Buthelezi, Z.; Cleymans, J.; Fearick, R.; Foertsch, S.; Murray, S.; Steyn, G.; Vilakazi, Z.] Univ Cape Town, Dept Phys, Somerset West, South Africa. [Azmi, M. D.; Bossu, F.; Buthelezi, Z.; Cleymans, J.; Fearick, R.; Foertsch, S.; Murray, S.; Steyn, G.; Vilakazi, Z.] Natl Res Fdn, iThemba LABS, Somerset West, South Africa. [Bala, R.; Bhasin, A.; Gupta, A.; Gupta, R.; Mangotra, L.; Potukuchi, B.; Sambyal, S.; Sharma, S.; Rohni, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Goswami, A.; Mishra, A. N.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Anguelov, V.; Busch, O.; Fasel, M.; Glassel, R.; Grajcarek, R.; Herrmann, N.; Klein, J.; Krawutschke, T.; Kweon, M. J.; Lohner, D.; Lu, X. -G.; Maire, A.; Perez, J. Mercado; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Vallero, S.; Wang, Y.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Agnello, M.] Politecn Torino, Turin, Italy. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Chung, S. U.; Seo, J.; Song, J.; Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, R.; Frankenfeld, U.; Garabatos, C.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Kohler, M. K.; Krzewicki, M.; Lenhardt, M.; Lippmann, C.; Malzacher, R.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, R.; Frankenfeld, U.; Garabatos, C.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Kohler, M. K.; Krzewicki, M.; Lenhardt, M.; Lippmann, C.; Malzacher, R.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anticic, T.; Nikolic, V.; Planinic, M.; Simatovic, G.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kucheriaev, Y.; Manko, V.; Nikoidev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Ter Minasyan, A.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Chattopadhyay, S.; Das, D.; Das, K.; Majumdar, A. K. Dutta; Khan, R.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Palaha, A.; Petrov, R.; Scott, P. A.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Calvo Villar, E.; Gago, A.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Romita, R.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, Cheshire, England. [Aphecetche, L.; Batigne, G.; Bergognon, A. A. E.; Bregant, M.; Delagrange, H.; Driga, O.; Erazmus, B.; Estienne, M.; Germain, M.; Lardeux, A.; Martinez Garcia, G.; Mas, A.; Massacrier, L.; Pillot, R.; Schutz, Y.; Shabetai, A.; Stocco, D.] Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS IN2P3, Nantes, France. Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Kowalski, M.; Matyja, A.; Mayer, C.; Rybicki, A.; Sputowska, I.; Szczepankiewicz, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Knospe, A. G.; Markert, C.; Karampatsos, L. Xaplanteris] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Gomez, R.; Monzon, I. Leon; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Carlin Filho, N.; de Barros, G. O. V.; Deppman, A.; Figueredo, M. A. S.; De Godoy, D. A. Moreira; Munhoz, M. G.; Da Silva, A. C. Oliveira; Pereira De Oliveira Filho, E.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Dash, A.; Takahashi, J.] Univ Estadual Campinas, UNICAMP, Campinas, SP, Brazil. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y; Guilbaud, M.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Bellwied, R.; Blanco, F.; Chinellato, D. D.; Jayarathna, P. H. S. Y.; Madagodahettige-Don, D. M.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.; Weber, M.] Univ Houston, Houston, TX 77004 USA. Univ Technol, Vienna, Austria. Austrian Acad Sci, A-1010 Vienna, Austria. [Martashvili, I.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.] Univ Tennessee, Knoxville, TN USA. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Hori, Y.; Ozawa, K.; Torii, H.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Mizuno, S.; Niida, T.; Sakata, D.; Sano, M.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Ahammed, Z.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; De, S.; Dubey, A. K.; Ghosh, P.; Khan, S. A.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Saini, J.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Altsybeev, I.; Asryan, A.; Feofilov, G.; Ivanov, A.; Kolojvari, A.; Kompaniets, M.; Kondratyeva, N.; Kovalenko, V.; Ochirov, A.; Vechernin, V.; Vinogradov, L.; Vorobyev, I.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Girard, M. R.; Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Ostrowski, P.; Pawlak, T.; Peryt, W.; Pluta, J.; Szymanski, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Borissov, A.; Cormier, T. M.; Dobrin, A.; Jha, D. M.; Loggins, V. R.; Mlynarz, J.; Pavlinov, A.; Prasad, S. K.; Pruneau, C. A.; Putschke, J.; Voloshin, S.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Agocs, A. G.; Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Levai, R.; Molnar, L.; Pochybova, S.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Adare, A. M.; Aronsson, T.; Caines, H.; Connors, M. E.; Harris, J. W.; Hicks, B.; Ma, R.; Oh, S.; Reed, R. J.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Uysal, A. Karasu] Yildiz Tekn Univ, Istanbul, Turkey. [Chang, B.; Kang, J. H.; Kim, T.; Kim, M.; Kim, B.; Kwon, Y.; Moon, T.; Song, M.; Yoon, J.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] Fachhsch Worms, Zentrum Technol Transfer & Telekommunikat ZTT, Worms, Germany. RP Weber, M (reprint author), Univ Houston, Houston, TX 77004 USA. EM m.weber@cern.ch RI Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; Deppman, Airton/J-5787-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Ferretti, Alessandro/F-4856-2013; Martinez Hernandez, Mario Ivan/F-4083-2010; HAMAGAKI, HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Altsybeev, Igor/K-6687-2013; Vinogradov, Leonid/K-3047-2013; Janik, Malgorzata/O-7520-2015; Graczykowski, Lukasz/O-7522-2015; Christensen, Christian/D-6461-2012; De Pasquale, Salvatore/B-9165-2008; de Cuveland, Jan/H-6454-2016; Kompaniets, Mikhail/F-5025-2013; Kurepin, Alexey/H-4852-2013; Blau, Dmitry/H-4523-2012; Yang, Hongyan/J-9826-2014; Cosentino, Mauro/L-2418-2014; Bearden, Ian/M-4504-2014; Sumbera, Michal/O-7497-2014; Peitzmann, Thomas/K-2206-2012; Kharlov, Yuri/D-2700-2015; Mitu, Ciprian/E-6733-2011; Usai, Gianluca/E-9604-2015; Salgado, Carlos A./G-2168-2015; Bruna, Elena/C-4939-2014; Karasu Uysal, Ayben/K-3981-2015; Chinellato, David/D-3092-2012; feofilov, grigory/A-2549-2013; Castillo Castellanos, Javier/G-8915-2013; Pochybova, Sona/A-2835-2014; Takahashi, Jun/B-2946-2012; Martinez Davalos, Arnulfo/F-3498-2013; Wagner, Vladimir/G-5650-2014; Vajzer, Michal/G-8469-2014; Krizek, Filip/G-8967-2014; Bielcikova, Jana/G-9342-2014; Adamova, Dagmar/G-9789-2014; Barnby, Lee/G-2135-2010; Christensen, Christian Holm/A-4901-2010; Voloshin, Sergei/I-4122-2013; Kovalenko, Vladimir/C-5709-2013; Vechernin, Vladimir/J-5832-2013; Zarochentsev, Andrey/J-6253-2013; Sevcenco, Adrian/C-1832-2012; Kondratiev, Valery/J-8574-2013; Vorobyev, Ivan/K-2304-2013; Bregant, Marco/I-7663-2012; Barnafoldi, Gergely Gabor/L-3486-2013; Felea, Daniel/C-1885-2012; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; OI Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; Deppman, Airton/0000-0001-9179-6363; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Ferretti, Alessandro/0000-0001-9084-5784; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Pshenichnov, Igor/0000-0003-1752-4524; Altsybeev, Igor/0000-0002-8079-7026; Vinogradov, Leonid/0000-0001-9247-6230; Janik, Malgorzata/0000-0002-3356-3438; Christensen, Christian/0000-0002-1850-0121; De Pasquale, Salvatore/0000-0001-9236-0748; de Cuveland, Jan/0000-0003-0455-1398; Kompaniets, Mikhail/0000-0001-8831-0553; Kurepin, Alexey/0000-0002-1851-4136; Cosentino, Mauro/0000-0002-7880-8611; Bearden, Ian/0000-0003-2784-3094; Sumbera, Michal/0000-0002-0639-7323; Peitzmann, Thomas/0000-0002-7116-899X; Usai, Gianluca/0000-0002-8659-8378; Salgado, Carlos A./0000-0003-4586-2758; Bruna, Elena/0000-0001-5427-1461; Karasu Uysal, Ayben/0000-0001-6297-2532; Chinellato, David/0000-0002-9982-9577; feofilov, grigory/0000-0003-3700-8623; Castillo Castellanos, Javier/0000-0002-5187-2779; Takahashi, Jun/0000-0002-4091-1779; Martinez Davalos, Arnulfo/0000-0002-9481-9548; Barnby, Lee/0000-0001-7357-9904; Christensen, Christian Holm/0000-0002-1850-0121; Kovalenko, Vladimir/0000-0001-6012-6615; Vechernin, Vladimir/0000-0003-1458-8055; Zarochentsev, Andrey/0000-0002-3502-8084; Sevcenco, Adrian/0000-0002-4151-1056; Kondratiev, Valery/0000-0002-0031-0741; Vorobyev, Ivan/0000-0002-2218-6905; Felea, Daniel/0000-0002-3734-9439; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Riggi, Francesco/0000-0002-0030-8377; Scarlassara, Fernando/0000-0002-4663-8216 FU State Committee of Science; Calouste Gulbenkian Foundation from Lisbon; Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German BMBF; Helmholtz Association; General, Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT; DGAPA, Mexico; ALFA-EC; HELEN Program (High-Energy Physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research. Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS); Ministry of Education; Science of Russian Federation, International Science and Technology Center; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; CERN-INTAS; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT; EELA; Ministerio de Educacion y Ciencia of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN; Cubaenergia; Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio FX The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German BMBF and the Helmholtz Association; General, Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, 'DGAPA, Mexico, ALFA-EC and the HELEN Program (High-Energy Physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research. Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS); Ministry of Education, and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and CERN-INTAS; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Educacion y Ciencia of Spain, Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 51 TC 14 Z9 15 U1 0 U2 81 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 25 PY 2013 VL 723 IS 4-5 BP 267 EP 279 DI 10.1016/j.physletb.2013.05.039 PG 13 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 168ZB UT WOS:000320745400003 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Aguilo, E Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Staykova, Z Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Reis, T Thomas, L Vander Marcken, G Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Strobbe, N Thyssen, F Tytgat, M Verwilligen, P Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Castello, R Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Schul, N Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Figueiredo, DM Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Jorge, LS Sznajder, A Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, D Zhang, L Zou, W Avila, C Gomez, JP Moreno, BG Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Morovic, S Attikis, A Galanti, M Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Radi, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Karjalainen, A Korpela, A Tuuva, T Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Shreyber, I Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Juillot, P Le Bihan, AC Van Hove, P Fassi, F Mercier, D Beauceron, S Beaupere, N Bondu, O Boudoul, G Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Tschudi, Y Verdier, P Viret, S Tsamalaidze, Z Anagnostou, G Autermann, C Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Weber, M Bontenackels, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Martin, MA Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Castro, E Costanza, F Dammann, D Pardos, CD Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Olzem, J Perrey, H Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Riedl, C Ron, E Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Walsh, R Wissing, C Blobel, V Draeger, J Enderle, H Erfle, J Gebbert, U Gorner, M Hermanns, T Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Nowak, E Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Vanelderen, L Barth, C Berger, J Boser, C Wiser, C Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hackstein, C Hartmann, F Hauth, T Heinrich, M Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Pardo, PL Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Oehler, A Ott, J Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Sharan, M Abdulsalam, A Choudhury, RK Dutta, D Kailas, S Kumar, V Mehta, P Mohanty, AK Pant, LM Shukla, P Aziz, T Ganguly, S Guchait, M Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, R Castro, A Cavallo, E Cuffiani, M Dallavalle, GM Fabbri, E Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, E Odorici, E Perrotta, A Primavera, E Rossi, AM Rovelli, T Siroli, GP Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, E Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, R Dorigo, T Dosselli, U Gasparini, F Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, R Zucchetta, A Zumerle, G Gabusi, M Ratti, SR Riccardi, C Torre, P Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Taroni, S Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Grassi, M Longo, E Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Sigamani, M Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Costa, M Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Pereira, AV Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Schizzi, A Heo, SG Kim, TY Nam, SK Chang, S Kim, DH Kim, GN Kong, DJ Park, H Ro, SR Son, DC Son, T Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Cho, Y Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Villalba, RM Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Ansari, MH Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Seixas, J Varela, J Vischia, P Bunin, P Gavrilenko, M Golutvin, I Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Malakhov, A Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Shulha, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Kossov, M Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, A Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Popov, A Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC D'Enterria, D Dabrowski, A De Roeck, A Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, E Garrido, RGR Govoni, P Gowdy, S Guida, R Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Lecoq, P Lee, YJ Lenzi, P Lourenco, C Magini, N Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Musella, P Nesvold, E Orimoto, T Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eugster, J Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Marini, AC del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, R Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Wehrli, L Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Otiougova, P Robmann, P Snoek, H Tupputi, S Verzetti, M Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Singh, AP Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wan, X Wang, M Asavapibhop, B Srimanobhas, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Karaman, T Karapinar, G Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Cankocak, K Levchuk, L Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Stoye, M Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Hatakeyama, K Liu, H Scarborough, T Charaf, O Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Alimena, J Bhattacharya, S Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Yohay, R Andreev, V Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Traczyk, P Valuev, V Weber, M Babb, J Clare, R Dinardo, ME Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, E Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Chen, Y Di Marco, E Duarte, J Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Yang, Y Zhu, RY Akgun, B Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Vaughan, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Elvira, VD Fisk, I Freeman, J Gao, Y Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kilminster, B Klima, B Kunori, S Kwan, S Leonidopoulos, C Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Park, M Remington, R Rinkevicius, A Sellers, R Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F Malek, M O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Onel, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Tinti, G Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Apyan, A Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Hahn, KA Kim, Y Klute, M Krajczar, K Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Dahmes, B De Benedetti, A Franzoni, G Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Keller, J Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Nash, D Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Lusito, L Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Vuosalo, C Williams, G Winer, BL Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Safdi, B Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Maroussov, V Merkel, R Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Boulahouache, C Ecklund, KM Geurts, FJM Li, W Padley, BP Redjimi, .R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Walker, M Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dragoiu, C Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Roh, Y Volobouev, I Appelt, E Delannoy, AG Florez, C Greene, S Gurrola, A Johns, W Kurt, P Maguire, C Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Anderson, M Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Palmonari, F Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Aguilo, E. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Staykova, Z. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Reis, T. Thomas, L. Vander Marcken, G. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Strobbe, N. Thyssen, F. Tytgat, M. Verwilligen, P. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Castello, R. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Matos Figueiredo, D. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Soares Jorge, L. Sznajder, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, D. Zhang, L. Zou, W. Avila, C. Gomez, J. P. Gomez Moreno, B. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Morovic, S. Attikis, A. Galanti, M. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Karjalainen, A. Korpela, A. Tuuva, T. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Juillot, P. Le Bihan, A. -C. Van Hove, P. Fassi, F. Mercier, D. Beauceron, S. Beaupere, N. Bondu, . O. Boudoul, G. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Tschudi, Y. Verdier, P. Viret, S. Tsamalaidze, Z. Anagnostou, G. Autermann, C. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Weber, M. Bontenackels, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Martin, M. Aldaya Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Castro, E. Costanza, F. Dammann, D. Pardos, C. Diez Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Walsh, R. Wissing, C. Blobel, V. Draeger, J. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Hermanns, T. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Nowak, E. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Vanelderen, L. Barth, C. Berger, J. Boeser, C. Wiser, C. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hackstein, C. Hartmann, F. Hauth, T. Heinrich, M. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Pardo, P. Lobelle Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Oehler, A. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Sarkar, S. Sharan, M. Abdulsalam, A. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mehta, P. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Ganguly, S. Guchait, M. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, R. Castro, A. Cavallo, Er. Cuffiani, M. Dallavalle, G. M. Fabbri, E. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, El. Odorici, E. Perrotta, A. Primavera, E. Rossi, A. M. Rovelli, T. Siroli, G. P. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, E. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, R. Dorigo, T. Dosselli, U. Gasparini, F. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, R. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. R. Riccardi, C. Torre, P. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Taroni, S. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Grassi, M. Longo, E. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Sigamani, M. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Costa, M. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Pereira, A. Vilela Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Heo, S. G. Kim, T. Y. Nam, S. K. Chang, S. Kim, D. H. Kim, G. N. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Son, T. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Cho, Y. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Magana Villalba, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Ansari, M. H. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Seixas, J. Varela, J. Vischia, P. Bunin, P. Gavrilenko, M. Golutvin, I. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Malakhov, A. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Shulha, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kossov, M. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, A. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Popov, A. L., Sarycheva T. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa D'Enterria, D. Dabrowski, A. De Roeck, A. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, E. Garrido, R. Gomez-Reino Govoni, P. Gowdy, S. Guida, R. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Lecoq, P. Lee, Y. -J. Lenzi, P. Lourenco, C. Magini, N. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Musella, P. Nesvold, E. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eugster, J. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, R. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Wehrli, L. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Tupputi, S. Verzetti, M. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Singh, A. P. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Asavapibhop, B. Srimanobhas, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Karapinar, G. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Cankocak, K. Levchuk, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Beuselinck, R. Buchmuller, . Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Stoye, M. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Hatakeyama, K. Liu, H. Scarborough, T. Charaf, O. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Alimena, J. Bhattacharya, S. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Yohay, R. Andreev, V. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Dinardo, M. E. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, E. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Chen, Y. Di Marco, E. Duarte, J. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Yang, Y. Zhu, R. Y. Akgun, B. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kilminster, B. Klima, B. Kunori, S. Kwan, S. Leonidopoulos, C. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Park, M. Remington, R. Rinkevicius, A. Sellers, R. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Onel, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Tinti, G. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Apyan, A. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Kim, Y. Klute, M. Krajczar, K. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Nash, D. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Vuosalo, C. Williams, G. Winer, B. L. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Safdi, B. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Maroussov, V. Merkel, R. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Li, W. Padley, B. P. Redjimi, . R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Walker, M. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dragoiu, C. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Roh, Y. Volobouev, I. Appelt, E. Delannoy, A. G. Florez, C. Greene, S. Gurrola, A. Johns, W. Kurt, P. Maguire, C. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Anderson, M. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Palmonari, F. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 7 TeV SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; Dijet; Jet substructure; Resonances ID ROOT-S=7 TEV; Z BOSONS; PHENOMENOLOGY; PHYSICS; LEPTON AB A search has been made for massive resonances decaying into a quark and a vector boson, qW or qZ, or a pair of vector bosons, WW, WZ, or ZZ, where each vector boson decays to hadronic final states. This search is based on a data sample corresponding to an integrated luminosity of 5.0 fb(-1) of proton-proton collisions collected in the CMS experiment at the LHC in 2011 at a center-of-mass energy of 7 TeV. For sufficiently heavy resonances the decay products of each vector boson are merged into a single jet, and the event effectively has a dijet topology. The background from QCD dijet events is reduced using recently developed techniques that resolve jet substructure. A 95% CL lower limit is set on the mass of excited quark resonances decaying into qW (qZ) at 2.38 TeV (2.15 TeV) and upper limits are set on the cross section for resonances decaying to qW, qZ, WW, WZ, or ZZ final states. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-3000 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Wang, J.; Militaru, O.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, CNRS, IN2P3, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Bondu, . O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Phys Inst 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst 3A, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst 3B, Aachen, Germany. [Martin, M. Aldaya; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, E.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Berger, J.; Boeser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Oehler, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Krajczar, K.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, EHEP, Bombay 400005, Maharashtra, India. [Banerjee, S.; Guchait, M.; Dugad, S.] Tata Inst Fundamental Res, HECR, Bombay 400005, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, R.; Castro, A.; Cavallo, Er.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, E.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, El.; Odorici, E.; Perrotta, A.; Primavera, E.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, R.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, El.; Primavera, E.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Tropiano, A.] Univ Florence, Florence, Italy. [Fabbri, E.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Dogangun, O.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, R.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, R.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Gasparini, F.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Vanini, S.; Zotto, R.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. R.; Riccardi, C.; Torre, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. R.; Riccardi, C.; Torre, P.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Nicolaou, C.; Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Taroni, S.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Rolandi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Fiori, F.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.; Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Fanelli, C.; Grassi, M.; Longo, E.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.; Rovelli, C.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Pereira, A. Vilela; Rovelli, C.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientate Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magana Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bluj, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, A.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; L., Sarycheva T.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Puljak, I.; Chierici, R.; Sharma, A.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, E.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenco, C.; Magini, N.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, R.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, Y. H.; Bartalini, P.; Chang, P.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Srimanobhas, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.] Natl Sci Ctr, Kharkov Inst Phys & Technol, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Worm, S. D.; Newbold, D. M.; Basso, L.; Bell, K. W.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Nicolaou, C.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, .; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Andreev, V.; Felcini, M.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Veverka, J.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, E.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Nicolaou, C.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, R.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, R.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Li, W.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, . R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Park, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Arfaei, H.; Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Meola, S.] Univ Guglielmo Marconi, Rome, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Serban, A. T.] Univ Bucharest, Fac Phys, Bucharest, Romania. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Belyaev, A.; Basso, L.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Jeng, G. Y.] Univ Sydney, Sydney, NSW 2006, Australia. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. RP Alverson, G (reprint author), Northeastern Univ, Boston, MA 02115 USA. EM George.Alverson@cern.ch RI Montanari, Alessandro/J-2420-2012; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Popov, Andrey/E-1052-2012; Menasce, Dario Livio/A-2168-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Azarkin, Maxim/N-2578-2015; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Ragazzi, Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Dahms, Torsten/A-8453-2015; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Raidal, Martti/F-4436-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Tinoco Mendes, Andre David/D-4314-2011; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Novaes, Sergio/D-3532-2012; Bartalini, Paolo/E-2512-2014; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Ligabue, Franco/F-3432-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Codispoti, Giuseppe/F-6574-2014; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Dudko, Lev/D-7127-2012; Dermenev, Alexander/M-4979-2013; Mundim, Luiz/A-1291-2012; Tinti, Gemma/I-5886-2013; Ivanov, Andrew/A-7982-2013; Lokhtin, Igor/D-7004-2012; Petrushanko, Sergey/D-6880-2012; Hill, Christopher/B-5371-2012; Liu, Sheng/K-2815-2013; Zhukov, Valery/K-3615-2013; Venturi, Andrea/J-1877-2012 OI Montanari, Alessandro/0000-0003-2748-6373; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Vidal Marono, Miguel/0000-0002-2590-5987; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; Grassi, Marco/0000-0003-2422-6736; Ulrich, Ralf/0000-0002-2535-402X; Gutsche, Oliver/0000-0002-8015-9622; Torassa, Ezio/0000-0003-2321-0599; Verdier, Patrice/0000-0003-3090-2948; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Demaria, Natale/0000-0003-0743-9465; Staiano, Amedeo/0000-0003-1803-624X; Ciulli, Vitaliano/0000-0003-1947-3396; Tonelli, Guido Emilio/0000-0003-2606-9156; Beuselinck, Raymond/0000-0003-2613-7446; Abbiendi, Giovanni/0000-0003-4499-7562; HSIUNG, YEE/0000-0003-4801-1238; Costa, Salvatore/0000-0001-9919-0569; Kasemann, Matthias/0000-0002-0429-2448; WANG, MIN-ZU/0000-0002-0979-8341; Popov, Andrey/0000-0002-1207-0984; Landsberg, Greg/0000-0002-4184-9380; Rizzi, Andrea/0000-0002-4543-2718; Gershtein, Yuri/0000-0002-4871-5449; Malik, Sudhir/0000-0002-6356-2655; Leonidopoulos, Christos/0000-0002-7241-2114; Blekman, Freya/0000-0002-7366-7098; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bilki, Burak/0000-0001-9515-3306; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Toback, David/0000-0003-3457-4144; CHANG, PAO-TI/0000-0003-4064-388X; Reis, Thomas/0000-0003-3703-6624; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Ragazzi, Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Tinoco Mendes, Andre David/0000-0001-5854-7699; de Jesus Damiao, Dilson/0000-0002-3769-1680; Novaes, Sergio/0000-0003-0471-8549; Ligabue, Franco/0000-0002-1549-7107; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Codispoti, Giuseppe/0000-0003-0217-7021; Wimpenny, Stephen/0000-0003-0505-4908; Dudko, Lev/0000-0002-4462-3192; Mundim, Luiz/0000-0001-9964-7805; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; FU BMWF; FWF (Austria); FNRS; FWO (Belgium); CNPq; CAPES; FAPERJ; FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS; MoST; NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER [SF0690030s09]; ERDF (Estonia); Academy of Finland; MEC; HIP (Finland); CEA; CNRS/IN2P3 (France); BMBF; DFG; HGF (Germany); GSRT (Greece); OTKA; NKTH (Hungary); DAE; DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF; WCU (Republic of Korea); LAS (Lithuania); CINVESTAV; CONACYT; SEP; UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE; NSC (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MON; RosAtom; RAS; RFBR (Russia); MSTD (Serbia); SEIDI; CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter; IPST; NSTDA (Thailand); TUBITAK; TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE; NSF (USA) FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). NR 50 TC 18 Z9 18 U1 4 U2 111 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 25 PY 2013 VL 723 IS 4-5 BP 280 EP 301 DI 10.1016/j.physletb.2013.05.040 PG 22 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 168ZB UT WOS:000320745400004 ER PT J AU Fukushima, K Kashiwa, K AF Fukushima, Kenji Kashiwa, Kouji TI Polyakov loop and QCD thermodynamics from the gluon and ghost propagators SO PHYSICS LETTERS B LA English DT Article ID INFRARED BEHAVIOR; LANDAU GAUGE; FINITE-TEMPERATURE; PHASE-STRUCTURE; MEAN-FIELD; MODEL; DECONFINEMENT; CONFINEMENT; DIAGRAM; SU(3) AB We investigate quark deconfinement by calculating the effective potential of the Polyakov loop using the non-perturbative propagators in the Landau gauge measured in the finite-temperature lattice simulation. With the leading term in the 2-particle-irreducible formalism the resultant effective potential exhibits a first-order phase transitions for the pure SU(3) Yang-Mills theory at the critical temperature consistent with the empirical value. We also estimate the thermodynamic quantities to confirm qualitative agreement with the lattice data near the critical temperature. We then apply our effective potential to the chiral model-study and calculate the order parameters and the thermodynamic quantities. Unlike the case in the pure Yang-Mills theory the thermodynamic quantities are sensitive to the temperature dependence of the non-perturbative propagators, while the behavior of the order parameters is less sensitive, which implies the importance of the precise determination of the temperature-dependent propagators. (C) 2013 Elsevier B.V. All rights reserved. C1 [Fukushima, Kenji] Keio Univ, Dept Phys, Kanagawa 2238522, Japan. [Kashiwa, Kouji] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Fukushima, K (reprint author), Keio Univ, Dept Phys, Kanagawa 2238522, Japan. EM fuku@rk.phys.keio.ac.jp OI Fukushima, Kenji/0000-0003-0899-740X FU RIKEN; [24740169] FX The authors thank Wolfram Weise for kind hospitality at TUM where this work was initiated. They also thank Jens Braun, David Dudal, Michael Ilgenfritz, and Marco Ruggieri for comments. K.F. thanks Jan Pawlowski and Nan Su for useful discussions. K.K. is supported by RIKEN Special Postdoctoral Researchers Program. K.F. is supported by Grant-in-Aid for Young Scientists B (24740169). NR 70 TC 19 Z9 19 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 25 PY 2013 VL 723 IS 4-5 BP 360 EP 364 DI 10.1016/j.physletb.2013.05.037 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 168ZB UT WOS:000320745400014 ER PT J AU Sutter, EA Tong, X Jungjohann, K Sutter, PW AF Sutter, Eli A. Tong, Xiao Jungjohann, Katherine Sutter, Peter W. TI Oxidation of nanoscale Au-In alloy particles as a possible route toward stable Au-based catalysts SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE transmission electron microscopy; temperature programmed desorption; X-ray photoelectron spectroscopy ID AMINE N-OXIDES; LOW-TEMPERATURE; CO OXIDATION; ROOM-TEMPERATURE; NANOPARTICLES; GOLD; KINETICS; ADSORPTION; OXYGEN; INTERDIFFUSION AB The oxidation of bimetallic alloy nanoparticles comprising a noble and a nonnoble metal is expected to cause the formation of a single-component surface oxide of the nonnoble metal, surrounding a core enriched with the noble metal. Studying the room temperature oxidation of Au-In nanoparticles, we show that this simple picture does not apply to an important class of bimetallic alloys, in which the oxidation proceeds via predominant oxygen diffusion. Instead of a crystalline In2O3 shell, such oxidation leads to an amorphous shell of mixed Au-In oxide that remains stable to high temperatures and whose surface layer is enriched with Au. The Au-rich mixed oxide is capable of adsorbing both CO and O-2 and converting them to CO2, which desorbs near room temperature. The oxidation of Au-In alloys to a mixed Au-In oxide shows significant promise as a viable approach toward Au-based oxidation catalysts, which do not require any complex synthesis processes and resist deactivation up to at least 300 degrees C. C1 [Sutter, Eli A.; Tong, Xiao; Jungjohann, Katherine; Sutter, Peter W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, EA (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov FU Department of Energy [DE-AC02-98CH10886] FX We thank Kim Kisslinger for technical assistance. This work was performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory, under the auspices of the Department of Energy, under Contract DE-AC02-98CH10886. NR 48 TC 10 Z9 10 U1 2 U2 42 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 25 PY 2013 VL 110 IS 26 BP 10519 EP 10524 DI 10.1073/pnas.1305388110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 179EY UT WOS:000321503700028 PM 23754412 ER PT J AU Guthrie, M Boehler, R Tulk, CA Molaison, JJ dos Santos, AM Li, K Hemley, RJ AF Guthrie, Malcolm Boehler, Reinhard Tulk, Christopher A. Molaison, Jamie J. dos Santos, Antonio M. Li, Kuo Hemley, Russell J. TI Neutron diffraction observations of interstitial protons in dense ice SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE crystallography; high pressure; water ID HYDROGEN-BOND SYMMETRIZATION; X-RAY-DIFFRACTION; HIGH-PRESSURE; DISORDERED STRUCTURE; INFRARED-ABSORPTION; RAMAN-SPECTROSCOPY; POWDER DIFFRACTION; GPA; VII; PHASE AB The motif of distinct H2O molecules in H-bonded networks is believed to persist up to the densest molecular phase of ice. At even higher pressures, where the molecule dissociates, it is generally assumed that the proton remains localized within these same networks. We report neutron-diffraction measurements on D2O that reveal the location of the D atoms directly up to 52 GPa, a pressure regime not previously accessible to this technique. The data show the onset of a structural change at similar to 13 GPa and cannot be described by the conventional network structure of ice VII above similar to 26 GPa. Our measurements are consistent with substantial deuteron density in the octahedral, interstitial voids of the oxygen lattice. The observation of this "interstitial" ice VII form provides a framework for understanding the evolution of hydrogen bonding in ice that contrasts with the conventional picture. It may also be a precursor for the superionic phase reported at even higher pressure with important consequences for our understanding of dense matter and planetary interiors. C1 [Guthrie, Malcolm; Boehler, Reinhard; Li, Kuo; Hemley, Russell J.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Tulk, Christopher A.; Molaison, Jamie J.; dos Santos, Antonio M.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Guthrie, M (reprint author), Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. EM mguthrie@ciw.edu; hemley@gl.ciw.edu RI dos Santos, Antonio/A-5602-2016; Boehler, Reinhard/L-3971-2016; Tulk, Chris/R-6088-2016 OI dos Santos, Antonio/0000-0001-6900-0816; Boehler, Reinhard/0000-0003-0222-6997; Tulk, Chris/0000-0003-3400-3878 FU EFree, an Energy Frontier Research Center; US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) [DE-SC0001057]; Scientific User Facilities division, BES, DOE [DE-AC05-00OR22725]; UT-Battelle, LLC FX We thank M. Somayazulu and A. Karandikar for experimental assistance and H. K. Mao, A. F. Goncharov, R. E. Cohen, R. Von Dreele, and B. H. Toby for discussions. This work is supported by EFree, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) under Award DE-SC0001057. Research conducted at the Spallation Neutron Source (SNS) was supported by the Scientific User Facilities division, BES, DOE, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 38 TC 16 Z9 16 U1 2 U2 62 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 25 PY 2013 VL 110 IS 26 BP 10552 EP 10556 DI 10.1073/pnas.1309277110 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 179EY UT WOS:000321503700034 PM 23757495 ER PT J AU Lu, SF Li, QZ Wei, HR Chang, MJ Tunlaya-Anukit, S Kim, H Liu, J Song, JY Sun, YH Yuan, LC Yeh, TF Peszlen, I Ralph, J Sederoff, RR Chiang, VL AF Lu, Shanfa Li, Quanzi Wei, Hairong Chang, Mao-Ju Tunlaya-Anukit, Sermsawat Kim, Hoon Liu, Jie Song, Jingyuan Sun, Ying-Hsuan Yuan, Lichai Yeh, Ting-Feng Peszlen, Ilona Ralph, John Sederoff, Ronald R. Chiang, Vincent L. TI Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID STRESS-RESPONSIVE MICRORNAS; MOLECULAR-CLONING; DOWN-REGULATION; COPPER; BIOSYNTHESIS; ARABIDOPSIS; PEROXIDASE; EXPRESSION; PLANTS; IDENTIFICATION AB Laccases, as early as 1959, were proposed to catalyze the oxidative polymerization of monolignols. Genetic evidence in support of this hypothesis has been elusive due to functional redundancy of laccase genes. An Arabidopsis double mutant demonstrated the involvement of laccases in lignin biosynthesis. We previously identified a subset of laccase genes to be targets of a microRNA (miRNA) ptr-miR397a in Populus trichocarpa. To elucidate the roles of ptr-miR397a and its targets, we characterized the laccase gene family and identified 49 laccase gene models, of which 29 were predicted to be targets of ptr-miR397a. We overexpressed Ptr-MIR397a in transgenic P. trichocarpa. In each of all nine transgenic lines tested, 17 PtrLACs were down-regulated as analyzed by RNA-seq. Transgenic lines with severe reduction in the expression of these laccase genes resulted in an similar to 40% decrease in the total laccase activity. Overexpression of Ptr-MIR397a in these transgenic lines also reduced lignin content, whereas levels of all monolignol biosynthetic gene transcripts remained unchanged. A hierarchical genetic regulatory network(GRN) built by a bottom-up graphic Gaussian model algorithm provides additional support for a role of ptr-miR397a as a negative regulator of laccases for lignin biosynthesis. Full transcriptome-based differential gene expression in the overexpressed transgenics and protein domain analyses implicate previously unidentified transcription factors and their targets in an extended hierarchical GRN including ptr-miR397a and laccases that coregulate lignin biosynthesis in wood formation. Ptr-miR397a, laccases, and other regulatory components of this network may provide additional strategies for genetic manipulation of lignin content. C1 [Lu, Shanfa; Song, Jingyuan; Yuan, Lichai] Chinese Acad Med Sci, Inst Med Plant Dev, Beijing 100193, Peoples R China. [Lu, Shanfa; Song, Jingyuan; Yuan, Lichai] Peking Union Med Coll, Beijing 100193, Peoples R China. [Li, Quanzi; Tunlaya-Anukit, Sermsawat; Liu, Jie; Sederoff, Ronald R.; Chiang, Vincent L.] N Carolina State Univ, Dept Forestry & Environm Resources, Forest Biotechnol Grp, Raleigh, NC 27695 USA. [Li, Quanzi] Shandong Agr Univ, Coll Forestry, Tai An 271018, Shandong, Peoples R China. [Wei, Hairong] Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. [Chang, Mao-Ju; Yeh, Ting-Feng] Natl Taiwan Univ, Sch Forestry & Resource Conservat, Taipei 10617, Taiwan. [Kim, Hoon; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Dept Biochem, Madison, WI 53726 USA. [Kim, Hoon; Ralph, John] Univ Wisconsin, Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. [Sun, Ying-Hsuan] Natl Chung Hsing Univ, Dept Forestry, Taichung 40227, Taiwan. [Peszlen, Ilona] N Carolina State Univ, Dept Forest Biomat, Raleigh, NC 27695 USA. RP Sederoff, RR (reprint author), N Carolina State Univ, Dept Forestry & Environm Resources, Forest Biotechnol Grp, Raleigh, NC 27695 USA. EM ron_sederoff@ncsu.edu; vchiang@ncsu.edu RI Liu, Jie/E-6220-2012; OI Yeh, Ting-Feng/0000-0002-4114-6714 FU National Science Foundation Plant Genome Research Program [DBI-0922391]; National Key Basic Research Program of China (973 program) [2012CB114502]; National Natural Science Foundation of China [31070534]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494]; North Carolina State University Forest Biotechnology Industrial Research Consortium [556051] FX This work was supported by grants from National Science Foundation Plant Genome Research Program Grant (DBI-0922391) to V. L. C.; the National Key Basic Research Program of China (973 program) (2012CB114502) to S. L.; the National Natural Science Foundation of China (31070534) to L.Y.; the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494) to J.R. and H. K., and the North Carolina State University Forest Biotechnology Industrial Research Consortium (grant no. 556051) to Q. L. and J.L. NR 41 TC 76 Z9 84 U1 2 U2 74 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 25 PY 2013 VL 110 IS 26 BP 10848 EP 10853 DI 10.1073/pnas.1308936110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 179EY UT WOS:000321503700084 PM 23754401 ER PT J AU Oosterkamp, MJ Veuskens, T Saia, FT Weelink, SAB Goodwin, LA Daligault, HE Bruce, DC Detter, JC Tapia, R Han, CS Land, ML Hauser, LJ Langenhoff, AAM Gerritse, J van Berkel, WJH Pieper, DH Junca, H Smidt, H Schraa, G Davids, M Schaap, PJ Plugge, CM Stams, AJM AF Oosterkamp, Margreet J. Veuskens, Teun Saia, Flavia Talarico Weelink, Sander A. B. Goodwin, Lynne A. Daligault, Hajnalka E. Bruce, David C. Detter, John C. Tapia, Roxanne Han, Cliff S. Land, Miriam L. Hauser, Loren J. Langenhoff, Alette A. M. Gerritse, Jan van Berkel, Willem J. H. Pieper, Dietmar H. Junca, Howard Smidt, Hauke Schraa, Gosse Davids, Mark Schaap, Peter J. Plugge, Caroline M. Stams, Alfons J. M. TI Genome Analysis and Physiological Comparison of Alicycliphilus denitrificans Strains BC and K601(T) SO PLOS ONE LA English DT Article ID PERIPLASMIC NITRATE REDUCTASE; ANAEROBIC BENZENE DEGRADATION; CYTOCHROME-C-OXIDASE; AROMATIC-COMPOUNDS; PERCHLORATE REDUCTION; CHLORITE DISMUTASE; REDUCING BACTERIA; RNA GENES; 1ST STEP; METABOLISM AB The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601(T) have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601(T) is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601(T) are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601(T) and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601(T). Genes involved in cyclohexanol degradation were only found in strain K601(T). Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono-and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far. C1 [Oosterkamp, Margreet J.; Veuskens, Teun; Saia, Flavia Talarico; Weelink, Sander A. B.; Smidt, Hauke; Schraa, Gosse; Plugge, Caroline M.; Stams, Alfons J. M.] Wageningen Univ, Microbiol Lab, NL-6700 AP Wageningen, Netherlands. [Goodwin, Lynne A.; Daligault, Hajnalka E.; Bruce, David C.; Detter, John C.; Tapia, Roxanne; Han, Cliff S.] Los Alamos Natl Lab, Joint Genome Inst, Los Alamos, NM USA. [Land, Miriam L.; Hauser, Loren J.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. [Land, Miriam L.; Hauser, Loren J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Langenhoff, Alette A. M.; Gerritse, Jan] Deltares, Utrecht, Netherlands. [van Berkel, Willem J. H.] Wageningen Univ, Biochem Lab, NL-6700 AP Wageningen, Netherlands. [Pieper, Dietmar H.] Helmholz Ctr Infect Res, Microbial Interact & Proc Res Grp, Braunschweig, Germany. [Junca, Howard] CorpoGen, Res Grp Microbial Ecol Metab Genom & Evolut Commu, Bogota, Colombia. [Davids, Mark; Schaap, Peter J.] Wageningen Univ, Lab Syst & Synth Biol, NL-6700 AP Wageningen, Netherlands. [Stams, Alfons J. M.] Univ Minho, Ctr Biol Engn, Braga, Portugal. RP Stams, AJM (reprint author), Wageningen Univ, Microbiol Lab, NL-6700 AP Wageningen, Netherlands. EM fons.stams@wur.nl RI van Berkel, Willem/O-2431-2014; Land, Miriam/A-6200-2011; Stams, Alfons/C-8167-2014; OI van Berkel, Willem/0000-0002-6551-2782; Land, Miriam/0000-0001-7102-0031; Stams, Alfons/0000-0001-7840-6500; Smidt, Hauke/0000-0002-6138-5026; Junca, Howard/0000-0003-4546-6229 FU Technology Foundation; Applied Science Division (STW) of the Netherlands Organization for Scientific Research (NWO) [08053]; graduate school WIMEK (Wageningen Institute for Environment and Climate Research, which is part of SENSE Research School for Socio-Economic and Natural Sciences of the Environment); SKB (Dutch Centre for Soil Quality Management and Knowledge Transfer); Consolider project [CSD-2007-00055]; FAPESP (the State of Sao Paulo Research Foundation) [2006-01997/ 5]; Office of Science of the United States Department of Energy [DE-AC02-05CH11231]; ERC (European Research Counsil) [323009] FX This research was supported by the Technology Foundation, the Applied Science Division (STW) of the Netherlands Organization for Scientific Research (NWO), project number 08053, the graduate school WIMEK (Wageningen Institute for Environment and Climate Research, which is part of SENSE Research School for Socio-Economic and Natural Sciences of the Environment, www.wimek-new.wur.nl and www.sense.nl), SKB (Dutch Centre for Soil Quality Management and Knowledge Transfer, www.skbodem.nl) and the Consolider project CSD-2007-00055. The research was incorporated in the TRIAS (TRIpartite Approaches 469 toward Soil systems processes) program (http://www.nwo.nl/en/research-and-results/programmes/alw/trias-triparti te-approach-to-soil-system-processes/index.html). Flavia Talarico Saia was supported by a FAPESP (the State of Sao Paulo Research Foundation) scholarship (2006-01997/ 5). The work conducted by the DOE JGI is supported by the Office of Science of the United States Department of Energy under contract number DE-AC02-05CH11231. Alfons Stams acknowledges support by an ERC (European Research Counsil) advanced grant (project 323009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 75 TC 8 Z9 8 U1 0 U2 74 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 25 PY 2013 VL 8 IS 6 AR e66971 DI 10.1371/journal.pone.0066971 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 175IB UT WOS:000321223000055 PM 23825601 ER PT J AU Lorenz, S Cantor, AJ Rape, M Kuriyan, J AF Lorenz, Sonja Cantor, Aaron J. Rape, Michael Kuriyan, John TI Macromolecular juggling by ubiquitylation enzymes SO BMC BIOLOGY LA English DT Review ID UBIQUITIN-ACTIVATING ENZYME; INDUCED CONFORMATIONAL-CHANGE; COLI THIOREDOXIN REDUCTASE; MITOTIC CHECKPOINT COMPLEX; CULLIN-RING LIGASES; ESCHERICHIA-COLI; C-CBL; STRUCTURAL BASIS; CRYSTAL-STRUCTURE; TYROSINE PHOSPHORYLATION AB The posttranslational modification of target proteins with ubiquitin and ubiquitin-like proteins is accomplished by the sequential action of E1, E2, and E3 enzymes. Members of the E1 and E3 enzyme families can undergo particularly large conformational changes during their catalytic cycles, involving the remodeling of domain interfaces. This enables the efficient, directed and regulated handover of ubiquitin from one carrier to the next one. We review some of these conformational transformations, as revealed by crystallographic studies. C1 [Lorenz, Sonja; Cantor, Aaron J.; Rape, Michael; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Lorenz, Sonja; Cantor, Aaron J.; Rape, Michael; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu OI Lorenz, Sonja/0000-0002-9639-2381 FU Leukemia and Lymphoma Society; University of California Cancer Research Coordinating Committee Graduate Fellowship FX We acknowledge support by a Leukemia and Lymphoma Society postdoctoral fellowship award (SL) and a University of California Cancer Research Coordinating Committee Graduate Fellowship (AJC). We thank Dr Tiago Barros for assistance with preparation of the movie. NR 105 TC 19 Z9 19 U1 1 U2 17 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1741-7007 J9 BMC BIOL JI BMC Biol. PD JUN 25 PY 2013 VL 11 AR 65 DI 10.1186/1741-7007-11-65 PG 12 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 170OI UT WOS:000320862300001 PM 23800009 ER PT J AU Wang, YJ Tsai, WF Lin, H Xu, SY Neupane, M Hasan, MZ Bansil, A AF Wang, Yung Jui Tsai, Wei-Feng Lin, Hsin Xu, Su-Yang Neupane, M. Hasan, M. Z. Bansil, A. TI Nontrivial spin texture of the coaxial Dirac cones on the surface of topological crystalline insulator SnTe SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION; PHASE AB We present first-principles calculations of the nontrivial surface states and their spin textures in the topological crystalline insulator SnTe. The surface state dispersion on the [001] surface exhibits four Dirac cones centered along the intersection of the mirror plane and the surface plane. We propose a simple model of two interacting coaxial Dirac cones to describe both the surface state dispersion and the associated spin texture. The out-of-plane spin polarization is found to be zero due to the crystalline and time-reversal symmetries. The in-plane spin texture shows helicity with some distortion due to the interaction of the two coaxial Dirac cones, indicating a nontrivial mirror Chern number of -2, distinct from the value of -1 in a Z(2) topological insulator such as Bi/Sb alloys or Bi2Se3. The surface state dispersion and its spin texture would provide an experimentally accessible signature for determining the nontrivial mirror Chern number. C1 [Wang, Yung Jui; Lin, Hsin; Bansil, A.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Wang, Yung Jui] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94305 USA. [Tsai, Wei-Feng] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan. [Xu, Su-Yang; Neupane, M.; Hasan, M. Z.] Princeton Univ, Joseph Henry Lab, Dept Phys, Princeton, NJ 08544 USA. RP Wang, YJ (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA. RI HASAN, M. Zahid/D-8237-2012; Lin, Hsin/F-9568-2012 OI Lin, Hsin/0000-0002-4688-2315 FU Division of Materials Science and Engineering, Basic Energy Sciences, US Department of Energy [DE-FG02-07ER46352, DE-FG-02-05ER46200, AC02-05CH11231]; Advanced Light Source, Berkeley; NSC in Taiwan [100-2112-M-110-001-MY2] FX It is a pleasure to thank Liang Fu and Chen Fang for useful discussions. The work at Northeastern and Princeton is supported by the Division of Materials Science and Engineering, Basic Energy Sciences, US Department of Energy, Grants No. DE-FG02-07ER46352, No. DE-FG-02-05ER46200, and No. AC02-05CH11231, and benefited from theory support at the Advanced Light Source, Berkeley, and the allocation of supercomputer time at NERSC and Northeastern University's Advanced Scientific Computation Center (ASCC). W.F.T. is supported by the NSC in Taiwan under Grant No. 100-2112-M-110-001-MY2. NR 22 TC 28 Z9 28 U1 3 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 25 PY 2013 VL 87 IS 23 AR 235317 DI 10.1103/PhysRevB.87.235317 PG 5 WC Physics, Condensed Matter SC Physics GA 171TX UT WOS:000320953300003 ER PT J AU Liu, YH Daughton, W Karimabadi, H Li, H Roytershteyn, V AF Liu, Yi-Hsin Daughton, W. Karimabadi, H. Li, H. Roytershteyn, V. TI Bifurcated Structure of the Electron Diffusion Region in Three-Dimensional Magnetic Reconnection SO PHYSICAL REVIEW LETTERS LA English DT Article ID SOLAR CORONA; FIELD LINES; INSTABILITIES; MAGNETOPAUSE; SIMULATIONS; PLASMA; SHEAR AB Three-dimensional kinetic simulations of magnetic reconnection reveal that the electron diffusion region is composed of two or more current sheets in regimes with weak magnetic shear angles phi less than or similar to 80 degrees. This new morphology is explained by oblique tearing modes which produce flux ropes while simultaneously driving enhanced current at multiple resonance surfaces. This physics persists into the nonlinear regime leading to multiple electron layers embedded within a larger Alfvenic inflow and outflow. Surprisingly, the thickness of these layers and the reconnection rate both remain comparable to two-dimensional models. The parallel electric fields are supported predominantly by the electron pressure tensor and electron inertia, while turbulent dissipation remains small. C1 [Liu, Yi-Hsin; Daughton, W.; Li, H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Karimabadi, H.; Roytershteyn, V.] SciberQuest, Del Mar, CA 92014 USA. RP Liu, YH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Daughton, William/L-9661-2013; OI Roytershteyn, Vadim/0000-0003-1745-7587 FU NASA through the Heliophysics Theory program; DOE/OFES through CMSO; LDRD program at LANL; NASA [NNH11CC65C]; NSF through EAGER [1105084]; NSF [OCI 07-25070]; state of Illinois FX We are grateful for support from NASA through the Heliophysics Theory program, DOE/OFES through CMSO, and from the LDRD program at LANL. Contributions from H. K. and V. R. were supported by NASA Grant No. NNH11CC65C, and NSF through EAGER 1105084. This research is part of the Blue Waters sustained-petascale computing project, which is supported by the NSF (OCI 07-25070) and the state of Illinois. Additional simulations were performed at the National Center for Computational Sciences at ORNL and with LANL institutional computing. We thank Burlen Loring for visualization assistance with ParaView. NR 32 TC 29 Z9 29 U1 4 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 25 PY 2013 VL 110 IS 26 AR 265004 DI 10.1103/PhysRevLett.110.265004 PG 5 WC Physics, Multidisciplinary SC Physics GA 171WH UT WOS:000320960300010 PM 23848886 ER PT J AU Qin, H Liu, WD Li, H Squire, J AF Qin, Hong Liu, Wandong Li, Hong Squire, Jonathan TI Comment on "Woltjer-Taylor State without Taylor's Conjecture: Plasma Relaxation at All Wavelengths" Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 [Qin, Hong; Liu, Wandong; Li, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Chinese Acad Sci, Ctr Magnet Fus Theory, Hefei 230031, Anhui, Peoples R China. [Qin, Hong; Squire, Jonathan] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Qin, H (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. RI Liu, Wandong/K-6119-2012 NR 2 TC 1 Z9 1 U1 4 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 25 PY 2013 VL 110 IS 26 AR 269502 DI 10.1103/PhysRevLett.110.269502 PG 1 WC Physics, Multidisciplinary SC Physics GA 171WH UT WOS:000320960300020 PM 23848930 ER PT J AU Im, KS Cheong, SK Powell, CF Lai, MCD Wang, J AF Im, Kyoung-Su Cheong, Seong-Kyun Powell, Christopher F. Lai, Ming-chia D. Wang, Jin TI Unraveling the Geometry Dependence of In-Nozzle Cavitation in High-Pressure Injectors SO SCIENTIFIC REPORTS LA English DT Article ID FUEL SPRAYS; SHOCK-WAVES; LIQUID JET; FLOWS; MODEL; EROSION; ATOMIZATION; RADIOGRAPHY; ENGINE AB Cavitation is an intricate multiphase phenomenon that interplays with turbulence in fluid flows. It exhibits clear duality in characteristics, being both destructive and beneficial in our daily lives and industrial processes. Despite the multitude of occurrences of this phenomenon, highly dynamic and multiphase cavitating flows have not been fundamentally well understood in guiding the effort to harness the transient and localized power generated by this process. In a microscale, multiphase flow liquid injection system, we synergistically combined experiments using time-resolved x-radiography and a novel simulation method to reveal the relationship between the injector geometry and the in-nozzle cavitation quantitatively. We demonstrate that a slight alteration of the geometry on the micrometer scale can induce distinct laminar-like or cavitating flows, validating the multiphase computational fluid dynamics simulation. Furthermore, the simulation identifies a critical geometric parameter with which the high-speed flow undergoes an intriguing transition from non-cavitating to cavitating. C1 [Im, Kyoung-Su; Cheong, Seong-Kyun; Powell, Christopher F.; Wang, Jin] Argonne Natl Lab, Argonne, IL 60439 USA. [Im, Kyoung-Su] Livermore Software Technol Corp, Livermore, CA 94551 USA. [Lai, Ming-chia D.] Wayne State Univ, Detroit, MI 48202 USA. RP Wang, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ksim@lstc.com; wangj@aps.anl.gov FU U.S. Department of Energy (DoE) Vehicle Technology Program; DoE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Daegu Technopark, Korea, Basic R&D Supporting Program for Convergence Technology FX We thank J. Schaller for providing the nozzles. Beamline staff at Sectors 1 and 7 of the Advanced Photon Source is acknowledged for the technical support. We are also grateful for the sponsorship of U.S. Department of Energy (DoE) Vehicle Technology Program. This work and the use of the APS were supported by the DoE, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. This work is also partially supported by Daegu Technopark, Korea, as part of Basic R&D Supporting Program for Convergence Technology. NR 50 TC 6 Z9 6 U1 0 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUN 25 PY 2013 VL 3 AR 2067 DI 10.1038/srep02067 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 170JW UT WOS:000320847200003 PM 23797665 ER PT J AU Mitchell, C Qiang, J Emma, P AF Mitchell, Chad Qiang, Ji Emma, Paul TI Longitudinal pulse shaping for the suppression of coherent synchrotron radiation-induced emittance growth SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ACCELERATORS AB The damaging effect of coherent synchrotron radiation (CSR) on the emittance and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. We propose a mitigation approach in which the dynamical effect of the longitudinal component of CSR is suppressed by appropriately preparing the initial longitudinal current profile of the beam. In a chicane, a linear theory for the mechanism of CSR-induced emittance growth is used to demonstrate how this procedure can produce a beam whose core experiences suppressed transverse emittance growth. The dynamics of such a beam is illustrated for the Berlin-Zeuthen CSR benchmark chicane. C1 [Mitchell, Chad; Qiang, Ji; Emma, Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Mitchell, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM ChadMitchell@lbl.gov FU U.S. Department of Energy [DE-FG02-96ER40949] FX This work was supported by U.S. Department of Energy Grant No. DE-FG02-96ER40949. NR 25 TC 13 Z9 13 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN 25 PY 2013 VL 16 IS 6 AR 060703 DI 10.1103/PhysRevSTAB.16.060703 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 171WQ UT WOS:000320961200001 ER PT J AU Hsiao, SC Liu, H Holstlaw, TA Liu, C Francis, CY Francis, MB AF Hsiao, Sonny C. Liu, Hong Holstlaw, Taylor A. Liu, Cheng Francis, Catherine Y. Francis, Matthew B. TI Real Time Assays for Quantifying Cytotoxicity with Single Cell Resolution SO PLOS ONE LA English DT Article ID ANTI-CD20 ANTIBODY IDEC-C2B8; CHRONIC LYMPHOCYTIC-LEUKEMIA; NATURAL-KILLER-CELL; RITUXIMAB; COMPLEMENT; RESISTANCE; LYMPHOMA; THERAPY; DNA; MECHANISMS AB A new live cell-based assay platform has been developed for the determination of complement dependent cytotoxicity (CDC), antibody dependent cellular cytotoxicity (ADCC), and overall cytotoxicity in human whole blood. In these assays, the targeted tumor cell populations are first labeled with fluorescent Cell Tracker dyes and immobilized using a DNA-based adhesion technique. This allows the facile generation of live cell arrays that are arranged arbitrarily or in ordered rectilinear patterns. Following the addition of antibodies in combination with serum, PBMCs, or whole blood, cell death within the targeted population can be assessed by the addition of propidium iodide (PI) as a viability probe. The array is then analyzed with an automated microscopic imager. The extent of cytotoxicity can be quantified accurately by comparing the number of surviving target cells to the number of dead cells labeled with both Cell Tracker and PI. Excellent batch-to-batch reproducibility has been achieved using this method. In addition to allowing cytotoxicity analysis to be conducted in real time on a single cell basis, this new assay overcomes the need for hazardous radiochemicals. Fluorescently-labeled antibodies can be used to identify individual cells that bear the targeted receptors, but yet resist the CDC and ADCC mechanisms. This new approach also allows the use of whole blood in cytotoxicity assays, providing an assessment of antibody efficacy in a highly relevant biological mixture. Given the rapid development of new antibody-based therapeutic agents, this convenient assay platform is well-poised to streamline the drug discovery process significantly. C1 [Hsiao, Sonny C.; Holstlaw, Taylor A.; Francis, Catherine Y.] Adheren Inc, Berkeley, CA USA. [Liu, Hong; Liu, Cheng] Eureka Therapeut, Emeryville, CA USA. [Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Hsiao, SC (reprint author), Adheren Inc, Berkeley, CA USA. EM sonny@adheren.com NR 29 TC 5 Z9 6 U1 2 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 24 PY 2013 VL 8 IS 6 AR e66739 DI 10.1371/journal.pone.0066739 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 182JP UT WOS:000321738400043 PM 23826123 ER PT J AU Bender, DA Cederberg, JG Wang, CG Sheik-Bahae, M AF Bender, Daniel A. Cederberg, Jeffrey G. Wang, Chengao Sheik-Bahae, Mansoor TI Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling SO APPLIED PHYSICS LETTERS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; SPONTANEOUS EMISSION; SEMICONDUCTOR; INGAP/GAAS; PHOTOLUMINESCENCE; RECOMBINATION; INTERFACE; HETEROINTERFACES; SUPERLATTICES; LUMINESCENCE AB We report on the growth and characterization of high external quantum efficiency (EQE) GaAs/GaInP double heterostructures. By properly treating the GaAs/GaInP interface, we are able to produce structures measuring a record EQE of 99.5% +/- 0.1% in GaAs. This efficiency exceeds the requirement for achieving laser cooling in GaAs. However, net cooling has not yet been realized due to residual below gap background absorption. (C) 2013 AIP Publishing LLC. C1 [Bender, Daniel A.; Cederberg, Jeffrey G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wang, Chengao; Sheik-Bahae, Mansoor] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. RP Bender, DA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dabende@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; NSF [DMR-1207489] FX The authors acknowledge the expert assistance of Darrell Alliman in the preparation of the GaAs/GaInP double heterostructures. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The work at UNM was supported by the NSF under Award DMR-1207489. NR 27 TC 8 Z9 8 U1 3 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 24 PY 2013 VL 102 IS 25 AR 252102 DI 10.1063/1.4811759 PG 4 WC Physics, Applied SC Physics GA 174HG UT WOS:000321145200045 ER PT J AU Bora, M Behymer, EM Dehlinger, DA Britten, JA Larson, CC Chang, ASP Munechika, K Nguyen, HT Bond, TC AF Bora, Mihail Behymer, Elaine M. Dehlinger, Dietrich A. Britten, Jerald A. Larson, Cindy C. Chang, Allan S. P. Munechika, Keiko Nguyen, Hoang T. Bond, Tiziana C. TI Plasmonic black metals in resonant nanocavities SO APPLIED PHYSICS LETTERS LA English DT Article ID NEAR-FIELD AB We investigate a plasmonic resonant structure tunable from ultra-violet to near infrared wavelengths with maximum absorbance strength over 95% due to a highly efficient coupling with incident light. Additional harmonics are excited at higher frequencies extending the absorbance range to multiple wavelengths. We propose the concept of a plasmonic black metal nanoresonator that exhibits broadband absorbance characteristics by spacing the modes closer through increasing the resonator length and by employing adiabatic plasmonic nano-focusing on the tapered end of the cavity. (C) 2013 AIP Publishing LLC. C1 [Bora, Mihail; Behymer, Elaine M.; Dehlinger, Dietrich A.; Britten, Jerald A.; Larson, Cindy C.; Chang, Allan S. P.; Munechika, Keiko; Nguyen, Hoang T.; Bond, Tiziana C.] Lawrence Livermore Natl Lab, Livermore, CA 94501 USA. RP Bora, M (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94501 USA. EM bora1@llnl.gov; bond7@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNLJRNL-425128] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract Nos. DE-AC52-07NA27344 and LLNLJRNL-425128. NR 20 TC 11 Z9 11 U1 4 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 24 PY 2013 VL 102 IS 25 AR 251105 DI 10.1063/1.4802910 PG 5 WC Physics, Applied SC Physics GA 174HG UT WOS:000321145200005 ER PT J AU Jiang, CS Repins, IL Mansfield, LM Contreras, MA Moutinho, HR Ramanathan, K Noufi, R Al-Jassim, MM AF Jiang, C. -S. Repins, I. L. Mansfield, L. M. Contreras, M. A. Moutinho, H. R. Ramanathan, K. Noufi, R. Al-Jassim, M. M. TI Electrical conduction channel along the grain boundaries of Cu(In,Ga)Se-2 thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID SPREADING RESISTANCE MICROSCOPY; SOLAR-CELLS; SILICON AB We report on a direct nm-resolution resistance mapping on the Cu(In,Ga)Se-2 photovoltaic thin films, using scanning spreading resistance microcopy. We found a conductance channel along the grain boundaries (GBs) of the polycrystalline materials, which is consistent with the argument that carrier polarity of the GB and the space charge region around it is inverted. To minimize the probe/film contact resistance, so that the local spreading resistance beneath the probe is measured, the probe must be adequately indented to the film and a bias voltage larger than the onset value of the probe/film barrier should be applied. (C) 2013 AIP Publishing LLC. C1 [Jiang, C. -S.; Repins, I. L.; Mansfield, L. M.; Contreras, M. A.; Moutinho, H. R.; Ramanathan, K.; Noufi, R.; Al-Jassim, M. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Jiang, CS (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI jiang, chun-sheng/F-7839-2012 FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 21 TC 10 Z9 10 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 24 PY 2013 VL 102 IS 25 AR 253905 DI 10.1063/1.4812827 PG 5 WC Physics, Applied SC Physics GA 174HG UT WOS:000321145200102 ER PT J AU Luisier, M Boykin, TB Ye, Z Martini, A Klimeck, G Kharche, N Jiang, X Nayak, S AF Luisier, M. Boykin, T. B. Ye, Z. Martini, A. Klimeck, G. Kharche, N. Jiang, X. Nayak, S. TI Investigation of ripple-limited low-field mobility in large-scale graphene nanoribbons SO APPLIED PHYSICS LETTERS LA English DT Article ID TRANSISTORS; TRANSPORT; SIO2 AB Combining molecular dynamics and quantum transport simulations, we study the degradation of mobility in graphene nanoribbons caused by substrate-induced ripples. First, the atom coordinates of large-scale structures are relaxed such that surface properties are consistent with those of graphene on a substrate. Then, the electron current and low-field mobility of the resulting non-flat nanoribbons are calculated within the Non-equilibrium Green's Function formalism in the coherent transport limit. An accurate tight-binding basis coupling the sigma- and pi-bands of graphene is used for this purpose. It is found that the presence of ripples decreases the mobility of graphene nanoribbons on SiO2 below 3000 cm(2)/Vs, which is comparable to experimentally reported values. (C) 2013 AIP Publishing LLC. C1 [Luisier, M.] ETH, Integrated Syst Lab, CH-8092 Zurich, Switzerland. [Boykin, T. B.] Univ Alabama, Dept ECE, Huntsville, AL 35899 USA. [Ye, Z.; Martini, A.] Univ Calif Merced, Sch Engn, Merced, CA 95343 USA. [Klimeck, G.] Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA. [Kharche, N.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Jiang, X.; Nayak, S.] Rensselaer Polytech Inst, Dept Phys, Troy, NY 12180 USA. [Nayak, S.] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar 751013, Orissa, India. RP Luisier, M (reprint author), ETH, Integrated Syst Lab, CH-8092 Zurich, Switzerland. RI Kharche, Neerav/F-4331-2015; Klimeck, Gerhard/A-1414-2012 OI Kharche, Neerav/0000-0003-1014-6022; Klimeck, Gerhard/0000-0001-7128-773X FU SNF [PP00P2_133591]; Swiss National Supercomputing Centre (CSCS) [s363]; NSF [EEC-0228390]; NSF PetaApps [0749140]; NSF through XSEDE; National Institute for Computational Sciences (NICS) FX This work was supported by SNF grant (No. PP00P2_133591), by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID s363, by NSF grant (No. EEC-0228390) that funds the Network for Computational Nanotechnology, by NSF PetaApps grant (No. 0749140), and by NSF through XSEDE resources provided by the National Institute for Computational Sciences (NICS). NR 24 TC 1 Z9 1 U1 0 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 24 PY 2013 VL 102 IS 25 AR 253506 DI 10.1063/1.4811761 PG 4 WC Physics, Applied SC Physics GA 174HG UT WOS:000321145200092 ER PT J AU Murray, CE Graves-Abe, T Robison, R Cai, Z AF Murray, Conal E. Graves-Abe, T. Robison, R. Cai, Z. TI Submicron mapping of strain distributions induced by three-dimensional through-silicon via features SO APPLIED PHYSICS LETTERS LA English DT Article ID MECHANICAL-STRESS; RAMAN-SPECTROSCOPY; IMPACT; SI; CU AB Strain distributions within the active layer of a silicon-on-insulator substrate induced by through-silicon via (TSV) structures were mapped using x-ray microbeam diffraction. The interaction region of the out-of-plane strain, epsilon(33), from a TSV feature containing copper metallization extended approximately 6 mu m from the TSV outer edge for circular and annular geometries. Measurements conducted on identical TSV structures without copper reveal that strain fields generated by the liner materials extend a similar distance and with comparable magnitude as those with copper. FEM-based simulations show the total interaction region induced by the TSV can extend farther than that of epsilon(33). (C) 2013 AIP Publishing LLC. C1 [Murray, Conal E.] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Graves-Abe, T.] IBM Corp, Semicond Res & Dev Ctr, Hopewell Jct, NY 12257 USA. [Robison, R.] IBM Corp, Microelect Div, Essex Jct, VT 05452 USA. [Cai, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Murray, CE (reprint author), IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-AC02-98CH10886] FX We would like to thank Dr. Jean-Jordan Sweet for assistance with the stress measurements and Dr. Chandrasekara Kothandaraman for discussions. This work was performed by the Research Alliance Teams at various IBM Research and Development facilities. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 23 TC 12 Z9 12 U1 0 U2 25 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 24 PY 2013 VL 102 IS 25 AR 251910 DI 10.1063/1.4812481 PG 5 WC Physics, Applied SC Physics GA 174HG UT WOS:000321145200040 ER PT J AU Romanenko, A Grassellino, A AF Romanenko, A. Grassellino, A. TI Dependence of the microwave surface resistance of superconducting niobium on the magnitude of the rf field SO APPLIED PHYSICS LETTERS LA English DT Article ID MAGNETIC-FIELD; INDUCED ANISOTROPY; 1.5 GHZ; IMPEDANCE; CAVITIES; ABSORPTION; TIN; STATES AB Utilizing difference in temperature dependencies we decoupled Bardeen-Cooper-Schrieffer (BCS) and residual components of the microwave surface resistance of superconducting niobium at all rf fields up to B-rf similar to 115 mT. We reveal that the residual resistance decreases with field at B-rf <= 40mT and strongly increases in chemically treated niobium at B-rf > 80 mT. We find that BCS surface resistance is weakly dependent on field in the clean limit, whereas a strong and peculiar field dependence emerges after 120 degrees C vacuum baking. (C) 2013 AIP Publishing LLC. C1 [Romanenko, A.; Grassellino, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Romanenko, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM aroman@fnal.gov FU United States Department of Energy; DOE Office of Nuclear Physics; [De-AC02-07CH11359] FX The authors would like to acknowledge the help and useful discussions of A. Crawford, D. Sergatskov, D. Bice, A. Rowe, M. Wong-Squires, J. P. Ozelis, F. Barkov, A. Melnitchouk, and A. Sukhanov. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. A. R. was partially supported by the DOE Office of Nuclear Physics. NR 48 TC 16 Z9 16 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 24 PY 2013 VL 102 IS 25 AR 252603 DI 10.1063/1.4812665 PG 4 WC Physics, Applied SC Physics GA 174HG UT WOS:000321145200064 ER PT J AU Tong, WM Brodie, AD Mane, AU Sun, FG Kidwingira, F McCord, MA Bevis, CF Elam, JW AF Tong, William M. Brodie, Alan D. Mane, Anil U. Sun, Fuge Kidwingira, Francoise McCord, Mark A. Bevis, Christopher F. Elam, Jeffrey W. TI Nanoclusters of MoO3-x embedded in an Al2O3 matrix engineered for customizable mesoscale resistivity and high dielectric strength SO APPLIED PHYSICS LETTERS LA English DT Article ID LAYER DEPOSITION TECHNIQUES; GROWTH AB We have synthesized a material consisting of conducting metal oxide (MoO3-x) nanoclusters embedded in a high-dielectric-strength insulator (Al2O3) matrix. The resistivity of this material can be customized by varying the concentration of the MoO3-x nanoclusters. The Al2O3 protects the MoO3-x from stoichiometry change, thus conserving the number of carriers and maintaining a high dielectric strength. This composite material is grown by atomic layer deposition, a thin film deposition technique suitable for coating 3D structures. We applied these atomic layer deposition composite films to our 3D electron-optical micro electrical mechanical systems devices and greatly improved their performance. (C) 2013 AIP Publishing LLC. C1 [Tong, William M.; Brodie, Alan D.; Sun, Fuge; Kidwingira, Francoise; McCord, Mark A.; Bevis, Christopher F.] KLA Tencor Corp, REBL Program, Off CTO, Milpitas, CA 95035 USA. [Mane, Anil U.; Elam, Jeffrey W.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Tong, WM (reprint author), KLA Tencor Corp, REBL Program, Off CTO, 1 Technol Dr, Milpitas, CA 95035 USA. FU Defense Advanced Research Projects Agency [HR0011-07-9-0007]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics of the Large Area Picosecond Photodetector (LAPPD) project [DE-AC02-06CH11357] FX We thank Alec Talin of Sandia National Laboratories for a careful review of the manuscript. This work was partly sponsored by Defense Advanced Research Projects Agency under Contract No. HR0011-07-9-0007. The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense. The work at Argonne was funded in part by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics under Contract No. DE-AC02-06CH11357 as part of the Large Area Picosecond Photodetector (LAPPD) project. NR 13 TC 8 Z9 8 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 24 PY 2013 VL 102 IS 25 AR 252901 DI 10.1063/1.4811480 PG 5 WC Physics, Applied SC Physics GA 174HG UT WOS:000321145200065 ER PT J AU Chen, JW Pu, S Wang, Q Wang, XN AF Chen, Jiunn-Wei Pu, Shi Wang, Qun Wang, Xin-Nian TI Berry Curvature and Four-Dimensional Monopoles in the Relativistic Chiral Kinetic Equation SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSPORT-THEORY AB We derive a relativistic chiral kinetic equation with manifest Lorentz covariance from Wigner functions of spin-1/2 massless fermions in a constant background electromagnetic field. It contains vorticity terms and a four-dimensional Euclidean Berry monopole which gives an axial anomaly. By integrating out the zeroth component of the 4-momentum p, we reproduce the previous three-dimensional results derived from the Hamiltonian approach, together with the newly derived vorticity terms. The phase space continuity equation has an anomalous source term proportional to the product of electric and magnetic fields (F-sigma rho(F) over tilde (sigma rho)similar to E sigma B sigma). This provides a unified interpretation of the chiral magnetic and vortical effects, chiral anomaly, Berry curvature, and the Berry monopole in the framework of Wigner functions. C1 [Chen, Jiunn-Wei; Pu, Shi] Natl Taiwan Univ, Dept Phys, Natl Ctr Theoret Sci, Taipei 10617, Taiwan. [Chen, Jiunn-Wei; Pu, Shi] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan. [Pu, Shi; Wang, Qun] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Peoples R China. [Pu, Shi; Wang, Qun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. [Wang, Xin-Nian] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Chen, JW (reprint author), Natl Taiwan Univ, Dept Phys, Natl Ctr Theoret Sci, Taipei 10617, Taiwan. OI Wang, Xin-Nian/0000-0002-9734-9967; Chen, Jiunn-Wei/0000-0002-8650-9371; Pu, Shi/0000-0002-6784-7447 FU NSFC [11125524, 1221504, 11205150]; U.S. DOE [DE-AC02-05CH11231]; NSC; NTU-CTS; NTU-CASTS of R.O.C. FX This work is supported by the NSFC under Grants No. 11125524, No. 1221504, and No. 11205150 and by the U.S. DOE under Contract No. DE-AC02-05CH11231 and within the framework of the JET Collaboration. J.-W.C. and S. P. are supported in part by the NSC, NTU-CTS, and the NTU-CASTS of R.O.C. NR 31 TC 63 Z9 63 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 24 PY 2013 VL 110 IS 26 AR UNSP 262301 DI 10.1103/PhysRevLett.110.262301 PG 5 WC Physics, Multidisciplinary SC Physics GA 171UY UT WOS:000320956500003 PM 23848865 ER PT J AU Ray, D Reichhardt, CJO Janko, B Reichhardt, C AF Ray, D. Reichhardt, C. J. Olson Janko, B. Reichhardt, C. TI Strongly Enhanced Pinning of Magnetic Vortices in Type-II Superconductors by Conformal Crystal Arrays SO PHYSICAL REVIEW LETTERS LA English DT Article ID VORTEX PLASTIC-FLOW; HYSTERESIS LOOPS; REGULAR ARRAY; FLUX-DENSITY; EQUILIBRIUM; DYNAMICS; LATTICES; CURRENTS; DEFECTS; FILMS AB Conformal crystals are nonuniform structures created by a conformal transformation of regular two-dimensional lattices. We show that gradient-driven vortices interacting with a conformal pinning array exhibit substantially stronger pinning effects over a much larger range of field than found for random or periodic pinning arrangements. The pinning enhancement is partially due to matching of the critical flux gradient with the pinning gradient, but the preservation of local ordering in the conformally transformed hexagonal lattice and the arching arrangement of the pinning also play crucial roles. Our results can be generalized to a wide class of gradient-driven interacting particle systems such as colloids on optical trap arrays. C1 [Ray, D.; Janko, B.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Ray, D.; Reichhardt, C. J. Olson; Reichhardt, C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Ray, D (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 FU NNSA of the U.S. DOE at LANL [DE-AC52-06NA25396] FX This work was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396. NR 51 TC 25 Z9 25 U1 0 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 24 PY 2013 VL 110 IS 26 AR UNSP 267001 DI 10.1103/PhysRevLett.10.267001 PG 5 WC Physics, Multidisciplinary SC Physics GA 171UY UT WOS:000320956500012 PM 23848910 ER PT J AU Sanloup, C Bonev, SA Hochlaf, M Maynard-Casely, HE AF Sanloup, Chrystele Bonev, Stanimir A. Hochlaf, Majdi Maynard-Casely, Helen E. TI Reactivity of Xenon with Ice at Planetary Conditions SO PHYSICAL REVIEW LETTERS LA English DT Article ID GIANT PLANETS; NOBLE; VOLATILES; MOLECULES AB We report results from high pressure and temperature experiments that provide evidence for the reactivity of xenon with water ice at pressures above 50 GPa and a temperature of 1500 K-conditions that are found in the interiors of Uranus and Neptune. The x-ray data are sufficient to determine a hexagonal lattice with four Xe atoms per unit cell and several possible distributions of O atoms. The measurements are supplemented with ab initio calculations, on the basis of which a crystallographic structure with a Xe4O12H12 primitive cell is proposed. The newly discovered compound is formed in the stability fields of superionic ice and eta-O-2, and has the same oxygen subnetwork as the latter. Furthermore, it has a weakly metallic character and likely undergoes sublattice melting of the H subsystem. Our findings indicate that Xe is expected to be depleted in the atmospheres of the giant planets as a result of sequestration at depth. C1 [Sanloup, Chrystele] Univ Paris 06, CNRS, ISTEP, UMR 7193, F-75005 Paris, France. [Bonev, Stanimir A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bonev, Stanimir A.] Dalhousie Univ, Dept Phys, Halifax, NS B3H 3J5, Canada. [Hochlaf, Majdi] Univ Paris Est, MSME, CNRS, Lab Modelisat & Simulat MultiEchelle,UMR 8208, F-77454 Marne La Vallee, France. [Maynard-Casely, Helen E.] Univ Edinburgh, Sch Chem, Edinburgh EH9 3JZ, Midlothian, Scotland. RP Sanloup, C (reprint author), Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. RI Sanloup, Chrystele/D-9923-2015; OI Sanloup, Chrystele/0000-0003-2412-6073; Maynard-Casely, Helen/0000-0001-6364-9665 FU European Research Council under the European Community's Seventh Framework Programme [259649]; U.S. Department of Energy [DE-AC52-07NA27344] FX We acknowledge the ESRF for provision of beam time on ID27 and LLNL for computational resources. We thank M. Mezouar and E. Gregoryanz for their help with collecting in situ x-ray diffraction data, and Y. Noel and M. Marques for useful discussions. C. S. is funded by the European Research Council under the European Community's Seventh Framework Programme (Grants No. FP7/2007-2013 and No. 259649). S. A. B. performed work at LLNL under the auspices of the U.S. Department of Energy under Grant No. DE-AC52-07NA27344. NR 33 TC 17 Z9 17 U1 1 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 24 PY 2013 VL 110 IS 26 AR UNSP 265501 DI 10.1103/PhysRevLett.110.265501 PG 5 WC Physics, Multidisciplinary SC Physics GA 171UY UT WOS:000320956500007 PM 23848893 ER PT J AU Flynn, TM Sanford, RA Ryu, H Bethke, CM Levine, AD Ashbolt, NJ Domingo, JWS AF Flynn, Theodore M. Sanford, Robert A. Ryu, Hodon Bethke, Craig M. Levine, Audrey D. Ashbolt, Nicholas J. Domingo, Jorge W. Santo TI Functional microbial diversity explains groundwater chemistry in a pristine aquifer SO BMC MICROBIOLOGY LA English DT Article ID ANAEROBIC METHANE OXIDATION; SULFATE REDUCTION; MULTIVARIATE ANALYSES; REDUCING BACTERIA; CRETACEOUS ROCK; BEDROCK VALLEY; SUBSURFACE; SEDIMENTS; SEQUENCE; SYSTEMS AB Background: The diverse microbial populations that inhabit pristine aquifers are known to catalyze critical in situ biogeochemical reactions, yet little is known about how the structure and diversity of this subsurface community correlates with and impacts upon groundwater chemistry. Herein we examine 8,786 bacterial and 8,166 archaeal 16S rRNA gene sequences from an array of monitoring wells in the Mahomet aquifer of east-central Illinois. Using multivariate statistical analyses we provide a comparative analysis of the relationship between groundwater chemistry and the microbial communities attached to aquifer sediment along with those suspended in groundwater. Results: Statistical analyses of 16S rRNA gene sequences showed a clear distinction between attached and suspended communities; with iron-reducing bacteria far more abundant in attached samples than suspended, while archaeal clones related to groups associated with anaerobic methane oxidation and deep subsurface gold mines (ANME-2D and SAGMEG-1, respectively) distinguished the suspended community from the attached. Within the attached bacterial community, cloned sequences most closely related to the sulfate-reducing Desulfobacter and Desulfobulbus genera represented 20% of the bacterial community in wells where the concentration of sulfate in groundwater was high (> 0.2 mM), compared to only 3% in wells with less sulfate. Sequences related to the genus Geobacter, a genus containing ferric-iron reducers, were of nearly equal abundance (15%) to the sulfate reducers under high sulfate conditions, however their relative abundance increased to 34% when sulfate concentrations were < 0.03 mM. Also, in areas where sulfate concentrations were < 0.03 mM, archaeal 16S rRNA gene sequences similar to those found in methanogens such as Methanosarcina and Methanosaeta comprised 73-80% of the community, and dissolved CH4 ranged between 220 and 1240 mu M in these groundwaters. In contrast, methanogens (and their product, CH4) were nearly absent in samples collected from groundwater samples with > 0.2 mM sulfate. In the suspended fraction of wells where the concentration of sulfate was between 0.03 and 0.2 mM, the archaeal community was dominated by sequences most closely related to the ANME-2D, a group of archaea known for anaerobically oxidizing methane. Based on available energy (Delta G(A)) estimations, results varied little for both sulfate reduction and methanogenesis throughout all wells studied, but could favor anaerobic oxidation of methane (AOM) in wells containing minimal sulfate and dihydrogen, suggesting AOM coupled with H-2-oxidizing organisms such as sulfate or iron reducers could be an important pathway occurring in the Mahomet aquifer. Conclusions: Overall, the results show several distinct factors control the composition of microbial communities in the Mahomet aquifer. Bacteria that respire insoluble substrates such as iron oxides, i.e. Geobacter, comprise a greater abundance of the attached community than the suspended regardless of groundwater chemistry. Differences in community structure driven by the concentration of sulfate point to a clear link between the availability of substrate and the abundance of certain functional groups, particularly iron reducers, sulfate reducers, methanogens, and methanotrophs. Integrating both geochemical and microbiological observations suggest that the relationships between these functional groups could be driven in part by mutualism, especially between ferric-iron and sulfate reducers. C1 [Flynn, Theodore M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Flynn, Theodore M.; Sanford, Robert A.; Bethke, Craig M.] Univ Illinois, Dept Geol, Urbana, IL 60616 USA. [Ryu, Hodon; Levine, Audrey D.; Ashbolt, Nicholas J.; Domingo, Jorge W. Santo] US EPA, Off Res & Dev, Cincinnati, OH 45248 USA. [Levine, Audrey D.] Battelle Mem Inst, Washington, DC 20024 USA. RP Domingo, JWS (reprint author), US EPA, Off Res & Dev, Cincinnati, OH 45248 USA. EM santodomingo.jorge@epa.gov RI Flynn, Theodore/C-1221-2008; Ryu, Hodon/E-4610-2011 OI Flynn, Theodore/0000-0002-1838-8942; Ryu, Hodon/0000-0002-6992-2519 FU U.S. Environmental Protection Agency, through its Office of Research and Development; RARE program; National Research Council; Department of Energy [DE-FG02-02ER15317]; Argonne National Laboratory; SBR SFA at Argonne National Laboratory by the Subsurface Biogeochemical Research Program, Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE) [DE-AC02-06CH11357] FX The U.S. Environmental Protection Agency, through its Office of Research and Development and the RARE program, funded, managed, and collaborated in the research described herein. This work has been subjected to the agency's administrative review and has been approved for external publication. Any opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the agency; therefore, no official endorsement should be inferred. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use. The authors thank B. Iker, M. Kyrias, D. Strattan, B. Farrell, E. Luber, M. Nolan, C. Salvatori, J. Shelton, and P. Bermudez for their assistance in the laboratory and the field. H. Ryu received funding through a fellowship from the National Research Council. This work was also supported in part through funding from the Department of Energy grant DE-FG02-02ER15317, a Director's Postdoctoral Fellowship from Argonne National Laboratory to T. Flynn, and the SBR SFA at Argonne National Laboratory which is supported by the Subsurface Biogeochemical Research Program, Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), under contract DE-AC02-06CH11357. NR 61 TC 30 Z9 30 U1 5 U2 91 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2180 J9 BMC MICROBIOL JI BMC Microbiol. PD JUN 24 PY 2013 VL 13 AR 146 DI 10.1186/1471-2180-13-146 PG 15 WC Microbiology SC Microbiology GA 176AI UT WOS:000321274700001 PM 23800252 ER PT J AU Somma, RD Hughes, RJ AF Somma, Rolando D. Hughes, Richard J. TI Security of decoy-state protocols for general photon-number-splitting attacks SO PHYSICAL REVIEW A LA English DT Article ID QUANTUM KEY DISTRIBUTION AB Decoy-state protocols provide a way to defeat photon-number-splitting attacks in quantum cryptography implemented with weak coherent pulses. We point out that previous security analyses of such protocols relied on assumptions about eavesdropping attacks that considered treating each pulse equally and independently. We give an example to demonstrate that, without such assumptions, the security parameters of previous decoy-state implementations could be worse than the ones claimed. Next we consider more general photon-number-splitting attacks, which correlate different pulses, and give an estimation procedure for the number of single-photon signals with rigorous security statements. The impact of our result is that previous analyses of the number of times a decoy-state quantum cryptographic system can be reused before it makes a weak key must be revised. C1 [Somma, Rolando D.; Hughes, Richard J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Somma, RD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM somma@lanl.gov; rxh@lanl.gov FU Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory FX We thank Jane Nordholt, KevinMcCabe, Raymond Newell, Charles Peterson, and Stephanie Wehner for discussions. We thank the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory for support. NR 18 TC 5 Z9 6 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN 24 PY 2013 VL 87 IS 6 AR 062330 DI 10.1103/PhysRevA.87.062330 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 171RM UT WOS:000320946800007 ER PT J AU Black-Schaffer, AM Balatsky, AV AF Black-Schaffer, Annica M. Balatsky, Alexander V. TI Proximity-induced unconventional superconductivity in topological insulators SO PHYSICAL REVIEW B LA English DT Article ID SURFACE; TRANSPORT; BI2SE3; BI2TE3 AB We study and classify the proximity-induced superconducting pairing in a topological insulator (TI)-superconductor (SC) hybrid structure for SCs with different symmetries. The Dirac surface state gives a coupling between spin-singlet and spin-triplet pairing amplitudes as well as pairing that is odd in frequency for p-wave SCs. We also find that all SCs induce pairing that is odd in both frequency and orbital (band) index, with oddness in frequency and orbital index being completely interchangeable. The different induced pairing amplitudes significantly modify the density of states in the TI surface layer. C1 [Black-Schaffer, Annica M.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Balatsky, Alexander V.] Nord Inst Theoret Phys NORDITA, S-10691 Stockholm, Sweden. [Balatsky, Alexander V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, Alexander V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Black-Schaffer, AM (reprint author), Uppsala Univ, Dept Phys & Astron, POB 516, S-75120 Uppsala, Sweden. FU Swedish and European research councils (VR, ERC); US DoE Basic Energy Sciences; Center for Integrated Nanotechnologies; US Department of Energy [DE-AC52-06NA25396] FX We are grateful to E. Abrahams for discussions and the Swedish and European research councils (VR, ERC) for funding. Work at Los Alamos was supported by US DoE Basic Energy Sciences and in part by the Center for Integrated Nanotechnologies, operated by LANS, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 35 TC 36 Z9 36 U1 2 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 24 PY 2013 VL 87 IS 22 AR 220506 DI 10.1103/PhysRevB.87.220506 PG 5 WC Physics, Condensed Matter SC Physics GA 171SF UT WOS:000320948700002 ER PT J AU Erwin, SC Snijders, PC AF Erwin, Steven C. Snijders, Paul C. TI Silicon spin chains at finite temperature: Dynamics of Si(553)-Au SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; AB-INITIO; ONE-DIMENSION; WIRES; RECONSTRUCTION; MODELS AB When gold is deposited on Si(553), the surface self-assembles to form a periodic array of steps with nearly perfect structural order. In scanning tunneling microscopy these steps resemble quasi-one-dimensional atomic chains. At temperatures below similar to 50 K the chains develop a tripled periodicity. We recently predicted, on the basis of density-functional theory calculations at T = 0, that this tripled periodicity arises from the complete polarization of the electron spin on every third silicon atom along the step; in the ground state these linear chains of silicon spins are antiferromagnetically ordered. Here we explore, using ab initio molecular dynamics and kinetic Monte Carlo simulations, the behavior of silicon spin chains on Si(553)-Au at finite temperature. Thermodynamic phase transitions at T > 0 in one-dimensional systems are prohibited by the Mermin-Wagner theorem. Nevertheless we find that a surprisingly sharp onset occurs upon cooling-at about 30 K for perfect surfaces and at higher temperature for surfaces with defects-to a well-ordered phase with tripled periodicity, in good agreement with experiment. C1 [Erwin, Steven C.] Naval Res Lab, Ctr Computat Mat Sci, Washington, DC 20375 USA. [Snijders, Paul C.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Erwin, SC (reprint author), Naval Res Lab, Ctr Computat Mat Sci, Washington, DC 20375 USA. EM steve.erwin@nrl.navy.mil FU Office of Naval Research through the Naval Research Laboratory's Basic Research Program; Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX Many discussions with F. J. Himpsel are gratefully acknowledged. This work was supported by the Office of Naval Research through the Naval Research Laboratory's Basic Research Program (SCE) and by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (PCS). Computations were performed at the DoD Major Shared Resource Centers at AFRL and ERDC. NR 35 TC 6 Z9 6 U1 0 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 24 PY 2013 VL 87 IS 23 AR UNSP 235316 DI 10.1103/PhysRevB.87.235316 PG 8 WC Physics, Condensed Matter SC Physics GA 171SO UT WOS:000320949600009 ER PT J AU Huang, C Voter, AF Perez, D AF Huang, Chen Voter, Arthur F. Perez, Danny TI Scalable kernel polynomial method for calculating transition rates SO PHYSICAL REVIEW B LA English DT Article ID CHEMICAL-REACTIONS; DENSITIES; MOMENTS; STATES AB We present an efficient method for calculating the prefactors of harmonic transition state theory rates. We reformulate the prefactors in terms of the density of states (DOS) of the Hessian matrices at the basin minimum and the saddle point. The DOS is then approximated using the kernel polynomial method as an expansion in terms of Chebyshev polynomials. The cost of the calculation scales linearly with the number of atoms, in contrast with the cubic scaling of the direct method. This approach hence greatly facilitates the investigations of kinetic processes in very large systems. We demonstrate the method by calculating the prefactors of the transition rates for two processes in bulk silver: vacancy hopping and Frenkel pair formation. C1 [Huang, Chen; Voter, Arthur F.; Perez, Danny] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Huang, C (reprint author), Los Alamos Natl Lab, Div Theoret, T-1, Los Alamos, NM 87545 USA. EM afv@lanl.gov; danny_perez@lanl.gov RI Huang, Chen/C-4598-2013; OI Voter, Arthur/0000-0001-9788-7194 FU United States Department of Energy (US DOE) Office of Science; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Office of Advanced Scientific Computing Research; US DOE [DE-AC52-06NA25396] FX This work was supported by the United States Department of Energy (US DOE) Office of Science. Initial development of this method and final stages of the work were supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The middle stage was supported by the Office of Advanced Scientific Computing Research. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security administration of the US DOE under Contract No. DE-AC52-06NA25396. NR 37 TC 0 Z9 0 U1 0 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 24 PY 2013 VL 87 IS 21 AR 214106 DI 10.1103/PhysRevB.87.214106 PG 8 WC Physics, Condensed Matter SC Physics GA 171RW UT WOS:000320947800001 ER PT J AU Julien, MH Simonet, V Canals, B Ballou, R Hassan, AK Affronte, M Garlea, VO Darie, C Bordet, P AF Julien, M. -H. Simonet, V. Canals, B. Ballou, R. Hassan, A. K. Affronte, M. Garlea, V. O. Darie, C. Bordet, P. TI Inhomogeneous magnetism in the doped kagome lattice of LaCuO2.66 SO PHYSICAL REVIEW B LA English DT Article ID FRUSTRATED MAGNETS; POWDER DIFFRACTION; CU2+ CATIONS; DELAFOSSITES; DILUTION; ANTIFERROMAGNET; OXIDES; PLANES; ORDER; NMR AB The hole-doped kagome lattice of Cu2+ ions in LaCuO2.66 was investigated by nuclear quadrupole resonance, electron spin resonance, electrical resistivity, bulk magnetization, and specific-heat measurements. For temperatures above similar to 180 K, the spin and charge properties show an activated behavior suggestive of a narrow-gap semiconductor. At lower temperatures, the results indicate an insulating ground state which may or may not be charge ordered. While the frustrated spins in remaining patches of the original kagome lattice might not be directly detected here, the observation of coexisting nonmagnetic sites, free spins, and frozen moments reveals an intrinsically inhomogeneous magnetism. Numerical simulations of a 1/3-diluted kagome lattice rationalize this magnetic state in terms of a heterogeneous distribution of cluster sizes and morphologies near the site-percolation threshold. C1 [Julien, M. -H.; Hassan, A. K.] CNRS UJF UPS INSA, Lab Natl Champs Magnet Intenses, F-38042 Grenoble 9, France. [Simonet, V.; Canals, B.; Ballou, R.; Garlea, V. O.; Darie, C.; Bordet, P.] CNRS, Inst Neel, F-38042 Grenoble 9, France. [Simonet, V.; Canals, B.; Ballou, R.; Garlea, V. O.; Darie, C.; Bordet, P.] Univ Grenoble 1, F-38042 Grenoble 9, France. [Affronte, M.] Univ Modena & Reggio Emilia, CNR, NANO S3, I-41125 Modena, Italy. [Affronte, M.] Univ Modena & Reggio Emilia, Dipartimento Fis, I-41125 Modena, Italy. [Garlea, V. O.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Julien, MH (reprint author), CNRS UJF UPS INSA, Lab Natl Champs Magnet Intenses, F-38042 Grenoble 9, France. EM marc-henri.julien@lncmi.cnrs.fr; virginie.simonet@grenoble.cnrs.fr RI Garlea, Vasile/A-4994-2016; Julien, Marc-Henri/A-2352-2010; Affronte, Marco/P-2504-2016 OI Garlea, Vasile/0000-0002-5322-7271; Affronte, Marco/0000-0001-5711-7822 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX We are grateful to F. Bert, C. Berthier, C. Lacroix, H. Mayaffre, P. Mendels, and D. Nunez-Regueiro for enlightening discussions and to Y. Berthier for assistance in the NQR experiments. We also thank T. Grenet, J. Delahaye, and F. Gay for help and advice concerning the resistivity measurements. V.O.G. acknowledges the support by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 61 TC 2 Z9 2 U1 5 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 24 PY 2013 VL 87 IS 21 AR 214423 DI 10.1103/PhysRevB.87.214423 PG 9 WC Physics, Condensed Matter SC Physics GA 171RW UT WOS:000320947800004 ER PT J AU Holt, JD Engel, J AF Holt, Jason D. Engel, Jonathan TI Effective double-beta-decay operator for Ge-76 and Se-82 SO PHYSICAL REVIEW C LA English DT Article ID MATRIX-ELEMENTS; NUCLEI; FORCES AB We use diagrammatic many-body perturbation theory in combination with low-momentum interactions derived from chiral effective field theory to construct effective shell-model transition operators for the neutrinoless double-beta decay of Ge-76 and Se-82. We include all unfolded diagrams that are first and second order in the interaction and all singly folded diagrams that can be constructed from them. The resulting effective operator, which accounts for physics outside the shell-model space, increases the nuclear matrix element by about 20% in Ge-76 and 30% in Se-82. C1 [Holt, Jason D.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Holt, Jason D.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Holt, Jason D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Holt, Jason D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Engel, Jonathan] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27516 USA. RP Holt, JD (reprint author), Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. EM jason.holt@physik.tu-darmstadt.de; engelj@physics.unc.edu OI Holt, Jason/0000-0003-4833-7959 FU BMBF [06DA70471]; Helmholtz Association through the Helmholtz Alliance Program [HA216/EMMI]; U.S. DOE [DE-FC02-07ER41457, DE-FG02-96ER40963]; U.S. Department of Energy [DE-FG02-97ER41019] FX We thank M. Hjorth-Jensen, M. Horoi, J. Menendez, and A. Poves for helpful discussions, and Drs. Horoi and Poves for providing us with their shell-model densities. This work was supported by the BMBF under Contract No. 06DA70471, the Helmholtz Association through the Helmholtz Alliance Program, Contract No. HA216/EMMI "Extremes of Density and Temperature: Cosmic Matter in the Laboratory," and the U.S. DOE Grants No. DE-FC02-07ER41457 (UNEDF SciDAC Collaboration) and No. DE-FG02-96ER40963. J.E. gratefully acknowledges in addition the support of the U.S. Department of Energy through Contract No. DE-FG02-97ER41019. NR 36 TC 21 Z9 21 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUN 24 PY 2013 VL 87 IS 6 AR 064315 DI 10.1103/PhysRevC.87.064315 PG 7 WC Physics, Nuclear SC Physics GA 171TE UT WOS:000320951200001 ER PT J AU Detmold, W Orginos, K AF Detmold, William Orginos, Kostas TI Nuclear correlation functions in lattice QCD SO PHYSICAL REVIEW D LA English DT Article AB We consider the problem of calculating the large number of Wick contractions necessary to compute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive approach and a determinant-based approach and show that these methods allow the required contractions to be performed in a computationally manageable amount of time for certain choices of interpolating operators. Examples of correlation functions computed using these techniques are shown for the quantum numbers of the light nuclei, He-4, Be-8, C-12, O-16, and Si-28. C1 [Detmold, William] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Orginos, Kostas] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Orginos, Kostas] Jefferson Lab, Newport News, VA 23606 USA. RP Detmold, W (reprint author), MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. OI Detmold, William/0000-0002-0400-8363 FU National Energy Research Scientific Computing Center (NERSC, Office of Science of the US DOE) [DE-AC02-05CH11231]; DOE [DE-AC05-06OR23177, DE-FG02-04ER41302]; DOE OJI [DE-SC0001784]; Jeffress Memorial Trust [J-968] FX We thank M. G. Endres, D. B. Kaplan, M. J. Savage, and the members of the NPLQCD Collaboration for insightful discussions on the topic of this work. We also thank R. Edwards and B. Joo for help with QDP ++ and Chroma software suites [24], which are the software bases of all computations presented here. We acknowledge computational support from the National Energy Research Scientific Computing Center (NERSC, Office of Science of the US DOE, Grant No. DE-AC02-05CH11231), and the NSF through XSEDE resources provided by NICS. This work was supported in part by DOE Grants No. DE-AC05-06OR23177 (J. S. A.) and No. DE-FG02-04ER41302. W. D. was also supported by DOE OJI Grant No. DE-SC0001784 and Jeffress Memorial Trust, Grant No. J-968. NR 28 TC 17 Z9 17 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 24 PY 2013 VL 87 IS 11 AR 114512 DI 10.1103/PhysRevD.87.114512 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 171TH UT WOS:000320951500003 ER PT J AU Akdogan, EK Savkliyildiz, I Bicer, H Paxton, W Toksoy, F Zhong, Z Tsakalakos, T AF Akdogan, E. K. Savkliyildiz, I. Bicer, H. Paxton, W. Toksoy, F. Zhong, Z. Tsakalakos, T. TI Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: A time-resolved in situ energy dispersive x-ray diffractometry study with an ultrahigh energy synchrotron probe SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SINTERING CRYSTALLINE SOLIDS; GRAIN-GROWTH; NANOGRAIN ZIRCONIA; DIFFUSION; FERROELECTRICS; CONDUCTIVITY; DIMENSIONS; SIMULATION; KINETICS; STRESSES AB Nonisothermal densification in 8% yttria doped zirconia (8YSZ) particulate matter of 250 nm median particle size was studied under 215 V/cm dc electric field and 9 degrees C/min heating rate, using time-resolved in-situ high temperature energy dispersive x-ray diffractometry with a polychromatic 200 keV synchrotron probe. Densification occurred in the 876-905 degrees C range, which resulted in 97% of the theoretical density. No local melting at particle-particle contacts was observed in scanning electron micrographs, implying densification was due to solid state mass transport processes. The maximum current draw at 905 degrees C was 3 A, corresponding to instantaneous absorbed power density of 570 W/cm(3). Densification of 8YSZ was accompanied by anomalous elastic volume expansions of the unit cell by 0.45% and 2.80% at 847 degrees C and 905 degrees C, respectively. The anomalous expansion at 905 degrees C at which maximum densification was observed is characterized by three stages: (I) linear stage, (II) anomalous stage, and (III) anelastic recovery stage. The densification in stage I (184 s) and II (15 s) was completed in 199 s, while anelastic relaxation in stage III lasted 130 s. The residual strains (epsilon) at room temperature, as computed from tetragonal (112) and (211) reflections, are epsilon((112)) = 0.05% and epsilon((211)) = 0.13%, respectively. Time dependence of (211) and (112) peak widths (beta) show a decrease with both exhibiting a singularity at 905 degrees C. An anisotropy in (112) and (211) peak widths of {beta((112))/beta((211))} = (3:1) magnitude was observed. No phase transformation occurred at 905 degrees C as verified from diffraction spectra on both sides of the singularity, i.e., the unit cell symmetry remains tetragonal. We attribute the reduction in densification temperature and time to ultrafast ambipolar diffusion of species arising from the superposition of mass fluxes due to Fickian diffusion, thermodiffusion (Soret effect), and electromigration, which in turn are a consequence of a superposition of chemical, temperature, and electrical potential gradients. On the other hand, we propose defect pile-up at particle-particle contacts and subsequent tunneling as a mechanism creating the "burst-mode" discontinuous densification at the singularities observed at 847 and 905 degrees C. (C) 2013 AIP Publishing LLC. C1 [Akdogan, E. K.; Savkliyildiz, I.; Bicer, H.; Paxton, W.; Toksoy, F.; Tsakalakos, T.] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA. [Zhong, Z.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Akdogan, EK (reprint author), Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA. EM eka@rci.rutgers.edu OI Paxton, William/0000-0001-5899-9038 FU Office of Naval Research (ONR) [N00014-10-1-042]; U.S. Department of Energy, Division of Material Sciences and Division of Chemical Sciences [DE-AC02-76CH00016] FX The authors wish to express their gratitude for the financial support provided by the Office of Naval Research (ONR) under Contract No. N00014-10-1-042. The authors wish to thank Dr. L. Kabacoff of the ONR for his valuable technical feedback and support of this project. This research was carried out in part at the NSLS, which is supported by the U.S. Department of Energy, Division of Material Sciences and Division of Chemical Sciences, under Contract No. DE-AC02-76CH00016. NR 61 TC 5 Z9 5 U1 2 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 21 PY 2013 VL 113 IS 23 AR 233503 DI 10.1063/1.4811362 PG 9 WC Physics, Applied SC Physics GA 172NT UT WOS:000321011700013 ER PT J AU Guo, HW Sun, DL Wang, WB Gai, Z Kravchenko, I Shao, J Jiang, L Ward, TZ Snijders, PC Yin, LF Shen, J Xu, XS AF Guo, Hangwen Sun, Dali Wang, Wenbin Gai, Zheng Kravchenko, Ivan Shao, Jian Jiang, Lu Ward, Thomas Z. Snijders, Paul C. Yin, Lifeng Shen, Jian Xu, Xiaoshan TI Growth diagram of La0.7Sr0.3MnO3 thin films using pulsed laser deposition SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LOW-FIELD MAGNETORESISTANCE; ABLATION; TEMPERATURE; MORPHOLOGY AB An experimental study was conducted on controlling the growth mode of La0.7Sr0.3MnO3 thin films on SrTiO3 substrates using pulsed laser deposition (PLD) by tuning growth temperature, pressure, and laser fluence. Different thin film morphology, crystallinity, and stoichiometry have been observed depending on growth parameters. To understand the microscopic origin, the adatom nucleation, step advance processes, and their relationship to film growth were theoretically analyzed and a growth diagram was constructed. Three boundaries between highly and poorly crystallized growth, 2D and 3D growth, stoichiometric and non-stoichiometric growth were identified in the growth diagram. A good fit of our experimental observation with the growth diagram was found. This case study demonstrates that a more comprehensive understanding of the growth mode in PLD is possible. (C) 2013 AIP Publishing LLC. C1 [Guo, Hangwen; Wang, Wenbin; Jiang, Lu; Shen, Jian] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Guo, Hangwen; Sun, Dali; Wang, Wenbin; Gai, Zheng; Jiang, Lu; Ward, Thomas Z.; Snijders, Paul C.; Xu, Xiaoshan] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Sun, Dali] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Gai, Zheng; Kravchenko, Ivan] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Shao, Jian; Yin, Lifeng; Shen, Jian] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Shao, Jian; Yin, Lifeng; Shen, Jian] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. RP Shen, J (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM shenj5494@fudan.edu.cn; xiaoshan.xu@gatech.edu RI Gai, Zheng/B-5327-2012; Xu, Xiaoshan/B-1255-2009; Kravchenko, Ivan/K-3022-2015; Ward, Thomas/I-6636-2016 OI Gai, Zheng/0000-0002-6099-4559; Xu, Xiaoshan/0000-0002-4363-392X; Kravchenko, Ivan/0000-0003-4999-5822; Ward, Thomas/0000-0002-1027-9186 FU US Department of Energy, Basic Energy Sciences, Materials Sciences, and Engineering Division; Office of Basic Energy Sciences, US Department of Energy; National Basic Research Program of China (973 Program) [2011CB921801]; US DOE Office of Basic Energy Sciences, the US DOE [DE-SC0002136] FX Research supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences, and Engineering Division (P. C. S., T.Z.W., X. S. X.) and performed in part at the Center for Nanophase Materials Sciences (CNMS) (Z.G., I. K.) User Facility, which are sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, US Department of Energy. We also acknowledge partial funding supports from the National Basic Research Program of China (973 Program) under Grant No. 2011CB921801 (J.S.), and the US DOE Office of Basic Energy Sciences, the US DOE Grant No. DE-SC0002136 (H.W.G., W.B.W.). NR 36 TC 3 Z9 3 U1 3 U2 45 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 21 PY 2013 VL 113 IS 23 AR 234301 DI 10.1063/1.4811187 PG 8 WC Physics, Applied SC Physics GA 172NT UT WOS:000321011700049 ER PT J AU Levesque, G Vitello, P Howard, WM AF Levesque, G. Vitello, P. Howard, W. M. TI Hot-spot contributions in shocked high explosives from mesoscale ignition models SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID INITIATION; COLLAPSE AB High explosive performance and sensitivity is strongly related to the mesoscale defect densities. Bracketing the population of mesoscale hot spots that are active in the shocked ignition of explosives is important for the development of predictive reactive flow models. By coupling a multiphysics-capable hydrodynamics code (ALE3D) with a chemical kinetics solver (CHEETAH), we can parametrically analyze different pore sizes undergoing collapse in high pressure shock conditions with evolving physical parameter fields. Implementing first-principles based decomposition kinetics, burning hot spots are monitored, and the regimes of pore sizes that contribute significantly to burnt mass faction and those that survive thermal conduction on the time scales of ignition are elucidated. Comparisons are drawn between the thermal explosion theory and the multiphysics models for the determination of nominal pore sizes that burn significantly during ignition for the explosive 1,3,5-triamino-2,4,6-trinitrobenzene. (C) 2013 AIP Publishing LLC. C1 [Levesque, G.; Vitello, P.; Howard, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Levesque, G (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM Levesque6@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Larry E. Fried, Riad Manaa, Fady Najjar, Jack Reaugh, Craig M. Tarver, and Albert L. Nichols III of Lawrence Livermore National Laboratory are all thanked for their thoughtful contributions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 41 TC 8 Z9 8 U1 4 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 21 PY 2013 VL 113 IS 23 AR 233513 DI 10.1063/1.4811233 PG 9 WC Physics, Applied SC Physics GA 172NT UT WOS:000321011700023 ER PT J AU Teixeira, FS Salvadori, MC Araujo, WWR Amorim, HJM Cattani, M Brown, IG AF Teixeira, F. S. Salvadori, M. C. Araujo, W. W. R. Amorim, H. J. M. Cattani, M. Brown, I. G. TI Isotropic and anisotropic wrinkling of diamond-like carbon films on polydimethylsiloxane substrates SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THIN-FILMS; POLYMER AB We describe experimental results about the spontaneous wrinkling of diamond-like carbon films over the thickness range 2 nm-58 nm, grown on polydimethylsiloxane (PDMS) substrates with a 5 nm gold film deposited as adhesion layer. Using Atomic Force Microscopy data with suitable processing, we explore both isotropic and anisotropic wrinkling, the latter done by creating trench structures on PDMS substrates. We show new non-predictable results based on the known literature. (C) 2013 AIP Publishing LLC. C1 [Teixeira, F. S.; Salvadori, M. C.; Araujo, W. W. R.; Amorim, H. J. M.; Cattani, M.] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil. [Brown, I. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Teixeira, FS (reprint author), Univ Sao Paulo, Inst Phys, CP 66318, BR-05315970 Sao Paulo, Brazil. EM nandast@if.usp.br RI Cattani, Mauro/N-9749-2013; Teixeira, Fernanda/A-9395-2013; Salvadori, Maria Cecilia/A-9379-2013 FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Brazil FX This work was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Brazil. NR 10 TC 1 Z9 1 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 21 PY 2013 VL 113 IS 23 AR 234904 DI 10.1063/1.4811456 PG 4 WC Physics, Applied SC Physics GA 172NT UT WOS:000321011700079 ER PT J AU Bianchetti, CM Harmann, CH Takasuka, TE Hura, GL Dyer, K Fox, BG AF Bianchetti, Christopher M. Harmann, Connor H. Takasuka, Taichi E. Hura, Gregory L. Dyer, Kevin Fox, Brian G. TI Fusion of Dioxygenase and Lignin-binding Domains in a Novel Secreted Enzyme from Cellulolytic Streptomyces sp SirexAA-E SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID RHODOCOCCUS-OPACUS 1CP; X-RAY-SCATTERING; PROTOCATECHUATE 3,4-DIOXYGENASE; CRYSTAL-STRUCTURE; BREVIBACTERIUM-FUSCUM; KEY ENZYME; CELL-WALL; 1,2-DIOXYGENASE; CRYSTALLOGRAPHY; BIOSYNTHESIS AB Streptomyces sp. SirexAA-E is a highly cellulolytic bacterium isolated from an insect/microbe symbiotic community. When grown on lignin-containing biomass, it secretes SACTE_2871, an aromatic ring dioxygenase domain fused to a family 5/12 carbohydrate-binding module (CBM 5/12). Here we present structural and catalytic studies of this novel fusion enzyme, thus providing insight into its function. The dioxygenase domain has the core beta-sandwich fold typical of this enzyme family but lacks a dimerization domain observed in other intradiol dioxygenases. Consequently, the x-ray structure shows that the enzyme is monomeric and the Fe(III)-containing active site is exposed to solvent in a shallow depression on a planar surface. Purified SACTE_2871 catalyzes the O-2-dependent intradiol cleavage of catechyl compounds from lignin biosynthetic pathways, but not their methylated derivatives. Binding studies show that SACTE_2871 binds synthetic lignin polymers and chitin through the interactions of the CBM 5/12 domain, representing a new binding specificity for this fold-family. Based on its unique structural features and functional properties, we propose that SACTE_2871 contributes to the invasive nature of the insect/microbial community by destroying precursors needed by the plant for de novo lignin biosynthesis as part of its natural wounding response. C1 [Bianchetti, Christopher M.; Harmann, Connor H.; Takasuka, Taichi E.; Fox, Brian G.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Hura, Gregory L.; Dyer, Kevin] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fox, BG (reprint author), Univ Wisconsin, 433 Babcock Dr, Madison, WI 53706 USA. EM bgfox@biochem.wisc.edu FU United States Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-ENG-38]; College of Agricultural and Life Sciences, Department of Biochemistry; Graduate School of the University of Wisconsin; Michigan Economic Development Corporation; Michigan Technology Tri-Corridor Grant [085P1000817]; DOE program Integrated Diffraction Analysis Technologies [IDAT-DE-AC02-05CH11231] FX We thank the Dr. Craig A. Bingman (University of Wisconsin Center for Eukaryotic Structural Genomics) for access to crystallization robotics, Grzegory Sabat (Biotechnology Center, University of Wisconsin-Madison) for assistance with mass spectrometry, Dr. John Ralph and Dr. Yuki Tobimatsu (Great Lakes Bioenergy Research Center, University of Wisconsin) for gifts of synthetic lignins and 5-OH-ferulate, and Dr. Curtis Wilkerson and Saunia Withers (Great Lakes Bioenergy Research Center, Michigan State University) for the gift of the caffeoyl-CoA synthesis enzyme Nt4CL1. We also thank Dr. Ralph for many stimulating discussions on the complexities of lignin. Use of the Advanced Photon Source was supported by the United States Department of Energy, Basic Energy Sciences, Office of Science, under contract number W-31-109-ENG-38. Use of the Life Science Collaborative Access Team at the Advanced Photon Source was supported by the College of Agricultural and Life Sciences, Department of Biochemistry, the Graduate School of the University of Wisconsin, the Michigan Economic Development Corporation, and Michigan Technology Tri-Corridor Grant 085P1000817). X-ray scattering studies at the SIBYLS was supported by DOE program Integrated Diffraction Analysis Technologies (IDAT-DE-AC02-05CH11231). NR 60 TC 9 Z9 9 U1 5 U2 27 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD JUN 21 PY 2013 VL 288 IS 25 BP 18574 EP 18587 DI 10.1074/jbc.M113.475848 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 168QZ UT WOS:000320721900057 PM 23653358 ER PT J AU Butler, MC Kervern, G Theis, T Ledbetter, MP Ganssle, PJ Blanchard, JW Budker, D Pines, A AF Butler, Mark C. Kervern, Gwendal Theis, Thomas Ledbetter, Micah P. Ganssle, Paul J. Blanchard, John W. Budker, Dmitry Pines, Alexander TI Parahydrogen-induced polarization at zero magnetic field SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PARA-HYDROGEN; SPIN SYSTEMS; NMR; RESONANCE; MAGNETOMETRY; STATES; ORDER AB We use symmetry arguments and simple model systems to describe the conversion of the singlet state of parahydrogen into an oscillating sample magnetization at zero magnetic field. During an initial period of free evolution governed by the scalar-coupling Hamiltonian H-J, the singlet state is converted into scalar spin order involving spins throughout the molecule. A short dc pulse along the z axis rotates the transverse spin components of nuclear species I and S through different angles, converting a portion of the scalar order into vector order. The development of vector order can be described analytically by means of single-transition operators, and it is found to be maximal when the transverse components of I are rotated by an angle of +/-pi/2 relative to those of S. A period of free evolution follows the pulse, during which the vector order evolves as a set of oscillating coherences. The imaginary parts of the coherences represent spin order that is not directly detectable, while the real parts can be identified with oscillations in the z component of the molecular spin dipole. The dipole oscillations are due to a periodic exchange between I-z and S-z, which have different gyromagnetic ratios. The frequency components of the resulting spectrum are imaginary, since the pulse cannot directly induce magnetization in the sample; it is only during the evolution under H-J that the vector order present at the end of the pulse evolves into detectable magnetization. (C) 2013 AIP Publishing LLC. C1 [Butler, Mark C.; Kervern, Gwendal; Theis, Thomas; Ganssle, Paul J.; Blanchard, John W.; Pines, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Butler, Mark C.; Kervern, Gwendal; Theis, Thomas; Ganssle, Paul J.; Blanchard, John W.; Pines, Alexander] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ledbetter, Micah P.; Budker, Dmitry] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, Dmitry] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Butler, MC (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. EM mrkcbutler@gmail.com RI Butler, Mark/L-6906-2013; Theis, Thomas/J-2304-2014; Budker, Dmitry/F-7580-2016 OI Blanchard, John/0000-0002-1621-6637; Butler, Mark/0000-0002-1273-5771; Theis, Thomas/0000-0001-6779-9978; Budker, Dmitry/0000-0002-7356-4814 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231]; National Science Foundation (NSF) [CHE-095765] FX Research was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-05CH11231 [theoretical work, PHIP experiments, salaries for G. Kervern, T. Theis, P. Ganssle, J. Blanchard, A. Pines], and by the National Science Foundation (NSF) under Award No. CHE-095765 [zero-field instrumentation, salaries for M. Butler, M. Ledbetter, D. Budker, A. Pines]. NR 32 TC 5 Z9 5 U1 0 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2013 VL 138 IS 23 AR 234201 DI 10.1063/1.4805062 PG 21 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 172NZ UT WOS:000321012400009 PM 23802953 ER PT J AU Pronskikh, VS AF Pronskikh, V. S. TI RADIATION STUDIES FOR THE Mu2e EXPERIMENT: A REVIEW SO MODERN PHYSICS LETTERS A LA English DT Review DE Muon to electron conversion; apparatus design; energy deposition; radiation damage; neutron background; Monte Carlo simulations ID DEFECT PRODUCTION; METALS; RECOVERY AB The Mu2e experiment being designed at Fermilab will be searching for a rare event - conversion of muon into electron in the field of a nucleus without emission of neutrinos - observation of which would provide unambiguous evidence for physics beyond the Standard Model, making use of an 8 GeV 8 kW proton beam. As an experiment to be performed at the Intensity Frontier, taking advantage of high-intensity proton beams, the Mu2e experimental setup will be residing in a harsh radiation environment created by secondary particle fluxes. Radiation quantities in different parts of the Mu2e apparatus, such as neutron flux, peak power density, displacements per atom (DPA), absorbed dose, dynamic heat load simulated using the MARS15 code are reviewed in this work. Radiation levels and requirements for Heat and Radiation Shield (HRS), Transport Solenoid (TS), residual dose and decay heat from the Mu2e target, beam dump design, rates in Cosmic Ray Veto (CRV) counters as well as stopping target monitor (STM) are considered. Airflow, surface and ground water activation are estimated. Recent developments in the MARS15 DPA model applied in this work are described, their consequences are discussed. C1 Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. RP Pronskikh, VS (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, MS 220,Kirk Rd & Pine Str, Batavia, IL 60510 USA. EM vspron@fnal.gov NR 23 TC 1 Z9 1 U1 0 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD JUN 21 PY 2013 VL 28 IS 19 AR 1330014 DI 10.1142/S0217732313300140 PG 16 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 170UD UT WOS:000320878800001 ER PT J AU Fishman, RS AF Fishman, Randy S. TI Field dependence of the spin state and spectroscopic modes of multiferroic BiFeO3 SO PHYSICAL REVIEW B LA English DT Article AB The spectroscopic modes of multiferroic BiFeO3 provide detailed information about the very small anisotropy and Dzyaloshinskii-Moriya (DM) interactions responsible for the long-wavelength, distorted cycloid below T-N = 640 K. A microscopic model that includes two DM interactions and easy-axis anisotropy predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field applied along a cubic axis. While only six modes are optically active in zero field, all modes at the cycloidal wave vector are activated by a magnetic field. The three magnetic domains of the cycloid are degenerate in zero field but one domain has lower energy than the other two in nonzero field. Measurements imply that the higher-energy domains are depopulated above about 6 T and have a maximum critical field of 16 T, below the critical field of 19 T for the lowest-energy domain. Despite the excellent agreement with the measured spectroscopic frequencies, some discrepancies with the measured spectroscopic intensities suggest that other weak interactions may be missing from the model. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA. FU US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX I gratefully acknowledge conversations with Nobuo Furukawa, Masaaki Matsuda, Shin Miyahara, Jan Musfeldt, Urmas Nagel, Satoshi Okamoto, Toomas Room, Rogerio de Sousa, and Diyar Talbayev. Research was sponsored by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. NR 36 TC 13 Z9 13 U1 0 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 21 PY 2013 VL 87 IS 22 AR 224419 DI 10.1103/PhysRevB.87.224419 PG 8 WC Physics, Condensed Matter SC Physics GA 169FX UT WOS:000320766100004 ER PT J AU Dhaka, RS Lee, Y Anand, VK Johnston, DC Harmon, BN Kaminski, A AF Dhaka, R. S. Lee, Y. Anand, V. K. Johnston, D. C. Harmon, B. N. Kaminski, Adam TI Angle-resolved photoemission spectroscopy study of BaCo2As2 SO PHYSICAL REVIEW B LA English DT Article ID 43 K; SUPERCONDUCTIVITY; LAO1-XFXFEAS; TRANSITION AB We use angle-resolved photoemission spectroscopy and full-potential linearized augmented-plane-wave (FP-LAPW) calculations to study the electronic structure of BaCo2As2. The Fermi surface (FS) maps and the corresponding band dispersion data (at 90 and 200 K) reveal a small electron pocket at the center and a large electron pocket at the corner of the Brillouin zone. Therefore the nesting between electron and hole FS pockets is absent in this compound, in contrast to the parent compounds of FeAs-based high-T-c superconductors. The electron pockets at the center of the zone are surrounded by two sets of four smaller electron pockets. The electronic structure at about 500 meV binding energy is very similar to features at the chemical potential in BaFe2As2. This indicates that complete substitution of Co for Fe causes a nearly rigid shift in the chemical potential by adding two electrons per formula unit at higher binding energies. However at lower binding energies similar to 270 meV, the electron pocket at the center of the zone is absent, unlike in the Co-substituted Fe-based materials. This demonstrates that the rigid band picture is valid only at higher binding energies and breaks down closer to the chemical potential in BaCo2As2. We also observed the presence of a flat band near the Fermi energy that may have consequences for transport and thermodynamical properties. The experimental FS topology as well as band dispersion data are in reasonable agreement with the FP-LAPW calculations. C1 Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Dhaka, RS (reprint author), Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. EM kaminski@ameslab.gov RI Dhaka, Rajendra/C-2486-2013; Anand, Vivek Kumar/J-3381-2013 OI Anand, Vivek Kumar/0000-0003-2023-7040 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Aaron Bostwick and Eli Rotenberg for excellent support at the ALS and Abhishek Pandey for helpful discussions. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. The Advanced Light Source is supported by the Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 15 Z9 15 U1 3 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 21 PY 2013 VL 87 IS 21 AR 214516 DI 10.1103/PhysRevB.87.214516 PG 6 WC Physics, Condensed Matter SC Physics GA 169FR UT WOS:000320765200004 ER PT J AU Kim, H Kogan, VG Cho, K Tanatar, MA Prozorov, R AF Kim, H. Kogan, V. G. Cho, K. Tanatar, M. A. Prozorov, R. TI Rutgers relation for the analysis of superfluid density in superconductors SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC PENETRATION DEPTH; MUON SPIN ROTATION; UPPER CRITICAL-FIELD; T-C SUPERCONDUCTORS; VORTEX CORES; NIOBIUM; TEMPERATURE; EXCITATIONS; CRYSTALS; MGB2 AB It is shown that the thermodynamic Rutgers relation for the second-order phase transitions can be used for the analysis of the superfluid density data irrespective of complexities of the Fermi surface, structure of the superconducting gap, pairing strength, or scattering. The only limitation is that critical fluctuations should be weak so that the mean-field theory of the second-order phase transitions is applicable. By using the Rutgers relation, the zero-temperature value of the London penetration depth lambda(0) is related to the specific heat jump Delta C and the slope of upper critical field dH(c2)/dT at the transition temperature T-c, provided the data on Delta lambda = lambda(T) - lambda(0) are available in a broad temperature domain. We then provide a way to determine lambda(0), the quantity difficult to determine within many techniques. C1 [Kim, H.; Kogan, V. G.; Cho, K.; Tanatar, M. A.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Kim, H.; Tanatar, M. A.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358] FX We thank A. Chubukov for useful discussions. The work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. NR 45 TC 3 Z9 3 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 21 PY 2013 VL 87 IS 21 AR 214518 DI 10.1103/PhysRevB.87.214518 PG 6 WC Physics, Condensed Matter SC Physics GA 169FR UT WOS:000320765200006 ER PT J AU de Oteyza, DG Gorman, P Chen, YC Wickenburg, S Riss, A Mowbray, DJ Etkin, G Pedramrazi, Z Tsai, HZ Rubio, A Crommie, MF Fischer, FR AF de Oteyza, Dimas G. Gorman, Patrick Chen, Yen-Chia Wickenburg, Sebastian Riss, Alexander Mowbray, Duncan J. Etkin, Grisha Pedramrazi, Zahra Tsai, Hsin-Zon Rubio, Angel Crommie, Michael F. Fischer, Felix R. TI Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions SO SCIENCE LA English DT Article ID ATOMIC-FORCE MICROSCOPY; CYCLIZATION; ENEDIYNES; RESOLUTION; CATALYSIS; STEPS AB Observing the intricate chemical transformation of an individual molecule as it undergoes a complex reaction is a long-standing challenge in molecular imaging. Advances in scanning probe microscopy now provide the tools to visualize not only the frontier orbitals of chemical reaction partners and products, but their internal covalent bond configurations as well. We used noncontact atomic force microscopy to investigate reaction-induced changes in the detailed internal bond structure of individual oligo-(phenylene-1,2-ethynylenes) on a (100) oriented silver surface as they underwent a series of cyclization processes. Our images reveal the complex surface reaction mechanisms underlying thermally induced cyclization cascades of enediynes. Calculations using ab initio density functional theory provide additional support for the proposed reaction pathways. C1 [de Oteyza, Dimas G.; Chen, Yen-Chia; Wickenburg, Sebastian; Riss, Alexander; Pedramrazi, Zahra; Tsai, Hsin-Zon; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [de Oteyza, Dimas G.; Rubio, Angel] UPV EHU Mat Phys Ctr, Ctr Fis Mat CSIC, E-20018 San Sebastian, Spain. [Gorman, Patrick; Etkin, Grisha; Fischer, Felix R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chen, Yen-Chia; Wickenburg, Sebastian; Crommie, Michael F.; Fischer, Felix R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Mowbray, Duncan J.; Rubio, Angel] Donostia Int Phys Ctr, E-20018 San Sebastian, Spain. [Mowbray, Duncan J.; Rubio, Angel] Univ Pais Vasco UPV, EHU, Nanobio Spect Grp, E-20018 San Sebastian, Spain. [Mowbray, Duncan J.; Rubio, Angel] Univ Pais Vasco UPV, EHU, ETSF Sci Dev Ctr, Dpto Fis Mat, E-20018 San Sebastian, Spain. RP Crommie, MF (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM crommie@berkeley.edu; ffischer@berkeley.edu RI de Oteyza, Dimas/H-5955-2013; Riss, Alexander/C-1565-2014; Mowbray, Duncan/A-5531-2010; Rubio, Angel/A-5507-2008; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014; Tsai, Hsin-Zon/J-1682-2016; CSIC-UPV/EHU, CFM/F-4867-2012 OI de Oteyza, Dimas/0000-0001-8060-6819; Riss, Alexander/0000-0002-3212-7925; Mowbray, Duncan/0000-0002-8520-0364; Rubio, Angel/0000-0003-2060-3151; Tsai, Hsin-Zon/0000-0003-2097-0170; FU Office of Naval Research BRC Program; Helios Solar Energy Research Center; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; NSF [DMR-1206512]; European Research Council [DYNamo ERC-2010-AdG-267374]; European Union [FP7-PEOPLE-2010-IOF-271909]; Austrian Science Fund (FWF) [J3026-N16]; Spanish "Juan de la Cierva" program [JCI-2010-08156] FX Supported by the Office of Naval Research BRC Program (molecular synthesis, characterization, and STM imaging); the Helios Solar Energy Research Center supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC02-05CH11231 (STM and nc-AFM instrumentation development, AFM operation); NSF grant DMR-1206512 (image analysis); and European Research Council advanced grant DYNamo ERC-2010-AdG-267374 (ab initio calculations). Computing time was provided by the Barcelona Supercomputing Center "Red Espanola de Supercomputacion." D.G.d.O. acknowledges fellowship support by the European Union under FP7-PEOPLE-2010-IOF-271909, A.R. by Austrian Science Fund (FWF) grant J3026-N16, and D.J.M. by the Spanish "Juan de la Cierva" program (JCI-2010-08156). The data presented in the manuscript are tabulated in the main paper and in the supplementary materials. The authors declare no conflicts of interest. NR 26 TC 146 Z9 148 U1 13 U2 260 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 21 PY 2013 VL 340 IS 6139 BP 1434 EP 1437 DI 10.1126/science.1238187 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 167QL UT WOS:000320647000037 PM 23722428 ER PT J AU Croft, S Henzlova, D AF Croft, S. Henzlova, D. TI Determining Cf-252 source strength by absolute passive neutron correlation counting SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Source calibration; Multiplicity counting; Neutron correlation analysis; Californium neutrons; Absolute metrology AB Physically small, lightly encapsulated, radionuclide sources containing Cf-252 are widely used for a vast variety of industrial, medical, educational and research applications requiring a convenient source of neutrons. For many quantitative applications, such as detector efficiency calibrations, the absolute strength of the neutron emission is needed. In this work we show how, by using a neutron multiplicity counter the neutron emission rate can be obtained with high accuracy. This provides an independent and alternative way to create reference sources in-house for laboratories such as ours engaged in international safeguards metrology. The method makes use of the unique and well known properties of the Cf-252 spontaneous fission system and applies advanced neutron correlation counting methods. We lay out the foundation of the method and demonstrate it experimentally. We show that accuracy comparable to the best methods currently used by national bodies to certify neutron source strengths is possible. (c) 2013 Elsevier B.V. All rights reserved. C1 [Croft, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Henzlova, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Henzlova, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM henzlova@lanl.gov FU U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), Office of Nonproliferation Research and Development [NA-22] FX This work was funded in part by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), Office of Nonproliferation Research and Development (NA-22). We also warmly thank Dr. Martyn Swinhoe for reading the manuscript and providing us with enthusiastic encouragement. NR 21 TC 3 Z9 5 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 21 PY 2013 VL 714 BP 5 EP 12 DI 10.1016/j.nima.2013.02.002 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 148NO UT WOS:000319251800002 ER PT J AU Aielli, G Ball, R Bilki, B Chapman, JW Cardarelli, R Dai, T Diehl, E Dubbert, J Ferretti, C Feng, H Francis, K Guan, L Han, L Hou, S Levin, D Li, B Liu, L Paolozzi, L Repond, J Roloff, J Santonico, R Song, HY Wang, XL Wu, Y Xia, L Xu, L Zhao, T Zhao, Z Zhou, B Zhu, J AF Aielli, G. Ball, R. Bilki, B. Chapman, J. W. Cardarelli, R. Dai, T. Diehl, E. Dubbert, J. Ferretti, C. Feng, H. Francis, K. Guan, L. Han, L. Hou, S. Levin, D. Li, B. Liu, L. Paolozzi, L. Repond, J. Roloff, J. Santonico, R. Song, H. Y. Wang, X. L. Wu, Y. Xia, L. Xu, L. Zhao, T. Zhao, Z. Zhou, B. Zhu, J. TI Studies on fast triggering and high precision tracking with Resistive Plate Chambers SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE RPC; Trigger; Tracking; Time resolution; Spatial resolution ID OF-FLIGHT DETECTOR; SPATIAL-RESOLUTION; ALICE EXPERIMENT; RPC SYSTEM; PERFORMANCE; LHC AB We report on studies of fast triggering and high precision tracking using Resistive Plate Chambers (RPCs). Two beam tests were carried out with the 180 GeV/c muon beam at CERN using glass RPCs with gas gaps of 1.15 mm and equipped with readout strips with 1.27 mm pitch. This is the first beam test of RPCs with fine-pitch readout strips that explores precision tracking and triggering capabilities. RPC signals were acquired with precision timing and charge integrating readout electronics at both ends of the strips. The time resolution was measured to be better than 600 ps and the average spatial resolution was found to be 220 mu m using charge information and 287 mu m only using signal arrival time information. The dual-ended readout allows the determination of the average and the difference of the signal arrival times. The average time was found to be independent of the incident particle position along the strip and is useful for triggering purposes. The time difference yielded a determination of the hit position with a precision of 7.5 mm along the strip. These results demonstrate the feasibility using RPCs for fast and high-resolution triggering and tracking. (c) 2013 Elsevier B.V. All rights reserved. C1 [Aielli, G.; Cardarelli, R.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cardarelli, R.; Paolozzi, L.; Santonico, R.] INFN Roma Tor Vergata, Rome, Italy. [Ball, R.; Chapman, J. W.; Dai, T.; Diehl, E.; Dubbert, J.; Ferretti, C.; Feng, H.; Guan, L.; Levin, D.; Liu, L.; Roloff, J.; Wu, Y.; Xu, L.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bilki, B.; Francis, K.; Repond, J.; Xia, L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Guan, L.; Han, L.; Li, B.; Song, H. Y.; Wang, X. L.; Wu, Y.; Xu, L.; Zhao, Z.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Hou, S.; Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Zhu, J (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. EM junjie@umich.edu OI Bilki, Burak/0000-0001-9515-3306 FU Department of Energy [DE-SC0007859, DE-AC02-98CH10886]; National Science Foundation of China [11025528] FX The authors would like to thank M. Lippert and P. Schwegler from the Max Plank Institute, and G. Mikenberg, M. Shoa and their colleagues from the ATLAS TGC group for their help during the beam tests. The authors would also like to acknowledge the precious help of M.C.S. Williams and R. Zouevski on using NINO front-end electronics. This work is supported in part by the Department of Energy under contracts DE-SC0007859 and DE-AC02-98CH10886, and by National Science Foundation of China under contract 11025528. NR 19 TC 4 Z9 4 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 21 PY 2013 VL 714 BP 115 EP 120 DI 10.1016/j.nima.2013.02.044 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 148NO UT WOS:000319251800017 ER PT J AU De Boer, RJ Perelson, AS AF De Boer, Rob J. Perelson, Alan S. TI Quantifying T lymphocyte turnover SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Review DE Labeling; Modeling; Parameter estimation; Immune system; Life spans ID SIMIAN IMMUNODEFICIENCY VIRUS; ACTIVE ANTIRETROVIRAL THERAPY; DIACETATE SUCCINIMIDYL ESTER; HEMATOPOIETIC STEM-CELLS; STRUCTURED POPULATION-MODELS; DEPENDENT BRANCHING-PROCESS; EXCISION CIRCLE CONTENT; RECENT THYMIC EMIGRANTS; PROLIFERATION IN-VITRO; PEPTIDE-MHC COMPLEXES AB Peripheral T cell populations are maintained by production of naive T cells in the thymus, clonal expansion of activated cells, cellular self-renewal (or homeostatic proliferation), and density dependent cell life spans. A variety of experimental techniques have been employed to quantify the relative contributions of these processes. In modern studies lymphocytes are typically labeled with 5-bromo-2'-deoxyuridine (BrdU), deuterium, or the fluorescent dye carboxy-fluorescein diacetate succinimidyl ester (CFSE), their division history has been studied by monitoring telomere shortening and the dilution of T cell receptor excision circles (TRECs) or the dye CFSE, and clonal expansion has been documented by recording changes in the population densities of antigen specific cells. Proper interpretation of such data in terms of the underlying rates of T cell production, division, and death has proven to be notoriously difficult and involves mathematical modeling. We review the various models that have been developed for each of these techniques, discuss which models seem most appropriate for what type of data, reveal open problems that require better models, and pinpoint how the assumptions underlying a mathematical model may influence the interpretation of data. Elaborating various successful cases where modeling has delivered new insights in T cell population dynamics, this review provides quantitative estimates of several processes involved in the maintenance of naive and memory, CD4(+) and CD8(+) T cell pools in mice and men. (C) 2013 Elsevier Ltd. All rights reserved. C1 [De Boer, Rob J.] Univ Utrecht, NL-3508 TC Utrecht, Netherlands. [Perelson, Alan S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [De Boer, Rob J.; Perelson, Alan S.] Santa Fe Inst, Santa Fe, NM 87501 USA. RP De Boer, RJ (reprint author), Univ Utrecht, NL-3508 TC Utrecht, Netherlands. EM r.j.deboer@uu.nl; asp@lanl.gov RI De Boer, Rob/B-6050-2011 OI De Boer, Rob/0000-0002-2130-691X FU U.S. Department of Energy [DE-AC52-06NA25396]; NIH [AI028433, OD011095, P01-AI071195, P20-RR018754, HHSN272201000055C]; Netherlands Organisation for Scientific Research NWO [016.048.603]; National Science Foundation [NSF PHY11-25915] FX We thank Jose Borghans, Vitaly Ganusov, Andrew Yates and Ruy Ribeiro for discussions and helpful comments on various parts of this review. Portions of this work were done under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396 and supported by NIH Grants AI028433, OD011095, P01-AI071195, and P20-RR018754, and contract HHSN272201000055C. RdB thanks the Netherlands Organisation for Scientific Research NWO (VICI Grant 016.048.603) for financial support. Part of this paper was written at the Santa Fe Institute and it was finished at the KITP at UCSB. This research was supported in part by the National Science Foundation under Grant no. NSF PHY11-25915. NR 248 TC 46 Z9 47 U1 5 U2 43 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 J9 J THEOR BIOL JI J. Theor. Biol. PD JUN 21 PY 2013 VL 327 BP 45 EP 87 DI 10.1016/j.jtbi.2012.12.025 PG 43 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 135AM UT WOS:000318258400005 PM 23313150 ER PT J AU Lau, EY Wong, SE Baker, SE Bearinger, JP Koziol, L Valdez, CA Satcher, JH Aines, RD Lightstone, FC AF Lau, Edmond Y. Wong, Sergio E. Baker, Sarah E. Bearinger, Jane P. Koziol, Lucas Valdez, Carlos A. Satcher, Joseph H., Jr. Aines, Roger D. Lightstone, Felice C. TI Comparison and Analysis of Zinc and Cobalt-Based Systems as Catalytic Entities for the Hydration of Carbon Dioxide SO PLOS ONE LA English DT Article ID POLARIZABLE CONTINUUM MODEL; HYDROGEN-BOND NETWORK; ANHYDRASE-II; ACTIVE-SITE; METHANOSARCINA-THERMOPHILA; PROTON-TRANSFER; CO2 CAPTURE; X-RAY; SPECTROSCOPIC MODEL; SYNTHETIC ANALOGS AB In nature, the zinc metalloenzyme carbonic anhydrase II (CAII) efficiently catalyzes the conversion of carbon dioxide (CO2) to bicarbonate under physiological conditions. Many research efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolyl)phosphine, and tris(2-benzimidazolylmethyl)amine, in their complexed form either with the Zn2+ or the Co2+ ion and studied their reaction coordinate for CO2 hydration. These calculations demonstrated that the ability of the complex to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Furthermore, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts. C1 [Lau, Edmond Y.; Wong, Sergio E.; Baker, Sarah E.; Bearinger, Jane P.; Koziol, Lucas; Valdez, Carlos A.; Satcher, Joseph H., Jr.; Aines, Roger D.; Lightstone, Felice C.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. RP Aines, RD (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. EM aines1@llnl.gov; felice@llnl.gov FU Laboratory Directed Research and Development Program at Lawrence Livermore National Laboratory [10-ERD-035] FX The authors thank the Laboratory Directed Research and Development Program at Lawrence Livermore National Laboratory for funding 10-ERD-035. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 89 TC 3 Z9 3 U1 3 U2 27 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 20 PY 2013 VL 8 IS 6 AR e66187 DI 10.1371/journal.pone.0066187 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 190LY UT WOS:000322342800040 PM 23840420 ER PT J AU Bouwman, J Fournier, M Sims, IR Leone, SR Wilson, KR AF Bouwman, Jordy Fournier, Martin Sims, Ian R. Leone, Stephen R. Wilson, Kevin R. TI Reaction Rate and Isomer-Specific Product Branching Ratios of C2H + C4H8: 1-Butene, cis-2-Butene, trans-2-Butene, and Isobutene at 79 K SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PHOTOIONIZATION MASS-SPECTROMETRY; NEUTRAL-NEUTRAL REACTIONS; LAVAL NOZZLE APPARATUS; SET MODEL CHEMISTRY; ETHYNYL RADICAL C2H; TITANS ATMOSPHERE; RATE COEFFICIENTS; CROSS-SECTIONS; LOW-TEMPERATURE; HAZE FORMATION AB The reactions of C2H radicals with C4H8 isomers 1-butene, cis-2-butene, trans-2-butene, and isobutene are studied by laser photolysis-vacuum ultraviolet mass spectrometry in a Laval nozzle expansion at 79 K. Bimolecular-reaction rate constants are obtained by measuring the formation rate of the reaction product species as a function of the reactant density under pseudo-first-order conditions. The rate constants are (1.9 +/- 0.5) x 10(-10), (1.7 +/- 0.5) x 10(-10), (2.1 +/- 0.7) x 10(-10), and (1.8 +/- 0.9) x 10(-10) cm(3) s(-1) for the reaction of C2H with 1-butene, cis-2-butene, trans-2-butene, and isobutene, respectively. Bimolecular rate constants for 1-butene and isobutene compare well to values measured previously at 103 K using C2H chemiluminescence. Photoionization spectra of the reaction products are measured and fitted to ionization spectra of the contributing isomers. In conjunction with absolute-ionization cross sections, these fits provide isomer-resolved product branching fractions. The reaction between C2H and 1-butene yields (65 +/- 10)% C4H4 in the form of vinylacetylene and (35 +/- 10)% C5H6 in the form of 4-penten-1-yne. The cis-2-butene and trans-2-butene reactions yield solely 3-penten-1-yne, and no discrimination is made between cis- and trans-3-penten-1-yne. Last, the isobutene reaction yields (26 +/- 15)% 3-penten-1-yne, (35 +/- 15)% 2-methyl-1-buten-3-yne, and (39 +/- 15)% 4-methyl-3-penten-1-yne. The branching fractions reported for the C2H and butene reactions indicate that these reactions preferentially proceed via CH3 or C2H3 elimination rather than H-atom elimination. Within the experimental uncertainties, no evidence is found for the formation of cyclic species. C1 [Bouwman, Jordy; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bouwman, Jordy; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Fournier, Martin; Sims, Ian R.] Univ Rennes 1, CNRS, UMR 6251, Inst Phys Rennes, F-35042 Rennes, France. [Leone, Stephen R.; Wilson, Kevin R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Wilson, KR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM krwilson@lbl.gov RI Sims, Ian/F-8989-2014; OI Sims, Ian/0000-0001-7870-1585; Fournier, Martin/0000-0002-8771-3913 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; NASA [NNH13AV43I]; National Science Foundation Engineering Research Center for Extreme Ultraviolet Science and Technology; CNRS; French Programme National de Planetologie; French Ministere de l'Enseignement Superieur et de la Recherche; France-Berkeley Fund FX The Advanced Light Source and Chemical Sciences Division (K.R.W. and S.R.L.) are supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under contract no. DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory. K.R.W. and S.R.L. are supported in part by NASA grant no. NNH13AV43I. Support for J.B. was obtained from the National Science Foundation Engineering Research Center for Extreme Ultraviolet Science and Technology. Construction of this Laval instrument was made possible by a National Aeronautics and Space Administration Planetary Major Equipment grant. I.R.S. thanks the CNRS for the award of sabbatical funding during the period of this research and the French Programme National de Planetologie for financial support. M.F. thanks the French Ministere de l'Enseignement Superieur et de la Recherche for a doctoral grant. We thank the France-Berkeley Fund for financial support. NR 64 TC 6 Z9 6 U1 3 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 20 PY 2013 VL 117 IS 24 BP 5093 EP 5105 DI 10.1021/jp403637t PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 171FR UT WOS:000320911000011 PM 23701666 ER PT J AU Goldman, N Tamblyn, I AF Goldman, Nir Tamblyn, Isaac TI Prebiotic Chemistry within a Simple Impacting Icy Mixture SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TIGHT-BINDING METHOD; MOLECULAR-DYNAMICS; AMINO-ACIDS; EARLY EARTH; EXTREME CONDITIONS; PRIMITIVE EARTH; COMETARY DELIVERY; ORGANIC-MOLECULES; HIGH-PRESSURE; SIMULATIONS AB We present results of prebiotic organic synthesis in shock compressed mixtures of simple ices from quantum molecular dynamics (MD) simulations extended to close to equilibrium time scales. Given the likelihood of an inhospitable prebiotic atmosphere on early Earth, it is possible that impact processes of comets or other icy bodies were a source of prebiotic chemical compounds on the primitive planet. We observe that moderate shock pressures and temperatures within a CO2-rich icy mixture (36 GPa and 2800 K) produce a number of nitrogen containing heterocycles, which dissociate to form functionalized aromatic hydrocarbons upon expansion and cooling to ambient conditions. In contrast, higher shock conditions (48-60 GPa, 3700-4800 K) resulted in the synthesis of long carbon-chain molecules, CH4, and formaldehyde. All shock compression simulations at these conditions have produced significant quantities of simple C-N bonded compounds such as HCN, HNC, and HNCO upon expansion and cooling to ambient conditions. Our results elucidate a mechanism for impact synthesis of prebiotic molecules at realistic impact conditions that is independent of external constraints such as the presence of a catalyst, illuminating UV radiation, or pre-existing conditions on a planet. C1 [Goldman, Nir] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Tamblyn, Isaac] Univ Ontario Inst Technol, Dept Phys, Oshawa, ON L1H 7K4, Canada. RP Goldman, N (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM ngoldman@llnl.gov OI Tamblyn, Isaac/0000-0002-8146-6667 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Aeronautics and Space Administration (NASA), Astrobiology: Exobiology and Evolutionary Biology program [NNH11AQ67I] FX The authors thank Lukasz Koziol for a critical reading of the manuscript, and Liam Krauss for creation of the graphical TOC image. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the National Aeronautics and Space Administration (NASA), Astrobiology: Exobiology and Evolutionary Biology program (#NNH11AQ67I). Computations were performed at LLNL using the Aztec and RZCereal massively parallel computers. NR 74 TC 19 Z9 19 U1 10 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 20 PY 2013 VL 117 IS 24 BP 5124 EP 5131 DI 10.1021/jp402976n PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 171FR UT WOS:000320911000014 PM 23639050 ER PT J AU Kelly, DN Lam, RK Duffin, AM Saykally, RJ AF Kelly, Daniel N. Lam, Royce K. Duffin, Andrew M. Saykally, Richard J. TI Exploring Solid/Aqueous Interfaces with Ultradilute Electrokinetic Analysis of Liquid Microjets SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID WATER MICROJETS; SURFACES; GENERATION; CHARGE AB We describe a novel method that exploits electrokinetic streaming current measurements for the study of ion-interface affinity. Through the use of liquid microjets and ultradilute solutions (<1 mu M), we are able to overcome inherent difficulties in electrokinetic surface measurements engendered by changing double-layer thicknesses. Varying bulk KCl concentrations produce statistically significant changes in streaming current down at picomolar concentrations. Because the attending ion concentrations are below that from water autoionization, these data are compared with those from ultradilute HCl and KOH solutions assuming that the K+ and Cl- introduce no new counterions. This permits comparison of the individual effects of K+ and Cl- on the interface, evidencing a cooperative effect between these ions at silica surfaces. Altogether, these results establish the effectiveness of this experimental approach in revealing new ion-surface phenomena and indicate its promise for the general study of aqueous interfaces. C1 [Kelly, Daniel N.; Lam, Royce K.; Duffin, Andrew M.; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kelly, Daniel N.; Lam, Royce K.; Duffin, Andrew M.; Saykally, Richard J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM saykally@berkeley.edu OI Lam, Royce/0000-0003-2878-038X FU NSF EAGER program [CHE-0963844]; Siemens Corporation through the Siemens AG-UC Berkeley Strategic Partnership FX This work was supported by grants from the NSF EAGER program (Grant CHE-0963844) and from the Siemens Corporation through the Siemens AG-UC Berkeley Strategic Partnership. NR 25 TC 5 Z9 5 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 20 PY 2013 VL 117 IS 24 BP 12702 EP 12706 DI 10.1021/jp403583r PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 171FS UT WOS:000320911100033 ER PT J AU Som, S Liu, W Zhou, DDY Magnotti, GM Sivaramakrishnan, R Longman, DE Skodje, RT Davis, MJ AF Som, Sibendu Liu, Wei Zhou, Dingyu D. Y. Magnotti, Gina M. Sivaramakrishnan, Raghu Longman, Douglas E. Skodje, Rex T. Davis, Michael J. TI Quantum Tunneling Affects Engine Performance SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID SENSITIVITY-ANALYSIS; TRANSITION-STATE; COMBUSTION; IGNITION; KINETICS; SYSTEMS; MODEL; HO2 AB We study the role of individual reaction rates on engine performance, with an emphasis on the contribution of quantum tunneling. It is demonstrated that the effect of quantum tunneling corrections for the reaction HO2 + HO2 = H2O2 +O-2 can have a noticeable impact on the performance of a high-fidelity model of a compression-ignition (e.g., diesel) engine, and that an accurate prediction of ignition delay time for the engine model requires an accurate estimation of the tunneling correction for this reaction. The three-dimensional model includes detailed descriptions of the chemistry of a surrogate for a biodiesel fuel, as well as all the features of the engine, such as the liquid fuel spray and turbulence. This study is part of a larger investigation of how the features of the dynamics and potential energy surfaces of key reactions, as well as their reaction rate uncertainties, affect engine performance, and results in these directions are also presented here. C1 [Som, Sibendu; Magnotti, Gina M.; Longman, Douglas E.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Liu, Wei; Sivaramakrishnan, Raghu; Davis, Michael J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Zhou, Dingyu D. Y.; Skodje, Rex T.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Magnotti, Gina M.] Georgia Inst Technol, Dept Mech Engn, Atlanta, GA 30332 USA. RP Som, S (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. RI SIVARAMAKRISHNAN, RAGHU/C-3481-2008 OI SIVARAMAKRISHNAN, RAGHU/0000-0002-1867-1254 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]; DOE's Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC02-06CH11357. This research was also funded by the DOE's Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy, under contract No. DE-AC02-06CH11357. The authors wish to thank Wade Sisk and Gupreet Singh, program managers at the DOE, for their support. We gratefully acknowledge the computing resources provided on "Fusion," a 320-node computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 27 TC 9 Z9 9 U1 0 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUN 20 PY 2013 VL 4 IS 12 BP 2021 EP 2025 DI 10.1021/jz400874s PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 172DE UT WOS:000320979400006 PM 26283246 ER PT J AU Stewart, JT Padilha, LA Bae, WK Koh, WK Pietryga, JM Klimov, VI AF Stewart, John T. Padilha, Lazaro A. Bae, Wan Ki Koh, Weon-Kyu Pietryga, Jeffrey M. Klimov, Victor I. TI Carrier Multiplication in Quantum Dots within the Framework of Two Competing Energy Relaxation Mechanisms SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID MULTIPLE EXCITON GENERATION; SEMICONDUCTOR NANOCRYSTALS; MULTIEXCITON GENERATION; SILICON NANOCRYSTALS; SOLAR-CELLS; ELECTRONIC-STRUCTURE; AUGER RECOMBINATION; PBSE NANOCRYSTALS; COLLOIDAL PBSE; SINGLE-PHOTON AB The realization of high-yield, low-threshold carrier multiplication (CM) in semiconductor quantum dots (QDs) is a promising step toward third-generation photovoltaics (PV). Recent studies of QD solar cells have shown that CM can indeed produce greater-than-unity quantum efficiencies in photon-to-charge-carrier conversion, establishing the relevance of this process to practical PV technologies. While being appreciable, the reported CM yields are still not high enough for a significant increase in the power conversion efficiency over traditional bulk materials. At present, the design of nanomaterials with improved CM is hindered by a poor understanding of the mechanism underlying this process. Here, we present a possible solution to this problem by introducing a model that treats CM as a competition between impact-ionization-like scattering and non-CM energy losses. Importantly, it allows for evaluation of expected CM yields from fairly straightforward measurements of Auger recombination (inverse of CM) and near-band-edge carrier cooling. The validation of this model via a comparative CM study of PbTe, PbSe, and PbS QDs suggests that it indeed represents a predictive capability, which might help in the development of nanomaterials with improved CM performance. C1 [Stewart, John T.; Padilha, Lazaro A.; Bae, Wan Ki; Koh, Weon-Kyu; Pietryga, Jeffrey M.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Ctr Adv Solar Photophys, C PCS, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, Ctr Adv Solar Photophys, C PCS, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov RI Koh, Weon-kyu/G-8623-2013; Padilha, Lazaro/G-1523-2013; OI Koh, Weon-kyu/0000-0002-6913-4184; Klimov, Victor/0000-0003-1158-3179 FU Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX We acknowledge support of the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 70 TC 26 Z9 26 U1 4 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUN 20 PY 2013 VL 4 IS 12 BP 2061 EP 2068 DI 10.1021/jz4004334 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 172DE UT WOS:000320979400013 PM 26283253 ER PT J AU Wang, QQ Nemoto, M Li, DS Weaver, JC Weden, B Stegemeier, J Bozhilov, KN Wood, LR Milliron, GW Kim, CS DiMasi, E Kisailus, D AF Wang, Qianqian Nemoto, Michiko Li, Dongsheng Weaver, James C. Weden, Brian Stegemeier, John Bozhilov, Krassimir N. Wood, Leslie R. Milliron, Garrett W. Kim, Christopher S. DiMasi, Elaine Kisailus, David TI Phase Transformations and Structural Developments in the Radular Teeth of Cryptochiton Stelleri SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE radula; biomineralization; -chitin; ferrihydrite; magnetite ID CHITON ACANTHOPLEURA-HIRTOSA; 6-LINE FERRIHYDRITE; MINERALIZATION PATHWAYS; IRON MINERALIZATION; CRYSTAL-STRUCTURE; ORGANIC MATRIX; ALPHA-CHITIN; BIOMINERALIZATION; MAGNETITE; PROTEIN AB During mineralization, the hard outer magnetite-containing shell of the radular teeth of Cryptochiton stelleri undergoes four distinct stages of structural and phase transformations: (i) the formation of a crystalline -chitin organic matrix that forms the structural framework of the non-mineralized teeth, (ii) the templated synthesis of ferrihydrite crystal aggregates along these organic fibers, (iii) subsequent solid state phase transformation from ferrihydrite to magnetite, and (iv) progressive magnetite crystal growth to form continuous parallel rods within the mature teeth. The underlying -chitin organic matrix appears to influence magnetite crystal aggregate density and the diameter and curvature of the resulting rods, both of which likely play critical roles in determining the local mechanical properties of the mature radular teeth. C1 [Wang, Qianqian; Nemoto, Michiko; Li, Dongsheng; Milliron, Garrett W.; Kisailus, David] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. [Weaver, James C.] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA. [Weden, Brian; Wood, Leslie R.] Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA. [Stegemeier, John; Kim, Christopher S.] Chapman Univ, Sch Earth & Environm Sci, Orange, CA 92866 USA. [Bozhilov, Krassimir N.] Univ Calif Riverside, Cent Facil Adv Microscopy & Microanal, Riverside, CA 92521 USA. [DiMasi, Elaine] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Wang, QQ (reprint author), Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. EM david@engr.ucr.edu FU USDOE [DE-AC02-98CH10886]; JSPS; ARO [W911NF-12-1-0257]; AFOSR [FA9550-12-1-0249] FX Q.W. and M.N. contributed equally to this work. We thank Sara Krause for the illustration in Figure 1 A, Dr. Kenneth Evans-Lutterodt of the National Synchrotron Light Source in Brookhaven National Laboratory for contributing his expertise at the microdiffraction endstation X13B, Dr. Vesna Stanic of the NSLS in BNL for her help in conducting experiments at the diffraction endstation X6B, and Dr. Sam Webb of Stanford Synchrotron Radiation Lightsource for his instrumental help with the mu XRF measurements. The NSLS is supported under USDOE Contract DE-AC02-98CH10886. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. M.N. was supported, in part, by the JSPS International Training Program (ITP). We acknowledge the Central Facility for Advanced Microscopy and Microanalysis at UC Riverside for use of sample prep and electron microscopy imaging. This work was supported in part by ARO: W911NF-12-1-0257 and AFOSR: FA9550-12-1-0249. NR 48 TC 16 Z9 16 U1 2 U2 57 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUN 20 PY 2013 VL 23 IS 23 BP 2908 EP 2917 DI 10.1002/adfm.201202894 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 164BD UT WOS:000320382800001 ER PT J AU Qiao, L Zhang, KHL Bowden, ME Varga, T Shutthanandan, V Colby, R Du, Y Kabius, B Sushko, PV Biegalski, MD Chambers, SA AF Qiao, L. Zhang, K. H. L. Bowden, M. E. Varga, T. Shutthanandan, V. Colby, R. Du, Y. Kabius, B. Sushko, P. V. Biegalski, M. D. Chambers, S. A. TI The Impacts of Cation Stoichiometry and Substrate Surface Quality on Nucleation, Structure, Defect Formation, and Intermixing in Complex Oxide Heteroepitaxy-LaCrO3 on SrTiO3(001) SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE oxide heteroepitaxy; nonstoichiometry; intermixing; molecular beam epitaxy ID PULSED-LASER DEPOSITION; THIN-FILMS; INTERFACES; GROWTH; DIAMOND AB The ability to design and fabricate electronic devices with reproducible properties using complex oxides is critically dependent on our ability to controllably synthesize these materials in thin-film form. Structure-property relationships are intimately tied to film and interface composition. Here the effect of cation stoichiometry on structural quality and defect formation in LaCrO3 heteroepitaxial films prepared using molecular beam epitaxy is reported. From first principles the regions of stability of various candidate defects, along with the predicted effects of these defects on structural parameters, are calculated as a function of Cr and O chemical potential. Epitaxial LaCrO3 films readily nucleate and remain coherently strained on SrTiO3(001) over a wide range of La-to-Cr atom ratios, but La-rich films are of considerably lower structural quality than stoichiometric and Cr-rich films. Cation imbalances are accompanied by anti-site defect formation. Cation mixing occurs at the interface for all La-to-Cr ratios investigated and is not quenched by deposition on SrTiO3(001) at ambient temperature. Indiffused La atoms occupy Sr sites. Intermixing is effectively quenched by using molecular beam epitaxy to deposit LaCrO3 at ambient temperature on defect free Si(001). However, analogous pulsed laser deposition on Si is accompanied by cation mixing. C1 [Qiao, L.; Zhang, K. H. L.; Chambers, S. A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. [Qiao, L.; Biegalski, M. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Bowden, M. E.; Varga, T.; Shutthanandan, V.; Colby, R.; Du, Y.; Kabius, B.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Sushko, P. V.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Sushko, P. V.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. RP Qiao, L (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. EM sa.chambers@pnnl.gov RI Qiao, Liang/A-8165-2012; Zhang, Kelvin/F-5434-2014; Sushko, Peter/F-5171-2013 OI Sushko, Peter/0000-0001-7338-4146 FU U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering [10122]; Division of Chemical Sciences [48526]; EMSL William Wiley Postdoctoral Fellow program; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Royal Society; Department of Energy's Office of Biological and Environmental Research FX This work was supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering under Award #10122 (MBE growth and XPS measurements), Division of Chemical Sciences under Award #48526 (XPS analysis and RBS measurements and analysis), and the EMSL William Wiley Postdoctoral Fellow program (TEM analysis). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. P.V.S. thanks the Royal Society for the support. The work was performed in the Environmental Molecular Sciences Laboratory, a national science user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 55 TC 19 Z9 19 U1 8 U2 112 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUN 20 PY 2013 VL 23 IS 23 BP 2953 EP 2963 DI 10.1002/adfm.201202655 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 164BD UT WOS:000320382800006 ER PT J AU Kennea, JA Burrows, DN Kouveliotou, C Palmer, DM Gogus, E Kaneko, Y Evans, PA Degenaar, N Reynolds, MT Miller, JM Wijnands, R Mori, K Gehrels, N AF Kennea, J. A. Burrows, D. N. Kouveliotou, C. Palmer, D. M. Gogus, E. Kaneko, Y. Evans, P. A. Degenaar, N. Reynolds, M. T. Miller, J. M. Wijnands, R. Mori, K. Gehrels, N. TI SWIFT DISCOVERY OF A NEW SOFT GAMMA REPEATER, SGR J1745-29, NEAR SAGITTARIUS A* SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE pulsars: general; pulsars: individual (SGR J1745-29); stars: neutron; X-rays: bursts ID X-RAY PULSARS; GALACTIC-CENTER; TELESCOPE; BURSTS; GRBS AB Starting in 2013 February, Swift has been performing short daily monitoring observations of the G2 gas cloud near Sgr A* with the X-Ray Telescope to determine whether the cloud interaction leads to an increase in the flux from the Galactic center. On 2013 April 24 Swift detected an order of magnitude rise in the X-ray flux from the region near Sgr A*. Initially thought to be a flare from Sgr A*, the detection of a short hard X-ray burst from the same region by the Burst Alert Telescope suggested that the flare was from an unresolved new Soft Gamma Repeater, SGR J1745-29. Here we present the discovery of SGR J1745-29 by Swift, including analysis of data before, during, and after the burst. We find that the spectrum in the 0.3-10 keV range is well fit by an absorbed blackbody model with kT(BB) similar or equal to 1 keV and absorption consistent with previously measured values from the quiescent emission from Sgr A*, strongly suggesting that this source is at a similar distance. Only one SGR burst has been detected so far from the new source, and the persistent light curve shows little evidence of decay in approximately two weeks of monitoring after outburst. We discuss this light curve trend and compare it with those of other well covered SGR outbursts. We suggest that SGR J1745-29 belongs to an emerging subclass of magnetars characterized by low burst rates and prolonged steady X-ray emission one to two weeks after outburst onset. C1 [Kennea, J. A.; Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, Sci & Technol Off, Huntsville, AL 35812 USA. [Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gogus, E.; Kaneko, Y.] Sabanci Univ, TR-34956 Istanbul, Turkey. [Evans, P. A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Degenaar, N.; Reynolds, M. T.; Miller, J. M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Wijnands, R.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Mori, K.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Kennea, JA (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. EM kennea@swift.psu.edu FU NASA grant through the Swift Guest Investigator Program [NAS5-00135] FX This work was supported by NASA grant NAS5-00135 through the Swift Guest Investigator Program. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. We acknowledge the use of public data from the Swift data archive. This research has made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASI Science Data Center (ASDC), Italy. NR 39 TC 45 Z9 45 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2013 VL 770 IS 2 AR L24 DI 10.1088/2041-8205/770/2/L24 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 168MJ UT WOS:000320709900008 ER PT J AU Shen, KJ Guillochon, J Foley, RJ AF Shen, Ken J. Guillochon, James Foley, Ryan J. TI CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: close; novae, cataclysmic variables; nuclear reactions, nucleosynthesis, abundances; supernovae: general; white dwarfs ID ACCRETING WHITE-DWARFS; SODIUM-ABSORPTION; CLOSE BINARIES; MASS-TRANSFER; EVOLUTION; MERGERS; NOVAE; STARS; GAS; APPROXIMATIONS AB Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario. C1 [Shen, Ken J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Shen, Ken J.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Shen, Ken J.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Guillochon, James] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Foley, Ryan J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Shen, KJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM kenshen@astro.berkeley.edu OI Guillochon, James/0000-0002-9809-8215 FU NASA through Einstein Postdoctoral Fellowship [PF1-120088]; Chandra X-ray Center; NASA [NAS8-03060] FX We thank Jason Dexter, Dan Kasen, Rodolfo Perez, Eliot Quataert, Cody Raskin, and Jeff Silverman for discussions. K.J.S. is supported by NASA through Einstein Postdoctoral Fellowship grant number PF1-120088 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. NR 46 TC 47 Z9 47 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2013 VL 770 IS 2 AR L35 DI 10.1088/2041-8205/770/2/L35 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 168MJ UT WOS:000320709900019 ER PT J AU Allan, MP Tamai, A Rozbicki, E Fischer, MH Voss, J King, PDC Meevasana, W Thirupathaiah, S Rienks, E Fink, J Tennant, DA Perry, RS Mercure, JF Wang, MA Lee, J Fennie, CJ Kim, EA Lawler, MJ Shen, KM Mackenzie, AP Shen, ZX Baumberger, F AF Allan, M. P. Tamai, A. Rozbicki, E. Fischer, M. H. Voss, J. King, P. D. C. Meevasana, W. Thirupathaiah, S. Rienks, E. Fink, J. Tennant, D. A. Perry, R. S. Mercure, J. F. Wang, M. A. Lee, Jinho Fennie, C. J. Kim, E-A Lawler, M. J. Shen, K. M. Mackenzie, A. P. Shen, Z-X Baumberger, F. TI Formation of heavy d-electron quasiparticles in Sr3Ru2O7 SO NEW JOURNAL OF PHYSICS LA English DT Article ID RUTHENATE SR3RU2O7 AB The phase diagram of Sr3Ru2O7 shows hallmarks of strong electron correlations despite the modest Coulomb interaction in the Ru 4d shell. We use angle-resolved photoelectron spectroscopy measurements to provide microscopic insight into the formation of the strongly renormalized heavy d-electron liquid that controls the physics of Sr3Ru2O7. Our data reveal itinerant Ru 4d-states confined over large parts of the Brillouin zone to an energy range of <6 meV, nearly three orders of magnitude lower than the bare band width. We show that this energy scale agrees quantitatively with a characteristic thermodynamic energy scale associated with quantum criticality and illustrate how it arises from a combination of back-folding due to a structural distortion and the hybridization of light and strongly renormalized, heavy quasiparticle bands. The resulting heavy Fermi liquid has a marked k-dependence of the renormalization which we relate to orbital mixing along individual Fermi surface sheets. C1 [Allan, M. P.; Tamai, A.; Rozbicki, E.; King, P. D. C.; Meevasana, W.; Perry, R. S.; Mercure, J. F.; Mackenzie, A. P.; Baumberger, F.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Allan, M. P.; Fischer, M. H.; Wang, M. A.; Lee, Jinho; Kim, E-A; Lawler, M. J.; Shen, K. M.] Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA. [Voss, J.; Fennie, C. J.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Meevasana, W.] Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand. [Thirupathaiah, S.; Rienks, E.; Fink, J.] Elektronenspeicherring BESSY II, Helmholtz Zentrum Berlin, D-12489 Berlin, Germany. [Fink, J.] IFW Dresden, D-01171 Dresden, Germany. [Tennant, D. A.] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany. [Lee, Jinho] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. [Lawler, M. J.] SUNY Binghamton, Dept Phys, Binghamton, NY 13902 USA. [Shen, Z-X] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Shen, Z-X] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. RP Allan, MP (reprint author), Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. EM milan.allan@gmail.com RI Fischer, Mark/K-2548-2013; Tennant, David/Q-2497-2015; Allan, Milan/D-7763-2012; Fink, Joerg/A-6003-2012; Baumberger, Felix/A-5170-2008; Tamai, Anna/B-9219-2014; King, Philip/D-3809-2014; Mackenzie, Andrew/K-6742-2015; Lawler, Michael/K-6770-2012 OI Fischer, Mark/0000-0003-0810-6064; Tennant, David/0000-0002-9575-3368; Allan, Milan/0000-0002-5437-1945; Mercure, Jean-Francois/0000-0003-2620-9200; Baumberger, Felix/0000-0001-7104-7541; Tamai, Anna/0000-0001-5239-6826; King, Philip/0000-0002-6523-9034; Lawler, Michael/0000-0002-2319-2274 FU European Research Council; Scottish Funding Council; UK EPSRC; Cornell Center for Materials Research; NSF MRSEC program [DMR-1120296]; ETH Fellowship FX We gratefully acknowledge discussions with A Georges, M S Golden, R G Hennig, C Hooley, J Mravlje, A W Rost, S C Sundar and J Zaanen. This work has been supported by the European Research Council, the Scottish Funding Council and the UK EPSRC. SSRL is operated by the DOE's office of Basic Energy Science. Work by MHF, E-AK, KMS, CJF and JV was supported by the Cornell Center for Materials Research with funding from the NSF MRSEC program (DMR-1120296). Work by MPA during the write-up of this paper was supported by an ETH Fellowship. NR 41 TC 6 Z9 6 U1 1 U2 48 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUN 20 PY 2013 VL 15 AR 063029 DI 10.1088/1367-2630/15/6/063029 PG 10 WC Physics, Multidisciplinary SC Physics GA 168IG UT WOS:000320698500003 ER PT J AU Bzdak, A Schenke, B Tribedy, P Venugopalan, R AF Bzdak, Adam Schenke, Bjoern Tribedy, Prithwish Venugopalan, Raju TI Initial-state geometry and the role of hydrodynamics in proton-proton, proton-nucleus, and deuteron-nucleus collisions SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; GLUON DISTRIBUTION-FUNCTIONS; P-PB COLLISIONS; HIGH-ENERGIES; ANGULAR-CORRELATIONS; PPB COLLISIONS; ELLIPTIC FLOW; LONG-RANGE; SIDE; MULTIPLICITY AB We apply the successful Monte Carlo Glauber and IP-Glasma initial-state models of heavy-ion collisions to the much smaller size systems produced in proton-proton, proton-nucleus, and deuteron-nucleus collisions. We observe a significantly greater sensitivity of the initial-state geometry to details of multiparticle production in these models compared to nucleus-nucleus collisions. In particular, we find that the size of the system produced in p + A collisions is very similar to the one produced in p + p collisions and predict comparable Hanbury-Brown-Twiss radii in the absence of flow in both systems. Differences in the eccentricities computed in the models are large, while differences among the generated flow coefficients upsilon(2) and upsilon(3) are smaller. For a large number of participants in proton-lead collisions, the upsilon(2) generated in the IP-Glasma model is comparable to the value obtained in proton-proton collisions. Viscous corrections to flow are large over characteristic lifetimes in the smaller size systems. In contrast, viscous contributions are significantly diminished over the longer space-time evolution of a heavy-ion collision. C1 [Bzdak, Adam] RIKEN, Brookhaven Natl Lab, BNL Res Ctr, Upton, NY 11973 USA. [Schenke, Bjoern; Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Tribedy, Prithwish] Ctr Variable Energy Cyclotron, Kolkata 700064, India. RP Bzdak, A (reprint author), RIKEN, Brookhaven Natl Lab, BNL Res Ctr, Upton, NY 11973 USA. FU RIKEN-BNL Research Center; DOE [DE-AC02-98CH10886] FX We thank Adrian Dumitru, Kevin Dusling, Larry McLerran, Jamie Nagle, Zhi Qiu, Anne Sickles, and Derek Teaney for interesting discussions. A. B. is supported through the RIKEN-BNL Research Center. B. P. S. and R. V. are supported under DOE Contract No. DE-AC02-98CH10886. NR 63 TC 112 Z9 112 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 20 PY 2013 VL 87 IS 6 AR 064906 DI 10.1103/PhysRevC.87.064906 PG 10 WC Physics, Nuclear SC Physics GA 169FH UT WOS:000320763700004 ER PT J AU Bousso, R AF Bousso, Raphael TI Complementarity is not enough SO PHYSICAL REVIEW D LA English DT Article ID BLACK-HOLES; ENTROPY AB The near-horizon field B of an old black hole is maximally entangled with the early Hawking radiation R, by unitarity of the S-matrix. But B must be maximally entangled with the black hole interior A, by the equivalence principle. Causal patch complementarity fails to reconcile these conflicting requirements. The system B can be probed by a freely falling observer while there is still time to turn around and remain outside the black hole. Therefore, the entangled state of the BR system is dictated by unitarity even in the infalling patch. If, by monogamy of entanglement, B is not entangled with A, the horizon is replaced by a singularity or "firewall." To illustrate the radical nature of the ideas that are needed, I briefly discuss two approaches for avoiding a firewall: the identification of A with a subsystem of R; and a combination of patch complementarity with the Horowitz-Maldacena final-state proposal. C1 [Bousso, Raphael] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bousso, Raphael] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. [Bousso, Raphael] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. FU Berkeley Center for Theoretical Physics; National Science Foundation [0855653, 0756174]; fqxi Grant [RFP3-1004]; U.S. Department of Energy [DE-AC02-05CH11231] FX I would like to thank B. Freivogel, D. Harlow, P. Hayden, J. Maldacena, D. Marolf, J. Polchinski, J. Preskill, V. Rosenhaus, D. Stanford, L. Susskind, and R. Wald for many discussions, comments, and explanations. This work was supported by the Berkeley Center for Theoretical Physics, by the National Science Foundation (Awards No. 0855653 and No. 0756174), by fqxi Grant No. RFP3-1004, and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 45 TC 44 Z9 44 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 20 PY 2013 VL 87 IS 12 AR 124023 DI 10.1103/PhysRevD.87.124023 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 169FS UT WOS:000320765300007 ER PT J AU Anand, VK Kim, H Tanatar, MA Prozorov, R Johnston, DC AF Anand, V. K. Kim, H. Tanatar, M. A. Prozorov, R. Johnston, D. C. TI Superconducting and normal-state properties of APd(2)As(2) (A = Ca, Sr, Ba) single crystals SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; HIGH-FIELD SUPERCONDUCTORS; MAGNETIC-SUSCEPTIBILITY; PURITY DEPENDENCE; PENETRATION DEPTH; TRANSITION; PNICTIDES; METALS; HC2 AB The synthesis and crystallography, magnetic susceptibility chi, magnetization M, specific heat C-p, in-plane electrical resistivity rho, and in-plane magnetic penetration depth measurements are reported for single crystals of APd(2)As(2) (A = Ca, Sr, Ba) versus temperature T and magnetic field H. The crystals were grown using PdAs self-flux. CaPd2As2 and SrPd2As2 crystallize in a collapsed body-centered tetragonal ThCr2Si2-type structure (I4/mmm), whereas BaPd2As2 crystallizes in the primitive tetragonal CeMg2Si2-type structure (P4/mmm), in agreement with literature data. The rho(T) data exhibit metallic behavior for all three compounds. Bulk superconductivity is reported for CaPd2As2 and SrPd2As2 below T-c = 1.27 and 0.92 K, respectively, whereas only a trace of superconductivity is found in BaPd2As2. No other phase transitions were observed. The chi(T) and M(H) data reveal anisotropic diamagnetism in the normal state, with chi(c) > chi(ab) for CaPd2As2 and BaPd2As2, and chi(c) < chi(ab) for SrPd2As2. The normal and superconducting state data indicate that CaPd2As2 and SrPd2As2 are conventional type-II nodeless s-wave electron-phonon superconductors. The electronic superconducting state heat capacity data for CaPd2As2, which has an extremely sharp heat capacity jump at T-c, are analyzed using our recent elaboration of the alpha-model of the BCS theory of superconductivity, which indicates that the s-wave gap in this compound is anisotropic in momentum space. C1 [Anand, V. K.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Anand, VK (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM vanand@ameslab.gov; johnston@ameslab.gov RI Anand, Vivek Kumar/J-3381-2013 OI Anand, Vivek Kumar/0000-0003-2023-7040 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 81 TC 26 Z9 26 U1 6 U2 61 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 20 PY 2013 VL 87 IS 22 AR 224510 DI 10.1103/PhysRevB.87.224510 PG 22 WC Physics, Condensed Matter SC Physics GA 169ET UT WOS:000320761700004 ER PT J AU Louca, D Park, K Li, B Neuefeind, J Yan, JQ AF Louca, Despina Park, Keeseong Li, Bing Neuefeind, Joerg Yan, Jiaqiang TI The hybrid lattice of KxFe2-ySe2: where superconductivity and magnetism coexist SO SCIENTIFIC REPORTS LA English DT Article ID DENSITY-WAVE; ORDER AB Much remains unknown of the microscopic origin of superconductivity in atomically disordered systems of amorphous alloys or in crystals riddled with defects. A manifestation of this conundrum is envisaged in the highly defective superconductor of KxFe2-ySe2. How can superconductivity survive under such crude conditions that call for strong electron localization? Here, we show that the Fe sublattice is locally distorted and accommodates two kinds of Fe valence environments giving rise to a bimodal bond-distribution, with short and long Fe bonds. The bimodal bonds are present even as the system becomes superconducting in the presence of antiferromagnetism, with the weight continuously shifting from the short to the long with increasing K content. Such a hybrid state is most likely found in cuprates as well while our results point to the importance of the local atomic symmetry by which exchange interactions between local moments materialize. C1 [Louca, Despina; Park, Keeseong; Li, Bing] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Neuefeind, Joerg; Yan, Jiaqiang] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Yan, Jiaqiang] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Louca, D (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. EM louca@virginia.edu RI Neuefeind, Joerg/D-9990-2015; Li, Bing /A-4610-2010 OI Neuefeind, Joerg/0000-0002-0563-1544; FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-01ER45927] FX The work at the University of Virginia has been supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract number DE-FG02-01ER45927. NR 31 TC 14 Z9 14 U1 2 U2 20 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUN 20 PY 2013 VL 3 AR UNSP 2047 DI 10.1038/srep02047 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 167QT UT WOS:000320648300001 PM 23782976 ER PT J AU Aliu, E Archambault, S Arlen, T Aune, T Beilicke, M Benbow, W Bird, R Bouvier, A Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Cesarini, A Ciupik, L Collins-Hughes, E Connolly, MP Cui, W Dickherber, R Duke, C Dumm, J Dwarkadas, VV Errando, M Falcone, A Federici, S Feng, Q Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Gillanders, GH Godambe, S Gotthelf, EV Griffin, S Grube, J Gyuk, G Hanna, D Holder, J Huan, H Hughes, G Humensky, TB Kaaret, P Karlsson, N Kertzman, M Khassen, Y Kieda, D Krawczynski, H Krennrich, F Lang, MJ Lee, K Madhavan, AS Maier, G Majumdar, P McArthur, S McCann, A Millis, J Moriarty, P Mukherjee, R Nelson, T de Bhroithe, AO Ong, RA Orr, M Otte, AN Pandel, D Park, N Perkins, JS Pohl, M Popkow, A Prokoph, H Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Ruppel, J Saxon, DB Schroedter, M Sembroski, GH Senturk, GD Skole, C Telezhinsky, I Tesic, G Theiling, M Thibadeau, S Tsurusaki, K Tyler, J Varlotta, A Vassiliev, VV Vincent, S Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Welsing, R Williams, DA Zitzer, B AF Aliu, E. Archambault, S. Arlen, T. Aune, T. Beilicke, M. Benbow, W. Bird, R. Bouvier, A. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Cesarini, A. Ciupik, L. Collins-Hughes, E. Connolly, M. P. Cui, W. Dickherber, R. Duke, C. Dumm, J. Dwarkadas, V. V. Errando, M. Falcone, A. Federici, S. Feng, Q. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Gillanders, G. H. Godambe, S. Gotthelf, E. V. Griffin, S. Grube, J. Gyuk, G. Hanna, D. Holder, J. Huan, H. Hughes, G. Humensky, T. B. Kaaret, P. Karlsson, N. Kertzman, M. Khassen, Y. Kieda, D. Krawczynski, H. Krennrich, F. Lang, M. J. Lee, K. Madhavan, A. S. Maier, G. Majumdar, P. McArthur, S. McCann, A. Millis, J. Moriarty, P. Mukherjee, R. Nelson, T. de Bhroithe, A. O'Faolain Ong, R. A. Orr, M. Otte, A. N. Pandel, D. Park, N. Perkins, J. S. Pohl, M. Popkow, A. Prokoph, H. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Ruppel, J. Saxon, D. B. Schroedter, M. Sembroski, G. H. Sentuerk, G. D. Skole, C. Telezhinsky, I. Tesic, G. Theiling, M. Thibadeau, S. Tsurusaki, K. Tyler, J. Varlotta, A. Vassiliev, V. V. Vincent, S. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Welsing, R. Williams, D. A. Zitzer, B. TI DISCOVERY OF TeV GAMMA-RAY EMISSION TOWARD SUPERNOVA REMNANT SNR G78.2+2.1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; cosmic rays; gamma rays: general; ISM: supernova remnants ID PARTICLE-ACCELERATION; FERMI; HESS; SEARCH; COUNTERPART; 2CG078+2; CATALOG; ORIGIN AB We report the discovery of an unidentified, extended source of very-high-energy gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hr of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0 degrees.23 +/- 0 degrees.03(stat-0 degrees.02sys)(+0 degrees.04) and its spectrum is well-characterized by a differential power law (dN/dE = N-0 x (E/TeV)-Gamma) with a photon index of Gamma = 2.37 +/- 0.14(stat) +/- 0.20(sys) and a flux normalization of N-0 = 1.5 +/- 0.2(stat) +/- 0.4(sys) x 10(-12) photon TeV-1 cm(-2) s(-1). This yields an integral flux of 5.2 +/- 0.8(stat) +/- 1.4(sys) x 10(-12) photon cm(-2) s(-1) above 320 GeV, corresponding to 3.7% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the SNR shock. C1 [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Archambault, S.; Griffin, S.; Hanna, D.; Ragan, K.; Tesic, G.; Tyler, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Arlen, T.; Aune, T.; Majumdar, P.; Ong, R. A.; Popkow, A.; Vassiliev, V. V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; Lee, K.; Thibadeau, S.; Ward, J. E.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Galante, N.; Roache, E.; Schroedter, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bird, R.; Cannon, A.; Collins-Hughes, E.; Khassen, Y.; de Bhroithe, A. O'Faolain; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Bouvier, A.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Bouvier, A.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Zitzer, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cesarini, A.; Connolly, M. P.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Theiling, M.; Varlotta, A.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Dumm, J.; Fortson, L.; Karlsson, N.; Nelson, T.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Dwarkadas, V. V.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Federici, S.; Hughes, G.; Maier, G.; Pohl, M.; Prokoph, H.; Ruppel, J.; Skole, C.; Telezhinsky, I.; Vincent, S.; Welsing, R.] DESY, D-15738 Zeuthen, Germany. [Federici, S.; Pohl, M.; Ruppel, J.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Finnegan, G.; Godambe, S.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Gall, D.; Kaaret, P.; Tsurusaki, K.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Gotthelf, E. V.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Holder, J.; Saxon, D. B.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Saxon, D. B.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Huan, H.; McArthur, S.; Park, N.; Wakely, S. P.; Weisgarber, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Humensky, T. B.; Sentuerk, G. D.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Krennrich, F.; Madhavan, A. S.; Orr, M.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Majumdar, P.] Saha Inst Nucl Phys, Kolkata 700064, India. [McCann, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Otte, A. N.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Otte, A. N.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Pandel, D.] Grand Valley State Univ, Dept Phys, Allendale, MI 49401 USA. [Perkins, J. S.] NASA GSFC, CRESST, Greenbelt, MD 20771 USA. [Perkins, J. S.] NASA GSFC, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Perkins, J. S.] Univ Maryland, Baltimore, MD 21250 USA. [Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Aliu, E (reprint author), Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. EM amandajw@iastate.edu RI Khassen, Yerbol/I-3806-2015; OI Khassen, Yerbol/0000-0002-7296-3100; Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794; Pandel, Dirk/0000-0003-2085-5586; Lang, Mark/0000-0003-4641-4201; Bird, Ralph/0000-0002-4596-8563 FU U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland [SFI 10/RFP/AST2748]; Science and Technology Facilities Council in the UK; NASA [NNX11A086G] FX This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, by the Science Foundation Ireland (SFI 10/RFP/AST2748) and by the Science and Technology Facilities Council in the UK. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. Dr. Weinstein and Dr. Dwarkadas' research was also supported in part by NASA grant NNX11A086G. NR 35 TC 17 Z9 17 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2013 VL 770 IS 2 AR 93 DI 10.1088/0004-637X/770/2/93 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 160HZ UT WOS:000320111200011 ER PT J AU Bodenheimer, P D'Angelo, G Lissauer, JJ Fortney, JJ Saumon, D AF Bodenheimer, Peter D'Angelo, Gennaro Lissauer, Jack J. Fortney, Jonathan J. Saumon, Didier TI DEUTERIUM BURNING IN MASSIVE GIANT PLANETS AND LOW-MASS BROWN DWARFS FORMED BY CORE-NUCLEATED ACCRETION SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; brown dwarfs; planets and satellites: formation; planets and satellites: individual (beta Pictoris b); planets and satellites: physical evolution ID PROTOPLANETARY ATMOSPHERES; BETA-PICTORIS; HR 8799; EVOLUTION; JUPITER; MODELS; OPACITIES; GRAINS; DISKS; GAS AB Using detailed numerical simulations, we study the formation of bodies near the deuterium-burning limit according to the core-nucleated giant planet accretion scenario. The objects, with heavy-element cores in the range 5-30 M-circle plus, are assumed to accrete gas up to final masses of 10-15 Jupiter masses (M-Jup). After the formation process, which lasts 1-5 Myr and which ends with a "cold-start," low-entropy configuration, the bodies evolve at constant mass up to an age of several Gyr. Deuterium burning via proton capture is included in the calculation, and we determined the mass, M-50, above which more than 50% of the initial deuterium is burned. This often-quoted borderline between giant planets and brown dwarfs is found to depend only slightly on parameters, such as core mass, stellar mass, formation location, solid surface density in the protoplanetary disk, disk viscosity, and dust opacity. The values for M-50 fall in the range 11.6-13.6 M-Jup, in agreement with previous determinations that do not take the formation process into account. For a given opacity law during the formation process, objects with higher core masses form more quickly. The result is higher entropy in the envelope at the completion of accretion, yielding lower values of M-50. For masses above M-50, during the deuterium-burning phase, objects expand and increase in luminosity by one to three orders of magnitude. Evolutionary tracks in the luminosity versus time diagram are compared with the observed position of the companion to Beta Pictoris. C1 [Bodenheimer, Peter] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [D'Angelo, Gennaro; Lissauer, Jack J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Saumon, Didier] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [D'Angelo, Gennaro] SETI Inst, Mountain View, CA 94043 USA. RP Bodenheimer, P (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. EM peter@ucolick.org; gennaro.dangelo@nasa.gov; Jack.J.Lissauer@nasa.gov; jfortney@ucolick.org; dsaumon@lanl.gov RI D'Angelo, Gennaro/L-7676-2014; OI D'Angelo, Gennaro/0000-0002-2064-0801; Fortney, Jonathan/0000-0002-9843-4354 FU NASA [NNX11AK54G, NNX11AD20G, NNH11AQ54I, NNH12AT89I]; NSF [AST0908807] FX Primary funding for this project was provided by the NASA Origins of Solar Systems Program grant NNX11AK54G (P.B., G.D., J.L.). G.D. acknowledges additional support from NASA grant NNX11AD20G. P.B. acknowledges additional support from NSF grant AST0908807. D.S. is supported in part by NASA grants NNH11AQ54I and NNH12AT89I. The authors are indebted to Gilles Chabrier for the use of his nuclear screening factors. The 3D hydrodynamical simulations reported in this work were performed using resources provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. G.D. thanks Los Alamos National Laboratory for its hospitality. The authors thank the referee Dr. Christoph Mordasini for a detailed and constructive review. NR 54 TC 20 Z9 20 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2013 VL 770 IS 2 AR 120 DI 10.1088/0004-637X/770/2/120 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 160HZ UT WOS:000320111200038 ER PT J AU Childress, M Aldering, G Antilogus, P Aragon, C Bailey, S Baltay, C Bongard, S Buton, C Canto, A Cellier-Holzem, F Chotard, N Copin, Y Fakhouri, HK Gangler, E Guy, J Hsiao, EY Kerschhaggl, M Kim, AG Kowalski, M Loken, S Nugent, P Paech, K Pain, R Pecontal, E Pereira, R Perlmutter, S Rabinowitz, D Rigault, M Runge, K Scalzo, R Smadja, G Tao, C Thomas, RC Weaver, BA Wu, C AF Childress, M. Aldering, G. Antilogus, P. Aragon, C. Bailey, S. Baltay, C. Bongard, S. Buton, C. Canto, A. Cellier-Holzem, F. Chotard, N. Copin, Y. Fakhouri, H. K. Gangler, E. Guy, J. Hsiao, E. Y. Kerschhaggl, M. Kim, A. G. Kowalski, M. Loken, S. Nugent, P. Paech, K. Pain, R. Pecontal, E. Pereira, R. Perlmutter, S. Rabinowitz, D. Rigault, M. Runge, K. Scalzo, R. Smadja, G. Tao, C. Thomas, R. C. Weaver, B. A. Wu, C. TI HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark energy; supernovae: general ID DIGITAL SKY SURVEY; INITIAL MASS FUNCTION; STAR-FORMING GALAXIES; LIGHT-CURVE SHAPES; STELLAR POPULATION SYNTHESIS; HIGH-REDSHIFT SUPERNOVAE; OR-EQUAL-TO; METALLICITY RELATION; SPACE-TELESCOPE; DARK-ENERGY AB We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 +/- 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 <= log(M*/M-circle dot) <= 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias. C1 [Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Perlmutter, S.; Runge, K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Childress, M.; Fakhouri, H. K.; Perlmutter, S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Childress, M.; Scalzo, R.] Australian Natl Univ, Mt Stromlo Observ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Pain, R.; Wu, C.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, F-75252 Paris 05, France. [Baltay, C.; Rabinowitz, D.] Yale Univ, Dept Phys, New Haven, CT 06250 USA. [Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Chotard, N.; Copin, Y.; Gangler, E.; Pereira, R.; Rigault, M.; Smadja, G.] Univ Lyon, F-69622 Lyon, France. [Chotard, N.; Copin, Y.; Gangler, E.; Pereira, R.; Rigault, M.; Smadja, G.] Univ Lyon 1, F-69622 Villeurbanne, France. [Chotard, N.; Copin, Y.; Gangler, E.; Pereira, R.; Rigault, M.; Smadja, G.] CNRS, IN2P3, Inst Phys Nucl Lyon, F-75700 Paris, France. [Nugent, P.; Thomas, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Computat Res Div, Berkeley, CA 94720 USA. [Pecontal, E.] Univ Lyon 1, Ctr Rech Astron Lyon, F-69561 St Genis Laval, France. [Tao, C.] Aix Marseille Univ, Ctr Phys Particules Marseille, CNRS, IN2P3, F-13288 Marseille 09, France. [Tao, C.] Tsinghua Univ, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China. [Weaver, B. A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Wu, C.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. RP Childress, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Copin, Yannick/B-4928-2015; Perlmutter, Saul/I-3505-2015; OI Copin, Yannick/0000-0002-5317-7518; Perlmutter, Saul/0000-0002-4436-4661; Scalzo, Richard/0000-0003-3740-1214 FU NASA [NAS5-98034]; GALEX Archival Research Grant [08-GALEX508-0008]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy Scientific Discovery through Advanced Computing (SciDAC) program [DE-FG02-06ER06-04]; Gordon & Betty Moore Foundation; CNRS/IN2P3 France; CNRS/INSU France; PNC France; DFG Germany [TRR33]; Henri Chretien International Research Grant; France-Berkeley Fund; Explora'Doc Grant by the Region Rhone Alpes; Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [ANI-0087344]; University of California, San Diego; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; W. M. Keck Foundation; Alfred P. Sloan Foundation; U.S. Department of Energy Office of Science FX Based in part on observations made with the NASA Galaxy Evolution Explorer. GALEX is operated from NASA by the California Institute of Technology under NASA contract NAS5-98034. The authors graciously acknowledge support from GALEX Archival Research Grant 08-GALEX508-0008 for program GI5-047 (PI: Aldering). This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under contract No. DE-AC02-05CH11231; the U.S. Department of Energy Scientific Discovery through Advanced Computing (SciDAC) program under contract No. DE-FG02-06ER06-04; by a grant from the Gordon & Betty Moore Foundation; in France by support from CNRS/IN2P3, CNRS/INSU, and PNC; and in Germany by the DFG through TRR33 "The Dark Universe." Funding was also provided by a Henri Chretien International Research Grant administrated by the American Astronomical Society; the France-Berkeley Fund; and by an Explora'Doc Grant by the Region Rhone Alpes. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. We thank them for a generous allocation of storage and computing time. HPWREN is funded by National Science Foundation Grant Number ANI-0087344, and the University of California, San Diego. Part of this research was conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020.; The authors would like to thank the excellent technical and scientific staff at the many observatories where data were taken for this paper: the University of Hawaii 2.2 m telescope, Lick Observatory, Keck Observatory, the Blanco 4 m telescope, the SOAR telescope, and Gemini South. Some data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration; the Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community, and we are extremely grateful for the opportunity to conduct observations from this mountain. We also thank Dan Birchall for assistance with SNIFS observations. We are very grateful to David Rubin for providing SALT2.2 light curve fits to the CfA light curves in advance of the forthcoming Union3 analysis. We also thank Josh Meyers and Dan Kasen for useful discussions. We thank the anonymous referee who provided very helpful comments. Some of the data analyzed here were obtained from the Sloan Digital Sky Survey Eight Data Release (SDSS-III DR8). Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 118 TC 41 Z9 41 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2013 VL 770 IS 2 AR UNSP 108 DI 10.1088/0004-637X/770/2/108 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 160HZ UT WOS:000320111200026 ER PT J AU Childress, M Aldering, G Antilogus, P Aragon, C Bailey, S Baltay, C Bongard, S Buton, C Canto, A Cellier-Holzem, F Chotard, N Copin, Y Fakhouri, HK Gangler, E Guy, J Hsiao, EY Kerschhaggl, M Kim, AG Kowalski, M Loken, S Nugent, P Paech, K Pain, R Pecontal, E Pereira, R Perlmutter, S Rabinowitz, D Rigault, M Runge, K Scalzo, R Smadja, G Tao, C Thomas, RC Weaver, BA Wu, C AF Childress, M. Aldering, G. Antilogus, P. Aragon, C. Bailey, S. Baltay, C. Bongard, S. Buton, C. Canto, A. Cellier-Holzem, F. Chotard, N. Copin, Y. Fakhouri, H. K. Gangler, E. Guy, J. Hsiao, E. Y. Kerschhaggl, M. Kim, A. G. Kowalski, M. Loken, S. Nugent, P. Paech, K. Pain, R. Pecontal, E. Pereira, R. Perlmutter, S. Rabinowitz, D. Rigault, M. Runge, K. Scalzo, R. Sma