FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Finsterle, S
Zhang, YQ
Pan, LH
Dobson, P
Oglesby, K
AF Finsterle, Stefan
Zhang, Yingqi
Pan, Lehua
Dobson, Patrick
Oglesby, Ken
TI Microhole arrays for improved heat mining from enhanced geothermal
systems
SO GEOTHERMICS
LA English
DT Article
DE Geothermal energy; Heat extraction; Microholes; Numerical modeling; EGS
ID SOULTZ-SOUS-FORETS; POROUS-MEDIA; FLUID-FLOW; RESERVOIR; SIMULATION;
TRANSPORT; ROCKS
AB Numerical simulations are used to examine whether microhole arrays have the potential to increase the heat mining efficiency and sustainability of enhanced geothermal systems (EGS). Injecting the working fluid from a large number of spatially distributed microholes rather than a few conventionally drilled wells is likely to provide access to a larger reservoir volume with enhanced overall flow distances between the injection and production wells and increased contact area between permeable fractures and the hot rock matrix. More importantly, it reduces the risk of preferential flow and early thermal breakthrough, making microhole array-based EGS a more robust design. Heat recovery factors are calculated for EGS reservoirs with a conventional well configuration and with microhole arrays. The synthetic reservoir has properties similar to those of the EGS test site at Soultz-sous-Forets. The wells and microholes are explicitly included in the numerical model. They intersect a stimulated reservoir region, which is modeled using a dual-permeability approach, as well as a wide-aperture zone, which is incorporated as a discrete feature. Local and global sensitivity analyses are used to examine the robustness of the design for a variety of reservoir and operating conditions. The simulations indicate that the flexibility offered by microhole drilling technology could provide an alternative EGS exploitation option with improved performance. (c) 2013 Elsevier Ltd. All rights reserved.
C1 [Finsterle, Stefan; Zhang, Yingqi; Pan, Lehua; Dobson, Patrick] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Oglesby, Ken] Impact Technol LLC, Tulsa, OK 74153 USA.
RP Zhang, YQ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 74-120, Berkeley, CA 94720 USA.
EM YQZhang@lbl.gov
RI Finsterle, Stefan/A-8360-2009; Dobson, Patrick/D-8771-2015; Zhang,
Yingqi/D-1203-2015; Pan, Lehua/G-2439-2015
OI Finsterle, Stefan/0000-0002-4446-9906; Dobson,
Patrick/0000-0001-5031-8592;
FU Lawrence Berkeley National Laboratory under U.S. Department of Energy,
Assistant Secretary for Energy Efficiency and Renewable Energy,
Geothermal Technologies Program [DE-FOA-0000075]
FX The very thoughtful comments and suggestions by two anonymous reviewers
and the technical review by Yoojin Jung of Lawrence Berkeley National
Laboratory are greatly appreciated. This work was supported by Lawrence
Berkeley National Laboratory under U.S. Department of Energy, Assistant
Secretary for Energy Efficiency and Renewable Energy, Geothermal
Technologies Program, Contract No. DE-FOA-0000075: Recovery Act:
Enhanced Geothermal Systems Component Research and Development/Analysis.
NR 40
TC 14
Z9 14
U1 2
U2 26
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0375-6505
EI 1879-3576
J9 GEOTHERMICS
JI Geothermics
PD JUL
PY 2013
VL 47
BP 104
EP 115
DI 10.1016/j.geothermics.2013.03.001
PG 12
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA 168DX
UT WOS:000320687000011
ER
PT J
AU DiPippo, R
Lippmann, MJ
AF DiPippo, Ronald
Lippmann, Marcelo J.
TI Alfredo Mainieri Protti (1943-2013) Obituary
SO GEOTHERMICS
LA English
DT Biographical-Item
C1 [DiPippo, Ronald] Univ Massachusetts Dartmouth, South Dartmouth, MA 02748 USA.
[Lippmann, Marcelo J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP DiPippo, R (reprint author), Univ Massachusetts Dartmouth, South Dartmouth, MA 02748 USA.
EM RonDiPippo@comcast.net; mjlippmann@lbl.gov
NR 1
TC 0
Z9 0
U1 0
U2 1
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0375-6505
J9 GEOTHERMICS
JI Geothermics
PD JUL
PY 2013
VL 47
BP 127
EP 127
DI 10.1016/j.geothermics.2013.03.005
PG 1
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA 168DX
UT WOS:000320687000013
ER
PT J
AU Wu, W
Qin, YF
Li, Z
Dong, J
Dai, JC
Lu, CC
Guo, XJ
Zhao, Y
Zhu, Y
Zhang, W
Hang, B
Sha, JH
Shen, HB
Xia, YK
Hu, ZB
Wang, XR
AF Wu, Wei
Qin, Yufeng
Li, Zheng
Dong, Jing
Dai, Juncheng
Lu, Chuncheng
Guo, Xuejiang
Zhao, Yang
Zhu, Yong
Zhang, Wei
Hang, Bo
Sha, Jiahao
Shen, Hongbing
Xia, Yankai
Hu, Zhibin
Wang, Xinru
TI Genome-wide microRNA expression profiling in idiopathic non-obstructive
azoospermia: significant up-regulation of miR-141, miR-429 and
miR-7-1-3p
SO HUMAN REPRODUCTION
LA English
DT Article
DE DNA methylation; male infertility; microRNA; non-obstructive
azoospermia; seminal plasma
ID SEMINAL PLASMA MICRORNAS; MALE-INFERTILITY; CANCER; SPERMATOGENESIS;
DIAGNOSIS; DISEASE; ONCOGENESIS; BIOMARKERS; TISSUES; SYSTEM
AB What is the profile of miRNAs in seminal plasma of patients with non-obstructive azoospermia (NOA)?
miR-141, miR-429 and miR-7-1-3p are significantly increased in seminal plasma of patients with NOA compared with fertile controls.
There is currently an urgent need to develop a noninvasive diagnostic test for NOA. Altered microRNA (miRNA) profiles have been proposed as potential biomarkers for the diagnosis of disease states.
A total of 200 subjects (n 100 for NOA, n 100 for fertile control) were recruited to participate in this study. Recruitment took place from May 2008 to June 2010.
We employed a strategy consisting of initial screening by TaqMan Low Density Array then further validation with a TaqMan quantitative RTPCR assay. Validation of the profiling results was conducted in two independent phases. In addition, the expression of the three validated seminal plasma miRNAs (sp-miRNAs) was examined in testicular tissues of patients with NOA and of fertile controls. Methylation status and functional analyses were also performed for the identified sp-miRNAs.
miR-141, miR-429 and miR-7-1-3p were significantly increased in seminal plasma of patients with NOA compared with fertile controls. As sensitive and specific biomarkers, the profiling of these three identified sp-miRNAs provides a novel noninvasive, semen-based test for NOA diagnosis. The methylation status of these sp-miRNAs was inversely associated with their expression patterns. Additionally, we found that Cbl and Tgf2 were down-regulated by miR-141, while Rb1 and Pik3r3 were down-regulated by miR-7-1-3p.
miRNA expression profile was investigated in seminal plasma samples from only a small number of NOA patients. In future investigations, a larger sample size should be adopted and the functional role of the three sp-miRNAs should be further characterized in animal models.
Given that sp-miRNAs show reproducible and stable expression levels, they are potentially novel noninvasive biomarkers for the diagnosis of NOA. We propose that the three sp-miRNAs described above may participate in a methylation-miRNA-gene network related to NOA development. This work provides a foundation for interpretation of miRNA changes associated with pathogenesis of NOA and extends the current understanding of human NOA pathogenesis.
This work was supported by the following grants: Key Project of National Natural Science Foundation of China (No. 30930079), National Basic Research Program of China (973 Program) (No. 2009CB941703, 2011CB944304), National Natural Science Foundation of China (No. 81072328 and 30901232); Science and Technology Development Fund Key Project of Nanjing Medical University (No. 2012NJMU002) and Priority Academic Program Development of Jiangsu Higher Education Institutions. The funding organizations played no role in the design and conduct of the study, in collection, management, analysis and interpretation of the data, or in the presentation, review or approval of the manuscript. There are no conflicts of interest to be declared.
C1 [Wu, Wei; Qin, Yufeng; Lu, Chuncheng; Guo, Xuejiang; Zhang, Wei; Sha, Jiahao; Xia, Yankai; Wang, Xinru] Nanjing Med Univ, Sch Publ Hlth, Inst Toxicol, State Key Lab Reprod Med, Nanjing 210029, Jiangsu, Peoples R China.
[Wu, Wei; Qin, Yufeng; Lu, Chuncheng; Xia, Yankai; Wang, Xinru] Nanjing Med Univ, Minist Educ, Key Lab Modern Toxicol, Beijing, Peoples R China.
[Wu, Wei] Wuxi Hosp Maternal & Child Hlth Care, Wuxi 214002, Peoples R China.
[Li, Zheng; Zhu, Yong] Shanghai Jiao Tong Univ, Sch Med, Renji Hosp, Dept Urol,Shanghai Human Sperm Bank,Shanghai Inst, Shanghai 200001, Peoples R China.
[Dong, Jing; Dai, Juncheng; Zhao, Yang; Shen, Hongbing; Hu, Zhibin] Nanjing Med Univ, Ctr Canc, Dept Epidemiol & Biostat, Nanjing 210029, Jiangsu, Peoples R China.
[Zhang, Wei] Nanjing Med Univ, Affiliated Hosp 1, Dept Urol, Nanjing 210029, Jiangsu, Peoples R China.
[Hang, Bo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA.
RP Xia, YK (reprint author), Nanjing Med Univ, Inst Toxicol, State Key Lab Reprod Med, 818 East Tianyuan Rd, Nanjing 211166, Jiangsu, Peoples R China.
EM yankaixia@njmu.edu.cn
RI Guo, Xuejiang/J-9600-2014
OI Guo, Xuejiang/0000-0002-0475-5705
FU Key Project of National Natural Science Foundation of China [30930079];
National Basic Research Program of China (973 Program) [2009CB941703,
2011CB944304]; National Natural Science Foundation of China [81072328,
30901232]; Science and Technology Development Fund Key Project of
Nanjing Medical University [2012NJMU002]; Priority Academic Program
Development of Jiangsu Higher Education Institutions
FX This work was supported by the following grants: Key Project of National
Natural Science Foundation of China (No. 30930079), National Basic
Research Program of China (973 Program) (No. 2009CB941703,
2011CB944304), National Natural Science Foundation of China (No.
81072328 and 30901232); Science and Technology Development Fund Key
Project of Nanjing Medical University (No. 2012NJMU002) and Priority
Academic Program Development of Jiangsu Higher Education Institutions.
The funding organizations played no role in the design and conduct of
the study, in collection, management, analysis and interpretation of the
data, or in the presentation, review or approval of the manuscript.
NR 50
TC 22
Z9 27
U1 4
U2 27
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0268-1161
J9 HUM REPROD
JI Hum. Reprod.
PD JUL
PY 2013
VL 28
IS 7
BP 1827
EP 1836
DI 10.1093/humrep/det099
PG 10
WC Obstetrics & Gynecology; Reproductive Biology
SC Obstetrics & Gynecology; Reproductive Biology
GA 170MK
UT WOS:000320855600012
PM 23559187
ER
PT J
AU Li, JV
Duenow, JN
Kuciauskas, D
Kanevce, A
Dhere, RG
Young, MR
Levi, DH
AF Li, Jian V.
Duenow, Joel N.
Kuciauskas, Darius
Kanevce, Ana
Dhere, Ramesh G.
Young, Matthew R.
Levi, Dean H.
TI Electrical Characterization of Cu Composition Effects in CdS/CdTe
Thin-Film Solar Cells With a ZnTe:Cu Back Contact
SO IEEE JOURNAL OF PHOTOVOLTAICS
LA English
DT Article
DE Admittance measurement; capacitance-voltage (CV) characteristics; CdTe;
charge carrier density; contacts; defect
ID LEVEL TRANSIENT SPECTROSCOPY; DEEP-LEVEL; CDTE; THICKNESS; DEFECTS
AB We study the effects of Cu composition on the CdTe/ZnTe:Cu back contact and the bulk CdTe. For the back contact, its potential barrier decreases with Cu concentration, while its saturation current density increases. For the bulk CdTe, the hole density increases with Cu concentration. We identify a Cu-related deep level at similar to 0.55 eV whose concentration is significant when the Cu concentration is high. The device performance, which initially improves with Cu concentration then decreases, reflects the interplay between the positive influences (reducing the back-contact potential barrier while increasing the saturation current density of the back contact and hole density in CdTe bulk) and negative influences (increasing deep levels in CdTe) of Cu.
C1 [Li, Jian V.; Duenow, Joel N.; Kuciauskas, Darius; Kanevce, Ana; Dhere, Ramesh G.; Young, Matthew R.; Levi, Dean H.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Li, JV (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM jian.li@nrel.gov; joel.duenow@nrel.gov; darius.kuciauskas@nrel.gov;
Ana.Kanevce@nrel.gov; ramesh.dhere@nrel.gov; matthew.young@nrel.gov;
dean.levi@nrel.gov
RI Li, Jian/B-1627-2016
FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy
Laboratory
FX Manuscript received May 14, 2012; revised October 16, 2012 and February
5, 2013; accepted March 19, 2013. Date of publication April 29, 2013;
date of current version June 18, 2013. This work was supported by the
U.S. Department of Energy under Contract DE-AC36-08GO28308 with the
National Renewable Energy Laboratory.
NR 21
TC 8
Z9 8
U1 3
U2 58
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2156-3381
J9 IEEE J PHOTOVOLT
JI IEEE J. Photovolt.
PD JUL
PY 2013
VL 3
IS 3
BP 1095
EP 1099
DI 10.1109/JPHOTOV.2013.2257919
PG 5
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA 170OK
UT WOS:000320862500025
ER
PT J
AU Jin, HH
Miller, GM
Pety, SJ
Griffin, AS
Stradley, DS
Roach, D
Sottos, NR
White, SR
AF Jin, Henghua
Miller, Gina M.
Pety, Stephen J.
Griffin, Anthony S.
Stradley, Dylan S.
Roach, Dennis
Sottos, Nancy R.
White, Scott R.
TI Fracture behavior of a self-healing, toughened epoxy adhesive
SO INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES
LA English
DT Article
DE Epoxy adhesive; Self-healing; Microcapsule; Fracture toughness
ID OPENING METATHESIS POLYMERIZATION; FIBER-REINFORCED COMPOSITES; FILLED
EPOXY; RUBBER PARTICLES; MATRIX ADHESION; POLYMERS; MECHANISMS;
TOUGHNESS; SIZE; FAILURE
AB A self-healing, toughened epoxy adhesive is demonstrated based on a commercial structural adhesive film. Self-healing is achieved via embedded microcapsules containing dicyclopentadiene monomer and solid particles of bis(tricyclohexylphosphine)-benzylidine ruthenium (IV) dichloride (Grubbs') catalyst. Recovery of fracture toughness is assessed through fracture testing of width tapered double cantilever beam (WTDCB) specimens. Healing efficiencies as high as 58% were achieved for 6.6 wt% DCPD microcapsules and 10 mg Grubbs' catalyst. However, virgin fracture toughness is reduced with the addition of ca. 117 mu m diameter microcapsules as a result of suppression of the damage zone as revealed by transmission optical micrographs. The uniform dispersal of microcapsules throughout a rubber toughened epoxy adhesive formulated using EPON 828, piperidine and CTBN alleviated the suppression effect and demonstrated retention of virgin fracture toughness of adhesives. (c) 2013 Elsevier Ltd. All rights reserved.
C1 [Jin, Henghua; Miller, Gina M.; Pety, Stephen J.; Griffin, Anthony S.; Stradley, Dylan S.; Sottos, Nancy R.; White, Scott R.] Univ Illinois, Urbana, IL 61801 USA.
[Jin, Henghua; Pety, Stephen J.; Griffin, Anthony S.; Stradley, Dylan S.; Sottos, Nancy R.; White, Scott R.] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA.
[Roach, Dennis] Sandia Natl Labs, FAA Airworthiness Assurance Ctr, Livermore, CA 94550 USA.
RP White, SR (reprint author), Univ Illinois, Urbana, IL 61801 USA.
EM swhite@illinois.edu
FU National Science Foundation [CMS 05-27965]; Sandia National Laboratories
[BPO 378467]; NDSEG fellowship; Department of Defense
FX The authors acknowledge funding support from the National Science
Foundation (Grant # CMS 05-27965) and Sandia National Laboratories (BPO
378467). Stephen Pety was supported in part by an NDSEG fellowship,
which is sponsored by the Department of Defense. In addition, the
authors greatly acknowledge Dr. Chris Mangun and Dr. Mary M. Caruso for
technical help and discussion. Manufacturing test specimens was
accomplished with the help of Kent Elam in the Aerospace Engineering
Machine Shop. Fracture testing was completed at the Advanced Materials
Testing and Engineering Lab, with assistance of Peter Kurath, Gavin Horn
and Rick Rottet. Electron microscopy was performed in the Imaging
Technology Group of the Beckman Institute for Advanced Science and
Technology, with the assistance of Scott Robinson.
NR 45
TC 27
Z9 28
U1 6
U2 99
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0143-7496
J9 INT J ADHES ADHES
JI Int. J. Adhes. Adhes.
PD JUL
PY 2013
VL 44
BP 157
EP 165
DI 10.1016/j.ijadhadh.2013.02.015
PG 9
WC Engineering, Chemical; Materials Science, Multidisciplinary
SC Engineering; Materials Science
GA 165LK
UT WOS:000320485200018
ER
PT J
AU Derode, B
Cappa, F
Guglielmi, Y
Rutqvist, J
AF Derode, Benoit
Cappa, Frederic
Guglielmi, Yves
Rutqvist, Jonny
TI Coupled seismo-hydromechanical monitoring of inelastic effects on
injection-induced fracture permeability
SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES
LA English
DT Article
DE Inelastic fracture permeability; Microseismicity; Hydromechanical
experiment and modeling; Fluid and stress transfer; Strength weakening
ID INDUCED SEISMICITY; FAULT ZONE; EARTHQUAKE; STIFFNESS; BEHAVIOR;
SYSTEMS; STRESS; FRANCE; MEXICO; SLOPE
AB We present in situ measurements of fluid pressure, deformation and seismicity in natural fractures together with coupled hydromechanical simulations. We conducted a step-rate water injection (similar to 3.5 MPa and 1200 s) to induce the local pressurization of a critically stressed fractured carbonate reservoir layer located at 250 m-depth in the Low Noise Underground Laboratory (LSBB), southern France. An observed factor-of-3 increase in the fracture permeability was associated with the injection-induced fluid pressure increase and about 100 triggered seismic events. Both normal opening (a few microns) of the fluid-injected fracture and the associated tilt ( <1 micro-radian) of the fracture near field displayed inelastic behavior highlighting an irreversible fracture shear and dilatant failure, amounting to about 1/3-1/2 of the maximum measured deformations.
Using a plane-strain finite-difference coupled hydromechanical model, our calculation shows that tensile failure first occurred in the injection zone and then shear failure spread along fractures into the surrounding unsaturated rock through stress transfer from the injection zone. The most striking result of these model simulations is that the mechanical weakening of the fractures in the near field induced a 2-5 x 10(5) Pa release of the normal stress across the fluid-injected fracture that provoked fracture slip and increase in permeability. A geological exploration of the fracture zone after the experiment showed that no major failure had occurred, and we therefore relate these strength and permeability variations to the slight reactivation (similar to microns) of pre-existing fractures. (C) 2013 Elsevier Ltd..All rights reserved.
C1 [Derode, Benoit; Cappa, Frederic] Univ Nice Sophia Antipolis, Geoazur UMR7329, Cote dAzur Observ, F-06560 Sophia Antipolis, France.
[Guglielmi, Yves] Aix Marseille Univ, CNRS, IRD, CEREGE,UMR7330, F-13545 Aix En Provence, France.
[Cappa, Frederic; Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Derode, B (reprint author), Univ Nice Sophia Antipolis, Geoazur UMR7329, Cote dAzur Observ, 250 Rue Albert Einstein, F-06560 Sophia Antipolis, France.
EM derode@geoazur.unice.fr
RI Rutqvist, Jonny/F-4957-2015; Cappa, Frederic/B-4014-2017
OI Rutqvist, Jonny/0000-0002-7949-9785; Cappa, Frederic/0000-0003-4859-8024
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX This work is financed by the ANR "Captage de CO2" through the
"HPPP-CO2" Project, by the PACA county through the
"PETRO-PRO" Project, and by the ANR "RiskNat" through the "SLAMS"
Project. Funding for the contribution by Lawrence Berkeley National
Laboratory was provided by the U.S. Department of Energy under Contract
no. DE-AC02-05CH11231. We thank the engineers team (D. Boyer, A.
Cavaillou, and M. Auguste) of the Laboratoire Souterrain a Bas Bruit de
Rustrel (LSBB) (http://lsbb.oca.eu/), and the SITES S.A.S. engineer
Herve Caron for their technical support during the experiments. We also
thank the anonymous reviewer for the constructive comments and
suggestions that improved our paper.
NR 39
TC 7
Z9 7
U1 0
U2 29
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1365-1609
J9 INT J ROCK MECH MIN
JI Int. J. Rock Mech. Min. Sci.
PD JUL
PY 2013
VL 61
BP 266
EP 274
DI 10.1016/j.ijrmms.2013.03.008
PG 9
WC Engineering, Geological; Mining & Mineral Processing
SC Engineering; Mining & Mineral Processing
GA 165PA
UT WOS:000320494600024
ER
PT J
AU Jordanova, V
Borovsky, J
Roussev, I
AF Jordanova, Vania
Borovsky, Joseph
Roussev, Ilia
TI Special Issue: Dynamics of the Complex Geospace System Preface
SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS
LA English
DT Editorial Material
C1 [Jordanova, Vania] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Borovsky, Joseph] Space Sci Inst, Boulder, CO USA.
[Roussev, Ilia] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
RP Jordanova, V (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM vania@lanl.gov; jborovsky@spacescience.org; iroussev@ifa.hawaii.edu
OI Jordanova, Vania/0000-0003-0475-8743
NR 0
TC 0
Z9 0
U1 0
U2 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1364-6826
J9 J ATMOS SOL-TERR PHY
JI J. Atmos. Sol.-Terr. Phys.
PD JUL
PY 2013
VL 99
SI SI
BP V
EP V
DI 10.1016/S1364-6826(13)00137-5
PG 1
WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
GA 165OS
UT WOS:000320493800001
ER
PT J
AU Farrugia, CJ
Erkaev, NV
Jordanova, VK
Lugaz, N
Sandholt, PE
Muhlbachler, S
Torbert, RB
AF Farrugia, C. J.
Erkaev, N. V.
Jordanova, V. K.
Lugaz, N.
Sandholt, P. E.
Muehlbachler, S.
Torbert, R. B.
TI Features of the interaction of interplanetary coronal mass
ejections/magnetic clouds with the Earth's magnetosphere
SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS
LA English
DT Article
DE Interplanetary coronal mass ejections; Magnetosheath flow; ICME-ICME
interactions; 2-Dip geomagnetic storms
ID TRANSPOLAR POTENTIAL SATURATION; DAYSIDE MAGNETOPAUSE; PLASMA
OBSERVATIONS; MAGNETIC-FIELD; COMPLEX EJECTA; RAM PRESSURE; ART.; SHOCK;
MAGNETOSHEATH; SIGNATURES
AB The interaction of interplanetary coronal mass ejections (ICMEs) and magnetic clouds (MCs) with the Earth's magnetosphere exhibits various interesting features principally due to interplanetary parameters which change slowly and reach extreme values of long duration. These, in turn, allow us to explore the geomagnetic response to continued and extreme driving of the magnetosphere. In this paper we shall discuss elements of the following: (i) anomalous features of the flow in the terrestrial magnetosheath during ICME/MC passage and (ii) large geomagnetic disturbances when total or partial mergers of ICMEs/MCs pass Earth. In (i) we emphasize two roles played by the upstream Alfven Mach number in solar wind-magnetosphere interactions: (i) It gives rise to wide plasma depletion layers. (ii) It enhances the magnetosheath flow speed on draped magnetic field lines. (By plasma depletion layer we mean a magnetosheath region adjacent to the magnetopause where magnetic forces dominate over hydrodynamic forces.) In (ii) we stress that the ICME mergers elicit geoeffects over and above those of the individual members. In addition, features of the non-linear behavior of the magnetosphere manifest themselves. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Farrugia, C. J.; Lugaz, N.; Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Erkaev, N. V.] Russian Acad Sci, Inst Computat Modeling, Krasnoyark, Russia.
[Erkaev, N. V.] Siberian Fed Univ, Krasnoyarsk, Russia.
[Jordanova, V. K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Sandholt, P. E.] Univ Oslo, Dept Phys, Oslo, Norway.
[Muehlbachler, S.] Austrian Res Inst, Vienna, Austria.
RP Farrugia, CJ (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
EM charlie.farrugia@unh.edu
RI Lugaz, Noe/C-1284-2008; Erkaev, Nikolai/M-1608-2013;
OI Lugaz, Noe/0000-0002-1890-6156; Erkaev, Nikolai/0000-0001-8993-6400;
Jordanova, Vania/0000-0003-0475-8743
FU NASA [NNX10AQ29G]; NSF [AGS-1140211]; Austrian Science Fund Project
[I193-N16]; RFBR [12-05-00152-a]; U.S. Department of Energy; NASA
FX C.J.F. is supported by NASA Grant NNX10AQ29G and NSF Grant AGS-1140211.
N.V.E. acknowledges support from Austrian Science Fund Project I193-N16
and RFBR Grant no 12-05-00152-a. N.L. acknowledges support from NSF
Grant AGS-1140211. Work at LANL was conducted under the auspices of the
U.S. Department of Energy with partial support from NASA and NSF.
NR 53
TC 4
Z9 4
U1 0
U2 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1364-6826
J9 J ATMOS SOL-TERR PHY
JI J. Atmos. Sol.-Terr. Phys.
PD JUL
PY 2013
VL 99
SI SI
BP 14
EP 26
DI 10.1016/j.jastp.2012.11.014
PG 13
WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
GA 165OS
UT WOS:000320493800003
ER
PT J
AU Moore, TE
Burch, JL
Daughton, WS
Fuselier, SA
Hasegawa, H
Petrinec, SM
Pu, ZY
AF Moore, T. E.
Burch, J. L.
Daughton, W. S.
Fuselier, S. A.
Hasegawa, H.
Petrinec, S. M.
Pu, Zuyin
TI Multiscale studies of the three-dimensional dayside X-line
SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS
LA English
DT Article
DE Reconnection; Magnetosphere; Multiscale; Plasma; Magnetic
ID MAGNETIC RECONNECTION; CLUSTER OBSERVATIONS; MAGNETOPAUSE; FIELD;
BOUNDARY
AB We review recent experience from the Cluster, Double Star, and THEMIS missions for lessons that apply to the upcoming Magnetospheric Multiscale Mission (MMS) being developed for launch in 2014. On global scales, simulation and statistical studies lead to mean configurations of dayside reconnection, implying specific relative alignments of the inflow magnetic fields and X-line, with implications for MMS operations designed to maximize the number of close encounters with the diffusion region. At intermediate MHD-to-ion scales, reconstruction of features created by one or two X-lines have developed to the point where data from a cluster of spacecraft can determine their temporal trends and the approximate three-dimensional X-line structure. Recent petascale particle-in-cell (PIC) simulations of reconnection encompass three spatial dimensions with excellent resolution, and make striking predictions of electron scale physics that creates complex interacting flux ropes under component reconnection. High time resolution measurements from MMS will determine the detailed electron scale kinetics embedded within the global and MHD-ion scale contexts. These developments will lead to the refinement of our three-dimensional multiscale picture of reconnection, yielding improved understanding of the global, MHD, and local physics controlling the onset or quenching, variability, and mean rate of reconnection. This in turn will enable improved predictability of the structural features created by transient reconnection, and their space weather consequences. Published by Elsevier Ltd.
C1 [Moore, T. E.] NASA, Goddard SFC, Heliophys Sci Div, Greenbelt, MD 20771 USA.
[Burch, J. L.; Fuselier, S. A.] Southwest Res Inst, San Antonio, TX 78238 USA.
[Daughton, W. S.] Los Alamos Natl Labs, Los Alamos, NM 87545 USA.
[Petrinec, S. M.] Lockheed Martin ATC, Palo Alto, CA 94304 USA.
[Pu, Zuyin] Beijing Univ, Dept Geophys, Beijing 100871, Peoples R China.
RP Moore, TE (reprint author), NASA, Goddard SFC, Heliophys Sci Div, Code 670,8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
EM t.e.moore@nasa.gov; jburch@swri.org; daughton@lanl.gov;
hase@stp.isas.jaxa.jp; steven.m.petrinec@lmco.com; zypu@pku.edu.cn
RI Hasegawa, Hiroshi/A-1192-2007; Moore, Thomas/D-4675-2012; Daughton,
William/L-9661-2013; NASA MMS, Science Team/J-5393-2013
OI Hasegawa, Hiroshi/0000-0002-1172-021X; Moore,
Thomas/0000-0002-3150-1137; NASA MMS, Science Team/0000-0002-9504-5214
FU NASA Magnetospheric Multiscale project at Goddard Space Flight Center
FX This work was supported by the NASA Magnetospheric Multiscale project at
Goddard Space Flight Center. The authors are grateful to the ISROSES
Conference organizers for the opportunity to present this material in
draft form there.
NR 39
TC 12
Z9 12
U1 0
U2 15
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1364-6826
J9 J ATMOS SOL-TERR PHY
JI J. Atmos. Sol.-Terr. Phys.
PD JUL
PY 2013
VL 99
SI SI
BP 32
EP 40
DI 10.1016/j.jastp.2012.10.004
PG 9
WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
GA 165OS
UT WOS:000320493800005
ER
PT J
AU Ilie, R
Skoug, RM
Funsten, HO
Liemohn, MW
Bailey, JJ
Gruntman, M
AF Ilie, R.
Skoug, R. M.
Funsten, H. O.
Liemohn, M. W.
Bailey, J. J.
Gruntman, M.
TI The impact of geocoronal density on ring current development
SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS
LA English
DT Article
DE Inner magnetosphere; Ring current; Geocorona; Modeling
ID ENERGETIC NEUTRAL ATOMS; CHARGE-EXCHANGE; PLASMA SHEET; CURRENT IONS;
INNER MAGNETOSPHERE; MAGNETIC STORM; ELECTRIC-FIELD; HYDROGEN; DECAY;
RADIATION
AB Long-term ring current decay following a magnetic storm is mainly due to charge exchange collisions of ring current ions with geocoronal neutral atoms forming energetic neutral atoms (ENAs) that leave the ring current system. Therefore, the density distribution of these cold and tenuous neutral hydrogen atoms plays a key role in the ring current recovery. TWINS ENA images provide a direct measurement of these ENA losses and therefore insight into the dynamics of the ring current decay through interactions with the geocorona. To assess the influence of geocoronal neutrals on ring current decay, we compare the predicted ENA emission using five different geocoronal models and the HEIDI ring current model to simulate the July 22, 2009 storm.
We show that for high energy H+ (>= 100 keV), all geocoronal models predict similar decay rates of the ring current ions. However, for low energy ions (<= 100 key), the decay rate varies significantly depending on the geocoronal density model. Comparison with TWINS ENA images shows that the location of the peak ENA enhancements is highly dependent on the distribution of geocoronal hydrogen density. The ring current topology depends greatly on the hydrogen model used, therefore knowing the H-distribution is very important in understanding how the ring current recovers following a magnetic storm. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Ilie, R.; Skoug, R. M.; Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Liemohn, M. W.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA.
[Bailey, J. J.; Gruntman, M.] Univ So Calif, Los Angeles, CA USA.
RP Ilie, R (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM rilie@lanl.gov
RI Liemohn, Michael/H-8703-2012; Funsten, Herbert/A-5702-2015; Gruntman,
Mike/A-5426-2008
OI Liemohn, Michael/0000-0002-7039-2631; Funsten,
Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X
FU U.S. Department of Energy; NFS [NSF IAA 1027008]; NASA TWINS project
FX Work at Los Alamos was performed under the auspices of the U.S.
Department of Energy with financial support from the NFS grant NSF IAA
1027008 and the NASA TWINS project. We gratefully acknowledge the
dedicated work of the TWINS team, especially Phil Valek and Jillian
Redfern from Southwest Research Institute for providing the data.
Special thanks to Natasha Buzulukova and Mei-Ching Fok from NASA Goddard
for providing the ENA tool.
NR 51
TC 10
Z9 10
U1 0
U2 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1364-6826
EI 1879-1824
J9 J ATMOS SOL-TERR PHY
JI J. Atmos. Sol.-Terr. Phys.
PD JUL
PY 2013
VL 99
SI SI
BP 92
EP 103
DI 10.1016/j.jastp.2012.03.010
PG 12
WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
GA 165OS
UT WOS:000320493800014
ER
PT J
AU Phillips, C
AF Phillips, Cynthia
TI Best papers, IPDPS 2010
SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
LA English
DT Editorial Material
C1 Sandia Natl Labs, Livermore, CA 94550 USA.
RP Phillips, C (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA.
EM caphill@sandia.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0743-7315
J9 J PARALLEL DISTR COM
JI J. Parallel Distrib. Comput.
PD JUL
PY 2013
VL 73
IS 7
SI SI
BP 897
EP 897
DI 10.1016/j.jpdc.2013.05.002
PG 1
WC Computer Science, Theory & Methods
SC Computer Science
GA 168BA
UT WOS:000320679500001
ER
PT J
AU Tang, W
Desai, N
Buettner, D
Lan, ZL
AF Tang, Wei
Desai, Narayan
Buettner, Daniel
Lan, Zhiling
TI Job scheduling with adjusted runtime estimates on production
supercomputers
SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
LA English
DT Article
DE Job scheduling; Runtime estimates; Walltime prediction
AB The estimate of a parallel job's running time (walltime) is an important attribute used by resource managers and job schedulers in various scenarios, such as backfilling and short-job-first scheduling. This value is provided by the user, however, and has been repeatedly shown to be inaccurate. We studied the workload characteristic based on a large amount of historical data (over 275,000 jobs in two and a half years) from a production leadership-class computer. Based on that study, we proposed a set of walltime adjustment schemes producing more accurate estimates. To ensure the utility of these schemes on production systems, we analyzed their potential impact in scheduling and evaluated the schemes with an event-driven simulator. Our experimental results show that our method can achieve not only better overall estimation accuracy but also improved overall system performance. Specifically, the average estimation accuracy of the tested workload can be improved by up to 35%, and the system performance in terms of average waiting time and weighted average waiting time can be improved by up to 22% and 28%, respectively. (c) 2013 Elsevier Inc. All rights reserved.
C1 [Tang, Wei; Lan, Zhiling] IIT, Chicago, IL 60616 USA.
[Desai, Narayan; Buettner, Daniel] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Tang, W (reprint author), IIT, Chicago, IL 60616 USA.
EM wtang6@iit.edu
FU National Science Foundation [CNS-0834514, CNS-0720549, CCF-0702737]; US
Department of Energy [DE-AC02-06CH11357]
FX This work was supported in part by National Science Foundation grants
CNS-0834514, CNS-0720549, and CCF-0702737. The work at Argonne National
Laboratory was supported by the US Department of Energy, under Contract
DE-AC02-06CH11357. We gratefully acknowledge the use of the resources of
the Argonne Leadership Computing Facility at Argonne National
Laboratory.
NR 31
TC 6
Z9 6
U1 0
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0743-7315
J9 J PARALLEL DISTR COM
JI J. Parallel Distrib. Comput.
PD JUL
PY 2013
VL 73
IS 7
SI SI
BP 926
EP 938
DI 10.1016/j.jpdc.2013.02.006
PG 13
WC Computer Science, Theory & Methods
SC Computer Science
GA 168BA
UT WOS:000320679500004
ER
PT J
AU Oliker, L
Yelick, K
AF Oliker, Leonid
Yelick, Katherine
TI Best paper awards: 26th international parallel and distributed
processing symposium (IPDPS 2012)
SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
LA English
DT Editorial Material
C1 [Oliker, Leonid] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
Univ Calif Berkeley, Berkeley, CA 94720 USA.
RP Oliker, L (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA.
EM loliker@lbl.gov
NR 0
TC 0
Z9 0
U1 0
U2 6
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0743-7315
J9 J PARALLEL DISTR COM
JI J. Parallel Distrib. Comput.
PD JUL
PY 2013
VL 73
IS 7
SI SI
BP 986
EP 986
DI 10.1016/j.jpdc.2013.03.001
PG 1
WC Computer Science, Theory & Methods
SC Computer Science
GA 168BA
UT WOS:000320679500009
ER
PT J
AU Ma, T
Bosilca, G
Bouteiller, A
Dongarra, JJ
AF Ma, Teng
Bosilca, George
Bouteiller, Aurelien
Dongarra, Jack J.
TI Kernel-assisted and topology-aware MPI collective communications on
multicore/many-core platforms
SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
LA English
DT Article
DE MPI; Multicore; Cluster; HPC; Collective communication; Hierarchical
AB Multicore Clusters, which have become the most prominent form of High Performance Computing (HPC) systems, challenge the performance of MPI applications with non-uniform memory accesses and shared cache hierarchies. Recent advances in MPI collective communications have alleviated the performance issue exposed by deep memory hierarchies by carefully considering the mapping between the collective topology and the hardware topologies, as well as the use of single-copy kernel assisted mechanisms. However, on distributed environments, a single level approach cannot encompass the extreme variations not only in bandwidth and latency capabilities, but also in the capability to support duplex communications or operate multiple concurrent copies. This calls for a collaborative approach between multiple layers of collective algorithms, dedicated to extracting the maximum degree of parallelism from the collective algorithm by consolidating the intra- and inter-node communications.
In this work, we present HierKNEM, a kernel-assisted topology-aware collective framework, and the mechanisms deployed by this framework to orchestrate the collaboration between multiple layers of collective algorithms. The resulting scheme maximizes the overlap of intra- and inter-node communications. We demonstrate experimentally, by considering three of the most used collective operations (Broadcast, Allgather and Reduction), that (1) this approach is immune to modifications of the underlying process-core binding; (2) it outperforms state-of-art MPI libraries (Open MPI, MPICH2 and MVAPICH2) demonstrating up to a 30x speedup for synthetic benchmarks, and up to a 3x acceleration for a parallel graph application (ASP); (3) it furthermore demonstrates a linear speedup with the increase of the number of cores per compute node, a paramount requirement for scalability on future many-core hardware. (c) 2013 Elsevier Inc. All rights reserved.
C1 [Ma, Teng] Univ Tennessee, Dept EECS, Knoxville, TN 37996 USA.
[Bosilca, George; Bouteiller, Aurelien; Dongarra, Jack J.] Univ Tennessee, Knoxville, TN USA.
[Dongarra, Jack J.] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Dongarra, Jack J.] Univ Manchester, Manchester, Lancs, England.
RP Ma, T (reprint author), Univ Tennessee, Dept EECS, Knoxville, TN 37996 USA.
EM xiaok1981@gmail.com
RI Dongarra, Jack/E-3987-2014
FU CNRS; RENATER
FX Experiments presented in this paper were carried out using the Grid'5000
experimental testbed, being developed under the INRIA ALADDIN
development action with support from CNRS, RENATER and several
Universities as well as other funding bodies (see
https://www.grid5000.fr).
NR 21
TC 4
Z9 4
U1 0
U2 8
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0743-7315
J9 J PARALLEL DISTR COM
JI J. Parallel Distrib. Comput.
PD JUL
PY 2013
VL 73
IS 7
SI SI
BP 1000
EP 1010
DI 10.1016/j.jpdc.2013.01.015
PG 11
WC Computer Science, Theory & Methods
SC Computer Science
GA 168BA
UT WOS:000320679500011
ER
PT J
AU Wiel, SV
Weaver, BP
Stepan, T
AF Wiel, Scott Vander
Weaver, Brian P.
Stepan, Thomas
TI More Pitfalls of Accelerated Tests Discussion
SO JOURNAL OF QUALITY TECHNOLOGY
LA English
DT Editorial Material
C1 [Wiel, Scott Vander; Weaver, Brian P.; Stepan, Thomas] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Wiel, SV (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA.
NR 0
TC 0
Z9 0
U1 0
U2 3
PU AMER SOC QUALITY CONTROL-ASQC
PI MILWAUKEE
PA 600 N PLANKINTON AVE, MILWAUKEE, WI 53203 USA
SN 0022-4065
J9 J QUAL TECHNOL
JI J. Qual. Technol.
PD JUL
PY 2013
VL 45
IS 3
BP 238
EP 239
PG 2
WC Engineering, Industrial; Operations Research & Management Science;
Statistics & Probability
SC Engineering; Operations Research & Management Science; Mathematics
GA 172RY
UT WOS:000321023800008
ER
PT J
AU Collins, DH
Freels, JK
Huzurbazar, AV
Warr, RL
Weaver, BP
AF Collins, David H.
Freels, Jason K.
Huzurbazar, Aparna V.
Warr, Richard L.
Weaver, Brian P.
TI Accelerated Test Methods for Reliability Prediction
SO JOURNAL OF QUALITY TECHNOLOGY
LA English
DT Article
DE Accelerated Degradation Test; Accelerated Life Test; Design of
Experiments; Highly Accelerated Testing; Reliability Analysis;
Reliability Growth
ID TO-FAILURE DISTRIBUTION; DEGRADATION; MODELS
AB Perusal of quality- and reliability-engineering literature indicates some confusion over the meaning of accelerated life testing (ALT), highly accelerated life testing (HALT), highly accelerated stress screening (HASS), and highly accelerated stress auditing (HASA). In addition, there is a significant conflict between testing as part of an iterative process of finding and removing defects and testing as a means of estimating or predicting product reliability. We review the basics of these testing methods and describe how they relate to statistical methods for estimation and prediction of reliability and reliability growth. We also outline potential synergies to help reconcile statistical and engineering approaches to accelerated testing, resulting in better product quality at lower cost.
C1 [Collins, David H.; Huzurbazar, Aparna V.; Weaver, Brian P.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Freels, Jason K.; Warr, Richard L.] Air Force Inst Technol, Wright Patterson AFB, OH 45433 USA.
RP Collins, DH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA.
EM dcollins@lanl.gov; Jason.freels@afit.edu; aparna@lanl.gov;
richard.warr@afit.edu; theguz@lanl.gov
FU U.S. Department of Energy/National Nuclear Security Administration
Enhanced Surveillance Campaign at the Los Alamos National Laboratory
[C8]
FX The work of Collins, Huzurbazar, and Weaver was funded by the U.S.
Department of Energy/National Nuclear Security Administration Enhanced
Surveillance Campaign (C8) at the Los Alamos National Laboratory. The
views expressed in this article are those of the authors and do not
reflect the official policy or position of the United States Air Force,
Department of Defense, Department of Energy, or the U.S. Government.
NR 53
TC 2
Z9 2
U1 3
U2 41
PU AMER SOC QUALITY CONTROL-ASQC
PI MILWAUKEE
PA 600 N PLANKINTON AVE, MILWAUKEE, WI 53203 USA
SN 0022-4065
J9 J QUAL TECHNOL
JI J. Qual. Technol.
PD JUL
PY 2013
VL 45
IS 3
BP 244
EP 259
PG 16
WC Engineering, Industrial; Operations Research & Management Science;
Statistics & Probability
SC Engineering; Operations Research & Management Science; Mathematics
GA 172RY
UT WOS:000321023800010
ER
PT J
AU Burr, T
Hamada, MS
Myers, K
Skurikhin, M
AF Burr, Tom
Hamada, Michael S.
Myers, Kary
Skurikhin, Misha
TI Point-Source Detection Using Gamma-Ray Spectra in Radiation-portal
Monitoring
SO JOURNAL OF QUALITY TECHNOLOGY
LA English
DT Article
DE Background Suppression; Mahalanobis Distance; Scan Statistic; Spectral
Distance; Time Series
ID SUPPRESSION
AB Problem: Radiation detection systems are deployed at U.S. borders to guard against illicit entry of radioactive material. Unfortunately, nuisance alarms due to naturally occurring radioactive material (NORM) reduce detection probabilities for threat sources. This paper evaluates to what extent gamma counts for a range of energies (i.e., a gamma spectrum) deployed in primary screening can detect threat-point sources, with attention to background-suppression effects.
Approach: It is assumed that most NORM sources are more spatially distributed than a point source and that most threat sources are distributed more like a point source. Therefore, we seek a high-alarm probability for vehicle profiles that exhibit a point-like shift in spectral shape. The proposed approach uses variation of the gamma spectral shape over time as a moving vehicle carrying a point source is screened.
Results: The paper uses data from approximately 2000 real vehicle screenings to develop alarm thresholds and to evaluate detection probabilities of injected threat sources from both NORM and threat isotopes. It is shown that transforming the raw gamma spectra is advantageous and that using the Mahalanobis distance to detect the point-like shift in spectral shape is superior to a spectral distance used in the literature.
C1 [Burr, Tom; Hamada, Michael S.; Myers, Kary; Skurikhin, Misha] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
RP Burr, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA.
EM tburr@lanl.gov; hamada@lanl.gov; kary@lanl.gov; misha@lanl.gov
FU Department of Homeland Security under DOE [DE-AC52-06NA25396]
FX We acknowledge the Department of Homeland Security for funding the
production of this material under DOE contract DE-AC52-06NA25396 for the
management and operation of Los Alamos National Laboratory.
NR 16
TC 0
Z9 0
U1 1
U2 4
PU AMER SOC QUALITY CONTROL-ASQC
PI MILWAUKEE
PA 600 N PLANKINTON AVE, MILWAUKEE, WI 53203 USA
SN 0022-4065
J9 J QUAL TECHNOL
JI J. Qual. Technol.
PD JUL
PY 2013
VL 45
IS 3
BP 285
EP 296
PG 12
WC Engineering, Industrial; Operations Research & Management Science;
Statistics & Probability
SC Engineering; Operations Research & Management Science; Mathematics
GA 172RY
UT WOS:000321023800013
ER
PT J
AU Ping, LH
Joseph, SB
Anderson, JA
Abrahams, MR
Salazar-Gonzalez, JF
Kincer, LP
Treurnicht, FK
Arney, L
Ojeda, S
Zhang, M
Keys, J
Potter, EL
Chu, HT
Moore, P
Salazar, MG
Iyer, S
Jabara, C
Kirchherr, J
Mapanje, C
Ngandu, N
Seoighe, C
Hoffman, I
Gao, F
Tang, YY
Labranche, C
Lee, B
Saville, A
Vermeulen, M
Fiscus, S
Morris, L
Karim, SA
Haynes, BF
Shaw, GM
Korber, BT
Hahn, BH
Cohen, MS
Montefiori, D
Williamson, C
Swanstrom, R
AF Ping, Li-Hua
Joseph, Sarah B.
Anderson, Jeffrey A.
Abrahams, Melissa-Rose
Salazar-Gonzalez, Jesus F.
Kincer, Laura P.
Treurnicht, Florette K.
Arney, Leslie
Ojeda, Suany
Zhang, Ming
Keys, Jessica
Potter, E. Lake
Chu, Haitao
Moore, Penny
Salazar, Maria G.
Iyer, Shilpa
Jabara, Cassandra
Kirchherr, Jennifer
Mapanje, Clement
Ngandu, Nobubelo
Seoighe, Cathal
Hoffman, Irving
Gao, Feng
Tang, Yuyang
Labranche, Celia
Lee, Benhur
Saville, Andrew
Vermeulen, Marion
Fiscus, Susan
Morris, Lynn
Karim, Salim Abdool
Haynes, Barton F.
Shaw, George M.
Korber, Bette T.
Hahn, Beatrice H.
Cohen, Myron S.
Montefiori, David
Williamson, Carolyn
Swanstrom, Ronald
CA CAPRISA 002 Acute Infect Study Team
Ctr HIV-AIDS Vaccine Immunology
TI Comparison of Viral Env Proteins from Acute and Chronic Infections with
Subtype C Human Immunodeficiency Virus Type 1 Identifies Differences in
Glycosylation and CCR5 Utilization and Suggests a New Strategy for
Immunogen Design
SO JOURNAL OF VIROLOGY
LA English
DT Article
ID N-LINKED GLYCOSYLATION; NEUTRALIZING ANTIBODY-RESPONSES;
MONOCYTE-DERIVED MACROPHAGES; HIV-1 GP120; HETEROSEXUAL TRANSMISSION;
ENVELOPE GLYCOPROTEINS; VERTICAL TRANSMISSION; CORECEPTOR FUNCTION; R5
ENVELOPES; V1/V2 DOMAIN
AB Understanding human immunodeficiency virus type 1 (HIV-1) transmission is central to developing effective prevention strategies, including a vaccine. We compared phenotypic and genetic variation in HIV-1 env genes from subjects in acute/early infection and subjects with chronic infections in the context of subtype C heterosexual transmission. We found that the transmitted viruses all used CCR5 and required high levels of CD4 to infect target cells, suggesting selection for replication in T cells and not macrophages after transmission. In addition, the transmitted viruses were more likely to use a maraviroc-sensitive conformation of CCR5, perhaps identifying a feature of the target T cell. We confirmed an earlier observation that the transmitted viruses were, on average, modestly under-glycosylated relative to the viruses from chronically infected subjects. This difference was most pronounced in comparing the viruses in acutely infected men to those in chronically infected women. These features of the transmitted virus point to selective pressures during the transmission event. We did not observe a consistent difference either in heterologous neutralization sensitivity or in sensitivity to soluble CD4 between the two groups, suggesting similar conformations between viruses from acute and chronic infection. However, the presence or absence of glycosylation sites had differential effects on neutralization sensitivity for different antibodies. We suggest that the occasional absence of glycosylation sites encoded in the conserved regions of env, further reduced in transmitted viruses, could expose specific surface structures on the protein as antibody targets.
C1 [Ping, Li-Hua; Joseph, Sarah B.; Anderson, Jeffrey A.; Kincer, Laura P.; Arney, Leslie; Ojeda, Suany; Keys, Jessica; Potter, E. Lake; Jabara, Cassandra; Tang, Yuyang; Fiscus, Susan; Cohen, Myron S.; Swanstrom, Ronald] Univ N Carolina, UNC Ctr AIDS Res, Chapel Hill, NC 27599 USA.
[Ping, Li-Hua; Joseph, Sarah B.; Anderson, Jeffrey A.; Kincer, Laura P.; Arney, Leslie; Ojeda, Suany; Keys, Jessica; Potter, E. Lake; Chu, Haitao; Jabara, Cassandra; Tang, Yuyang; Swanstrom, Ronald] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA.
[Anderson, Jeffrey A.; Hoffman, Irving; Cohen, Myron S.] Univ N Carolina, Sch Med, Div Infect Dis, Chapel Hill, NC USA.
[Abrahams, Melissa-Rose; Treurnicht, Florette K.; Ngandu, Nobubelo; Williamson, Carolyn] Univ Cape Town, Div Med Virol, Inst Infect Dis & Mol Med, ZA-7925 Cape Town, South Africa.
[Abrahams, Melissa-Rose; Treurnicht, Florette K.; Ngandu, Nobubelo; Williamson, Carolyn] Natl Hlth Lab Serv, Cape Town, South Africa.
[Salazar-Gonzalez, Jesus F.; Salazar, Maria G.] Univ Alabama Birmingham, Dept Med, Birmingham, AL 35294 USA.
[Zhang, Ming; Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Zhang, Ming] Univ Georgia, Dept Epidemiol & Biostat, Athens, GA 30602 USA.
[Keys, Jessica] Univ N Carolina, Dept Epidemiol, Chapel Hill, NC USA.
[Chu, Haitao] Univ N Carolina, Dept Biostat, Chapel Hill, NC USA.
[Moore, Penny; Morris, Lynn] Natl Inst Communicable Dis, Ctr HIV & STIs, Johannesburg, South Africa.
[Iyer, Shilpa; Shaw, George M.; Hahn, Beatrice H.] Univ Penn, Dept Med, Philadelphia, PA 19104 USA.
[Iyer, Shilpa; Shaw, George M.; Hahn, Beatrice H.] Univ Penn, Dept Microbiol, Philadelphia, PA 19104 USA.
[Jabara, Cassandra] Univ N Carolina, Dept Biol, Chapel Hill, NC USA.
[Kirchherr, Jennifer; Gao, Feng; Haynes, Barton F.] Duke Univ, Dept Med, Duke Human Vaccine Inst, Durham, NC USA.
[Mapanje, Clement] UNC Project, Lilongwe, Malawi.
[Seoighe, Cathal] Natl Univ Ireland, Galway, Ireland.
[Labranche, Celia; Montefiori, David] Duke Univ, Dept Surg, Durham, NC USA.
[Lee, Benhur] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA USA.
[Saville, Andrew; Vermeulen, Marion] South African Natl Blood Serv, Weltevreden Pk, South Africa.
[Fiscus, Susan] Univ N Carolina, Dept Microbiol & Immunol, Chapel Hill, NC USA.
[Karim, Salim Abdool] Univ KwaZulu Natal, Doris Duke Med Res Inst, Ctr AIDS Program Res South Africa, Durban, South Africa.
[Korber, Bette T.] Santa Fe Inst, Santa Fe, NM 87501 USA.
[Swanstrom, Ronald] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC USA.
RP Swanstrom, R (reprint author), Univ N Carolina, UNC Ctr AIDS Res, Chapel Hill, NC 27599 USA.
EM risunc@med.unc.edu
RI Abdool Karim, Salim Safurdeen/N-5947-2013; Lee, Benhur/A-8554-2016;
OI Abdool Karim, Salim Safurdeen/0000-0002-4986-2133; Lee,
Benhur/0000-0003-0760-1709; Moore, Penny/0000-0001-8719-4028; ,
Carolyn/0000-0003-0125-1226; Chu, Haitao/0000-0003-0932-598X; Korber,
Bette/0000-0002-2026-5757
FU National Institutes of Health [U01 AI067854 [CHAVI], R01 AI10273, R37
AI44667, R01 AI092218]; UNC Center for AIDS Research [P30 AI50410]; UCLA
Center for AIDS Research [P30 AI028697]
FX This work was funded by awards from the National Institutes of Health
(U01 AI067854 [CHAVI]), R01 AI10273 and R37 AI44667 to R.S., and R01
AI092218 to B.L. We also received support from the UNC Center for AIDS
Research (P30 AI50410) and the UCLA Center for AIDS Research (P30
AI028697).
NR 110
TC 41
Z9 41
U1 1
U2 18
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0022-538X
J9 J VIROL
JI J. Virol.
PD JUL
PY 2013
VL 87
IS 13
BP 7218
EP 7233
DI 10.1128/JVI.03577-12
PG 16
WC Virology
SC Virology
GA 160JT
UT WOS:000320116500003
PM 23616655
ER
PT J
AU Lynch, DJ
Matamala, R
Iversen, CM
Norby, RJ
Gonzalez-Meler, MA
AF Lynch, Douglas J.
Matamala, Roser
Iversen, Colleen M.
Norby, Richard J.
Gonzalez-Meler, Miquel A.
TI Stored carbon partly fuels fine-root respiration but is not used for
production of new fine roots
SO NEW PHYTOLOGIST
LA English
DT Article
DE 13 C; fine roots; free-air CO2 enrichment (FACE); post-carboxylation
fractionation; root respiration; root turnover; stored carbon (C);
Liquidambar styraciflua
ID MATURE DECIDUOUS FOREST; AIR CO2 ENRICHMENT; SOIL RESPIRATION; TEMPERATE
FOREST; ELEVATED CO2; ATMOSPHERIC CO2; HETEROTROPHIC COMPONENTS;
NITROGEN AVAILABILITY; FAGUS-SYLVATICA; RESIDENCE TIMES
AB The relative use of new photosynthate compared to stored carbon (C) for the production and maintenance of fine roots, and the rate of C turnover in heterogeneous fine-root populations, are poorly understood. We followed the relaxation of a 13C tracer in fine roots in a Liquidambar styraciflua plantation at the conclusion of a free-air CO2 enrichment experiment. Goals included quantifying the relative fractions of new photosynthate vs stored C used in root growth and root respiration, as well as the turnover rate of fine-root C fixed during [CO2] fumigation. New fine-root growth was largely from recent photosynthate, while nearly one-quarter of respired C was from a storage pool. Changes in the isotopic composition of the fine-root population over two full growing seasons indicated heterogeneous C pools; <10% of root C had a residence time <3months, while a majority of root C had a residence time >2yr. Compared to a one-pool model, a two-pool model for C turnover in fine roots (with 5 and 0.37yr-1 turnover times) doubles the fine-root contribution to forest NPP (9-13%) and supports the 50% root-to-soil transfer rate often used in models.
C1 [Lynch, Douglas J.; Gonzalez-Meler, Miquel A.] Univ Illinois, Dept Biol Sci, Chicago, IL 60607 USA.
[Matamala, Roser] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
[Iversen, Colleen M.; Norby, Richard J.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA.
[Iversen, Colleen M.; Norby, Richard J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
RP Lynch, DJ (reprint author), Univ Illinois, Dept Biol Sci, Chicago, IL 60607 USA.
EM dlynch3@uic.edu
RI Norby, Richard/C-1773-2012;
OI Norby, Richard/0000-0002-0238-9828; Gonzalez-Meler,
Miquel/0000-0001-5388-7969
FU United States Department of Energy, Office of Science, Biological and
Environmental Research program; United States Department of Energy
[DE-AC05-00OR22725]; US Department of Energy [ER65188]; National Science
Foundation [DEB-0919276]; National Science Foundation IGERT Grant
[DGE-0549245]; US Department of Energy, Office of Science, Office of
Biological and Environmental Research, Terrestrial Ecosystem Science
Division [DE-AC02-06CH11357]
FX We thank three anonymous reviewers for comments that improved an earlier
draft of the manuscript. Thanks to Jessica Rucks at the Stable Isotope
Laboratory at UIC for laboratory assistance. The ORNL FACE site was
supported by the United States Department of Energy, Office of Science,
Biological and Environmental Research program. Oak Ridge National
Laboratory is managed by UT-Battelle, LLC for the United States
Department of Energy under contract DE-AC05-00OR22725. M. A. G-M. was
supported by the US Department of Energy contract ER65188 and National
Science Foundation DEB-0919276. D.J.L. was supported by National Science
Foundation IGERT Grant DGE-0549245 'Landscape Ecological and
Anthropogenic Processes'. R. M. was supported by the US Department of
Energy, Office of Science, Office of Biological and Environmental
Research, Terrestrial Ecosystem Science Division, under contract
DE-AC02-06CH11357.
NR 64
TC 25
Z9 29
U1 7
U2 105
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0028-646X
EI 1469-8137
J9 NEW PHYTOL
JI New Phytol.
PD JUL
PY 2013
VL 199
IS 2
BP 420
EP 430
DI 10.1111/nph.12290
PG 11
WC Plant Sciences
SC Plant Sciences
GA 167GC
UT WOS:000320618400012
PM 23646982
ER
PT J
AU Xiao, BP
Reece, CE
Kelley, MJ
AF Xiao, B. P.
Reece, C. E.
Kelley, M. J.
TI Superconducting surface impedance under radiofrequency field
SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
LA English
DT Article
DE Particle accelerator; Superconducting RF accelerator; Surface impedance
AB Based on BCS theory with moving Cooper pairs, the electron states distribution at 0 K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure. (C) 2013 Elsevier B. V. All rights reserved.
C1 [Xiao, B. P.; Reece, C. E.; Kelley, M. J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Xiao, B. P.; Kelley, M. J.] Coll William & Mary, Williamsburg, VA 23187 USA.
RP Kelley, MJ (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
EM reece@jlab.org; mkelley@jlab.org
FU US DOE [DE-AC05-06OR23177]
FX Authored by Jefferson Science Associates, LLC under US DOE Contract No.
DE-AC05-06OR23177. The US Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce this manuscript
for US Government purposes. The authors acknowledge the helpful
discussions on this work with G. Ciovati, A. Gurevich, and F. He.
NR 12
TC 8
Z9 9
U1 0
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4534
J9 PHYSICA C
JI Physica C
PD JUL
PY 2013
VL 490
BP 26
EP 31
DI 10.1016/j.physc.2013.04.003
PG 6
WC Physics, Applied
SC Physics
GA 166YP
UT WOS:000320597400005
ER
PT J
AU Norris, AL
Serpersu, EH
AF Norris, Adrianne L.
Serpersu, Engin H.
TI Ligand promiscuity through the eyes of the aminoglycoside N3
acetyltransferase IIa
SO PROTEIN SCIENCE
LA English
DT Article
DE aminoglycosides; acetyltransferase; protein dynamics; ligand
promiscuity; isothermal titration calorimetry; nuclear magnetic
resonance; aminoglycoside modification; antibiotic resistance;
intrinsically disordered proteins
ID ISOTHERMAL TITRATION CALORIMETRY; COENZYME-A BINDING; MODIFYING ENZYMES;
BISUBSTRATE INHIBITORS; SOLVENT REARRANGEMENT; RIBOSOMAL-RNA;
PHOSPHOTRANSFERASE(3')-IIIA; DYNAMICS; NMR; GENES
AB Aminoglycoside-modifying enzymes (AGMEs) are expressed in many pathogenic bacteria and cause resistance to aminoglycoside (AG) antibiotics. Remarkably, the substrate promiscuity of AGMEs is quite variable. The molecular basis for such ligand promiscuity is largely unknown as there is not an obvious link between amino acid sequence or structure and the antibiotic profiles of AGMEs. To address this issue, this article presents the first kinetic and thermodynamic characterization of one of the least promiscuous AGMEs, the AG N3 acetyltransferase-IIa (AAC-IIa) and its comparison to two highly promiscuous AGMEs, the AG N3-acetyltransferase-IIIb (AAC-IIIb) and the AG phosphotransferase(3)-IIIa (APH). Despite having similar antibiotic selectivities, AAC-IIIb and APH catalyze different reactions and share no homology to one another. AAC-IIa and AAC-IIIb catalyze the same reaction and are very similar in both amino acid sequence and structure. However, they demonstrate strong differences in their substrate profiles and kinetic and thermodynamic properties. AAC-IIa and APH are also polar opposites in terms of ligand promiscuity but share no sequence or apparent structural homology. However, they both are highly dynamic and may even contain disordered segments and both adopt well-defined conformations when AGs are bound. Contrary to this AAC-IIIb maintains a well-defined structure even in apo form. Data presented herein suggest that the antibiotic promiscuity of AGMEs may be determined neither by the flexibility of the protein nor the size of the active site cavity alone but strongly modulated or controlled by the effects of the cosubstrate on the dynamic and thermodynamic properties of the enzyme.
C1 [Norris, Adrianne L.; Serpersu, Engin H.] Univ Tennessee, Dept Biochem Cell & Mol Biol, Knoxville, TN 37996 USA.
[Serpersu, Engin H.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA.
[Serpersu, Engin H.] Oak Ridge Natl Lab, Knoxville, TN 37996 USA.
RP Serpersu, EH (reprint author), Univ Tennessee, Dept Biochem Cell & Mol Biol, M407 Walters Life Sci Bldg, Knoxville, TN 37996 USA.
EM Serpersu@utk.edu
FU National Science Foundation [MCB 01110741]
FX Grant sponsor: National Science Foundation; Grant number: MCB 01110741
(EHS).
NR 42
TC 2
Z9 4
U1 3
U2 15
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0961-8368
J9 PROTEIN SCI
JI Protein Sci.
PD JUL
PY 2013
VL 22
IS 7
BP 916
EP 928
DI 10.1002/pro.2273
PG 13
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 171QR
UT WOS:000320944600007
PM 23640799
ER
PT J
AU Aronson, EL
Dubinsky, EA
Helliker, BR
AF Aronson, Emma L.
Dubinsky, Eric A.
Helliker, Brent R.
TI Effects of nitrogen addition on soil microbial diversity and methane
cycling capacity depend on drainage conditions in a pine forest soil
SO SOIL BIOLOGY & BIOCHEMISTRY
LA English
DT Article
DE Fertilization; Methane; Methanogen; Methanotroph; Microarray; Diversity;
qPCR
ID METHANOTROPHIC BACTERIA; ATMOSPHERIC METHANE; OXIDIZING BACTERIA;
EMISSIONS; CONSUMPTION; OXIDATION; EXCHANGE; BIOGEOGRAPHY; SEDIMENTS;
OXIDE
AB Two forested study sites, one well and one poorly drained, were used for investigation of the effects of variation in drainage, microclimate, and addition of inorganic nitrogen (N) on the whole soil microbial community and its methane cycling capacity. Both sites were capable of consuming and releasing large quantities of methane. The composition of the soil microbial community was investigated using the 3rd generation PhyloChip, a bacterial and archaeal 16S rRNA gene microarray. The PhyloChip was also used to target the composition of methane- and some N-cycling microorganisms. Relative abundance of functional genes involved in methane production and consumption was evaluated with qPCR.
Soil drainage condition determined the microbial community structure within and between sites. Greater community structure variation, richness of methanotrophs, and higher abundances of both methanotrophs and methanogens were all found in the poorly drained site, as was higher soil moisture and C content and methane release. In the poorly drained site, high N (67 kg NH4NO3 ha(-1) yr(-1)) increased methanotroph and methanogen abundance, overall taxonomic richness of Bacteria and Archaea, and richness of nitrifiers and methanotrophs. In the well drained site, high N decreased taxonomic richness. Results may indicate that high N concentrations stimulated oxidative reactions, including ammonia and methane oxidation and nitrification in the short term. The resultant increase in release of methane from the high N plots of the poorly-drained site may have been due to indirect inhibition of methane oxidation by the increase in other oxidative reactions. Alternatively, both methanogens and methanotrophs may have been stimulated by high N. Well-drained site high N decreased the taxonomic richness of the soil, but did not impact methane-cycling microbes. These findings begin to bridge the gap between microbial-scale community dynamics and ecosystem-scale ecological functions. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Aronson, Emma L.; Helliker, Brent R.] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA.
[Dubinsky, Eric A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Aronson, EL (reprint author), Univ Calif Irvine, Dept Ecol & Evolutionary Biol, 321 Steinhaus, Irvine, CA 92697 USA.
EM earonson@uci.edu
RI Dubinsky, Eric/D-3787-2015
OI Dubinsky, Eric/0000-0002-9420-6661
FU Air and Waste Management Association's Air Pollution Education and
Research Grant; NASA Graduate Student Researchers Program; Garden Club
of America's Kissel Scholarship; NOAA Climate and Global Change
Postdoctoral Fellowship
FX Grant and fellowship funding was provided by the Air and Waste
Management Association's Air Pollution Education and Research Grant, the
NASA Graduate Student Researchers Program, the Garden Club of America's
Kissel Scholarship, and the NOAA Climate and Global Change Postdoctoral
Fellowship. The authors thank Drs. Brenda Casper and Peter Petraitis and
the CasperPetriatis-Helliker lab group at the University of
Pennsylvania; Dr. Mary Firestone, Rebecca Daly and the Firestone lab at
UC Berkeley; Dr. Gary Anderson and the Anderson lab at LBNL; and Drs.
John Dighton and Dennis Gray at the Rutgers University Pinelands Field
Station.
NR 50
TC 2
Z9 5
U1 11
U2 125
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-0717
J9 SOIL BIOL BIOCHEM
JI Soil Biol. Biochem.
PD JUL
PY 2013
VL 62
BP 119
EP 128
DI 10.1016/j.soilbio.2013.03.005
PG 10
WC Soil Science
SC Agriculture
GA 164QY
UT WOS:000320425800016
ER
PT J
AU Liu, HG
Poon, BK
Saldin, DK
Spence, JCH
Zwart, PH
AF Liu, Haiguang
Poon, Billy K.
Saldin, Dilano K.
Spence, John C. H.
Zwart, Peter H.
TI Three-dimensional single-particle imaging using angular correlations
from X-ray laser data
SO ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES
LA English
DT Article
ID FREE-ELECTRON LASER; PROTEIN NANOCRYSTALLOGRAPHY; MACROMOLECULAR
STRUCTURES; SCATTERING PROFILES; SPHERICAL-HARMONICS; ZERNIKE
POLYNOMIALS; DIFFRACTION DATA; CRYSTALLOGRAPHY; COMPUTATION; SYMMETRIES
AB Femtosecond X-ray pulses from X-ray free-electron laser sources make it feasible to conduct room-temperature solution scattering experiments far below molecular rotational diffusion timescales. Owing to the ultra-short duration of each snapshot in these fluctuation scattering experiments, the particles are effectively frozen in space during the X-ray exposure. In contrast to standard small-angle scattering experiments, the resulting scattering patterns are anisotropic. The intensity fluctuations observed in the diffraction images can be used to obtain structural information embedded in the average angular correlation of the Fourier transform of the scattering species, of which standard small-angle scattering data are a subset. The additional information contained in the data of these fluctuation scattering experiments can be used to determine the structure of macromolecules in solution without imposing symmetry or spatial restraints during model reconstruction, reducing ambiguities normally observed in solution scattering studies. In this communication, a method that utilizes fluctuation X-ray scattering data to determine low-resolution solution structures is presented. The method is validated with theoretical data calculated from several representative molecules and applied to the reconstruction of nanoparticles from experimental data collected at the Linac Coherent Light Source.
C1 [Liu, Haiguang; Spence, John C. H.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA.
[Poon, Billy K.; Zwart, Peter H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Saldin, Dilano K.] Univ Wisconsin, Dept Phys, Milwaukee, WI 53211 USA.
RP Zwart, PH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM phzwart@lbl.gov
FU Laboratory Directed Research and Development (LDRD) from Berkeley
Laboratory by Office of Science, of the US Department of Energy
[DE-AC02-05CH11231]; Human Frontier Science Program (HFSP) [024940]; NSF
[MCB-1158138]; Research Growth Initiative (RGI) of the University of
Wisconsin-Milwaukee
FX HL, BKP and PHZ were supported by Laboratory Directed Research and
Development (LDRD) funding from Berkeley Laboratory, provided by the
Director, Office of Science, of the US Department of Energy under
Contract No. DE-AC02-05CH11231. JCHS and HL acknowledge funding from the
Human Frontier Science Program (HFSP) award No. 024940. DKS acknowledges
support from NSF grant No. MCB-1158138 and the Research Growth
Initiative (RGI) of the University of Wisconsin-Milwaukee. We thank Dr
N. Zatsepin for stimulating discussions. The authors express gratitude
to their peers who made experimental data available to the general
public via the CXIDB.
NR 46
TC 17
Z9 18
U1 3
U2 44
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 2053-2733
J9 ACTA CRYSTALLOGR A
JI Acta Crystallogr. Sect. A
PD JUL
PY 2013
VL 69
BP 365
EP 373
DI 10.1107/S0108767313006016
PN 4
PG 9
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA 167BB
UT WOS:000320604100001
PM 23778093
ER
PT J
AU Peppernick, SJ
Joly, AG
Beck, KM
Hess, WP
Wang, JY
Wang, YC
Wei, WD
AF Peppernick, Samuel J.
Joly, Alan G.
Beck, Kenneth M.
Hess, Wayne P.
Wang, Jinyong
Wang, Yi-Chung
Wei, W. David
TI Photoemission electron microscopy of a plasmonic silver nanoparticle
trimer
SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
LA English
DT Article
ID ELECTROMAGNETIC SCATTERING; MAXWELLS EQUATIONS; NUMERICAL-SOLUTION;
POLYSTYRENE; NANOPRISMS; DYNAMICS
AB We present a combined experimental and theoretical study to investigate the spatial distribution of photoelectrons emitted from silver-coated polystyrene nanoparticles. We use two-photon photoemission electron microscopy (2P-PEEM) to image electron emission from a silver-capped aggregate trimer. Finite difference time domain (FDTD) simulations are performed to model the intensity distributions of the electromagnetic near fields resulting from femtosecond laser excitation of localized surface plasmon oscillations in the trimer structure. We demonstrate that the predicted FDTD near-field intensity distribution reproduces the 2P-PEEM photoemission pattern.
C1 [Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Wang, Jinyong; Wang, Yi-Chung; Wei, W. David] Univ Florida, Dept Chem, Gainesville, FL 32611 USA.
[Wang, Jinyong; Wang, Yi-Chung; Wei, W. David] Univ Florida, Ctr Nanostruct Elect Mat, Gainesville, FL 32611 USA.
RP Hess, WP (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM wayne.hess@pnnl.gov; wei@chem.ufl.edu.gov
FU Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences, and Biosciences; Department of Energy's
Office of Biological and Environmental Research located at Pacific
Northwest National Laboratory; NSF CCI Center for Nanostructured
Electronic Materials [CHE-1038015]
FX The authors were supported by the Department of Energy, Office of Basic
Energy Sciences, Division of Chemical Sciences, Geosciences, and
Biosciences. Pacific Northwest National Laboratory is operated for the
U.S. Department of Energy by Battelle. The research was performed using
EMSL, a national scientific user facility sponsored by the Department of
Energy's Office of Biological and Environmental Research located at
Pacific Northwest National Laboratory. J.W., Y.W. and W. D. W.
acknowledge the support from the NSF CCI Center for Nanostructured
Electronic Materials under Award No. CHE-1038015. W. D. W. acknowledges
and appreciates the generous support from ORAU for the Ralph E. Powe
Junior Faculty Enhancement Award, Sigma Xi for the Junior Faculty
Research Award from the Florida Chapter and the University of Florida
for startup assistance. Materials fabrication and characterization were
conducted at Nanoscale Research Facility (NRF) and Major Analytical
Instrumentation Center (MAIC) at UF. 2P-PEEM measurement was performed
using the EMSL through a user proposal (No. 40065).
NR 29
TC 1
Z9 1
U1 2
U2 68
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0947-8396
EI 1432-0630
J9 APPL PHYS A-MATER
JI Appl. Phys. A-Mater. Sci. Process.
PD JUL
PY 2013
VL 112
IS 1
BP 35
EP 39
DI 10.1007/s00339-012-7316-5
PG 5
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 162OG
UT WOS:000320274100006
ER
PT J
AU Odziomek, K
Gajewicz, A
Haranczyk, M
Puzyn, T
AF Odziomek, K.
Gajewicz, A.
Haranczyk, M.
Puzyn, T.
TI Reliability of environmental fate modeling results for POPs based on
various methods of determining the air/water partition coefficient (log
K-AW)
SO ATMOSPHERIC ENVIRONMENT
LA English
DT Article
DE Air-water partition coefficient; Multimedia mass modeling; QSPR; POPs
ID PERSISTENT ORGANIC POLLUTANTS; MASS-BALANCE MODELS; PHYSICOCHEMICAL
PROPERTIES; APPLICABILITY DOMAIN; BRITISH-COLUMBIA; TRANSPORT;
PREDICTION; CANADA; BIOACCUMULATION; PARAMETERS
AB Air-water partition coefficient (K-AW) is one of the key parameters determining environmental behavior of Persistent Organic Pollutants (POPs). Experimentally measured values of K-AW are still unavailable for majority of POPs, thus alternative methods of supplying data, including Quantitative Structure-Property Relationships (QSPR) modeling, are often in use. In this paper, applicability of two QSPR methods of predicting K-AW were compared with each other in the context of further application of the predicted data in environmental transport and fate studies. According to the first (indirect) method, K-AW is calculated from previously predicted values of octanol-water (K-OW) and octanol-air (K-OA) partition coefficients. In the second (direct) approach, K-AW is calculated, based on the estimated value of Henry's law constant (K-H) and then adjusted to ensure its consistency with the other two partition coefficients (K-OW and K-OA). Although the indirect method carries theoretically twice as much error as the direct method, when the predicted values of K-AW are then utilized as an input to the environmental fate model The OECD P-OV and LRTP Screening Tool, ver. 2.2, the indirect method elicits much higher and therefore much more restrictive values of overall persistence (P-OV) and transfer efficiency (TE) than its equivalent (direct method). High uncertainties related to the application of the direct method result mainly from the necessary adjustment procedure. (C) 2013 Published by Elsevier Ltd.
C1 [Odziomek, K.; Gajewicz, A.; Puzyn, T.] Univ Gdansk, Lab Environm Chemometr, Fac Chem, PL-80952 Gdansk, Poland.
[Haranczyk, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
RP Puzyn, T (reprint author), Univ Gdansk, Lab Environm Chemometr, Fac Chem, Sobieskiego 18-19, PL-80952 Gdansk, Poland.
EM t.puzyn@qsar.eu.org
RI Haranczyk, Maciej/A-6380-2014;
OI Haranczyk, Maciej/0000-0001-7146-9568; Puzyn, Tomasz/0000-0003-0449-8339
FU U. S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the
U.S. Department of Energy [DE-AC02-05CH11231]; Polish Ministry of
Science and Higher Education [530-8180-D202-12]
FX This research was supported in part (to M.H.) by the U. S. Department of
Energy under contract DE-AC02-05CH11231.; This research used resources
of the National Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.; This work was supported by the
Polish Ministry of Science and Higher Education (Grant No.
530-8180-D202-12).
NR 41
TC 5
Z9 5
U1 1
U2 35
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1352-2310
J9 ATMOS ENVIRON
JI Atmos. Environ.
PD JUL
PY 2013
VL 73
BP 177
EP 184
DI 10.1016/j.atmosenv.2013.02.052
PG 8
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 165NP
UT WOS:000320490900020
ER
PT J
AU Wang, YG
Huang, JY
Hopke, PK
Rattigan, OV
Chalupa, DC
Utell, MJ
Holsen, TM
AF Wang, Yungang
Huang, Jiaoyan
Hopke, Philip K.
Rattigan, Oliver V.
Chalupa, David C.
Utell, Mark J.
Holsen, Thomas M.
TI Effect of the shutdown of a large coal-fired power plant on ambient
mercury species
SO CHEMOSPHERE
LA English
DT Article
DE Coal-fired power plant (CFPP); Mercury; Positive Matrix Factorization
(PMF); Conditional probability function (CPF); Gas-particle partitioning
coefficient
ID REACTIVE GASEOUS MERCURY; ATMOSPHERIC MERCURY; SCIENTIFIC UNCERTAINTIES;
INORGANIC MERCURY; BLACK CARBON; PARTICLE; DEPOSITION; SPECIATION;
EMISSIONS; ROCHESTER
AB In the spring of 2008, a 260 MWe coal-fired power plant (CFPP) located in Rochester, New York was closed over a 4 month period. Using a 2-years data record, the impacts of the shutdown of the CFPP on nearby ambient concentrations of three Hg species were quantified. The arithmetic average ambient concentrations of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate mercury (PBM) during December 2007-November 2009 were 1.6 ng m(-3), 5.1 pg m(-3), and 8.9 pg m(-3) respectively. The median concentrations of GEM, GOM, and PBM significantly decreased by 12%, 73%, and 50% after the CFPP closed (Mann-Whitney test, p < 0.001). Positive Matrix Factorization (EPA PMF v4.1) identified six factors including O-3-rich, traffic, gas phase oxidation, wood combustion, nucleation, and CFPP. When the CFPP was closed, median concentrations of GEM, GOM, and PBM apportioned to the CFPP factor significantly decreased by 25%, 74%, and 67%, respectively, compared to those measured when the CFPP was still in operation (Mann-Whitney test, p < 0.001). Conditional probability function (CPF) analysis showed the greatest reduction in all three Hg species was associated with northwesterly winds pointing toward the CFPP. These changes were clearly attributable to the closure of the CFPP. (c) 2013 Elsevier Ltd. All rights reserved.
C1 [Wang, Yungang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Huang, Jiaoyan; Holsen, Thomas M.] Clarkson Univ, Dept Civil & Environm Engn, Potsdam, NY 13699 USA.
[Hopke, Philip K.; Holsen, Thomas M.] Clarkson Univ, Ctr Air Resource Engn & Sci, Potsdam, NY 13699 USA.
[Rattigan, Oliver V.] New York State Dept Environm Conservat, Div Air Resources, Albany, NY 12233 USA.
[Chalupa, David C.; Utell, Mark J.] Univ Rochester, Med Ctr, Dept Environm Med, Rochester, NY 14642 USA.
RP Hopke, PK (reprint author), Clarkson Univ, Ctr Air Resource Engn & Sci, Potsdam, NY 13699 USA.
EM hopkepk@clarkson.edu
RI Hopke, Philip/C-6020-2008
OI Hopke, Philip/0000-0003-2367-9661
FU New York State Energy Research and Development Authority (NYSERDA)
[8650, 10604]; United States Environmental Protection Agency (US EPA)
through Science to Achieve Results (STAR) [RD83241501]; Syracuse Center
of Excellence Collaborative Activities for Research and Technology
Innovation (CARTI) Project award; US EPA [X-83232501-0]; Electric Power
Research Institute [W06325]; US EPA Atmospheric Clean Air Markets
Division; NADP Hg Monitoring Network [EP08H000271]; EPA
FX This work was supported by the New York State Energy Research and
Development Authority (NYSERDA) through Contracts 8650 and 10604; the
United States Environmental Protection Agency (US EPA) through Science
to Achieve Results (STAR) Grant RD83241501; a Syracuse Center of
Excellence Collaborative Activities for Research and Technology
Innovation (CARTI) Project award, which is supported by a grant from the
US EPA (Award No: X-83232501-0); the Electric Power Research Institute
under Agreement W06325; the US EPA Atmospheric Clean Air Markets
Division and NADP Hg Monitoring Network (EP08H000271). Although the
research described in this article has been funded in part by the EPA,
it has not been subjected to the Agency's required peer and policy
review and, therefore, does not necessarily reflect the views of the
Agency and no official endorsement should be inferred. We gratefully
acknowledge the substantial assistance from Mr. Dirk Felton and Mr. Tom
Everts at NYSDEC.
NR 49
TC 13
Z9 16
U1 3
U2 45
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0045-6535
J9 CHEMOSPHERE
JI Chemosphere
PD JUL
PY 2013
VL 92
IS 4
BP 360
EP 367
DI 10.1016/j.chemosphere.2013.01.024
PG 8
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA 161RX
UT WOS:000320212100004
PM 23422172
ER
PT J
AU Li, J
Wilson, N
Zelazny, A
Meyer, J
Zhong, Z
Muehleman, C
AF Li, J.
Wilson, N.
Zelazny, A.
Meyer, J.
Zhong, Z.
Muehleman, C.
TI Assessment of diffraction-enhanced synchrotron imaging for cartilage
degeneration of the human knee joint
SO CLINICAL ANATOMY
LA English
DT Article
DE diffraction-enhanced imaging; cartilage imaging; synovial joints;
osteoarthritis
ID ARTICULAR-CARTILAGE; OSTEOARTHRITIS; RADIOGRAPHY; LESIONS; BONE
AB Diffraction-enhanced imaging (DEI) is a radiographic technology that harnesses the X-ray refraction and scatter rejection properties that are not available with conventional radiography. Here, we test the efficacy of planar DEI to render images from which cartilage degeneration, characteristic of osteoarthritis, can be detected. DEI was carried out on human cadaveric intact knee joints at the X-15 beamline at the National Synchrotron Light Source. The gross specimens and the DEI images were graded separately for levels of cartilage degeneration on six individual surfaces: anterior and posterior femoral and tibial on both medial and lateral sides. There was a significant correlation between the actual levels of cartilage degeneration and what was observed in their respective DEI images (P < 0.05) for all six articular surfaces. Some articular surfaces (patellar surfaces, in particular) could not be visualized because of overlap with superimposed bone. Sensitivity for the graded articular surfaces was 0.73 and specificity was 0.92 (Grade 0 being no lesion and Grades 1-6 being increasing gradations of lesions). Chondrocalcinosis was also observed in DEI images to a far greater extent compared with the conventional radiographs. DEI renders images that are significantly correlated with their actual gross morphology. Detection of lesions was better for more severe grades of degeneration than for partial focal lesions. Although some articular surfaces could not be visualized because of superimposed bone, we feel that DEI has potential for the diagnosis of cartilage lesions and chondrocalcinosis. Clin. Anat. 26:621-629, 2013. (c) 2012 Wiley Periodicals, Inc.
C1 [Li, J.; Wilson, N.; Muehleman, C.] Rush Univ, Med Ctr, Dept Biochem, Chicago, IL 60612 USA.
[Zelazny, A.; Meyer, J.] Rush Univ, Med Ctr, Dept Radiol, Chicago, IL 60612 USA.
[Zhong, Z.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Muehleman, C.] Rush Univ, Dept Anat & Cell Biol, Med Ctr, Chicago, IL 60612 USA.
[Muehleman, C.] Rush Univ, Dept Orthoped Surg, Med Ctr, Chicago, IL 60612 USA.
RP Muehleman, C (reprint author), Rush Univ, Med Ctr, Dept Biochem, 1735 W Harrison St, Chicago, IL 60612 USA.
EM carol_muehleman@rush.edu
RI Wilson, Nicole/C-4049-2008
OI Wilson, Nicole/0000-0002-0844-1885
FU NIH [R01-AR048292]
FX Grant sponsor: NIH; Grant number: R01-AR048292
NR 19
TC 6
Z9 6
U1 1
U2 5
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0897-3806
J9 CLIN ANAT
JI Clin. Anat.
PD JUL
PY 2013
VL 26
IS 5
BP 621
EP 629
DI 10.1002/ca.22106
PG 9
WC Anatomy & Morphology
SC Anatomy & Morphology
GA 166HE
UT WOS:000320544500015
PM 22674682
ER
PT J
AU D'Angelo, S
Mignone, F
Deantonio, C
Di Niro, R
Bordoni, R
Marzari, R
De Bellis, G
Not, T
Ferrara, F
Bradbury, A
Santoro, C
Sblattero, D
AF D'Angelo, Sara
Mignone, Flavio
Deantonio, Cecilia
Di Niro, Roberto
Bordoni, Roberta
Marzari, Roberto
De Bellis, Gianluca
Not, Tarcisio
Ferrara, Fortunato
Bradbury, Andrew
Santoro, Claudio
Sblattero, Daniele
TI Profiling celiac disease antibody repertoire
SO CLINICAL IMMUNOLOGY
LA English
DT Article
DE Celiac disease; Autoantibody; Autoantigen; Protein microarray;
ORF-display libraries; Next generation sequencing
ID AUTOANTIGENIC SPERM PROTEIN; TISSUE TRANSGLUTAMINASE; PHAGE-DISPLAY;
ALPHA-FODRIN; SJOGRENS-SYNDROME; AUTOANTIBODIES; IDENTIFICATION; CANCER;
GLUTEN; ASSAY
AB The aim of this study was to dissect the autoantibody response in celiac disease (CD) that remains largely unknown, with the goal of identifying the disease-specific autoantigenic protein pattern or the so called epitome. Sera from CD patients were used to select immunoreactive antigens from a cDNA phage-display library. Candidate genes were identified, the corresponding protein's produced and their immunoreactivity validated With sera from CD patients and controls. Thirteen CD-specific antigens were identified and further validated by protein microarray. The specificity for 6 of these antigens was confirmed by ELISA. Furthermore we showed that this antibody response was not abolished on a gluten free diet and was not shared with other autoimmune diseases. These antigens appear to be CD specific and independent of gluten induction. The utility of this panel extends beyond its diagnostic value and it may drive the attention to new targets for unbiased screens in autoimmunity research. (C) 2013 Elsevier Inc. All rights reserved.
C1 [D'Angelo, Sara; Deantonio, Cecilia; Santoro, Claudio; Sblattero, Daniele] Univ Eastern Piedmont Amedeo Avogadro, Dept Hlth Sci, Novara, Italy.
[D'Angelo, Sara; Deantonio, Cecilia; Santoro, Claudio; Sblattero, Daniele] Univ Eastern Piedmont Amedeo Avogadro, IRCAD, Novara, Italy.
[Mignone, Flavio] Univ Eastern Piedmont Amedeo Avogadro, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy.
[Di Niro, Roberto] Yale Univ, Dept Lab Med, Sch Med, New Haven, CT 06510 USA.
[Bordoni, Roberta; De Bellis, Gianluca] Natl Res Council ITB CNR, Inst Biomed Technol, Milan, Italy.
[Marzari, Roberto] Univ Trieste, Dept Life Sci, Trieste, Italy.
[Not, Tarcisio] Univ Trieste, Inst Child Hlth IRCCS Burlo Garofolo, Dept Med Sci, Trieste, Italy.
[D'Angelo, Sara; Ferrara, Fortunato; Bradbury, Andrew] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Santoro, C (reprint author), Univ Piemonte Orientale, Dip Sci Salute, Via Solaroli 17, I-28100 Novara, Italy.
EM csantoro@med.unipmn.it; sblatter@med.unipmn.it
RI De Bellis, Gianluca/H-9725-2013;
OI De Bellis, Gianluca/0000-0002-1622-4477; Not,
Tarcisio/0000-0003-1059-3009; Bradbury, Andrew/0000-0002-5567-8172
FU Fondazione Cariplo Bando Ricerca Biomedica 2009; EC Marie Curie Research
Training Network [MRTN-CT-20010-289964]; Compagnia San Paolo; MIUR
FIRBNG-Lab RBLA03ER38; IRCCS Burlo Garofolo [RF 35/07]; Regione Piemonte
Ricerca Sanitaria and Piattaforma Immonc
FX This work was supported by: Fondazione Cariplo Bando Ricerca Biomedica
2009; EC Marie Curie Research Training Network [contract no.
MRTN-CT-20010-289964]; Compagnia San Paolo; MIUR FIRB NG-Lab RBLA03ER38;
IRCCS Burlo Garofolo RF 35/07; Regione Piemonte Ricerca Sanitaria and
Piattaforma Immonc.
NR 52
TC 11
Z9 11
U1 1
U2 26
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1521-6616
J9 CLIN IMMUNOL
JI Clin. Immunol.
PD JUL
PY 2013
VL 148
IS 1
BP 99
EP 109
DI 10.1016/j.clim.2013.04.009
PG 11
WC Immunology
SC Immunology
GA 164RN
UT WOS:000320427300012
PM 23685219
ER
PT J
AU Kotava, N
Knoll, A
Hagen, H
AF Kotava, Natallia
Knoll, Aaron
Hagen, Hans
TI Morse-Smale decomposition of multivariate transfer function space for
separably-sampled volume rendering
SO COMPUTER AIDED GEOMETRIC DESIGN
LA English
DT Article
DE Topology; Morse theory; Volume rendering; Multidimensional transfer
functions
ID VISUALIZATION
AB We present a topology-guided technique for improving performance of multifield volume rendering with peak finding and preintegration with 2D transfer functions. We apply Morse-Smale decomposition to segment the multidimensional transfer function domain. This segmentation helps to reduce the number of cases where sampling in transfer function space should be performed, effectively reducing the rendering cost for equivalent sampling quality. We show that the overall performance is increased depending on the topology of a transfer function. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Kotava, Natallia; Hagen, Hans] Univ Kaiserslautern, D-67663 Kaiserslautern, Germany.
[Knoll, Aaron] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Kotava, N (reprint author), Univ Kaiserslautern, Gottlieb Daimler Str, D-67663 Kaiserslautern, Germany.
EM kotava@rhrk.uni-kl.de; knoll@mcs.anl.gov; hagen@informatik.uni-kl.de
NR 31
TC 1
Z9 1
U1 0
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8396
EI 1879-2332
J9 COMPUT AIDED GEOM D
JI Comput. Aided Geom. Des.
PD JUL
PY 2013
VL 30
IS 6
SI SI
BP 549
EP 556
DI 10.1016/j.cagd.2012.03.020
PG 8
WC Computer Science, Software Engineering; Mathematics, Applied
SC Computer Science; Mathematics
GA 160WA
UT WOS:000320150000004
ER
PT J
AU Norgard, G
Bremer, PT
AF Norgard, Gregory
Bremer, Peer-Timo
TI Robust computation of Morse-Smale complexes of bilinear functions
SO COMPUTER AIDED GEOMETRIC DESIGN
LA English
DT Article
DE Morse-Smale complex; Bilinear; Combinatorial topology
ID PRACTICAL APPROACH
AB The Morse-Smale (MS) complex has proven to be a useful tool in extracting and visualizing features from scalar-valued data. However, existing algorithms to compute the MS complex are restricted to either piecewise linear or discrete scalar fields. This paper presents a new combinatorial algorithm to compute MS complexes for two-dimensional piecewise bilinear functions defined on quadrilateral meshes. We derive a new invariant of the gradient flow within a bilinear cell and use it to develop a provably correct computation, unaffected by numerical instabilities. This includes a combinatorial algorithm to detect and classify critical points as well as a way to determine the asymptotes of cell-based saddles and their intersection with cell edges. Finally, we introduce a simple data structure to compute and store integral lines on quadrilateral meshes which by construction prevents intersections and allows to enforce constraints on the gradient flow that preserve known invariants. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Norgard, Gregory] Numer Corp, Loveland, CO 80538 USA.
[Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Bremer, PT (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-422, Livermore, CA 94551 USA.
EM gregnorgard@gmail.com; ptbremer@acm.org
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the US Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 23
TC 1
Z9 2
U1 0
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8396
EI 1879-2332
J9 COMPUT AIDED GEOM D
JI Comput. Aided Geom. Des.
PD JUL
PY 2013
VL 30
IS 6
SI SI
BP 577
EP 587
DI 10.1016/j.cagd.2012.03.017
PG 11
WC Computer Science, Software Engineering; Mathematics, Applied
SC Computer Science; Mathematics
GA 160WA
UT WOS:000320150000007
ER
PT J
AU Williams, SJ
Hlawitschka, M
Dillard, SE
Thoma, D
Hamann, B
AF Williams, S. J.
Hlawitschka, M.
Dillard, S. E.
Thoma, D.
Hamann, B.
TI Multi-region Delaunay complex segmentation
SO COMPUTER AIDED GEOMETRIC DESIGN
LA English
DT Article
DE Medial axis; Segmentation; Surface reconstruction; Feature extraction
ID IMAGE SEGMENTATION; WATERSHEDS
AB We focus on the problem of segmenting scattered point data into multiple regions in a single segmentation pass. To solve this problem, we begin with a set of potential boundary points and use a Delaunay triangulation to complete the boundaries. We then use information from the triangulation and its dual Voronoi complex to determine for each face whether it resembles a boundary or interior face, allowing a user to choose a specific segmentation by keeping only faces where our parameter is above a threshold. The resulting algorithm has time complexity in O (nd), where n is the number of Delaunay simplices. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Williams, S. J.; Hlawitschka, M.; Hamann, B.] Univ Calif Davis, Dept Comp Sci, Inst Data Anal & Visualizat, Davis, CA 95616 USA.
[Williams, S. J.; Thoma, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Hlawitschka, M.] Univ Leipzig, Sci Visualizat Grp, Leipzig, Germany.
[Dillard, S. E.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Williams, SJ (reprint author), Univ Calif Davis, Dept Comp Sci, Inst Data Anal & Visualizat, Davis, CA 95616 USA.
EM sjwill@ucdavis.edu; hlawitschka@ucdavis.edu; scott.dillard@pnl.gov;
thoma@lanl.gov; hamann@cs.ucdavis.edu
FU LANL-UC Davis Materials Design Institute; National Science Foundation
[CCF-0702817]; Los Alamos National Laboratory, Materials Design
Institute
FX We acknowledge the support of the LANL-UC Davis Materials Design
Institute, and especially the support and comments made by Sriram
Swaminarayan, Billy Sanders, and Dan Thoma. We thank the National
Science Foundation (CCF-0702817) and the Los Alamos National Laboratory,
Materials Design Institute for supporting this research.
NR 16
TC 0
Z9 0
U1 1
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8396
J9 COMPUT AIDED GEOM D
JI Comput. Aided Geom. Des.
PD JUL
PY 2013
VL 30
IS 6
SI SI
BP 588
EP 596
DI 10.1016/j.cagd.2012.03.016
PG 9
WC Computer Science, Software Engineering; Mathematics, Applied
SC Computer Science; Mathematics
GA 160WA
UT WOS:000320150000008
ER
PT J
AU Norgard, G
Bremer, PT
AF Norgard, Gregory
Bremer, Peer-Timo
TI Ridge-Valley graphs: Combinatorial ridge detection using Jacobi sets
SO COMPUTER AIDED GEOMETRIC DESIGN
LA English
DT Article
DE Ridge extraction; Combinatorial algorithm; Jacobi set
ID LAGRANGIAN COHERENT STRUCTURES; DIFFUSION TENSOR MRI; ANISOTROPY
CREASES; IMAGES
AB Ridges are one of the key features of interest in areas such as computer vision and image processing. Even though a significant amount of research has been directed to defining and extracting ridges some fundamental challenges remain. For example, the most popular ridge definition (height ridge) is not invariant under monotonic transformations and its global structure is typically ignored during numerical computations. Furthermore, many existing algorithms are based on numerical heuristics and are rarely guaranteed to produce consistent results. This paper reexamines a slightly different ridge definition that is consistent with all desired invariants. Nevertheless, we show that this definition results in similar structures compared to height ridges and that both formulations are equivalent for quadratic functions. Furthermore, this definition can be cast in the form of a degenerate Jacobi set, which allows insights into the global structure of ridges. In particular, we introduce the Ridge-Valley graph as the complete description of all ridges in an image. Finally, using the connection to Jacobi sets we describe a new combinatorial algorithm to extract the Ridge-Valley graph from sampled images guaranteed to produce a valid structure. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Norgard, Gregory] Numer Corp, Loveland, CO 80538 USA.
[Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Bremer, PT (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-422, Livermore, CA 94551 USA.
EM gregnorgard@gmail.com; ptbremer@acm.org
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the US Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 34
TC 2
Z9 2
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8396
EI 1879-2332
J9 COMPUT AIDED GEOM D
JI Comput. Aided Geom. Des.
PD JUL
PY 2013
VL 30
IS 6
SI SI
BP 597
EP 608
DI 10.1016/j.cagd.2012.03.015
PG 12
WC Computer Science, Software Engineering; Mathematics, Applied
SC Computer Science; Mathematics
GA 160WA
UT WOS:000320150000009
ER
PT J
AU Pett-Ridge, J
Petersen, DG
Nuccio, E
Firestone, MK
AF Pett-Ridge, Jennifer
Petersen, Dorthe G.
Nuccio, Erin
Firestone, Mary K.
TI Influence of oxic/anoxic fluctuations on ammonia oxidizers and
nitrification potential in a wet tropical soil
SO FEMS MICROBIOLOGY ECOLOGY
LA English
DT Article
DE nitrifiers; Puerto Rico; redox oscillation; oxygen depletion; archaea;
amoA
AB Ammonia oxidation is a key process in the global nitrogen cycle. However, in tropical soils, little is known about ammonia-oxidizing microorganisms and how characteristically variable oxygen regimes affect their activity. We investigated the influence of brief anaerobic periods on ammonia oxidation along an elevation, moisture, and oxygen availability gradient in wet tropical soils. Soils from three forest types were incubated for up to 36weeks in lab microcosms under three regimes: (1) static aerobic; (2) static anaerobic; and (3) fluctuating (aerobic/anaerobic). Nitrification potential was measured in field-fresh soils and incubated soils. The native ammonia-oxidizing community was also characterized, based on diversity assessments (clone libraries) and quantification of the ammonia monooxygenase -subunit (amoA) gene. These relatively low pH soils appear to be dominated by ammonia-oxidizing archaea (AOA), and AOA communities in the three soil types differed significantly in their ability to oxidize ammonia. Soils from an intermediate elevation, and those incubated with fluctuating redox conditions, tended to have the highest nitrification potential following an influx of oxygen, although all soils retained the capacity to nitrify even after long anoxic periods. Together, these results suggest that wet tropical soil AOA are tolerant of extended periods of anoxia.
C1 [Pett-Ridge, Jennifer] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Pett-Ridge, Jennifer; Petersen, Dorthe G.; Nuccio, Erin; Firestone, Mary K.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
RP Pett-Ridge, J (reprint author), Lawrence Livermore Natl Lab, POB 808,L-231, Livermore, CA 94551 USA.
EM pettridge2@llnl.gov
FU DOE Global Change Education Program; U.S. Department of Energy by
Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Carlsberg
Foundation; Danish National Research Foundation; Max Planck Society; DOE
Genomic Sciences Program [FOA DE-PS02-09ER09-25, 0016377]; UC Toxic
Substances Teaching and Research Program; Kearney Foundation for Soil
Science
FX For part of this research, JPR was supported by a graduate fellowship
from the DOE Global Change Education Program; writing and analysis were
performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The contributions of DGP were supported by a postdoctoral grant from the
Carlsberg Foundation, the Danish National Research Foundation and the
Max Planck Society. EEN was supported by the DOE Genomic Sciences
Program (FOA DE-PS02-09ER09-25 award #0016377), a graduate fellowship by
the UC Toxic Substances Teaching and Research Program and the Kearney
Foundation for Soil Science. We thank A. Thompson and D. Herman for
technical assistance, W. Silver for advice and assistance with site
access and also C. Gubry-Rangin for affiliating the Puerto Rican
sequences with the pH amoA database from Gubry-Rangin et al. (2011).
NR 0
TC 15
Z9 15
U1 4
U2 66
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0168-6496
J9 FEMS MICROBIOL ECOL
JI FEMS Microbiol. Ecol.
PD JUL
PY 2013
VL 85
IS 1
BP 179
EP 194
DI 10.1111/1574-6941.12111
PG 16
WC Microbiology
SC Microbiology
GA 166LQ
UT WOS:000320556500016
PM 23556538
ER
PT J
AU Siering, PL
Wolfe, GV
Wilson, MS
Yip, AN
Carey, CM
Wardman, CD
Shapiro, RS
Stedman, KM
Kyle, J
Yuan, T
Nostrand, JD
He, Z
Zhou, J
AF Siering, P. L.
Wolfe, G. V.
Wilson, M. S.
Yip, A. N.
Carey, C. M.
Wardman, C. D.
Shapiro, R. S.
Stedman, K. M.
Kyle, J.
Yuan, T.
Nostrand, J. D.
He, Z.
Zhou, J.
TI Microbial biogeochemistry of Boiling Springs Lake: a physically dynamic,
oligotrophic, low-pH geothermal ecosystem
SO GEOBIOLOGY
LA English
DT Article
ID VOLCANIC-NATIONAL-PARK; ACID-MINE DRAINAGE; FUNCTIONAL GENE DIVERSITY;
GEOCHIP-BASED ANALYSIS; YELLOWSTONE LAKE; HOT-SPRINGS; NEW-ZEALAND;
SP-NOV; PHYLOGENETIC DIVERSITY; COMMUNITY COMPOSITION
AB Boiling Springs Lake (BSL) in Lassen Volcanic National Park, California, is North America's largest hot spring, but little is known about the physical, chemical, and biological features of the system. Using a remotely operated vessel, we characterized the bathymetry and near-surface temperatures at sub-meter resolution. The majority of the 1.2ha, pH 2.2 lake is 10m deep and 50-52 degrees C, but temperatures reach 93 degrees C locally. We extracted DNA from water and sediments collected from warm (52 degrees C) and hot (73-83 degrees C) sites separated by 180m. Gene clone libraries and functional gene microarray (GeoChip 3.0) were used to investigate the BSL community, and uptake of radiolabeled carbon sources was used to assess the relative importance of heterotrophic vs. autotrophic production. Microbial assemblages are similar in both sites despite the strong temperature differential, supporting observations of a dynamic, convectively mixed system. Bacteria in the Actinobacteria and Aquificales phyla are abundant in the water column, and Archaea distantly related to known taxa are abundant in sediments. The functional potential appears similar across a 5-year time span, indicating a stable community with little inter-annual variation, despite the documented seasonal temperature cycle. BSL water-derived DNA contains genes for complete C, N, and S cycles, and low hybridization to probes for N and S oxidation suggests that reductive processes dominate. Many of the detected genes for these processes were from uncultivated bacteria, suggesting novel organisms are responsible for key ecosystem services. Selection imposed by low nutrients, low pH, and high temperature appear to result in low diversity and evenness of genes for key functions involved in C, N, and S cycling. Conversely, organic degradation genes appear to be functionally redundant, and the rapid assimilation of radiolabeled organic carbon into BSL cells suggests the importance of allochthonous C fueling heterotrophic production in the BSL C cycle.
C1 [Siering, P. L.; Wilson, M. S.; Yip, A. N.; Carey, C. M.; Wardman, C. D.] Humboldt State Univ, Dept Biol Sci, Arcata, CA 95521 USA.
[Wolfe, G. V.] Calif State Univ Chico, Dept Biol Sci, Chico, CA 95929 USA.
[Shapiro, R. S.] Calif State Univ Chico, Dept Geosci & Environm Sci, Chico, CA 95929 USA.
[Stedman, K. M.; Kyle, J.] Portland State Univ, Dept Biol, Portland, OR 97207 USA.
[Stedman, K. M.; Kyle, J.] Portland State Univ, Ctr Life Extreme Environm, Portland, OR 97207 USA.
[Yuan, T.; Nostrand, J. D.; He, Z.; Zhou, J.] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA.
[Yuan, T.; Nostrand, J. D.; He, Z.; Zhou, J.] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.
[Zhou, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Siering, PL (reprint author), Humboldt State Univ, Dept Biol Sci, Arcata, CA 95521 USA.
EM pls13@humboldt.edu
FU National Science Foundation [MCB-0702018, MCB-0702069, MCB-07020 20];
HSU Howard Hughes Medical Institute [52002680]; NASA Astrobiology
Institute's Directors Discretionary Fund [NNA11AC01G]; NASA Astrobiology
Institute Post-doctoral Fellowship program
FX Funding was provided by the National Science Foundation (nos.
MCB-0702018, MCB-0702069, and MCB-07020 20), HSU Howard Hughes Medical
Institute undergraduate science education grant (no. 52002680), and a
grant from the NASA Astrobiology Institute's Directors Discretionary
Fund grant no. NNA11AC01G. Jennifer Kyle was supported by the NASA
Astrobiology Institute Post-doctoral Fellowship program. We are indebted
to PSU mechanical engineering students, who designed and built the ROV
as part of a capstone project in 2008 under the direction of Dr. Faryar
Etesami, PSU. We thank Laura Ramos for GPS data collection, and 'Mile
Brian' Peasley for assistance with the GIS programming and drafting.
Data files relating to this project have been deposited with the Lassen
Volcanic National Park Geographic Information System (LAVO GIS). We also
acknowledge Billie Reeder (CSUC) for help with ROV and sediment data
collection, Dave Brown & Rachel Teasdale (CSUC) for additional T data,
Jose De La Torre (SFSU) for sharing unpublished results, and the NPS
LVNP staff, Louise Johnson and Michael Magnuson, for their generous
efforts assisting with site access and use of LVNP Science Center
facilities for sample processing. The authors of this manuscript have no
conflict of interest to declare with respect to publication of this
manuscript.
NR 98
TC 7
Z9 7
U1 5
U2 77
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1472-4677
J9 GEOBIOLOGY
JI Geobiology
PD JUL
PY 2013
VL 11
IS 4
BP 356
EP 376
DI 10.1111/gbi.12041
PG 21
WC Biology; Environmental Sciences; Geosciences, Multidisciplinary
SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences &
Ecology; Geology
GA 166KH
UT WOS:000320552800005
PM 23679065
ER
PT J
AU Elbaz, L
Garzon, FH
AF Elbaz, Lior
Garzon, Fernando H.
TI Increasing the site density of non-precious metal catalysts in fuel cell
electrodes
SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY
LA English
DT Article
DE Dipyrromethane; Non-precious metal catalyst; Oxygen reduction;
Electropolymerization
ID ELECTROPOLYMERIZATION; POLYPYRROLE; PORPHYRIN; PYRROLE
AB Development of new non-precious metal based catalysts for fuel cells is crucial for the viability of the technology. This class of catalysts has relatively low turnover frequencies for oxygen reduction reaction (ORR) when compared to platinum. One way to compensate for it is to increase the catalyst site density. In this work, a model system for a high site density catalytic layer for polymer electrolyte fuel cells was synthesized and characterized. Dipyrromethane was electropolymerized on glassy carbon and glass/ITO electrodes to form a ligand matrix of up to 200 nm in thickness, to which, cobalt was introduced during the electropolymerization process. Thin polymeric sheets were observed after the electrochemical synthesis and the cobalt density in the matrix was found to be 9.84 x 10(21) cobalt atoms cm(-3). ORR activity was demonstrated with oxygen reduction occurring at E-1/2 = 0.45 V and has an onset potential of 0.62 V vs. RHE. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Elbaz, Lior; Garzon, Fernando H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Elbaz, L (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM lior.elbaz@hotmail.com
FU U.S. Department of Energy Fuel Cell Technologies Program
FX The authors wish to thank the U.S. Department of Energy Fuel Cell
Technologies Program for providing funding for this work.
NR 17
TC 3
Z9 3
U1 1
U2 48
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 1572-6657
J9 J ELECTROANAL CHEM
JI J. Electroanal. Chem.
PD JUL 1
PY 2013
VL 700
BP 65
EP 69
DI 10.1016/j.jelechem.2013.04.013
PG 5
WC Chemistry, Analytical; Electrochemistry
SC Chemistry; Electrochemistry
GA 164NQ
UT WOS:000320417200011
ER
PT J
AU Kelleher, NL
Pasa-Tolic, L
AF Kelleher, Neil L.
Pasa-Tolic, Ljiljana
TI 25(th) ASMS Sanibel Conference on Top Down Mass Spectrometry
SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
LA English
DT Article
C1 [Kelleher, Neil L.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Kelleher, Neil L.] Northwestern Univ, Dept Mol Biosci, Evanston, IL USA.
[Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Kelleher, NL (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
EM n-kelleher@northwestern.edu
NR 0
TC 1
Z9 1
U1 1
U2 14
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1044-0305
J9 J AM SOC MASS SPECTR
JI J. Am. Soc. Mass Spectrom.
PD JUL
PY 2013
VL 24
IS 7
BP 983
EP 985
DI 10.1007/s13361-013-0640-y
PG 3
WC Biochemical Research Methods; Chemistry, Analytical; Chemistry,
Physical; Spectroscopy
SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy
GA 162RW
UT WOS:000320284000002
PM 23673522
ER
PT J
AU Chen, XW
Alonso, AP
Shachar-Hill, Y
AF Chen, Xuewen
Alonso, Ana P.
Shachar-Hill, Yair
TI Dynamic metabolic flux analysis of plant cell wall synthesis
SO METABOLIC ENGINEERING
LA English
DT Article
DE Dynamic metabolic flux analysis; Plant cell wall; Sucrose invertase;
Metabolic engineering; Bioenergy crops
ID BIDIRECTIONAL REACTION STEPS; POTATO-TUBER TISSUE; SUCROSE SYNTHASE;
PHENYLPROPANOID PATHWAY; ARABIDOPSIS-THALIANA; LABELING EXPERIMENTS;
STATISTICAL-ANALYSIS; MASS-SPECTROMETRY; BIOSYNTHESIS; NETWORKS
AB The regulation of plant cell wall synthesis pathways remains poorly understood. This has become a bottleneck in designing bioenergy crops. The goal of this study was to analyze the regulation of plant cell wall precursor metabolism using metabolic flux analysis based on dynamic labeling experiments. Arabidopsis T87 cells were cultured heterotrophically with C-13 labeled sucrose. The time course of C-13 labeling patterns in cell wall precursors and related sugar phosphates was monitored using liquid chromatography tandem mass spectrometry until steady state labeling was reached. A kinetic model based on mass action reaction mechanisms was developed to simulate the carbon flow in the cell wall synthesis network. The kinetic parameters of the model were determined by fitting the model to the labeling time course data, cell wall composition, and synthesis rates. A metabolic control analysis was performed to predict metabolic regulations that may improve plant biomass composition for biofuel production. Our results describe the routes and rates of carbon flow from sucrose to cell wall precursors. We found that sucrose invertase is responsible for the entry of sucrose into metabolism and UDP-glucose-4-epimerase plays a dominant role in UDP-Gal synthesis in heterotrophic Aradidopsis cells under aerobic conditions. We also predicted reactions that exert strong regulatory influence over carbon flow to cell wall synthesis and its composition. (C) 2013 Elsevier Inc. All rights reserved.
C1 [Chen, Xuewen; Shachar-Hill, Yair] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA.
[Chen, Xuewen; Shachar-Hill, Yair] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.
[Alonso, Ana P.] Ohio State Univ, Dept Mol Genet, Columbus, OH 43210 USA.
RP Chen, XW (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA.
EM xwchen@msu.edu
FU DOE Center for Plant and Microbial Complex Carbohydrates
[DE-FG02-09ER-20097]; Great Lakes Bioenergy Research Center (DOE BER
Office of Science) [DE-FC02-07ER64494]
FX The authors would like to thank Drs. Dan Jones and Lijun Chen (MSU Mass
Spectrometry Facility) for expert help with instrumental analyses; Dr.
Hart Poskar for his effort on developing previous versions of the model;
Tina M. Martin, Rebecca J. Piasecki and Russell W LaClair for their
technical support in cell cultures, enzyme assays and LC-MS/MS analyses;
We are also grateful to Dr. Thomas Maiwald for his assistance on
PottersWheel. The Glycosyl composition analysis was performed at the
DOE-funded (DE-FG02-09ER-20097) Center for Plant and Microbial Complex
Carbohydrates. This work was supported by the Great Lakes Bioenergy
Research Center (DOE BER Office of Science DE-FC02-07ER64494).
NR 62
TC 14
Z9 14
U1 4
U2 67
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1096-7176
J9 METAB ENG
JI Metab. Eng.
PD JUL
PY 2013
VL 18
BP 78
EP 85
DI 10.1016/j.ymben.2013.04.006
PG 8
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA 165JC
UT WOS:000320478800009
PM 23644173
ER
PT J
AU Hang, B
Sarker, AH
Havel, C
Saha, S
Hazra, TK
Schick, S
Jacob, P
Rehan, VK
Chenna, A
Sharan, D
Sleiman, M
Destaillats, H
Gundel, LA
AF Hang, Bo
Sarker, Altaf H.
Havel, Christopher
Saha, Saikat
Hazra, Tapas K.
Schick, Suzaynn
Jacob, Peyton, III
Rehan, Virender K.
Chenna, Ahmed
Sharan, Divya
Sleiman, Mohamad
Destaillats, Hugo
Gundel, Lara A.
TI Thirdhand smoke causes DNA damage in human cells
SO MUTAGENESIS
LA English
DT Article
ID ENVIRONMENTAL TOBACCO-SMOKE; CIGARETTE-SMOKE; COMET ASSAY;
4-(METHYLNITROSAMINO)-1-(3-PYRIDYL)-1-BUTANONE NNK; INDIVIDUAL CELLS;
N-NITROSAMINES; LUNG-CANCER; INDOOR AIR; EXPOSURE; NICOTINE
AB Exposure to thirdhand smoke (THS) is a newly described health risk. Evidence supports its widespread presence in indoor environments. However, its genotoxic potential, a critical aspect in risk assessment, is virtually untested. An important characteristic of THS is its ability to undergo chemical transformations during aging periods, as demonstrated in a recent study showing that sorbed nicotine reacts with the indoor pollutant nitrous acid (HONO) to form tobacco-specific nitrosamines (TSNAs) such as 4-(methylnitrosamino)-4-(3-pyridyl)butanal (NNA) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The goal of this study was to assess the genotoxicity of THS in human cell lines using two in vitro assays. THS was generated in laboratory systems that simulated short (acute)- and long (chronic)-term exposures. Analysis by liquid chromatographytandem mass spectrometry quantified TSNAs and common tobacco alkaloids in extracts of THS that had sorbed onto cellulose substrates. Exposure of human HepG2 cells to either acute or chronic THS for 24h resulted in significant increases in DNA strand breaks in the alkaline Comet assay. Cell cultures exposed to NNA alone showed significantly higher levels of DNA damage in the same assay. NNA is absent in freshly emitted secondhand smoke, but it is the main TSNA formed in THS when nicotine reacts with HONO long after smoking takes place. The long ampliconquantitative PCR assay quantified significantly higher levels of oxidative DNA damage in hypoxanthine phosphoribosyltransferase 1 (HPRT) and polymerase (POLB) genes of cultured human cells exposed to chronic THS for 24h compared with untreated cells, suggesting that THS exposure is related to increased oxidative stress and could be an important contributing factor in THS-mediated toxicity. The findings of this study demonstrate for the first time that exposure to THS is genotoxic in human cell lines.
C1 [Hang, Bo; Sarker, Altaf H.; Sharan, Divya] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Havel, Christopher; Schick, Suzaynn; Jacob, Peyton, III] Univ Calif San Francisco, San Francisco Gen Hosp Med Ctr, Dept Med, San Francisco, CA 94110 USA.
[Saha, Saikat; Hazra, Tapas K.] Univ Texas Med Branch, Div Pulm & Crit Care Med, Galveston, TX 77555 USA.
[Rehan, Virender K.] UCLA, David Geffen Sch Med, Harbor UCLA Med Ctr, Los Angeles Biomed Res Inst, Torrance, CA 90502 USA.
[Chenna, Ahmed] Monogram Biosci Inc, San Francisco, CA 94080 USA.
[Sleiman, Mohamad; Destaillats, Hugo; Gundel, Lara A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Hang, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Dept Canc & DNA Damage Responses, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM Bo_Hang@lbl.gov
FU University of California Tobacco-Related Disease Research Program
(TRDRP), under U.S. Department of Energy [19XT-0070, 20PT-0184,
DE-AC02-05CH11231]; TRDRP [20KT-0051]
FX This work was supported by the Grant 19XT-0070 (to B. H.) and Grant
20PT-0184 (California Thirdhand Smoke Consortium) from the University of
California Tobacco-Related Disease Research Program (TRDRP), under U.S.
Department of Energy (Contract no. DE-AC02-05CH11231). M. S. was
supported by TRDRP New Investigator Grant 20KT-0051. Instrumentation and
analytical chemistry at UCSF were supported by the National Institutes
of Health (S10 RR026437 to P.J.) and (P30 DA012393 to Reese T. Jones,
PI).
NR 48
TC 38
Z9 41
U1 5
U2 55
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0267-8357
EI 1464-3804
J9 MUTAGENESIS
JI Mutagenesis
PD JUL
PY 2013
VL 28
IS 4
BP 381
EP 391
DI 10.1093/mutage/get013
PG 11
WC Genetics & Heredity; Toxicology
SC Genetics & Heredity; Toxicology
GA 165EE
UT WOS:000320465100002
PM 23462851
ER
PT J
AU Bohac, DL
Hewett, MJ
Kapphahn, KI
Novacheck, J
Grimsrud, DT
Apte, MG
Gundel, LA
AF Bohac, David L.
Hewett, Martha J.
Kapphahn, Kristopher I.
Novacheck, Joshua
Grimsrud, David T.
Apte, Michael G.
Gundel, Lara A.
TI Secondhand Smoke Exposure in the Nonsmoking Section: How Much
Protection?
SO NICOTINE & TOBACCO RESEARCH
LA English
DT Article
ID ENVIRONMENTAL TOBACCO-SMOKE; BARS; RESTAURANTS; HEALTH; CAFES; PUBS
AB Secondhand smoke (SHS) exposure continues to be a problem in bars and restaurants where smoking is permitted. This study measures the relative SHS exposure reduction in nonsmoking sections of establishments that allow some smoking.
Measurements were conducted simultaneously in the smoking and nonsmoking sections of 14 Minnesota hospitality venues. All of the 16 two-hr visits included photometer measurements of fine particles (PM2.5) and 12 of the visits also included measurements of 4 gas-phase tracers of SHS.
The median ratio of nonsmoking/smoking section PM2.5 concentrations was 0.65 with an interquartile range (IQR) of 0.490.72. Measurements conducted after implementation of a smoking ban at 13 of the venues resulted in a smoking section PM2.5 post-ban/pre-ban ratio of 0.06 (IQR 0.020.16). The median nonsmoking/smoking section ratios for gas-phase compound were 0.67 (IQR 0.350.78) for pyridine, 0.52 (IQR 0.300.70) for pyrrole, 0.43 (IQR 0.350.84) for 3-EP, and 0.27 (IQR 0.160.47) for nicotine. These results are consistent with the expectations of differential removal: the lowest ratios are for the least volatile, most strongly sorbing gases and the highest ratios for less sorbing gases and PM2.5.
Designated nonsmoking sections in establishments that allow some smoking resulted in a median PM2.5 reduction of 35% compared with a 94% reduction after a smoking ban. The only adequate protection from cigarette smoke exposure is to eliminate smoking in indoor spaces.
C1 [Bohac, David L.; Hewett, Martha J.; Kapphahn, Kristopher I.; Novacheck, Joshua] Ctr Energy & Environm, Minneapolis, MN 55401 USA.
[Grimsrud, David T.] Univ Minnesota, Dept Bioprod Engn, St Paul, MN 55108 USA.
[Grimsrud, David T.] Univ Minnesota, Dept Biosyst Engn, St Paul, MN 55108 USA.
[Apte, Michael G.; Gundel, Lara A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Bohac, DL (reprint author), Ctr Energy & Environm, 212 3rd Ave North,Suite 560, Minneapolis, MN 55401 USA.
EM dbohac@mncee.org
FU ClearWay MinnesotaSM [RC 2006-0050]
FX This work was supported by ClearWay MinnesotaSM (RC 2006-0050).
NR 21
TC 2
Z9 2
U1 1
U2 12
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1462-2203
J9 NICOTINE TOB RES
JI Nicotine Tob. Res.
PD JUL
PY 2013
VL 15
IS 7
BP 1265
EP 1272
DI 10.1093/ntr/nts263
PG 8
WC Substance Abuse; Public, Environmental & Occupational Health
SC Substance Abuse; Public, Environmental & Occupational Health
GA 165EG
UT WOS:000320465300011
PM 23239842
ER
PT J
AU Bertelli, N
Wallace, G
Bonoli, PT
Harvey, RW
Smirnov, AP
Baek, SG
Parker, RR
Phillips, CK
Valeo, EJ
Wilson, JR
Wright, JC
AF Bertelli, N.
Wallace, G.
Bonoli, P. T.
Harvey, R. W.
Smirnov, A. P.
Baek, S. G.
Parker, R. R.
Phillips, C. K.
Valeo, E. J.
Wilson, J. R.
Wright, J. C.
TI The effects of the scattering by edge plasma density fluctuations on
lower hybrid wave propagation
SO PLASMA PHYSICS AND CONTROLLED FUSION
LA English
DT Article; Proceedings Paper
CT 13th Joint Varenna-Lausanne International Workshop on the Theory of
Fusion Plasmas
CY AUG 27-31, 2012
CL Varenna, ITALY
ID SCRAPE-OFF LAYER; ALCATOR C-MOD; CURRENT DRIVE; TURBULENCE; TRANSPORT;
TOKAMAKS
AB Scattering effects induced by edge density fluctuations on lower hybrid (LH) wave propagation are investigated. The scattering model used here is based on the work of Bonoli and Ott (1982 Phys. Fluids 25 361). It utilizes an electromagnetic wave kinetic equation solved by a Monte Carlo technique. This scattering model has been implemented in GENRAY, a ray-tracing code which explicitly simulates wave propagation, as well as collisionless and collisional damping processes, over the entire plasma discharge, including the scrape-off layer that extends from the separatrix to the vessel wall. A numerical analysis of the LH wave trajectories and the power deposition profile with and without scattering is presented for Alcator C-Mod discharges. Comparisons between the measured hard x-ray emission on Alcator C-Mod and simulations of the data obtained from the synthetic diagnostic included in the GENRAY/CQL3D package are shown, with and without the combination of scattering and collisional damping. Implications of these results on LH current drive are discussed.
C1 [Bertelli, N.; Phillips, C. K.; Valeo, E. J.; Wilson, J. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Wallace, G.; Bonoli, P. T.; Baek, S. G.; Parker, R. R.; Wright, J. C.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
[Harvey, R. W.] CompX, Del Mar, CA 92014 USA.
[Smirnov, A. P.] Moscow MV Lomonosov State Univ, Moscow, Russia.
RP Bertelli, N (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM nbertell@pppl.gov
RI Smirnov, Alexander /A-4886-2014
NR 34
TC 17
Z9 17
U1 1
U2 15
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0741-3335
J9 PLASMA PHYS CONTR F
JI Plasma Phys. Control. Fusion
PD JUL
PY 2013
VL 55
IS 7
AR 074003
DI 10.1088/0741-3335/55/7/074003
PG 10
WC Physics, Fluids & Plasmas
SC Physics
GA 163XZ
UT WOS:000320373200004
ER
PT J
AU Veranda, M
Bonfiglio, D
Cappello, S
Chacon, L
Escande, DF
AF Veranda, M.
Bonfiglio, D.
Cappello, S.
Chacon, L.
Escande, D. F.
TI Impact of helical boundary conditions on nonlinear 3D
magnetohydrodynamic simulations of reversed-field pinch
SO PLASMA PHYSICS AND CONTROLLED FUSION
LA English
DT Article; Proceedings Paper
CT 13th Joint Varenna-Lausanne International Workshop on the Theory of
Fusion Plasmas
CY AUG 27-31, 2012
CL Varenna, ITALY
ID MHD; BIFURCATION; PLASMAS
AB Helical self-organized reversed-field pinch (RFP) regimes emerge both numerically-in 3D visco-resistive magnetohydrodynamic (MHD) simulations-and experimentally, as in the RFX-mod device at high current (I-P above 1 MA). These states, called quasi-single helicity (QSH) states, are characterized by the action of a MHD mode that impresses a quasi-helical symmetry to the system, thus allowing a high degree of magnetic chaos healing. This is in contrast with the multiple helicity (MH) states, where magnetic fluctuations create a chaotic magnetic field degrading the confinement properties of the RFP. This paper reports an extensive numerical study performed in the frame of 3D visco-resistive MHD which considers the effect of helical magnetic boundary conditions, i.e. of a finite value of the radial magnetic field at the edge (magnetic perturbation, MP). We show that the system can be driven to a selected QSH state starting from both spontaneous QSH and MH regimes. In particular, a high enough MP can force a QSH helical self-organization with a helicity different from the spontaneous one. Moreover, MH states can be turned into QSH states with a selected helicity. A threshold in the amplitude of MP is observed above which is able to influence the system. Analysis of the magnetic topology of these simulations indicates that the dominant helical mode is able to temporarily sustain conserved magnetic structures in the core of the plasma. The region occupied by conserved magnetic surfaces increases reducing secondary modes' amplitude to experimental-like values.
C1 [Veranda, M.; Bonfiglio, D.; Cappello, S.] Assoc Euratom ENEA, Consorzio RFX, Padua, Italy.
[Chacon, L.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Escande, D. F.] Aix Marseille Univ, CNRS, UMR 6633, Lab PIIM, Marseille, France.
RP Veranda, M (reprint author), Assoc Euratom ENEA, Consorzio RFX, Padua, Italy.
EM marco.veranda@igi.cnr.it
RI Bonfiglio, Daniele/I-9398-2012; Cappello, Susanna/H-9968-2013;
OI Bonfiglio, Daniele/0000-0003-2638-317X; Cappello,
Susanna/0000-0002-2022-1113; Escande, Dominique/0000-0002-0460-8385;
Chacon, Luis/0000-0002-4566-8763
NR 27
TC 11
Z9 11
U1 5
U2 14
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0741-3335
J9 PLASMA PHYS CONTR F
JI Plasma Phys. Control. Fusion
PD JUL
PY 2013
VL 55
IS 7
AR 074015
DI 10.1088/0741-3335/55/7/074015
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA 163XZ
UT WOS:000320373200016
ER
PT J
AU Der, BS
Jha, RK
Lewis, SM
Thompson, PM
Guntas, G
Kuhlman, B
AF Der, Bryan S.
Jha, Raamesh K.
Lewis, Steven M.
Thompson, Peter M.
Guntas, Gurkan
Kuhlman, Brian
TI Combined computational design of a zinc-binding site and a
protein-protein interaction: One open zinc coordination site was not a
robust hotspot for de novo ubiquitin binding
SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
LA English
DT Article
DE computational interface design; de novo; heterodimer; metal
coordination; zinc binding; protein-protein interaction
ID DEPENDENT ROTAMER LIBRARY; PROLACTIN RECEPTOR; RECOGNITION SITES;
GROWTH-HORMONE; INTERFACES; PAIR; HOMODIMER; AFFINITY; BARSTAR; DOMAINS
AB We computationally designed a de novo protein-protein interaction between wild-type ubiquitin and a redesigned scaffold. Our strategy was to incorporate zinc at the designed interface to promote affinity and orientation specificity. A large set of monomeric scaffold surfaces were computationally engineered with three-residue zinc coordination sites, and the ubiquitin residue H68 was docked to the open coordination site to complete a tetrahedral zinc site. This single coordination bond was intended as a hotspot and polar interaction for ubiquitin binding, and surrounding residues on the scaffold were optimized primarily as hydrophobic residues using a rotamer-based sequence design protocol in Rosetta. From thousands of independent design simulations, four sequences were selected for experimental characterization. The best performing design, called Spelter, binds tightly to zinc (Kd<10 nM) and binds ubiquitin with a Kd of 20 mu M in the presence of zinc and 68 mu M in the absence of zinc. Mutagenesis studies and nuclear magnetic resonance chemical shift perturbation experiments indicate that Spelter interacts with H68 and the target surface on ubiquitin; however, H68 does not form a hotspot as intended. Instead, mutation of H68 to alanine results in tighter binding. Although a 3/1 zinc coordination arrangement at an interface cannot be ruled out as a means to improve affinity, our study led us to conclude that 2/2 coordination arrangements or multiple-zinc designs are more likely to promote high-affinity protein interactions. Proteins 2013; 81:1245-1255. (c) 2013 Wiley Periodicals, Inc.
C1 [Der, Bryan S.; Jha, Raamesh K.; Lewis, Steven M.; Thompson, Peter M.; Guntas, Gurkan; Kuhlman, Brian] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA.
[Jha, Raamesh K.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA.
[Kuhlman, Brian] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA.
RP Kuhlman, B (reprint author), Univ N Carolina, Sch Med, Dept Biochem & Biophys, Campus Box, Chapel Hill, NC 27599 USA.
EM bkuhlman@email.unc.edu
OI Thompson, Peter/0000-0001-7562-6049; Jha, Ramesh/0000-0001-5904-3441
FU National Institutes of Health [GM073960, T32GM008570]; National Science
Foundation graduate research fellowship [2009070950, 2008072760];
University of North Carolina Royster Society Pogue fellowship
FX Grant sponsor: National Institutes of Health; Grant numbers: GM073960
and T32GM008570; Grant sponsor: National Science Foundation graduate
research fellowship; Grant numbers: 2009070950 (to B. D.) and 2008072760
(to P. T.); Grant sponsor: University of North Carolina Royster Society
Pogue fellowship (to S. L. and B.D).
NR 62
TC 6
Z9 6
U1 0
U2 12
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0887-3585
J9 PROTEINS
JI Proteins
PD JUL
PY 2013
VL 81
IS 7
BP 1245
EP 1255
DI 10.1002/prot.24280
PG 11
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA 165HK
UT WOS:000320474100014
PM 23504819
ER
PT J
AU Tice, JD
Bassett, TA
Desai, AV
Apblett, CA
Kenis, PJA
AF Tice, Joshua D.
Bassett, Thomas A.
Desai, Amit V.
Apblett, Christopher A.
Kenis, Paul J. A.
TI A monolithic poly(dimethylsiloxane) electrostatic actuator for
controlling integrated pneumatic microsystems
SO SENSORS AND ACTUATORS A-PHYSICAL
LA English
DT Article
DE Electrostatic actuator; Microvalve; Microfluidics; Soft-lithography;
Pneumatic microsystems
ID NANOTUBE-POLYMER COMPOSITES; LARGE-SCALE INTEGRATION; TRANSPARENT;
MICROFLUIDICS; MICROVALVE; MEMBRANE; ADHESION; VALVES; FILMS; MEMS
AB Although pneumatic microvalves are widely utilized in microfluidic systems, they are rarely used in portable applications due to the bulky ancillary equipment required for their actuation. The microvalves rely on transducers that convert electrical signals into mechanical forces, and the miniaturization and integration of these transducers has proven to be challenging. Here, we report a strategy for operating pneumatic valves where microscale electrostatic actuators were used to relay commands from electronic ancillaries. Each electrostatic actuator occupied a footprint less than 0.5 mm(2), and was composed entirely of poly(dimethylsiloxane) and multi-walled carbon nanotubes. Similar to typical pneumatic microvalves, the electrostatic actuators were fabricated exclusively with soft-lithographic techniques, which permitted both components to be integrated monolithically. The actuators operated at electric potentials less than 300V, and regulated microchannels pressurized up to similar to 4 kPa, which is sufficient for many microfluidic applications. (c) 2013 Elsevier B.V. All rights reserved.
C1 [Tice, Joshua D.; Bassett, Thomas A.; Desai, Amit V.; Kenis, Paul J. A.] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA.
[Apblett, Christopher A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Apblett, Christopher A.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA.
RP Kenis, PJA (reprint author), 600 South Mathews Ave, Urbana, IL 61801 USA.
EM kenis@illinois.edu
RI Kenis, Paul/S-7229-2016
OI Kenis, Paul/0000-0001-7348-0381
FU Sandia National Laboratories; DOE [LDRD PR 922327]; Center for Nanoscale
Chemical Electrical Mechanical Manufacturing Systems at the University
of Illinois; NSF [DMI-0328162]; Center for Microanalysis of Materials in
the Frederick Seitz Materials Research Laboratory Central Facilities at
the University of Illinois
FX We thank Dr. Gregory Ten Eyck, Andrew Collard, and Christopher Hamlin
for performing preliminary fabrication and characterization. Dane
Sievers assisted in measuring the sheet resistance of the carbon
nanotube electrodes. Dr. James Wentz provided electrical testing
equipment. We also gratefully acknowledge financial support from Sandia
National Laboratories, funded by the DOE through grant LDRD PR#922327;
the Center for Nanoscale Chemical Electrical Mechanical Manufacturing
Systems at the University of Illinois, funded by the NSF through grant
DMI-0328162; and the Center for Microanalysis of Materials in the
Frederick Seitz Materials Research Laboratory Central Facilities at the
University of Illinois.
NR 41
TC 6
Z9 6
U1 2
U2 34
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0924-4247
J9 SENSOR ACTUAT A-PHYS
JI Sens. Actuator A-Phys.
PD JUL 1
PY 2013
VL 196
BP 22
EP 29
DI 10.1016/j.sna.2013.03.020
PG 8
WC Engineering, Electrical & Electronic; Instruments & Instrumentation
SC Engineering; Instruments & Instrumentation
GA 161RI
UT WOS:000320210600004
ER
PT J
AU Vlasko-Vlasov, V
Benseman, T
Welp, U
Kwok, WK
AF Vlasko-Vlasov, V.
Benseman, T.
Welp, U.
Kwok, W. K.
TI Jamming of superconducting vortices in a funnel structure
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article
ID CRITICAL-CURRENT-DENSITY; T-C SUPERCONDUCTORS; TEMPERATURE-DEPENDENCE;
TRANSPORT; YBA2CU3O7-DELTA; CRYSTALS; CURRENTS; SYSTEMS; DRIVEN
AB We report direct visual evidence of vortex retardation in a funnel structure patterned into a twin free YBCO crystal using laser lithography and ion milling. Magneto-optical images of flux entry with changing applied magnetic field show delayed flux propagation near the narrow end of the funnel which we interpret as a result of the jamming of vortices in the funnel neck. Furthermore, with AC magnetic fields, we observe the formation of macroturbulent flux domains whose motion is arrested at the constricted end of the funnel due to vortex jamming.
C1 [Vlasko-Vlasov, V.; Benseman, T.; Welp, U.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Vlasko-Vlasov, V (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
EM vlasko-vlasov@anl.gov
FU Department of Energy, Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX This work was supported by the Department of Energy, Office of Basic
Energy Sciences, under contract no. DE-AC02-06CH11357.
NR 36
TC 2
Z9 2
U1 2
U2 12
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD JUL
PY 2013
VL 26
IS 7
AR 075023
DI 10.1088/0953-2048/26/7/075023
PG 8
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 158LW
UT WOS:000319973800031
ER
PT J
AU Polini, A
Bai, H
Tomsia, AP
AF Polini, Alessandro
Bai, Hao
Tomsia, Antoni P.
TI Dental applications of nanostructured bioactive glass and its composites
SO WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY
LA English
DT Review
ID BONE TISSUE REGENERATION; DRUG-DELIVERY; IN-VITRO; PERIODONTAL
REGENERATION; SCAFFOLDS; RELEASE; MATRIX; DIFFERENTIATION;
NANOCOMPOSITE; NANOPARTICLES
AB To improve treatments of bone or dental trauma and diseases such as osteoporosis, cancer, and infections, scientists who perform basic research are collaborating with clinicians to design and test new biomaterials for the regeneration of lost or injured tissue. Developed some 40 years ago, bioactive glass (BG) has recently become one of the most promising biomaterials, a consequence of discoveries that its unusual properties elicit specific biological responses inside the body. Among these important properties are the capability of BG to form strong interfaces with both hard and soft tissues, and its release of ions upon dissolution. Recent developments in nanotechnology have introduced opportunities for materials sciences to advance dental and bone therapies. For example, the applications for BG expand as it becomes possible to finely control structures and physicochemical properties of materials at the molecular level. Here, we review how the properties of these materials have been enhanced by the advent of nanotechnology, and how these developments are producing promising results in hard-tissue regeneration and development of innovative BG-based drug delivery systems. WIREs Nanomed Nanobiotechnol 2013, 5:399-410. doi: 10.1002/wnan.1224 For further resources related to this article, please visit the WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article.
C1 [Polini, Alessandro; Bai, Hao; Tomsia, Antoni P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Polini, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM apolini@lbl.gov
RI Polini, Alessandro/A-2077-2012; Bai, Hao/J-5255-2012; Bai,
Hao/D-1713-2017
OI Polini, Alessandro/0000-0002-3188-983X; Bai, Hao/0000-0002-1707-4976;
Bai, Hao/0000-0002-3348-6129
FU National Institutes of Health/National Institute of Dental and
Craniofacial Research (NIH/NIDCR) [1R01DE015633]
FX This work was supported by the National Institutes of Health/National
Institute of Dental and Craniofacial Research (NIH/NIDCR) Grant No.
1R01DE015633.
NR 85
TC 7
Z9 7
U1 10
U2 54
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1939-5116
J9 WIRES NANOMED NANOBI
JI Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol.
PD JUL-AUG
PY 2013
VL 5
IS 4
BP 399
EP 410
DI 10.1002/wnan.1224
PG 12
WC Nanoscience & Nanotechnology; Medicine, Research & Experimental
SC Science & Technology - Other Topics; Research & Experimental Medicine
GA 164IV
UT WOS:000320403500008
PM 23606653
ER
PT J
AU Bent, ZW
Tran-Gyamfi, MB
Langevin, SA
Brazel, DM
Hamblin, RY
Branda, SS
Patel, KD
Lane, TW
VanderNoot, VA
AF Bent, Zachary W.
Tran-Gyamfi, Mary B.
Langevin, Stanley A.
Brazel, David M.
Hamblin, Rachelle Y.
Branda, Steven S.
Patel, Kamlesh D.
Lane, Todd W.
VanderNoot, Victoria A.
TI Enriching pathogen transcripts from infected samples: A capture-based
approach to enhanced host-pathogen RNA sequencing
SO ANALYTICAL BIOCHEMISTRY
LA English
DT Article
DE Capture; RNA-Seq; Transcript enrichment; Next-generation sequencing;
Rift Valley fever virus; Francisella tularensis
ID FRANCISELLA-TULARENSIS; VIRULENCE; SYSTEMS; CELLS; CHROMATOGRAPHY;
EXPRESSION; MODEL; SEQ; DNA
AB To fully understand the interactions of a pathogen with its host, it is necessary to analyze the RNA transcripts of both the host and pathogen throughout the course of an infection. Although this can be accomplished relatively easily on the host side, the analysis of pathogen transcripts is complicated by the overwhelming amount of host RNA isolated from an infected sample. Even with the read depth provided by second-generation sequencing, it is extremely difficult to get enough pathogen reads for an effective gene-level analysis. In this study, we describe a novel capture-based technique and device that considerably enriches for pathogen transcripts from infected samples. This versatile method can, in principle, enrich for any pathogen in any infected sample. To test the technique's efficacy, we performed time course tissue culture infections using Rift Valley fever virus and Francisella tularensis. At each time point, RNA sequencing (RNA-Seq) was performed and the results of the treated samples were compared with untreated controls. The capture of pathogen transcripts, in all cases, led to more than an order of magnitude enrichment of pathogen reads, greatly increasing the number of genes hit, the coverage of those genes, and the depth at which each transcript was sequenced. (C) 2013 Elsevier Inc. All rights reserved.
C1 [Bent, Zachary W.; Tran-Gyamfi, Mary B.; Langevin, Stanley A.; Brazel, David M.; Hamblin, Rachelle Y.; Branda, Steven S.; Patel, Kamlesh D.; Lane, Todd W.; VanderNoot, Victoria A.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP VanderNoot, VA (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA.
EM vavande@sandia.gov
OI Brazel, David/0000-0001-5361-2498; Lane, Todd/0000-0002-5816-2649
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000. The authors
thank the staff members of the Vincent J. Coates Sequencing Laboratory
for their assistance and insight.
NR 32
TC 9
Z9 9
U1 0
U2 35
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0003-2697
J9 ANAL BIOCHEM
JI Anal. Biochem.
PD JUL 1
PY 2013
VL 438
IS 1
BP 90
EP 96
DI 10.1016/j.ab.2013.03.008
PG 7
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Chemistry, Analytical
SC Biochemistry & Molecular Biology; Chemistry
GA 156SW
UT WOS:000319845200015
PM 23535274
ER
PT J
AU Mishra, U
Torn, MS
Fingerman, K
AF Mishra, Umakant
Torn, Margaret S.
Fingerman, Kevin
TI Miscanthus biomass productivity within US croplands and its potential
impact on soil organic carbon
SO GLOBAL CHANGE BIOLOGY BIOENERGY
LA English
DT Article
DE biofuel; biomass; carbon sequestration; cropland; miscanthus; soil
organic carbon
ID LAND-USE CHANGE; BIOENERGY PRODUCTION; C-13 ABUNDANCE; ENERGY CROP;
WATER-USE; BIOFUELS; SEQUESTRATION; EMISSIONS; MODEL; SCALE
AB Interest in bioenergy crops is increasing due to their potential to reduce greenhouse gas emissions and dependence on fossil fuels. We combined process-based and geospatial models to estimate the potential biomass productivity of miscanthus and its potential impact on soil carbon stocks in the croplands of the continental United States. The optimum (climatic potential) rainfed productivity for field-dried miscanthus biomass ranged from 1 to 23Mgbiomassha-1yr-1, with a spatial average of 13Mgha-1yr-1 and a coefficient of variation of 30%. This variation resulted primarily from the spatial heterogeneity of effective rainfall, growing degree days, temperature, and solar radiation interception. Cultivating miscanthus would result in a soil organic carbon (SOC) sequestration at the rate of 0.16-0.82MgCha-1yr-1 across the croplands due to cessation of tillage and increased biomass carbon input into the soil system. We identified about 81millionha of cropland, primarily in the eastern United States, that could sustain economically viable (>10Mgha-1yr-1) production without supplemental irrigation, of which about 14millionha would reach optimal miscanthus growth. To meet targets of the US Energy Independence and Security Act of 2007 using miscanthus as feedstock, 19millionha of cropland would be needed (spatial average 13Mgha-1yr-1) or about 16% less than is currently dedicated to US corn-based ethanol production.
C1 [Mishra, Umakant; Torn, Margaret S.] Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Torn, Margaret S.; Fingerman, Kevin] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA.
RP Mishra, U (reprint author), Argonne Natl Lab, Div Environm Sci, 9700 Cass Ave Bldg 240, Argonne, IL 60439 USA.
EM umishra@anl.gov
RI Mishra, Umakant/H-8128-2013; Torn, Margaret/D-2305-2015
FU Energy Biosciences Institute, University of California Berkeley; Office
of Science, Office of Biological and Environmental Research, Climate and
Environmental Science Division of the US Department of Energy
[DE-AC02-05CH11231]
FX We thank Atul Jain from the University of Illinois Urbana-Champaign for
providing us georeferenced Miscanthus productivity data to validate our
estimates. This study was jointly funded by the Energy Biosciences
Institute, University of California Berkeley, and the Office of Science,
Office of Biological and Environmental Research, Climate and
Environmental Science Division of the US Department of Energy under
Contract No. DE-AC02-05CH11231.
NR 47
TC 17
Z9 17
U1 3
U2 37
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1757-1693
J9 GCB BIOENERGY
JI GCB Bioenergy
PD JUL
PY 2013
VL 5
IS 4
BP 391
EP 399
DI 10.1111/j.1757-1707.2012.01201.x
PG 9
WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA 158CX
UT WOS:000319947300006
ER
PT J
AU Tucker, MC
Srinivasan, V
Ross, PN
Weber, AZ
AF Tucker, Michael C.
Srinivasan, Venkat
Ross, Philip N.
Weber, Adam Z.
TI Performance and cycling of the iron-ion/hydrogen redox flow cell with
various catholyte salts
SO JOURNAL OF APPLIED ELECTROCHEMISTRY
LA English
DT Article
DE Redox flow cell; Flow battery; Iron hydrogen cell
ID BATTERY; PROGRESS
AB A redox flow cell utilizing the Fe2+/Fe3+ and H-2/H+ couples is investigated as an energy storage device. A conventional polymer electrolyte fuel cell anode and membrane design is employed, with a cathode chamber containing a carbon felt flooded with aqueous acidic solution of iron salt. The maximum power densities achieved for iron sulfate, iron chloride, and iron nitrate are 148, 207, and 234 mW cm(-2), respectively. It is found that the capacity of the iron nitrate solution decreases rapidly during cycling. Stable cycling is observed for more than 100 h with iron chloride and iron sulfate solutions. Both iron sulfate and iron chloride solutions display moderate discharge polarization and poor charge polarization; therefore, voltage efficiency decreases dramatically with increasing current density. A small self-discharge current occurs when catholyte is circulating through the cathode chamber. As a result, a current density above 100 mA cm(-2) is required to achieve high Coulombic efficiency (> 0.9).
C1 [Tucker, Michael C.; Srinivasan, Venkat; Ross, Philip N.; Weber, Adam Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Tucker, MC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM mctucker@lbl.gov
OI Weber, Adam/0000-0002-7749-1624
FU Fuel Cell Technologies Office, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX Stanislaus Grosjean contributed to the design and fabrication of the
experimental setup for this study. The authors thank Kyu Taek Cho for
helpful discussion and guidance during the initiation of this study. We
also thank John Kerr and Vincent S. Battaglia for fruitful discussion.
This study was supported in part by the Assistant Secretary for Energy
Efficiency and Renewable Energy, Fuel Cell Technologies Office, of the
U.S. Department of Energy under contract number DE-AC02-05CH11231.
NR 24
TC 12
Z9 12
U1 1
U2 46
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0021-891X
J9 J APPL ELECTROCHEM
JI J. Appl. Electrochem.
PD JUL
PY 2013
VL 43
IS 7
BP 637
EP 644
DI 10.1007/s10800-013-0553-2
PG 8
WC Electrochemistry
SC Electrochemistry
GA 163ZN
UT WOS:000320378100002
ER
PT J
AU Roberts, CC
Francis, LF
AF Roberts, Christine C.
Francis, Lorraine F.
TI Drying and cracking of soft latex coatings
SO JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH
LA English
DT Article
DE Latex film formation; Cracking; Cryogenic scanning electron microscopy;
Stress; Minimum film formation temperature
ID ATOMIC-FORCE MICROSCOPY; GRANULAR CERAMIC FILMS; THIN-FILMS; STRESS;
BEHAVIOR; DEFORMATION; DISPERSIONS; SUSPENSIONS; PARTICLES; PATTERNS
AB The minimum film formation temperature (MFFT) is the minimum drying temperature needed for a latex coating to coalesce into an optically clear, dense crack-free film. To better understand the interplay of forces near this critical temperature, cryogenic scanning electron microscopy (cryoSEM) was used to track the latex particle deformation and water migration in coatings dried at temperatures just above and below the MFFT. Although the latex particles completely coalesced at both temperatures by the end of the drying process, it was discovered that particle deformation during the early drying stages was drastically different. Below the MFFT, cracks initiated just as menisci began to recede into the packing of consolidated particles, whereas above the MFFT, partial particle deformation occurred before menisci entered the coating and cracks were not observed. The spacing between cracks measured in coatings dried at varying temperatures decreased with decreasing drying temperature near the MFFT, whereas it was independent of temperature below a critical temperature. Finally, the addition of small amounts of silica aggregates was found to lessen the cracking of latex coatings near the MFFT without adversely affecting their optical clarity.
C1 [Roberts, Christine C.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Francis, Lorraine F.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA.
RP Roberts, CC (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM ccrober@sandia.gov
FU University of Minnesota Industrial Partnership for Research in
Interfacial and Materials Engineering (IPRIME); Evonik Industries;
University of Minnesota graduate school; NSF through the MRSEC program;
U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX This research was supported by the University of Minnesota Industrial
Partnership for Research in Interfacial and Materials Engineering
(IPRIME) and Evonik Industries. C. C. R. gratefully acknowledges a
Doctoral Dissertation Fellowship sponsored by the University of
Minnesota graduate school. CryoSEM was performed with the help of Chris
Frethem at the University of Minnesota Characterization Facility, which
receives partial support from NSF through the MRSEC program. CryoSEM
images were also obtained at the Technion-Israel Institute of Technology
under the knowledgeable direction of Prof. Yeshayahu Talmon. Financial
support from the University of Minnesota graduate school made this
travel possible. Sandia National Laboratories is a multiprogram
laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract
DE-AC04-94AL85000.
NR 54
TC 5
Z9 8
U1 3
U2 40
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1547-0091
J9 J COAT TECHNOL RES
JI J. Coat. Technol. Res.
PD JUL
PY 2013
VL 10
IS 4
BP 441
EP 451
DI 10.1007/s11998-012-9425-7
PG 11
WC Chemistry, Applied; Materials Science, Coatings & Films
SC Chemistry; Materials Science
GA 163CV
UT WOS:000320314200001
ER
PT J
AU Newman, RM
Kuntzen, T
Weiner, B
Berical, A
Charlebois, P
Kuiken, C
Murphy, DG
Simmonds, P
Bennett, P
Lennon, NJ
Birren, BW
Zody, MC
Allen, TM
Henn, MR
AF Newman, Ruchi M.
Kuntzen, Thomas
Weiner, Brian
Berical, Andrew
Charlebois, Patrick
Kuiken, Carla
Murphy, Donald G.
Simmonds, Peter
Bennett, Phil
Lennon, Niall J.
Birren, Bruce W.
Zody, Michael C.
Allen, Todd M.
Henn, Matthew R.
TI Whole Genome Pyrosequencing of Rare Hepatitis C Virus Genotypes Enhances
Subtype Classification and Identification of Naturally Occurring Drug
Resistance Variants
SO JOURNAL OF INFECTIOUS DISEASES
LA English
DT Article
DE Hepatitis C virus; pyrosequencing; subtype classification; drug
resistance mutations; viral diversity
ID OPEN READING FRAME; NS3 PROTEASE; POLYMERASE INHIBITORS;
MAXIMUM-LIKELIHOOD; ST-PETERSBURG; IN-VITRO; HCV-RNA; RECOMBINANT;
TMC435; SEQUENCES
AB Background. Infection with hepatitis C virus (HCV) is a burgeoning worldwide public health problem, with 170 million infected individuals and an estimated 20 million deaths in the coming decades. While 6 main genotypes generally distinguish the global geographic diversity of HCV, a multitude of closely related subtypes within these genotypes are poorly defined and may influence clinical outcome and treatment options. Unfortunately, the paucity of genetic data from many of these subtypes makes time-consuming primer walking the limiting step for sequencing understudied subtypes.
Methods. Here we combined long-range polymerase chain reaction amplification with pyrosequencing for a rapid approach to generate the complete viral coding region of 31 samples representing poorly defined HCV subtypes.
Results. Phylogenetic classification based on full genome sequences validated previously identified HCV subtypes, identified a recombinant sequence, and identified a new distinct subtype of genotype 4. Unlike conventional sequencing methods, use of deep sequencing also facilitated characterization of minor drug resistance variants within these uncommon or, in some cases, previously uncharacterized HCV subtypes.
Conclusions. These data aid in the classification of uncommon HCV subtypes while also providing a high-resolution view of viral diversity within infected patients, which may be relevant to the development of therapeutic regimens to minimize drug resistance.
C1 [Newman, Ruchi M.; Weiner, Brian; Charlebois, Patrick; Lennon, Niall J.; Birren, Bruce W.; Zody, Michael C.; Henn, Matthew R.] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA.
[Kuntzen, Thomas; Berical, Andrew; Allen, Todd M.] MIT, Ragon Inst MGH, Boston, MA USA.
[Kuntzen, Thomas; Berical, Andrew; Allen, Todd M.] Harvard, Boston, MA USA.
[Kuiken, Carla] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA.
[Kuntzen, Thomas] Univ Zurich Hosp, Dept Gastroenterol & Hepatol, Zurich, Switzerland.
[Murphy, Donald G.] Inst Natl Sante Publ Quebec, Lab Sante Publ Quebec, Quebec City, PQ, Canada.
[Simmonds, Peter] Univ Edinburgh, Ctr Infect Dis, Coventry, W Midlands, England.
[Bennett, Phil] Univ Warwick, Coventry CV4 7AL, W Midlands, England.
RP Newman, RM (reprint author), Broad Inst MIT & Harvard, Cambridge Ctr 7, Cambridge, MA 02142 USA.
EM rnewman@broadinstitute.org
RI Allen, Todd/F-5473-2011
FU National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Department of Health and Human Services
[HHSN272200900018C, HHSN272200900006C, R01-AI067926, U19-AI082630];
Deutsche Forschungsgemeinschaft [DFG KU2250/1-1]
FX This work was supported by the National Institute of Allergy and
Infectious Diseases, National Institutes of Health, Department of Health
and Human Services (contract HHSN272200900018C to B. W. B., contract
HHSN272200900006C to B. W. B., grant R01-AI067926 to T. M. A., and grant
U19-AI082630 to T. M. A.; and the Deutsche Forschungsgemeinschaft (grant
DFG KU2250/1-1 to T. K.).
NR 44
TC 18
Z9 22
U1 2
U2 14
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA
SN 0022-1899
J9 J INFECT DIS
JI J. Infect. Dis.
PD JUL 1
PY 2013
VL 208
IS 1
BP 17
EP 31
DI 10.1093/infdis/jis679
PG 15
WC Immunology; Infectious Diseases; Microbiology
SC Immunology; Infectious Diseases; Microbiology
GA 156NX
UT WOS:000319830300006
PM 23136221
ER
PT J
AU Guo, H
Chien, CC
He, Y
AF Guo, Hao
Chien, Chih-Chun
He, Yan
TI Theories of Linear Response in BCS Superfluids and How They Meet
Fundamental Constraints
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE Superconductivity; BCS theory; Linear response theory; Gauge invariance;
Sum rules; Thermodynamics; Spin; Cooper pairs; Compressibility; Ward
identity
ID GAUGE-INVARIANCE; SUPERCONDUCTORS
AB We address the importance of symmetry and symmetry breaking on linear response theories of fermionic BCS superfluids. The linear response theory of a noninteracting Fermi gas is reviewed and several consistency constraints are verified. The challenge to formulate linear response theories of BCS superfluids consistent with density and spin conservation laws comes from the presence of a broken U(1)(EM) symmetry associated with electromagnetism (EM) and we discuss two routes for circumventing this. The first route follows Nambu's integral-equation approach for the EM vertex function, but this method is not specific for BCS superfluids. We focus on the second route based on a consistent-fluctuation-of-the order-parameter (CFOP) approach where the gauge transformation and the fluctuations of the order parameter are treated on equal footing. The CFOP approach allows one to explicitly verify several important constraints: The EM vertex satisfies not only a Ward identity which guarantees charge conservation but also a Q-limit Ward identity associated with the compressibility sum rule. In contrast, the spin degrees of freedom associated with another U(1) (z) symmetry are not affected by the Cooper-pair condensation that breaks only the U(1)(EM) symmetry. As a consequence the collective modes from the fluctuations of the order parameter only couple to the density response function but decouple from the spin response function, which reflects the different fates of the two U(1) symmetries in the superfluid phase. Our formulation lays the ground work for applications to more general theories of BCS-Bose Einstein Condensation (BEC) crossover both above and below T (c) .
C1 [Guo, Hao] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China.
[Guo, Hao] Univ Hong Kong, Dept Phys, Hong Kong 999077, Hong Kong, Peoples R China.
[Chien, Chih-Chun] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[He, Yan] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA.
[He, Yan] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.
RP Chien, CC (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM chienchihchun@gmail.com
RI He, Yan/B-1594-2012
FU National Natural Science Foundation of China [11204032]; Natural Science
Foundation of Jiangsu Province, China [SBK201241926]; US Department of
Energy through the LANL/LDRD Program
FX We thank Prof. K. Levin for helping prepare this paper. Hao Guo thanks
the support by National Natural Science Foundation of China (Grants No.
11204032) and Natural Science Foundation of Jiangsu Province, China
(SBK201241926). C. C. C. acknowledges the support of the US Department
of Energy through the LANL/LDRD Program.
NR 24
TC 12
Z9 12
U1 0
U2 9
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD JUL
PY 2013
VL 172
IS 1-2
BP 5
EP 46
DI 10.1007/s10909-012-0853-7
PG 42
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 155SR
UT WOS:000319769000001
ER
PT J
AU Guo, H
Chien, CC
He, Y
AF Guo, Hao
Chien, Chih-Chun
He, Yan
TI Theories of Linear Response in BCS Superfluids and How They Meet
Fundamental Constraints (vol 172, pg 5, 2013)
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Correction
C1 [Guo, Hao] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China.
[Guo, Hao] Univ Hong Kong, Dept Phys, Hong Kong 999077, Hong Kong, Peoples R China.
[Chien, Chih-Chun] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[He, Yan] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA.
[He, Yan] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.
RP Chien, CC (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM chienchihchun@gmail.com
NR 1
TC 0
Z9 0
U1 0
U2 3
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD JUL
PY 2013
VL 172
IS 1-2
BP 175
EP 176
DI 10.1007/s10909-013-0865-y
PG 2
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 155SR
UT WOS:000319769000012
ER
PT J
AU Holt, JD
Menendez, J
Schwenk, A
AF Holt, J. D.
Menendez, J.
Schwenk, A.
TI The role of three-nucleon forces and many-body processes in nuclear
pairing
SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS
LA English
DT Article
ID LOW-MOMENTUM INTERACTIONS; SHELL-MODEL; PHASE
AB We present microscopic valence-shell calculations of pairing gaps in the calcium isotopes, focusing on the role of three-nucleon (3N) forces and many-body processes. In most cases, we find a reduction in pairing strength when the leading chiral 3N forces are included, compared to results with low-momentum two-nucleon (NN) interactions only. This is in agreement with a recent energy density functional study. At the NN level, calculations that include particle-particle and hole-hole ladder contributions lead to smaller pairing gaps compared with experiment. When particle-hole contributions as well as the normal-ordered one- and two-body parts of 3N forces are consistently included to third order, we find reasonable agreement with experimental three-point mass differences. This highlights the important role of 3N forces and many-body processes for pairing in nuclei. Finally, we relate pairing gaps to the evolution of nuclear structure in neutron-rich calcium isotopes and study the predictions for the 2(+) excitation energies, in particular for Ca-54.
C1 [Holt, J. D.; Menendez, J.; Schwenk, A.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
[Holt, J. D.; Menendez, J.; Schwenk, A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany.
[Holt, J. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Holt, J. D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RP Holt, JD (reprint author), Tech Univ Darmstadt, Inst Kernphys, Petersenstr 30, D-64289 Darmstadt, Germany.
EM jason.holt@physik.tu-darmstadt.de;
javier.menendez@physik.tu-darmstadt.de; schwenk@physik.tu-darmstadt.de
RI Menendez, Javier/A-3533-2016;
OI Menendez, Javier/0000-0002-1355-4147; Holt, Jason/0000-0003-4833-7959
FU BMBF [06DA70471]; DFG [SFB 634]; Helmholtz Association through the
Helmholtz Alliance Program [HA216/EMMI]; US DOE [DE-FC02-07ER41457,
DE-FG02-96ER40963]
FX We thank S K Bogner, T Duguet, T Lesinski, and V Soma for useful
discussions. This work was supported by the BMBF under contract no.
06DA70471, the DFG through grant SFB 634, the Helmholtz Association
through the Helmholtz Alliance Program, contract HA216/EMMI 'Extremes of
Density and Temperature: Cosmic Matter in the Laboratory', and the US
DOE grants DE-FC02-07ER41457 (UNEDF SciDAC collaboration) and
DE-FG02-96ER40963. Computations were performed with an allocation of
advanced computing resources on Kraken at the National Institute for
Computational Sciences and at the Julich Supercomputing Center.
NR 70
TC 22
Z9 22
U1 0
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0954-3899
EI 1361-6471
J9 J PHYS G NUCL PARTIC
JI J. Phys. G-Nucl. Part. Phys.
PD JUL
PY 2013
VL 40
IS 7
AR 075105
DI 10.1088/0954-3899/40/7/075105
PG 11
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 162EV
UT WOS:000320249200013
ER
PT J
AU Ren, YF
Li, T
Yu, DT
Jin, SD
Robertazzi, T
AF Ren, Yufei
Li, Tan
Yu, Dantong
Jin, Shudong
Robertazzi, Thomas
TI Design and testbed evaluation of RDMA-based middleware for
high-performance data transfer applications
SO JOURNAL OF SYSTEMS AND SOFTWARE
LA English
DT Article
DE Distributed systems; Middleware; Remote Direct Memory Access
AB Providing high-speed data transfer is vital to various data-intensive applications supported by data center networks. We design a middleware layer of high-speed communication based on Remote Direct Memory Access (RDMA) that serves as the common substrate to accelerate various data transfer tools, such as FTP, HTTP, file copy, sync and remote file I/O. This middleware offers better end-to-end bandwidth performance than the traditional TCP-based alternatives, while it hides the heterogeneity of the underlying high-speed architecture. This paper describes this middleware's function modules, including resource abstraction and task synchronization and scheduling, that maximize the parallelism and performance of RDMA operations. For networks without RDMA hardware acceleration, we integrate Linux kernel optimization techniques to reduce data copy and processing in the middleware. We provide a reference implementation of the popular file-transfer protocol over this RDMA-based middleware layer, called RFTP. Our experimental results show that our RFTP outperforms several TCP-based FTP tools, such as GridFTP, while it maintains very low CPU consumption on a variety of data center platforms. Furthermore, those results confirm that our RFTP tool achieves near line-speed performance in both LAN and WAN, and scales consistently from 10 Gbps Ethernet to 40 Gbps Ethernet and InfiniBand environments. (C) 2013 Elsevier Inc. All rights reserved.
C1 [Ren, Yufei; Li, Tan; Jin, Shudong; Robertazzi, Thomas] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Yu, Dantong] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Yu, Dantong] Brookhaven Natl Lab, Grid Comp Grp, Upton, NY 11973 USA.
[Jin, Shudong] SUNY Stony Brook, Ctr Wireless & Informat Technol, Stony Brook, NY 11794 USA.
[Robertazzi, Thomas] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA.
RP Ren, YF (reprint author), SUNY Stony Brook, Stony Brook, NY 11794 USA.
EM yufei.ren@stonybrook.edu; tan.li@stonybrook.edu; dtyu@bnl.gov;
shujin@notes.cc.sunysb.edu; tom@ece.sunysb.edu
FU United States Department of Energy [DE-SC0003361]; Office of Science of
the U.S. Department of Energy [DE-AC02-05CH11231]; The American Recovery
and Reinvestment Act
FX The authors are grateful to the facility donation of Mellanox
Technologies, Inc. and Fusion-io, Inc. The authors have benefited from
the numerous technical discussions with Todd Wilde from Mellanox, David
McMillen from System Fabric Works, Inc., and David Strohmeyer from
Intel. This work is supported by United States Department of Energy,
Grant No. DE-SC0003361.; This research used resources of the ESnet
Advanced Network Initiative (ANI) Testbed, which is supported by the
Office of Science of the U.S. Department of Energy under contract
DE-AC02-05CH11231, funded through The American Recovery and Reinvestment
Act of 2009.
NR 28
TC 1
Z9 1
U1 1
U2 9
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0164-1212
J9 J SYST SOFTWARE
JI J. Syst. Softw.
PD JUL
PY 2013
VL 86
IS 7
BP 1850
EP 1863
DI 10.1016/j.jss.2013.01.070
PG 14
WC Computer Science, Software Engineering; Computer Science, Theory &
Methods
SC Computer Science
GA 156TU
UT WOS:000319847600012
ER
PT J
AU Essuman, E
Walker, LR
Maziasz, J
Pint, BA
AF Essuman, E.
Walker, L. R.
Maziasz, J.
Pint, B. A.
TI Oxidation behaviour of cast Ni-Cr alloys in steam at 800 degrees C
SO MATERIALS SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Steam oxidation; Cast Ni base alloys; Internal oxidation
ID HIGH-TEMPERATURE OXIDATION; WATER-VAPOR; INTERNAL OXIDATION; BASE
ALLOYS; MATERIALS TECHNOLOGY; FORMING ALLOYS; CORROSION; SCALES; PLANTS;
EVAPORATION
AB To evaluate the steam oxidation resistance of cast Ni base alloy candidates for advanced steam turbine casings, laboratory experiments were conducted at 800 degrees C. Alloys ranged from weaker, solid solution strengthened alloys 230 and 625 to stronger, precipitation strengthened alloys 105, 263 and 740, which are more difficult to fabricate and join. In general, these Ni-Cr based alloys exhibit low mass gains and form thin, protective Cr rich external oxides in 17 bar steam or 1 bar air. However, Al and Ti in these alloys internally oxidise in all cases. After 5000 h exposures, the average and maximum internal oxide penetration depths were measured, and the values were ranked based on the alloy Al + Ti contents. The middle range of Al + Ti compositions investigated, such as for alloys 617, 263, 282 and 740, showed the deepest penetrations. Further characterisation of the reaction products by electron microprobe showed a complex behaviour including significant Ti incorporation into the scale formed in both steam and air, and Ti rich oxide at both the gas and metal interfaces. Based on the Al and Ti contents, the internal oxidation observed in these alloys in steam was atypical.
C1 [Essuman, E.; Walker, L. R.; Maziasz, J.; Pint, B. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Pint, BA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM pintba@ornl.gov
RI Pint, Bruce/A-8435-2008;
OI Pint, Bruce/0000-0002-9165-3335; Maziasz, Philip/0000-0001-8207-334X
FU UT-Battelle, LLC [DE-AC05-00OR22725]; US Department of Energy; US
Department of Energy, Fossil Energy Advanced Research Materials Program
FX This manuscript has been authored by UT-Battelle, LLC, under contract
no. DE-AC05-00OR22725 with the US Department of Energy. The US
Government retains and the publisher, by accepting the article for
publication, acknowledges that the US Government retains a
non-exclusive, paid-up, irrevocable, worldwide licence to publish or
reproduce the published form of this manuscript, or allow others to do
so, for US Government purposes.; The authors would like to thank G.
Garner, T. Lowe, M. Howell, H. Longmire and H. Meyer for assistance with
the experimental work. The alloys were cast at NETL-Albany by P.
Jablonski. M. P. Brady and I. G. Wright provided many helpful comments
on the manuscript. The research was sponsored by the US Department of
Energy, Fossil Energy Advanced Research Materials Program.
NR 39
TC 9
Z9 9
U1 5
U2 32
PU MANEY PUBLISHING
PI LEEDS
PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND
SN 0267-0836
J9 MATER SCI TECH-LOND
JI Mater. Sci. Technol.
PD JUL
PY 2013
VL 29
IS 7
BP 822
EP 827
DI 10.1179/1743284712Y.0000000103
PG 6
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 161XS
UT WOS:000320227600009
ER
PT J
AU Pint, BA
Haynes, JA
AF Pint, B. A.
Haynes, J. A.
TI Effect of water vapour content on thermal barrier coating lifetime
SO MATERIALS SCIENCE AND TECHNOLOGY
LA English
DT Article
DE TBC lifetime; Pt diffusion coating; Pt aluminide coating; MCrAlY; Water
vapour; High temperature oxidation; Yttria stabilised zirconia;
Thermally grown alumina
ID HIGH-TEMPERATURE OXIDATION; NI-PT-AL; CYCLIC OXIDATION; SUBSTRATE
COMPOSITION; BOND COATINGS; TBC SYSTEMS; SCALE; ALUMINIDE; BEHAVIOR;
ALLOYS
AB Furnace cycle testing was conducted in air with 10, 50 and 90 vol.-% water vapour and compared to prior results in dry O-2. The first series of experiments examined Pt diffusion and Pt modified aluminised bond coatings on second generation superalloy N5 at 1150 degrees C with commercially vapour deposited yttria stabilised zirconia (YSZ) top coats. Compared to dry O-2, the average lifetimes with Pt diffusion coatings were unaffected by the addition of water vapour, while the Pt modified aluminide coating average lifetime was reduced by >50% with 10% water vapour, but less reduction was observed with higher water contents. The second series of experiments examined MCrAlY and MCrAlYHfSi bond coatings and air plasma sprayed YSZ top coatings on superalloy X4 cycled at 1100 degrees C. Compared to dry O-2, the addition of 10% water vapour decreased the lifetime of MCrAlY by 28%. Higher average lifetimes were observed with Hf in the bond coating.
C1 [Pint, B. A.; Haynes, J. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Pint, BA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM pintba@ornl.gov
RI Pint, Bruce/A-8435-2008
OI Pint, Bruce/0000-0002-9165-3335
FU US Department of Energy, Office of Coal and Power R&D, Office of Fossil
Energy
FX The authors would like to thank G. W. Garner, T. M. Lowe, K. M. Cooley
and H. Longmire for assistance with the experimental work. Plating of Pt
was conducted at Tennessee Technological University by Professor Y.
Zhang. B. Hazel and B. Nagaraj at General Electric Aircraft Engines
provided the N5 substrate material and coated the specimens with EB-PVD
YSZ, and Stony Brook University applied the HVOF and APS coatings. The
X4 substrates were provided by K. Murphy at Howmet. A. Vande Put
provided helpful comments on the manuscript. The present research was
sponsored by the US Department of Energy, Office of Coal and Power R&D,
Office of Fossil Energy (R. Dennis, program manager). This paper is
based on a presentation made at the 8th International Charles Parsons
Turbine Conference organised by the Institute of Materials, Minerals and
Mining at Portsmouth, UK on 5-8 September 2011.
NR 38
TC 6
Z9 6
U1 3
U2 22
PU MANEY PUBLISHING
PI LEEDS
PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND
SN 0267-0836
J9 MATER SCI TECH-LOND
JI Mater. Sci. Technol.
PD JUL
PY 2013
VL 29
IS 7
BP 828
EP 834
DI 10.1179/1743284712Y.0000000104
PG 7
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 161XS
UT WOS:000320227600010
ER
PT J
AU Vishnivetskaya, TA
Fisher, LS
Brodie, GA
Phelps, TJ
AF Vishnivetskaya, Tatiana A.
Fisher, L. Suzanne
Brodie, Greg A.
Phelps, Tommy J.
TI Microbial Communities Involved in Biological Ammonium Removal from Coal
Combustion Wastewaters
SO MICROBIAL ECOLOGY
LA English
DT Article
ID SULFATE-REDUCING BACTERIA; RIBOSOMAL-RNA ANALYSIS; SEQUENCE ALIGNMENT;
SP-NOV.; MARINE; MERCURY; GENOME; PLANCTOMYCETE; CRENARCHAEOTA;
DENITRIFICANS
AB The efficiency of a novel integrated treatment system for biological removal of ammonium, nitrite, nitrate, and heavy metals from fossil power plant effluent was evaluated. Microbial communities were analyzed using bacterial and archaeal 16S rRNA gene clone libraries (Sanger sequences) and 454 pyrosequencing technology. While seasonal changes in microbial community composition were observed, the significant (P = 0.001) changes in bacterial and archaeal communities were consistent with variations in ammonium concentration. Phylogenetic analysis of 16S rRNA gene sequences revealed an increase of potential ammonium-oxidizing bacteria (AOB), Nitrosomonas, Nitrosococcus, Planctomycetes, and OD1, in samples with elevated ammonium concentration. Other bacteria, such as Nitrospira, Nitrococcus, Nitrobacter, Thiobacillus, epsilon-Proteobacteria, Firmicutes, and Acidobacteria, which play roles in nitrification and denitrification, were also detected. The AOB oxidized 56 % of the ammonium with the concomitant increase in nitrite and ultimately nitrate in the trickling filters at the beginning of the treatment system. Thermoprotei within the phylum Crenarchaeota thrived in the splitter box and especially in zero-valent iron extraction trenches, where an additional 25 % of the ammonium was removed. The potential ammonium-oxidizing Archaea (AOA) (Candidatus Nitrosocaldus) were detected towards the downstream end of the treatment system. The design of an integrated treatment system consisting of trickling filters, zero-valent iron reaction cells, settling pond, and anaerobic wetlands was efficient for the biological removal of ammonium and several other contaminants from wastewater generated at a coal burning power plant equipped with selective catalytic reducers for nitrogen oxide removal.
C1 [Vishnivetskaya, Tatiana A.; Phelps, Tommy J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Fisher, L. Suzanne; Brodie, Greg A.] Tennessee Valley Author, Knoxville, TN 37902 USA.
RP Phelps, TJ (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008,MS 6036,1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM phelpstj@ornl.gov
OI Vishnivetskaya, Tatiana/0000-0002-0660-023X
FU U. S. Department of Energy Office of Fossil Energy; U. S. Department of
Energy [DE-AC05-00OR22725]; U. S. Department of Energy Office of Science
Biological and Environmental Research, Environmental Remediation
Sciences Program
FX This research was sponsored by the U. S. Department of Energy Office of
Fossil Energy and Office of Science Biological and Environmental
Research, Environmental Remediation Sciences Program and performed at
Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle,
LLC, for the U. S. Department of Energy under contract
DE-AC05-00OR22725. We thank Zamin Yang and Marilyn Kerley for help with
454 FLX pyrosequencing and Sanger sequencing, respectively. We would
also like to thank Alan Mays, David Lane, Mark Wolfe, and Roy Quinn of
TVA for help with sampling and maintaining the ATOXIC/ASSET field sites.
NR 51
TC 4
Z9 4
U1 1
U2 75
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0095-3628
J9 MICROB ECOL
JI Microb. Ecol.
PD JUL
PY 2013
VL 66
IS 1
BP 49
EP 59
DI 10.1007/s00248-012-0152-5
PG 11
WC Ecology; Marine & Freshwater Biology; Microbiology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology;
Microbiology
GA 159LX
UT WOS:000320048000006
PM 23314095
ER
PT J
AU Mayer, BP
Chinn, SC
Maxwell, RS
Reimer, JA
AF Mayer, Brian P.
Chinn, Sarah C.
Maxwell, Robert S.
Reimer, Jeffrey A.
TI Solid state NMR investigation of gamma-irradiated composite siloxanes:
Probing the silica/polysiloxane interface
SO POLYMER DEGRADATION AND STABILITY
LA English
DT Article
DE Cross polarization; Nuclear magnetic resonance; Interface; Spectroscopy;
Composite materials; Radiation
ID FILLED SILICONE ELASTOMER; RUBBER; POLYMER; SPECTROSCOPY; PDMS;
POLYDIMETHYLSILOXANES; RADIOLYSIS; MOBILITY; H-1-NMR; SURFACE
AB We employ silicon-proton (Si-29{H-1}) cross polarization magic-angle spinning (CP-MAS) to probe directly the interface of a silica-filled polysiloxane elastomer subjected to gamma radiation. Using a traditional spin-lock CP experiment in conjunction with a silicon-edited proton rotating-frame longitudinal relaxation sequence, the full suite of CP build-up parameters are extracted for six resolvable silicon chemical shifts. The data, represented by three parameters, T-HX, T-1 rho(H), and M-infinity, are interpreted by means of a model where the simultaneous effects of silica surface hydroxyl modification, interfacial water content, and radiation-induced chemistries are considered responsible for the observed macroscopic behavior of these engineering materials. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Mayer, Brian P.; Chinn, Sarah C.; Maxwell, Robert S.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA.
[Reimer, Jeffrey A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
RP Mayer, BP (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave L-091, Livermore, CA 94550 USA.
EM mayer22@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX B. Mayer would like to thank J. P. Lewicki for helpful discussions
during the preparation of this manuscript. This work performed under the
auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.
NR 39
TC 3
Z9 3
U1 2
U2 52
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0141-3910
J9 POLYM DEGRAD STABIL
JI Polym. Degrad. Stabil.
PD JUL
PY 2013
VL 98
IS 7
BP 1362
EP 1368
DI 10.1016/j.polymdegradstab.2013.03.021
PG 7
WC Polymer Science
SC Polymer Science
GA 161SN
UT WOS:000320213700010
ER
PT J
AU Breault, RW
AF Breault, Ronald W.
TI SPECIAL ISSUE: Selected Papers from the 2010 NETL Multiphase Flow
Workshop Preface
SO POWDER TECHNOLOGY
LA English
DT Editorial Material
C1 US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA.
RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA.
EM Ronald.Breault@NETL.DOE.GOV
OI Breault, Ronald/0000-0002-5552-4050
NR 0
TC 0
Z9 0
U1 2
U2 4
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0032-5910
J9 POWDER TECHNOL
JI Powder Technol.
PD JUL
PY 2013
VL 242
SI SI
BP 1
EP 1
DI 10.1016/j.powtec.2013.01.048
PG 1
WC Engineering, Chemical
SC Engineering
GA 153XO
UT WOS:000319636300001
ER
PT J
AU Gidaspow, D
Li, F
Huang, J
AF Gidaspow, Dimitri
Li, Fang
Huang, Jing
TI A CFD simulator for multiphase flow in reservoirs and pipes
SO POWDER TECHNOLOGY
LA English
DT Article
DE Computational fluid dynamics; Mud; Gas; Oil; Multiphase CFD model;
Friction factors
AB A computational fluid dynamics (CFD) code for flow of oil, gas and sand in reservoirs and pipes was developed to help understand the flow in wild wells that are drilled for offshore oil production. In the reservoir, there is a large entrance effect produced by turbulence. In the pipe, the code computed turbulent velocity profiles and Reynolds stresses similar to fully developed single phase turbulent flow. The Fanning friction factor for oil flow at a Reynolds number of about 16,000 is 0.004, compared with the single phase turbulent friction factor of 0.007. The computed low frequency oscillations are consistent with wild well behavior. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Gidaspow, Dimitri; Li, Fang] IIT, Chicago, IL 60616 USA.
[Huang, Jing] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
RP Gidaspow, D (reprint author), IIT, Chicago, IL 60616 USA.
EM gidaspow@iit.edu
NR 10
TC 1
Z9 1
U1 2
U2 21
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0032-5910
J9 POWDER TECHNOL
JI Powder Technol.
PD JUL
PY 2013
VL 242
SI SI
BP 2
EP 12
DI 10.1016/j.powtec.2013.01.047
PG 11
WC Engineering, Chemical
SC Engineering
GA 153XO
UT WOS:000319636300002
ER
PT J
AU Gopalan, B
Shaffer, F
AF Gopalan, Balaji
Shaffer, Frank
TI Higher order statistical analysis of Eulerian particle velocity data in
CFB risers as measured with high speed particle imaging
SO POWDER TECHNOLOGY
LA English
DT Article
DE Fluidization; Granular Temperature; High Speed Imaging; Eulerian
Velocity
ID CIRCULATING FLUIDIZED-BED; NEAR-WALL REGION; GRANULAR TEMPERATURE;
KINETIC-THEORY; FLOW; PROFILES; STRESSES; DENSE
AB Velocities of individual particles have been measured in gas-particle flow fields within the risers of two circulating fluidized bed (CFB), one with a 0305 m diameter riser at the National Energy Technology Laboratory (NETL) and one with a 0.20 m diameter riser at Particle Solid Research Inc. (PSRI). The risers were operated at moderate to high particle concentrations (solid fluxes up to 400 kg/m(2)s). The NETL riser was operated in the core-annulus regime. The PSRI riser was operated in both the core-annulus and dense up-flow regimes. HDPE particles with a mean diameter of 800 pm were used in the NETL riser and FCC particles with a mean diameter of 80 pm were used in the PSRI riser. Particle velocities were measured with a high speed particle imaging velocimetry (HSPIV) system developed by the NETL. The HSPIV measurement technique has the ability to measure the velocities and trajectories of thousands of particles simultaneously in flows of high particle concentration. In this study, particle velocities are measured in a small two-dimensional field-of-view with dimensions in the range of 1-5 mm wide by 1-10 mm high, with a depth of about 1 mm. The size of the field-of-view is chosen to be similar to the size of CFD grid cells in models used by NETL and small enough that gradients of the mean particle velocity are small over the field-of-view, but large enough to achieve high data sample rates (at least ten velocity vectors per camera frame). In this study sample rates for particle velocity vectors were in the range of 0.1 to 1 million per second. This sample rate provides the high temporal resolution necessary to resolve the complete temporal domain of particle velocity. Particle velocities in each camera frame (at each point in time) are averaged to yield a pointwise instantaneous particle velocity. Using a recently developed particle velocity decomposition technique (Gopalan and Shaffer, 2011 [15]) the pointwise particle velocity time series is decomposed into a varying mean Eulerian component and a random fluctuating component. Statistics of the Eulerian velocity, namely the mean, RMS, skewness and kurtosis, and the granular temperature of the random fluctuating component are presented in this study.
Results show that the vertical component of the overall mean Eulerian velocity decreases with increasing mass flux in both the core-annulus and dense up-flow regimes. The root mean square (RMS) of the Eulerian velocity in the horizontal direction is independent of the radial location in the NETL riser. In the PSRI riser, for both the core-annulus and dense upflow regime, the RMS of the horizontal Eulerian velocity decreases monotonically from the center of the riser to the wall. The radial profile of the RMS of the vertical Eulerian velocity for the PSRI riser is parabolic with a peak near r/R similar to 0.5-0.6 for the dense upflow regime. For the core-annulus regime the radial profile of the RMS of the vertical Eulerian velocity is relatively flat for both the NETL and PSRI risers, with a slight decrease near the wall in the PSRI riser. The skewness of the PDF of Eulerian velocity is near zero in the horizontal direction for the dense upflow regime in the PSRI riser, the only Eulerian velocity distribution for which the Gaussian approximation is appropriate. The skewness trends of the vertical velocity distribution are more complex and require further experimental confirmation. The kurtosis of the PDF of the Eulerian velocity is always higher in the horizontal direction than the vertical direction except at the wall of the riser. The 80 mu m FCC particles in the PSRI riser showed much higher granular temperature than the 800 mu m particles in the NETL riser. The granular temperature decreases monotonically for all conditions from the center of the riser to the wall, granular temperature is anisotropic for all conditions in both risers. The radial profile of anisotropy of granular temperature is relatively flat over most of the NETL and PSRI risers with values in the range of 0.3 to 0.6. Near the wall it decreases for the PSRI riser, while increasing for the NETL riser. (C) 2013 Published by Elsevier B.V.
C1 [Gopalan, Balaji] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA.
[Gopalan, Balaji; Shaffer, Frank] US DOE, Natl Energy Technol Lab, Washington, DC 20585 USA.
RP Shaffer, F (reprint author), US DOE, Natl Energy Technol Lab, Washington, DC 20585 USA.
EM Franklin.Shaffer@netl.doe.gov
RI Gopalan, Balaji/I-4169-2013
FU Oak Ridge Institute of Science and Education (ORISE)
FX We thank the management of NETL for providing direction in this research
and for providing the necessary resources, including one of the best
high speed cameras available. In particular we would like to thank Bill
Rogers and Chris Guenther. We also thank the PSRI team in Chicago for
providing unique experimental facilities for studying particle flow
fields, and for their unprecedented expertise in this field. Also the
author Balaji Gopalan, would like to thank the Oak Ridge Institute of
Science and Education (ORISE) for sponsoring his work through a
fellowship grant.
NR 34
TC 7
Z9 7
U1 3
U2 26
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0032-5910
J9 POWDER TECHNOL
JI Powder Technol.
PD JUL
PY 2013
VL 242
SI SI
BP 13
EP 26
DI 10.1016/j.powtec.2013.01.046
PG 14
WC Engineering, Chemical
SC Engineering
GA 153XO
UT WOS:000319636300003
ER
PT J
AU Gel, A
Garg, R
Tong, C
Shahnam, M
Guenther, C
AF Gel, A.
Garg, R.
Tong, C.
Shahnam, M.
Guenther, C.
TI Applying uncertainty quantification to multiphase flow computational
fluid dynamics
SO POWDER TECHNOLOGY
LA English
DT Article
DE Multiphase flow; Computational fluid dynamics (CFD); Non-intrusive
parametric uncertainty quantification and propagation; Surrogate models;
Data-fitted response surface
ID MAGNETIC-RESONANCE MEASUREMENTS; VERIFICATION; VALIDATION; SIMULATION
AB Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Gel, A.; Garg, R.; Shahnam, M.; Guenther, C.] Natl Energy Technol Lab, Morgantown, WV 26505 USA.
[Gel, A.] ALPEMI Consulting LLC, Phoenix, AZ 85044 USA.
[Garg, R.] UPS Energy & Construct Inc, Morgantown, WV 26505 USA.
[Tong, C.] Lawrence Livermore Natl Lab, CASC, Livermore, CA 94551 USA.
RP Gel, A (reprint author), Natl Energy Technol Lab, Morgantown, WV 26505 USA.
EM aike@alpemi.com
RI Garg, Rahul/I-4174-2013
FU National Energy Technology Laboratory under the RES [DE-FE0004000];
agency of the United States Government
FX This technical effort was performed in support of the National Energy
Technology Laboratory's ongoing research in advanced numerical
simulation of multiphase flow under the RES contract DE-FE0004000. This
report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
NR 27
TC 10
Z9 10
U1 1
U2 33
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0032-5910
J9 POWDER TECHNOL
JI Powder Technol.
PD JUL
PY 2013
VL 242
SI SI
BP 27
EP 39
DI 10.1016/j.powtec.2013.01.045
PG 13
WC Engineering, Chemical
SC Engineering
GA 153XO
UT WOS:000319636300004
ER
PT J
AU Weber, JM
Mei, JS
AF Weber, Justin M.
Mei, Joseph S.
TI Bubbling fluidized bed characterization using Electrical Capacitance
Volume Tomography (ECVT)
SO POWDER TECHNOLOGY
LA English
DT Article
DE Fluidization; Fluidized bed; Electrical capacitance volume tomography;
Bubble properties; Solid fraction; Multiphase flow
ID DIGITAL IMAGE-ANALYSIS; GAS; SIZE; FREQUENCY; DIAMETER; PRESSURE;
BEHAVIOR; VELOCITY; LIQUID
AB Understanding the fundamentals of gas-solid fluidized beds and, in general, multiphase flows has been a significant task since the conception of gas-solid fluidization and fluid particle systems. Various measurement techniques have been applied in an attempt to better understand the fundamentals of the complex gas-solid flow structures that form in fluidized beds. This information may potentially provide a better design, scale-up, and operation of these systems as well as lead to accurate performance predictions of multiphase flow systems. Electrical Capacitance Volume Tomography (ECVT) has now reached a point of development where these multiphase flow structures can be imaged accurately and reliably in three dimensions at good resolutions and sampling rates to provide significant insight into the internal gas-solid flow structures. A 10 cm ECVT sensor was used in order to investigate the bubble behavior of a 10 cm diameter bubbling fluidized bed (BFB) of 185 micron glass beads at various fluidization velocities. Three dimensional images of gas-solid flow structures as well as time average vertical and radial solid fraction profiles are presented in this paper, and average bubble diameter and bubble frequency are discussed and compared to various correlations available in the published literature. Published by Elsevier B.V.
C1 [Weber, Justin M.; Mei, Joseph S.] US DOE, Morgantown, WV 26507 USA.
RP Mei, JS (reprint author), US DOE, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA.
EM JOSEPH.MEI@netl.doe.gov
FU agency of the United States Government
FX This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty,
expressed or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.
NR 28
TC 19
Z9 19
U1 1
U2 27
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0032-5910
J9 POWDER TECHNOL
JI Powder Technol.
PD JUL
PY 2013
VL 242
SI SI
BP 40
EP 50
DI 10.1016/j.powtec.2013.01.044
PG 11
WC Engineering, Chemical
SC Engineering
GA 153XO
UT WOS:000319636300005
ER
PT J
AU Ludlow, JC
Panday, R
Shadle, LJ
AF Ludlow, J. Christopher
Panday, Rupen
Shadle, Lawrence J.
TI Standpipe models for diagnostics and control of a circulating fluidized
bed
SO POWDER TECHNOLOGY
LA English
DT Article
DE Circulating fluidized bed; Standpipe bed height; Solids circulation
rate; Multi-phase gas solids flow; Standpipe pressure profile
ID FLOW
AB Two models for a Circulating Fluidized Bed (CFB) standpipe were formulated, implemented and validated to estimate critical CFB operational parameters. The first model continuously estimates standpipe bed height using incremental pressure measurements within the standpipe. The second model estimates variations in the void fraction along the standpipe using the Ergun equation in conjunction with the overall pressure drop across the bed, solids circulation rate and the standpipe aeration flows introduced at different locations of the pipe. The importance of different standpipe parameters obtained from these models is discussed in terms of successful operation of the overall CFB system. Finally, the applications of these models are shown in improving the solids circulation rate measurement and in calculating riser inventory. Published by Elsevier B.V.
C1 [Ludlow, J. Christopher; Panday, Rupen; Shadle, Lawrence J.] Natl Energy Technol Lab, Morgantown, WV 26508 USA.
RP Shadle, LJ (reprint author), Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26508 USA.
EM lshadl@netl.doe.gov
OI Shadle, Lawrence/0000-0002-6283-3628
NR 15
TC 4
Z9 5
U1 0
U2 12
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0032-5910
J9 POWDER TECHNOL
JI Powder Technol.
PD JUL
PY 2013
VL 242
SI SI
BP 51
EP 64
DI 10.1016/j.powtec.2013.01.016
PG 14
WC Engineering, Chemical
SC Engineering
GA 153XO
UT WOS:000319636300006
ER
PT J
AU Shaffer, F
Gopalan, B
Breault, RW
Cocco, R
Karri, SBR
Hays, R
Knowlton, T
AF Shaffer, Frank
Gopalan, Balaji
Breault, Ronald W.
Cocco, Ray
Karri, S. B. Reddy
Hays, Roy
Knowlton, Ted
TI High speed imaging of particle flow fields in CFB risers
SO POWDER TECHNOLOGY
LA English
DT Article
DE High speed imaging; Fluidization; Circulating fluidized beds; Particle
tracking
ID CIRCULATING FLUIDIZED-BEDS; GRANULAR TEMPERATURE; SOLIDS; TURBULENT;
WALL
AB Particle flows of high particle concentration are important in many fields, including chemical processing, pharmaceutical processing, energy conversion and powder transport. Circulating fluidized beds (CFB) are widely employed in industry because they enhance reaction rates and heat transfer through rapid mixing of particles at high particle concentrations and high particle flow rates. However, despite decades of research and industrial application, the real time behavior of particle flow fields in CFB's is still not well understood. One of the reasons is that experimental data is difficult to acquire in such harsh, opaque environments. In this study, a new high speed particle imaging velocimetry (high speed PIV) technology, developed by the USDOE National Energy Technology Laboratory (NETL), is applied to observe and measure the real time behavior of individual particle motion inside the risers of CFB's. High speed PIV data acquired in three pilot scale CFB units at two laboratories: two CFB's with 0.305 m diameter risers and one CFB with a 0.2 m diameter riser. The high speed PIV system records high speed videos of particle motion with excellent spatial and temporal clarity. The high speed videos are analyzed to measure the concentration and the two-dimensional motion (velocity and trajectory) of individual particles. Data sample rates for velocity vectors are in the range of 0.1 to 3 million vectors per second thereby providing full resolution of the temporal domain of particle velocity. To see and measure particle motion inside the CFB risers at high particle concentrations, a custom borescope was inserted into the risers. The CFB risers were operated over a wide range of industrially relevant conditions: superficial gas velocities from 6.5 to 18.3 m/s with solid fluxes from 20 to 400 kg/m(2)/s. The particles used in the CFBs included fluid cracking catalyst (FCC) with a mean diameter of 70 mu m, high density polyethylene (HDPE) with a mean diameter of 750 mu m, and glass beads with mean diameters of 170 and 650 mu m.
High speed videos and high speed PIV data enabled careful study of the real time behavior of gas-particle flow fields in CFB risers. In all of the CFBs of this study, one or more "jets" of high speed gas were observed at any time in the CFB risers. The jets move around the riser and appear to wander from one location against the riser wall to another. The jets have width range of 1/10 to 1/2 of the riser diameter. When a jet moves away from an area, the void is immediately filled with large clusters of particles. The clusters have sizes up to several riser diameters and contain significant percentages of the total particle flow. Clusters reduce mixing and interaction of particles with the transport gas, and therefore may inhibit reaction rates. Shearing of the clusters by high speed jets gives rise to cluster shapes that are either undulating or in the form of long, thin vertical strands which are often called streamers. The well known core-annulus concentration profile does not exist in real time, but rather is a long time averaged phenomenon. The data and insight from this work should be valuable for design and operation of risers, and for development of computational fluid dynamic (CFD) models of riser flow fields. Published by Elsevier B.V.
C1 [Shaffer, Frank; Gopalan, Balaji; Breault, Ronald W.] US DOE, Natl Energy Technol Lab, Washington, DC 20585 USA.
RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, Washington, DC 20585 USA.
EM ronald.breault@netl.doe.gov
RI Gopalan, Balaji/I-4169-2013;
OI Breault, Ronald/0000-0002-5552-4050
NR 39
TC 28
Z9 30
U1 14
U2 79
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0032-5910
EI 1873-328X
J9 POWDER TECHNOL
JI Powder Technol.
PD JUL
PY 2013
VL 242
SI SI
BP 86
EP 99
DI 10.1016/j.powtec.2013.01.012
PG 14
WC Engineering, Chemical
SC Engineering
GA 153XO
UT WOS:000319636300010
ER
PT J
AU Breault, RW
Li, TW
Nicoletti, P
AF Breault, Ronald W.
Li, Tingwen
Nicoletti, Phillip
TI Mass transfer effects in a gasification riser
SO POWDER TECHNOLOGY
LA English
DT Article
DE Mass transfer; Gasification; Circulating fluidized bed (CFB) technology;
Clean Coal Power Initiative (CCPI)
ID CIRCULATING FLUIDIZED-BEDS; FLOW; PARTICLES; CFB
AB In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) riser reactors. These problems are true for the major CFD codes.
To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. [1-3]. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics. Published by Elsevier B.V.
C1 [Breault, Ronald W.; Li, Tingwen; Nicoletti, Phillip] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA.
[Li, Tingwen; Nicoletti, Phillip] UPS Corp, Morgantown, WV 26507 USA.
RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA.
EM ronald.breault@netl.doe.gov
RI madha nia, suci/K-9554-2014;
OI madha nia, suci/0000-0001-7396-9945; Breault,
Ronald/0000-0002-5552-4050; Li, Tingwen/0000-0002-1900-308X
NR 22
TC 1
Z9 1
U1 1
U2 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0032-5910
EI 1873-328X
J9 POWDER TECHNOL
JI Powder Technol.
PD JUL
PY 2013
VL 242
SI SI
BP 108
EP 116
DI 10.1016/j.powtec.2013.01.010
PG 9
WC Engineering, Chemical
SC Engineering
GA 153XO
UT WOS:000319636300012
ER
PT J
AU Ryan, EM
DeCroix, D
Breault, R
Xu, W
Huckaby, ED
Saha, K
Dartevelle, S
Sun, X
AF Ryan, E. M.
DeCroix, D.
Breault, R.
Xu, W.
Huckaby, E. D.
Saha, K.
Dartevelle, S.
Sun, X.
TI Multi-phase CFD modeling of solid sorbent carbon capture system
SO POWDER TECHNOLOGY
LA English
DT Article
DE Carbon capture; Multi-phase; Computational fluid dynamics; Fluidized
bed; Reactive transport
ID FLUIDIZED-BEDS; FLOWS
AB Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT (R) and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT (R) Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT (R) Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Ryan, E. M.] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA.
[DeCroix, D.; Dartevelle, S.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Breault, R.; Huckaby, E. D.; Saha, K.] Natl Energy Technol Lab, Morgantown, WV USA.
[Xu, W.; Sun, X.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Ryan, EM (reprint author), Boston Univ, Dept Mech Engn, Boston, MA 02215 USA.
EM ryanem@bu.edu
RI Xu, Wei/M-2742-2013; Ryan, Emily/I-8183-2015;
OI Ryan, Emily/0000-0001-6111-3269; Breault, Ronald/0000-0002-5552-4050
FU U.S. Department of Energy, Office of Fossil Energy's Carbon Capture
Simulation Initiative through the National Energy Technology Laboratory;
agency of the United States Government
FX This work was funded by the U.S. Department of Energy, Office of Fossil
Energy's Carbon Capture Simulation Initiative through the National
Energy Technology Laboratory.; This report was prepared as an account of
work sponsored by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product or process disclosed,
or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.
NR 19
TC 9
Z9 9
U1 1
U2 39
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0032-5910
J9 POWDER TECHNOL
JI Powder Technol.
PD JUL
PY 2013
VL 242
SI SI
BP 117
EP 134
DI 10.1016/j.powtec.2013.01.009
PG 18
WC Engineering, Chemical
SC Engineering
GA 153XO
UT WOS:000319636300013
ER
PT J
AU Horner, RM
Clark, CE
AF Horner, Robert M.
Clark, Corrie E.
TI Characterizing variability and reducing uncertainty in estimates of
solar land use energy intensity
SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS
LA English
DT Review
DE Land occupation; Photovoltaics; Concentrating solar power; Energy
intensity; Electricity; Renewable
ID ELECTRICITY-GENERATION; ENVIRONMENTAL IMPACTS; GEOTHERMAL-ENERGY;
TECHNOLOGIES; ETHANOL; SYSTEMS
AB Estimates of the amount of land used for a defined amount of utility-scale electricity generation in the solar power industry, referred to here as solar land use energy intensity (LUEI), are important to decision makers for evaluating the environmental impact of energy technology choices. However, these estimates for solar LUEI are calculated using three difficult-to-compare metrics and vary by as much as 4 orders of magnitude (0.042-64 m(2)/MWh) across the available literature. This study reduces, characterizes, and explicates the uncertainty in these values for photovoltaic (PV) and concentrated solar power (CSP) technologies through a harmonization process. In this harmonization process, a common metric is identified and data existing in other forms are converted to the metric, where possible; standard algorithms for calculating solar LUEI are developed; gaps and deficiencies in the literature calculations are identified and remedied; and differences among the resulting estimates are characterized and analyzed. The resulting range of harmonized solar LUEI estimates is reduced to 2 orders of magnitude [5-55 (m(2)y)/MWh]. Due to variables such as technology and location, there is a significant amount of irreducible variability in general solar LUEI estimates. However, this variability does not necessarily represent uncertainty, as most of it can be explained by choices in calculation input parameters. This study finds that key solar technology- and location-dependent parameters such as insolation, packing factor, system efficiency, and capacity factor all vary widely across studies, and thus all share in the overall variability of solar LUEI. Only land use at the site of solar electricity generation facilities is considered because lifecycle land use beyond the site (for manufacturing, disposal, etc.) is not widely accounted for in the existing literature. This study provides a basis for moving forward with standardized and comparable solar land use studies and for filling gaps in lifecycle solar LUEI. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Horner, Robert M.; Clark, Corrie E.] Argonne Natl Lab, Washington, DC 20024 USA.
RP Horner, RM (reprint author), Argonne Natl Lab, 955 Enfant Plaza SW,Suite 6000, Washington, DC 20024 USA.
EM rhorner@anl.gov; ceclark@anl.gov
FU U.S. Department of Energy, Office of Energy Efficiency and Renewable
Energy, Solar Energy Technologies Program (SETP) [DE-AC02-06CH11357]
FX This work was supported by the U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, Solar Energy Technologies
Program (SETP), under contract DE-AC02-06CH11357. It was developed as
part of the SETP's Market Transformation subprogram which identifies and
prioritizes significant barriers to commercialization of solar
technologies beyond traditional cost issues. SETP staff helped define
the objectives of this work and reviewed and commented on this article.
NR 39
TC 5
Z9 6
U1 4
U2 29
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1364-0321
J9 RENEW SUST ENERG REV
JI Renew. Sust. Energ. Rev.
PD JUL
PY 2013
VL 23
BP 129
EP 137
DI 10.1016/j.rser.2013.01.014
PG 9
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels
SC Science & Technology - Other Topics; Energy & Fuels
GA 155ZN
UT WOS:000319789600010
ER
PT J
AU Bianchi, M
Liu, HH
Birkholzer, JT
AF Bianchi, Marco
Liu, Hui-Hai
Birkholzer, Jens T.
TI Equivalent diffusion coefficient of clay-rich geological formations:
comparison between numerical and analytical estimates
SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
LA English
DT Article
DE Diffusion; Upscaling; Diffusion coefficient; Heterogeneous media;
Anisotropy
ID HETEROGENEOUS POROUS-MEDIA; CALLOVO-OXFORDIAN CLAY; HYDRAULIC
CONDUCTIVITY; STOCHASTIC-ANALYSIS; SOLUTE TRANSPORT; OPALINUS CLAY;
SPATIAL VARIABILITY; MEUSE/HAUTE-MARNE; MONT TERRI; MACRODISPERSION
AB Laboratory experiments in rock samples collected from clay-rich formations indicate that the effective molecular diffusion coefficient (D) is a heterogeneous and anisotropic property. Since laboratory measurements of D are representative of a very small volume, upscaling is necessary in order to incorporate these data in large-scale numerical models of diffusive transport. In this work we address the problem of the estimating the equivalent diffusion coefficient (D (eq) ), in terms of total diffusive flux, in a three-dimensional domain characterized by a heterogeneous and anisotropic spatial distribution of D. D (eq) was estimated from the results of steady-state diffusive transport simulations through several realizations of the D field. The ensemble averages of D (eq) from fields with different degrees of heterogeneity and anisotropy were then compared with estimates from analytical upscaling expressions based on stochastic as well as power-averaging approaches. These expressions are largely based on similar expressions developed for calculating the effective hydraulic conductivity in heterogeneous and anisotropic domains. Comparisons showed that stochastic expressions provide accurate estimates of D (eq) only for fields characterized by low heterogeneity. Within the range of heterogeneity and anisotropy considered, our results showed that a power-averaging expression is very accurate in predicting D (eq) especially when the parameter p (i) is estimated through fitting of the numerical results. Nonetheless, the relationship between this parameter and the anisotropy ratio is linear.
C1 [Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Bianchi, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,Blgd 74, Berkeley, CA 94720 USA.
EM mbianchi@lbl.gov
RI Birkholzer, Jens/C-6783-2011
OI Birkholzer, Jens/0000-0002-7989-1912
FU Used Fuel Disposition Campaign, Office of Nuclear Energy, of the U.S.
Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National Lab
FX Funding for this work was provided by the Used Fuel Disposition
Campaign, Office of Nuclear Energy, of the U.S. Department of Energy
under Contract Number DE-AC02-05CH11231 with the Lawrence Berkeley
National Lab. We thank the Associate Editor and two anonymous referees
for their careful review of this manuscript.
NR 57
TC 3
Z9 3
U1 0
U2 10
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1436-3240
J9 STOCH ENV RES RISK A
JI Stoch. Environ. Res. Risk Assess.
PD JUL
PY 2013
VL 27
IS 5
BP 1081
EP 1091
DI 10.1007/s00477-012-0646-1
PG 11
WC Engineering, Environmental; Engineering, Civil; Environmental Sciences;
Statistics & Probability; Water Resources
SC Engineering; Environmental Sciences & Ecology; Mathematics; Water
Resources
GA 155MN
UT WOS:000319752500005
ER
PT J
AU Li, XY
Hu, BX
AF Li, Xinya
Hu, Bill X.
TI Proper orthogonal decomposition reduced model for mass transport in
heterogenous media
SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
LA English
DT Article
DE Model reduction; Proper orthogonal decomposition; Galerkin projection;
Mass transport
ID KARHUNEN-LOEVE EXPANSION; IDENTIFICATION; REDUCTION; DYNAMICS; SYSTEMS
AB Numerical models with fine discretization normally demand large computational time and space, which lead to computational burden for state estimations or model parameter inversion calculation. This article presented a reduced implicit finite difference scheme that based on proper orthogonal decomposition (POD) for two-dimensional transient mass transport in heterogeneous media. The reduction of the original full model was achieved by projecting the high-dimension full model to a low-dimension space created by POD bases, and the bases are derived from the snapshots generated from the model solutions of the forward simulations. The POD bases were extracted from the ensemble of snapshots by singular value decomposition. The dimension of the Jacobian matrix was then reduced after Galerkin projection. Thus, the reduced model can accurately reproduce and predict the original model's transport process with significantly decreased computational time. This scheme is practicable with easy implementation of the partial differential equations. The POD method is illustrated and validated through synthetic cases with various heterogeneous permeability field scenarios. The accuracy and efficiency of the reduced model are determined by the optimal selection of the snapshots and POD bases.
C1 [Li, Xinya] Pacific NW Natl Lab, Hydrol Energy & Environm Directorate, Richland, WA 99352 USA.
[Hu, Bill X.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA.
RP Hu, BX (reprint author), Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA.
EM bill.x.hu@gmail.com
NR 27
TC 3
Z9 3
U1 2
U2 14
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1436-3240
J9 STOCH ENV RES RISK A
JI Stoch. Environ. Res. Risk Assess.
PD JUL
PY 2013
VL 27
IS 5
BP 1181
EP 1191
DI 10.1007/s00477-012-0653-2
PG 11
WC Engineering, Environmental; Engineering, Civil; Environmental Sciences;
Statistics & Probability; Water Resources
SC Engineering; Environmental Sciences & Ecology; Mathematics; Water
Resources
GA 155MN
UT WOS:000319752500012
ER
PT J
AU Gray, DD
Ogretim, E
Bromhal, GS
AF Gray, Donald D.
Ogretim, Egemen
Bromhal, Grant S.
TI Darcy Flow in a Wavy Channel Filled with a Porous Medium
SO TRANSPORT IN POROUS MEDIA
LA English
DT Article
DE Wavy channel; Porous media; Darcy's law; Flow in a fracture
ID FRACTURES
AB Flow in channels bounded by wavy or corrugated walls is of interest in both technological and geological contexts. This paper presents an analytical solution for the steady Darcy flow of an incompressible fluid through a homogeneous, isotropic porous medium filling a channel bounded by symmetric wavy walls. This packed channel may represent an idealized packed fracture, a situation which is of interest as a potential pathway for the leakage of carbon dioxide from a geological sequestration site. The channel walls change from parallel planes, to small amplitude sine waves, to large amplitude nonsinusoidal waves as certain parameters are increased. The direction of gravity is arbitrary. A plot of piezometric head against distance in the direction of mean flow changes from a straight line for parallel planes to a series of steeply sloping sections in the reaches of small aperture alternating with nearly constant sections in the large aperture bulges. Expressions are given for the stream function, specific discharge, piezometric head, and pressure.
C1 [Gray, Donald D.; Ogretim, Egemen; Bromhal, Grant S.] Natl Energy Technol Lab, Morgantown, WV 26507 USA.
[Gray, Donald D.; Ogretim, Egemen] W Virginia Univ, Dept Civil & Environm Engn, Morgantown, WV 26506 USA.
RP Gray, DD (reprint author), W Virginia Univ, Dept Civil & Environm Engn, Morgantown, WV 26506 USA.
EM gray@cemr.wvu.edu; Egemen.ogretim@gediz.edu.tr; Bromhal@netl.doe.gov
FU National Energy Technology Laboratory under the RES [DE-FE0004000]
FX This technical effort was performed in support of the National Energy
Technology Laboratory's ongoing research in CO2 capture under
the RES contract DE-FE0004000.
NR 14
TC 2
Z9 2
U1 2
U2 12
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0169-3913
J9 TRANSPORT POROUS MED
JI Transp. Porous Media
PD JUL
PY 2013
VL 98
IS 3
BP 743
EP 753
DI 10.1007/s11242-013-0170-x
PG 11
WC Engineering, Chemical
SC Engineering
GA 159HL
UT WOS:000320036400014
ER
PT J
AU Wenzel, T
AF Wenzel, Tom
TI The effect of recent trends in vehicle design on US societal fatality
risk per vehicle mile traveled, and their projected future relationship
with vehicle mass
SO ACCIDENT ANALYSIS AND PREVENTION
LA English
DT Article
DE Fatality risk; Logistic regression; Vehicle mass; Vehicle footprint;
Side airbags; ESC; Compatibility
ID DRIVER CASUALTY RATES; ACCIDENT RECORD; SAFETY IMPACTS; GREAT-BRITAIN;
PICKUP TRUCKS; BRITISH INDEX; CAR MODELS; SUVS
AB The National Highway Traffic Safety Administration (NHTSA) recently updated its 2003 and 2010 logistic regression analyses of the effect of a reduction in light-duty vehicle mass on US fatality risk per vehicle mile traveled (VMT). The current NHTSA analysis is the most thorough investigation of this issue to date. LBNL's assessment of the analysis indicates that the estimated effect of mass reduction on risk is smaller than in the previous studies, and statistically non-significant for all but the lightest cars.
The effects three recent trends in vehicle designs and technologies have on societal fatality risk per VMT are estimated, and whether these changes might affect the relationship between vehicle mass and fatality risk in the future. Side airbags are found to reduce fatality risk in cars, but not necessarily light trucks or CUVs/minivans, struck in the side by another light-duty vehicle; reducing the number of fatalities in cars struck in the side is predicted to reduce the estimated detrimental effect of footprint reduction, but increase the detrimental effect of mass reduction, in cars on societal fatality risk. Better alignment of light truck bumpers with those of other vehicles appears to result in a statistically significant reduction in risk imposed on car occupants; however, reducing this type of fatality will likely have little impact on the estimated effect of mass or footprint reduction on risk. Finally, shifting light truck drivers into safer, car-based vehicles, such as sedans, CUVs, and minivans, would result in larger reductions in societal fatalities than expected from even substantial reductions in the masses of light trucks. A strategy of shifting drivers from truck-based to car-based vehicles would reduce fuel use and greenhouse gas emissions, while improving societal safety. (C) 2013 Elsevier Ltd. All rights reserved.
C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Wenzel, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,90R2000, Berkeley, CA 94720 USA.
EM TPWenzel@lbl.gov
NR 20
TC 2
Z9 2
U1 1
U2 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0001-4575
J9 ACCIDENT ANAL PREV
JI Accid. Anal. Prev.
PD JUL
PY 2013
VL 56
BP 71
EP 81
DI 10.1016/j.aap.2013.03.019
PG 11
WC Ergonomics; Public, Environmental & Occupational Health; Social
Sciences, Interdisciplinary; Transportation
SC Engineering; Public, Environmental & Occupational Health; Social
Sciences - Other Topics; Transportation
GA 153WK
UT WOS:000319633000007
PM 23631906
ER
PT J
AU Morgan, SW
King, JC
Pope, CL
AF Morgan, Sarah W.
King, Jeffrey C.
Pope, Chad L.
TI Simulation of neutron radiograph images at the Neutron Radiography
Reactor
SO ANNALS OF NUCLEAR ENERGY
LA English
DT Article
DE Characteristic curve; Neutron radiography; Transfer method radiography;
Image simulation
AB The ability to accurately simulate potential radiographic images produced by a radiographic facility can improve the facility's ability to design experiments and evaluate images. The image simulation methods detailed in this paper predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in a Monte Carlo beamline model. The image simulation method utilizes a characteristic curve relating foil activity to optical density for the film and foil combination in use at the Neutron Radiography Reactor. The simulation validation compared a radiograph of a polyethylene step block to a simulated radiograph of the same step block. The simulation accurately predicts the optical density in each region of a radiograph of the step block. The simulated radiograph predicts the average optical density of the actual radiograph more accurately for the thinner steps, resulting in step averaged optical density differences between the actual and simulated images of -11.6% for the thinnest step versus a difference of -34.7% for the thickest step, possibly due to the greater accuracy of the higher optical density region of the characteristic curve. Applying the scanner calibration curve to the calculated optical density values decreases the difference between the actual radiograph pixel values and the simulated pixel values for each step except the thinnest step. The step averaged differences between the corrected and actual images increase from -11.6% to -17.0% for the thinnest step and decrease from -34.7% to +7.7% for the thickest step after the calibration curve is applied. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Morgan, Sarah W.; King, Jeffrey C.] Colorado Sch Mines, Nucl Sci & Engn Program, Golden, CO 80401 USA.
[Pope, Chad L.] Idaho Natl Lab, Scoville, ID 83415 USA.
RP King, JC (reprint author), Colorado Sch Mines, Nucl Sci & Engn Program, 1500 Illinois St, Golden, CO 80401 USA.
EM kingjc@mines.edu
FU Idaho National Laboratory
FX The authors wish to acknowledge Doug Porter, Sean Cunningham, Glen
Pappiouannou, and Fred Gholson of the Idaho National Laboratory for
their assistance in completing the experiments necessary for this
research. This project was funded by a grant from the Idaho National
Laboratory.
NR 20
TC 1
Z9 1
U1 0
U2 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0306-4549
J9 ANN NUCL ENERGY
JI Ann. Nucl. Energy
PD JUL
PY 2013
VL 57
BP 341
EP 349
DI 10.1016/j.anucene.2013.02.010
PG 9
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 154AD
UT WOS:000319643000041
ER
PT J
AU Song, GL
Liu, MH
AF Song, Guang-Ling
Liu, Minghong
TI Corrosion and electrochemical evaluation of an Al-Si-Cu aluminum alloy
in ethanol solutions
SO CORROSION SCIENCE
LA English
DT Article
DE Al alloy; Ethanol fuel; Corrosion
ID SN-BI ALLOYS; IMPEDANCE SPECTROSCOPY; ACETIC-ACID; BEHAVIOR; FUEL;
PROTECTION
AB The corrosion of aluminum alloy AlSi8Cu3Fe(Zn) in ethanol and ethanol solutions containing 10 vol.% water and 10 vol.% acetic acid, respectively, was investigated by means of electrochemical impedance spectroscopy (EIS), polarization curve, immersion, optical microscopy, scanning electron microscopy and element mapping. The Al alloy in the ethanol and its solutions exhibited a capacitive loop in the measured Nyquist EIS spectra at high frequencies, which can be attributed to the ethanol's dielectric response. Addition of 10 vol.% acetic acid increased the ethanol corrosivity more significantly than the same amount of water addition. The Al-Si-Cu-Mg precipitated zones in the alloy were susceptible to corrosion attack due to the micro-galvanic effect by the Cu-containing precipitates. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Song, Guang-Ling] GM Global Res & Dev, Chem Sci & Mat Syst Lab, Warren, MI 48090 USA.
[Liu, Minghong] Meda Engn & Tech Serv, Southfield, MI 48075 USA.
RP Song, GL (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd,POB 2008,MS-6156, Oak Ridge, TN 37831 USA.
EM songg@ornl.gov
RI Song, Guang-Ling/D-9540-2013
OI Song, Guang-Ling/0000-0002-9802-6836
NR 29
TC 15
Z9 16
U1 4
U2 44
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0010-938X
J9 CORROS SCI
JI Corrosion Sci.
PD JUL
PY 2013
VL 72
BP 73
EP 81
DI 10.1016/j.corsci.2013.03.009
PG 9
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 153XV
UT WOS:000319637000010
ER
PT J
AU Zhou, S
Kyle, GP
Yu, S
Clarke, LE
Eom, J
Luckow, P
Chaturvedi, V
Zhang, XL
Edmonds, JA
AF Zhou, Sheng
Kyle, G. Page
Yu, Sha
Clarke, Leon E.
Eom, Jiyong
Luckow, Patrick
Chaturvedi, Vaibhav
Zhang, Xiliang
Edmonds, James A.
TI Energy use and CO2 emissions of China's industrial sector from a global
perspective
SO ENERGY POLICY
LA English
DT Article
DE Industry energy; CO2 emission; Saturation effect
ID STRATEGIES; FRAMEWORK; DEMAND
AB The industrial sector has accounted for more than 50% of China's final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China's per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Zhou, Sheng; Zhang, Xiliang] Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China.
[Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick; Chaturvedi, Vaibhav; Edmonds, James A.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
RP Zhou, S (reprint author), Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China.
EM zhshinet@tsinghua.edu.cn
RI Eom, Jiyong/A-1161-2014
FU Ministry of Science and Technology (MOST) of China [2012BAC20B01]; China
Scholar Council (CSC); Integrated Assessment Research Program in the
Office of Science of the U.S. Department of Energy [DE-AC05-76RL01830]
FX This study is supported by the Ministry of Science and Technology (MOST)
of China (Grant no. 2012BAC20B01), and also supported by China Scholar
Council (CSC). The authors are grateful for research support provided by
the Integrated Assessment Research Program in the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. The
views and opinions expressed in this paper are those of the authors
alone.
NR 57
TC 11
Z9 13
U1 0
U2 63
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0301-4215
J9 ENERG POLICY
JI Energy Policy
PD JUL
PY 2013
VL 58
BP 284
EP 294
DI 10.1016/j.enpol.2013.03.014
PG 11
WC Energy & Fuels; Environmental Sciences; Environmental Studies
SC Energy & Fuels; Environmental Sciences & Ecology
GA 147OV
UT WOS:000319177800029
ER
PT J
AU Cassata, WS
Renne, PR
AF Cassata, William S.
Renne, Paul R.
TI Systematic variations of argon diffusion in feldspars and implications
for thermochronometry
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID AR-40/AR-39 K-FELDSPAR; THERMAL-EXPANSION; PHASE-TRANSITION; ALKALI
FELDSPARS; PLAGIOCLASE FELDSPARS; HIGH ALBITE; X-RAY; DISPLACIVE
TRANSFORMATION; INTERMEDIATE PLAGIOCLASE; CALCIC PLAGIOCLASE
AB Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1-1 mm grains of similar to 200-400 degrees C (assuming a 10 degrees C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and compression. The resulting implications for accurately extrapolating laboratory-derived diffusion parameters to natural settings and over geologic time are discussed. We find that considerable inaccuracies may exist in published thermal histories obtained using multiple diffusion domain (MDD) models fit to Arrhenius plots for exsolved alkali feldspar, where the inferred Ar partial retention zones may be spuriously hot. (C) 2013 Elsevier Ltd. All rights reserved.
C1 Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
Berkeley Geochronol Ctr, Berkeley, CA 94709 USA.
RP Cassata, WS (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
EM cassata2@llnl.gov; prenne@bgc.org
FU U.S. National Science Foundation Petrology and Geochemistry Program
[EAR-0838572]; Ann and Gordon Getty Foundation; National Science
Foundation Graduate Research Fellowship
FX David Shuster, Tim Becker, Al Deino, and Greg Balco are thanked for
laboratory assistance, Sean Mulcahy and Kent Ross for electron
microprobe assistance, Simon Kelley for providing access to his
UV-laserprobe facilities and assistance acquiring in situ data on the
Bushveld Complex plagioclase crystals, Becky Smith for orienting
cleavage flakes using EBSD, and Darren Mark and Kevin Righter for
generously providing samples. We are grateful to Rudy Wenk for helpful
discussions regarding feldspar structures and for access to his
collection of plagioclase samples. W. Hames, I. Villa, and an anonymous
reviewer are thanked for thoughtful and constructive reviews of the
manuscript, and C. Hall is thanked for handling the manuscript. We
acknowledge financial support from the U.S. National Science Foundation
Petrology and Geochemistry Program (grant EAR-0838572) and the Ann and
Gordon Getty Foundation. W.S. Cassata was supported by a National
Science Foundation Graduate Research Fellowship.
NR 134
TC 25
Z9 25
U1 2
U2 33
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD JUL 1
PY 2013
VL 112
BP 251
EP 287
DI 10.1016/j.gca.2013.02.030
PG 37
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 144WP
UT WOS:000318972800016
ER
PT J
AU Kobayashi, H
Lorente, S
Anderson, R
Bejan, A
AF Kobayashi, H.
Lorente, S.
Anderson, R.
Bejan, A.
TI Underground heat flow patterns for dense neighborhoods with heat pumps
SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
LA English
DT Article
DE Constructal; Heat pump; Urban design; Ground coupled
ID CONSTRUCTAL LAW; DESIGN; EXCHANGER; EVOLUTION; SYSTEMS; WELLS
AB In this paper we consider the placement of buildings with ground coupled heat pumps on a densely populated area. The assemblies of pipes that constitute the ground heat exchangers occupy volumes that are shaped as parallelepipeds, the short dimension of which is vertical. Viewed from above, the assemblies occupy rectangular areas with variable shapes. Two area sizes are considered: few large areas surrounded by many smaller areas. The area shapes are viewed systematically such that the total heat transfer rate between ground and buried assemblies is maximum. For each shape of the large assembly, the best shape of each smaller assembly is the most slender that can be installed on its available territory. This feature of the neighborhood design does not change when the volume fraction occupied by all the assemblies increases. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Kobayashi, H.] Ajinomoto Co Inc, Prod &Technol Adm Ctr, Engn Technol Dept, Kawasaki Ku, Kawasaki, Kanagawa 210, Japan.
[Kobayashi, H.; Bejan, A.] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA.
[Lorente, S.] Univ Toulouse, UPS, INSA, LMDC, F-31077 Toulouse 04, France.
[Anderson, R.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Bejan, A (reprint author), Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA.
EM abejan@duke.edu
FU Ajinomoto Co. Inc.; National Renewable Energy Laboratory, Golden,
Colorado [XXL-1-40325-01]
FX We thank Ajinomoto Co. Inc. for supporting Mr. H. Kobayashi's work at
Duke University. Profs. Bejan and Lorente's work was supported by a
subcontract (XXL-1-40325-01) from the National Renewable Energy
Laboratory, Golden, Colorado.
NR 20
TC 2
Z9 2
U1 0
U2 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0017-9310
J9 INT J HEAT MASS TRAN
JI Int. J. Heat Mass Transf.
PD JUL
PY 2013
VL 62
BP 632
EP 637
DI 10.1016/j.ijheatmasstransfer.2013.03.030
PG 6
WC Thermodynamics; Engineering, Mechanical; Mechanics
SC Thermodynamics; Engineering; Mechanics
GA 146IT
UT WOS:000319085500068
ER
PT J
AU Tasora, A
Anitescu, M
Negrini, S
Negrut, D
AF Tasora, A.
Anitescu, M.
Negrini, S.
Negrut, D.
TI A compliant visco-plastic particle contact model based on differential
variational inequalities
SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
LA English
DT Article
DE Variational inequalities; Contacts; Plasticity; Friction
ID RIGID-BODY DYNAMICS; FRICTIONAL CONTACT; LARGE-SCALE
AB This work describes an approach to simulate contacts between three-dimensional shapes with compliance and damping using the framework of the differential variational inequality theory. Within the context of non-smooth dynamics, we introduce an extension to the classical set-valued model for frictional contacts between rigid bodies, allowing contacts to experience local compliance, viscosity, and plasticization. Different types of yield surfaces can be defined for various types of contact, a versatile approach that contains the classic dry Coulomb friction as a special case. The resulting problem is a differential variational inequality that can be solved, at each integration time step, as a variational inequality over a convex set. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Tasora, A.] Univ Parma, Dipartimento Ingn Ind, I-43100 Parma, Italy.
[Anitescu, M.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA.
[Negrini, S.] Politecn Milan, Dept Mech Engn, I-20126 Milan, Italy.
[Negrut, D.] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA.
RP Tasora, A (reprint author), Univ Parma, Dipartimento Ingn Ind, I-43100 Parma, Italy.
EM alessandro.tasora@unipr.it; anitescu@mcs.anl.gov;
silvia.negrini@mail.polimi.it; negrut@cae.wisc.edu
FU National Science Foundation [CMMI0840442]; Ferrari Automotive and TP
Engineering; U.S. Department of Energy [DE-AC02-06CH11357]
FX Financial support for D. Negrut was provided in part by the National
Science Foundation Award CMMI0840442. A. Tasora thanks Ferrari
Automotive and TP Engineering for financial support. Mihai Anitescu was
supported by U.S. Department of Energy under Contract No.
DE-AC02-06CH11357.
NR 29
TC 6
Z9 6
U1 0
U2 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0020-7462
J9 INT J NONLIN MECH
JI Int. J. Non-Linear Mech.
PD JUL
PY 2013
VL 53
SI SI
BP 2
EP 12
DI 10.1016/j.ijnonlinmec.2013.01.010
PG 11
WC Mechanics
SC Mechanics
GA 152QD
UT WOS:000319545300002
ER
PT J
AU Terrani, KA
Parish, CM
Shin, D
Pint, BA
AF Terrani, Kurt A.
Parish, Chad M.
Shin, Dongwon
Pint, Bruce A.
TI Protection of zirconium by alumina- and chromia-forming iron alloys
under high-temperature steam exposure
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID STAINLESS-STEEL; ZR SYSTEM; FE-ZR; DIFFUSION; ZIRCALOY-4; OXIDATION;
ENVIRONMENTS; PRESSURE
AB The viability of advanced oxidation-resistant Fe-base alloys to protect zirconium from rapid oxidation in high-temperature steam environments has been examined. Specimens were produced such that outer layers of FeCrAl ferritic alloy and Type 310 austenitic stainless steel were incorporated on the surface of zirconium metal slugs. The specimens were exposed to high-temperature 0.34 MPa steam at 1200 and 1300 degrees C. The primary degradation mechanism for the protective layer was interdiffusion with the zirconium, as opposed to high-temperature oxidation in steam. The FeCrAl layer experienced less degradation and protected the zirconium at 1300 degrees C for 8 h. Constituents of the Fe-base alloys rapidly diffused into the zirconium and resulted in the formation of various intermetallic layers at the interface and precipitates inside the bulk zirconium. The nature of this interaction for FeCrAl and 310SS has been characterized by use of microscopic techniques as well as computational thermodynamics. Finally, a reactor physics discussion on the applicability of these protective layers in light-water-reactor nuclear fuel structures is offered. Published by Elsevier B.V.
C1 [Terrani, Kurt A.] Oak Ridge Natl Lab, Fuel Cycle & Isotopes Div, Oak Ridge, TN 37831 USA.
[Parish, Chad M.; Shin, Dongwon; Pint, Bruce A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Terrani, KA (reprint author), Oak Ridge Natl Lab, Fuel Cycle & Isotopes Div, Oak Ridge, TN 37831 USA.
EM terranika@ornl.gov
RI Pint, Bruce/A-8435-2008; Parish, Chad/J-8381-2013; Shin,
Dongwon/C-6519-2008
OI Pint, Bruce/0000-0002-9165-3335; Shin, Dongwon/0000-0002-5797-3423
FU ORNL's Shared Research Equipment (ShaRE) User Facility; Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy; Advanced Fuels Campaign of the Fuel Cycle R&D program in the
Office of Nuclear Energy, U.S. Department of Energy; Laboratory Directed
RD funds at ORNL
FX The authors would like to thank C. Schaich, A. Frederick, J. Mayotte,
and J. Keiser at ORNL for assistance with the experimental work. The
reactivity calculations presented here were performed by Nathan George
of the University of Tennessee, Knoxville. Use of the JEOL 6500 FEG-SEM
was supported by ORNL's Shared Research Equipment (ShaRE) User Facility,
which is sponsored by the Scientific User Facilities Division, Office of
Basic Energy Sciences, U.S. Department of Energy. The work presented in
this paper was supported partially by the Advanced Fuels Campaign of the
Fuel Cycle R&D program in the Office of Nuclear Energy, U.S. Department
of Energy as well as by Laboratory Directed R&D funds at ORNL.
NR 33
TC 16
Z9 16
U1 4
U2 45
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2013
VL 438
IS 1-3
BP 64
EP 71
DI 10.1016/j.jnucmat.2013.03.006
PG 8
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 151SY
UT WOS:000319481700011
ER
PT J
AU Dayal, P
Bhattacharyya, D
Mook, WM
Fu, EG
Wang, YQ
Carr, DG
Anderoglu, O
Mara, NA
Misra, A
Harrison, RP
Edwards, L
AF Dayal, P.
Bhattacharyya, D.
Mook, W. M.
Fu, E. G.
Wang, Y. -Q
Carr, D. G.
Anderoglu, O.
Mara, N. A.
Misra, A.
Harrison, R. P.
Edwards, L.
TI Effect of double ion implantation and irradiation by Ar and He ions on
nano-indentation hardness of metallic alloys
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID NANOINDENTATION
AB In this study, the authors have investigated the combined effect of a double layer of implantation on four different metallic alloys, ODS steel MA957, Zircaloy-4, Ti-6Al-4V titanium alloy and stainless steel 316, by ions of two different species - He and Ar - on the hardening of the surface as measured by nanoindentation. The data was collected for a large number of indentations using the Continuous Stiffness Method or "CSM" mode, applying the indents on the implanted surface. Careful analysis of the data in the present investigations show that the relative hardening due to individual implantation layers can be used to obtain an estimate of the relative hardening effect of a combination of two separate implanted layers of two different species. This combined hardness was found to lie between the square root of the sum of the squares of individual hardening effects, (Delta H-A(2) + Delta H-B(2))(0.5) as the lower limit and the sum of the individual hardening effects, (Delta H-A + Delta H-B) as the upper limit, within errors, for all depths measured. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
C1 [Dayal, P.; Bhattacharyya, D.; Carr, D. G.; Harrison, R. P.; Edwards, L.] Australian Nucl Sci & Technol Org, Inst Mat Engn, Lucas Heights, NSW 2234, Australia.
[Mook, W. M.; Mara, N. A.; Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87544 USA.
[Fu, E. G.; Wang, Y. -Q; Anderoglu, O.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
RP Bhattacharyya, D (reprint author), Australian Nucl Sci & Technol Org, Inst Mat Engn, Lucas Heights, NSW 2234, Australia.
EM dhb@ansto.gov.au
RI Mara, Nathan/J-4509-2014; Misra, Amit/H-1087-2012; Carr,
David/G-2530-2010; Edwards, Lyndon/D-1916-2013;
OI Carr, David/0000-0003-1134-5496; Edwards, Lyndon/0000-0001-7526-6020;
Mara, Nathan/0000-0002-9135-4693
FU Center for Materials at Irradiation and Mechanical Extremes, an Energy
Frontier Research Center; DOE, Office of Science, Office of Basic Energy
Sciences, USA; DOE, Office of Science, Office of Basic Energy Sciences
FX The ion irradiation work at Los Alamos National Laboratory (LANL) was
supported through Center for Materials at Irradiation and Mechanical
Extremes, an Energy Frontier Research Center funded by DOE, Office of
Science, Office of Basic Energy Sciences, USA. Access to the Center for
Integrated Nanotechnologies (CINT) at LANL for nanoindentation is
acknowledged. CINT is a DOE, Office of Science, Office of Basic Energy
Sciences funded user facility. The help of Pat Dickerson in preparing
FIB TEM samples is also greatly appreciated. The enormous help of Tim
Palmer and Clint Jennison of the Metallography Lab at the Institute of
Materials Engineering in ANSTO in preparing the samples for irradiation
is also gratefully acknowledged.
NR 20
TC 15
Z9 16
U1 3
U2 46
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2013
VL 438
IS 1-3
BP 108
EP 115
DI 10.1016/j.jnucmat.2013.02.078
PG 8
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 151SY
UT WOS:000319481700017
ER
PT J
AU Ortega, LH
Kaminski, MD
Zeng, ZT
Cunnane, J
AF Ortega, Luis H.
Kaminski, Michael D.
Zeng, Zuotao
Cunnane, James
TI Nuclear fuel cycle waste stream immobilization with cermets for improved
thermal properties and waste consolidation
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID GLASSES
AB In the pursuit of methods to improve nuclear waste form thermal properties and combine potential nuclear fuel cycle wastes, a bronze alloy was combined with an alkali, alkaline earth metal bearing ceramic to form a cermet. The alloy was prepared from copper and tin (10 mass%) powders. Pre-sintered ceramic consisting of cesium, strontium, barium and rubidium alumino-silicates was mixed with unalloyed bronze precursor powders and cold pressed to 300 x 10(3) kPa, then sintered at 600 degrees C and 800 degrees C under hydrogen. Cermets were also prepared that incorporated molybdenum, which has a limited solubility in glass, under similar conditions. The cermet thermal conductivities were seven times that of the ceramic alone. These improved thermal properties can reduce thermal gradients within the waste forms thus lowering internal temperature gradients and thermal stresses, allowing for larger waste forms and higher waste loadings. These benefits can reduce the total number of waste packages necessary to immobilize a given amount of high level waste and immobilize troublesome elements. Published by Elsevier B.V.
C1 [Ortega, Luis H.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA.
[Kaminski, Michael D.; Cunnane, James] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Zeng, Zuotao] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA.
RP Ortega, LH (reprint author), Texas A&M Univ, Dept Nucl Engn, 3133 TAMU, College Stn, TX 77843 USA.
EM bertortega@tamu.edu; kaminski@anl.gov; zeng@anl.gov; cunnane@anl.gov
OI Ortega, Luis/0000-0003-4917-3167
FU US DOE Fuel Cycle R&D Separations and Waste Form Campaign
FX This work has been funded by US DOE Fuel Cycle R&D Separations and Waste
Form Campaign.
NR 18
TC 0
Z9 0
U1 1
U2 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2013
VL 438
IS 1-3
BP 126
EP 133
DI 10.1016/j.jnucmat.2013.02.081
PG 8
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 151SY
UT WOS:000319481700019
ER
PT J
AU Park, ES
Kim, DH
Kim, HJ
Bae, JC
Huh, MY
AF Park, E. S.
Kim, D. H.
Kim, H. J.
Bae, J. C.
Huh, M. Y.
TI Plastic stress-strain behavior of a Zr-based bulk metallic glass at high
strain rates in the supercooled liquid region
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Bulk metallic glass; Plastic stress-strain curve; Solid metal lubricant;
Strain rate
ID DEFORMATION-BEHAVIOR; MECHANICAL-BEHAVIOR; AMORPHOUS-ALLOYS;
TEMPERATURES; STATE
AB The stress-strain curves of Zr-based bulk metallic glass (BMG) at high strain rates were determined by the compression test at a temperature in the supercooled liquid region. Using solid metal lubricant (SML) sheets, the compression test was successfully carried out without failure up to a strain of 0.68, even at a strain rate of 10/s. The finite element method calculations were carried out for clarifying the role of the SML during compression tests. Published by Elsevier B.V.
C1 [Park, E. S.; Kim, D. H.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA.
[Kim, H. J.; Bae, J. C.] Korea Inst Ind Technol, Liquid Proc & Casting Technol R&D Dept, Inchon 406130, South Korea.
[Huh, M. Y.] Korea Univ, Dept Mat Sci & Engn, Seoul 136701, South Korea.
RP Park, ES (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA.
EM espark@ameslab.gov
NR 19
TC 5
Z9 5
U1 0
U2 33
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD JUL 1
PY 2013
VL 574
BP 54
EP 59
DI 10.1016/j.msea.2013.03.014
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 146JT
UT WOS:000319088100008
ER
PT J
AU Morrow, BM
McCabe, RJ
Cerreta, EK
Tome, CN
AF Morrow, B. M.
McCabe, R. J.
Cerreta, E. K.
Tome, C. N.
TI Variability in EBSD statistics for textured zirconium
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Electron backscatter diffraction (EBSD); Twinning; Zirconium
ID ELECTRON BACKSCATTER DIFFRACTION; TWIN STATISTICS; MAGNESIUM
AB Zirconium is an important structural material, and, as with other hexagonal close-packed (HCP) metals, the mechanical properties depend on both slip and twinning. Electron backscatter diffraction (EBSD) from two-dimensional (2D) metallographic sections has previously been used to identify and quantify deformation twinning to support development of physically based plasticity models for HCP metals. However, the stereological assumptions used to generate twin statistics from a single 2D section have not been fully validated against potential sources of measurement artifacts or biases potentially arising from the strong initial material textures and crystallographic nature of twinning. This work addresses these concerns by comparing results from three orthogonal directions in a deformed sample. Few differences are observed in the twin statistics based on viewing direction. Statistical variability of microstructures is a bigger factor in the comparison of twin statistics than viewing direction. {10 (1) over bar2} twinning does not occur homogeneously throughout the microstructure during a compression test. However, useful twin statistics can be successfully extracted from a single metallographic section. Published by Elsevier B.V.
C1 [Morrow, B. M.; McCabe, R. J.; Cerreta, E. K.; Tome, C. N.] Los Alamos Natl Lab, MST Div, Los Alamos, NM 87545 USA.
RP Morrow, BM (reprint author), Los Alamos Natl Lab, MST Div, POB 1663, Los Alamos, NM 87545 USA.
EM morrow@lanl.gov
RI Morrow, Benjamin/F-3509-2012; Tome, Carlos/D-5058-2013;
OI Morrow, Benjamin/0000-0003-1925-4302; McCabe, Rodney
/0000-0002-6684-7410
FU Department of Energy, Basic Energy Science Project [FWP 06SCPE401]
FX This work was fully funded by the Department of Energy, Basic Energy
Science Project FWP 06SCPE401. All microscopy was performed at the
Electron Microscopy Laboratory at Los Alamos National Laboratory. Louis
Vernon helped to process the local twin fraction data.
NR 20
TC 9
Z9 9
U1 1
U2 24
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD JUL 1
PY 2013
VL 574
BP 157
EP 162
DI 10.1016/j.msea.2013.02.043
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 146JT
UT WOS:000319088100021
ER
PT J
AU Floyd, J
Alpy, N
Moisseytse, A
Haubensack, D
Rodriguez, G
Sienicki, J
Avakian, G
AF Floyd, J.
Alpy, N.
Moisseytse, A.
Haubensack, D.
Rodriguez, G.
Sienicki, J.
Avakian, G.
TI A numerical investigation of the sCO(2) recompression cycle off-design
behaviour, coupled to a sodium cooled fast reactor, for seasonal
variation in the heat sink temperature
SO NUCLEAR ENGINEERING AND DESIGN
LA English
DT Article
ID DIOXIDE BRAYTON CYCLE; EFFICIENCY
AB Supercritical CO2 cycles are particularly attractive for Generation IV Sodium-Cooled Fast Reactors (SFRs) as they can be simple and compact, but still offer steam-cycle equivalent efficiency while also removing potential for Na/H2O reactions. However, CO2 thermophysical properties are very sensitive close to the critical point which raises, in particular, questions about the compressor and so cycle off-design behaviour when subject to inevitable temperature increases that result from seasonal variations in the heat sink temperature. This publication reports the numerical investigation of such an issue that has been performed using the Plant Dynamics Code (ANL, USA), the cycle being optimised for the next French SFR, ASTRID (1500 MWth), as a test-case. On design, the net plant efficiency is 42.2% for a high pressure (25 MPa) turbine with an inlet temperature of 515 degrees C and considering a cycle low temperature of 35 degrees C.
The off-design cycle behaviour is studied based on preliminary designs for the main components and assuming the use of a fixed heat sink flow rate. First results obtained using a common fixed shaft speed for all turbomachines, without any other active control, show no stability issues and roughly constant density (and volumetric flow rate) at the main compressor inlet for the range of heat sink temperature considered (21-40 degrees C). This occurs because the new stationary states are found without requiring a significant shift of mass to the higher pressure level, meaning the compressor inlet pressure rises in concert with temperature. A significant fall in the loop thermal power and efficiency is observed however, which analysis reveals to be caused by a fall in pressure ratio that is an inevitable result of the non-ideal nature of sCO(2). Indeed the difference in the compressors off-design performance (the recompression cycle arrangement features 2 parallel compressors) is such that more mass-flow is attracted in the bypass line, which has a negative impact on cycle efficiency. A second series of results are taken for which the main compressor speed alone is controlled (between 50 and 56 rev/s) and successfully maintains a constant thermal power across the sodium-CO2 heat exchanger. The resulting higher pressure ratio (compared to the fixed speed results) and greater flow rate through the main compressor also lead to higher cycle efficiencies that are close to the optimum achievable for a given heat sink temperature. The series of tests reveals that to achieve a constant thermal power and high efficiency with the sCO(2) cycle at elevated heat sink temperatures, a degree-of-freedom in the compressor performance is necessary. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Floyd, J.; Alpy, N.; Haubensack, D.; Avakian, G.] CEA, DEN, Dept Etud Reacteurs, Serv Etud Syst Innovants, F-13108 St Paul Les Durance, France.
[Moisseytse, A.; Sienicki, J.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA.
[Rodriguez, G.] CEA, DEN, Dept Technol Nucl, F-13108 St Paul Les Durance, France.
RP Alpy, N (reprint author), CEA, DEN, Dept Etud Reacteurs, Serv Etud Syst Innovants, F-13108 St Paul Les Durance, France.
EM jeremy.floyd@cea.fr; nicolas.alpy@cea.fr; amoissey@anl.gov;
david.haubensack@cea.fr; gilles.rodriguez@cea.fr; sienicki@ani.gov;
gilles.avakian@cea.fr
NR 46
TC 13
Z9 13
U1 2
U2 25
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0029-5493
J9 NUCL ENG DES
JI Nucl. Eng. Des.
PD JUL
PY 2013
VL 260
BP 78
EP 92
DI 10.1016/j.nucengdes.2013.03.024
PG 15
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 154BF
UT WOS:000319645800008
ER
PT J
AU Mohanty, S
Majumdar, S
Srinivasan, M
AF Mohanty, Subhasish
Majumdar, Saurindranath
Srinivasan, Makuteswara
TI Constitutive modeling and finite element procedure development for
stress analysis of prismatic high temperature gas cooled reactor
graphite core components
SO NUCLEAR ENGINEERING AND DESIGN
LA English
DT Article
ID PREDICTION; CODE
AB High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Mohanty, Subhasish; Majumdar, Saurindranath] Argonne Natl Lab, Argonne, IL 60439 USA.
[Srinivasan, Makuteswara] US Nucl Regulatory Commiss, Washington, DC 20555 USA.
RP Mohanty, S (reprint author), Argonne Natl Lab, South Cass Ave, Argonne, IL 60439 USA.
EM smohanty@anl.gov
FU U.S. Nuclear Regulatory Commission (U.S. NRC) [V6218]
FX The work was supported by the U.S. Nuclear Regulatory Commission (U.S.
NRC) under contract NRC Job Code V6218 during FY2011. The views
expressed in this paper are not necessarily those of the U.S. Nuclear
Regulatory Commission.
NR 17
TC 5
Z9 5
U1 3
U2 11
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0029-5493
J9 NUCL ENG DES
JI Nucl. Eng. Des.
PD JUL
PY 2013
VL 260
BP 145
EP 154
DI 10.1016/j.nucengdes.2013.03.003
PG 10
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 154BF
UT WOS:000319645800013
ER
PT J
AU Meng, WZ
AF Meng, Wuzheng
TI Coil-dominated combined function magnet design
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Magnet; Combined function; Complex potential; Accelerator magnet
AB Most coil-dominated combined function magnets are built by stacking multipole coils around the beam aperture, which result in unnecessary cancellations of currents. This article suggests that conductor positions can be computed analytically based upon the combined potentials, so that significant ampere-turns can be reduced. The two dimensional complex potential theory is the base of this method. Examples are demonstrated. Detailed formulas are laid out and ready for various applications. (c) 2013 Elsevier B.V. All rights reserved.
C1 Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Meng, WZ (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM meng@bnl.gov
NR 13
TC 0
Z9 0
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 1
PY 2013
VL 715
BP 39
EP 47
DI 10.1016/j.nima.2013.02.033
PG 9
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 148NS
UT WOS:000319252300005
ER
PT J
AU Smith, MB
McClish, M
Achtzehn, T
Andrews, HR
Baginski, MJ
Best, DJ
Budden, BS
Clifford, ETH
Dallmann, NA
Dathy, C
Frank, JM
Graham, SA
Ing, H
Stonehill, LC
AF Smith, M. B.
McClish, M.
Achtzehn, T.
Andrews, H. R.
Baginski, M. J.
Best, D. J.
Budden, B. S.
Clifford, E. T. H.
Dallmann, N. A.
Dathy, C.
Frank, J. M.
Graham, S. A.
Ing, H.
Stonehill, L. C.
TI Assessment of photon detectors for a handheld gamma-ray and neutron
spectrometer using Cs2LiYCl6:Ce (CLYC) scintillator
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Cs2LiYCl6; Radiation detectors; Scintillators; Photon detectors
ID SPECTROSCOPY; CRYSTALS; READOUT; PURE
AB The coupling of Cs2LiYCl6:Ce (CLYC) scintillator to silicon photon converters has been evaluated with the goal of investigating replacements for the traditional photomultiplier tube (PMT) in small handheld spectrometers. Energy spectra produced under irradiation by a range of gamma-ray and neutron sources were collected with CLYC mounted to several avalanche photodiodes, PIN photodiodes, and silicon photomultipliers. The performance for both gamma rays and neutrons was compared to that obtained by coupling CLYC to PMTs. None of the silicon devices evaluated provide comparable performance to that of a PMT with CLYC. This is attributed to the photon-detection efficiency of the silicon detectors over the wavelength range of CLYC emissions, as well as the noise characteristics of the devices. (c) 2013 Elsevier B.V. All rights reserved.
C1 [Smith, M. B.; Achtzehn, T.; Andrews, H. R.; Clifford, E. T. H.; Graham, S. A.; Ing, H.] Bubble Technol Ind, Chalk River, ON K0J 1J0, Canada.
[McClish, M.] Radiat Monitoring Devices, Watertown, MA 02472 USA.
[Baginski, M. J.; Best, D. J.] SCI Technol Inc, Huntsville, AL 35803 USA.
[Budden, B. S.; Dallmann, N. A.; Stonehill, L. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Dathy, C.; Frank, J. M.] St Gobain Crystals, Hiram, OH 44234 USA.
RP Smith, MB (reprint author), Bubble Technol Ind, POB 100, Chalk River, ON K0J 1J0, Canada.
EM smithm@bubbletech.ca
OI Smith, Martin/0000-0003-0834-1574
FU US Department of Homeland Security, Domestic Nuclear Detection Office
[HSHQDC-10-C-00178]
FX This work has been supported by the US Department of Homeland Security,
Domestic Nuclear Detection Office, under competitively awarded Contract
HSHQDC-10-C-00178. This support does not constitute an express or
implied endorsement on the part of the Government.
NR 15
TC 3
Z9 3
U1 2
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 1
PY 2013
VL 715
BP 92
EP 97
DI 10.1016/j.nima.2013.03.023
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 148NS
UT WOS:000319252300012
ER
PT J
AU Mitchell, CE
Qiang, J
Ryne, RD
AF Mitchell, Chad E.
Qiang, Ji
Ryne, Robert D.
TI A fast method for computing 1-D wakefields due to coherent synchrotron
radiation
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Coherent synchrotron radiation; Light source simulation; Green function
AB A method for computing the free-space longitudinal wakefield due to coherent synchrotron radiation (CSR) in a one-dimensional model is developed using a fast integrated Green function approach. This approach accurately captures the short-range behavior of the CSR interaction and does not require the numerical differentiation of a noisy longitudinal charge density. The transient wakefields that occur near bend entry and exit are included. This method can also be generalized to include the effect of upstream radiation that propagates through multiple lattice elements before interacting with the bunch. Published by Elsevier B.V.
C1 [Mitchell, Chad E.; Qiang, Ji; Ryne, Robert D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Mitchell, CE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM ChadMitchell@lbl.gov
FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
FX This work is supported by the Office of Science of the U.S. Department
of Energy under Contract no. DE-AC02-05CH11231.
NR 18
TC 3
Z9 3
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 1
PY 2013
VL 715
BP 119
EP 125
DI 10.1016/j.nima.2013.03.013
PG 7
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 148NS
UT WOS:000319252300016
ER
PT J
AU Khan, MI
Aydemir, K
Siddiqui, MRH
Alwarthan, AA
Kaduk, JA
Marshall, CL
AF Khan, M. Ishaque
Aydemir, Kadir
Siddiqui, M. Rafiq H.
Alwarthan, Abdulrahman A.
Kaduk, James A.
Marshall, Christopher L.
TI Effect of gamma-ray irradiation on the properties of nanostructured
oxovanadate based oxidative dehydrogenation catalysts
SO RADIATION PHYSICS AND CHEMISTRY
LA English
DT Article
DE Oxidative dehydrogenation; Catalysis; Propylene; Framework-materials;
Polyoxovanadates; gamma-Ray irradiation
ID OXIDE CLUSTERS; MIXED OXIDES; PROPANE; TRANSITION; ADDITIVES; RADIATION;
ALUMINA; H2O; CO; CL
AB Effect of varying doses of gamma-ray irradiation on the catalytic oxidative dehydrogenation properties of a nanostructured oxovanadate based material is described for the first time. gamma-ray irradiation enhanced catalysts' selectivity to propylene during the oxidative dehydrogenation of propane. (c) 2013 Elsevier Ltd. All rights reserved.
C1 [Khan, M. Ishaque; Aydemir, Kadir; Kaduk, James A.] IIT, Dept Biol & Chem Sci, Chicago, IL 60616 USA.
[Siddiqui, M. Rafiq H.; Alwarthan, Abdulrahman A.] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia.
[Marshall, Christopher L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Khan, MI (reprint author), IIT, Dept Biol & Chem Sci, 3101 S Dearborn St,Life Sci Bldg,Room 178, Chicago, IL 60616 USA.
EM khan@iit.edu
RI Siddiqui, M Rafiq/E-9030-2010; Marshall, Christopher/D-1493-2015
OI Siddiqui, M Rafiq/0000-0002-4703-0333; Marshall,
Christopher/0000-0002-1285-7648
NR 28
TC 0
Z9 0
U1 1
U2 18
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0969-806X
J9 RADIAT PHYS CHEM
JI Radiat. Phys. Chem.
PD JUL
PY 2013
VL 88
BP 56
EP 59
DI 10.1016/j.radphyschem.2013.02.040
PG 4
WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic,
Molecular & Chemical
SC Chemistry; Nuclear Science & Technology; Physics
GA 152PS
UT WOS:000319544200010
ER
PT J
AU Saili, KS
Tilton, SC
Waters, KM
Tanguay, RL
AF Saili, Katerine S.
Tilton, Susan C.
Waters, Katrina M.
Tanguay, Robert L.
TI Global gene expression analysis reveals pathway differences between
teratogenic and non-teratogenic exposure concentrations of bisphenol A
and 17 beta-estradiol in embryonic zebrafish
SO REPRODUCTIVE TOXICOLOGY
LA English
DT Article
DE Bisphenol A; 17 beta-Estradiol; Microarray; Zebrafish; Prothrombin; CREB
ID BREAST-CANCER CELLS; ESTROGEN-RECEPTOR; ENDOCRINE DISRUPTOR; WIDESPREAD
EXPOSURE; ARYL-HYDROCARBON; DATA-MANAGEMENT; MESSENGER-RNA; DANIO-RERIO;
ACTIVATION; CREB
AB Transient developmental exposure to 0.1 mu M bisphenol A (BPA) results in larval zebrafish hyperactivity and learning impairments in the adult, while exposure to 80 mu M BPA results in teratogenic responses, including craniofacial abnormalities and edema. The mode of action underlying these effects is unclear. We used global gene expression analysis to identify candidate genes and signaling pathways that mediate BPA's developmental toxicity in zebrafish. Exposure concentrations were selected and anchored to the positive control, 17 beta-estradiol (E2), based on previously determined behavioral or teratogenic phenotypes. Functional analysis of differentially expressed genes revealed distinct expression profiles at 24 h post fertilization for 0.1 mu M versus 80 mu M BPA and 0.1 mu M versus 15 mu M E2 exposure, identification of prothrombin activation as a top canonical pathway impacted by both 0.1 mu M BPA and 0.1 mu M E2 exposure, and suppressed expression of several genes involved in nervous system development and function following 0.1 mu M BPA exposure. (c) 2013 Elsevier Inc. All rights reserved.
C1 [Saili, Katerine S.; Tanguay, Robert L.] Oregon State Univ, Environm Hlth Sci Ctr, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA.
[Tilton, Susan C.; Waters, Katrina M.] Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA.
RP Tanguay, RL (reprint author), Oregon State Univ, Dept Environm & Mol Toxicol, 28645 East Hwy 34, Corvallis, OR 97333 USA.
EM Robert.Tanguay@oregonstate.edu
FU NIH [T32 ES7060, P30 ES000210, R21 ES018970]; United States
Environmental Protection Agency (US EPA) Science to Achieve Results
(STAR) Graduate Fellowship (KSS); DOE [DE-AC05-76RLO1830]
FX We thank Margaret Corvi for sample collection assistance; Jane La Du for
imaging assistance; Eric Johnson, Can Buchner, Carrie Barton, and Greg
Gonnerman for providing fish husbandry; and Siba Das, Sean Bugel, and
Fred Tilton for critical review of the manuscript. This work was
supported by NIH Grants T32 ES7060, P30 ES000210, and R21 ES018970, and
a United States Environmental Protection Agency (US EPA) Science to
Achieve Results (STAR) Graduate Fellowship (KSS). The Pacific Northwest
National Laboratory is a multi-program national laboratory operated by
Battelle Memorial Institute for the DOE under contract number
DE-AC05-76RLO1830. The funding sources were not involved in any part of
the design, execution, analysis, or publication of this study. The US
EPA has not officially endorsed this publication and the views expressed
herein do not necessarily reflect the views of the US EPA.
NR 43
TC 11
Z9 11
U1 2
U2 52
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0890-6238
J9 REPROD TOXICOL
JI Reprod. Toxicol.
PD JUL
PY 2013
VL 38
BP 89
EP 101
DI 10.1016/j.reprotox.2013.03.009
PG 13
WC Reproductive Biology; Toxicology
SC Reproductive Biology; Toxicology
GA 152MG
UT WOS:000319535200010
PM 23557687
ER
PT J
AU Goodrich, A
Hacke, P
Wang, Q
Sopori, B
Margolis, R
James, TL
Woodhouse, M
AF Goodrich, Alan
Hacke, Peter
Wang, Qi
Sopori, Bhushan
Margolis, Robert
James, Ted L.
Woodhouse, Michael
TI A wafer-based monocrystalline silicon photovoltaics road map: Utilizing
known technology improvement opportunities for further reductions in
manufacturing costs
SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
LA English
DT Article
DE Crystalline silicon; Photovoltaics; Solar energy; Economics
ID SURFACE RECOMBINATION VELOCITY; MINORITY-CARRIER LIFETIMES; SOLAR-CELL
EFFICIENCY; CRYSTALLINE SILICON; P-TYPE; CZOCHRALSKI SILICON;
MULTICRYSTALLINE SILICON; SATURATION CURRENT; SI; DEGRADATION
AB As an initial investigation into the current and potential economics of one of today's most widely deployed photovoltaic technologies, we have engaged in a detailed analysis of manufacturing costs for each step within the wafer-based monocrystalline silicon (c-Si) PV module supply chain. At each step we find several pathways that could lead to further reductions in manufacturing costs. After aggregating the performance and cost considerations for a series of known technical improvement opportunities, we project a pathway for commercial-production c-Si modules to have typical sunlight power conversion efficiencies of 19-23%, and we calculate that they might be sustainably sold at ex-factory gate prices of $0.60-$0.70 per peak Watt (DC power, current U.S. dollars).
This may not be the lower bound to the cost curve for c-Si, however, because the roadmap described in this paper is constrained by the boundary conditions set by the wire sawing of wafers and their incorporation into manufacturing equipment that is currently being developed for commercial-scale production. Within these boundary conditions, we find that the benefit of reducing the wafer thickness from today's standard 180 mu m to the handling limit of 80 mu m could be around $0.05 per peak Watt (W-p), when the calculation is run at minimum sustainable polysilicon prices (which we calculate to be around $23/kg). At that minimum sustainable polysilicon price, we also calculate that the benefit of completely eliminating or completely recycling kerf loss could be up to $0.08/W-p.
These downward adjustments to the long run wafer price are used within the cost projections for three advanced cell architectures beyond today's standard c-Si solar cell. Presumably, the higher efficiency cells that are profiled must be built upon a foundation of higher quality starting wafers. The prevailing conventional wisdom is that this should add cost at the ingot and wafering step either due to lower production yields when having to sell wafers that are doped with an alternative element other than the standard choice of boron, or in additional capital equipment costs associated with removing problematic boron-oxygen pairs. However, from our survey it appears that there does not necessarily need to be an assumption of a higher wafer price if cell manufacturers should wish to use n-type wafers derived from the phosphorus dopant. And as for making p-type wafers with the traditional boron dopant, the potential price premium for higher lifetimes via the magnetic Czochralski approach is calculated to be very small, and can ostensibly be offset by the higher expected cell efficiencies that would result from using the higher quality wafers. With this final consideration, the projected minimum sustainable price requirements for three advanced c-Si solar cells are incorporated into a final bill of materials for a polysilicon-to-module manufacturing facility located within the United States. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Goodrich, Alan; Hacke, Peter; Wang, Qi; Sopori, Bhushan; Margolis, Robert; James, Ted L.; Woodhouse, Michael] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Goodrich, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM Alan.Goodrich@nrel.gov; Michael.Woodhouse@nrel.gov
NR 167
TC 109
Z9 112
U1 14
U2 123
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0248
J9 SOL ENERG MAT SOL C
JI Sol. Energy Mater. Sol. Cells
PD JUL
PY 2013
VL 114
BP 110
EP 135
DI 10.1016/j.solmat.2013.01.030
PG 26
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA 151UW
UT WOS:000319486700016
ER
PT J
AU Laghumavarapu, RB
Liang, BLL
Bittner, ZS
Navruz, TS
Hubbard, SM
Norman, A
Huffaker, DL
AF Laghumavarapu, Ramesh B.
Liang, Baolai L.
Bittner, Zachary S.
Navruz, Tugba S.
Hubbard, Seth M.
Norman, Andrew
Huffaker, Diana L.
TI GaSb/InGaAs quantum dot-well hybrid structure active regions in solar
cells
SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
LA English
DT Article
DE Quantum dot (QD); Quantum well (QW); Intermediate band solar cells
(IBSC); Gallium antimonide (GaSb); Photovoltaics (PV); Quantum dot-well
(QDW) solar cells
ID EFFICIENCY; BEAM
AB GaSb/InGaAs quantum dot-well (QDW) hybrid active regions with type-II band alignment are explored for increasing the infrared absorption in GaAs solar cells. Analyzed GaAs p-i-n structures comprise five layers of either GaSb quantum dot (QD), InGaAs quantum well (QW) or GaSb/InGaAs QDW layers in the I-region. It is found that the QDW solar cells outperform the QW and QD solar cells beyond GaAs band edge. In QDW solar cells an increase in efficiency is observed over QD solar cells due to additional QW absorption. An analysis of bulk response degradation in QDW solar cell is also presented. Improved photoresponse in QDW solar cells over QW and QD solar cells proves the potential for QDW hybrid structures in achieving high efficiency intermediate band solar cells. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Laghumavarapu, Ramesh B.; Huffaker, Diana L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA.
[Liang, Baolai L.; Huffaker, Diana L.] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA.
[Bittner, Zachary S.; Hubbard, Seth M.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA.
[Navruz, Tugba S.] Gazi Univ, Fac Engn & Architecture, Dept Elect & Elect Engn, TR-06570 Ankara, Turkey.
[Norman, Andrew] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Laghumavarapu, RB (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA.
EM laghu77@gmail.com
RI Norman, Andrew/F-1859-2010
OI Norman, Andrew/0000-0001-6368-521X
FU US Department of Energy [DE-EE0005325]; Air Force Office of Scientific
Research [AFINASSB01]; Department of Defense [NSSEFF N00244-09-1-0091]
FX The authors greatly acknowledge the financial support of this research
from US Department of Energy (through Grant number DE-EE0005325), Air
Force Office of Scientific Research (through Grant number AFINASSB01)
and Department of Defense (NSSEFF N00244-09-1-0091). Authors would like
to thank Charles J. Reyner for useful discussions during the preparation
of this manuscript. The authors gratefully acknowledge the use of the
SPM facility at the Nano and Pico Characterization Laboratory at the
California NanoSystems Institute.
NR 28
TC 14
Z9 14
U1 1
U2 88
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0248
EI 1879-3398
J9 SOL ENERG MAT SOL C
JI Sol. Energy Mater. Sol. Cells
PD JUL
PY 2013
VL 114
BP 165
EP 171
DI 10.1016/j.solmat.2013.02.027
PG 7
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA 151UW
UT WOS:000319486700022
ER
PT J
AU Greenhawt, M
Weiss, C
Conte, ML
Doucet, M
Engler, A
Camargo, CA
AF Greenhawt, Matthew
Weiss, Christopher
Conte, Marisa L.
Doucet, Marlie
Engler, Amy
Camargo, Carlos A., Jr.
TI Racial and Ethnic Disparity in Food Allergy in the United States: A
Systematic Review
SO JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE
LA English
DT Review
DE Food allergy; Food sensitization; 95% Predictive Decision Points; Serum
IgE; Race; Ethnicity; Children; Prevalence; Anaphylaxis; Disparity;
Epinephrine; Black; African American
AB BACKGROUND: The prevalence of food allergy is rising among US children. Little is known about racial/ethnic disparities in food allergy.
OBJECTIVE: We performed a systematic literature review to understand racial/ethnic disparities in food allergy in the United States.
METHODS: We searched PubMed/MEDLINE, Embase, and Scopus for original data about racial/ethnic disparities in the diagnosis, prevalence, treatment, or clinical course of food allergy or sensitization, with a particular focus on black (African American) race. Articles were analyzed by study methodology, racial/ethnic composition, food allergy definition, outcomes, summary statistic used, and covariate adjustment.
RESULTS: Twenty of 645 identified articles met inclusion criteria. The studies used multiple differing criteria to define food allergy, including self-report, sensitization assessed by serum food-specific IgE to selected foods without corroborating history, discharge codes, clinic chart review, and event-reporting databases. None used oral food challenge. In 12 studies, black persons (primarily children) had significantly increased adjusted odds of food sensitization or significantly higher proportion or odds of food allergy by self-report, discharge codes, or clinic-based chart review than white children. Major differences in study methodology and reporting precluded calculation of a pooled estimate of effect.
CONCLUSION: Sparse and methodologically limited data exist about racial/ethnic disparity in food allergy in the United States. Available data lack a common definition for food allergy and use indirect measures of allergy, not food challenge. Although data suggest an increased risk of food sensitization, self-reported allergy, or clinic-based diagnosis of food allergy among black children, no definitive racial/ethnic disparity could be found among currently available studies. (C) 2013 American Academy of Allergy, Asthma & Immunology
C1 [Greenhawt, Matthew] Univ Michigan, Sch Med, Dept Internal Med, Div Allergy & Clin Immunol, Ann Arbor, MI USA.
[Greenhawt, Matthew] Univ Michigan Hlth Syst, Ann Arbor, MI 48106 USA.
[Weiss, Christopher] Global Food Protect Inst, Battle Creek, MI USA.
[Conte, Marisa L.] Univ Michigan, Taubman Hlth Sci Lib, Ann Arbor, MI 48109 USA.
[Doucet, Marlie] Ctr Dis Control & Prevent, Oak Ridge Inst Sci & Educ Fellow, Div Adolescent, Atlanta, GA USA.
[Doucet, Marlie] Ctr Dis Control & Prevent, Sch Hlth, Atlanta, GA USA.
[Engler, Amy] Stanford Univ, Dept Human Biol, Palo Alto, CA 94304 USA.
[Camargo, Carlos A., Jr.] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Emergency Med, Boston, MA USA.
[Camargo, Carlos A., Jr.] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Med,Div Rheumatol Allergy & Immunol, Boston, MA USA.
RP Greenhawt, M (reprint author), Univ Michigan Hlth Syst, Div Allergy & Clin Immunol, 24 Frank Lloyd Wright Dr Lobby H-2100,Box 442, Ann Arbor, MI 48106 USA.
EM mgreenha@med.umich.edu
OI Greenhawt, Matthew/0000-0002-2365-9372; Conte,
Marisa/0000-0001-7377-163X
FU Centers for Disease Control and Prevention [214-2010-M-37396]; Food
Allergy Research and Education; Michigan Institute for Clinical and
Health Research; NIH [UL1RR024986]
FX Supported by the Centers for Disease Control and Prevention contract
214-2010-M-37396 with the Food Allergy & Anaphylaxis Network (now the
Food Allergy Research and Education) and the Michigan Institute for
Clinical and Health Research, NIH UL1RR024986 (M.L.C. and M.G.). The
findings and conclusions in this paper are those of the authors and do
not necessarily represent the official positions of the Centers for
Disease Control and Prevention (CDC) or Food Allergy Research and
Education.
NR 42
TC 10
Z9 10
U1 3
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2213-2198
EI 2213-2201
J9 J ALLER CL IMM-PRACT
JI J. Allergy Clin. Immunol.-Pract.
PD JUL-AUG
PY 2013
VL 1
IS 4
BP 378
EP 386
DI 10.1016/j.jaip.2013.04.009
PG 9
WC Allergy; Immunology
SC Allergy; Immunology
GA V38WW
UT WOS:000209374500009
PM 24565543
ER
PT J
AU Guo, HW
Ward, TZ
AF Guo, Hangwen
Ward, Thomas Z.
TI Fabrication of Spatially Confined Complex Oxides
SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS
LA English
DT Article
DE Materials Science; Issue 77; Physics; Chemistry; Chemical Engineering;
Mechanical Engineering; Nanotechnology; electrical transport properties
in solids; condensed matter physics; thin films (theory; deposition and
growth); conductivity (solid state); Pulsed laser deposition; oxides
thin films; photolithography; wire-bonding; thin film; etching;
fabrication; nanofabrication
AB Complex materials such as high Tc superconductors, multiferroics, and colossal magnetoresistors have electronic and magnetic properties that arise from the inherent strong electron correlations that reside within them. These materials can also possess electronic phase separation in which regions of vastly different resistive and magnetic behavior can coexist within a single crystal alloy material. By reducing the scale of these materials to length scales at and below the inherent size of the electronic domains, novel behaviors can be exposed. Because of this and the fact that spin-charge-lattice-orbital order parameters each involve correlation lengths, spatially reducing these materials for transport measurements is a critical step in understanding the fundamental physics that drives complex behaviors. These materials also offer great potential to become the next generation of electronic devices (1-3). Thus, the fabrication of low dimensional nano-or micro-structures is extremely important to achieve new functionality. This involves multiple controllable processes from high quality thin film growth to accurate electronic property characterization. Here, we present fabrication protocols of high quality microstructures for complex oxide manganite devices. Detailed descriptions and required equipment of thin film growth, photo-lithography, and wire-bonding are presented.
C1 [Guo, Hangwen; Ward, Thomas Z.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Guo, Hangwen] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
RP Ward, TZ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM wardtz@ornl.gov
RI Ward, Thomas/I-6636-2016
OI Ward, Thomas/0000-0002-1027-9186
FU US DOE, Office of Basic Energy Sciences, Materials Sciences and
Engineering Division
FX This effort was wholly supported by the US DOE, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division.
NR 17
TC 0
Z9 0
U1 1
U2 4
PU JOURNAL OF VISUALIZED EXPERIMENTS
PI CAMBRIDGE
PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA
SN 1940-087X
J9 JOVE-J VIS EXP
JI J. Vis. Exp.
PD JUL
PY 2013
IS 77
AR UNSP e50573
DI 10.3791/50573
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA V36RG
UT WOS:000209227900048
PM 23851706
ER
PT J
AU Martin, JE
AF Martin, James E.
TI Field-Structured Polymer Composites
SO MACROMOLECULAR SYMPOSIA
LA English
DT Proceedings Paper
CT Polymer Networks Conference (PNG)
CY AUG 12-16, 2012
CL WY
DE composites; magnetic permeability; thermal conductivity
ID BIAXIAL FIELD; SIMULATION
AB The use of multiaxial magnetic fields to create particle composites with controlled structures and properties is discussed. These field-structured composites can have greatly enhanced isotropic or anisotropic properties, and have applications to sensing, actuation, and thermal transport. In this article the synthesis of these materials is discussed, and a variety of composite structures are shown. The magnetic permeability and thermal conductivity are given as specific examples of the utility of multiaxial field structuring.
C1 Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Martin, JE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM jmartin@sandia.gov
NR 16
TC 0
Z9 0
U1 0
U2 4
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1022-1360
EI 1521-3900
J9 MACROMOL SYMP
JI Macromol. Symp.
PD JUL
PY 2013
VL 329
IS 1
BP 162
EP 172
DI 10.1002/masy.201200108
PG 11
WC Polymer Science
SC Polymer Science
GA AG5BR
UT WOS:000335434600020
ER
PT J
AU Kim, T
Vazquez, H
Hybertsen, MS
Venkataraman, L
AF Kim, Taekyeong
Vazquez, Hector
Hybertsen, Mark S.
Venkataraman, Latha
TI Conductance of Molecular Junctions Formed with Silver Electrodes
SO NANO LETTERS
LA English
DT Article
DE Single-molecule electronics; Ag-molecular junctions; density functional
theory; oligophenyls; tunneling decay
ID METAL WORK FUNCTION; SINGLE; RESISTANCE; CIRCUITS; CONTACTS; NANOWIRE;
AU; AG
AB We compare the conductance of a series of amine-terminated oligophenyl and alkane molecular junctions formed with Ag and Au electrodes using the scanning tunneling microscope based break-junction technique. For these molecules that conduct through the highest occupied molecular orbital, junctions formed with Au electrodes are more conductive than those formed with Ag electrodes, consistent with the lower work function for Ag. The measured conductance decays exponentially with molecular backbone length with a decay constant that is essentially the same for Ag and Au electrodes. However, the formation and evolution of molecular junctions upon elongation are very different for these two metals. Specifically, junctions formed with Ag electrodes sustain significantly longer elongation when compared with Au due to a difference in the initial gap opened up when the metal point-contact is broken. Using this observation and density functional theory calculations of junction structure and conductance we explain the trends observed in the single molecule junction conductance. Our work thus opens a new path to the conductance measurements of a single molecule junction in Ag electrodes.
C1 [Kim, Taekyeong; Vazquez, Hector; Venkataraman, Latha] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
[Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Hybertsen, MS (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
EM mhyberts@bnl.gov; lv2117@columbia.edu
RI Vazquez, Hector/G-5788-2014;
OI Vazquez, Hector/0000-0002-3865-9922; Hybertsen, Mark
S/0000-0003-3596-9754; Venkataraman, Latha/0000-0002-6957-6089
FU NSF [DMR-1122594]; U.S. Department of Energy, Office of Basic Energy
Sciences [DE-AC02-98CH10886]; Nanoscience and Engineering center by the
New York State Office of Science, Technology, and Academic Research
(NYSTAR); Packard Foundation
FX This work was supported primarily by the NSF under award number
DMR-1122594. Part of this work was carried out at the Center for
Functional Nanomaterials, Brookhaven National Laboratory, which is
supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, under contract no. DE-AC02-98CH10886. H.V. was supported
through the Nanoscience and Engineering center by the New York State
Office of Science, Technology, and Academic Research (NYSTAR). L.V.
thanks the Packard Foundation for support.
NR 32
TC 41
Z9 41
U1 5
U2 30
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2013
VL 13
IS 7
BP 3358
EP 3364
DI 10.1021/nl401654s
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 184IW
UT WOS:000321884300058
PM 23731268
ER
PT J
AU Jordan, NN
Leamer, NK
Nowak, G
Gaydos, JC
AF Jordan, N. N.
Leamer, N. K.
Nowak, G.
Gaydos, J. C.
TI ESTIMATING CHLAMYDIA AND GONORRHOEA BURDEN WITHIN THE US ARMY - A REVIEW
OF PASSIVE SURVEILLANCE SYSTEMS TO IDENTIFY INCIDENT INFECTIONS
SO SEXUALLY TRANSMITTED INFECTIONS
LA English
DT Meeting Abstract
C1 [Jordan, N. N.; Leamer, N. K.] US Army Inst Publ Hlth, Aberdeen Proving Ground, MD USA.
[Leamer, N. K.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA.
[Nowak, G.] Navy Marine Corps Public Hlth Ctr, Norfolk, VA USA.
[Gaydos, J. C.] Armed Forces Hlth Surveillance Ctr, Silver Spring, MD USA.
NR 0
TC 0
Z9 0
U1 1
U2 1
PU BMJ PUBLISHING GROUP
PI LONDON
PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND
SN 1368-4973
EI 1472-3263
J9 SEX TRANSM INFECT
JI Sex. Transm. Infect.
PD JUL
PY 2013
VL 89
SU 1
MA P3.316
BP A248
EP A248
DI 10.1136/sextrans-2013-051184.0770
PG 1
WC Infectious Diseases
SC Infectious Diseases
GA V40VR
UT WOS:000209506600162
ER
PT J
AU Tsai, AY
Dueger, E
Macalino, GE
Montano, SM
Mbuchi, M
Puplampu, N
McClelland, RS
Sanchez, JL
AF Tsai, A. Y.
Dueger, E.
Macalino, G. E.
Montano, S. M.
Mbuchi, M.
Puplampu, N.
McClelland, R. S.
Sanchez, J. L.
TI NEISSERIA GONORRHOEAE (GC) RESISTANCE SURVEILLANCE IN SELECTED
POPULATIONS OF FIVE COUNTRIES
SO SEXUALLY TRANSMITTED INFECTIONS
LA English
DT Meeting Abstract
C1 [Tsai, A. Y.; Sanchez, J. L.] Armed Forces Hlth Surveillance Ctr, Silver Spring, MD USA.
[Tsai, A. Y.] US Army Publ Hlth Command, Postgrad Res Participat Program, Oak Ridge Inst Sci & Educ, Aberdeen Proving Ground, MD USA.
[Dueger, E.] US Naval Med Res Unit 3, Cairo, Egypt.
[Dueger, E.] US Ctrs Dis Control & Prevent CDC, Global Dis Detect Branch, Atlanta, GA USA.
[Macalino, G. E.] Uniformed Serv Univ Hlth Sci, IDCRP, Bethesda, MD 20814 USA.
[Montano, S. M.] US Naval Med Res Unit 6, Lima, Peru.
[Mbuchi, M.] US Army Med Res Unit Kenya, Nairobi, Kenya.
[Puplampu, N.] US Naval Med Res Unit 3 Dttachment, Accra, Ghana.
[McClelland, R. S.] Univ Washington, Seattle, WA 98195 USA.
[Sanchez, J. L.] Henry M Jackson Fdn Adv Mil Med Inc, Bethesda, MD USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU BMJ PUBLISHING GROUP
PI LONDON
PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND
SN 1368-4973
EI 1472-3263
J9 SEX TRANSM INFECT
JI Sex. Transm. Infect.
PD JUL
PY 2013
VL 89
SU 1
MA P3.276
BP A235
EP A235
DI 10.1136/sextrans-2013-051184.0732
PG 1
WC Infectious Diseases
SC Infectious Diseases
GA V40VR
UT WOS:000209506600124
ER
PT J
AU Williams, R
McKane, A
AF Williams, Robert
McKane, Aimee
TI Global overview-the systems approach to energy efficiency in industry
SO WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT
LA English
DT Article
AB The energy systems that support industrial processes can be found in all types of industry and include compressed air, pumping, and fan systems (collectively known as motor systems), steam systems, and process heating systems. They are integral to the operation of industrial facilities by providing the essential conversion of energy into useful work, energized fluids or heat required for production processes. Improving the efficiency of industrial energy systems does not require major investment in new processes or equipment. Barriers to systems optimization are often behavioral rather than financial, with system inefficiencies frequently attributable to lack of knowledge. Measurement of the efficiency of motor and steam systems is not done and projects capable of improving systems efficiency do not attract the attention of company managers. In developed countries, where energy efficiency is now an important component of climate policy, measures capable of driving systems level improvements, have been introduced, but, to date, their impacts have been limited. The challenge for policy makers worldwide is to bring about a lasting change in industrial management behavior that recognizes the benefits of systems optimization. The International Standards Organization 50001 Energy Management Standard will afford industrial managers with an opportunity to address systems optimization within the organizing framework of an energy management system standard, thus supporting continuous improvement in energy performance. (C) 2013 John Wiley & Sons, Ltd.
C1 [McKane, Aimee] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM williams.robert1020@yahoo.com
NR 15
TC 1
Z9 1
U1 1
U2 6
PU WILEY PERIODICALS, INC
PI SAN FRANCISCO
PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA
SN 2041-8396
EI 2041-840X
J9 WIRES ENERGY ENVIRON
JI Wiley Interdiscip. Rev. Energy Environ.
PD JUL-AUG
PY 2013
VL 2
IS 4
BP 363
EP 373
DI 10.1002/wene.72
PG 11
WC Energy & Fuels
SC Energy & Fuels
GA AQ9WJ
UT WOS:000343208400001
ER
PT J
AU Eisenlohr, P
Diehl, M
Lebensohn, RA
Roters, F
AF Eisenlohr, P.
Diehl, M.
Lebensohn, R. A.
Roters, F.
TI A spectral method solution to crystal elasto-viscoplasticity at finite
strains
SO INTERNATIONAL JOURNAL OF PLASTICITY
LA English
DT Article
DE Microstructures; Crystal plasticity; Numerical algorithms; Finite
elements; High-resolution periodic volume element
ID FAST FOURIER-TRANSFORMS; POLYCRYSTAL PLASTICITY; NONLINEAR COMPOSITES;
NUMERICAL-METHOD; TRANSIENT CREEP; COLUMNAR ICE; DEFORMATION; BEHAVIOR;
STRESS; FIELDS
AB A significant improvement over existing models for the prediction of the macromechanical response of structural materials can be achieved by means of a more refined treatment of the underlying micromechanics. For this, achieving the highest possible spatial resolution is advantageous, in order to capture the intricate details of complex microstructures. Spectral methods, as an efficient alternative to the widely used finite element method (FEM), have been established during the last decade and their applicability to the case of polycrystalline materials has already been demonstrated. However, until now, the existing implementations were limited to infinitesimal strain and phenomenological crystal elasto-viscoplasticity. This work presents the extension of the existing spectral formulation for polycrystals to the case of finite strains, not limited to a particular constitutive law, by considering a general material model implementation. By interfacing the exact same material model to both, the new spectral implementation as well as a FEM-based solver, a direct comparison of both numerical strategies is possible. Carrying out this comparison, and using a phenomenological constitutive law as example, we demonstrate that the spectral method solution converges much faster with mesh/grid resolution, fulfills stress equilibrium and strain compatibility much better, and is able to solve the micromechanical problem for, e.g., a 256(3) grid in comparable times as required by a 64(3) mesh of linear finite elements. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Eisenlohr, P.; Diehl, M.; Roters, F.] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany.
[Lebensohn, R. A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
RP Eisenlohr, P (reprint author), Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany.
EM p.eisenlohr@mpie.de
RI Lebensohn, Ricardo/A-2494-2008; Eisenlohr, Philip/E-6866-2010; Diehl,
Martin/A-2831-2016
OI Lebensohn, Ricardo/0000-0002-3152-9105; Eisenlohr,
Philip/0000-0002-8220-5995; Diehl, Martin/0000-0002-3738-7363
FU Materials innovation institute M2i [M41.2.10410]; Max Planck Society
FX The authors benefitted from many fruitful discussions with Prof. Bob
Svendsen and Dr. Pratheek Shanthraj. The present work was generously
supported by a Humboldt Research Award and the US DOE Office of Advanced
Scientific Computing Research (ASCR) through the Exascale Co-Design
Center for Materials in Extreme Environments (ExMatEx) (RAL) and in part
carried out under project number M41.2.10410 (MD) in the framework of
the Research Program of the Materials innovation institute M2i
(www.m2i.nl). The code development was performed as part of the
"Computational Mechanics of Polycrystals - CMCPi" initiative,
a joint research group between the Max-Planck-Institut fur
Eisenforschung, Dusseldorf, and the Fraunhofer Institut fur
Werkstoffmechanik, Freiburg. The associated financial support from the
Max Planck Society is gratefully acknowledged.
NR 33
TC 65
Z9 65
U1 6
U2 43
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0749-6419
J9 INT J PLASTICITY
JI Int. J. Plast.
PD JUL
PY 2013
VL 46
SI SI
BP 37
EP 53
DI 10.1016/j.ijplas.2012.09.012
PG 17
WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics
SC Engineering; Materials Science; Mechanics
GA 148JI
UT WOS:000319240400003
ER
PT J
AU Kitayama, K
Tome, CN
Rauch, EF
Gracio, JJ
Barlat, F
AF Kitayama, K.
Tome, C. N.
Rauch, E. F.
Gracio, J. J.
Barlat, F.
TI A crystallographic dislocation model for describing hardening of
polycrystals during strain path changes. Application to low carbon
steels
SO INTERNATIONAL JOURNAL OF PLASTICITY
LA English
DT Article
DE Crystallographic dislocation model; Strain hardening; Strain path
change; Low carbon steels
ID WORK-HARDENING/SOFTENING BEHAVIOR; SIMPLE SHEAR; MECHANICAL-BEHAVIOR;
BCC POLYCRYSTALS; SINGLE-CRYSTALS; FCC CRYSTALS; IF STEEL; PLASTICITY;
DEFORMATION; ALUMINUM
AB Polycrystal aggregates subjected to plastic forming exhibit large changes in the yield stress and extended transients in the flow stress following strain path changes. Since these effects are related to the rearrangement of the dislocation structure induced during previous loading, here we propose a crystallographically-based dislocation hardening model for capturing such behavior. The model is implemented in the polycrystal code VPSC and is applied to simulate strain path changes in low carbon steel. The path changes consist of tension followed by shear at different angles with respect to the preload direction, and forward simple shear followed by reverse shear. The results are compared to experimental data and highlight the role that directional dislocation structures induced during preload play during the reload stage. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Kitayama, K.; Gracio, J. J.; Barlat, F.] Univ Aveiro, Dept Mech Engn, Ctr Mech Technol & Automat, P-3810193 Aveiro, Portugal.
[Tome, C. N.] Los Alamos Natl Lab, MST Div, Los Alamos, NM 87545 USA.
[Rauch, E. F.] INPG UJF, Sci & Ingn Mat & Proc CNRS UMR 5266, F-38402 St Martin Dheres, France.
[Barlat, F.] Pohang Univ Sci & Technol, Grad Inst Ferrous Technol, Mat Mech Lab, Pohang 790784, South Korea.
RP Gracio, JJ (reprint author), Univ Aveiro, Dept Mech Engn, Ctr Mech Technol & Automat, P-3810193 Aveiro, Portugal.
EM jgracio@ua.pt
RI RAUCH, Edgar/C-9852-2011; Research Unit, TEMA/H-9264-2012; Group,
GAME/B-3464-2014; Tome, Carlos/D-5058-2013;
OI Barlat, Frederic/0000-0002-4463-3454; Gracio, Jose/0000-0002-0343-4387
FU US Department of Energy, Office of Basic Energy Science, Division of
Materials Science and Engineering [FWP 06SCPE401DOE-BES]; Portuguese
Foundation of Science and Technology (FCT) [PEst-C/EME/UI0481/2011,
PTDC/EME-PME/116683/2010]
FX CT acknowledges support from US Department of Energy, Office of Basic
Energy Science, Division of Materials Science and Engineering, Project
FWP 06SCPE401DOE-BES. JG, FB and KK, acknowledge support from Portuguese
Foundation of Science and Technology (FCT) projects
PEst-C/EME/UI0481/2011 and PTDC/EME-PME/116683/2010.
NR 41
TC 31
Z9 31
U1 2
U2 33
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0749-6419
J9 INT J PLASTICITY
JI Int. J. Plast.
PD JUL
PY 2013
VL 46
SI SI
BP 54
EP 69
DI 10.1016/j.ijplas.2012.09.004
PG 16
WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics
SC Engineering; Materials Science; Mechanics
GA 148JI
UT WOS:000319240400004
ER
PT J
AU Heo, Y
Augenbroe, G
Choudhary, R
AF Heo, Yeonsook
Augenbroe, Godfried
Choudhary, Ruchi
TI Quantitative risk management for energy retrofit projects
SO JOURNAL OF BUILDING PERFORMANCE SIMULATION
LA English
DT Article
DE risk analysis; energy efficiency projects; building energy models;
Bayesian calibration; energy service companies
AB This article presents a risk analysis method based on Bayesian calibration of building energy models. The Bayesian approach enables probabilistic outputs from the energy model, which are used to quantify risks associated with investing in energy conservation measures in existing buildings. This article demonstrates the applicability of the proposed methodology to support energy saving contracts in the context of the energy service company industry. A case study illustrates the importance of quantifying relative risks by comparing the probabilistic outputs derived from the Bayesian approach with standard practices endorsed by International Performance Measurement and Verification Protocol and ASHRAE guideline 14.
C1 [Heo, Yeonsook] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA.
[Augenbroe, Godfried] Georgia Inst Technol, Coll Architecture, Atlanta, GA 30332 USA.
[Choudhary, Ruchi] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England.
RP Heo, Y (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM yheo@anl.gov
FU Energy Efficient Cities Initiative (EECi) at the University of
Cambridge; NSF-EFRI SEED
FX This study was partly funded by grants from the Energy Efficient Cities
Initiative (EECi) at the University of Cambridge and the NSF-EFRI SEED
grant 'Risk-conscious Design and Retrofit of Buildings for Low Energy'
awarded to the Georgia Institute of Technology.
NR 30
TC 3
Z9 3
U1 1
U2 24
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1940-1493
J9 J BUILD PERFORM SIMU
JI J. Build. Perf. Simul.
PD JUL 1
PY 2013
VL 6
IS 4
SI SI
BP 257
EP 268
DI 10.1080/19401493.2012.706388
PG 12
WC Construction & Building Technology
SC Construction & Building Technology
GA 150FT
UT WOS:000319376300001
ER
PT J
AU Kuprat, AP
Kabilan, S
Carson, JP
Corley, RA
Einstein, DR
AF Kuprat, A. P.
Kabilan, S.
Carson, J. P.
Corley, R. A.
Einstein, D. R.
TI A bidirectional coupling procedure applied to multiscale respiratory
modeling
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Computational fluid dynamics; Multiscale coupling; Pulmonary airflows;
Krylov subspace; Modified Newton-Raphson
ID EXPIRATORY FLOW LIMITATION; PRESSURE-VOLUME CURVES; MECHANICAL
VENTILATION; BRONCHIAL TREE; DYNAMIC-MODEL; HUMAN-LUNG; AIR-FLOW;
SIMULATIONS; POPULATIONS; AIRWAYS
AB In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton's method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow.
The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets of ODEs. In both the simplified geometry and in the imaging-based geometry, the performance of the method was comparable to that of monolithic schemes, in most cases requiring only a single CFD evaluation per time step. Thus, this new accelerator allows us to begin combining pulmonary CFD models with lower-dimensional models of pulmonary mechanics with little computational overhead. Moreover, because the CFD and lower-dimensional models are totally separate, this framework affords great flexibility in terms of the type and breadth of the adopted lower-dimensional model, allowing the biomedical researcher to appropriately focus on model design. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Kuprat, A. P.; Kabilan, S.; Carson, J. P.; Corley, R. A.; Einstein, D. R.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
RP Kuprat, AP (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
EM andrew.kuprat@pnnl.gov; senthil.kabilan@pnnl.gov; james.carson@pnnl.gov;
rick.corley@pnnl.gov; daniel.einstein@pnnl.gov
OI Kuprat, Andrew/0000-0003-4159-918X
FU National Heart and Blood Institute Award [1R01HL073598]; National
Institutes of Health (NIH) Bioengineering Research Partnership Grant
[R01-HL073598]
FX Research funded by the National Heart and Blood Institute Award
1R01HL073598.; We would like to thank Neil Carlson for access to the
original NACCEL FORTRAN subroutine. We would like to thank Professor C.
Keith Miller for the idea of applying a partial NACCEL correction at the
end of a timestep. We also gratefully acknowledge Drs. Robb Glenny and
Sudhaker Pipavath, UW for the human CT images. This work was financially
supported by National Institutes of Health (NIH) Bioengineering Research
Partnership Grant R01-HL073598 (Richard A. Corley, PI).
NR 44
TC 7
Z9 7
U1 0
U2 25
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD JUL 1
PY 2013
VL 244
BP 148
EP 167
DI 10.1016/j.jcp.2012.10.021
PG 20
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 151JO
UT WOS:000319456900010
ER
PT J
AU Pathak, S
Doherty, RD
Rollett, AD
Michler, J
Wasmer, K
AF Pathak, Siddhartha
Doherty, Roger D.
Rollett, Anthony D.
Michler, Johann
Wasmer, Kilian
TI Caught in the act: Grain-switching and quadrijunction formation in
annealed aluminum
SO SCRIPTA MATERIALIA
LA English
DT Article
DE Grain-switching; Quadrijunction; Metallurgy; Grain growth
ID GROWTH; STABILITY
AB Contrary to current understanding, an apparently stable single-phase quadrijunction, and one lacking any low-energy grain boundary member, has been experimentally observed during grain switching in large (similar to mm) grained pure annealed aluminum. Electropolishing below the quadrijunction revealed a 3-D microstructure characterized by a rapidly shrinking grain with a faceted boundary indicating a significant anisotropy of energy and/or mobility. This unusual occurrence is described in detail in the expectation that a reasonable model for this observation might be found. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
C1 [Pathak, Siddhartha; Michler, Johann; Wasmer, Kilian] Swiss Fed Lab Mat Sci & Technol, EMPA, CH-3602 Thun, Switzerland.
[Doherty, Roger D.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
[Rollett, Anthony D.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA.
RP Pathak, S (reprint author), Los Alamos Natl Lab, MPA CINT Ctr Integrated Nanotechnol, POB 1663,MS K771, Los Alamos, NM 87545 USA.
EM pathak@lanl.gov
RI Michler, Johann/B-4672-2010; Rollett, Anthony/A-4096-2012; Wasmer,
Kilian/B-7662-2009
OI Michler, Johann/0000-0001-8860-4068; Rollett,
Anthony/0000-0003-4445-2191; Wasmer, Kilian/0000-0002-3294-3244
FU LANL
FX The authors thank Shraddha Vachhani (Drexel University) and Peter
Ramseier (Empa) for help with sample preparation, and funding from the
Director's Postdoctoral Fellowship program at LANL during the writing of
this manuscript.
NR 11
TC 0
Z9 0
U1 0
U2 15
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6462
J9 SCRIPTA MATER
JI Scr. Mater.
PD JUL
PY 2013
VL 69
IS 1
BP 37
EP 40
DI 10.1016/j.scriptamat.2013.03.014
PG 4
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 152QB
UT WOS:000319545100010
ER
PT J
AU Yu, Q
Sun, J
Morris, JW
Minor, AM
AF Yu, Qian
Sun, Jun
Morris, John W., Jr.
Minor, Andrew M.
TI Source mechanism of non-basal < c plus a > slip in Ti alloy
SO SCRIPTA MATERIALIA
LA English
DT Article
DE Dislocation dynamics; Titanium alloys; Compression test; Transmission
electron microscopy (TEM); In situ TEM observation
ID SINGLE-CRYSTALS; DEFORMATION-BEHAVIOR; DISLOCATION SOURCE; HCP METALS;
TITANIUM; POLYCRYSTALS; SYSTEMS
AB The operation of < c + a > slip is explored using in situ mechanical testing in a transmission electron microscope by compressing a single-crystal Ti alloy oriented along the [0001] direction. In this direction < c + a > slip is the preferred slip mode. We observed the operation of a < c + a > dislocation source while simultaneously measuring the mechanical response. Our results show that < c + a > dislocations could operate as single-arm sources. A model for the source mechanism of < c + a > slip is proposed based on the experimental observations. (c) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Yu, Qian; Morris, John W., Jr.; Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Yu, Qian; Minor, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
[Sun, Jun] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.
RP Yu, Q (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM qyu@lbl.gov
RI Foundry, Molecular/G-9968-2014
FU US Office of Naval Research [N00014-12-1-0413]; National Center for
Electron Microscopy at Lawrence Berkeley National Laboratory; U.S.
Department of Energy [DE-AC02-05CH11231]; NSFC [50831004]; 973 program
of China [2010CB631003]
FX We gratefully acknowledge funding from the US Office of Naval Research
under Grant No. N00014-12-1-0413. The authors also acknowledge support
of the National Center for Electron Microscopy at Lawrence Berkeley
National Laboratory, which is supported by the U.S. Department of Energy
under Contract # DE-AC02-05CH11231. J.S. gratefully acknowledges
financial support of the Grants from NSFC (50831004), the 973 program of
China (2010CB631003). The authors thank F. Allen for helpful suggestions
on the manuscript.
NR 19
TC 6
Z9 6
U1 2
U2 64
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6462
J9 SCRIPTA MATER
JI Scr. Mater.
PD JUL
PY 2013
VL 69
IS 1
BP 57
EP 60
DI 10.1016/j.scriptamat.2013.03.009
PG 4
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 152QB
UT WOS:000319545100015
ER
PT J
AU Olsen, RJ
Beckner, M
Stone, MB
Pfeifer, P
Wexler, C
Taub, H
AF Olsen, Raina J.
Beckner, Matthew
Stone, Matthew B.
Pfeifer, Peter
Wexler, Carlos
Taub, Haskell
TI Quantum excitation spectrum of hydrogen adsorbed in nanoporous carbons
observed by inelastic neutron scattering
SO CARBON
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; METAL-ORGANIC FRAMEWORKS; MOLECULAR-HYDROGEN;
TRANSLATIONAL DYNAMICS; ACTIVATED CARBON; NANOTUBE BUNDLES; H-2;
ADSORPTION; SPECTROSCOPY; DEPENDENCE
AB Inelastic neutron scattering spectra have been collected over a wide range of momentum transfer from H-2 adsorbed in several high-porosity carbon substrates. We show theoretical spectra which consider the relationship between rotational and translational transitions in the highly anisotropic adsorption environment, proving that different rotational excitations contain different amount of recoil broadening and motivating a new analysis method which considers both types of transitions at once. Spectra for most of the samples, including two activated carbons, are very similar to one another, supporting models of nanoporous carbons which are quite similar on the sub-nanometer scale. The exception is the low-energy side of the rotational peak, indicating important differences in the initial distribution of motion. We also find more subtle differences in the spectra which may be linked to differences in sample heterogeneity and surface rugosity. One sample does have a very different spectrum, which is not explained by standard models of this system. We also observe a significantly reduced effective mass in the spectrum of recoil transitions and evidence of coupling of rotational and translational motion resulting from periodic variations in orientation of the rotational states. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Olsen, Raina J.; Beckner, Matthew; Pfeifer, Peter; Wexler, Carlos; Taub, Haskell] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
[Olsen, Raina J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Stone, Matthew B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
RP Olsen, RJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM olsenrj@ornl.gov
RI Stone, Matthew/G-3275-2011; BL18, ARCS/A-3000-2012;
OI Stone, Matthew/0000-0001-7884-9715; Beckner, Matthew/0000-0003-2066-0324
FU Department of Energy Office of Basic Energy Science (DOE-BES)
[DE-FG02-07ER46411]; Scientific User Facilities Division, Office of
Basic Energy Sciences, U.S. Department of Energy; National Science
Foundation (NSF) [DMR-0705974, DGE-1069091]; DOE Office of Energy
Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards
under the EERE Fuel Cell Technologies Program; DOE [DEAC05-06OR23100]
FX We would like to thank Enrique Robles for capable experimental
assistance. This research was supported by the Department of Energy
Office of Basic Energy Science (DOE-BES) under contract
DE-FG02-07ER46411. Research at Oak Ridge National Laboratory's
Spallation Neutron Source was sponsored by the Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy. H.T. was supported by the National Science Foundation (NSF)
under contract number DMR-0705974 and DGE-1069091. R.J.O. was also
supported in part by the DOE Office of Energy Efficiency and Renewable
Energy (EERE) Postdoctoral Research Awards under the EERE Fuel Cell
Technologies Program, administered by the Oak Ridge Institute for
Science and Education (ORISE) for the DOE. ORISE is managed by Oak Ridge
Associated Universities (ORAU) under DOE contract number
DEAC05-06OR23100. All opinions expressed in this paper are the authors'
and do not necessarily reflect the policies and views of DOE, ORAU, or
ORISE.
NR 37
TC 3
Z9 3
U1 0
U2 29
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0008-6223
EI 1873-3891
J9 CARBON
JI Carbon
PD JUL
PY 2013
VL 58
BP 46
EP 58
DI 10.1016/j.carbon.2013.02.026
PG 13
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 142ZB
UT WOS:000318835000003
ER
PT J
AU Nemeth, N
Walker, A
Baker, E
Murthy, P
Bratton, R
AF Nemeth, Noel
Walker, Andrew
Baker, Eric
Murthy, Pappu
Bratton, Robert
TI Large-scale Weibull analysis of H-451 nuclear-grade graphite rupture
strength
SO CARBON
LA English
DT Article
ID POLYGRANULAR GRAPHITES; FRACTURE STATISTICS; CERAMICS
AB A Weibull analysis was performed of the strength distribution and size effects for 2000 specimens of H-451 nuclear-grade graphite. The data, generated elsewhere, measured the tensile and four-point-flexure room-temperature rupture strength of specimens cut from a single extruded graphite log. Strength variation versus specimen location, size, and orientation relative to the parent body were compared. In our study, data were progressively and extensively pooled into larger data sets to discriminate overall trends from local variations and investigate the strength distribution. Issues regarding size effect, Weibull parameter consistency, and nonlinear stress-strain response were investigated using the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life) and WeibPar codes. Overall, the Weibull distribution described the behavior of the pooled data very well. The Weibull modulus was shown to be clearly consistent between different tensile specimen sizes and orientations. However, the issue regarding the smaller-than-expected size effect remained. This exercise illustrated that a conservative approach using a two-parameter Weibull distribution is best for designing graphite components with low probability of failure for the in-core structures in the proposed Generation IV high-temperature gas-cooled nuclear reactors. This exercise also demonstrated the continuing need to better understand the mechanisms driving stochastic strength response. Published by Elsevier Ltd.
C1 [Nemeth, Noel; Murthy, Pappu] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
[Walker, Andrew] Wright State Univ, Dayton, OH 45435 USA.
[Baker, Eric] Connecticut Reserve Technol, Gates Mills, OH 44040 USA.
[Bratton, Robert] US DOE, Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Nemeth, N (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
EM noel.n.nemeth@nasa.gov
NR 33
TC 7
Z9 7
U1 1
U2 17
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0008-6223
J9 CARBON
JI Carbon
PD JUL
PY 2013
VL 58
BP 208
EP 225
DI 10.1016/j.carbon.2013.02.054
PG 18
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 142ZB
UT WOS:000318835000021
ER
PT J
AU Constantinescu, EM
Sandu, A
AF Constantinescu, Emil M.
Sandu, Adrian
TI Extrapolated Multirate Methods for Differential Equations with Multiple
Time Scales
SO JOURNAL OF SCIENTIFIC COMPUTING
LA English
DT Article
DE Multirate time integration; Extrapolation methods; Multiscale; Linear
stability
ID HIGH-RESOLUTION SCHEMES; CONSERVATION-LAWS; VARYING TIME; ONE-STEP;
STABILITY; SYSTEMS
AB In this paper we construct extrapolated multirate discretization methods that allows one to efficiently solve problems that have components with different dynamics. This approach is suited for the time integration of multiscale ordinary and partial differential equations and provides highly accurate discretizations. We analyze the linear stability properties of the multirate explicit and linearly implicit extrapolated methods. Numerical results with multiscale ODEs illustrate the theoretical findings.
C1 [Constantinescu, Emil M.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA.
[Sandu, Adrian] Virginia Polytech Inst & State Univ, Dept Comp Sci, Blacksburg, VA 24061 USA.
RP Constantinescu, EM (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM emconsta@mcs.anl.gov; asandu@cs.vt.edu
FU Office of Advanced Scientific Computing Research, Office of Science,
U.S. Department of Energy [DE-AC02-06CH11357]; National Science
Foundation [NSF CCF-0515170]; NSF [NSF CCF-0515170, NSF OCI-0904397, NSF
CCF-0916493, NSF DMS-0915047]
FX Emil Constantinescu was supported in part by the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Department of
Energy, under Contract DE-AC02-06CH11357, and by the National Science
Foundation through award NSF CCF-0515170. The work of Adrian Sandu was
supported in part by NSF through the awards NSF CCF-0515170, NSF
OCI-0904397, NSF CCF-0916493, and NSF DMS-0915047.
NR 33
TC 7
Z9 7
U1 1
U2 2
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0885-7474
EI 1573-7691
J9 J SCI COMPUT
JI J. Sci. Comput.
PD JUL
PY 2013
VL 56
IS 1
BP 28
EP 44
DI 10.1007/s10915-012-9662-z
PG 17
WC Mathematics, Applied
SC Mathematics
GA 142GH
UT WOS:000318784600003
ER
PT J
AU Park, SH
Yoon, SH
Lee, CS
AF Park, Su Han
Yoon, Seung Hyun
Lee, Chang Sik
TI HC and CO emissions reduction by early injection strategy in a
bioethanol blended diesel-fueled engine with a narrow angle injection
system
SO APPLIED ENERGY
LA English
DT Article
DE Narrow angle injector; Diesel-bioethanol blended fuels; Hydrocarbon;
Carbon monoxide; Early injection combustion strategy
ID COMPRESSION IGNITION ENGINE; EXHAUST EMISSIONS; COMBUSTION
CHARACTERISTICS; BIODIESEL; PERFORMANCE; ATOMIZATION
AB The main purpose of this study was to investigate how a narrow angle injector affects the combustion and exhaust emissions characteristics in a single-cylinder diesel engine fueled by diesel-bioethanol blends. This study focused on reducing HC and CO emissions in the exhaust emissions by the bioethanol blending of diesel. A narrow angle injector with an injection angle of 70 degrees was used and compared with a conventional angle injector having a 156 degrees injection angle. The bioethanol was blended with the conventional diesel up to 30% with 5% biodiesel. Experiments revealed that, in a narrow angle injector, the premixed combustion duration increased with bioethanol contents unlike the similar value of conventional injector. The premixed combustion phasing decreased with the increase of bioethanol in both injectors. The variation in the peak combustion pressure of the narrow angle injector was smaller than that of a conventional injector. In addition, the narrow angle injector induced a higher indicated mean effective pressure (IMEP) and a shorter ignition delay compared to the conventional injector. In terms of exhaust emissions characteristics, the low and stable ISHC and ISCO emissions can be achieved through the application of narrow angle injector to the diesel-bioethanol blends combustion. By the early injection combustion strategy, ISHC and ISCO emissions are significantly reduced. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Park, Su Han] Argonne Natl Lab, Adv Photon Sources, Xray Sci Div, Time Resolved Res Grp, Lemont, IL 60439 USA.
[Yoon, Seung Hyun] Yeungnam Coll Sci & Technol, Div Automot Engn, Taegu 705703, South Korea.
[Lee, Chang Sik] Hanyang Univ, Sch Mech Engn, Seoul 133791, South Korea.
RP Lee, CS (reprint author), Hanyang Univ, Sch Mech Engn, 17 Haengdang Dong, Seoul 133791, South Korea.
EM cslee@hanyang.ac.kr
FU Second Brain Korea 21 Project; National Research Foundation of Korea
(NRF); Korea government (MEST) [2012007015]
FX This work was supported by the Second Brain Korea 21 Project and was
supported by the National Research Foundation of Korea (NRF) Grant
funded by the Korea government (MEST) (No. 2012007015).
NR 36
TC 10
Z9 10
U1 2
U2 23
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-2619
J9 APPL ENERG
JI Appl. Energy
PD JUL
PY 2013
VL 107
BP 81
EP 88
DI 10.1016/j.apenergy.2013.02.015
PG 8
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 137SC
UT WOS:000318456700007
ER
PT J
AU Siriwardane, RV
Ksepko, E
Tian, HJ
Poston, J
Simonyi, T
Sciazko, M
AF Siriwardane, Ranjani V.
Ksepko, Ewelina
Tian, Hanjing
Poston, James
Simonyi, Thomas
Sciazko, Marek
TI Interaction of iron-copper mixed metal oxide oxygen carriers with
simulated synthesis gas derived from steam gasification of coal
SO APPLIED ENERGY
LA English
DT Article
DE Bimetallic oxygen carriers for chemical looping combustion; CLC with
coal derived synthesis gas; CLC and steam gasification of coal
ID CHEMICAL-LOOPING COMBUSTION; SOLID FUELS; CUFE2O4; HYDROGEN; NIO;
REDUCTION; BENTONITE; KINETICS; H2S
AB The objective of this work was to prepare supported bimetallic Fe-Cu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with Fe-Cu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most Fe-Cu/support oxygen carriers. Bimetallic Fe-Cu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 degrees C to 900 degrees C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported Fe-Cu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800-900 degrees C and might be successfully used up to 900 degrees C for coal CLC reaction in the presence of steam. Published by Elsevier Ltd.
C1 [Siriwardane, Ranjani V.; Tian, Hanjing; Poston, James; Simonyi, Thomas] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA.
[Ksepko, Ewelina; Sciazko, Marek] Inst Chem Proc Coal, PL-41803 Zabrze, Poland.
[Tian, Hanjing; Simonyi, Thomas] URS, Morgantown, WV 26505 USA.
RP Siriwardane, RV (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 10940, Morgantown, WV 26507 USA.
EM ranjani.siriwardane@netl.doe.gov
RI Ksepko, Ewelina/D-7806-2016
FU Polish Ministry of Higher Education and Science [685/N-USA/2010/0]
FX This study was financed by the Polish Ministry of Higher Education and
Science, Project No. 685/N-USA/2010/0. The research work was conducted
at the U.S. Department of Energy, National Energy Technology Laboratory.
NR 34
TC 28
Z9 29
U1 3
U2 62
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-2619
J9 APPL ENERG
JI Appl. Energy
PD JUL
PY 2013
VL 107
BP 111
EP 123
DI 10.1016/j.apenergy.2013.01.063
PG 13
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 137SC
UT WOS:000318456700010
ER
PT J
AU Nagase, T
Anada, S
Rack, PD
Noh, JH
Yasuda, H
Mori, H
Egami, T
AF Nagase, Takeshi
Anada, Satoshi
Rack, Philip D.
Noh, Joo Hyon
Yasuda, Hidehiro
Mori, Hirotaro
Egami, Takeshi
TI MeV electron-irradiation-induced structural change in the bcc phase of
Zr-Hf-Nb alloy with an approximately equiatomic ratio
SO INTERMETALLICS
LA English
DT Article
DE Irradiation effects; Phase transformation; Vapor deposition; Defects:
point defects
ID METALLIC GLASSES; FLUCTUATION MICROSCOPY; ELEMENTS; PROBE
AB The microstructure and phase stability of a Zr-Hf-Nb alloy with an approximately equiatomic ratio of Zr, Hf, and Nb was investigated. A body-centered cubic (bcc) solid solution was formed in specimens produced by sputtering. MeV electron-irradiation-induced structural changes were investigated in the bcc phase of the Zr-Hf-Nb alloy using high-voltage electron microscopy (HVEM). The polycrystalline phase with a bcc structure showed high phase stability against irradiation damage, and no structural changes due to irradiation damage were observed at 298 K. (c) 2013 Elsevier Ltd. All rights reserved.
C1 [Nagase, Takeshi; Yasuda, Hidehiro; Mori, Hirotaro] Osaka Univ, Res Ctr Ultra High Voltage Electron Microscopy, Ibaraki, Osaka 5670047, Japan.
[Nagase, Takeshi; Anada, Satoshi] Osaka Univ, Grad Sch Engn, Div Mat & Mfg Sci, Suita, Osaka 5650871, Japan.
[Rack, Philip D.; Noh, Joo Hyon; Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Egami, Takeshi] Univ Tennessee, Joint Inst Neutron Sci, Knoxville, TN 37996 USA.
[Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Egami, Takeshi] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Nagase, T (reprint author), Osaka Univ, Res Ctr Ultra High Voltage Electron Microscopy, 7-1 Mihogaoka, Ibaraki, Osaka 5670047, Japan.
EM t-nagase@uhvem.osaka-u.ac.jp
RI Nagase, Takeshi/M-1189-2015;
OI Nagase, Takeshi/0000-0003-4868-0773; Rack, Philip/0000-0002-9964-3254
FU Center of Excellence for Advanced Structural and Functional Materials
Design of the MEXT, Japan; Joint Institute for Advanced Materials at the
University of Tennessee; Oak Ridge National Laboratory; Department of
Energy, Office of Basic Sciences, through the EPSCoR grant
[DE-FG02-08ER46528]
FX This study was supported by the Priority Assistance for the Formation of
Worldwide Renowned Centers of Research-The Global COE Program (Project:
Center of Excellence for Advanced Structural and Functional Materials
Design) of the Ministry of Education, Culture, Sports, Science and
Technology (MEXT), Japan. PDR and JHN acknowledge the support from the
Joint Institute for Advanced Materials at the University of Tennessee
and the Oak Ridge National Laboratory. TE acknowledges the support from
the Department of Energy, Office of Basic Sciences, through the EPSCoR
grant, DE-FG02-08ER46528.
NR 22
TC 12
Z9 12
U1 3
U2 33
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0966-9795
J9 INTERMETALLICS
JI Intermetallics
PD JUL
PY 2013
VL 38
BP 70
EP 79
DI 10.1016/j.intermet.2013.02.009
PG 10
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA 137WD
UT WOS:000318468000013
ER
PT J
AU Aryal, S
Gao, MC
Ouyang, L
Rulis, P
Ching, WY
AF Aryal, S.
Gao, M. C.
Ouyang, L.
Rulis, P.
Ching, W. Y.
TI Ab initio studies of Mo-based alloys: Mechanical, elastic, and
vibrational properties
SO INTERMETALLICS
LA English
DT Article
DE Molybdenum silicides; Elastic properties; Mechanical properties, theory;
Ab initio calculations
ID SI-B ALLOYS; GENERALIZED GRADIENT APPROXIMATION; TOTAL-ENERGY
CALCULATIONS; AUGMENTED-WAVE METHOD; SINGLE-CRYSTALS; ULTRASOFT
PSEUDOPOTENTIALS; INTERMETALLIC ALLOYS; TEMPERATURE FRACTURE;
ELECTRONIC-STRUCTURE; FATIGUE PROPERTIES
AB Mo-based alloys hold great potential as structural materials for applications at ultra-high temperatures. In order to reliably predict mechanical and thermodynamic properties of Mo-based alloys, the Mo-Si-B model system is studied using first-principles density functional theory methods. Specifically, five intermetallic compounds MoSi2, Mo5Si3, Mo3Si, Mo5SiB2 and MO2B are chosen, and their equilibrium lattice parameters, elastic properties, phonon spectra, and thermodynamic properties are calculated and compared, most of them for the first time. It is shown that for the calculated properties where the measured data are available, the predicted results are in very good agreement with available experiments, thus validate our computational methodologies. Our comprehensive and systematic calculations reveal many interesting and previously unknown features in the mechanical and vibrational properties of these alloys in relation to their structure and composition. It is shown that boron in the Mo-Si-B system enhances elastic and bulk properties without compromising ductility. MoSi2, which has the largest Si concentration, also has the largest elastic anisotropy compared with the other four crystals. (c) 2013 Elsevier Ltd. All rights reserved.
C1 [Aryal, S.; Rulis, P.; Ching, W. Y.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA.
[Gao, M. C.] Natl Energy Technol Lab, Albany, OR 97321 USA.
[Gao, M. C.] URS Corp, Albany, OR 97321 USA.
[Ouyang, L.] Tennessee State Univ, Dept Math & Phys, Nashville, TN 37209 USA.
RP Ching, WY (reprint author), Univ Missouri, Dept Phys & Astron, 5100 Rockhill Rd, Kansas City, MO 64110 USA.
EM chingw@umkc.edu
FU U.S. Department of Energy [DE-FE0004007]; Office of Science of DOE
[DE-AC03-76SF00098]; Innovative Processing and Technologies Program of
the National Energy Technology Laboratory's (NETL) Strategic Center for
Coal under the RES contract [DE-FE-0004000]
FX This work is supported by the U.S. Department of Energy under the Grant
No. DE-FE0004007. This research used the resources of NERSC supported by
the Office of Science of DOE under the contract No. DE-AC03-76SF00098.
MCG acknowledge support from the Innovative Processing and Technologies
Program of the National Energy Technology Laboratory's (NETL) Strategic
Center for Coal under the RES contract DE-FE-0004000. We thank Dr. R.
Sakidja for insightful discussion.
NR 52
TC 11
Z9 11
U1 1
U2 49
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0966-9795
J9 INTERMETALLICS
JI Intermetallics
PD JUL
PY 2013
VL 38
BP 116
EP 125
DI 10.1016/j.intermet.2013.03.002
PG 10
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA 137WD
UT WOS:000318468000019
ER
PT J
AU Dooley, JJ
AF Dooley, James J.
TI A note on good research practice
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Editorial Material
C1 Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
RP Dooley, JJ (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA.
EM jj.dooley@pnnl.gov
OI Dooley, James/0000-0002-2824-4344
NR 6
TC 10
Z9 10
U1 0
U2 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD JUL
PY 2013
VL 15
BP 1
EP 2
DI 10.1016/j.ijggc.2013.02.003
PG 2
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA 136VO
UT WOS:000318391700001
ER
PT J
AU Liu, HH
Zhang, GX
Yi, ZL
Wang, YX
AF Liu, Hui-Hai
Zhang, Guoxiang
Yi, ZhenLian
Wang, Yingxue
TI A permeability-change relationship in the dryout zone for CO2 injection
into saline aquifers
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE CO2 geological sequestration; Multiphase flow; Injectivity; Permeability
ID FRACTAL FLOW PATTERNS; HYDRAULIC CONDUCTIVITY; SALT-PRECIPITATION;
UNSATURATED SOILS; MODEL
AB Injectivity is critical for injection of CO2 into saline aquifers. Previous model studies indicate that injectivity can be impaired by salt precipitation near the injection well. These results are largely determined by the relationships between permeability and salt precipitation. In this study, we develop a new relationship for permeability change owing to salt precipitation near a CO2 injection well. This relationship differs from previous relationships in that it considers the fact that the salt precipitation occurs only in pore space occupied by brine during the precipitation process, and in that it is based on well-established relative-permeability relationships for two-phase flow in porous media. Using this relationship, we can link permeability change to the effects of saturation in a CO2-brine system and the pore-size distribution of porous media. Its usefulness is demonstrated by the good agreement between predicted results and observations from a laboratory experiment. The developed methodology, in principle, can also be applied to other two-phase flow systems involving chemical-reaction-induced permeability changes. (c) 2013 Elsevier Ltd. All rights reserved.
C1 [Liu, Hui-Hai; Yi, ZhenLian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Zhang, Guoxiang; Wang, Yingxue] Shell Int E&P Inc, Houston, TX USA.
RP Liu, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM hhliu@lbl.gov
FU DOE [DE-AC02-05CH11231]
FX The initial version of the paper was carefully reviewed by Drs. Tianfu
Xu and Dan Hawkes. We also appreciated constructive comments from two
anonymous reviewers for JGGC. The work was performed under DOE contract
DE-AC02-05CH11231.
NR 23
TC 11
Z9 13
U1 2
U2 26
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
EI 1878-0148
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD JUL
PY 2013
VL 15
BP 42
EP 47
DI 10.1016/j.ijggc.2013.01.034
PG 6
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA 136VO
UT WOS:000318391700005
ER
PT J
AU Miller, QRS
Thompson, CJ
Loring, JS
Windisch, CF
Bowden, ME
Hoyt, DW
Hu, JZ
Arey, BW
Rosso, KM
Schaef, HT
AF Miller, Q. R. S.
Thompson, C. J.
Loring, J. S.
Windisch, C. F.
Bowden, M. E.
Hoyt, D. W.
Hu, J. Z.
Arey, B. W.
Rosso, K. M.
Schaef, H. T.
TI Insights into silicate carbonation processes in water-bearing
supercritical CO2 fluids
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE Supercritical CO2; Silicate carbonation; Carbon sequestration; Calcite
ID AMORPHOUS CALCIUM-CARBONATE; MAS NMR-SPECTROSCOPY; X-RAY-DIFFRACTION;
WOLLASTONITE CARBONATION; MINERAL CARBONATION; VIBRATIONAL SPECTROSCOPY;
GEOLOGICAL SEQUESTRATION; RAMAN-SPECTROSCOPY; DIOXIDE; MONTMORILLONITE
AB Subsurface injection of CO2 is commonplace in certain industries, yet deployment at the scale required for emission reduction is unprecedented and therefore requires a high degree of predictability. Accurate modeling of subsurface geochemical processes related to geologic carbon sequestration requires experimentally derived data for mineral reactions. Most work in this area has focused on aqueous-dominated systems in which dissolved CO2 reacts to form crystalline carbonate minerals. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet supercritical fluid phase. We studied the carbonation of wollastonite [CaSiO3] exposed to variably hydrated supercritical CO2 (scCO(2)) at 50, 55 and 70 degrees C and 90, 120 and 160 bar. Reactions were followed by three novel in situ high pressure techniques, which demonstrated increased dissolved water concentrations in the scCO(2) resulted in increased wollastonite carbonation approaching similar to 50 wt.%. Overall, the X-ray diffraction and infrared and magic angle nuclear magnetic resonance spectroscopies experiments conducted in this study allow detailed examination of mechanisms impacting carbonation rates. These include the development of amorphous passivating layers, thin liquid water films, and amorphous hydrated carbonate phases. Collectively, these results emphasize the importance of understanding geochemical processes occurring in wet scCO(2) fluids. (c) 2013 Published by Elsevier B.V.
C1 [Miller, Q. R. S.] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA.
[Thompson, C. J.; Loring, J. S.; Bowden, M. E.; Hoyt, D. W.; Hu, J. Z.; Arey, B. W.; Rosso, K. M.; Schaef, H. T.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Windisch, C. F.] Cent Missouri State Univ, Dept Chem & Phys, Warrensburg, MO 64093 USA.
RP Schaef, HT (reprint author), Pacific NW Natl Lab, POB 999,MS K8-98, Richland, WA 99352 USA.
EM todd.schaef@pnnl.gov
RI Hoyt, David/H-6295-2013; Hu, Jian Zhi/F-7126-2012
FU Carbon Sequestration Initiative, a Laboratory Directed Research and
Development program at Pacific Northwest National Laboratory (PNNL);
U.S. Department of Energy Office of Fossil Energy; DOE by Battelle
Memorial Institute [DE-AC06-76RLO-1830]
FX The authors would like to thank Natalio Saenz and James Colman who
helped prepare and analyze the polished cross sections. We would also
like to thank Professor Richard Riman from Rutgers, The State University
of New Jersey, for supplying the wollastonite. Furthermore, we would
like to acknowledge two anonymous reviewers for their thorough and
thoughtful comments that helped improve the manuscript. This work was
supported by the Carbon Sequestration Initiative, a Laboratory Directed
Research and Development program at Pacific Northwest National
Laboratory (PNNL) and the U.S. Department of Energy Office of Fossil
Energy. Part of this work was performed at EMSL, a national scientific
user facility at PNNL that is managed by the DOE's office of Biological
and Environmental Research. PNNL is operated for DOE by Battelle
Memorial Institute under Contract No. DE-AC06-76RLO-1830.
NR 81
TC 20
Z9 20
U1 6
U2 70
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD JUL
PY 2013
VL 15
BP 104
EP 118
DI 10.1016/j.ijggc.2013.02.005
PG 15
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA 136VO
UT WOS:000318391700013
ER
PT J
AU Lakshminarayana, G
Weis, EM
Lira, AC
Caldino, U
Williams, DJ
Hehlen, MP
AF Lakshminarayana, G.
Weis, Eric M.
Lira, A. C.
Caldino, Ulises
Williams, Darrick J.
Hehlen, Markus P.
TI Cross Relaxation in rare-earth-doped oxyfluoride glasses
SO JOURNAL OF LUMINESCENCE
LA English
DT Article
DE Rare-earth luminescence; Oxyfluoride glass; Cross-relaxation;
Multiphonon relaxation; Judd-Ofelt analysis; Hypersensitivity
ID LUMINESCENCE PROPERTIES; IONS; CRYSTALLIZATION; TRANSITIONS;
INTENSITIES; SYSTEMS
AB The excited-state relaxation dynamics of Tb3+, Sm3+, and Eu3+ doped into a 50SiO(2)-20Al(2)O(3)-10Na(2)O-20LaF(3) (mol%) oxyfluoride glass are studied. Multiphonon relaxation of the primary emitting states in Tb3+ (D-5(3) and D-5(4)), Sm3+ ((4)G(5/2)), and Eu3+ (D-5(0)) was found to be negligible in the present host. The relaxation of Tb3+ (D-5(4)) and Eu3+ (D-5(0)) is dominated by radiative decay. For Tb3+ (D-5(3)) and Sm3+ ((4)G(5/2)) in contrast, radiative relaxation is in competition with several non-radiative cross-relaxation processes. This competition was found to be particularly pronounced for the D-5(3) excited state in Tb3+, where a 124-fold decrease of the (D-5(3)-> F-7(5))/(D-5(4)-> F-7(5)) emission intensity ratio and a similar to 10-fold shortening of the D-5(3) lifetime was observed upon increasing the Tb3+ concentration from 0.01% to 1%. The Tb3+ concentration dependence of D-5(3) also points to some degree of ion aggregation in the "as quenched" glasses. A Judd-Ofelt intensity analysis was performed for Sm3+ and used to estimate the relative magnitude of (4)G(5/2) cross-relaxation processes. Four cross-relaxation processes in particular were identified to account for 92% of the total (4)G(5/2) non-radiative decay, and a 11% quantum efficiency was estimated for the (4)G(5/2) excited state. Non-exponentiality in the D-5(0) decay of Eu3+ is evidence for several Eu3+ coordination environments in the glass host that manifest in different D-5(0) decay constants because of the hypersensitivity of the D-5(0)-> F-7(2) transition. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Lakshminarayana, G.; Weis, Eric M.; Hehlen, Markus P.] Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, Los Alamos, NM 87545 USA.
[Lira, A. C.] Univ Autonoma Estado Mexico, Unidad Acad Profes Nezahualcoyotl, Nezahualcoyotl 57000, Estado De Mexic, Mexico.
[Caldino, Ulises] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Mexico City 09340, DF, Mexico.
[Williams, Darrick J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Hehlen, MP (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, POB 1663, Los Alamos, NM 87545 USA.
EM hehlen@lanl.gov
RI Lira, Alicia/O-6173-2015;
OI Lira, Alicia/0000-0002-9630-1494; Gandham,
Lakshminarayana/0000-0002-1458-9368
FU U.S. Department of Energy; Los Alamos Laboratory Directed Research and
Development (LDRD) program; National Nuclear Security Administration of
the U.S. Department of Energy [DE-AC52-06NA25396]
FX This work was supported by the U.S. Department of Energy and the Los
Alamos Laboratory Directed Research and Development (LDRD) program. Los
Alamos National Laboratory is operated by Los Alamos National Security,
LLC, for the National Nuclear Security Administration of the U.S.
Department of Energy under Contract DE-AC52-06NA25396.
NR 31
TC 21
Z9 21
U1 2
U2 34
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2313
J9 J LUMIN
JI J. Lumines.
PD JUL
PY 2013
VL 139
BP 132
EP 142
DI 10.1016/j.jlumin.2013.02.039
PG 11
WC Optics
SC Optics
GA 135YY
UT WOS:000318327800021
ER
PT J
AU Bacon, LP
Strybel, TZ
AF Bacon, L. Paige
Strybel, Thomas Z.
TI Assessment of the validity and intrusiveness of online-probe questions
for situation awareness in a simulated air-traffic-management task with
student air-traffic controllers
SO SAFETY SCIENCE
LA English
DT Article
DE Situation awareness measurement; Online probe technique; SPAM;
Intrusiveness; Validity
ID DYNAMIC-SYSTEMS; ERRORS
AB Online-probe techniques for measuring situation awareness (SA) represent an alternative to offline-probe methods in which operators are queried about the situation during scenario freezes with displays blanked. Online-probe queries are administered while the task is ongoing and displays active. However, online-probes techniques have not been validated to the same extent as offline probes, and have been criticized because asking questions about the current or future situation while the task is active could change the operator's subsequent awareness of the situation. The present investigation examined the possibility of the intrusiveness of the online-probe technique to an operator's SA. Twelve student air-traffic controllers (ATCos) served as participants and managed traffic in six 30-min scenarios in which online probes were administered regularly. Off-nominal flight-plan deviations followed some probe queries. Three pre-event question types were administered prior to scheduled flight-plan deviations. These pre-event questions were either relevant to the deviating event and subsequent conflict, relevant to conflicts but not the deviating event, or unrelated to both conflicts and the deviating event. The type of pre-event question preceding a flight-plan deviation did not change the time to detect the deviating event nor the number of losses of separation (LOS) created by the deviation. Moreover, online probes were related to measures of sector safety. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Bacon, L. Paige; Strybel, Thomas Z.] Calif State Univ Long Beach, Dept Psychol, Ctr Human Factors Adv Aeronaut Technol CHAAT, Long Beach, CA 90840 USA.
RP Bacon, LP (reprint author), Battelle Seattle Res Ctr, 1100 Dexter Ave North,Suite 400, Seattle, WA 98109 USA.
EM bacon.lpaige@gmail.com
FU NASA, Group 5 University Research Center: Center for Human Factors in
Advanced Aeronautics Technologies [NNX09AU66A]
FX This project was supported by NASA cooperative agreement NNX09AU66A,
Group 5 University Research Center: Center for Human Factors in Advanced
Aeronautics Technologies (Brenda Collins, Technical Monitor).
NR 30
TC 8
Z9 8
U1 1
U2 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0925-7535
J9 SAFETY SCI
JI Saf. Sci.
PD JUL
PY 2013
VL 56
SI SI
BP 89
EP 95
DI 10.1016/j.ssci.2012.06.019
PG 7
WC Engineering, Industrial; Operations Research & Management Science
SC Engineering; Operations Research & Management Science
GA 136WN
UT WOS:000318394200011
ER
PT J
AU Zhang, HL
Fontes, CJ
AF Zhang, Hong Lin
Fontes, Christopher J.
TI Relativistic distorted-wave collision strengths for the 16 Delta n=0
optically allowed transitions with n=2 in the 67 Be-like ions with 26 <=
Z <= 92
SO ATOMIC DATA AND NUCLEAR DATA TABLES
LA English
DT Article
ID HIGHLY-CHARGED IONS; POSSIBLE N=2-N=3 TRANSITIONS; C-LIKE IONS;
OSCILLATOR-STRENGTHS; ELECTRON-IMPACT; ATOMIC DATA; EXCITATION; IRON;
8-LESS-THAN-OR-EQUAL-TO-Z-LESS-THAN-OR-EQUAL-TO-92; COMPLEX
AB Relativistic distorted-wave collision strengths have been calculated for the 16 Delta n = 0 optically allowed transitions with n = 2 in the 67 Be-like ions with nuclear charge number Z in the range 26 <= Z <= 92. The calculations were made for the four final, or scattered, electron energies E' = 0.20, 0.42, 0.80, and 1.40, where E' is in units of Z(eff)(2) Ry with Z(eff) = Z - 2.5. In the present calculation, an improved "top-up" method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb-Bethe approximation used in previous work by Zhang and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 52 (1992) 143]. In that earlier work, collision strengths were also provided for Be-like ions, but for a more comprehensive data set consisting of all 45 Delta n = 0 transitions, six scattered energies, and the 85 ions with Z in the range 8 <= Z <= 92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [HI. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 52 (1992) 143] and are presented here to replace those earlier results. (C) 2013 Elsevier Inc. All rights reserved.
C1 [Zhang, Hong Lin; Fontes, Christopher J.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA.
RP Zhang, HL (reprint author), Los Alamos Natl Lab, Computat Phys Div, POB 1663, Los Alamos, NM 87545 USA.
EM zhang@lanl.gov
FU U.S. Department of Energy by Los Alamos National Laboratory
[DE-AC52-06NA25396]
FX This work was performed under the auspices of the U.S. Department of
Energy by Los Alamos National Laboratory under Contract No.
DE-AC52-06NA25396.
NR 29
TC 9
Z9 9
U1 0
U2 14
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0092-640X
J9 ATOM DATA NUCL DATA
JI Atom. Data Nucl. Data Tables
PD JUL
PY 2013
VL 99
IS 4
BP 416
EP 430
DI 10.1016/j.adt.2012.04.004
PG 15
WC Physics, Atomic, Molecular & Chemical; Physics, Nuclear
SC Physics
GA 136VP
UT WOS:000318391800002
ER
PT J
AU Zhong, ZP
Talamo, A
Gohar, Y
AF Zhong, Zhaopeng
Talamo, Alberto
Gohar, Yousry
TI Monte Carlo and deterministic computational methods for the calculation
of the effective delayed neutron fraction
SO COMPUTER PHYSICS COMMUNICATIONS
LA English
DT Article
DE Effective delayed neutron fraction; MCNP; MCNPX; PARTISN
AB The effective delayed neutron fraction beta(eff) plays an important role in kinetics and static analysis of the reactor physics experiments. It is used as reactivity unit referred to as "dollar". Usually, it is obtained by computer simulation due to the difficulty in measuring it experimentally. In 1965, Keepin proposed a method, widely used in the literature, for the calculation of the effective delayed neutron fraction beta(eff). This method requires calculation of the adjoint neutron flux as a weighting function of the phase space inner products and is easy to implement by deterministic codes. With Monte Carlo codes, the solution of the adjoint neutron transport equation is much more difficult because of the continuous-energy treatment of nuclear data. Consequently, alternative methods, which do not require the explicit calculation of the adjoint neutron flux, have been proposed. In 1997, Bretscher introduced the k-ratio method for calculating the effective delayed neutron fraction; this method is based on calculating the multiplication factor of a nuclear reactor core with and without the contribution of delayed neutrons. The multiplication factor set by the delayed neutrons (the delayed multiplication factor) is obtained as the difference between the total and the prompt multiplication factors. Using Monte Carlo calculation Bretscher evaluated the beta(eff) as the ratio between the delayed and total multiplication factors (therefore the method is often referred to as the k-ratio method). In the present work, the k-ratio method is applied by Monte Carlo (MCNPX) and deterministic (PARTISN) codes. In the latter case, the ENDF/B nuclear data library of the fuel isotopes (U-235 and U-238) has been processed by the NJOY code with and without the delayed neutron data to prepare multi-group WIMSD neutron libraries for the lattice physics code DRAGON, which. was used to generate the PARTISN macroscopic cross sections. In recent years Meulekamp and van der Marck in 2006 and Nauchi and Kameyama in 2005 proposed new methods for the effective delayed neutron fraction calculation with only one Monte Carlo computer simulation, compared with the k-ratio method which require two criticality calculations. In this paper, the Meulekamp/Marck and Nauchi/Kameyama methods are applied for the first time by the MCNPX computer code and the results obtained by all different methods are compared. Published by Elsevier B.V.
C1 [Zhong, Zhaopeng; Talamo, Alberto; Gohar, Yousry] Argonne Natl Lab, Lemont, IL 60439 USA.
RP Zhong, ZP (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA.
EM zzhong@anl.gov
OI talamo, alberto/0000-0001-5685-0483
FU Office of Global Nuclear Material Threat Reduction US Department of
Energy [DE-AC02-06CH11357]
FX This work has been supported by the Office of Global Nuclear Material
Threat Reduction US Department of Energy under Contract
DE-AC02-06CH11357.
NR 21
TC 5
Z9 5
U1 0
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0010-4655
J9 COMPUT PHYS COMMUN
JI Comput. Phys. Commun.
PD JUL
PY 2013
VL 184
IS 7
BP 1660
EP 1665
DI 10.1016/j.cpc.2013.02.009
PG 6
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 134EW
UT WOS:000318194000003
ER
PT J
AU Certik, O
Pask, JE
Vackar, J
AF Certik, Ondrej
Pask, John E.
Vackar, Jiri
TI dftatom: A robust and general Schrodinger and Dirac solver for atomic
structure calculations
SO COMPUTER PHYSICS COMMUNICATIONS
LA English
DT Article
DE Atomic structure; Electronic structure; Schrodinger equation; Dirac
equation; Kohn-Sham equations; Density functional theory; Shooting
method; Fortran 95
ID ELECTRONIC-STRUCTURE CALCULATIONS; DOUBLE-MINIMUM; VARIABLE
TRANSFORMATION; EQUATION; ELEMENT; FIELDS; STATE; CODE
AB A robust and general solver for the radial Schrodinger, Dirac, and Kohn-Sham equations is presented. The formulation admits general potentials and meshes: uniform, exponential, or other defined by nodal distribution and derivative functions. For a given mesh type, convergence can be controlled systematically by increasing the number of grid points. Radial integrations are carried out using a combination of asymptotic forms, Runge-Kutta, and implicit Adams methods. Eigenfunctions are determined by a combination of bisection and perturbation methods for robustness and speed. An outward Poisson integration is employed to increase accuracy in the core region, allowing absolute accuracies of 10(-8) Hartree to be attained for total energies of heavy atoms such as uranium. Detailed convergence studies are presented and computational parameters are provided to achieve accuracies commonly required in practice. Comparisons to analytic and current-benchmark density-functional results for atomic number Z = 1-92 are presented, verifying and providing a refinement to current benchmarks. An efficient, modular Fortran 95 implementation, dftatom, is provided as open source, including examples, tests, and wrappers for interface to other languages; wherein particular emphasis is placed on the independence (no global variables), reusability, and generality of the individual routines.
C1 [Certik, Ondrej; Vackar, Jiri] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic.
[Certik, Ondrej] Univ Nevada, Reno, NV 89557 USA.
[Certik, Ondrej] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague 2, Czech Republic.
[Pask, John E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Certik, O (reprint author), Univ Nevada, 1664 N Virginia St, Reno, NV 89557 USA.
EM ondrej.certik@gmail.com; pask1@llnl.gov; vackar@fzu.cz
RI Vackar, Jiri/G-9507-2014
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; Czech Science Foundation [LC06040, GACR
101/09/1630]
FX This work was performed, in part, under the auspices of the US
Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. This research was partly supported by the
LC06040 research center project and GACR 101/09/1630 of the Czech
Science Foundation.
NR 46
TC 4
Z9 4
U1 2
U2 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0010-4655
J9 COMPUT PHYS COMMUN
JI Comput. Phys. Commun.
PD JUL
PY 2013
VL 184
IS 7
BP 1777
EP 1791
DI 10.1016/j.cpc.2013.02.014
PG 15
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 134EW
UT WOS:000318194000014
ER
PT J
AU Cousins, BR
Le Borne, S
Linke, A
Rebholz, LG
Wang, Z
AF Cousins, Benjamin R.
Le Borne, Sabine
Linke, Alexander
Rebholz, Leo G.
Wang, Zhen
TI Efficient linear solvers for incompressible flow simulations using
Scott-Vogelius finite elements
SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
LA English
DT Article
DE Scott-Vogelius elements; linear solvers; static condensation; augmented
Lagrangian preconditioning; H-Lu
ID NAVIER-STOKES EQUATIONS; MASS CONSERVATION; PARA-VERSION; MATRICES;
DISCRETIZATIONS
AB Recent research has shown that in some practically relevant situations like multiphysics flows (Galvin et al., Comput Methods Appl Mech Eng, to appear) divergence-free mixed finite elements may have a significantly smaller discretization error than standard nondivergence-free mixed finite elements. To judge the overall performance of divergence-free mixed finite elements, we investigate linear solvers for the saddle point linear systems arising in ((P-k)(d), P-k-1(disc)) Scott-Vogelius finite element implementations of the incompressible Navier-Stokes equations. We investigate both direct and iterative solver methods. Due to discontinuous pressure elements in the case of Scott-Vogelius (SV) elements, considerably more solver strategies seem to deliver promising results than in the case of standard mixed finite elements such as Taylor-Hood elements. For direct methods, we extend recent preliminary work using sparse banded solvers on the penalty method formulation to finer meshes and discuss extensions. For iterative methods, we test augmented Lagrangian and H-LU preconditioners with GMRES, on both full and statically condensed systems. Several numerical experiments are provided that show these classes of solvers are well suited for use with SV elements and could deliver an interesting overall performance in several applications. (C) 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 29: 1217-1237, 2013
C1 [Cousins, Benjamin R.; Rebholz, Leo G.] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA.
[Le Borne, Sabine] Tennessee Technol Univ, Dept Math, Cookeville, TN 38505 USA.
[Linke, Alexander] Free Univ Berlin, Dept Math, D-14195 Berlin, Germany.
[Wang, Zhen] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Sci Comp Grp, Oak Ridge, TN 37831 USA.
RP Rebholz, LG (reprint author), Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA.
EM rebholz@clemson.edu
FU National Science Foundation [DMS0914478, DMS-0913017, DMS1112593]; DFG
Research Center MATHEON, Berlin; Laney Graduate School of Arts and
Science (Emory University), Computational Science Research and
Partnerships (SciDAC) Division, Office of Advanced Scientific Computing
Research, U.S. Department of Energy [DE-AC05-000R22725]; UT-Battelle,
LLC
FX Contract grant sponsor: National Science Foundation; contract grant
number: DMS0914478 (B.C.), DMS-0913017(S.L.B.) and DMS1112593 (L.G.R.);
Contract grant sponsor: DFG Research Center MATHEON, Berlin (A.L.);
Contract grant sponsor: Laney Graduate School of Arts and Science (Emory
University), Computational Science Research and Partnerships (SciDAC)
Division, Office of Advanced Scientific Computing Research, U.S.
Department of Energy; contract grant number: DE-AC05-000R22725 with
UT-Battelle, LLC(Z.W.)
NR 40
TC 3
Z9 3
U1 0
U2 3
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0749-159X
EI 1098-2426
J9 NUMER METH PART D E
JI Numer. Meth. Part Differ. Equ.
PD JUL
PY 2013
VL 29
IS 4
BP 1217
EP 1237
DI 10.1002/num.21752
PG 21
WC Mathematics, Applied
SC Mathematics
GA 133YV
UT WOS:000318177700007
ER
PT J
AU Groth, KM
Swiler, LP
AF Groth, Katrina M.
Swiler, Laura P.
TI Bridging the gap between HRA research and HRA practice: A Bayesian
network version of SPAR-H
SO RELIABILITY ENGINEERING & SYSTEM SAFETY
LA English
DT Article
DE Human reliability analysis (HRA); Bayesian network (BN); SPAR-H;
Causality; Context uncertainty
ID HUMAN RELIABILITY-ANALYSIS; BELIEF NETWORKS; VALIDATION; SYSTEMS
AB The shortcomings of Human Reliability Analysis (HRA) have been a topic of discussion for over two decades. Repeated attempts to address these limitations have resulted in over 50 HRA methods, and the HRA research community continues to develop new methods. However, there remains a gap between the methods developed by HRA researchers and those actually used by HRA practitioners. Bayesian Networks (BNs) have become an increasingly popular part of the risk and reliability analysis framework over the past decade. BNs provide a framework for addressing many of the shortcomings of HRA from a researcher perspective and from a practitioner perspective. Several research groups have developed advanced HRA methods based on BNs, but none of these methods has been adopted by HRA practitioners in the U.S. nuclear power industry or at the U.S. Nuclear Regulatory Commission. In this paper we bridge the gap between HRA research and HRA practice by building a BN version of the widely used SPAR-H method. We demonstrate how the SPAR-H BN can be used by HRA practitioners, and we also demonstrate how it can be modified to incorporate data and information from research to advance HRA practice. The SPAR-H BN can be used as a starting point for translating HRA research efforts and advances in scientific understanding into real, timely benefits for HRA practitioners. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Groth, Katrina M.; Swiler, Laura P.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Groth, KM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM kgroth@sandia.gov
OI Groth, Katrina/0000-0002-0835-7798
FU Laboratory Directed Research and Development program at Sandia National
Laboratories; U.S. Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX This work was supported by the Laboratory Directed Research and
Development program at Sandia National Laboratories. Sandia National
Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.
NR 47
TC 19
Z9 19
U1 3
U2 29
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0951-8320
J9 RELIAB ENG SYST SAFE
JI Reliab. Eng. Syst. Saf.
PD JUL
PY 2013
VL 115
BP 33
EP 42
DI 10.1016/j.ress.2013.02.015
PG 10
WC Engineering, Industrial; Operations Research & Management Science
SC Engineering; Operations Research & Management Science
GA 133IT
UT WOS:000318132800004
ER
PT J
AU GhattyVenkataKrishna, PK
Chavali, N
Uberbacher, EC
AF GhattyVenkataKrishna, Pavan K.
Chavali, Neelima
Uberbacher, Edward C.
TI Flexibility of active-site gorge aromatic residues and non-gorge
aromatic residues in acetylcholinesterase
SO CHEMICAL PAPERS
LA English
DT Article
DE acetylcholine; acetylcholineterase; active site; gorge; aromatic
residues
ID MOLECULAR-DYNAMICS SIMULATIONS; TORPEDO-CALIFORNICA; LIQUID WATER;
X-RAY; PROTEINS; BINDING; DISEASE
AB The presence of an unusually large number of aromatic residues in the active site gorge of acetylcholinesterase is a subject of great interest. Flexibility of these residues has been suspected to be a key player in controlling the ligand traversal in the gorge. This raises the question of whether the over-representation of aromatic residues in the gorge implies higher-than-normal flexibility of these residues. The current study suggests that it does not. Large changes in the hydrophobic cross-sectional area due to dihedral oscillations are probably the reason of their presence in the gorge. (C) 2013 Institute of Chemistry, Slovak Academy of Sciences
C1 [GhattyVenkataKrishna, Pavan K.; Uberbacher, Edward C.] Oak Ridge Natl Lab, Computat Biol & Bioinformat Grp, Oak Ridge, TN 37830 USA.
[Chavali, Neelima] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA.
RP GhattyVenkataKrishna, PK (reprint author), Oak Ridge Natl Lab, Computat Biol & Bioinformat Grp, Oak Ridge, TN 37830 USA.
EM pkc@ornl.gov
FU U.S. DOE [DE-AC05-00OR22725]; UT-Battelle; Office of Science of the U.S.
Department of Energy [DE-AC02-05CH11231]
FX This work was sponsored by the U.S. DOE under Contract No.
DE-AC05-00OR22725 with UT-Battelle, LLC managing contractor for Oak
Ridge. This research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
We thank the reviewers for their comments which greatly improved the
manuscript. PKG thanks Dr. Aloke Kumar for useful discussions.
NR 22
TC 2
Z9 2
U1 1
U2 9
PU VERSITA
PI WARSAW
PA SOLIPSKA 14A-1, 02-482 WARSAW, POLAND
SN 0366-6352
J9 CHEM PAP
JI Chem. Pap.
PD JUL
PY 2013
VL 67
IS 7
BP 677
EP 681
DI 10.2478/s11696-013-0354-4
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA 123XE
UT WOS:000317424400001
ER
PT J
AU Mitri, FG
AF Mitri, F. G.
TI Arbitrary scattering of an acoustical high-order Bessel trigonometric
(non-vortex) beam by a compressible soft fluid sphere
SO ULTRASONICS
LA English
DT Article
DE Arbitrary acoustic scattering; Bessel nonvortex beams; Fluid sphere;
Discrete spherical harmonics transform
ID PLANE-PROGRESSIVE WAVES; SONAR CROSS-SECTIONS; RADIATION FORCE;
ELECTROMAGNETIC-FIELDS; RESONANCE EXCITATION; DIELECTRIC SPHERE;
SOUND-SCATTERING; ELASTIC SPHERE; RIGID SPHERE; SHELLS
AB The present analysis extends the previous work on the axial acoustic scattering of a high-order Bessel trigonometric beam (HOBTB) from a fluid sphere [F. G. Mitri, J. Appl. Phys. 109 (2011) 014916] to the generalized case of arbitrary scattering from a fluid sphere placed off-axially. The scattered pressure is expressed using a generalized partial-wave series expansion involving the beam-shape coefficients (BSCs), the scattering coefficients of the fluid sphere, and the half-conical angle of the beam. The BSCs are evaluated using the numerical discrete spherical harmonics transform (DSHT). The properties of the off-axial acoustic scattering by a fluid red blood sphere (RBS), chosen as an example to illustrate the analysis, are discussed. 3D numerical computations for the directivity patterns in the near and far-field regions reveal unexplored phenomena that may be useful in applications related to particle entrapment, manipulation or rotation of soft matter using acoustic HOBTBs. Other potential applications may include medical or nondestructive ultrasound imaging with contrast agents, or monitoring of the manufacturing processes of sample soft matter systems with HOBTBs. (C) 2012 Elsevier B. V. All rights reserved.
C1 Los Alamos Natl Lab, Acoust & Sensors Technol Team, Los Alamos, NM 87545 USA.
RP Mitri, FG (reprint author), Los Alamos Natl Lab, Acoust & Sensors Technol Team, MPA 11,MS D429, Los Alamos, NM 87545 USA.
EM mitri@lanl.gov
FU Los Alamos National Laboratory [LDRD-X9N9, 20100595PRD1]
FX The financial support provided through a Director's fellowship
(LDRD-X9N9, Project # 20100595PRD1) from the Los Alamos National
Laboratory is gratefully acknowledged. Disclosure: this unclassified
publication, with the following reference No. LA-UR 13-20526, has been
approved for unlimited public release under DUSA ENSCI.
NR 57
TC 16
Z9 16
U1 1
U2 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0041-624X
J9 ULTRASONICS
JI Ultrasonics
PD JUL
PY 2013
VL 53
IS 5
BP 956
EP 961
DI 10.1016/j.ultras.2012.12.008
PG 6
WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging
SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging
GA 120PW
UT WOS:000317184400005
PM 23395450
ER
PT J
AU Pantea, C
Osterhoudt, CF
Sinha, DN
AF Pantea, Cristian
Osterhoudt, Curtis F.
Sinha, Dipen N.
TI Determination of acoustical nonlinear parameter beta of water using the
finite amplitude method
SO ULTRASONICS
LA English
DT Article
DE Nonlinear acoustics; Water
ID PLANE SOUND-WAVES; BIOLOGICAL MEDIA; HARMONIC-GENERATION;
ELASTIC-CONSTANTS; B/A; MIXTURES
AB The acoustic nonlinearity of water is investigated using a variation of the finite amplitude method with harmonic generation. The finite amplitude method provides information on the coefficient of nonlinearity, beta, through the ratio of the amplitude of the fundamental and that of the second harmonic. The pressure of both the fundamental, p(1), and that of the second harmonic, p(2), are determined experimentally at different transmitter-receiver separation distances, eliminating the need for knowledge of the sound absorption in the medium. It was found that the experimental relationship between the slope of p(2)(x)/p(1)(2)(x) and transmitter-receiver separation distance, x, follows a linear relationship only in the near-field, in good agreement with theoretical predictions. A beta of 3.5 +/- 0.1 is determined for water at room temperature, in good agreement with previous results from both the isentropic equation of state and finite amplitude method. Published by Elsevier B.V.
C1 [Pantea, Cristian; Sinha, Dipen N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Osterhoudt, Curtis F.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA.
RP Pantea, C (reprint author), Los Alamos Natl Lab, MS D429, Los Alamos, NM 87545 USA.
EM pantea@lanl.gov
RI Pantea, Cristian/D-4108-2009;
OI Pantea, Cristian/0000-0002-0805-8923
NR 33
TC 15
Z9 19
U1 1
U2 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0041-624X
J9 ULTRASONICS
JI Ultrasonics
PD JUL
PY 2013
VL 53
IS 5
BP 1012
EP 1019
DI 10.1016/j.ultras.2013.01.008
PG 8
WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging
SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging
GA 120PW
UT WOS:000317184400012
PM 23453558
ER
PT J
AU Huang, Q
Cosimbescu, L
Koech, P
Choi, D
Lemmon, JP
AF Huang, Qian
Cosimbescu, Lelia
Koech, Phillip
Choi, Daiwon
Lemmon, John P.
TI Composite organic radical-inorganic hybrid cathode for lithium-ion
batteries
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Hybrid cathode; PTMA/LiFePO4 composite; High pulse power; Organic
radical; Lithium-ion battery
ID RECHARGEABLE BATTERIES; BEHAVIOR; ELECTRODES; POLYMERS
AB A new organic radical-inorganic hybrid cathode comprised of poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA)/LiFePO4 composite system was developed and reported for the first time. The hybrid electrodes' voltammetry contains three pairs of reversible redox peaks indicating the combination of electrochemical characteristics between LiFePO4 and PTMA electrodes and shows a decrease in voltage gap between oxidation and reduction that corresponds to an improvement in the rate and reversibility of the redox couples. Results from electrochemical impedance spectroscopy show lower charge-transfer resistance of cycled hybrid cathodes suggesting an enhanced electrode/electrolyte interface formed in hybrid systems which leads to faster migration of Li ions through the interface and longer cycle life capability when compared with pure LiFePO4 or PTMA cathode system. Optimizing the hybrid cathode's ratio of PTMA/LiFePO4 yields a significant improvement in high pulse power performance (30 mAh cm(-3)) over the pure PTMA (16 mAh cm(-3)) or LiFePO4 (3.0 mAh cm(-3)) cathode. Further characterization of the hybrid electrodes using SEM showed a more compact surface morphology after high rate pulse experiments. The demonstrated properties of hybrid cathodes are promising for transportation and other high pulse power applications that require long cycle life and low cost. (C) 2013 Published by Elsevier B.V.
C1 [Huang, Qian; Cosimbescu, Lelia; Koech, Phillip; Choi, Daiwon; Lemmon, John P.] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Lemmon, JP (reprint author), Pacific NW Natl Lab, 908 Battelle Blvd,POB 999, Richland, WA 99354 USA.
EM John.Lemmon@pnl.gov
RI Choi, Daiwon/B-6593-2008;
OI Koech, Phillip/0000-0003-2996-0593
FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office
of Vehicle Technologies of the U.S. Department of Energy
[DE-AC02-05CH11231]; Batteries for Advanced Transportation Technologies
(BATT) Program [24134]
FX This work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy, Office of Vehicle Technologies of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract
No 24134 under the Batteries for Advanced Transportation Technologies
(BATT) Program. The authors would thank Bruce W. Arey of the
Environmental Molecular Sciences Laboratory (EMSL) for the SEM
characterization.
NR 25
TC 4
Z9 4
U1 3
U2 128
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD JUL 1
PY 2013
VL 233
BP 69
EP 73
DI 10.1016/j.jpowsour.2013.01.076
PG 5
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 115QM
UT WOS:000316827000010
ER
PT J
AU Cronin, JS
Chen-Wiegart, YCK
Wang, J
Barnett, SA
AF Cronin, J. Scott
Chen-Wiegart, Yu-chen Karen
Wang, Jun
Barnett, Scott A.
TI Three-dimensional reconstruction and analysis of an entire solid oxide
fuel cell by full-field transmission X-ray microscopy
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE SOFC; Electrode; Microstructure; X-ray tomography; Reconstruction; 3D
ID MICROSTRUCTURE DEGRADATION; ELECTRON-MICROSCOPY; COMPOSITE CATHODES; YSZ
ANODE; PERFORMANCE; TEMPERATURE; TOMOGRAPHY
AB An entire active region of an anode-supported solid oxide fuel cell was structurally analyzed by X-ray computed nano-tomography using full-field transmission X-ray microscopy (NANO-TXM). A total three-dimensional volume of similar to 38,500 mu m(3) was imaged, from which Ni-YSZ anode functional layer (similar to 3650 mu m(3)) and LSM-YSZ cathode functional layer (similar to 4100 mu m(3)) volumes were reconstructed. These were among the largest-volume electrode reconstructions ever reported, while at the same time exhibiting high spatial resolution of 50 nm. Comparison with electrode microstructures measured using other imaging methods demonstrates that the larger NANO-TXM-measured volumes provided significantly more accurate phase connectivity information. A microstructure-based electrochemical model prediction agreed well with the measured full-cell electrochemical data. The results suggest that low LSM connectivity and slow oxygen reduction reaction kinetics in the cathode were a major limitation to the overall cell performance. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Cronin, J. Scott; Barnett, Scott A.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Chen-Wiegart, Yu-chen Karen; Wang, Jun] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA.
RP Barnett, SA (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
EM s-bamett@northwestern.edu
RI Barnett, Scott/B-7502-2009
FU National Science Foundation Ceramics program [DMR-0907639]; U.S.
Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]; U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-AC02-98CH10886]
FX The authors gratefully acknowledge the financial support from the
National Science Foundation Ceramics program through grant DMR-0907639.
Furthermore, efforts by Kyle Yakal-Kremski for electrode visualization
and Prof. Eric Maire who provided us with the ImageJ plug-in for
tortuosity calculations are greatly appreciated. We thank Dr. Fernando
Camino (BNL) for assisting the development of the sample preparation
procedure using FIB/SEM at the Center for Functional Nanomaterials,
Brookhaven National Laboratory, which is supported by the U.S.
Department of Energy, Office of Basic Energy Sciences, under Contract
No. DE-AC02-98CH10886. Use of the National Synchrotron Light Source,
Brookhaven National Laboratory, was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-98CH10886.
NR 32
TC 36
Z9 36
U1 4
U2 121
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
J9 J POWER SOURCES
JI J. Power Sources
PD JUL 1
PY 2013
VL 233
BP 174
EP 179
DI 10.1016/j.jpowsour.2013.01.060
PG 6
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 115QM
UT WOS:000316827000025
ER
PT J
AU Li, L
Dunn, JB
Zhang, XX
Gaines, L
Chen, RJ
Wu, F
Amine, K
AF Li, Li
Dunn, Jennifer B.
Zhang, Xiao Xiao
Gaines, Linda
Chen, Ren Jie
Wu, Feng
Amine, Khalil
TI Recovery of metals from spent lithium-ion batteries with organic acids
as leaching reagents and environmental assessment
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Spent lithium-ion batteries; Acid leaching; Cathode active materials;
Organic acids; Environmental assessment
ID HYDROMETALLURGICAL PROCESS; SECONDARY BATTERIES; ELECTRIC VEHICLES;
COBALT; WASTE; NICKEL; CATHODES; CATALYST
AB A leaching process for the recovery of cobalt and lithium from spent lithium-ion batteries (LIB) is developed in this work. Three different organic acids, namely citric acid, malic acid and aspartic acid, are used as leaching reagents in the presence of hydrogen peroxide. The cathode active materials before and after acid leaching are characterized by X-ray diffraction and scanning electron microscopy. Recovery of cobalt and lithium is optimized by varying the leachant and H2O2 concentrations, the solid-to-liquid ratio, and the reaction temperature and duration. Whereas leaching with citric and malic acids recovered in excess of 90% of cobalt and lithium, leaching with aspartic acid recovered significantly less of these metals. The leaching mechanism likely begins with the dissolution of the active material (LiCoO2) in the presence of H2O2 followed by chelation of Co(II) and Li with citrate, malate or aspartate. An environmental analysis of the process indicates that it may be less energy and greenhouse gas intensive to recover Co from spent LIBs than to produce virgin cobalt oxide. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Li, Li; Zhang, Xiao Xiao; Chen, Ren Jie; Wu, Feng] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing 100081, Peoples R China.
[Dunn, Jennifer B.; Gaines, Linda] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Li, Li; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Wu, F (reprint author), Beijing Inst Technol, Sch Chem Engn & Environm, Beijing 100081, Peoples R China.
EM wufeng863@bit.edu.cn; amine@anl.gov
RI Amine, Khalil/K-9344-2013
FU International S&T Cooperation Program of China [2010DFB63370]; Chinese
National 973 Program [2009CB220106]; Beijing Nova Program
[Z121103002512029]; Beijing Excellent Youth Scholars funding; Chinese
Education Ministry [NCET-12-0050]; Vehicle Technology Program of the
Office of Energy Efficiency and Renewable Energy, U.S. Department of
Energy [DE-AC02-06CH11357]
FX The experimental work of this study was supported by the International
S&T Cooperation Program of China (2010DFB63370), the Chinese National
973 Program (2009CB220106), Beijing Nova Program (Z121103002512029),
Beijing Excellent Youth Scholars funding, and the New Century
Educational Talents Plan of the Chinese Education Ministry
(NCET-12-0050). The analysis work, especially the life-cycle analysis
work, was supported by the Vehicle Technology Program of the Office of
Energy Efficiency and Renewable Energy, U.S. Department of Energy, under
contract DE-AC02-06CH11357. The authors would like to thank Dr. Michael
Wang and Dr. John Sullivan of Argonne National Laboratory for helpful
discussions in the development of this paper.
NR 31
TC 41
Z9 46
U1 11
U2 140
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
J9 J POWER SOURCES
JI J. Power Sources
PD JUL 1
PY 2013
VL 233
BP 180
EP 189
DI 10.1016/j.jpowsour.2012.12.089
PG 10
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 115QM
UT WOS:000316827000026
ER
PT J
AU Bettge, M
Li, Y
Sankaran, B
Rago, ND
Spila, T
Haasch, RT
Petrov, I
Abraham, DP
AF Bettge, Martin
Li, Yan
Sankaran, Bharat
Rago, Nancy Dietz
Spila, Timothy
Haasch, Richard T.
Petrov, Ivan
Abraham, Daniel P.
TI Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells
by modifiying the positive electrode with alumina
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Lithium-ion; Atomic layer deposition; Al2O3; Coating; Secondary ion mass
spectrometry; Layered oxide
ID ATOMIC LAYER DEPOSITION; LINI0.8CO0.15AL0.05O2 CATHODES; ELECTROCHEMICAL
INTERCALATION; COMPOSITE ELECTRODES; GRAPHITE ANODE; BATTERIES; LI;
PERFORMANCE; DEGRADATION; LICOO2
AB Practical high-capacity Li-ion cells containing Li1.2Ni0.15Mn0.55Co0.1O2-based positive and graphite-based negative electrodes show substantial capacity loss and impedance rise when repeatedly cycled to, or held for extended periods, at voltages exceeding 4.5 V. Their performance can be effectively improved by modifying the positive electrode. The positive composite electrodes are modified here in two different ways: by (i) alumina coatings of up to similar to 4 nm applied via atomic layer deposition (ALD), and (ii) addition of nanoscale alumina powder. Thicknesses of the ALD coatings are estimated via X-ray photoelectron spectroscopy (XPS).
Electrochemical cycling reveals that capacity retention is better, and impedance rise is smaller for cells containing ALD-coated electrodes. Cells with alumina-powder modified electrodes show also improved capacity retention, but without improvements in impedance. Improved capacity retention is primarily due to reduced Li trapping on the negative electrode. Lower impedance growth, in ALD modified cells, is attributed to improved electro-mechanical integrity and altered surface films inside the positive electrode. The alumina coating inhibits, but does not prevent, transition metal dissolution. The coating also reduces electrolyte oxidation. Significant accumulation of Al on the negative electrode indicates electrochemical crosstalk between the electrodes and chemical instability of the ALD coatings during extended cycling. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Bettge, Martin; Li, Yan; Rago, Nancy Dietz; Abraham, Daniel P.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Li, Yan] Univ Rochester, Mat Sci Program, Rochester, NY 14627 USA.
[Sankaran, Bharat; Spila, Timothy; Haasch, Richard T.; Petrov, Ivan] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA.
RP Abraham, DP (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave Lemont, Argonne, IL 60439 USA.
EM bettge@anl.gov; liy@anl.gov; bharat.sankaran@gmail.com; dietz@anl.gov;
tspila@illinois.edu; r-haasch@illinois.edu; petrov@illinois.edu;
abraham@anl.gov
RI Li, Yan/H-2957-2012; Petrov, Ivan/D-4910-2011
OI Li, Yan/0000-0002-9801-7243; Petrov, Ivan/0000-0002-2955-4897
FU U.S. Department of Energy's Vehicle Technologies Program
[DE-AC02-06CH11357]; DOE Vehicle Technologies Program (VTP) within the
core funding of the Applied Battery Research (ABR) for Transportation
Program; U. S. Department of Energy, Office of Science, Office of Basic
Energy Sciences [DE-AC02-06CH11357]
FX Support from the U.S. Department of Energy's Vehicle Technologies
Program, specifically from Peter Faguy and Dave Howell, is gratefully
acknowledged. We also acknowledge valuable discussions with D. Dees, J.
Bareno, and Y. Zhu (at Argonne). The submitted manuscript has been
created by UChicago Argonne, LLC, Operator of Argonne National
Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf,
a paid-up non-exclusive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the
Government. We are grateful to B. Polzin, A. Jansen, and S. Trask from
the U.S. Department of Energy's (DOE) Cell Fabrication Facility (CFF),
Argonne. The CFF is fully supported by the DOE Vehicle Technologies
Program (VTP) within the core funding of the Applied Battery Research
(ABR) for Transportation Program. Use of the Center for Nanoscale
Materials was supported by the U. S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. The work was carried out in part in the Frederick
Seitz Materials Research laboratory Central Facilities, University of
Illinois at Urbana-Champaign (UIUC). We're grateful to E. Sammann (at
UIUC) for his many significant suggestions and comments.
NR 54
TC 73
Z9 74
U1 20
U2 292
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
J9 J POWER SOURCES
JI J. Power Sources
PD JUL 1
PY 2013
VL 233
BP 346
EP 357
DI 10.1016/j.jpowsour.2013.01.082
PG 12
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 115QM
UT WOS:000316827000048
ER
PT J
AU Zapata-Solvas, E
Jayaseelan, DD
Lin, HT
Brown, P
Lee, WE
AF Zapata-Solvas, E.
Jayaseelan, D. D.
Lin, H. T.
Brown, P.
Lee, W. E.
TI Mechanical properties of ZrB2- and HfB2-based ultra-high temperature
ceramics fabricated by spark plasma sintering
SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
LA English
DT Article
DE Spark plasma sintering (SPS); Electrical discharge machining (EDM);
Flexural strength; Fracture surface; High temperature; Oxidation
ID THERMO-PHYSICAL PROPERTIES; DIBORIDE-BASED CERAMICS; ZIRCONIUM DIBORIDE;
HYPERSONIC APPLICATIONS; FRACTURE-TOUGHNESS; MATRIX COMPOSITES; SHOCK
RESISTANCE; MICROSTRUCTURE; DENSIFICATION; STRENGTH
AB Flexural strengths at room temperature, at 1400 degrees C in air and at room temperature after 1 h oxidation at 1400 degrees C were determined for ZrB2- and HfB2-based ultra-high temperature ceramics (UHTCs). Defects caused by electrical discharge machining (EDM) lowered measured strengths significantly and were used to calculate fracture toughness via a fracture mechanics approach. ZrB2 with 20 vol.% SiC had room temperature strength of 700 +/- 90 MPa, fracture toughness of 6.4 +/- 0.6 MPa, Vickers hardness at 9.8N load of 21.1 +/- 0.6 GPa, 1400 degrees C strength of 400 +/- 30 MPa and room temperature strength after 1 h oxidation at 1400 degrees C of 678 +/- 15 MPa with an oxide layer thickness of 45 +/- 5 mu m. HfB2 with 20 vol.% SiC showed room temperature strength of 620 +/- 50 MPa, fracture toughness of 5.0 +/- 0.4 MPa, Vickers hardness at 9.8 N load of 27.0 +/- 0.6 GPa, 1400 degrees C strength of 590 +/- 150 MPa and room temperature strength after 1 h oxidation at 1400 degrees C of 660 +/- 25 MPa with an oxide layer thickness of 12 +/- 1 mu m. 2 wt.% La2O3 addition to UHTCs slightly reduced mechanical performance while increasing tolerance to property degradation after oxidation and effectively aided internal stress relaxation during spark plasma sintering (SPS) cooling, as quantified by X-ray diffraction (XRD). Slow crack growth was suggested as the failure mechanism at high temperatures as a consequence of sharp cracks formation during oxidation. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Zapata-Solvas, E.; Jayaseelan, D. D.; Lee, W. E.] Univ London Imperial Coll Sci Technol & Med, Ctr Adv Struct Ceram, London SW7 2AZ, England.
[Lin, H. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Brown, P.] Dstl, Salisbury SP4 0JQ, Wilts, England.
RP Zapata-Solvas, E (reprint author), CSIC Univ Sevilla, Inst Ciencia Mat Sevilla, C Amer Vespucio 49, Seville 41092, Spain.
EM ezapata@us.es
RI Zapata-Solvas, Eugenio/O-9151-2014
OI Zapata-Solvas, Eugenio/0000-0002-6162-8788
FU JAE-DOC program of CSIC, Spain; European Union; DSTL, UK
[DSTLX-1000015413]
FX The authors' acknowledge Prof. Mike Reece, Nanoforce Technology Ltd.,
Queen Mary, University of London, UK for providing access to the SPS
facility. EZS acknowledges the support of 'Fundacion Ramon Areces,
Spain' and the Centre for Advanced Structural Ceramics (CASC) for his
postdoctoral fellowship to stay at Imperial College London to carry out
this work, UK. EZS also acknowledges current support through a contract
from the JAE-DOC program of CSIC, Spain, co-funded by the European Union
FSE. DDJ acknowledges the support of DSTL, UK for providing the
financial support for this work under contract number DSTLX-1000015413.
NR 55
TC 28
Z9 29
U1 6
U2 125
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0955-2219
J9 J EUR CERAM SOC
JI J. Eur. Ceram. Soc.
PD JUL
PY 2013
VL 33
IS 7
BP 1373
EP 1386
DI 10.1016/j.jeurceramsoc.2012.12.009
PG 14
WC Materials Science, Ceramics
SC Materials Science
GA 111LI
UT WOS:000316522400015
ER
PT J
AU Xu, ZJ
AF Xu, Zhijie
TI A REDUCED-BOUNDARY-FUNCTION METHOD FOR LONGITUDINAL SOLUTION DISPERSION
IN SYMMETRIC CONFINED FLOWS
SO CHEMICAL ENGINEERING COMMUNICATIONS
LA English
DT Article
DE Homogenization; Multiscale; Reduced-boundary function; Transport;
Upscaling
AB We present a reduced-boundary-function method for longitudinal solute transport in symmetric laminar flows. Flow is confined by two flat plates separated by a distance of 2a or by a tube with a radius of a (Figure 1). The standard advection-diffusion equation is mapped onto the boundary (r=a and r=0, where r is the distance from the centerline shown in Figure 1). The original problem of solving c(x,r,t) is reduced to solve the solutions of c at the boundary, and the problem dimensionality is reduced from 3 to 2. Final results show that the boundary concentration ca(x,t)=c(x, r=a,t) is advected at the mean velocity with a dispersion equal to the molecular diffusion. The centerline concentration c0(x,t)=c(x,r=0,t) is also advected at the mean velocity, but with a dispersion much larger than the Taylor dispersion. The cross-sectional average concentration is in agreement with the classical Taylor dispersion by neglecting higher order contributions. This study is relevant to the upscaling of solute transport.
C1 [Xu, Zhijie] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Xu, ZJ (reprint author), Pacific NW Natl Lab, Computat Math Grp, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
EM zhijie.xu@pnnl.gov
RI Xu, Zhijie/A-1627-2009
OI Xu, Zhijie/0000-0003-0459-4531
NR 14
TC 1
Z9 1
U1 0
U2 8
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA
SN 0098-6445
J9 CHEM ENG COMMUN
JI Chem. Eng. Commun.
PD JUL 1
PY 2013
VL 200
IS 7
BP 853
EP 862
DI 10.1080/00986445.2012.712582
PG 10
WC Engineering, Chemical
SC Engineering
GA 105YR
UT WOS:000316109100001
ER
PT J
AU Liu, J
Zhong, C
Du, XT
Wu, YT
Xu, PZ
Liu, JB
Hu, WB
AF Liu, Jie
Zhong, Cheng
Du, Xintong
Wu, Yating
Xu, Peizhi
Liu, Jinbo
Hu, Wenbin
TI Pulsed electrodeposition of Pt particles on indium tin oxide substrates
and their electrocatalytic properties for methanol oxidation
SO ELECTROCHIMICA ACTA
LA English
DT Article
DE Pt catalysts; Pulsed electrodeposition; Surface morphology; Methanol
oxidation; Indium tin oxide
ID GOLD NANOPARTICLES; AMMONIA OXIDATION; FUEL-CELLS; PLATINUM
NANOPARTICLES; HYDROGEN-PEROXIDE; ITO; GROWTH; CARBON; DEPOSITION;
SURFACES
AB The platinum (Pt) particle electrocatalysts supported on the indium tin oxide (ITO) substrate were prepared by the pulsed electrodeposition for the methanol oxidation. The effect of the lower potential pulse duration (t(1)) of the electrodeposition on the surface morphology and structure of the Pt particles was investigated by the X-ray diffraction and scanning electron microscopy. The amount of the Pt loading was determined by an inductively coupled plasma method, and the electrocatalytic activity of the prepared Pt electrocatalysts on the ITO for the methanol oxidation was characterized by cyclic voltammetry. The results showed that the A has a significant influence on the surface morphology of the Pt particles on the ITO substrate. As the t(1) decreases from 1 to 0.01 s, the deposited Pt particles on the ITO exhibit flower-, nanosheet-, prickly and smooth spherical-like morphology in turn. Furthermore, there is a remarkable effect of the surface morphology of the Pt particles on the electrocatalytic activity for the methanol oxidation. Among all these morphologies, the flower- and nanosheet-like Pt particles on the ITO have a much higher mass specific activity (MA) for the methanol oxidation, and the Pt particles with prickly surface followed while the smooth spherical Pt particles have the lowest MA. In particular, the dispersed Pt nanosheets prepared at t(1) of 0.5 s has the highest MA. The much improved MA of the dispersed Pt nanosheets is attributed not only to the large electrochemically active surface area (ECSA) achieved, but also to the high electrocatalytic activity per unit ECSA related to its special morphology. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Liu, Jie; Zhong, Cheng; Du, Xintong; Wu, Yating; Xu, Peizhi; Hu, Wenbin] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China.
[Liu, Jinbo] Texas A&M Univ Kingsville, Dept Chem, Kingsville, TX 78363 USA.
[Liu, Jinbo] ALS Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Zhong, C (reprint author), Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China.
EM chengz@sjtu.edu.cn; material_hu@163.com
RI Zhong, Cheng/E-7733-2012;
OI Zhong, Cheng/0000-0003-1852-5860; Liu, Jie/0000-0003-0193-1336
FU National Science Foundation for Distinguished Young Scholars of China
[51125016]; Shanghai Municipal Education Commission; "Chen Guang"
project; Shanghai Education Development Foundation, Shanghai Jiao Tong
University [IPP6090, IPP6093, S050ITP5011]
FX The authors thank Drs. Y.J. Zhou, S. Xu and W. Li in the Instrumental
Analysis Center of Shanghai Jiao Tong University for the ICP and SEM
analysis. This work was supported by the National Science Foundation for
Distinguished Young Scholars of China (51125016), and partially
supported by "Chen Guang" project supported by Shanghai Municipal
Education Commission and Shanghai Education Development Foundation
(11CG12), Shanghai Jiao Tong University (IPP6090, IPP6093 and
S050ITP5011).
NR 50
TC 26
Z9 27
U1 5
U2 110
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0013-4686
J9 ELECTROCHIM ACTA
JI Electrochim. Acta
PD JUN 30
PY 2013
VL 100
BP 164
EP 170
DI 10.1016/j.electacta.2013.03.152
PG 7
WC Electrochemistry
SC Electrochemistry
GA 165OE
UT WOS:000320492400022
ER
PT J
AU Guo, H
Chien, CC
He, Y
Levin, K
AF Guo, Hao
Chien, Chih-Chun
He, Yan
Levin, K.
TI FUNDAMENTAL CONSTRAINTS ON LINEAR RESPONSE THEORIES OF FERMI SUPERFLUIDS
ABOVE AND BELOW T-c
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
LA English
DT Review
DE BCS theory; linear response theory; BCS-BEC crossover; gauge invariance;
superfluids; Fermi gases; pairing fluctuations
ID SUPERCONDUCTIVITY; GAS; TEMPERATURE
AB We present fundamental constraints required for a consistent linear response theory of fermionic superfluids and address temperatures both above and below the transition temperature Tc. We emphasize two independent constraints, one associated with gauge invariance (and the related Ward identity) and another associated with the compressibility sum rule, both of which are satisfied in strict BCS theory. However, we point out that it is the rare many body theory which satisfies both of these. Indeed, well studied quantum Hall systems and random-phase approximations to the electron gas are found to have difficulties with meeting these constraints. We summarize two distinct theoretical approaches which are, however, demonstrably compatible with gauge invariance and the compressibility sum rule. The first of these involves an extension of BCS theory to a mean field description of the BCS-Bose Einstein condensation crossover. The second is the simplest Nozieres Schmitt-Rink (NSR) treatment of pairing correlations in the normal state. As a point of comparison we focus on the compressibility kappa of each and contrast the predictions above Tc. We note here that despite the compliance with sum rules, this NSR based scheme leads to an unphysical divergence in kappa at the transition. Because of the delicacy of the various consistency requirements, the results of this paper suggest that avoiding this divergence may repair one problem while at the same time introducing others.
C1 [Guo, Hao] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China.
[Guo, Hao] Univ Hong Kong, Dept Phys, Hong Kong 999077, Hong Kong, Peoples R China.
[Chien, Chih-Chun] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[He, Yan] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA.
[He, Yan; Levin, K.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.
[He, Yan; Levin, K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
RP Guo, H (reprint author), Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China.
EM chihchun@lanl.gov
RI He, Yan/B-1594-2012
FU National Natural Science Foundation of China [11204032]; Natural Science
Foundation of Jiangsu Province, China [SBK201241926]; U.S. Department of
Energy through the LANL/LDRD Program; NSF-MRSEC [0820054]
FX Hao Guo thanks the support by National Natural Science Foundation of
China (Grants No. 11204032) and Natural Science Foundation of Jiangsu
Province, China (SBK201241926). C. C. C. acknowledges the support of the
U.S. Department of Energy through the LANL/LDRD Program. Additional
support (KL) is via NSF-MRSEC Grant 0820054.
NR 33
TC 4
Z9 4
U1 0
U2 6
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-9792
J9 INT J MOD PHYS B
JI Int. J. Mod. Phys. B
PD JUN 30
PY 2013
VL 27
IS 16
AR 1330010
DI 10.1142/S0217979213300107
PG 20
WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
SC Physics
GA 159OU
UT WOS:000320056000001
ER
PT J
AU Choi, S
Pisano, AP
Zohdi, TI
AF Choi, Sun
Pisano, Albert P.
Zohdi, Tarek I.
TI An analysis of evaporative self-assembly of micro particles in printed
picoliter suspension droplets
SO THIN SOLID FILMS
LA English
DT Article
DE Evaporative self-assembly; Non-equilibrium assembly; Micro particle;
Picoliter droplets; Particle simulation
ID ORDERED 2-DIMENSIONAL ARRAYS; HYDROPHOBIC SURFACES; COLLOIDAL CRYSTALS;
PHOTONIC CRYSTALS; NANOPARTICLES; FABRICATION; CRYSTALLIZATION;
MICROSPHERES; DISPERSIONS; ARRANGEMENT
AB We report systematic experimental and computational studies to analyze evaporative self-assembly of micro particles in printed picoliter suspension droplets. Evaporative self-assembly of micro particles in picoliter droplets is enabled by a droplet-printing system for small-scale particle suspension droplets. Experiments were performed to study the regime where particle interactive forces become comparable to hydrodynamic, evaporative forces of an evaporating droplet. A particle-based computational method was developed to calculate the particle-to-particle clustering time. In this study, we verify that there is a time-scale competition between particle-to-particle clustering and evaporation of the liquid medium that determines the final morphology of micro particle assemblies. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Choi, Sun; Pisano, Albert P.] Univ Calif Berkeley, BSAC, Berkeley, CA 94720 USA.
[Choi, Sun; Pisano, Albert P.; Zohdi, Tarek I.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Pisano, Albert P.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
RP Choi, S (reprint author), Univ Calif Berkeley, Div Earth Sci, LBNL, Berkeley, CA 94720 USA.
EM SChoi@lbl.gov
FU Center for Nanoscale Mechatronics & Manufacturing (CNMM), one of the
21st Century Frontier Research Programs [2009K000069]; Ministry of
Education, Science and Technology, Korea; Samsung Scholarship Foundation
FX This work was supported by a grant (2009K000069) from the Center for
Nanoscale Mechatronics & Manufacturing (CNMM), one of the 21st Century
Frontier Research Programs, which are supported by Ministry of
Education, Science and Technology, Korea. We also acknowledge technical
support from Jeffrey Clarkson for measuring light intensity of optical
microscope in Berkeley Marvell Nanofabrication Laboratory. S. Choi also
gives thanks for his graduate fellowship from Samsung Scholarship
Foundation.
NR 63
TC 7
Z9 7
U1 4
U2 48
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD JUN 30
PY 2013
VL 537
BP 180
EP 189
DI 10.1016/j.tsf.2013.04.047
PG 10
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 151JK
UT WOS:000319456400028
ER
PT J
AU Van Berkel, GJ
Kertesz, V
AF Van Berkel, Gary J.
Kertesz, Vilmos
TI Continuous-flow liquid microjunction surface sampling probe connected
on-line with high-performance liquid chromatography/mass spectrometry
for spatially resolved analysis of small molecules and proteins
SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY
LA English
DT Article
ID ELECTROSPRAY MASS-SPECTROMETRY; THIN TISSUE-SECTIONS; DRUG DISTRIBUTION;
SYSTEM; METABOLITES; DESORPTION; MS/MS; MS
AB RATIONALE A continuous-flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by mass spectrometry. Demonstrated here is the on-line coupling of such a probe with high-performance liquid chromatography/mass spectrometry (HPLC/MS) enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (similar to 0.5 mm diameter spots) manner. METHODS A continuous-flow liquid microjunction surface sampling probe was connected to a six-port, two-position valve for extract collection and injection to an HPLC column. A QTRAP (R) 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive electrospray ionization (ESI) mode was used for all experiments. The system operation was tested with the extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues, caffeine from a coffee bean, cocaine from paper currency, and proteins from dried sheep blood spots on paper. RESULTS Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. CONCLUSIONS Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous-flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.
C1 [Van Berkel, Gary J.; Kertesz, Vilmos] Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM vanberkelgj@ornl.gov
RI Kertesz, Vilmos/M-8357-2016
OI Kertesz, Vilmos/0000-0003-0186-5797
FU AB Sciex [CRADA NFE-10-02966]; U.S. Department of Energy
[DE-AC05-00OR22725]; U.S. Government [DE-AC05-00OR22725]
FX This project was supported by AB Sciex through a Cooperative Research
and Development Agreement (CRADA NFE-10-02966). The QTRAP (R) 5500 used
in this work was provided on loan from AB Sciex as part of the CRADA.
Drs Jimmy Flarakos, Paul Moench and Alexandre Catoire (Novartis, East
Hanover, NJ, USA) are thanked for providing the whole-body rat thin
tissue sections through a Work for Others project with Novartis
Institutes for Biomedical Research, Inc. Drs Karuna Chourey and Greg
Hurst (Oak Ridge National Laboratory) are thanked for assisting with the
protein database search and identification. Dr Zhongqi Zhang (Amgen,
Inc.) is thanked for providing the MagTran software. Oak Ridge National
Laboratory is managed by UT-Battelle, LLC for the U.S. Department of
Energy under contract DE-AC05-00OR22725. This manuscript has been
authored by a contractor of the U.S. Government under contract
DE-AC05-00OR22725. Accordingly, the U. S. Government retains a paid-up,
nonexclusive, irrevocable, worldwide license to publish or reproduce the
published form of this contribution, prepare derivative works,
distribute copies to the public, and perform publicly and display
publicly, or allow others to do so, for U.S. Government purposes.
NR 27
TC 24
Z9 24
U1 1
U2 63
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0951-4198
J9 RAPID COMMUN MASS SP
JI Rapid Commun. Mass Spectrom.
PD JUN 30
PY 2013
VL 27
IS 12
BP 1329
EP 1334
DI 10.1002/rcm.6580
PG 6
WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy
SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy
GA 146EH
UT WOS:000319071700006
PM 23681810
ER
PT J
AU Harribey, T
Breil, J
Maire, PH
Shashkov, M
AF Harribey, Thibault
Breil, Jerome
Maire, Pierre-Henri
Shashkov, Mikhail
TI A swept-intersection-based remapping method in a ReALE framework
SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
LA English
DT Article
DE ReALE; cell-centered scheme; Lagrangian hydrodynamics; Voronoi mesh;
polygonal mesh
AB A complete reconnection-based arbitrary LagrangianEulerian (ReALE) strategy devoted to the computation of hydrodynamic applications for compressible fluid flows is presented here. In ReALE, we replace the rezoning phase of classical ALE method by a rezoning where we allow the connectivity between cells of the mesh to change. This leads to a polygonal mesh that recovers the Lagrangian features in order to follow more efficiently the flow. Those reconnections allow to deal with complex geometries and high vorticity problems contrary to ALE method. For optimizing the remapping phase, we have modified the idea of swept-integration-based. The new method is called swept-intersection-based remapping method. We demonstrate that our method can be applied to several numerical examples representative of hydrodynamic experiments.Copyright (c) 2012 John Wiley & Sons, Ltd.
C1 [Harribey, Thibault; Breil, Jerome] Univ Bordeaux, CEA, CNRS, CELIA,UMR5107, F-33400 Talence, France.
[Maire, Pierre-Henri] CEA, CESTA, F-33114 Le Barp, France.
[Shashkov, Mikhail] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Breil, J (reprint author), Univ Bordeaux, CEA, CNRS, CELIA,UMR5107, F-33400 Talence, France.
EM breil@celia.ubordeaux1.fr
RI Maire, Pierre-Henri/H-6219-2013
OI Maire, Pierre-Henri/0000-0002-4180-8220
FU US Department of Energy's National Nuclear Security Administration by
Los Alamos National Security, LLC, at Los Alamos National Laboratory
[DE-AC52-06NA25396]; US DOE NNSA's Advanced Simulation and Computing
(ASC) Program; US DOE Office of Science Advanced Scientific Computing
Research (ASCR) Program in Applied Mathematics Research
FX The work of the last author was performed under the auspices of the US
Department of Energy's National Nuclear Security Administration by Los
Alamos National Security, LLC, at Los Alamos National Laboratory, under
contract DE-AC52-06NA25396. The last author gratefully acknowledges the
partial support of the US DOE NNSA's Advanced Simulation and Computing
(ASC) Program and the partial support of the US DOE Office of Science
Advanced Scientific Computing Research (ASCR) Program in Applied
Mathematics Research.
NR 11
TC 5
Z9 5
U1 0
U2 11
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0271-2091
J9 INT J NUMER METH FL
JI Int. J. Numer. Methods Fluids
PD JUN 30
PY 2013
VL 72
IS 6
BP 697
EP 708
DI 10.1002/fld.3763
PG 12
WC Computer Science, Interdisciplinary Applications; Mathematics,
Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas
SC Computer Science; Mathematics; Mechanics; Physics
GA 139FI
UT WOS:000318566800005
ER
PT J
AU Murillo, MS
Weisheit, J
Hansen, SB
Dharma-wardana, MWC
AF Murillo, Michael S.
Weisheit, Jon
Hansen, Stephanie B.
Dharma-wardana, M. W. C.
TI Partial ionization in dense plasmas: Comparisons among average-atom
density functional models
SO PHYSICAL REVIEW E
LA English
DT Article
ID EQUATION-OF-STATE; STRONGLY COUPLED PLASMAS; CORRELATION POTENTIALS;
LIQUID-METALS; ELECTRON-GAS; ION-ION; X-RAY; PRESSURE IONIZATION; FINITE
TEMPERATURES; MOLECULAR-DYNAMICS
AB Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.
C1 [Murillo, Michael S.] Los Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87545 USA.
[Weisheit, Jon] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Hansen, Stephanie B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Hansen, Stephanie B.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Dharma-wardana, M. W. C.] Natl Res Council Canada, Inst Microstruct Sci, Ottawa, ON K1A 0R6, Canada.
RP Murillo, MS (reprint author), Los Alamos Natl Lab, Computat Phys & Methods Grp, POB 1663, Los Alamos, NM 87545 USA.
EM murillo@lanl.gov
FU Lawrence Livermore National Laboratory; US Department of Energy by
Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Sandia, a
multiprogram laboratory; US Department of Energy [DE-AC04-94AL85000]
FX The work of M. S. M. was supported by a research contract to Los Alamos
National Laboratory from Lawrence Livermore National Laboratory. The
work of J.W. was supported by research contracts to the University of
Pittsburgh from Lawrence Livermore National Laboratory. The work of
M.S.M. and J.W. was part of the Cimarron Collaboration based at Lawrence
Livermore National Laboratory. The work of S. B. H. was performed in
part under the auspices of the US Department of Energy by Lawrence
Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and
supported in part by Sandia, a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the US Department of
Energy under Contract No. DE-AC04-94AL85000. We wish to thank several
colleagues for comments and advice received during the course of this
collaboration, including especially Brian Wilson and Stephen Libby.
Fianlly, we would also like to thank one of the anonymous referees for
greatly improving this manuscript.
NR 93
TC 27
Z9 27
U1 1
U2 26
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
EI 1550-2376
J9 PHYS REV E
JI Phys. Rev. E
PD JUN 28
PY 2013
VL 87
IS 6
AR UNSP 063113
DI 10.1103/PhysRevE.87.063113
PG 19
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 173RG
UT WOS:000321096000011
PM 23848795
ER
PT J
AU Rekapalli, B
Giblock, P
Reardon, C
AF Rekapalli, Bhanu
Giblock, Paul
Reardon, Christopher
TI PoPLAR: Portal for Petascale Lifescience Applications and Research
SO BMC BIOINFORMATICS
LA English
DT Article
ID INFERENCE; PLATFORM; MRBAYES; SCIENCE; MODELS; BLAST
AB Background: We are focusing specifically on fast data analysis and retrieval in bioinformatics that will have a direct impact on the quality of human health and the environment. The exponential growth of data generated in biology research, from small atoms to big ecosystems, necessitates an increasingly large computational component to perform analyses. Novel DNA sequencing technologies and complementary high-throughput approaches-such as proteomics, genomics, metabolomics, and meta-genomics-drive data-intensive bioinformatics. While individual research centers or universities could once provide for these applications, this is no longer the case. Today, only specialized national centers can deliver the level of computing resources required to meet the challenges posed by rapid data growth and the resulting computational demand. Consequently, we are developing massively parallel applications to analyze the growing flood of biological data and contribute to the rapid discovery of novel knowledge.
Methods: The efforts of previous National Science Foundation (NSF) projects provided for the generation of parallel modules for widely used bioinformatics applications on the Kraken supercomputer. We have profiled and optimized the code of some of the scientific community's most widely used desktop and small-cluster-based applications, including BLAST from the National Center for Biotechnology Information (NCBI), HMMER, and MUSCLE; scaled them to tens of thousands of cores on high-performance computing (HPC) architectures; made them robust and portable to next-generation architectures; and incorporated these parallel applications in science gateways with a web-based portal.
Results: This paper will discuss the various developmental stages, challenges, and solutions involved in taking bioinformatics applications from the desktop to petascale with a front-end portal for very-large-scale data analysis in the life sciences.
Conclusions: This research will help to bridge the gap between the rate of data generation and the speed at which scientists can study this data. The ability to rapidly analyze data at such a large scale is having a significant, direct impact on science achieved by collaborators who are currently using these tools on supercomputers.
C1 [Rekapalli, Bhanu; Giblock, Paul; Reardon, Christopher] Univ Tennessee, Oak Ridge Natl Lab, Joint Inst Computat Sci, Oak Ridge, TN 37831 USA.
RP Rekapalli, B (reprint author), Univ Tennessee, Oak Ridge Natl Lab, Joint Inst Computat Sci, 1 Bethel Valley Rd,Bldg 5100, Oak Ridge, TN 37831 USA.
EM brekapal@utk.edu
FU National Science Foundation (NSF) [EPS-0919436, OCI-1053575]
FX This research used resources at the Joint Institute for Computational
Sciences; Extreme Science and Engineering Discovery Environment (XSEDE),
funded by the National Science Foundation (NSF); and also supported in
part by the NSF grants EPS-0919436 and OCI-1053575. We would like to
thank Mark Miller and Terri Schwartz for guidance during code
development, and also thank Suresh Marru for technical assistance in
adding the PoPLAR science gateway to XSEDE.
NR 30
TC 2
Z9 2
U1 3
U2 10
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2105
J9 BMC BIOINFORMATICS
JI BMC Bioinformatics
PD JUN 28
PY 2013
VL 14
SU 9
AR UNSP S3
DI 10.1186/1471-2105-14-S9-S3
PG 12
WC Biochemical Research Methods; Biotechnology & Applied Microbiology;
Mathematical & Computational Biology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Mathematical & Computational Biology
GA 184OM
UT WOS:000321901100003
PM 23902523
ER
PT J
AU Levander, AX
Yu, KM
Novikov, SV
Liliental-Weber, Z
Foxon, CT
Dubon, OD
Wu, J
Walukiewicz, W
AF Levander, A. X.
Yu, K. M.
Novikov, S. V.
Liliental-Weber, Z.
Foxon, C. T.
Dubon, O. D.
Wu, J.
Walukiewicz, W.
TI Local structure of amorphous GaN1-xAsx semiconductor alloys across the
composition range
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID ABSORPTION FINE-STRUCTURE; RANDOM SOLID-SOLUTIONS; SOLAR-CELL; A-SI;
FILMS; BAND; SPECTROSCOPY; CRYSTALLINE; GA1-XINXAS; EXAFS
AB Typically only dilute (up to similar to 10%) highly mismatched alloys can be grown due to the large differences in atomic size and electronegativity of the host and the alloying elements. We have overcome the miscibility gap of the GaN1-xAsx system using low temperature molecular beam epitaxy. In the intermediate composition range (0.10 < x < 0.75), the resulting alloys are amorphous. To gain a better understanding of the amorphous structure, the local environment of the As and Ga atoms was investigated using extended x-ray absorption fine structure (EXAFS). The EXAFS analysis shows a high concentration of dangling bonds compared to the crystalline binary endpoint compounds of the alloy system. The disorder parameter was larger for amorphous films compared to crystalline references, but comparable with other amorphous semiconductors. By examining the Ga local environment, the dangling bond density and disorder associated with As-related and N-related bonds could be decoupled. The N-related bonds had a lower dangling bond density and lower disorder. (C) 2013 AIP Publishing LLC.
C1 [Levander, A. X.; Yu, K. M.; Liliental-Weber, Z.; Dubon, O. D.; Wu, J.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Levander, A. X.; Dubon, O. D.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Novikov, S. V.; Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
RP Walukiewicz, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM W_Walukiewicz@lbl.gov
RI Wu, Junqiao/G-7840-2011;
OI Wu, Junqiao/0000-0002-1498-0148; Yu, Kin Man/0000-0003-1350-9642;
Novikov, Sergei/0000-0002-3725-2565
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division of the U.S. DOE [DE-AC02-05CH11231]; EPSRC
[EP/I004203/1, EP/G046867/1, EP/G030634/1]; DOE Office of Biological and
Environmental Research; National Institutes of Health, National Center
for Research Resources, Biomedical Technology Program [P41RR001209]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division of
the U.S. DOE under Contract No. DE-AC02-05CH11231. The growth work at
the University of Nottingham was supported by the EPSRC (Grant Nos.
EP/I004203/1, EP/G046867/1, and EP/G030634/1). Portions of this research
were carried out at the Stanford Synchrotron Radiation Lightsource, a
Directorate of SLAC National Accelerator Laboratory and an Office of
Science User Facility operated for the U.S. Department of Energy Office
of Science by Stanford University. The SSRL Structural Molecular Biology
Program was supported by the DOE Office of Biological and Environmental
Research, and by the National Institutes of Health, National Center for
Research Resources, Biomedical Technology Program (P41RR001209).
NR 30
TC 4
Z9 4
U1 0
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 28
PY 2013
VL 113
IS 24
AR 243505
DI 10.1063/1.4812277
PG 6
WC Physics, Applied
SC Physics
GA 174HY
UT WOS:000321147300013
ER
PT J
AU Nittala, K
Mhin, S
Dunnigan, KM
Robinson, DS
Ihlefeld, JF
Kotula, PG
Brennecka, GL
Jones, JL
AF Nittala, Krishna
Mhin, Sungwook
Dunnigan, Katherine M.
Robinson, Douglas S.
Ihlefeld, Jon F.
Kotula, Paul G.
Brennecka, Geoff L.
Jones, Jacob L.
TI Phase and texture evolution in solution deposited lead zirconate
titanate thin films: Formation and role of the Pt3Pb intermetallic phase
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID CHEMICAL SOLUTION DEPOSITION; CAPACITOR APPLICATIONS; CRYSTALLIZATION;
PZT; TRANSFORMATION; DIFFRACTION; PYROCHLORE; TRANSITION; SILICON;
LAYERS
AB Solution deposition is widely used for the fabrication of lead zirconate titanate (PZT) thin films on platinized silicon substrates. However, phase and texture evolution during the crystallization process is not well understood, particularly due to the difficulty in tracking changes in the thin films in situ during heating. In this work, we characterized phase and texture evolution in situ during heating and crystallization of PZT thin films using high-energy X-ray diffraction. Films were pyrolyzed at either 300 degrees C or 400 degrees C and heated at various rates between 0.5 degrees C/s and similar to 150 degrees C/s. For films that were pyrolyzed at 300 degrees C, the most rapid heating rates first induced strong intensities from a transient Pt3Pb phase. The Pt3Pb phase inherited the texture of the pre-existing platinum layer. Combined with other observations, the results suggest the conversion of the platinum to the intermetallic phase near the interface due to the interdiffusion of lead. In all experimental variations, the pyrochlore phase was observed to form concurrently with the disappearance of the Pt3Pb phase after which the perovskite phase ultimately crystallized. For films that were pyrolyzed at 400 degrees C, the Pt3Pb phase was not observed at any of the heating rates; instead, the pyrochlore phase was first observed, followed by the perovskite phase. Independent of the pyrolysis temperature or observation of Pt3Pb, a 111-dominant crystallographic texture formed in the perovskite phase when crystallized using fast heating rates. These results demonstrate that 111 textures in solution-derived PZT thin films are not correlated with the observation of Pt3Pb or other intermetallic or transient phases. (C) 2013 AIP Publishing LLC.
C1 [Nittala, Krishna; Mhin, Sungwook; Dunnigan, Katherine M.; Jones, Jacob L.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA.
[Robinson, Douglas S.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Ihlefeld, Jon F.; Kotula, Paul G.; Brennecka, Geoff L.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Jones, JL (reprint author), Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA.
EM jacob_jones@ncsu.edu
RI Ihlefeld, Jon/B-3117-2009; Kotula, Paul/A-7657-2011; Brennecka,
Geoff/J-9367-2012
OI Kotula, Paul/0000-0002-7521-2759; Brennecka, Geoff/0000-0002-4476-7655
FU National Institute of NanoEngineering (NINE); Laboratory Directed
Research and Development programs at Sandia; United States Department of
Energy's National Nuclear Security Administration [DE-AC04-94AL85000];
U.S. DOE [DE-AC02-06CH11357]; U.S. National Science Foundation
[DMR-1207293]
FX This work was supported by the National Institute of NanoEngineering
(NINE) and Laboratory Directed Research and Development programs at
Sandia. Sandia National Laboratories is a multiprogram laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under Contract No.
DE-AC04-94AL85000. Use of the Advanced Photon Source, an Office of
Science User Facility operated for the U.S. Department of Energy (DOE)
Office of Science by Argonne National Laboratory, was supported by the
U.S. DOE under Contract No. DE-AC02-06CH11357. Jones and Mhin
acknowledge partial support for this work from the U.S. National Science
Foundation through Award No. DMR-1207293.
NR 33
TC 12
Z9 12
U1 0
U2 33
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 28
PY 2013
VL 113
IS 24
AR 244101
DI 10.1063/1.4811687
PG 11
WC Physics, Applied
SC Physics
GA 174HY
UT WOS:000321147300023
ER
PT J
AU Gleason, AE
Mao, WL
Zhao, JY
AF Gleason, A. E.
Mao, W. L.
Zhao, J. Y.
TI Sound velocities for hexagonally close-packed iron compressed
hydrostatically to 136GPa from phonon density of states
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE sound velocity; NRIXS; hydrostatic; hcp-iron
ID EARTHS INNER-CORE; HIGH-PRESSURE; LIGHT-ELEMENTS; BIRCHS LAW; HCP-IRON;
GPA; FE; DIFFRACTION; GIGAPASCALS; ELASTICITY
AB The phonon density of states of pure iron (Fe-57) was measured under hydrostatic conditions using nuclear resonant inelastic X-ray scattering (NRIXS) at pressures up to 136GPa. Extracting shear (V-s) and compressional (V-p) wave speeds from the Debye velocity and equation of state, we find the hydrostatic shear wave speed trend above previously collected NRIXS data under nonhydrostatic conditions by roughly 5%-6% in the measured pressure range. Using the Birch Murnaghan finite strain approach to fit pressure-dependent adiabatic bulk and shear moduli, we extrapolated our velocities to inner Earth core densities and found that our shear wave speeds are 3% higher than those in previous studies. Our results on pure iron provide a more accurate and precise baseline to which added complications (e.g., Ni concentration, inclusion of various light elements, and temperature effects) can be considered when comparing experimental elasticity measurements to inner core seismic data.
C1 [Gleason, A. E.; Mao, W. L.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA.
[Mao, W. L.] SLAC Natl Accelerator Lab, Dept Photon Sci, Menlo Pk, CA USA.
[Zhao, J. Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Gleason, AE (reprint author), Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA.
EM ariannag@stanford.edu
RI Mao, Wendy/D-1885-2009
FU Geophysics Program at NSF [EAR0738873]; Office of Basic Energy Sciences
of the U.S. Department of Energy; NSF Division of Materials Research
[DE-AC02-06CH11357, W-31-109-Eng-38]; Office of Basic Energy Sciences,
U.S. Dept. of Energy [DE-AC02-05CH11231]; COMPRES through NSF
FX A.E.G. and W. L. M. were supported by the Geophysics Program at NSF
(EAR0738873). Portions of this work were performed at Sectors 16-ID-D,
16-BM-D, and 3-ID-B within XOR, Advanced Photon Source, ANL, supported
by the Office of Basic Energy Sciences of the U.S. Department of Energy
and by NSF Division of Materials Research under DE-AC02-06CH11357 and
W-31-109-Eng-38. Beamline 12.2.2 of the Advanced Light Source, LBNL, is
supported by the Office of Basic Energy Sciences, U.S. Dept. of Energy,
under DE-AC02-05CH11231 and in part by COMPRES through NSF. The authors
are grateful for helpful discussion and assistance from H.-K. Mao
(Geophysical Laboratory), L. Gao (APS), and J.-F. Shu (Geophysical
Laboratory). The authors thank two anonymous reviewers for their
comments.
NR 45
TC 5
Z9 6
U1 2
U2 30
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUN 28
PY 2013
VL 40
IS 12
BP 2983
EP 2987
DI 10.1002/grl.50588
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 185FJ
UT WOS:000321951300019
ER
PT J
AU Ben-Naim, E
Daub, EG
Johnson, PA
AF Ben-Naim, E.
Daub, E. G.
Johnson, P. A.
TI Recurrence statistics of great earthquakes
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE earthquake clustering; statistical seismology; earthquake hazard
ID CALIFORNIA; SEQUENCE
AB We investigate the sequence of great earthquakes over the past century. To examine whether the earthquake record includes temporal clustering, we identify aftershocks and remove those from the record. We focus on the recurrence time, defined as the time between two consecutive earthquakes. We study the variance in the recurrence time and the maximal recurrence time. Using these quantities, we compare the earthquake record with sequences of random events, generated by numerical simulations, while systematically varying the minimal earthquake magnitude M-min. Our analysis shows that the earthquake record is consistent with a random process for magnitude thresholds 7.0M(min)8.3, where the number of events is larger. Interestingly, the earthquake record deviates from a random process at magnitude threshold 8.4M(min)8.5, where the number of events is smaller; however, this deviation is not strong enough to conclude that great earthquakes are clustered. Overall, the findings are robust both qualitatively and quantitatively as statistics of extreme values and moment analysis yield remarkably similar results.
C1 [Ben-Naim, E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA.
[Ben-Naim, E.; Daub, E. G.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA.
[Daub, E. G.; Johnson, P. A.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
[Daub, E. G.] Univ Grenoble 1, Inst Sci Terre, Grenoble, France.
RP Ben-Naim, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA.
EM ebn@lanl.gov
RI Ben-Naim, Eli/C-7542-2009;
OI Ben-Naim, Eli/0000-0002-2444-7304; Johnson, Paul/0000-0002-0927-4003
FU DOE [DE-AC52-06NA25396]
FX We thank Robert Guyer, Robert Ecke, Joan Gomberg, and Thorne Lay for
comments. We gratefully acknowledge support for this research through
DOE grant DE-AC52-06NA25396.
NR 22
TC 6
Z9 6
U1 3
U2 13
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUN 28
PY 2013
VL 40
IS 12
BP 3021
EP 3025
DI 10.1002/grl.50605
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 185FJ
UT WOS:000321951300026
ER
PT J
AU Kassianov, E
Barnard, J
Pekour, M
Berg, LK
Michalsky, J
Lantz, K
Hodges, G
AF Kassianov, Evgueni
Barnard, James
Pekour, Mikhail
Berg, Larry K.
Michalsky, Joseph
Lantz, Kathy
Hodges, Gary
TI Do diurnal aerosol changes affect daily average radiative forcing?
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE diurnal variability of aerosol; remote sensing; time-averaged direct
aerosol radiative forcing; Two-Column Aerosol Project (TCAP)
ID VARIABILITY; ATMOSPHERE
AB Strong diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.
C1 [Kassianov, Evgueni; Barnard, James; Pekour, Mikhail; Berg, Larry K.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
[Michalsky, Joseph] NOAA, Earth Syst Res Lab, Boulder, CO USA.
[Lantz, Kathy; Hodges, Gary] Univ Colorado Boulder, CIRES, Boulder, CO USA.
RP Kassianov, E (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-24, Richland, WA 99352 USA.
EM Evgueni.Kassianov@pnnl.gov
RI Berg, Larry/A-7468-2016
OI Berg, Larry/0000-0002-3362-9492
FU Office of Biological and Environmental Research (OBER) of the U.S.
Department of Energy (DOE); DOE [DE-A06-76RLO 1830]; NOAA GOES-R Cal/Val
Activities within NOAA's National Environmental Satellite, Data, and
Information Service
FX This work has been supported by the Office of Biological and
Environmental Research (OBER) of the U.S. Department of Energy (DOE) as
part of the Atmospheric Radiation Measurement (ARM) and Atmospheric
System Research (ASR) Programs. The Pacific Northwest National
Laboratory (PNNL) is operated by Battelle for the DOE under contract
DE-A06-76RLO 1830. The MFRSR-NOAA measurements were supported by NOAA
GOES-R Cal/Val Activities within NOAA's National Environmental
Satellite, Data, and Information Service. The authors thank one
anonymous reviewer for his/her comments.
NR 20
TC 10
Z9 10
U1 4
U2 14
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUN 28
PY 2013
VL 40
IS 12
BP 3265
EP 3269
DI 10.1002/grl.50567
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 185FJ
UT WOS:000321951300069
ER
PT J
AU Zhang, L
Kok, JF
Henze, DK
Li, QB
Zhao, C
AF Zhang, Li
Kok, Jasper F.
Henze, Daven K.
Li, Qinbin
Zhao, Chun
TI Improving simulations of fine dust surface concentrations over the
western United States by optimizing the particle size distribution
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE fine dust; particle size distribution; GEOS-Chem
ID MINERAL DUST; GOCART MODEL; SEA-SALT; AEROSOLS; IMPACT; EMISSIONS;
TRANSPORT; POLLUTION; SULFATE; TRENDS
AB To improve estimates of remote contributions of dust to fine particulate matter (PM2.5) in the western United States, new dust particle size distributions (PSDs) based upon scale-invariant fragmentation theory (Kok_PSD) with constraints from in situ measurements (IMP_PSD) are implemented in a chemical transport model (GEOS-Chem). Compared to initial simulations, this leads to reductions in the mass of emitted dust particles with radii <1.8 mu m by 40%-60%. Consequently, the root-mean-square error in simulated fine dust concentrations compared to springtime surface observations in the western United States is reduced by 67%-81%. The ratio of simulated fine to coarse PM mass is also improved, which is not achievable by reductions in total dust emissions. The IMP_PSD best represents the PSD of dust transported from remote sources and reduces modeled PM2.5 concentrations up to 5 mu g/m(3) over the western United States, which is important when considering sources contributing to nonattainment of air quality standards.
C1 [Zhang, Li; Henze, Daven K.] Univ Colorado, Dept Chem Engn, Boulder, CO 80309 USA.
[Zhang, Li; Li, Qinbin] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA.
[Kok, Jasper F.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY USA.
[Zhao, Chun] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
RP Zhang, L (reprint author), Univ Colorado, Dept Chem Engn, 1111 Engn Dr,ECME 114, Boulder, CO 80309 USA.
EM li.zhang@colorado.edu
RI Chem, GEOS/C-5595-2014; Zhao, Chun/A-2581-2012; Kok, Jasper/A-9698-2008;
ZHANG, LI/C-6743-2015
OI Zhao, Chun/0000-0003-4693-7213; Kok, Jasper/0000-0003-0464-8325;
FU EPA-STAR [RD-83503701-0]; NSF [AGS 1137716]; U.S. Department of Energy
FX L. Zhang and D. K. Henze recognize support from EPA-STAR grant
RD-83503701-0. J. F. Kok was supported by NSF grant AGS 1137716. C. Zhao
was partially supported by the Earth System Modeling Program of the U.
S. Department of Energy in scope of the project "Investigations on the
Magnitude and Probabilities of Abrupt Climate Transitions."
NR 34
TC 12
Z9 12
U1 2
U2 24
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD JUN 28
PY 2013
VL 40
IS 12
BP 3270
EP 3275
DI 10.1002/grl.50591
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 185FJ
UT WOS:000321951300070
ER
PT J
AU Gu, L
Liu, C
Guo, ZF
AF Gu, Lei
Liu, Cong
Guo, Zhefeng
TI Structural Insights into A beta 42 Oligomers Using Site-directed Spin
Labeling
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID AMYLOID-BETA-PROTEIN; ALZHEIMERS-DISEASE; AGGREGATION BEHAVIOR;
SIDE-CHAINS; SHEET; PEPTIDE; FIBRILS; MOTION; SPECTROSCOPY; EPR
AB Oligomerization of the 42-residue peptide A beta 42 plays a key role in the pathogenesis of Alzheimer disease. Despite great academic and medical interest, the structures of these oligomers have not been well characterized. Site-directed spin labeling combined with electron paramagnetic resonance spectroscopy is a powerful approach for studying structurally ill-defined systems, but its application in amyloid oligomer structure study has not been systematically explored. Here we report a comprehensive structural study on a toxic A beta 42 oligomer, called globulomer, using site-directed spin labeling complemented by other techniques. Transmission electron microscopy shows that these oligomers are globular structures with diameters of similar to 7-8 nm. Circular dichroism shows primarily beta-structures. X-ray powder diffraction suggests a highly ordered intrasheet hydrogen-bonding network and a heterogeneous intersheet packing. Residue-level mobility analysis on spin labels introduced at 14 different positions shows a structured state and a disordered state at all labeling sites. Side chain mobility analysis suggests that structural order increases from N- to C-terminal regions. Intermolecular distance measurements at 14 residue positions suggest that C-terminal residues Gly-29-Val-40 form a tightly packed core with intermolecular distances in a narrow range of 11.5-12.5 angstrom. These intermolecular distances rule out the existence of fibril-like parallel in-register beta-structures and strongly suggest an antiparallel beta-sheet arrangement in A beta 42 globulomers.
C1 [Gu, Lei; Guo, Zhefeng] Univ Calif Los Angeles, Dept Neurol, Brain Res Inst, Inst Mol Biol, Los Angeles, CA 90095 USA.
[Liu, Cong] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.
RP Guo, ZF (reprint author), Univ Calif Los Angeles, Dept Neurol, 710 Westwood Plaza, Los Angeles, CA 90095 USA.
EM zhefeng@ucla.edu
RI Guo, Zhefeng/A-2069-2013
FU Alzheimer's Association [NIRG-09-133555]; American Health Assistance
Foundation [A2010362]
FX This work was supported by the Alzheimer's Association (Grant
NIRG-09-133555) and American Health Assistance Foundation (Grant
A2010362).
NR 59
TC 19
Z9 22
U1 1
U2 25
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
J9 J BIOL CHEM
JI J. Biol. Chem.
PD JUN 28
PY 2013
VL 288
IS 26
BP 18673
EP 18683
DI 10.1074/jbc.M113.457739
PG 11
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 176WB
UT WOS:000321335800004
PM 23687299
ER
PT J
AU Johnson, LM
Gao, L
Shields, CW
Smith, M
Efimenko, K
Cushing, K
Genzer, J
Lopez, GP
AF Johnson, Leah M.
Gao, Lu
Shields, C. Wyatt
Smith, Margret
Efimenko, Kirill
Cushing, Kevin
Genzer, Jan
Lopez, Gabriel P.
TI Elastomeric microparticles for acoustic mediated bioseparations
SO JOURNAL OF NANOBIOTECHNOLOGY
LA English
DT Article
DE Cell separation; Continuous cell sorting; Acoustofluidics; Particle
synthesis; Ultrasound standing wave
ID MICROFLUIDIC CHANNELS; POLY(DIMETHYLSILOXANE); SEPARATION; PARTICLES;
FLOW; ACOUSTOPHORESIS; MICROCHANNELS; CELLS
AB Background: Acoustophoresis has been utilized successfully in applications including cell trapping, focusing, and purification. One current limitation of acoustophoresis for cell sorting is the reliance on the inherent physical properties of cells (e.g., compressibility, density) instead of selecting cells based upon biologically relevant surface-presenting antigens. Introducing an acoustophoretic cell sorting approach that allows biochemical specificity may overcome this limitation, thus advancing the value of acoustophoresis approaches for both the basic research and clinical fields.
Results: The results presented herein demonstrate the ability for negative acoustic contrast particles (NACPs) to specifically capture and transport positive acoustic contrast particles (PACPs) to the antinode of an ultrasound standing wave. Emulsification and post curing of pre-polymers, either polydimethylsiloxane (PDMS) or polyvinylmethylsiloxane (PVMS), within aqueous surfactant solution results in the formation of stable NACPs that focus onto pressure antinodes. We used either photochemical reactions with biotin-tetrafluorophenyl azide (biotin-TFPA) or end-functionalization of Pluronic F108 surfactant to biofunctionalize NACPs. These biotinylated NACPs bind specifically to streptavidin polystyrene microparticles (as cell surrogates) and transport them to the pressure antinode within an acoustofluidic chip.
Conclusion: To the best of our knowledge, this is the first demonstration of using NACPs as carriers for transport of PACPs in an ultrasound standing wave. By using different silicones (i.e., PDMS, PVMS) and curing chemistries, we demonstrate versatility of silicone materials for NACPs and advance the understanding of useful approaches for preparing NACPs. This bioseparation scheme holds potential for applications requiring rapid, continuous separations such as sorting and analysis of cells and biomolecules.
C1 [Johnson, Leah M.; Shields, C. Wyatt; Smith, Margret; Lopez, Gabriel P.] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA.
[Gao, Lu; Lopez, Gabriel P.] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA.
[Gao, Lu; Shields, C. Wyatt; Genzer, Jan; Lopez, Gabriel P.] Duke Univ, NSF Res Triangle Mat Res Sci & Engn Ctr, Durham, NC 27708 USA.
[Efimenko, Kirill; Genzer, Jan] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA.
[Cushing, Kevin; Lopez, Gabriel P.] Univ New Mexico, Ctr Biomed Engn, Albuquerque, NM 87131 USA.
[Cushing, Kevin] Los Alamos Natl Lab, Natl Flow Cytometry Resource, Los Alamos, NM 87545 USA.
RP Lopez, GP (reprint author), Duke Univ, Dept Biomed Engn, 101 Sci Dr,3361 CIEMAS, Durham, NC 27708 USA.
EM gabriel.lopez@duke.edu
FU National Science Foundation (NSF, through the Research Triangle MRSEC)
[DMR-1121107, CBET-10-50176]; NSF Graduate Research Fellowship [1106401]
FX This work was supported by the National Science Foundation (NSF, through
the Research Triangle MRSEC: DMR-1121107 and CBET-10-50176). LMJ thanks
The Hartwell Foundation (Biomedical Research Fellowship) and CWS is
grateful for a NSF Graduate Research Fellowship (1106401). MS thanks the
Pratt Research Fellows program at Duke University. KC thanks the
National Institutes of Health (NIH RR020064, NIH RR001315). We thank
Zijian Zhou at Duke University for the images of the acoustofluidic
chip.
NR 22
TC 16
Z9 16
U1 9
U2 57
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1477-3155
J9 J NANOBIOTECHNOL
JI J. Nanobiotechnol.
PD JUN 28
PY 2013
VL 11
AR 22
DI 10.1186/1477-3155-11-22
PG 8
WC Biotechnology & Applied Microbiology; Nanoscience & Nanotechnology
SC Biotechnology & Applied Microbiology; Science & Technology - Other
Topics
GA 180FI
UT WOS:000321578600003
PM 23809852
ER
PT J
AU Eudes, A
Juminaga, D
Baidoo, EEK
Collins, FW
Keasling, JD
Loque, D
AF Eudes, Aymerick
Juminaga, Darmawi
Baidoo, Edward E. K.
Collins, F. William
Keasling, Jay D.
Loque, Dominique
TI Production of hydroxycinnamoyl anthranilates from glucose in Escherichia
coli
SO MICROBIAL CELL FACTORIES
LA English
DT Article
DE Avenanthramide; Tranilast; BAHD; Antioxidant; Anti-inflammatory;
Tyrosine; Anthranilate; Hydroxycinnamate; Biological synthesis;
Escherichia coli
ID L-TYROSINE PRODUCTION; DIABETIC CARDIOMYOPATHY; 4-COUMARATE-COA LIGASE;
ANTIALLERGIC DRUG; CAFFEIC ACID; GENE FAMILY; IN-VITRO; AVENANTHRAMIDES;
OATS; BIOSYNTHESIS
AB Background: Oats contain hydroxycinnamoyl anthranilates, also named avenanthramides (Avn), which have beneficial health properties because of their antioxidant, anti-inflammatory, and antiproliferative effects. The microbial production of hydroxycinnamoyl anthranilates is an eco-friendly alternative to chemical synthesis or purification from plant sources. We recently demonstrated in yeast (Saccharomyces cerevisiae) that coexpression of 4-coumarate: CoA ligase (4CL) from Arabidopsis thaliana and hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT) from Dianthus caryophyllusenabled the biological production of several cinnamoyl anthranilates upon feeding with anthranilate and various cinnamates. Using engineering strategies to overproduce anthranilate and hydroxycinnamates, we describe here an entire pathway for the microbial synthesis of two Avns from glucose in Escherichia coli.
Results: We first showed that coexpression of HCBT and Nt4CL1 from tobacco in the E. coli anthranilate-accumulating strain W3110 trpD9923 allowed the production of Avn D [N-(4'-hydroxycinnamoyl)-anthranilic acid] and Avn F [N-(3',4'-dihydroxycinnamoyl)-anthranilic acid] upon feeding with p-coumarate and caffeate, respectively. Moreover, additional expression in this strain of a tyrosine ammonia-lyase from Rhodotorula glutinis (RgTAL) led to the conversion of endogenous tyrosine into p-coumarate and resulted in the production of Avn D from glucose. Second, a 135-fold improvement in Avn D titer was achieved by boosting tyrosine production using two plasmids that express the eleven genes necessary for tyrosine synthesis from erythrose 4-phosphate and phosphoenolpyruvate. Finally, expression of either the p-coumarate 3-hydroxylase Sam5 from Saccharothrix espanensis or the hydroxylase complex HpaBC from E. coli resulted in the endogenous production of caffeate and biosynthesis of Avn F.
Conclusion: We established a biosynthetic pathway for the microbial production of valuable hydroxycinnamoyl anthranilates from an inexpensive carbon source. The proposed pathway will serve as a platform for further engineering toward economical and sustainable bioproduction of these pharmaceuticals and other related aromatic compounds.
C1 [Eudes, Aymerick; Juminaga, Darmawi; Baidoo, Edward E. K.; Keasling, Jay D.; Loque, Dominique] Joint BioEnergy Inst, Emeryville, CA 94608 USA.
[Eudes, Aymerick; Keasling, Jay D.; Loque, Dominique] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Juminaga, Darmawi; Keasling, Jay D.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.
[Juminaga, Darmawi; Keasling, Jay D.] Univ Calif Berkeley, Synthet Biol Inst, Berkeley, CA 94720 USA.
[Collins, F. William] Agr & Agri Food Canada, Eastern Cereal & Oilseed Res Ctr, Ottawa, ON K1A 0C5, Canada.
[Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
RP Loque, D (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA.
EM dloque@lbl.gov
RI Keasling, Jay/J-9162-2012; Loque, Dominique/A-8153-2008
OI Keasling, Jay/0000-0003-4170-6088;
FU Amyris; LS9; Lygos; Afingen; U. S. Department of Energy, Office of
Science, Office of Biological and Environmental Research
[DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; U.S.
Department of Energy
FX JDK has financial conflicts of interest in Amyris, LS9, and Lygos. DL
has financial conflicts of interest in Afingen.; Authors are thankful to
Dr. Carsten Rautengarten for providing the Nt4CL1 cDNA clone and Sabin
Russell for language editing of the manuscript. This work was part of
the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the
U. S. Department of Energy, Office of Science, Office of Biological and
Environmental Research, through contract DE-AC02-05CH11231 between
Lawrence Berkeley National Laboratory and the U.S. Department of Energy.
NR 63
TC 12
Z9 13
U1 2
U2 36
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1475-2859
J9 MICROB CELL FACT
JI Microb. Cell. Fact.
PD JUN 28
PY 2013
VL 12
AR 62
DI 10.1186/1475-2859-12-62
PG 10
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA 183YI
UT WOS:000321852800001
PM 23806124
ER
PT J
AU Abdel-Naby, SA
Ciappina, MF
Pindzola, MS
Colgan, J
AF Abdel-Naby, Sh. A.
Ciappina, M. F.
Pindzola, M. S.
Colgan, J.
TI Nuclear-recoil differential cross sections for the two-photon double
ionization of helium
SO PHYSICAL REVIEW A
LA English
DT Article
ID DOUBLE PHOTOIONIZATION; PERTURBATION-THEORY; HE
AB The time-dependent close-coupling method is used to calculate fully differential cross sections for the two-photon double ionization of the He(1s(2) S-1(e)) ground state at a photon energy of 44 eV and the He(1s2s S-1,3(e)) excited states at a photon energy of 34 eV. The total and triple-differential cross sections for the ground state are in good agreement with available calculations. We also used the time-dependent close-coupling method to calculate fully differential nuclear-recoil cross sections of He2+ for the two-photon double ionization of He in the ground and excited states at the same photon energies. The nuclear-recoil differential cross sections of He2+ for the ground state are in good agreement with the measurements recorded with a reaction microscope at the free-electron laser facility in Hamburg (FLASH).
C1 [Abdel-Naby, Sh. A.; Ciappina, M. F.; Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA.
[Abdel-Naby, Sh. A.] Beni Suef Univ, Dept Phys, Bani Suwayf, Egypt.
[Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Abdel-Naby, SA (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA.
RI Abdel-Naby, Shahin/G-1295-2014;
OI Abdel-Naby, Shahin/0000-0002-9268-3587; Ciappina,
Marcelo/0000-0002-1123-6460; Colgan, James/0000-0003-1045-3858
FU US Department of Energy; US National Science Foundation
FX This work was supported in part by grants from the US Department of
Energy and the US National Science Foundation. Computational work was
carried out at the National Energy Research Scientific Computing Center
in Oakland, California, the National Institute for Computational
Sciences in Knoxville, Tennessee, and the Oak Ridge Leadership Computing
Facility in Oak Ridge, Tennessee.
NR 47
TC 7
Z9 7
U1 0
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD JUN 28
PY 2013
VL 87
IS 6
AR 063425
DI 10.1103/PhysRevA.87.063425
PG 12
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 173AH
UT WOS:000321049200005
ER
PT J
AU Akers, C
Laird, AM
Fulton, BR
Ruiz, C
Bardayan, DW
Buchmann, L
Christian, G
Davids, B
Erikson, L
Fallis, J
Hager, U
Hutcheon, D
Martin, L
Murphy, AS
Nelson, K
Spyrou, A
Stanford, C
Ottewell, D
Rojas, A
AF Akers, C.
Laird, A. M.
Fulton, B. R.
Ruiz, C.
Bardayan, D. W.
Buchmann, L.
Christian, G.
Davids, B.
Erikson, L.
Fallis, J.
Hager, U.
Hutcheon, D.
Martin, L.
Murphy, A. St. J.
Nelson, K.
Spyrou, A.
Stanford, C.
Ottewell, D.
Rojas, A.
TI Measurement of Radiative Proton Capture on F-18 and Implications for
Oxygen-Neon Novae
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID REACTION-RATES; CLASSICAL NOVAE; ISAC
AB The rate of the F-18(p, gamma)Ne-19 reaction affects the final abundance of the gamma-ray observable radioisotope F-18, produced in novae. However, no successful measurement of this reaction exists and the rate used is calculated from incomplete information on the contributing resonances. Of the two resonances thought to play a significant role, one has a radiative width estimated from the assumed analogue state in the mirror nucleus, F-19. The second does not have an analogue state assignment at all, resulting in an arbitrary radiative width being assumed. Here, we report the first successful direct measurement of the F-18(p, gamma)Ne-19 reaction. The strength of the 665 keV resonance (E-x = 7.076 MeV) is found to be over an order of magnitude weaker than currently assumed in nova models. Reaction rate calculations show that this resonance therefore plays no significant role in the destruction of F-18 at any astrophysical energy.
C1 [Akers, C.; Ruiz, C.; Buchmann, L.; Christian, G.; Davids, B.; Fallis, J.; Hutcheon, D.; Martin, L.; Ottewell, D.; Rojas, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Akers, C.; Laird, A. M.; Fulton, B. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
[Bardayan, D. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Erikson, L.] Pacific Northwest Natl Lab, Richland, WA 99354 USA.
[Hager, U.] Colorado Sch Mines, Golden, CO 80401 USA.
[Murphy, A. St. J.] Univ Edinburgh, SUPA, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Nelson, K.] McMaster Univ, Hamilton, ON L8S 4L8, Canada.
[Spyrou, A.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.
[Spyrou, A.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Stanford, C.] Univ Waterloo, Waterloo, ON N2L 3G1, Canada.
RP Akers, C (reprint author), TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
RI Hager, Ulrike/O-1738-2016
FU Science and Technology Funding Council; National Science Foundation [PHY
11-02511, PHY 08-22648]
FX The authors would like to thank the beam delivery and ISAC operations
groups at TRIUMF and the Natural Sciences & Engineering Research Council
of Canada. The UK authors would like to acknowledge the support of the
Science and Technology Funding Council. A. S. was supported by the
National Science Foundation under Grants No. PHY 11-02511 and No. PHY
08-22648 (Joint Institute for Nuclear Astrophysics). We are also
extremely grateful for the invaluable assistance in beam production from
Marik Dombsky and Pierre Bricault. Anuj Parikh and Jordi Jose also
provided the authors with valuable correspondence. Lastly, thanks to
Richard deBoer and the other AZURE developers for giving the authors
access to their R-Matrix minimization code.
NR 27
TC 12
Z9 12
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 28
PY 2013
VL 110
IS 26
AR 262502
DI 10.1103/PhysRevLett.110.262502
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 173SC
UT WOS:000321098200006
PM 23848867
ER
PT J
AU Bortolon, A
Heidbrink, WW
Kramer, GJ
Park, JK
Fredrickson, ED
Lore, JD
Podesta, M
AF Bortolon, A.
Heidbrink, W. W.
Kramer, G. J.
Park, J. -K.
Fredrickson, E. D.
Lore, J. D.
Podesta, M.
TI Mitigation of Alfven Activity in a Tokamak by Externally Applied Static
3D Fields
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB The application of static magnetic field perturbations to a tokamak plasma is observed to alter the dynamics of high-frequency bursting Alfven modes that are driven unstable by energetic ions. In response to perturbations with an amplitude of delta B/B similar to 0.01 at the plasma boundary, the mode amplitude is reduced, the bursting frequency is increased, and the frequency chirp is smaller. For modes of weaker bursting character, the magnetic perturbation induces a temporary transition to a saturated continuous mode. Calculations of the perturbed distribution function indicate that the 3D perturbation affects the orbits of fast ions that resonate with the bursting modes. The experimental evidence represents an important demonstration of the possibility of controlling fast-ion instabilities through "phase-space engineering" of the fast-ion distribution function, by means of externally applied perturbation fields.
C1 [Bortolon, A.; Heidbrink, W. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Bortolon, A.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA.
[Kramer, G. J.; Park, J. -K.; Fredrickson, E. D.; Podesta, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Lore, J. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Bortolon, A (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
EM abortolon@pppl.gov
RI Bortolon, Alessandro/H-5764-2015;
OI Bortolon, Alessandro/0000-0002-0094-0209; Lore,
Jeremy/0000-0002-9192-465X
FU US DOE [DE-FG02-06ER54867, DE-AC02-09CH11466, DOE-DE-SC0008309]
FX The authors thank the NSTX team for their support. This work was
supported by the US DOE (Contracts No. DE-FG02-06ER54867, No.
DE-AC02-09CH11466, and No. DOE-DE-SC0008309).
NR 18
TC 10
Z9 10
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 28
PY 2013
VL 110
IS 26
AR 265008
DI 10.1103/PhysRevLett.110.265008
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 173SC
UT WOS:000321098200012
PM 23848889
ER
PT J
AU Kemper, AF
Sentef, M
Moritz, B
Kao, CC
Shen, ZX
Freericks, JK
Devereaux, TP
AF Kemper, A. F.
Sentef, M.
Moritz, B.
Kao, C. C.
Shen, Z. X.
Freericks, J. K.
Devereaux, T. P.
TI Mapping of unoccupied states and relevant bosonic modes via the
time-dependent momentum distribution
SO PHYSICAL REVIEW B
LA English
DT Article
ID RESOLUTION COMPTON-SCATTERING; DENSITY-WAVE; ELECTRON
AB The unoccupied states of complex materials are difficult to measure, yet they play a key role in determining their properties. We propose a technique that can measure the unoccupied states, called time-resolved Compton scattering, which measures the time-dependent momentum distribution (TDMD). Using a nonequilibrium Keldysh formalism, we study the TDMD for electrons coupled to a lattice in a pump-probe setup. We find a direct relation between temporal oscillations in the TDMD and the dispersion of the underlying unoccupied states, suggesting that both can be measured by time-resolved Compton scattering. We demonstrate the experimental feasibility by applying the method to a model of MgB2 with realistic material parameters.
C1 [Kemper, A. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
[Kemper, A. F.; Sentef, M.; Moritz, B.; Shen, Z. X.; Devereaux, T. P.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA.
[Moritz, B.] Univ Illinois, Dept Phys, De Kalb, IL 60115 USA.
[Moritz, B.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA.
[Kao, C. C.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Shen, Z. X.; Devereaux, T. P.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA.
[Freericks, J. K.] Georgetown Univ, Dept Phys, Washington, DC 20057 USA.
RP Kemper, AF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
EM afkemper@lbl.gov
RI Sentef, Michael/L-5717-2013; Moritz, Brian/D-7505-2015; Kemper,
Alexander/F-8243-2016;
OI Sentef, Michael/0000-0002-7946-0282; Moritz, Brian/0000-0002-3747-8484;
Kemper, Alexander/0000-0002-5426-5181; Freericks,
James/0000-0002-6232-9165
FU US Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division [DE-AC02-76SF00515, DE-FG02-08ER46542,
DE-FG02-08ER46540, DE-SC0007091]; McDevitt bequest at Georgetown
University; US DOE, Office of Science [DE-AC02-05CH11231]
FX A.F.K., M.S., B.M. and T.P.D. were supported by the US Department of
Energy, Basic Energy Sciences, Materials Sciences and Engineering
Division under Contract No. DE-AC02-76SF00515. J.K.F. was supported by
the US Department of Energy, Basic Energy Sciences, Materials Sciences
and Engineering Division under Contract No. DE-FG02-08ER46542 and by the
McDevitt bequest at Georgetown University. The collaboration was
supported by the US Department of Energy, Basic Energy Sciences,
Materials Sciences and Engineering Division under Contract Nos.
DE-FG02-08ER46540 and DE-SC0007091. This work was made possible by the
resources of the National Energy Research Scientific Computing Center
which is supported by the US DOE, Office of Science, under Contract No.
DE-AC02-05CH11231. We gratefully acknowledge discussions with P. S.
Kirchmann, J. Sobota, M. Wolf, and S. Yang.
NR 24
TC 13
Z9 13
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 28
PY 2013
VL 87
IS 23
AR UNSP 235139
DI 10.1103/PhysRevB.87.235139
PG 7
WC Physics, Condensed Matter
SC Physics
GA 173EN
UT WOS:000321061000001
ER
PT J
AU Olalde-Velasco, P
Jimenez-Mier, J
Denlinger, J
Yang, WL
AF Olalde-Velasco, P.
Jimenez-Mier, J.
Denlinger, J.
Yang, W. -L.
TI Atomic multiplets at the L-2,L-3 edge of 3d transition metals and the
ligand K edge in x-ray absorption spectroscopy of ionic systems
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC-STRUCTURE; SPECTRA; OXYGEN; FLUORIDES; OXIDES; EMISSION;
DIFLUORIDES; BEAMLINE; FIELD
AB Experimental X-ray absorption spectra at the fluorine K and transition metal L-2,L-3 absorption edges of the MF2 (M = Cr-Ni) family are presented. Ligand field calculations in D-4h symmetry show very good agreement with the transition metal L-2,L-3 XAS spectra. To successfully explain nominal Cr2+ L-2,L-3 XAS spectrum in CrF2, the inclusion of Cr+ and Cr3+ was needed implying the presence of a disproportionation reaction. The multiplet calculations were then modified to remove the structure of the 2p hole in the calculated M 2p -> 3d absorption spectra. These results for the 3d(n+1) states are in one to one correspondence with the leading edge structures found at the fluorine K edge. A direct comparison with the metal L-2,L-3 edges also indicates that there is evidence of the metal multiplet at the fluorine K pre-edge structures.
C1 [Olalde-Velasco, P.; Denlinger, J.; Yang, W. -L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Jimenez-Mier, J.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico.
RP Olalde-Velasco, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
EM paulolalde@gmail.com; jimenez@nucleares.unam.mx
RI Jimenez-Mier, Jose/A-5081-2009; Yang, Wanli/D-7183-2011
OI Jimenez-Mier, Jose/0000-0002-5939-9568; Yang, Wanli/0000-0003-0666-8063
FU DOE [DE-AC03-76sF0009]; CONACyT Mexico [56764]
FX P.O.V. would like to acknowledge support from Centro de Ciencias de la
Complejidad-UNAM and ALS-SSG during partial preparation of this
manuscript. The Advanced Light Source is supported by
DOE(DE-AC03-76sF0009). P.O.V. and J.J.M. would like to thank the support
of CONACyT Mexico, respectively, under postdoctoral scholarship and
under research Grant No. 56764.
NR 36
TC 8
Z9 8
U1 1
U2 47
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 28
PY 2013
VL 87
IS 24
AR 245136
DI 10.1103/PhysRevB.87.245136
PG 8
WC Physics, Condensed Matter
SC Physics
GA 173ER
UT WOS:000321061400003
ER
PT J
AU Xie, Y
Kent, PRC
AF Xie, Yu
Kent, P. R. C.
TI Hybrid density functional study of structural and electronic properties
of functionalized Tin+1Xn (X = C, N) monolayers
SO PHYSICAL REVIEW B
LA English
DT Article
ID TRANSITION-METAL CARBIDES; MAX PHASES; M(N+1)AX(N) PHASES; ION
BATTERIES; GRAPHENE; STABILITY; NITRIDES; TI3ALC2; SOLIDS; TI2ALC
AB Density functional theory simulations with conventional (PBE) and hybrid (HSE06) functionals were performed to investigate the structural and electronic properties of MXene monolayers, Tin+1Cn and Tin+1Nn (n = 1-9) with surfaces terminated by O, F, H, and OH groups. We find that PBE and HSE06 give similar results. Without functional groups, MXenes have magnetically ordered ground states. All the studied materials are metallic except for Ti2CO2, which we predict to be semiconducting. The calculated density of states at the Fermi level of the thicker MXenes (n >= 5) is much higher than for thin MXenes, indicating that properties such as electronic conductivity and surface chemistry will be different. In general, the carbides and nitrides behave differently with the same functional groups.
C1 [Xie, Yu; Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Kent, P. R. C.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
RP Xie, Y (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM yxe@ornl.gov
RI Kent, Paul/A-6756-2008; Xie, Yu/E-5875-2011
OI Kent, Paul/0000-0001-5539-4017; Xie, Yu/0000-0002-7782-5428
FU Fluid Interface Reactions, Structures and Transport (FIRST) Center;
Energy Frontier Research Center by the US Department of Energy, Office
of Science, Office of Basic Energy Sciences; Office of Science of the US
Department of Energy [DE-AC02-05CH11231]
FX We thank Yury Gogotsi for helpful discussions and for bringing MXenes to
our attention. V. Mochalin made helpful comments on the manuscript. This
work was supported as part of the Fluid Interface Reactions, Structures
and Transport (FIRST) Center, an Energy Frontier Research Center funded
by the US Department of Energy, Office of Science, Office of Basic
Energy Sciences. This research used resources of the National Energy
Research Scientific Computing Center, which is supported by the Office
of Science of the US Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 41
TC 84
Z9 86
U1 23
U2 192
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 28
PY 2013
VL 87
IS 23
AR 235441
DI 10.1103/PhysRevB.87.235441
PG 10
WC Physics, Condensed Matter
SC Physics
GA 173EN
UT WOS:000321061000009
ER
PT J
AU Woo, KM
Yu, SS
Barnard, JJ
AF Woo, K. M.
Yu, S. S.
Barnard, J. J.
TI Techniques for correcting velocity and density fluctuations of ion beams
in ion inducti on accelerators
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
AB It is well known that the imperfection of pulse power sources that drive the linear induction accelerators can lead to time-varying fluctuation in the accelerating voltages, which in turn leads to longitudinal emittance growth. We show that this source of emittance growth is correctable, even in space-charge dominated beams with significant transients induced by space-charge waves. Two correction methods are proposed, and their efficacy in reducing longitudinal emittance is demonstrated with three-dimensional particle-in-cell simulations.
C1 [Woo, K. M.; Yu, S. S.] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
[Yu, S. S.; Barnard, J. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Barnard, J. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Woo, KM (reprint author), Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
NR 12
TC 1
Z9 1
U1 1
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD JUN 28
PY 2013
VL 16
IS 6
AR 062804
DI 10.1103/PhysRevSTAB.16.062804
PG 11
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 173SO
UT WOS:000321099500002
ER
PT J
AU Pulk, A
Cate, JHD
AF Pulk, Arto
Cate, Jamie H. D.
TI Control of Ribosomal Subunit Rotation by Elongation Factor G
SO SCIENCE
LA English
DT Article
ID MESSENGER-RNA TRANSLOCATION; EF-G; GTP HYDROLYSIS;
CONFORMATIONAL-CHANGES; INTERSUBUNIT ROTATION; INTERMEDIATE STATES;
PROTEIN-SYNTHESIS; KINETIC-ANALYSIS; SWITCH-I; MOVEMENT
AB Protein synthesis by the ribosome requires the translocation of transfer RNAs and messenger RNA by one codon after each peptide bond is formed, a reaction that requires ribosomal subunit rotation and is catalyzed by the guanosine triphosphatase (GTPase) elongation factor G (EF-G). We determined 3 angstrom resolution x-ray crystal structures of EF-G complexed with a nonhydrolyzable guanosine 5'-triphosphate (GTP) analog and bound to the Escherichia coli ribosome in different states of ribosomal subunit rotation. The structures reveal that EF-G binding to the ribosome stabilizes switch regions in the GTPase active site, resulting in a compact EF-G conformation that favors an intermediate state of ribosomal subunit rotation. These structures suggest that EF-G controls the translocation reaction by cycles of conformational rigidity and relaxation before and after GTP hydrolysis.
C1 [Pulk, Arto; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.
[Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Cate, JHD (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Calif Inst Quantitat Biosci, 229 Stanley Hall, Berkeley, CA 94720 USA.
EM jcate@lbl.gov
OI Pulk, Arto/0000-0001-8793-3038
FU NIH [R01-GM65050]; NIH project MINOS [R01GM105404]; U.S. Department of
Energy [DEAC02-05CH11231]
FX We thank J. Doudna for helpful discussions and comments, J. Holton and
G. Meigs for help with x-ray data collection, and P. Afonine and J.
Headd for advice on crystallographic refinement. This work was supported
by NIH grant R01-GM65050 to J. H. D. C., by the NIH project MINOS grant
R01GM105404 for the Structural Integrated Biology for Life Sciences
(SIBYLS) and 8.3.1 beam lines at the Advanced Light Source (ALS), and by
the U.S. Department of Energy (DEAC02-05CH11231 for the SIBYLS and 8.3.1
beam-lines at the ALS). Coordinates for the ribosomes have been
deposited in the Protein Data Bank (PDB): 4KIX, 4KIY, 4KIZ, 4KJ0, 4KJ1,
4KJ2, 4KJ3, 4KJ4, 4KJ5, 4KJ6, 4KJ7, 4KJ8, 4KJ9, 4KJA, 4KJB, and 4KJC.
NR 56
TC 77
Z9 78
U1 1
U2 31
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
EI 1095-9203
J9 SCIENCE
JI Science
PD JUN 28
PY 2013
VL 340
IS 6140
BP 1544
EP +
AR 1235970
DI 10.1126/science.1235970
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 172ME
UT WOS:000321007000033
PM 23812721
ER
PT J
AU Rowley, DB
Forte, AM
Moucha, R
Mitrovica, JX
Simmons, NA
Grand, SP
AF Rowley, David B.
Forte, Alessandro M.
Moucha, Robert
Mitrovica, Jerry X.
Simmons, Nathan A.
Grand, Stephen P.
TI Dynamic Topography Change of the Eastern United States Since 3 Million
Years Ago
SO SCIENCE
LA English
DT Article
ID ATLANTIC COASTAL-PLAIN; SEA-LEVEL CHANGE; PASSIVE MARGIN; NEW-JERSEY;
RECORD; PLIOCENE; FLUCTUATIONS; COREHOLES; PLATFORM; DRIVEN
AB Sedimentary rocks from Virginia through Florida record marine flooding during the mid-Pliocene. Several wave-cut scarps that at the time of deposition would have been horizontal are now draped over a warped surface with a maximum variation of 60 meters. We modeled dynamic topography by using mantle convection simulations that predict the amplitude and broad spatial distribution of this distortion. The results imply that dynamic topography and, to a lesser extent, glacial isostatic adjustment account for the current architecture of the coastal plain and proximal shelf. This confounds attempts to use regional stratigraphic relations as references for longer-term sea-level determinations. Inferences of Pliocene global sea-level heights or stability of Antarctic ice sheets therefore cannot be deciphered in the absence of an appropriate mantle dynamic reference frame.
C1 [Rowley, David B.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA.
[Forte, Alessandro M.] Univ Quebec, GEOTOP, Montreal, PQ H3C 3P8, Canada.
[Moucha, Robert] Syracuse Univ, Dept Earth Sci, Heroy Geol Lab 204, Syracuse, NY 13244 USA.
[Mitrovica, Jerry X.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
[Simmons, Nathan A.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA.
[Grand, Stephen P.] Univ Texas Austin, Jackson Sch Geol Sci, Austin, TX 78712 USA.
RP Rowley, DB (reprint author), Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA.
EM drowley@uchicago.edu
RI Simmons, Nathan/J-9022-2014; Grand, Stephen/B-4238-2011;
OI Rowley, David/0000-0001-9767-9029
FU Canadian Institute for Advanced Research (CIFAR); Natural Sciences and
Engineering Research Council of Canada; Canada Research Chair Program;
U.S. Department of Energy [DE-AC52-07NA27344]; NSF [EAR0309189,
OCE-1202632]; Harvard University; U.S. Department of Energy by Lawrence
Livermore National Laboratory [DE-AC52-07NA27344]
FX D.B.R., A. M. F., and J.X.M. thank the Canadian Institute for Advanced
Research (CIFAR) for research support and a postdoctoral fellowship to
R. M. and members of the Earth Systems Evolution Program of CIFAR for
discussions and encouragement. We also acknowledge funding from Natural
Sciences and Engineering Research Council of Canada and the Canada
Research Chair Program (A. M. F.), the U.S. Department of Energy under
contract DE-AC52-07NA27344 (N.A.S.), NSF grants EAR0309189 (S. P. G.)
and OCE-1202632 (J.X.M.), and Harvard University (J.X.M.). Work by
N.A.S. is performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Data are available online in the supplementary
materials. D. B. R. was responsible for the geology and data integration
and thanks T. Komacek for help compiling Pliocene marine localities
along the Coastal Plain; A. M. F. and R. M. were responsible for the
dynamic topography calculations; J.X.M. for glacial isostatic adjustment
calculations; and N.A.S. and S. P. G., for the global seismic
tomography, which, working together with A. M. F., yielded the buoyancy
field that underlies the dynamic topography calculations.
NR 41
TC 56
Z9 56
U1 6
U2 48
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD JUN 28
PY 2013
VL 340
IS 6140
BP 1560
EP 1563
DI 10.1126/science.1229180
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 172ME
UT WOS:000321007000038
PM 23686342
ER
PT J
AU Barnard, ES
Hoke, ET
Connor, ST
Groves, JR
Kuykendall, T
Yan, Z
Samulon, EC
Bourret-Courchesne, ED
Aloni, S
Schuck, PJ
Peters, CH
Hardin, BE
AF Barnard, Edward S.
Hoke, Eric T.
Connor, Stephen T.
Groves, James R.
Kuykendall, Tevye
Yan, Zewu
Samulon, Eric C.
Bourret-Courchesne, Edith D.
Aloni, Shaul
Schuck, P. James
Peters, Craig H.
Hardin, Brian E.
TI Probing carrier lifetimes in photovoltaic materials using subsurface
two-photon microscopy
SO SCIENTIFIC REPORTS
LA English
DT Article
ID TIME-RESOLVED PHOTOLUMINESCENCE; CDTE SINGLE-CRYSTALS; FLUORESCENCE
MICROSCOPY; SURFACE RECOMBINATION; SOLAR-CELLS; GAAS; EFFICIENCY;
RESOLUTION; GAN
AB Accurately measuring the bulk minority carrier lifetime is one of the greatest challenges in evaluating photoactive materials used in photovoltaic cells. One-photon time-resolved photoluminescence decay measurements are commonly used to measure lifetimes of direct bandgap materials. However, because the incident photons have energies higher than the bandgap of the semiconductor, most carriers are generated close to the surface, where surface defects cause inaccurate lifetime measurements. Here we show that two-photon absorption permits sub-surface optical excitation, which allows us to decouple surface and bulk recombination processes even in unpassivated samples. Thus with two-photon microscopy we probe the bulk minority carrier lifetime of photovoltaic semiconductors. We demonstrate how the traditional one-photon technique can underestimate the bulk lifetime in a CdTe crystal by 10x and show that two-photon excitation more accurately measures the bulk lifetime. Finally, we generate multi-dimensional spatial maps of optoelectronic properties in the bulk of these materials using two-photon excitation.
C1 [Barnard, Edward S.; Kuykendall, Tevye; Aloni, Shaul; Schuck, P. James] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Barnard, Edward S.; Hoke, Eric T.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.; Hardin, Brian E.] PLANT PV Inc, Oakland, CA USA.
[Yan, Zewu; Samulon, Eric C.; Bourret-Courchesne, Edith D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Barnard, ES (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM esbarnard@lbl.gov; pjschuck@lbl.gov
RI Foundry, Molecular/G-9968-2014
FU Office of Science, Office of Basic Energy Sciences, of the US Department
of Energy [DE-AC02-05CH1123]; Department of Energy [DE-EE0005332,
DE-EE0005953]
FX Work at the Molecular Foundry was supported by the Office of Science,
Office of Basic Energy Sciences, of the US Department of Energy under
Contract No. DE-AC02-05CH1123. This material is based upon work
supported by the Department of Energy under Award Numbers DE-EE0005332
and DE-EE0005953.
NR 31
TC 18
Z9 18
U1 0
U2 31
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD JUN 28
PY 2013
VL 3
AR 2098
DI 10.1038/srep02098
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 172WQ
UT WOS:000321036900011
PM 23807197
ER
PT J
AU Gretarsson, H
Clancy, JP
Singh, Y
Gegenwart, P
Hill, JP
Kim, J
Upton, MH
Said, AH
Casa, D
Gog, T
Kim, YJ
AF Gretarsson, H.
Clancy, J. P.
Singh, Yogesh
Gegenwart, P.
Hill, J. P.
Kim, Jungho
Upton, M. H.
Said, A. H.
Casa, D.
Gog, T.
Kim, Young-June
TI Magnetic excitation spectrum of Na2IrO3 probed with resonant inelastic
x-ray scattering
SO PHYSICAL REVIEW B
LA English
DT Article
AB The low energy excitations in Na2IrO3 have been investigated using resonant inelastic x-ray scattering (RIXS). A magnetic excitation branch can be resolved, whose dispersion reaches a maximum energy of about 35 meV at the Gamma point. The momentum dependence of the excitation energy is much larger along the Gamma-X direction compared to that along the Gamma-Y direction. The observed dispersion relation is consistent with a recent theoretical prediction based on the Heisenberg-Kitaev model. At high temperatures, we find large contributions from lattice vibrational modes to our RIXS spectra, suggesting that a strong electron-lattice coupling is present in Na2IrO3.
C1 [Gretarsson, H.; Clancy, J. P.; Kim, Young-June] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Singh, Yogesh] Indian Inst Sci Educ & Res Mohali, Manauli 140306, PO, India.
[Gegenwart, P.] Univ Gottingen, Inst Phys 1, D-37077 Gottingen, Germany.
[Hill, J. P.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Kim, Jungho; Upton, M. H.; Said, A. H.; Casa, D.; Gog, T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Gretarsson, H (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada.
EM yjkim@physics.utoronto.ca
RI Kim, Young-June /G-7196-2011; singh, yogesh/F-7160-2016; Casa,
Diego/F-9060-2016; Gegenwart, Philipp/A-7291-2017
OI Kim, Young-June /0000-0002-1172-8895;
FU NSERC; CFI; OMRI; U.S. DOE [DE-AC02-06CH11357]
FX We would like to thank G. Khaliullin, G. Jackeli, B. J. Kim, and S.
Johnston for valuable discussions. Research at the University of Toronto
was supported by the NSERC, CFI, and OMRI. Use of the Advanced Photon
Source, an Office of Science User Facility operated for the U.S.
Department of Energy (DOE) Office of Science by Argonne National
Laboratory, was supported by the U.S. DOE under Contract No.
DE-AC02-06CH11357.
NR 36
TC 40
Z9 40
U1 2
U2 48
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 28
PY 2013
VL 87
IS 22
AR 220407
DI 10.1103/PhysRevB.87.220407
PG 5
WC Physics, Condensed Matter
SC Physics
GA 173EJ
UT WOS:000321060600001
ER
PT J
AU Mahjouri-Samani, M
Zhou, YS
Fan, L
Gao, Y
Xiong, W
More, KL
Jiang, L
Lu, YF
AF Mahjouri-Samani, M.
Zhou, Y. S.
Fan, L.
Gao, Y.
Xiong, W.
More, K. L.
Jiang, L.
Lu, Y. F.
TI Laser-assisted solid-state synthesis of carbon nanotube/silicon
core/shell structures
SO NANOTECHNOLOGY
LA English
DT Article
ID HETEROJUNCTION SOLAR-CELLS; LITHIUM-ION BATTERIES;
MECHANICAL-PROPERTIES; NANOTUBES; SILICON; CAPACITY; ELECTRONICS;
MOBILITY; ANODES
AB A single-step solid-state synthetic approach was developed for the synthesis of silicon-coated carbon nanotube (CNT) core/shell structures. This was achieved through laser-induced melting and evaporation of CNT-deposited Si substrates using a continuous wavelength CO2 laser. The synthesis location of the CNT/Si structures was defined by the laser-irradiated spots. The thickness of the coating was controlled by tuning the laser power and synthesis time during the coating process. This laser-based synthetic technique provides a convenient approach for solid-state, controllable, gas-free, simple and cost-effective fabrication of CNT/Si core/shell structures.
C1 [Mahjouri-Samani, M.; Zhou, Y. S.; Fan, L.; Gao, Y.; Xiong, W.; Lu, Y. F.] Univ Nebraska, Dept Elect Engn, Lincoln, NE 68588 USA.
[More, K. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Jiang, L.] Beijing Inst Technol, Dept Mech & Automat Engn, Beijing 100081, Peoples R China.
RP Mahjouri-Samani, M (reprint author), Univ Nebraska, Dept Elect Engn, Lincoln, NE 68588 USA.
EM ylu2@unl.edu
RI Gao, Yang/M-9866-2013; Mahjouri-Samani, Masoud/Q-2239-2015; More,
Karren/A-8097-2016
OI Mahjouri-Samani, Masoud/0000-0002-6080-7450; More,
Karren/0000-0001-5223-9097
FU National Science Foundation [CMMI 0852729, 1068510, 1129613]; Nebraska
Center for Energy Science Research (NCESR); Oak Ridge National
Laboratory's Shared Research Equipment (ShaRE) User Facility; Office of
Basic Energy Sciences, US Department of Energy
FX This research work was financially supported by the National Science
Foundation (CMMI 0852729, 1068510, 1129613), Nebraska Center for Energy
Science Research (NCESR), and in part by Oak Ridge National Laboratory's
Shared Research Equipment (ShaRE) User Facility, which is sponsored by
the Office of Basic Energy Sciences, US Department of Energy. The
authors are grateful to Dr David B Geohegan (ORNL) for his valuable
discussions and comments.
NR 36
TC 2
Z9 2
U1 3
U2 77
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
EI 1361-6528
J9 NANOTECHNOLOGY
JI Nanotechnology
PD JUN 28
PY 2013
VL 24
IS 25
AR 255604
DI 10.1088/0957-4484/24/25/255604
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 159EY
UT WOS:000320029000013
PM 23727730
ER
PT J
AU Ren, F
Zhou, XD
Liu, YC
Wang, YQ
Cai, GX
Xiao, XH
Dai, ZG
Li, WQ
Yan, SJ
Wu, W
Zhang, C
Ni, HW
Jiang, CZ
AF Ren, Feng
Zhou, Xiao-Dong
Liu, Yi-Chao
Wang, Yong-Qiang
Cai, Guang-Xu
Xiao, Xiang-Heng
Dai, Zhi-Gao
Li, Wen-Qing
Yan, Shao-Jian
Wu, Wei
Zhang, Chao
Ni, Hong-Wei
Jiang, Chang-Zhong
TI Fabrication and properties of TiO2 nanofilms on different substrates by
a novel and universal method of Ti-ion implantation and subsequent
annealing
SO NANOTECHNOLOGY
LA English
DT Article
ID VISIBLE-LIGHT IRRADIATION; TITANIUM-DIOXIDE; RAMAN-SCATTERING; NANOPHASE
TIO2; ANATASE TIO2; PHOTOCATALYSTS; SPECTRUM; TRANSFORMATION;
NANOPARTICLES; NANOCRYSTALS
AB We report a new, novel and universal method to fabricate high-quality titanium dioxide (TiO2) nanofilms on different substrates by a solid phase growth process of ion implantation and subsequent annealing in oxygen atmosphere. Ti ions were implanted into fused silica, soda lime glass, Z-cut quartz, or (0001) alpha-sapphire by a metal vapor vacuum arc (MEVVA) ion source implanter to fluences of 0.75, 1.5 and 3 x 10(17) ions cm(-2) with a nominal accelerating voltage of 20 kV. To understand the influence of the annealing temperature, time, and substrate on the formation and phase transformation of the TiO2 nanofilms, the Ti-ion-implanted substrates were annealed in oxygen atmosphere from 500 to 1000 degrees C for 1-6 h. The formation of TiO2 nanofilms resulted from the slow out-diffusion of implanted Ti ions from the substrates which were then oxidized at the surfaces. The thickness and phase of the nanofilms can be tailored by controlling the implantation and annealing parameters. Since the TiO2 nanofilms are formed under high temperature and low growth rate, they show good crystallinity and antibacterial properties, with good film adhesion and stability, suggesting that the TiO2 nanofilms formed by this method have great potential in applications such as antibacterial and self-cleaning transparent glass.
C1 [Ren, Feng; Zhou, Xiao-Dong; Liu, Yi-Chao; Cai, Guang-Xu; Xiao, Xiang-Heng; Dai, Zhi-Gao; Li, Wen-Qing; Yan, Shao-Jian; Wu, Wei; Jiang, Chang-Zhong] Wuhan Univ, Ctr Ion Beam Applicat, Sch Phys & Technol, Wuhan 430072, Peoples R China.
[Ren, Feng; Zhou, Xiao-Dong; Liu, Yi-Chao; Cai, Guang-Xu; Xiao, Xiang-Heng; Dai, Zhi-Gao; Li, Wen-Qing; Yan, Shao-Jian; Wu, Wei; Jiang, Chang-Zhong] Wuhan Univ, Ctr Electron Microscopy, Wuhan 430072, Peoples R China.
[Wang, Yong-Qiang] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
[Zhang, Chao; Ni, Hong-Wei] Wuhan Univ Sci & Technol, Sch Met & Mat, Wuhan 430081, Peoples R China.
RP Ren, F (reprint author), Wuhan Univ, Ctr Ion Beam Applicat, Sch Phys & Technol, Wuhan 430072, Peoples R China.
EM yqwang@lanl.gov; czjiang@whu.edu.cn
RI Ren, Feng/F-9778-2014; Jiang, Changzhong/O-6273-2014; Wu,
Wei/B-6255-2009;
OI Ren, Feng/0000-0002-9557-5995; Wu, Wei/0000-0002-7672-7965; xiao,
xiangheng/0000-0001-9111-1619
FU National Basic Research Program of China (973 Program) [2009CB939704];
Natural Science Foundation of China [51171132, 11175133, 11005082,
5120115]; Chinese Ministry of Education [201000141120042, 31100]; Hubei
Provincial Natural Science Foundation [2012FFA042]; Fundamental Research
Funds for the Central Universities; Center for Integrated
Nanotechnologies (CINT)
FX The author thanks the National Basic Research Program of China (973
Program, 2009CB939704), the Natural Science Foundation of China
(51171132, 11175133, 11005082, 5120115), the Foundations from Chinese
Ministry of Education (201000141120042, 31100), Hubei Provincial Natural
Science Foundation (2012FFA042), and the Fundamental Research Funds for
the Central Universities for financial support. Partial support for Y Q
Wang was provided by the Center for Integrated Nanotechnologies (CINT),
a US Department of Energy nanoscience user center jointly operated by
Los Alamos and Sandia National Laboratories.
NR 32
TC 8
Z9 9
U1 3
U2 53
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
J9 NANOTECHNOLOGY
JI Nanotechnology
PD JUN 28
PY 2013
VL 24
IS 25
AR 255603
DI 10.1088/0957-4484/24/25/255603
PG 10
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 159EY
UT WOS:000320029000012
PM 23727692
ER
PT J
AU Satoh, Y
Yokota, T
Sudo, T
Kondo, M
Lai, A
Kincade, PW
Kouro, T
Iida, R
Kokame, K
Miyata, T
Habuchi, Y
Matsui, K
Tanaka, H
Matsumura, I
Oritani, K
Kohwi-Shigematsu, T
Kanakura, Y
AF Satoh, Yusuke
Yokota, Takafumi
Sudo, Takao
Kondo, Motonari
Lai, Anne
Kincade, Paul W.
Kouro, Taku
Iida, Ryuji
Kokame, Koichi
Miyata, Toshiyuki
Habuchi, Yoko
Matsui, Keiko
Tanaka, Hirokazu
Matsumura, Itaru
Oritani, Kenji
Kohwi-Shigematsu, Terumi
Kanakura, Yuzuru
TI The Satb1 Protein Directs Hematopoietic Stem Cell Differentiation toward
Lymphoid Lineages
SO IMMUNITY
LA English
DT Article
ID MAR-BINDING PROTEIN; BONE-MARROW; GENE-EXPRESSION; STROMAL CELLS; RAG1
LOCUS; PROGENITORS; PROMOTE; TRANSCRIPTION; IDENTIFICATION;
LYMPHOPOIESIS
AB How hematopoietic stem cells (HSCs) produce particular lineages is insufficiently understood. We searched for key factors that direct HSC to lymphopoiesis. Comparing gene expression profiles for HSCs and early lymphoid progenitors revealed that Satb1, a global chromatin regulator, was markedly induced with lymphoid lineage specification. HSCs from Satb1-deficient mice were defective in lymphopoietic activity in culture and failed to reconstitute T lymphopoiesis in wild-type recipients. Furthermore, Satb1 transduction of HSCs and embryonic stem cells robustly promoted their differentiation toward lymphocytes. Whereas genes that encode Ikaros, E2A, and Notch1 were unaffected, many genes involved in lineage decisions were regulated by Satb1. Satb1 expression was reduced in aged HSCs with compromised lymphopoietic potential, but forced Satb1 expression partly restored that potential. Thus, Satb1 governs the initiating process central to the replenishing of lymphoid lineages. Such activity in lymphoid cell generation may be of clinical importance and useful to overcome immunosenescence.
C1 [Satoh, Yusuke; Yokota, Takafumi; Sudo, Takao; Habuchi, Yoko; Matsui, Keiko; Tanaka, Hirokazu; Matsumura, Itaru; Oritani, Kenji; Kanakura, Yuzuru] Osaka Univ, Grad Sch Med, Dept Hematol & Oncol, Suita, Osaka 5650871, Japan.
[Kondo, Motonari; Lai, Anne] Duke Univ, Med Ctr, Dept Immunol, Durham, NC 27710 USA.
[Kincade, Paul W.; Iida, Ryuji] Oklahoma Med Res Fdn, Immunobiol & Canc Program, Oklahoma City, OK 73104 USA.
[Kouro, Taku; Iida, Ryuji] Natl Inst Biomed Innovat, Lab Immune Modulat, Ibaraki, Osaka 5670085, Japan.
[Kokame, Koichi; Miyata, Toshiyuki] Natl Cerebral & Cardiovasc Ctr, Dept Mol Pathogenesis, Suita, Osaka 5658565, Japan.
[Kohwi-Shigematsu, Terumi] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Cell & Mol Biol, Berkeley, CA 94720 USA.
RP Yokota, T (reprint author), Osaka Univ, Grad Sch Med, Dept Hematol & Oncol, Suita, Osaka 5650871, Japan.
EM yokotat@bldon.med.osaka-u.ac.jp
FU Mitsubishi Pharma Research Foundation; National Institutes of Health
[AI020069, HL107138-03, R37 CA039681]
FX We thank T. Nakano for discussion of the results. This work was
supported in part by a grant from Mitsubishi Pharma Research Foundation
and grants AI020069, HL107138-03, and R37 CA039681 from the National
Institutes of Health.
NR 36
TC 27
Z9 28
U1 0
U2 6
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 1074-7613
EI 1097-4180
J9 IMMUNITY
JI Immunity
PD JUN 27
PY 2013
VL 38
IS 6
BP 1105
EP 1115
DI 10.1016/j.immuni.2013.05.014
PG 11
WC Immunology
SC Immunology
GA AA2TR
UT WOS:000330947500007
PM 23791645
ER
PT J
AU Lin, ZH
Dong, J
Greene, DL
AF Lin, Zhenhong
Dong, Jing
Greene, David L.
TI Hydrogen vehicles: Impacts of DOE technical targets on market acceptance
and societal benefits
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE Hydrogen; Alternative fuel vehicle; Energy; Greenhouse gas; Public
policy; Electric vehicle
ID PLUG-IN HYBRID
AB Hydrogen vehicles (H2V), including H-2 internal combustion engine, fuel cell and fuel cell plug-in hybrid, could greatly reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. The U.S. Department of Energy has adopted targets for vehicle component technologies to address key technical barriers to widespread commercialization of H(2)Vs. This study estimates the market acceptance of H(2)Vs and the resulting societal benefits and subsidy in 41 scenarios that reflect a wide range of progress in meeting these technical targets. Important results include: (1) H(2)Vs could reach 20-70% market shares by 2050, depending on progress in achieving the technical targets. With a basic hydrogen infrastructure (similar to 5% hydrogen availability), the H2V market share is estimated to be 2-8%. Fuel cell and hydrogen costs are the most important factors affecting the long-term market shares of H(2)Vs. (2) Meeting all technical targets on time could result in about an 80% cut in petroleum use and a 62% (or 72% with aggressive electricity de-carbonization) reduction in GHG in 2050. (3) The required hydrogen infrastructure subsidy is estimated to range from $22 to $47 billion and the vehicle subsidy from $4 to $17 billion. (4) Long-term H2V market shares, societal benefits and hydrogen subsidies appear to be highly robust against delay in one target, if all other targets are met on time. R&D diversification could provide insurance for greater societal benefits. (5) Both H(2)Vs and plug-in electric vehicles could exceed 50% market shares by 2050, if all targets are met on time. The overlapping technology, the fuel cell plug-in hybrid electric vehicle, appears attractive both in the short and long runs, but for different reasons. Copyright (c) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
C1 [Lin, Zhenhong; Greene, David L.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA.
[Dong, Jing] Iowa State Univ, Ames, IA 50011 USA.
RP Lin, ZH (reprint author), Oak Ridge Natl Lab, 2360 Cherahala Blvd, Knoxville, TN 37932 USA.
EM linz@ornl.gov; jingdong@iastate.edu; dlgreene@ornl.gov
FU U.S. Department of Energy's Fuel Cell Technologies Office; Vehicle
Technologies Office
FX The authors thank the support of the U.S. Department of Energy's Fuel
Cell Technologies Office (Fred Joseck) and Vehicle Technologies Office
(Jake Ward). The authors assume sole responsibilities for content and
viewpoints expressed in this paper.
NR 15
TC 5
Z9 5
U1 1
U2 21
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD JUN 27
PY 2013
VL 38
IS 19
BP 7973
EP 7985
DI 10.1016/j.ijhydene.2013.04.120
PG 13
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 177XA
UT WOS:000321407500026
ER
PT J
AU Klebanoff, LE
Keller, JO
AF Klebanoff, L. E.
Keller, J. O.
TI 5 years of hydrogen storage research in the U.S. DOE Metal Hydride
Center of Excellence (MHCoE) (vol 38, pg 4533, 2013)
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Correction
C1 [Klebanoff, L. E.; Keller, J. O.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Klebanoff, LE (reprint author), Sandia Natl Labs, POB 969,MS 9161,7011 East Ave, Livermore, CA 94551 USA.
EM lekleba@sandia.gov
NR 1
TC 2
Z9 2
U1 4
U2 15
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD JUN 27
PY 2013
VL 38
IS 19
BP 8022
EP 8022
DI 10.1016/j.ijhydene.2013.04.105
PG 1
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 177XA
UT WOS:000321407500031
ER
PT J
AU Houf, WG
Winters, WS
AF Houf, W. G.
Winters, W. S.
TI Simulation of high-pressure liquid hydrogen releases
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE Liquid hydrogen jet releases; Hydrogen codes and standards; Dilution
distances
ID FLOW
AB Sandia National Laboratories is working with stakeholders to develop scientific data for use by standards development organizations to create hydrogen codes and standards for the safe use of liquid hydrogen. Knowledge of the concentration field and flammability envelope for high-pressure hydrogen leaks is an issue of importance for the safe use of liquid hydrogen. Sandia National Laboratories is engaged in an experimental and analytical program to characterize and predict the behavior of liquid hydrogen releases. This paper presents a model for computing hydrogen dilution distances for cold hydrogen releases. Model validation is presented for leaks of room temperature and 80 K high-pressure hydrogen gas. The model accounts for a series of transitions that occurs from a stagnate location in the tank to a point in the leak jet where the concentration of hydrogen in air at the jet centerline has dropped to 4% by volume. The leaking hydrogen is assumed to be a simple compressible substance with thermodynamic equilibrium between hydrogen vapor, hydrogen liquid and air. For the multi-phase portions of the jet near the leak location the REFPROP equation of state models developed by NIST are used to account for the thermodynamics. Further downstream, the jet develops into an atmospheric gas jet where the thermodynamics are described as a mixture of ideal gases (hydrogen-air mixture). Simulations are presented for dilution distances in under-expanded high-pressure leaks from the saturated vapor and saturated liquid portions of a liquid hydrogen storage tank at 10.34 barg (150 PSIG). Copyright (c) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
C1 [Houf, W. G.; Winters, W. S.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Houf, WG (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA.
EM will@sandia.gov
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94-AL85000]; U.S. Department of Energy, Office
of Energy Efficiency and Renewable Energy, Fuel Cell Technologies
Program under the Safety, Codes, and Standards subprogram
FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under Contract
DE-AC04-94-AL85000.; This work was supported by the U.S. Department of
Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell
Technologies Program under the Safety, Codes, and Standards subprogram
element managed by Antonio Ruiz.
NR 21
TC 2
Z9 2
U1 1
U2 9
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD JUN 27
PY 2013
VL 38
IS 19
BP 8092
EP 8099
DI 10.1016/j.ijhydene.2013.01.052
PG 8
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 177XA
UT WOS:000321407500040
ER
PT J
AU Houf, WG
Evans, GH
Ekoto, IW
Merilo, EG
Groethe, MA
AF Houf, W. G.
Evans, G. H.
Ekoto, I. W.
Merilo, E. G.
Groethe, M. A.
TI Hydrogen fuel-cell forklift vehicle releases in enclosed spaces
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE Hydrogen fuel-cell forklift; Simulations; Experimental validation;
Hydrogen codes and standards
ID DYNAMICS
AB Sandia National Laboratories has worked with stakeholders and original equipment manufacturers (OEMs) to develop scientific data that can be used to create risk-informed hydrogen codes and standards for the safe operation of indoor hydrogen fuel-cell forklifts. An important issue is the possibility of an accident inside a warehouse or other enclosed space, where a release of hydrogen from the high-pressure gaseous storage tank could occur. For such scenarios, computational fluid dynamics (CFD) simulations have been used to model the release and dispersion of gaseous hydrogen from the vehicle and to study the behavior of the ignitable hydrogen cloud inside the warehouse or enclosure. The overpressure arising as a result of ignition and subsequent deflagration of the hydrogen cloud within the warehouse has been studied for different ignition delay times and ignition locations. Both ventilated and unventilated warehouses have been considered in the analysis. Experiments have been performed in a scaled warehouse test facility and compared with simulations to validate the results of the computational analysis. Copyright (c) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
C1 [Houf, W. G.; Evans, G. H.; Ekoto, I. W.] Sandia Natl Labs, Livermore, CA 94551 USA.
[Merilo, E. G.; Groethe, M. A.] SRI Int, Menlo Pk, CA 94025 USA.
RP Ekoto, IW (reprint author), Sandia Natl Labs, 7011 East Ave,MS 9052, Livermore, CA 94551 USA.
EM iekoto@sandia.gov
FU U.S. Department of Energy, Office of Energy Efficiency and Renewable
Energy, Fuel Cell Technologies Program under the Safety, Codes, and
Standards subprogram element
FX This work was supported by the U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program
under the Safety, Codes, and Standards subprogram element managed by
Antonio Ruiz.
NR 17
TC 4
Z9 4
U1 2
U2 23
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD JUN 27
PY 2013
VL 38
IS 19
BP 8179
EP 8189
DI 10.1016/j.ijhydene.2012.05.115
PG 11
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 177XA
UT WOS:000321407500049
ER
PT J
AU Petitpas, G
Aceves, SM
AF Petitpas, G.
Aceves, S. M.
TI Modeling of sudden hydrogen expansion from cryogenic pressure vessel
failure
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE Room temperature pressure vessel; Cryogenic pressure vessel; Failure;
Sudden release; Expansion energy
ID STORAGE; VEHICLES; RELEASE; SIMULATION
AB We have modeled sudden hydrogen expansion from a cryogenic pressure vessel. This model considers real gas equations of state, single and two-phase flow, and the specific "vessel within vessel" geometry of cryogenic vessels. The model can solve sudden hydrogen expansion for initial pressures up to 1210 bar and for initial temperatures ranging from 27 to 400 K. For practical reasons, our study focuses on hydrogen release from 345 bar, with temperatures between 62 K and 300 K. The pressure vessel internal volume is 151 L. The results indicate that cryogenic pressure vessels may offer a safety advantage with respect to compressed hydrogen vessels because i) the vacuum jacket protects the pressure vessel from environmental damage, ii) hydrogen, when released, discharges first into an intermediate chamber before reaching the outside environment, and working temperature is typically much lower and thus the hydrogen has less energy. Results indicate that key expansion parameters such as pressure, rate of energy release, and thrust are all considerably lower for a cryogenic vessel within vessel geometry as compared to ambient temperature compressed gas vessels. Future work will focus on taking advantage of these favorable conditions to attempt fail-safe cryogenic vessel designs that do not harm people or property even after catastrophic failure of the inner pressure vessel. Copyright (c) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
C1 [Petitpas, G.; Aceves, S. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Petitpas, G (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-792, Livermore, CA 94550 USA.
EM petitpas1@llnl.gov
FU DOE, Office of Fuel Cell Technologies; U.S. Department of Energy by
Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
FX This project was funded by DOE, Office of Fuel Cell Technologies,
Antonio Ruiz, Technology Development Manager. This work performed under
the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.
NR 19
TC 6
Z9 6
U1 1
U2 9
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD JUN 27
PY 2013
VL 38
IS 19
BP 8190
EP 8198
DI 10.1016/j.ijhydene.2012.03.166
PG 9
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 177XA
UT WOS:000321407500050
ER
PT J
AU Lo, MH
Wu, CM
Ma, HY
Famiglietti, JS
AF Lo, Min-Hui
Wu, Chien-Ming
Ma, Hsi-Yen
Famiglietti, James S.
TI The response of coastal stratocumulus clouds to agricultural irrigation
in California
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE irrigation; Stratocumulus; land surface model; general circulation model
ID LOWER-TROPOSPHERIC STABILITY; TOPPED BOUNDARY-LAYERS; SUBTROPICAL
STRATOCUMULUS; STRATIFORM CLOUDS; RADIATION BUDGET; SURFACE CLIMATE;
UNITED-STATES; LAND-SURFACE; WATER CYCLE; MODEL
AB Stratocumulus clouds (SC) often exist over the eastern subtropical oceans during the summer and have significant impacts on the surface radiation budget. Both atmospheric subsidence and lower troposphere stability (LTS) have been found to play important roles in maintaining SC. Using global climate model simulations, we find that irrigation in California's Central Valley results in a decrease of land surface temperature, leading to a smaller land-sea heat contrast, and a corresponding reduction in sea breeze, subsidence, and LTS over the near-coastal region. The decrease in LTS directly drives a reduction in modeled SC coverage, and it would arguably do so in reality because of the well-known link between LTS and SC coverage. Consequently, simulated absorbed surface solar radiation over this region increases by 8W/m(2) (3.7%) due to the reduction in SC cover, resulting in the warming at the Earth's surface. This study has important implications for how SC can change with regard to future climate. In contrast to the general effects of climate change on the formation of SC, our results suggest that irrigation practices in the Central Valley may drive a decrease in nearby SC coverage.
C1 [Lo, Min-Hui; Wu, Chien-Ming] Natl Taiwan Univ, Dept Atmospher Sci, Taipei 10617, Taiwan.
[Ma, Hsi-Yen] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA.
[Famiglietti, James S.] Univ Calif Irvine, UC Ctr Hydrol Modeling, Irvine, CA USA.
[Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA.
RP Lo, MH (reprint author), Natl Taiwan Univ, Dept Atmospher Sci, Taipei 10617, Taiwan.
EM minhuilo@ntu.edu.tw
RI Ma, Hsi-Yen/K-1019-2013;
OI LO, MIN-HUI/0000-0002-8653-143X; Wu, Chien-Ming/0000-0001-9295-7181
FU National Science Council Grant [101-2111-M-002-001, 101-2111-M-002-006,
NSC-100-2119-M-001-029-MY5]; University of California Office of the
President (UCOP) MRPI program; U.S. Department of Energy by Lawrence
Livermore National Laboratory [DE-AC52-07NA27344]
FX We thank Dominik Wisser and Stefan Siebert for providing the global
irrigation datasets. Funding was provided by the National Science
Council Grant 101-2111-M-002-001 and 101-2111-M-002-006 to National
Taiwan University, NSC-100-2119-M-001-029-MY5, and by the University of
California Office of the President (UCOP) MRPI program. The contribution
of Hsi-Yen Ma to this work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
contract DE-AC52-07NA27344.
NR 49
TC 4
Z9 4
U1 1
U2 13
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUN 27
PY 2013
VL 118
IS 12
BP 6044
EP 6051
DI 10.1002/jgrd.50516
PG 8
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 187OY
UT WOS:000322129600010
ER
PT J
AU de Boer, G
Bauer, SE
Toto, T
Menon, S
Vogelmann, AM
AF de Boer, G.
Bauer, S. E.
Toto, T.
Menon, Surabi
Vogelmann, A. M.
TI Evaluation of aerosol-cloud interaction in the GISS ModelE using ARM
observations
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE climate model; aerosol cloud interactions; model evaluation; remote
sensing
ID GLOBAL CLIMATE MODELS; GENERAL-CIRCULATION MODEL; GROUND-BASED
MEASUREMENTS; EFFECTIVE RADIUS; SATELLITE DATA; WATER CLOUDS;
PARAMETERIZATION; MICROPHYSICS; SIMULATIONS; VAPOR
AB Observations from the US Department of Energy's Atmospheric Radiation Measurement (ARM) program are used to evaluate the ability of the NASA GISS ModelE global climate model in reproducing observed interactions between aerosols and clouds. Included in the evaluation are comparisons of basic meteorology and aerosol properties, droplet activation, effective radius parameterizations, and surfacebased evaluations of aerosolcloud interactions (ACI). Differences between the simulated and observed ACI are generally large, but these differences may result partially from vertical distribution of aerosol in the model, rather than the representation of physical processes governing the interactions between aerosols and clouds. Compared to the current observations, the ModelE often features elevated droplet concentrations for a given aerosol concentration, indicating that the activation parameterizations used may be too aggressive. Additionally, parameterizations for effective radius commonly used in models were tested using ARM observations, and there was no clear superior parameterization for the cases reviewed here. This lack of consensus is demonstrated to result in potentially large, statistically significant differences to surface radiative budgets, should one parameterization be chosen over another.
C1 [de Boer, G.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[de Boer, G.] NOAA Earth Syst Res Lab, Div Phys Sci, Boulder, CO USA.
[de Boer, G.; Menon, Surabi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Bauer, S. E.] Columbia Univ, Earth Inst, New York, NY USA.
[Bauer, S. E.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Toto, T.; Vogelmann, A. M.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Menon, Surabi] ClimateWorks Fdn, San Francisco, CA USA.
RP de Boer, G (reprint author), Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
EM gijs.deboer@colorado.edu
RI Vogelmann, Andrew/M-8779-2014; Bauer, Susanne/P-3082-2014
OI Vogelmann, Andrew/0000-0003-1918-5423;
FU Office of Science, Office of Biological and Environmental Research of
the U.S. Department of Energy as part of their Climate and Earth System
Modeling Program [DE-AC02-05CH11231]; FASTER project; National Oceanic
and Atmospheric Administration, U.S. Department of Commerce
[NA17RJ1229]; National Science Foundation [ARC-1203902]; US Department
of Energy [DE-SC0008794]; U.S. DOE [DE-AC02-98CH10886]; NASA High-End
Computing (HEC) Program through the NASA Center for Climate Simulation
(NCCS) at Goddard Space Flight Center; U.S. Department of Energy, Office
of Science, Office of Biological and Environmental Research, Climate and
Environmental Sciences Division
FX This research was supported by the Director, Office of Science, Office
of Biological and Environmental Research of the U.S. Department of
Energy under Contract DE-AC02-05CH11231 as part of their Climate and
Earth System Modeling Program and through the FASTER project. LBNL is
managed by the University of California under the same grant. This work
was prepared in part at the Cooperative Institute for Research in
Environmental Sciences (CIRES) with support in part from the National
Oceanic and Atmospheric Administration, U.S. Department of Commerce,
under cooperative agreement NA17RJ1229 and other grants. The statements,
findings, conclusions, and recommendations are those of the authors and
do not necessarily reflect the views of the National Oceanic and
Atmospheric Administration or the Department of Commerce. GB was
supported in part by the National Science Foundation (ARC-1203902) and
US Department of Energy (DE-SC0008794). Computing resources were
provided by NASA and the US Department of Energy. A.V. wishes to
acknowledge funding from the U.S. DOE (contract DE-AC02-98CH10886).
2NFOV retrievals were generously provided by Christine Chiu, and China
AMF data were provided by Maureen Cribb and Zanquing Li. Resources
supporting this work were provided by the NASA High-End Computing (HEC)
Program through the NASA Center for Climate Simulation (NCCS) at Goddard
Space Flight Center. Data were obtained from the Atmospheric Radiation
Measurement (ARM) Program sponsored by the U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Research,
Climate and Environmental Sciences Division.
NR 45
TC 5
Z9 5
U1 1
U2 16
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUN 27
PY 2013
VL 118
IS 12
BP 6383
EP 6395
DI 10.1002/jgrd.50460
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 187OY
UT WOS:000322129600035
ER
PT J
AU Davies, L
Jakob, C
Cheung, K
Del Genio, A
Hill, A
Hume, T
Keane, RJ
Komori, T
Larson, VE
Lin, Y
Liu, X
Nielsen, BJ
Petch, J
Plant, RS
Singh, MS
Shi, X
Song, X
Wang, W
Whitall, MA
Wolf, A
Xie, S
Zhang, G
AF Davies, L.
Jakob, C.
Cheung, K.
Del Genio, A.
Hill, A.
Hume, T.
Keane, R. J.
Komori, T.
Larson, V. E.
Lin, Y.
Liu, X.
Nielsen, B. J.
Petch, J.
Plant, R. S.
Singh, M. S.
Shi, X.
Song, X.
Wang, W.
Whitall, M. A.
Wolf, A.
Xie, S.
Zhang, G.
TI A single-column model ensemble approach applied to the TWP-ICE
experiment
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE TWP-ICE; Single Column Model; Ensemble
ID CLOUD-RESOLVING MODELS; GENERAL-CIRCULATION MODELS; LARGE-SCALE MODELS;
BOUNDARY-LAYER; PART I; RADIATIVE PROPERTIES; CONVECTION SCHEME; MOIST
CONVECTION; VERSION-3 CAM3; CLIMATE MODELS
AB Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.
C1 [Davies, L.] Monash Univ, Sch Math, Melbourne, Vic 3004, Australia.
[Jakob, C.] Monash Univ, ARC Ctr Excellence Climate Syst Sci, Melbourne, Vic 3004, Australia.
[Cheung, K.] Bur Meteorol, Melbourne, Vic, Australia.
[Del Genio, A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Hill, A.; Petch, J.] Met Off, Exeter, Devon, England.
[Hume, T.] Bur Meteorol, Ctr Australian Weather & Climate Res, Melbourne, Vic, Australia.
[Keane, R. J.] Univ Munich, Inst Meteorol, D-80539 Munich, Germany.
[Komori, T.] Japan Meteorol Agcy, Tokyo, Japan.
[Larson, V. E.; Nielsen, B. J.] Univ Wisconsin, Milwaukee, WI 53201 USA.
[Lin, Y.] Univ Corp Atmospher Res, Boulder, CO USA.
[Lin, Y.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA.
[Liu, X.; Shi, X.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Plant, R. S.; Whitall, M. A.] Univ Reading, Dept Meteorol, Reading, Berks, England.
[Singh, M. S.] MIT, Cambridge, MA 02139 USA.
[Song, X.; Zhang, G.] Univ Calif San Diego, San Diego, CA 92103 USA.
[Wang, W.] NOAA, IMSG, Natl Ctr Environm Predict, College Pk, MD USA.
[Wolf, A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA.
[Xie, S.] Lawrence Livermore Natl Lab, Livermore, CA USA.
RP Davies, L (reprint author), Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia.
EM laura.davies@unimelb.edu.au
RI Liu, Xiaohong/E-9304-2011; lin, yanluan/A-6333-2015; Xie,
Shaocheng/D-2207-2013; Jakob, Christian/A-1082-2010
OI Liu, Xiaohong/0000-0002-3994-5955; Plant, Robert/0000-0001-8808-0022;
Xie, Shaocheng/0000-0001-8931-5145; Jakob, Christian/0000-0002-5012-3207
FU Office of Science (BER); U.S. Department of Energy [DE-SC0002731]; U.S.
Department of Energy Atmospheric System Research Program; United States
Department of Energy [DE-SC0006927, DE-SC0008668]; National Science
Foundation [AGS-0968640]; U.S. Department of Energy (DOE), Office of
Science, Atmospheric System Research (ASR) program; Battelle Memorial
Institute [DE-AC06-76RLO 1830]; National Natural Science Foundation of
China [41075039]; U.S. Department of Energy (DOE), Office of Science,
Office of Biological and Environmental Research by Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]; Atmospheric Radiation
Measurement Program of the Office of Science at the DOE
FX Davies and Jakob are supported by the Office of Science (BER), U.S.
Department of Energy, under grant DE-SC0002731. Many of the other
coauthors also participated through support from the U.S. Department of
Energy Atmospheric System Research Program. V. Larson and B. Nielsen are
grateful for financial support from the United States Department of
Energy (grants DE-SC0006927 and DE-SC0008668) and the National Science
Foundation (grant AGS-0968640). Support for X. Liu was provided by the
U.S. Department of Energy (DOE), Office of Science, Atmospheric System
Research (ASR) program. The Pacific Northwest National Laboratory is
operated for DOE by Battelle Memorial Institute under contract
DE-AC06-76RLO 1830. Dr. Weiguo Wang is partly supported by the National
Natural Science Foundation of China under Grant No. 41075039. The
contributions of S. Xie to this work were performed under the auspices
of the U.S. Department of Energy (DOE), Office of Science, Office of
Biological and Environmental Research by Lawrence Livermore National
Laboratory under contract No. DE-AC52-07NA27344 and supported by the
Atmospheric Radiation Measurement Program of the Office of Science at
the DOE.
NR 88
TC 13
Z9 13
U1 0
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUN 27
PY 2013
VL 118
IS 12
BP 6544
EP 6563
DI 10.1002/jgrd.50450
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 187OY
UT WOS:000322129600047
ER
PT J
AU Hiranuma, N
Brooks, SD
Moffet, RC
Glen, A
Laskin, A
Gilles, MK
Liu, P
Macdonald, AM
Strapp, JW
McFarquhar, GM
AF Hiranuma, N.
Brooks, S. D.
Moffet, R. C.
Glen, A.
Laskin, A.
Gilles, M. K.
Liu, P.
Macdonald, A. M.
Strapp, J. W.
McFarquhar, G. M.
TI Chemical characterization of individual particles and residuals of cloud
droplets and ice crystals collected on board research aircraft in the
ISDAC 2008 study
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE cloud nuclei; STXM; aerosol; mixed phase; residuals
ID IN-SITU CHARACTERIZATION; ARCTIC AIR-POLLUTION; MIXED-PHASE CLOUDS;
CONDENSATION NUCLEI; AEROSOL-PARTICLES; ATMOSPHERIC AEROSOL; FORMING
NUCLEI; MARINE AIR; SPLAT II; M-PACE
AB Ambient particles and the dry residuals of mixed-phase cloud droplets and ice crystals were collected during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) near Barrow, Alaska, in spring of 2008. The collected particles were analyzed using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy to identify physico-chemical properties that differentiate cloud-nucleating particles from the total aerosol population. A wide range of individually mixed components was identified in the ambient particles and residuals including organic carbon compounds, inorganics, carbonates, and black carbon. Our results show that cloud droplet residuals differ from the ambient particles in both size and composition, suggesting that both properties may impact the cloud-nucleating ability of aerosols in mixed-phase clouds. The percentage of residual particles which contained carbonates (47%) was almost four times higher than those in ambient samples. Residual populations were also enhanced in sea salt and black carbon and reduced in organic compounds relative to the ambient particles. Further, our measurements suggest that chemical processing of aerosols may improve their cloud-nucleating ability. Comparison of results for various time periods within ISDAC suggests that the number and composition of cloud-nucleating particles over Alaska can be influenced by episodic events bringing aerosols from both the local vicinity and as far away as Siberia.
C1 [Hiranuma, N.; Brooks, S. D.; Glen, A.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA.
[Moffet, R. C.; Gilles, M. K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Laskin, A.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
[Liu, P.; Macdonald, A. M.; Strapp, J. W.] Environm Canada, Sci & Technol Branch, Toronto, ON, Canada.
[McFarquhar, G. M.] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA.
RP Brooks, SD (reprint author), Texas A&M Univ, 3150 TAMU, College Stn, TX 77843 USA.
EM sbrooks@tamu.edu
RI Hiranuma, Naruki/D-3780-2014; Laskin, Alexander/I-2574-2012;
OI Hiranuma, Naruki/0000-0001-7790-4807; Laskin,
Alexander/0000-0002-7836-8417; McFarquhar, Greg/0000-0003-0950-0135
FU Atmospheric System Research program of the Department of Energy's office
of Biological and Environmental Research; U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Research,
Climate and Environmental Sciences Division; National Science Foundation
NSF-CAREER program [054875]; Lawrence Berkeley National Laboratory
Seaborg Fellowship; BER, DOE [DE-SC0001279, DE-SC0008500]; Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy [DE-AC02-05CH11231]; Department of Energy's Office of Biological
and Environmental Research at Pacific Northwest National Laboratory;
U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RL0]
FX The authors gratefully acknowledge financial support provided by the
Atmospheric System Research program of the Department of Energy's office
of Biological and Environmental Research. Data were obtained from the
Atmospheric Radiation Measurement Program sponsored by the U.S.
Department of Energy, Office of Science, Office of Biological and
Environmental Research, Climate and Environmental Sciences Division. S.
Brooks acknowledges National Science Foundation NSF-CAREER program,
Award 054875. N. Hiranuma acknowledges a Summer Research Institute
Fellow in Interfacial and Condensed Phase Chemical Physics of the
Pacific Northwest National Laboratory. R.C. Moffet acknowledges
additional financial support from a Lawrence Berkeley National
Laboratory Seaborg Fellowship. The work of G. McFarquhar was supported
by BER, DOE under grants DE-SC0001279 and DE-SC0008500. The STXM/NEXAFS
particle analysis was performed at beamlines 11.0.2 and 5.3.2 at the
Advanced Light Source at Lawrence Berkeley National Laboratory. The
expertise of A.L. Kilcoyne and T. Tyliszczak for the STXM work is
gratefully acknowledged. The work at the Advanced Light Source was
supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under Contract
DE-AC02-05CH11231. The CCSEM/EDX particle analysis was performed in the
Environmental Molecular Sciences Laboratory, a national scientific user
facility sponsored by the Department of Energy's Office of Biological
and Environmental Research at Pacific Northwest National Laboratory.
PNNL is operated by the U.S. Department of Energy by Battelle Memorial
Institute under Contract DE-AC06-76RL0.
NR 87
TC 18
Z9 18
U1 4
U2 66
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUN 27
PY 2013
VL 118
IS 12
BP 6564
EP 6579
DI 10.1002/jgrd.50484
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 187OY
UT WOS:000322129600048
ER
PT J
AU Ghan, SJ
Smith, SJ
Wang, MH
Zhang, K
Pringle, KJ
Carslaw, KS
Pierce, JR
Bauer, SE
Adams, PJ
AF Ghan, Steven J.
Smith, Steven J.
Wang, Minghuai
Zhang, Kai
Pringle, Kirsty J.
Carslaw, Kenneth S.
Pierce, Jeffrey R.
Bauer, Susanne E.
Adams, Peter J.
TI A simple model of global aerosol indirect effects
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE aerosol; cloud; interactions; indirect; climate
ID CLOUD CONDENSATION NUCLEI; GENERAL-CIRCULATION MODEL; CARBON-CYCLE
MODELS; CLIMATE MODEL; ORGANIC AEROSOL; MARINE STRATOCUMULUS;
UNCERTAINTY ANALYSIS; MICROPHYSICS MODEL; ATMOSPHERE-OCEAN; SENSITIVITY
AB Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as -5 W m(-2) and as high as -0.3 W m(-2) are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.
C1 [Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Pringle, Kirsty J.; Carslaw, Kenneth S.] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England.
[Pierce, Jeffrey R.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
[Bauer, Susanne E.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Adams, Peter J.] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA.
RP Ghan, SJ (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA.
EM steve.ghan@pnnl.gov
RI Wang, Minghuai/E-5390-2011; Pierce, Jeffrey/E-4681-2013; Carslaw,
Ken/C-8514-2009; Adams, Peter/D-7134-2013; Zhang, Kai/F-8415-2010; Ghan,
Steven/H-4301-2011
OI Wang, Minghuai/0000-0002-9179-228X; Pierce, Jeffrey/0000-0002-4241-838X;
Carslaw, Ken/0000-0002-6800-154X; Adams, Peter/0000-0003-0041-058X;
Zhang, Kai/0000-0003-0457-6368; Ghan, Steven/0000-0001-8355-8699
FU Office of Science of the U.S. Department of Energy as part of the
Atmospheric System Research Program; U.S. Environmental Protection
Agency, Climate Change Division; DOE by Battelle Memorial Institute
[DE-AC06-76RLO 1830]
FX The authors thank colleague Ben Kravitz and reviewers Rob Wood and Chris
Golaz for helpful comments. Support for S. Ghan, M. Wang, and K. Zhang
was provided by the Office of Science of the U.S. Department of Energy
as part of the Atmospheric System Research Program. Support for S. Smith
was provided by the U.S. Environmental Protection Agency, Climate Change
Division. The Pacific Northwest National Laboratory (PNNL) is operated
for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO
1830.
NR 84
TC 19
Z9 19
U1 2
U2 44
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUN 27
PY 2013
VL 118
IS 12
BP 6688
EP 6707
DI 10.1002/jgrd.50567
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 187OY
UT WOS:000322129600057
ER
PT J
AU Angevine, WM
Brioude, J
McKeen, S
Holloway, JS
Lerner, BM
Goldstein, AH
Guha, A
Andrews, A
Nowak, JB
Evan, S
Fischer, ML
Gilman, JB
Bon, D
AF Angevine, Wayne M.
Brioude, Jerome
McKeen, Stuart
Holloway, John S.
Lerner, Brian M.
Goldstein, Allen H.
Guha, Abhinav
Andrews, Arlyn
Nowak, John B.
Evan, Stephanie
Fischer, Marc L.
Gilman, Jessica B.
Bon, Daniel
TI Pollutant transport among California regions
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE Lagrangian Particle Dispersion Model (LPDM); FLEXPART; WRF; Tracer
transport; California; Agricultural emissions
ID LOW-LEVEL WINDS; AIR-QUALITY; MODEL; MESOSCALE; OZONE; SIMULATIONS;
EMISSIONS; SYSTEM; VALLEY; NOX
AB Several regions within California have significant air quality issues. Transport of pollutants emitted in one region to another region may add to the impact of local emissions. In this work, Lagrangian particle dispersion model simulations show the amounts of tracers that are transported within and among four regions, Southern California, the San Francisco Bay Area, the Central Valley, and the rest of the state. The simulations cover May and June of 2010, the California Research at the Nexus of Air Quality and Climate Change experiment period. Tracers of automobile emissions and one type of agricultural emission are used. Tracer mixing ratios are compared to airborne and ground-based measurements. The age of tracers in each location is also presented. Vertical profiles and diurnal cycles help to clarify the transport process. As is well known, Southern California emissions are transported to the east and affect the desert areas, and Bay Area automobile emissions are an important source of pollutants in the San Joaquin Valley. A novel result is that the Southern California Bight is filled with a mixture of well-aged carbon monoxide tracer from Southern California and the Bay Area. Air over the Bight is also affected by the agricultural emissions represented by the agricultural tracer, dominantly from the Central Valley where its sources are largest. There is no indication of transport from Southern California to the Central Valley. Emissions from the Central Valley do make their way to Southern California, as shown by the agricultural tracer, but automobile emissions from the Valley are insignificant in Southern California.
C1 [Angevine, Wayne M.; Brioude, Jerome; McKeen, Stuart; Holloway, John S.; Lerner, Brian M.; Nowak, John B.; Evan, Stephanie; Gilman, Jessica B.; Bon, Daniel] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Angevine, Wayne M.; Brioude, Jerome; McKeen, Stuart; Holloway, John S.; Lerner, Brian M.; Andrews, Arlyn; Nowak, John B.; Evan, Stephanie; Gilman, Jessica B.; Bon, Daniel] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA.
[Goldstein, Allen H.; Guha, Abhinav] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA.
[Fischer, Marc L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Angevine, WM (reprint author), NOAA, ESRL R CSD4, 325 Broadway, Boulder, CO 80305 USA.
EM Wayne.M.Angevine@noaa.gov
RI Nowak, John/B-1085-2008; Brioude, Jerome/E-4629-2011; Lerner,
Brian/H-6556-2013; Evan, Stephanie/C-2213-2013; Angevine,
Wayne/H-9849-2013; Goldstein, Allen/A-6857-2011; Andrews,
Arlyn/K-3427-2012; Holloway, John/F-9911-2012; Gilman,
Jessica/E-7751-2010; Manager, CSD Publications/B-2789-2015
OI Nowak, John/0000-0002-5697-9807; Lerner, Brian/0000-0001-8721-8165;
Angevine, Wayne/0000-0002-8021-7116; Goldstein,
Allen/0000-0003-4014-4896; Holloway, John/0000-0002-4585-9594; Gilman,
Jessica/0000-0002-7899-9948;
FU NOAA; California Energy Commission (CEC) Public Interest Environmental
Research Program; Office of Science, Office of Basic Energy Sciences, of
the U.S. Department of Energy [DE-AC02-05CH11231]
FX The authors are grateful to Robert Harley for providing the diurnal
cycle of CO and for helpful discussions. Andy Neuman provided helpful
comments on the manuscript. We also wish to thank the NOAA P3 crew,
flight planners, and scientists, and the crew and scientists of the R/V
Atlantis CalNex cruise. The ERA-interim data used to initialize WRF are
from the Research Data Archive (RDA), which is maintained by the
Computational and Information Systems Laboratory (CISL) at the National
Center for Atmospheric Research (NCAR). The original data are available
from the RDA (http://dss.ucar.edu) in data set number ds627.0. Data
collection at Walnut Grove was supported by NOAA and by the California
Energy Commission (CEC) Public Interest Environmental Research Program
and the Director, Office of Science, Office of Basic Energy Sciences, of
the U.S. Department of Energy under contract DE-AC02-05CH11231.
NR 32
TC 13
Z9 13
U1 5
U2 35
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUN 27
PY 2013
VL 118
IS 12
BP 6750
EP 6763
DI 10.1002/jgrd.50490
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 187OY
UT WOS:000322129600062
ER
PT J
AU Chan, AWH
Isaacman, G
Wilson, KR
Worton, DR
Ruehl, CR
Nah, T
Gentner, DR
Dallmann, TR
Kirchstetter, TW
Harley, RA
Gilman, JB
Kuster, WC
deGouw, JA
Offenberg, JH
Kleindienst, TE
Lin, YH
Rubitschun, CL
Surratt, JD
Hayes, PL
Jimenez, JL
Goldstein, AH
AF Chan, Arthur W. H.
Isaacman, Gabriel
Wilson, Kevin R.
Worton, David R.
Ruehl, Christopher R.
Nah, Theodora
Gentner, Drew R.
Dallmann, Timothy R.
Kirchstetter, Thomas W.
Harley, Robert A.
Gilman, Jessica B.
Kuster, William C.
deGouw, Joost A.
Offenberg, John H.
Kleindienst, Tadeusz E.
Lin, Ying H.
Rubitschun, Caitlin L.
Surratt, Jason D.
Hayes, Patrick L.
Jimenez, Jose L.
Goldstein, Allen H.
TI Detailed chemical characterization of unresolved complex mixtures in
atmospheric organics: Insights into emission sources, atmospheric
processing, and secondary organic aerosol formation
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE semivolatile organic compounds; secondary organic aerosol; urban
emissions; unresolved complex mixture; gas chromatography mass
spectrometry
ID 2-DIMENSIONAL GAS-CHROMATOGRAPHY; AIR-POLLUTION SOURCES; DUTY DIESEL
TRUCKS; MASS-SPECTROMETER; VOLATILITY DISTRIBUTION; N-ALKANES;
SEMIVOLATILE; HYDROCARBONS; EVOLUTION; PHOTOOXIDATION
AB Recent studies suggest that semivolatile organic compounds (SVOCs) are important precursors to secondary organic aerosol (SOA) in urban atmospheres. However, knowledge of the chemical composition of SVOCs is limited by current analytical techniques, which are typically unable to resolve a large number of constitutional isomers. Using a combination of gas chromatography and soft photoionization mass spectrometry, we characterize the unresolved complex mixture (UCM) of semivolatile aliphatic hydrocarbons observed in Pasadena, California (similar to 16km NE of downtown Los Angeles), and Bakersfield, California, during the California Research at the Nexus of Air Quality and Climate Change 2010. To the authors' knowledge, this work represents the most detailed characterization of the UCM in atmospheric samples to date. Knowledge of molecular structures, including carbon number, alkyl branching, and number of rings, provides important constraints on the rate of atmospheric processing, as the relative amounts of branched and linear alkanes are shown to be a function of integrated exposure to hydroxyl radicals. Emissions of semivolatile branched alkanes from fossil fuel-related sources are up to an order of magnitude higher than those of linear alkanes, and the gas-phase OH rate constants of branched alkanes are similar to 30% higher than their linear isomers. Based on a box model considering gas/particle partitioning, emissions, and reaction rates, semivolatile branched alkanes are expected to play a more important role than linear alkanes in the photooxidation of the UCM and subsequent transformations into SOA. Detailed speciation of semivolatile compounds therefore provides essential understanding of SOA sources and formation processes in urban areas.
C1 [Chan, Arthur W. H.; Isaacman, Gabriel; Worton, David R.; Ruehl, Christopher R.; Goldstein, Allen H.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA.
[Chan, Arthur W. H.] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada.
[Wilson, Kevin R.; Ruehl, Christopher R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Worton, David R.] Aerosol Dynam Inc, Berkeley, CA USA.
[Nah, Theodora] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Gentner, Drew R.; Dallmann, Timothy R.; Kirchstetter, Thomas W.; Harley, Robert A.; Goldstein, Allen H.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA.
[Kirchstetter, Thomas W.; Harley, Robert A.; Goldstein, Allen H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Gilman, Jessica B.; deGouw, Joost A.; Hayes, Patrick L.; Jimenez, Jose L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Gilman, Jessica B.; Kuster, William C.; deGouw, Joost A.] NOAA, Div Chem Sci, Boulder, CO USA.
[Offenberg, John H.; Kleindienst, Tadeusz E.] US EPA, Natl Exposure Lab, Off Res & Dev, Res Triangle Pk, NC 27711 USA.
[Lin, Ying H.; Rubitschun, Caitlin L.; Surratt, Jason D.] Univ N Carolina, Dept Environm Sci & Engn, Gillings Sch Global Publ Hlth, Chapel Hill, NC USA.
[Hayes, Patrick L.; Jimenez, Jose L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
RP Chan, AWH (reprint author), Univ Toronto, Dept Chem Engn & Appl Chem, 200 Coll St, Toronto, ON M5S 3E5, Canada.
EM arthurwh.chan@utoronto.ca
RI Chan, Arthur/I-2233-2013; Jimenez, Jose/A-5294-2008; de Gouw,
Joost/A-9675-2008; Harley, Robert/C-9177-2016; Lin,
Ying-Hsuan/J-4023-2014; Offenberg, John/C-3787-2009; Gilman,
Jessica/E-7751-2010; Manager, CSD Publications/B-2789-2015; Worton,
David/A-8374-2012; Goldstein, Allen/A-6857-2011; Kuster,
William/E-7421-2010; Surratt, Jason/D-3611-2009; Isaacman-VanWertz,
Gabriel/I-5590-2014
OI Chan, Arthur/0000-0001-7392-4237; Dallmann, Timothy/0000-0002-6520-7796;
Jimenez, Jose/0000-0001-6203-1847; de Gouw, Joost/0000-0002-0385-1826;
Harley, Robert/0000-0002-0559-1917; Lin, Ying-Hsuan/0000-0001-8904-1287;
Offenberg, John/0000-0002-0213-4024; Gilman,
Jessica/0000-0002-7899-9948; Worton, David/0000-0002-6558-5586;
Goldstein, Allen/0000-0003-4014-4896; Kuster,
William/0000-0002-8788-8588; Surratt, Jason/0000-0002-6833-1450;
Isaacman-VanWertz, Gabriel/0000-0002-3717-4798
FU National Oceanic and Atmospheric Administration [NA10OAR4310104]; Office
of Energy Research, Office of Basic Energy Sciences, of the U.S.
Department of Energy [DE-AC02-05CH11231]; Laboratory Directed Research
and Development Program of Lawrence Berkeley National Laboratory under
U.S. Department of Energy [DE-AC02-05CH11231]; EPA grant [RD834553];
U.S. Environmental Protection Agency through its Office of Research and
Development [EP-D-10-070]; CARB [08-319/11-305]; DOE (BER/ASR)
[DE-SC0006035]; CIRES Visiting Fellowship
FX This research was supported by the National Oceanic and Atmospheric
Administration under award NA10OAR4310104. The Advanced Light Source as
well as K.R.W. and T.N. were supported by the Director, Office of Energy
Research, Office of Basic Energy Sciences, of the U.S. Department of
Energy under contract DE-AC02-05CH11231. Measurements at the Advanced
Light Source were also supported by the Laboratory Directed Research and
Development Program of Lawrence Berkeley National Laboratory under U.S.
Department of Energy contract DE-AC02-05CH11231. Caldecott tunnel
measurements were supported by EPA grant RD834553. The U.S.
Environmental Protection Agency through its Office of Research and
Development funded and collaborated in the research described here under
contract EP-D-10-070 to Alion Science and Technology. The manuscript has
been subjected to external peer review and has been cleared for
publication. Mention of trade names or commercial products does not
constitute endorsement or recommendation for use. P.L.H. and J.L.J.
thank CARB 08-319/11-305, DOE (BER/ASR) DE-SC0006035, and a CIRES
Visiting Fellowship to P.L.H. The authors would like to thank Sally
Newman for use of temperature data.
NR 47
TC 24
Z9 24
U1 6
U2 80
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUN 27
PY 2013
VL 118
IS 12
BP 6783
EP 6796
DI 10.1002/jgrd.50533
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 187OY
UT WOS:000322129600065
ER
PT J
AU Ben Ishai, P
Mamontov, E
Nickels, JD
Sokolov, AP
AF Ben Ishai, Paul
Mamontov, Eugene
Nickels, Jonathan D.
Sokolov, Alexei P.
TI Influence of Ions on Water Diffusion-A Neutron Scattering Study
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID AQUEOUS-SOLUTIONS; RAYLEIGH INTERFEROMETRY; DYNAMICS; HYDRATION;
25-DEGREES-C; COORDINATION; COEFFICIENTS; MOLECULES; CHANNEL; SODIUM
AB Using quasielastic neutron scattering spectroscopy, we measured the averaged translational diffusion of water in solutions of biologically relevant salts, NaCl, a kosmotrope, and KCl, a chaotrope. The analysis revealed the striking difference in the influence of these ions on water dynamics. While the averaged water diffusion slows down in the presence of the structure making (kosmotrope) Na+ ion, the diffusion becomes faster in the presence of the structure breaking (chaotrope) K+ ion. The latter means that, despite strong Coulombic interactions introduced by the K+ ions, their disruption of the hydrogen-bonding network is so significant that it leads to faster diffusion of the water molecules.
C1 [Ben Ishai, Paul] Hebrew Univ Jerusalem, Dept Appl Phys, IL-91904 Jerusalem, Israel.
[Mamontov, Eugene] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
[Ben Ishai, Paul; Nickels, Jonathan D.; Sokolov, Alexei P.] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA.
[Ben Ishai, Paul; Nickels, Jonathan D.; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
RP Ben Ishai, P (reprint author), Hebrew Univ Jerusalem, Dept Appl Phys, IL-91904 Jerusalem, Israel.
RI Ben Ishai, Paul/A-2230-2013; Mamontov, Eugene/Q-1003-2015; Nickels,
Jonathan/I-1913-2012
OI Ben Ishai, Paul/0000-0001-7394-019X; Mamontov,
Eugene/0000-0002-5684-2675; Nickels, Jonathan/0000-0001-8351-7846
FU DOE through the EPSCoR program [DE-FG02-08E1146528]; DOE through the
Scientific User Facilities Division, Office of Basic Energy Sciences;
NSF [CHE-1213444]; Israel Science Foundation (ISF) [465/11]
FX This work was supported by the DOE through the EPSCoR program (grant
DE-FG02-08E1146528) and through the Scientific User Facilities Division,
Office of Basic Energy Sciences. A.P.S. also acknowledges partial
financial support from the NSF Chemistry program (CHE-1213444). P.B.I.
also acknowledges partial financial support from the Israel Science
Foundation (ISF) (Grant No. 465/11).
NR 28
TC 11
Z9 11
U1 1
U2 38
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD JUN 27
PY 2013
VL 117
IS 25
BP 7724
EP 7728
DI 10.1021/jp4030415
PG 5
WC Chemistry, Physical
SC Chemistry
GA 175NA
UT WOS:000321236200023
PM 23713450
ER
PT J
AU Perticaroli, S
Nakanishi, M
Pashkovski, E
Sokolov, AP
AF Perticaroli, Stefania
Nakanishi, Masahiro
Pashkovski, Eugene
Sokolov, Alexei P.
TI Dynamics of Hydration Water in Sugars and Peptides Solutions
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID DEPOLARIZED LIGHT-SCATTERING; AMINO-ACID SOLUTIONS; AQUEOUS-SOLUTIONS;
DIELECTRIC-RELAXATION; MODEL PEPTIDES; PROTEIN; GLUCOSE; REORIENTATION;
SPECTROSCOPY; SIMULATIONS
AB We analyzed solute and solvent dynamics of sugars and peptides aqueous solutions using extended depolarized light scattering (EDLS) and broadband dielectric spectroscopies (BDS). Spectra measured with both techniques reveal the same mechanism of rotational diffusion of peptides molecules. In the case of sugars, this solute reorientational relaxation can be isolated by EDLS measurements, whereas its contribution to the dielectric spectra is almost negligible. In the presented analysis, we characterize the hydration water in terms of hydration number and retardation ratio xi between relaxation times of hydration and bulk water. Both techniques provide similar estimates of xi. The retardation imposed on the hydration water by sugars is similar to 3.3 +/- 1.3 and involves only water molecules hydrogen-bonded (HB) to solutes (similar to 3 water molecules per sugar OH-group). In contrast, polar peptides cause longer range perturbations beyond the first hydration shell, and xi between 2.8 and 8, increasing with the number of chemical groups engaged in FIB formation. We demonstrate that chemical heterogeneity and specific HB interactions play a crucial role in hydration dynamics around polar solutes. The obtained results help to disentangle the role of excluded volume and enthalpic contributions in dynamics of hydration water at the interface with biological molecules.
C1 [Perticaroli, Stefania; Nakanishi, Masahiro; Sokolov, Alexei P.] Oak Ridge Natl Lab, Div Chem & Mat Sci, Oak Ridge, TN 37831 USA.
[Perticaroli, Stefania; Nakanishi, Masahiro; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Sokolov, Alexei P.] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA.
[Pashkovski, Eugene] Unilever R&D Trumbull, Trumbull, CT 06611 USA.
RP Perticaroli, S (reprint author), Univ Tennessee, Dept Chem, 552 Buehler Hall,1420 Circle Dr, Knoxville, TN 37996 USA.
EM spertica@utk.edu
RI Nakanishi, Masahiro/J-9497-2014
OI Nakanishi, Masahiro/0000-0003-0844-8363
FU DOE through the EPSCoR program [DE-FG02-08ER46528]; Spallation Neutron
Source (SNS) through UT-Battelle (LLC for the U.S. Department of Energy)
[DEAC05-00OR22725]; Unilever corporate research program
FX We sincerely thank Professor R. Germani for helpful discussions about HB
properties of peptides. This work was supported by DOE through the
EPSCoR program (grant DE-FG02-08ER46528) and by Spallation Neutron
Source (SNS) through UT-Battelle (LLC for the U.S. Department of Energy
under contract No. DEAC05-00OR22725). We also acknowledge the financial
support from the Unilever corporate research program.
NR 45
TC 17
Z9 17
U1 2
U2 65
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD JUN 27
PY 2013
VL 117
IS 25
BP 7729
EP 7736
DI 10.1021/jp403665w
PG 8
WC Chemistry, Physical
SC Chemistry
GA 175NA
UT WOS:000321236200024
PM 23772968
ER
PT J
AU Zhou, CS
Fang, ZGZ
Ren, C
Li, JZ
Lu, J
AF Zhou, Chengshang
Fang, Zhigang Zak
Ren, Chai
Li, Jingzhu
Lu, Jun
TI Effect of Ti Intermetallic Catalysts on Hydrogen Storage Properties of
Magnesium Hydride
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID HYDRIDING/DEHYDRIDING PROPERTIES; DESORPTION PROPERTIES;
COMPOSITE-MATERIALS; SORPTION PROPERTIES; ROOM-TEMPERATURE; MG;
KINETICS; ABSORPTION; SYSTEM; ENERGY
AB Magnesium hydride is a promising candidate for solid-state hydrogen storage and thermal energy storage applications. A series of Ti-based intermetallic alloy (TiAl, Ti3Al, TiNi, TiFe, TiNb, TiMn2, and TiVMn)-doped MgH2 materials were systematically investigated in this study to improve its hydrogen storage properties. The dehydrogenation and hydrogenation properties were studied by using both thermogravimetric analysis and pressure-composition-temperature (PCT) isothermal to characterize the temperature of dehydrogenation and the kinetics of both desorption and absorption of hydrogen by these doped MgH2. Results show significant improvements of both dehydrogenation and hydrogenation kinetics as a result of adding the Ti intermetallic alloys as catalysts. In particular, the TiMn2-doped Mg demonstrated extraordinary hydrogen absorption capability at room temperature and 1 bar hydrogen pressure. The PCT experiments also show that the hydrogen equilibrium pressures of MgH2 were not affected by these additives.
C1 [Zhou, Chengshang; Fang, Zhigang Zak; Ren, Chai; Li, Jingzhu] Univ Utah, Dept Met Engn, Salt Lake City, UT 84112 USA.
[Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Fang, ZGZ (reprint author), Univ Utah, Dept Met Engn, 135 South 1460 East,Room 412, Salt Lake City, UT 84112 USA.
EM zak.fang@utah.edu
RI Zhou, Chengshang/L-5850-2015
OI Zhou, Chengshang/0000-0001-9016-6618
FU U.S. Department of Energy (DOE) [DE-AR0000173]; National Science
Foundation [0933778]
FX This research was supported by the U.S. Department of Energy (DOE) under
contract number DE-AR0000173 and National Science Foundation (grant no.
0933778). We would like to thank Dr. Yang Ren and Dr. Xiaoyi Zhang of
Advanced Photon Source of Argonne National Laboratory for their
assistance with the synchrotron XRD analysis.
NR 48
TC 35
Z9 37
U1 4
U2 73
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD JUN 27
PY 2013
VL 117
IS 25
BP 12973
EP 12980
DI 10.1021/jp402770p
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 175NC
UT WOS:000321236400008
ER
PT J
AU Qadir, K
Kim, SM
Seo, H
Mun, BS
Akgul, FA
Liu, Z
Park, JY
AF Qadir, Kamran
Kim, Sun Mi
Seo, Hyungtak
Mun, Bongjin S.
Akgul, Funda Aksoy
Liu, Zhi
Park, Jeong Young
TI Deactivation of Ru Catalysts under Catalytic CO Oxidation by Formation
of Bulk Ru Oxide Probed with Ambient Pressure XPS
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID RAY PHOTOELECTRON-SPECTROSCOPY; CARBON-MONOXIDE; IN-SITU; SURFACE OXIDE;
ATOMIC-SCALE; NOBLE-METALS; NANOPARTICLES; RUTHENIUM; RH; PLATINUM
AB The surface science approach of using model catalysts in conjunction with the development of in situ spectroscopic tools, such as ambient pressure X-ray photoelectron spectroscopy (AP-XPS), offers a synergistic strategy for obtaining a substantially better understanding of deactivation phenomena. In this study, we investigated the nature of Ru oxides on a Ru polycrystalline film under oxidizing, reducing, and catalytic CO oxidation reaction conditions. Thus, bulk Ru oxide was easily formed on such Ru catalysts, the growth of which was dependent on reaction temperature. Once formed, such an oxide is irreversible and cannot be completely removed even under reducing conditions at elevated temperatures (200 degrees C). Our reaction studies showed substantial deactivation of the Ru film during catalytic CO oxidation, and its activity could be partially recovered after reduction pretreatment. Such continuous deactivation of a Ru film is correlated with irreversibly formed bulk Ru oxide, as shown by AP-XPS. Such in situ spectroscopic evidence of the transition of oxides to a catalytically inactive state can enable more effective design of catalysts with less deactivation.
C1 [Qadir, Kamran; Kim, Sun Mi; Park, Jeong Young] Grad Sch EEWS WCU, Taejon 305701, South Korea.
[Qadir, Kamran; Kim, Sun Mi; Park, Jeong Young] Korea Adv Inst Sci & Technol, NanoCentury ICI, Taejon 305701, South Korea.
[Qadir, Kamran; Kim, Sun Mi; Park, Jeong Young] Inst for Basic Sci Korea, Ctr Nanomat & Chem React, Taejon 305701, South Korea.
[Seo, Hyungtak] Ajou Univ, Dept Mat Sci & Engn, Suwon 443749, South Korea.
[Mun, Bongjin S.] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Sch Phys & Chem, Kwangju 500712, South Korea.
[Mun, Bongjin S.] Gwangju Inst Sci & Technol, Ertl Ctr Electrochem & Catalysis, Kwangju 500712, South Korea.
[Akgul, Funda Aksoy] Nigde Univ, Dept Phys, TR-51240 Nigde, Turkey.
[Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Park, JY (reprint author), Grad Sch EEWS WCU, Taejon 305701, South Korea.
EM jeongypark@kaist.ac.kr
RI Park, Jeong Young/A-2999-2008; Liu, Zhi/B-3642-2009; Qadir,
Kamran/S-8459-2016
OI Liu, Zhi/0000-0002-8973-6561; Qadir, Kamran/0000-0002-0378-2488
FU WCU (World Class University) program through the National Research
Foundation [31-2008-000-10055-0, 2012R1A2A1A01009249]; Research Center
Program of IBS (Institute for Basic Science) [CA1201]; Fundamental R&D
Program for Core Technology of Materials; Ministry of Knowledge Economy,
Republic of Korea
FX This work was supported by the WCU (World Class University) program
(31-2008-000-10055-0 and 2012R1A2A1A01009249) through the National
Research Foundation, the Research Center Program (CA1201) of IBS
(Institute for Basic Science) and from the Fundamental R&D Program for
Core Technology of Materials funded by the Ministry of Knowledge
Economy, Republic of Korea.
NR 44
TC 13
Z9 13
U1 3
U2 65
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD JUN 27
PY 2013
VL 117
IS 25
BP 13108
EP 13113
DI 10.1021/jp402688a
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 175NC
UT WOS:000321236400022
ER
PT J
AU Wen, XD
Martin, RL
Scuseria, GE
Rudin, SP
Batista, ER
AF Wen, Xiao-Dong
Martin, Richard L.
Scuseria, Gustavo E.
Rudin, Sven P.
Batista, Enrique R.
TI A Screened Hybrid DFT Study of Actinide Oxides, Nitrides, and Carbides
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID ELECTRONIC-STRUCTURE; URANIUM NITRIDE; UO2
AB A systematic study of the structural, electronic, and magnetic properties of actinide oxides, nitrides, and carbides (AnX(1-2) with X = C, N, O) is performed using the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. Our computed results show that the screened hybrid HSE functional gives a good description of the electronic and structural properties of actinide dioxides (strongly correlated insulators) when compared with available experimental data. However, there are still some problems reproducing the electronic properties of actinide nitrides and carbides (strongly correlated metals). In addition, in order to compare with the results by HSE, the structures, electronic, and magnetic properties of these actinide compounds are also investigated in the PBE and PBE+U approximation. Interestingly, the density of states of UN obtained with PBE compares well with the experimental photoemission spectra, in contrast to the hybrid approximation. This is presumably related to the need of additional screening in the Hartree-Fock exchange term of the metallic phases.
C1 [Wen, Xiao-Dong; Martin, Richard L.; Rudin, Sven P.; Batista, Enrique R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Scuseria, Gustavo E.] Rice Univ, Dept Chem, Dept Phys & Astron, Houston, TX 77251 USA.
[Scuseria, Gustavo E.] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21589, Saudi Arabia.
RP Martin, RL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM rlmartin@lanl.gov
RI Wen, Xiaodong/G-5227-2011; Faculty of, Sciences, KAU/E-7305-2017
OI Wen, Xiaodong/0000-0001-8161-9742;
FU Heavy Element Chemistry Program at Los Alamos National Laboratory by the
Division of Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences, U.S. Department of Energy; LDRD program at Los
Alamos National Laboratory; DOE, Office of Basic Energy Sciences, Heavy
Element Chemistry program [DEFG02-04ER15523]; National Nuclear Security
Administration of the U.S. Department of Energy [DE-AC5206NA25396]
FX This work was supported under the Heavy Element Chemistry Program at Los
Alamos National Laboratory by the Division of Chemical Sciences,
Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S.
Department of Energy. Portions of the work were also supported by the
LDRD program at Los Alamos National Laboratory. X.-D.W. gratefully
acknowledges a Seaborg Institute Fellowship. The work at Rice University
is supported by DOE, Office of Basic Energy Sciences, Heavy Element
Chemistry program, under Grant DEFG02-04ER15523. Some of the
calculations were performed on the Chinook computing systems at the
Molecular Science Computing Facility in the William R. Wiley
Environmental Molecular Sciences Laboratory (EMSL) at PNNL. Some of the
calculations were done on LOBO supercomputer of High Performance
Computing at Los Alamos National Laboratory. The Los Alamos National
Laboratory is operated by Los Alamos National Security, LLC, for the
National Nuclear Security Administration of the U.S. Department of
Energy under Contract DE-AC5206NA25396.
NR 32
TC 17
Z9 17
U1 1
U2 74
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD JUN 27
PY 2013
VL 117
IS 25
BP 13122
EP 13128
DI 10.1021/jp403141t
PG 7
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 175NC
UT WOS:000321236400024
ER
PT J
AU Mutz, M
Eastwood, E
Dadmun, MD
AF Mutz, M.
Eastwood, Eric
Dadmun, M. D.
TI Quantifying the Solubility of Boron Nitride Nanotubes and Sheets with
Static Light Scattering and Refractometry
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID WALLED CARBON NANOTUBES; POLYMER COMPOSITES; ORGANIC-SOLVENTS;
DISPERSION; FUNCTIONALIZATION; PARAMETERS
AB The dissolution of nanoparticles, particularly those containing boron, is an important area of interest for polymer nanocomposite formation and material development. In this work, the solubility of boron nitride nanotubes (BNNT), functionalized boron nitride nanotubes (FBNNT), and boron nitride sheets (BN-ZG) is quantified in toluene and THF with static light scattering, refractometry, UV-vis spectroscopy, and physical observations. UV-vis spectroscopy provides a method to determine the concentration and solubility limits of the solutions tested. Using light scattering, the second virial coefficient, A(2), is determined and used to calculate chi, the solute-solvent interaction parameter. The Hildebrand solubility parameter, delta, is then extracted from this data using the Hildebrand-Scatchard Solution Theory. A list of potential good solvents based on the estimated delta value is provided for each nanoparticle. Single-walled carbon nanotubes (SWNTs) and prepolymers (EN4 and EN8) used to synthesize polyurethanes were also tested, because the published delta and molar attraction constants of these materials provided a self-consistent check. The dn/dc of SWNTs and boron-containing particles was measured for the first time in this work. A solvent screen for BN-ZG provides additional information that supports the obtained delta and chi. Three systems were found to have chi values below 0.5 and were thermodynamically soluble: BNNT in THF, EN8 in THF, and EN8 in toluene.
C1 [Mutz, M.; Dadmun, M. D.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Eastwood, Eric] Honeywell Kansas City Plant, Kansas City, MO 64131 USA.
[Dadmun, M. D.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Mutz, M (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
FU Honeywell Federal Manufacturing and Technologies, LLC; Division of
Materials Science and Engineering, U.S. Department of Energy, Office of
Basic Energy Sciences
FX Funding for this research was provided by Honeywell Federal
Manufacturing and Technologies, LLC. M.D. also acknowledges support from
the Division of Materials Science and Engineering, U.S. Department of
Energy, Office of Basic Energy Sciences.
NR 34
TC 3
Z9 3
U1 3
U2 33
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD JUN 27
PY 2013
VL 117
IS 25
BP 13230
EP 13238
DI 10.1021/jp400874f
PG 9
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 175NC
UT WOS:000321236400037
ER
PT J
AU Alvarez, G
AF Alvarez, G.
TI Production of minimally entangled typical thermal states with the
Krylov-space approach
SO PHYSICAL REVIEW B
LA English
DT Article
ID QUANTUM RENORMALIZATION-GROUPS; PHASE-TRANSITIONS; HUBBARD-MODEL;
SYSTEMS; ABSENCE
AB The minimally entangled typical thermal states algorithm is applied to fermionic systems using the Krylov-space approach to evolve the system in imaginary time. The convergence of local observables is studied in a tight-binding system with a site-dependent potential. The temperature dependence of the superconducting correlations of the attractive Hubbard model is analyzed on chains, showing an exponential decay with distance and exponents proportional to the temperature at low temperatures, as expected. In addition, the nonlocal parity correlator is calculated at finite temperature. Other possible applications of the minimally entangled typical thermal states algorithm to fermionic systems are also discussed.
C1 [Alvarez, G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
[Alvarez, G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Alvarez, G (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
FU Scientific User Facilities Division, Basic Energy Sciences, U.S.
Department of Energy (DOE), under with UT-Battelle; DOE
FX I would like to thank K. Al-Hassanieh, T. Maier, J. Rincon, E. M.
Stoudenmire, and S. R. White for helpful discussions and suggestions.
This research was conducted at the Center for Nanophase Materials
Sciences at Oak Ridge National Laboratory, sponsored by the Scientific
User Facilities Division, Basic Energy Sciences, U.S. Department of
Energy (DOE), under contract with UT-Battelle. I would like to
acknowledge support from the DOE early career research program.
NR 29
TC 4
Z9 4
U1 2
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 27
PY 2013
VL 87
IS 24
AR 245130
DI 10.1103/PhysRevB.87.245130
PG 6
WC Physics, Condensed Matter
SC Physics
GA 172JW
UT WOS:000321000300007
ER
PT J
AU Ren, J
Zhu, JX
AF Ren, Jie
Zhu, Jian-Xin
TI Heat diode effect and negative differential thermal conductance across
nanoscale metal-dielectric interfaces
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC KAPITZA CONDUCTANCE; RELAXATION; RESISTANCE; TRANSPORT;
TEMPERATURES; RECTIFIER; LATTICE; FLOW
AB Controlling heat flow by phononic nanodevices has received significant attention recently because of its fundamental and practical implications. Elementary phononic devices such as thermal rectifiers, transistors, and logic gates are essentially based on two intriguing properties: heat diode effect and negative differential thermal conductance. However, little is known about these heat transfer properties across metal-dielectric interfaces, especially at nanoscale. Here we analytically resolve the microscopic mechanism of the nonequilibrium nanoscale energy transfer across metal-dielectric interfaces, where the inelastic electron-phonon scattering directly assists the energy exchange. We demonstrate the emergence of heat diode effect and negative differential thermal conductance in nanoscale interfaces and explain why these novel thermal properties are usually absent in bulk metal-dielectric interfaces. These results will generate exciting prospects for the nanoscale interfacial energy transfer, which should have important implications in designing hybrid circuits for efficient thermal control and open up potential applications in thermal energy harvesting with low-dimensional nanodevices.
C1 [Ren, Jie; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Ren, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM renjie@lanl.gov
RI Ren, Jie/G-5314-2010
OI Zhu, Jianxin/0000-0001-7991-3918; Ren, Jie/0000-0003-2806-7226
FU National Nuclear Security Administration of the U.S. DOE at LANL
[DE-AC52-06NA25396]; LDRD Program at LANL; Center for Integrated
Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user
facility
FX This work was supported by the National Nuclear Security Administration
of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396, and the
LDRD Program at LANL (J.R.), and in part by the Center for Integrated
Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user
facility (J.-X.Z.).
NR 45
TC 17
Z9 17
U1 2
U2 43
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 27
PY 2013
VL 87
IS 24
AR 241412
DI 10.1103/PhysRevB.87.241412
PG 5
WC Physics, Condensed Matter
SC Physics
GA 172JW
UT WOS:000321000300003
ER
PT J
AU Lutz, O
Neubauer, S
Heck, M
Kuhr, T
Zupanc, A
Adachi, I
Aihara, H
Asner, DM
Aushev, T
Aziz, T
Bakich, AM
Belous, K
Bhardwaj, V
Bhuyan, B
Bondar, A
Bonvicini, G
Bozek, A
Bracko, M
Browder, TE
Chang, P
Chekelian, V
Chen, A
Chen, P
Cheon, BG
Chistov, R
Cho, K
Chobanova, V
Choi, Y
Cinabro, D
Dalseno, J
Danilov, M
Dolezal, Z
Drasal, Z
Dutta, D
Eidelman, S
Epifanov, D
Farhat, H
Fast, JE
Feindt, M
Gaur, V
Gabyshev, N
Ganguly, S
Gillard, R
Goh, YM
Golob, B
Haba, J
Hara, T
Hayasaka, K
Hayashii, H
Hoshi, Y
Hou, WS
Hsiung, YB
Hyun, HJ
Iijima, T
Ishikawa, A
Itoh, R
Iwasaki, Y
Julius, T
Kang, JH
Kapusta, P
Kato, E
Kawasaki, T
Kiesling, C
Kim, HJ
Kim, HO
Kim, JB
Kim, JH
Kim, KT
Kim, MJ
Kinoshita, K
Klucar, J
Ko, BR
Kodys, P
Korpar, S
Kouzes, RT
Krizan, P
Krokovny, P
Kronenbitter, B
Kumita, T
Kuzmin, A
Kwon, YJ
Lange, JS
Lee, SH
Li, Y
Liu, C
Liu, Y
Liventsev, D
Matvienko, D
Miyabayashi, K
Miyata, H
Mohanty, GB
Moll, A
Muller, T
Muramatsu, N
Nakano, E
Nakao, M
Natkaniec, Z
Nayak, M
Nedelkovska, E
Ng, C
Nisar, NK
Nishida, S
Nitoh, O
Ogawa, S
Ohshima, T
Okuno, S
Olsen, SL
Onuki, Y
Oswald, C
Pakhlov, P
Pakhlova, G
Park, H
Park, HK
Pedlar, TK
Pestotnik, R
Petric, M
Piilonen, LE
Prim, M
Ritter, M
Rohrken, M
Sahoo, H
Saito, T
Sakai, Y
Sandilya, S
Santel, D
Santelj, L
Sanuki, T
Sato, Y
Schneider, O
Schnell, G
Schwanda, C
Schwartz, AJ
Senyo, K
Seon, O
Sevior, ME
Shapkin, M
Shebalin, V
Shen, CP
Shibata, TA
Shiu, JG
Shwartz, B
Sibidanov, A
Simon, F
Smerkol, P
Sohn, YS
Sokolov, A
Solovieva, E
Staric, M
Sumihama, M
Sumiyoshi, T
Tatishvili, G
Teramoto, Y
Trabelsi, K
Tsuboyama, T
Uchida, M
Uglov, T
Unno, Y
Uno, S
Usov, Y
Van Hulse, C
Varner, G
Vorobyev, V
Wagner, MN
Wang, CH
Wang, J
Wang, MZ
Wang, P
Watanabe, M
Watanabe, Y
Williams, KM
Won, E
Yamamoto, H
Yamashita, Y
Zhang, ZP
Zhilich, V
Zhulanov, V
AF Lutz, O.
Neubauer, S.
Heck, M.
Kuhr, T.
Zupanc, A.
Adachi, I.
Aihara, H.
Asner, D. M.
Aushev, T.
Aziz, T.
Bakich, A. M.
Belous, K.
Bhardwaj, V.
Bhuyan, B.
Bondar, A.
Bonvicini, G.
Bozek, A.
Bracko, M.
Browder, T. E.
Chang, P.
Chekelian, V.
Chen, A.
Chen, P.
Cheon, B. G.
Chistov, R.
Cho, K.
Chobanova, V.
Choi, Y.
Cinabro, D.
Dalseno, J.
Danilov, M.
Dolezal, Z.
Drasal, Z.
Dutta, D.
Eidelman, S.
Epifanov, D.
Farhat, H.
Fast, J. E.
Feindt, M.
Gaur, V.
Gabyshev, N.
Ganguly, S.
Gillard, R.
Goh, Y. M.
Golob, B.
Haba, J.
Hara, T.
Hayasaka, K.
Hayashii, H.
Hoshi, Y.
Hou, W. -S.
Hsiung, Y. B.
Hyun, H. J.
Iijima, T.
Ishikawa, A.
Itoh, R.
Iwasaki, Y.
Julius, T.
Kang, J. H.
Kapusta, P.
Kato, E.
Kawasaki, T.
Kiesling, C.
Kim, H. J.
Kim, H. O.
Kim, J. B.
Kim, J. H.
Kim, K. T.
Kim, M. J.
Kinoshita, K.
Klucar, J.
Ko, B. R.
Kodys, P.
Korpar, S.
Kouzes, R. T.
Krizan, P.
Krokovny, P.
Kronenbitter, B.
Kumita, T.
Kuzmin, A.
Kwon, Y. -J.
Lange, J. S.
Lee, S. -H.
Li, Y.
Liu, C.
Liu, Y.
Liventsev, D.
Matvienko, D.
Miyabayashi, K.
Miyata, H.
Mohanty, G. B.
Moll, A.
Mueller, T.
Muramatsu, N.
Nakano, E.
Nakao, M.
Natkaniec, Z.
Nayak, M.
Nedelkovska, E.
Ng, C.
Nisar, N. K.
Nishida, S.
Nitoh, O.
Ogawa, S.
Ohshima, T.
Okuno, S.
Olsen, S. L.
Onuki, Y.
Oswald, C.
Pakhlov, P.
Pakhlova, G.
Park, H.
Park, H. K.
Pedlar, T. K.
Pestotnik, R.
Petric, M.
Piilonen, L. E.
Prim, M.
Ritter, M.
Roehrken, M.
Sahoo, H.
Saito, T.
Sakai, Y.
Sandilya, S.
Santel, D.
Santelj, L.
Sanuki, T.
Sato, Y.
Schneider, O.
Schnell, G.
Schwanda, C.
Schwartz, A. J.
Senyo, K.
Seon, O.
Sevior, M. E.
Shapkin, M.
Shebalin, V.
Shen, C. P.
Shibata, T. -A.
Shiu, J. -G.
Shwartz, B.
Sibidanov, A.
Simon, F.
Smerkol, P.
Sohn, Y. -S.
Sokolov, A.
Solovieva, E.
Staric, M.
Sumihama, M.
Sumiyoshi, T.
Tatishvili, G.
Teramoto, Y.
Trabelsi, K.
Tsuboyama, T.
Uchida, M.
Uglov, T.
Unno, Y.
Uno, S.
Usov, Y.
Van Hulse, C.
Varner, G.
Vorobyev, V.
Wagner, M. N.
Wang, C. H.
Wang, J.
Wang, M. -Z.
Wang, P.
Watanabe, M.
Watanabe, Y.
Williams, K. M.
Won, E.
Yamamoto, H.
Yamashita, Y.
Zhang, Z. P.
Zhilich, V.
Zhulanov, V.
CA Belle Collaboration
TI Search for B -> h(()*())nu(nu)over-bar with the full Belle Upsilon(4S)
data sample
SO PHYSICAL REVIEW D
LA English
DT Article
ID DETECTOR
AB We report a search for the rare decays B -> h(()*())nu(nu) over bar, where h(()*()) stands for K+, K-S(0), K*(+), K*(0), pi(+), pi(0), rho(+), rho(0) and phi. The results are obtained from a 711 fb(-1) data sample that contains 772 x 10(6) B (B) over bar pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB e(+)e(-) collider. We search for signal candidates by fully reconstructing a hadronic decay of the accompanying B meson and requiring a single h(()*()) meson left on the signal side. No significant signal is observed and we set upper limits on the branching fractions at 90% confidence level. The measurements of B+ -> K*(+)nu(nu) over bar, B+ -> pi(+)nu(nu) over bar, B-0 -> pi(0)nu(nu) over bar and B-0 -> rho(0)nu(nu) over bar provide the world's currently most restrictive limits.
C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country UPV EHU, Bilbao 48080, Spain.
[Oswald, C.] Univ Bonn, D-53115 Bonn, Germany.
[Bondar, A.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Usov, Y.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia.
[Bondar, A.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Usov, Y.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic.
[Kinoshita, K.; Liu, Y.; Santel, D.; Schwartz, A. J.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Lange, J. S.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany.
[Sumihama, M.] Gifu Univ, Gifu 5011193, Japan.
[Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea.
[Browder, T. E.; Sahoo, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA.
[Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Iwasaki, Y.; Liventsev, D.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Tsuboyama, T.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan.
[Schnell, G.] Ikerbasque, Bilbao 48011, Spain.
[Bhuyan, B.; Dutta, D.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India.
[Nayak, M.] Indian Inst Technol, Chennai 600036, Tamil Nadu, India.
[Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.
[Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria.
[Belous, K.; Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia.
[Aushev, T.; Chistov, R.; Danilov, M.; Pakhlov, P.; Pakhlova, G.; Solovieva, E.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia.
[Bracko, M.; Golob, B.; Klucar, J.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Santelj, L.; Smerkol, P.; Staric, M.] Jozef Stefan Inst, Ljubljana 1000, Slovenia.
[Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan.
[Lutz, O.; Neubauer, S.; Heck, M.; Kuhr, T.; Zupanc, A.; Feindt, M.; Kronenbitter, B.; Mueller, T.; Prim, M.; Roehrken, M.] Karlsruher Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany.
[Cho, K.; Kim, J. H.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Kim, J. B.; Kim, K. T.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul 136713, South Korea.
[Hyun, H. J.; Kim, H. J.; Kim, H. O.; Kim, M. J.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea.
[Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland.
[Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia.
[Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA.
[Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia.
[Chekelian, V.; Chobanova, V.; Dalseno, J.; Kiesling, C.; Moll, A.; Nedelkovska, E.; Ritter, M.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Danilov, M.; Pakhlov, P.] Moscow Phys Engn Inst, Moscow 115409, Russia.
[Uglov, T.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia.
[Iijima, T.; Ohshima, T.; Seon, O.; Shen, C. P.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan.
[Hayasaka, K.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan.
[Bhardwaj, V.; Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan.
[Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan.
[Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan.
[Chang, P.; Chen, P.; Hou, W. -S.; Hsiung, Y. B.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan.
[Bozek, A.; Kapusta, P.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland.
[Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan.
[Kawasaki, T.; Miyata, H.; Watanabe, M.] Niigata Univ, Niigata 9502181, Japan.
[Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan.
[Asner, D. M.; Fast, J. E.; Kouzes, R. T.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Wang, J.] Peking Univ, Beijing 100871, Peoples R China.
[Muramatsu, N.] Tohoku Univ, Res Ctr Electron Photon Sci, Sendai, Miyagi 9808578, Japan.
[Liu, C.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Olsen, S. L.] Seoul Natl Univ, Seoul 151742, South Korea.
[Choi, Y.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Bakich, A. M.; Sibidanov, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Aziz, T.; Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany.
[Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan.
[Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan.
[Ishikawa, A.; Kato, E.; Saito, T.; Sanuki, T.; Sato, Y.; Yamamoto, H.] Tohoku Univ, Sendai, Miyagi 9808578, Japan.
[Aihara, H.; Epifanov, D.; Ng, C.; Onuki, Y.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan.
[Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan.
[Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan.
[Nitoh, O.] Tokyo Univ Agr & Technol, Koganei, Tokyo 1848588, Japan.
[Li, Y.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA.
[Bonvicini, G.; Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA.
[Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan.
[Kang, J. H.; Kwon, Y. -J.; Sohn, Y. -S.] Yonsei Univ, Seoul 120749, South Korea.
RP Lutz, O (reprint author), Univ Basque Country UPV EHU, Bilbao 48080, Spain.
RI Pakhlova, Galina/C-5378-2014; Solovieva, Elena/B-2449-2014; Aihara,
Hiroaki/F-3854-2010; Ishikawa, Akimasa/G-6916-2012; Nitoh,
Osamu/C-3522-2013; Pakhlov, Pavel/K-2158-2013; Uglov,
Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Krokovny,
Pavel/G-4421-2016; Chistov, Ruslan/B-4893-2014
OI Pakhlova, Galina/0000-0001-7518-3022; Solovieva,
Elena/0000-0002-5735-4059; Aihara, Hiroaki/0000-0002-1907-5964; Pakhlov,
Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Danilov,
Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667;
Chistov, Ruslan/0000-0003-1439-8390
FU MEXT (Japan); JSPS (Japan); Nagoya's TLPRC (Japan); ARC (Australia);
DIISR (Australia); NSFC (China); MSMT (Czechia); Carl Zeiss Foundation
(Germany); DFG (Germany); DST (India); INFN (Italy); MEST (Korea); NRF
(Korea); GSDC of KISTI (Korea); WCU (Korea); MNiSW (Poland); MES
(Russia); RFAAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC
(Taiwan); MOE (Taiwan); DOE (USA); NSF (USA)
FX We thank the KEKB group for excellent operation of the accelerator; the
KEK cryogenics group for efficient solenoid operations; and the KEK
computer group, the NII, and PNNL/EMSL for valuable computing and SINET4
network support. We acknowledge support from MEXT, JSPS and Nagoya's
TLPRC (Japan); ARC and DIISR (Australia); NSFC (China); MSMT (Czechia);
the Carl Zeiss Foundation and the DFG (Germany); DST (India); INFN
(Italy); MEST, NRF, GSDC of KISTI, and WCU (Korea); MNiSW (Poland); MES
and RFAAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE
(Taiwan); and DOE and NSF (USA).
NR 33
TC 21
Z9 21
U1 1
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUN 27
PY 2013
VL 87
IS 11
AR 111103
DI 10.1103/PhysRevD.87.111103
PG 7
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 172KE
UT WOS:000321001100001
ER
PT J
AU Kogan, VG
AF Kogan, V. G.
TI Homes scaling and BCS
SO PHYSICAL REVIEW B
LA English
DT Article
ID TEMPERATURE; SUPERCONDUCTORS
AB It is argued on the basis of the BCS theory that the zero-T penetration depth satisfies lambda(-2)(0) alpha sigma T-c (sigma is the normal state dc conductivity) not only in the extreme dirty limit xi(0)/l >> 1, but in a broad range of scattering parameters down to xi(0)/l similar to 1 (xi(0) is the zero-T BCS coherence length and l is the mean free path). Hence, the scaling lambda(-2)(0) alpha sigma T-c, sTc, suggested as a new universal property of superconductors [Dordevic, Basov, and Homes, Sci. Rep. 3, 1713 (2013)], finds a natural explanation within the BCS theory.
C1 US DOE, Ames Lab, Ames, IA 50011 USA.
RP Kogan, VG (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.
FU Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-AC02-07CH11358]
FX The author is grateful to S. Bud'ko, P. Canfield, R. Prozorov, J. Clem,
V. Taufour, and H. Kim for interest and help. Discussions with C. Homes
were welcome and encouraging. The Ames Laboratory is supported by the
Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358.
NR 11
TC 7
Z9 7
U1 1
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 27
PY 2013
VL 87
IS 22
AR 220507
DI 10.1103/PhysRevB.87.220507
PG 2
WC Physics, Condensed Matter
SC Physics
GA 172JS
UT WOS:000320999800001
ER
PT J
AU Jing, YC
Hao, Y
Litvinenko, VN
AF Jing, Yichao
Hao, Yue
Litvinenko, Vladimir N.
TI Compensating effect of the coherent synchrotron radiation in bunch
compressors
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
ID FREE-ELECTRON LASER; EXTREME-ULTRAVIOLET; OPERATION
AB Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam line's end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERL's arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beam's quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider.
C1 [Jing, Yichao; Hao, Yue; Litvinenko, Vladimir N.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Jing, YC (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM yjing@bnl.gov
FU Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; U.S. Department
of Energy
FX This work is supported by Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
NR 29
TC 8
Z9 8
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD JUN 27
PY 2013
VL 16
IS 6
AR 060704
DI 10.1103/PhysRevSTAB.16.060704
PG 7
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 172KL
UT WOS:000321001800001
ER
PT J
AU Kaiser, BLD
Li, J
Sanford, JA
Kim, YM
Kronewitter, SR
Jones, MB
Peterson, CT
Peterson, SN
Frank, BC
Purvine, SO
Brown, JN
Metz, TO
Smith, RD
Heffron, F
Adkins, JN
AF Kaiser, Brooke L. Deatherage
Li, Jie
Sanford, James A.
Kim, Young-Mo
Kronewitter, Scott R.
Jones, Marcus B.
Peterson, Christine T.
Peterson, Scott N.
Frank, Bryan C.
Purvine, Samuel O.
Brown, Joseph N.
Metz, Thomas O.
Smith, Richard D.
Heffron, Fred
Adkins, Joshua N.
TI A Multi-Omic View of Host-Pathogen-Commensal Interplay in
Salmonella-Mediated Intestinal Infection
SO PLOS ONE
LA English
DT Article
ID ENTERICA SEROVAR TYPHIMURIUM; MASS-SPECTROMETRY; MICROBIAL ECOLOGY;
VIRULENCE FACTORS; MUCIN DYNAMICS; IMMUNE-SYSTEM; SP NOV.; RESISTANCE;
PROTEIN; CELLS
AB The potential for commensal microorganisms indigenous to a host (the 'microbiome' or 'microbiota') to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics "systems'' approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e. g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium's lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.
C1 [Kaiser, Brooke L. Deatherage; Sanford, James A.; Kim, Young-Mo; Kronewitter, Scott R.; Brown, Joseph N.; Metz, Thomas O.; Smith, Richard D.; Adkins, Joshua N.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Li, Jie; Heffron, Fred] Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR 97201 USA.
[Jones, Marcus B.; Peterson, Christine T.; Peterson, Scott N.; Frank, Bryan C.] J Craig Venter Inst, Dept Infect Dis, Rockville, MD USA.
[Purvine, Samuel O.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Adkins, JN (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
EM Joshua.Adkins@pnnl.gov
RI Smith, Richard/J-3664-2012; Kim, Young-Mo/D-3282-2009;
OI Smith, Richard/0000-0002-2381-2349; Kim, Young-Mo/0000-0002-8972-7593;
Adkins, Joshua/0000-0003-0399-0700; Metz, Tom/0000-0001-6049-3968
FU National Institute of Allergy and Infectious Diseases NIH/DHHS
[Y1-AI-8401, R01AI022933-022A1]; U.S. Department of Energy Office of
Biological and Environmental Research (DOE/BER) [8 P41 GM103493-10];
Pacific Northwest National Laboratory [DE-AC05-76RLO1830]
FX (This work was supported in part by the National Institute of Allergy
and Infectious Diseases NIH/DHHS through interagency agreement
Y1-AI-8401 (project websitewww.SysBEP.org with links to raw data) and
Grant R01AI022933-022A1. This work used instrumentation and capabilities
developed under support from the National Institute of General Medical
Sciences grant 8 P41 GM103493-10 and the U.S. Department of Energy
Office of Biological and Environmental Research (DOE/BER). Significant
portions of this work were performed in the Environmental Molecular
Sciences Laboratory, a DOE/BER national scientific user facility located
at Pacific Northwest National Laboratory. The Pacific Northwest National
Laboratory is operated for the DOE by Battelle under Contract
DE-AC05-76RLO1830. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript.
NR 59
TC 31
Z9 31
U1 2
U2 43
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 26
PY 2013
VL 8
IS 6
AR e67155
DI 10.1371/journal.pone.0067155
PG 13
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 178DN
UT WOS:000321424400076
ER
PT J
AU Koenigsmann, C
Semple, DB
Sutter, E
Tobierre, SE
Wong, SS
AF Koenigsmann, Christopher
Semple, Dara Bobb
Sutter, Eli
Tobierre, Sybil E.
Wong, Stanislaus S.
TI Ambient Synthesis of High-Quality Ruthenium Nanowires and the
Morphology-Dependent Electrocatalytic Performance of Platinum-Decorated
Ruthenium Nanowires and Nanoparticles in the Methanol Oxidation Reaction
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE direct methanol fuel cells; electrocatctlysis; one-dimensional
nanostructures; noble metals; template-based synthesis;
morphology-dependent behavior
ID OXYGEN REDUCTION REACTION; CO MONOLAYER OXIDATION; FUEL-CELLS; ANODE
ELECTROCATALYSTS; ETHANOL OXIDATION; CATALYSTS; RU; PTRU; SIZE;
ELECTROOXIDATION
AB We report for the first time (a) the synthesis of elemental ruthenium nanowires (Ru NWs), (b) a method for modifying their surfaces with platinum (Pt), and (c) the morphology-dependent methanol oxidation reaction (MOR) performance of high quality Pt modified Ru NW electrocatalysts. The synthesis of our elemental Ru NWs has been accomplished utilizing a template-based method under ambient conditions. As-prepared Ru NWs are crystalline and elementally pure, maintain electrochemical properties analogous to elemental Ru, and can be generated with average diameters ranging from 44 to 280 nm. We rationally examine the morphology-dependent performance of the Ru NWs by comparison with commercial Ru nanoparticle (NP)/carbon (C) systems after decorating the surfaces of these structures With Pt. We have demonstrated that the deposition of Pt onto the Ru NWs (Pt Ru NWs) results in a unique hierarchical structure, wherein the deposited Pt exists as discrete clusters on the surface. By contrast, we find that the Pt-decorated commercial Ru NP/C (Pt similar to Ru NP/C) results in the formation of an alloy-type NP. The Pt Ru NPs (0.61 A/mg of Pt) possess nearly 2-fold higher Pt mass activity than analogous Pt similar to Ru NW electrocatalysts (0.36 A/mg of Pt). On the basis of a long-term durability test, it is apparent that both catalysts undergo significant declines in performance, potentially resulting from aggregation and ripening in the case of Pt Ru NP/C and the effects of catalyst poisoning in the Pt similar to Ru NWs. At the conclusion of the test, both catalysts maintain comparable performance, despite a slightly enhanced performance in Pt similar to Ru NP/C. In addition, the measured mass-normalized MOR activity of the Pt similar to Ru NWs (0.36 A/mg of Pt) was significantly enhanced as compared with supported elemental Pt (Pt NP/C, 0.09 A/mg of Pt) and alloy-type PtRu (PtRu NP/C, 0.24 A/mg of Pt) NPs, both serving as commercial standards.
C1 [Koenigsmann, Christopher; Semple, Dara Bobb; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Tobierre, Sybil E.; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
EM stanislaus.wong@stonybrook.edu
FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division; U.S. Department of Energy [DE-AC02-98CH10886]
FX Research (including support for S.S.W. and electrochemical experiments)
was supported by the U.S. Department of Energy, Basic Energy Sciences,
Materials Sciences and Engineering Division. Support for experimental
supplies was also provided by Sigma Xi through its Grants-in-Aid of
Research Program. We acknowledge Dr. R. R. Adzic and Dr. M. B.
Vukmirovic (Brookhaven National Laboratory) for relevant, helpful
discussions and assistance with obtaining electrochemical measurements.
We also thank Dr. J. Quinn and Dr. A. C. Santulli for their assistance
with obtaining SEM and EDAX measurements. Experiments for this
manuscript were performed, in part, at the Center for Functional
Nanomaterials located at Brookhaven National Laboratory, which is
supported by the U.S. Department of Energy under Contract
DE-AC02-98CH10886.
NR 59
TC 19
Z9 19
U1 4
U2 78
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD JUN 26
PY 2013
VL 5
IS 12
BP 5518
EP 5530
DI 10.1021/am4007462
PG 13
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 175NI
UT WOS:000321237000019
PM 23742154
ER
PT J
AU Saha, D
Payzant, EA
Kumbhar, AS
Naskar, AK
AF Saha, Dipendu
Payzant, E. Andrew
Kumbhar, Amar S.
Naskar, Amit K.
TI Sustainable Mesoporous Carbons as Storage and Controlled-Delivery Media
for Functional Molecules
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE mesoporous carbon; lignin; soft-templating; drug delivery; sustainable
materials
ID DRUG-DELIVERY; ADSORPTION; POLYMERS; RELEASE; TRANSFORMATION;
SCATTERING; FRAMEWORKS; NANOTUBES; SIEVES; BLOCK
AB Here, we report the synthesis of surfactant-templated mesoporous carbons from lignin, which is a biomass-derived polymeric precursor, and their potential use as a controlled-release medium for functional molecules such as pharmaceuticals. To the best of our knowledge, this is the first report on the use of lignin for chemical-activation-free synthesis of functional mesoporous carbon. The synthesized carbons possess the pore widths within the range of 2.5-12.0 nm. In this series of mesoporous carbons, our best result demonstrates a Brunauer-Emmett-Teller (BET) surface area of 418 m(2)/g and a mesopore volume of 0.34 cm(3)/g, which is twice the micropore volume in this carbon. Because of the dominant mesoporosity, this engineered carbon demonstrates adsorption and controlled release of a representative pharmaceutical drug, captopril, in simulated gastric fluid. Large-scale utilization of these sustainable mesoporous carbons in applications involving adsorption, transport, and controlled release of functional molecules is desired for industrial processes that yield lignin as a coproduct.
C1 [Saha, Dipendu; Naskar, Amit K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Carbon & Composites Grp, Oak Ridge, TN 37831 USA.
[Payzant, E. Andrew] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
[Kumbhar, Amar S.] Univ N Carolina, Inst Adv Mat NanoSci & Technol, Chapel Hill, NC 27599 USA.
RP Naskar, AK (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Carbon & Composites Grp, Oak Ridge, TN 37831 USA.
EM naskarak@ornl.gov
RI Payzant, Edward/B-5449-2009
OI Payzant, Edward/0000-0002-3447-2060
FU Laboratory Directed Research and Development Program of ORNL; Division
of Scientific User Facilities, U.S. Department of Energy
FX Research was sponsored by the Laboratory Directed Research and
Development Program of ORNL, managed by UT-Battelle, LLC, for the U.S.
Department of Energy. Scattering experiments were conducted at the
Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge
National Laboratory (ORNL) by the Division of Scientific User
Facilities, U.S. Department of Energy. We thank Dr. Gerald E. Jellison
for support with UV-vis spectroscopy. The authors gratefully acknowledge
the generous donation of Pluronic F127 by BASF.
NR 34
TC 31
Z9 31
U1 3
U2 85
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD JUN 26
PY 2013
VL 5
IS 12
BP 5868
EP 5874
DI 10.1021/am401661f
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 175NI
UT WOS:000321237000064
PM 23731336
ER
PT J
AU Gin, S
Ryan, JV
Schreiber, DK
Neeway, J
Cabie, M
AF Gin, S.
Ryan, J. V.
Schreiber, D. K.
Neeway, J.
Cabie, M.
TI Contribution of atom-probe tomography to a better understanding of glass
alteration mechanisms: Application to a nuclear glass specimen altered
25 years in a granitic environment
SO CHEMICAL GEOLOGY
LA English
DT Article
DE Nuclear glass; Atom probe tomography; Interdiffusion; Alteration layers;
Long-term rate
ID BOROSILICATE GLASSES; WASTE GLASS; WATER PENETRATION; SILICATE-GLASSES;
DISSOLUTION RATE; SURFACE-LAYERS; 1ST PRINCIPLES; RICH SOLUTIONS;
ION-EXCHANGE; GRAAL MODEL
AB We report and discuss results of atom probe tomography (APT) and energy-filtered transmission electron microscopy (EFTEM) applied to a borosilicate glass sample of nuclear interest altered for 25.75 years at 90 degrees C in a confined granitic medium in order to better understand the rate-limiting mechanisms under conditions representative of a deep geological repository for vitrified radioactive waste. The APT technique allows the 3D reconstruction of the elemental distribution at the reactive interphase with sub-nanometer precision. Profiles of the B distribution at pristine glass/hydrated glass interface obtained by different techniques are compared to show the challenge of accurate measurements of diffusion profiles at this buried interface on the nanometer length scale. Our results show that 1) Li from the glass and hydrogen from the solution exhibit anti-correlated 15 nm wide gradients located between the pristine glass and the hydrated glass layer, and 2) boron exhibits an unexpectedly sharp profile (similar to 3 nm width) located just outside of the Li/H interdiffusion layer; this sharp profile is more consistent with a dissolution front than a diffusion-controlled release of boron. The resulting apparent diffusion coefficients derived from the Li and H profiles are D-Li = 1.5 x 10(-22) M-2.s(-1) and D-H = 6.8 x 10(-23) M-2.s(-1). These values are around two orders of magnitude lower than those observed at the very beginning of the alteration process, which suggests that interdiffusion is slowed at high reaction progress by local conditions that could be related to the porous structure of the interphase. As a result, the accessibility of water to the pristine glass could be the rate-limiting step in these conditions. More generally, these findings strongly support the importance of interdiffusion coupled with hydrolysis reactions of the silicate network on the long-term dissolution rate, contrary to what has been suggested by recent interfacial dissolution-precipitation models for silicate minerals. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Gin, S.] CPA Marcoule DTCD SECM LCLT, F-30207 Bagnols Sur Ceze, France.
[Ryan, J. V.; Schreiber, D. K.; Neeway, J.] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Cabie, M.] Aix Marseille Univ, CP2M, F-13397 Marseille, France.
RP Gin, S (reprint author), CPA Marcoule DTCD SECM LCLT, F-30207 Bagnols Sur Ceze, France.
EM stephane.gin@cea.fr; joe.ryan@pnnl.gov; daniel.schreiber@pnnl.gov;
james.neeway@pnnl.gov; martiane.cabie@univ-amu.fr
OI Neeway, Jim/0000-0001-7046-8408
FU DOE Offices of Nuclear Energy and Environmental Management; Department
of Energy (DOE) Office of Biological and Environmental Research and
located at PNNL
FX The glass alteration experiment was conducted at CEA of Marcoule and
followed for 26 years by Jean-Pierre Mestre. EFTEM analyses were
performed at Aix-Marseille Universite. APT analyses and some of the
FIB-based sample preparation were performed at the Environmental
Molecular Science Laboratory (EMSL), a national scientific user facility
sponsored by the Department of Energy (DOE) Office of Biological and
Environmental Research and located at PNNL. This work is part of a
jointly funded effort by the DOE Offices of Nuclear Energy and
Environmental Management.
NR 74
TC 45
Z9 45
U1 9
U2 75
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2541
EI 1878-5999
J9 CHEM GEOL
JI Chem. Geol.
PD JUN 26
PY 2013
VL 349
BP 99
EP 109
DI 10.1016/j.chemgeo.2013.04.001
PG 11
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 180NL
UT WOS:000321601800008
ER
PT J
AU Sevov, CS
Hartwig, JF
AF Sevov, Christo S.
Hartwig, John F.
TI Iridium-Catalyzed, Intermolecular Hydroetherification of Unactivated
Aliphatic Alkenes with Phenols
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CARBOXYLIC-ACIDS; OXIDATIVE ADDITION; ASYMMETRIC HYDROAMINATION;
HYDROALKOXYLATION; ALCOHOLS; OLEFINS; ALKYNES; ALKYLATION; COMPLEXES;
ALLENES
AB Metal-catalyzed addition of an O-H bond to an alkene is a desirable process because it allows for rapid access to ethers from abundant starting materials without the formation of waste, without rearrangements, and with the possibility to control the stereoselectivity. We report the intermolecular,, metal-catalyzed addition of phenols to unactivated alpha-olefins. Mechanistic studies of this rare catalytic reaction revealed a dynamic mixture of resting states that undergo O-H bond oxidative addition and subsequent olefin insertion to form ether products.
C1 [Hartwig, John F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Berkeley, CA 94720 USA.
RP Hartwig, JF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM jhartwig@berkeley.edu
FU U.S. Department of Energy [DE-AC02-05CH11231]; NSF
FX We thank the U.S. Department of Energy (DE-AC02-05CH11231) for support,
Johnson-Matthey for a gift of [Ir(cod)Cl]2, and Takasago for
a gift of (S)-DTBM-Segphos. C.S.S. thanks the NSF for a Graduate
Research Fellowship.
NR 41
TC 19
Z9 19
U1 6
U2 90
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD JUN 26
PY 2013
VL 135
IS 25
BP 9303
EP 9306
DI 10.1021/ja4052153
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA 175NE
UT WOS:000321236600018
PM 23758128
ER
PT J
AU Shokri, A
Wang, XB
Kass, SR
AF Shokri, Alireza
Wang, Xue-Bin
Kass, Steven R.
TI Electron-Withdrawing Trifluoromethyl Groups in Combination with Hydrogen
Bonds in Polyols: Bronsted Acids, Hydrogen-Bond Catalysts, and Anion
Receptors
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID DIELS-ALDER REACTIONS; DIMETHYL-SULFOXIDE SOLUTION;
PHOTOELECTRON-SPECTROSCOPY; EQUILIBRIUM ACIDITIES; ASYMMETRIC CATALYSIS;
DENSITY FUNCTIONALS; MANNICH REACTIONS; DIOLS; THERMOCHEMISTRY;
PHOTODETACHMENT
AB Electron-withdrawing trifluoromethyl groups were characterized in combination with hydrogen bond interactions in three polyols (i.e., CF3CH(OH)CH2CH(OH)CF3, 1; (CF3)(2)C(OH)C-(OH)(CF3)(2), 2; ((CF3)(2)C(OH)CH2)(2)CHOH, 3) by pK(a) measurements in DMSO and H2O, negative ion photoelectron spectroscopy and binding constant determinations with Cl-. Their catalytic behavior in several reactions were also examined and compared to a Bronsted acid (HOAc) and a commonly employed thiourea ((3,5-(CF3)(2)C6H3NH)(2)CS). The combination of inductive stabilization and hydrogen bonds was found to afford potent acids which are effective catalysts. It also appears that hydrogen bonds can transmit the inductive effect over distance even in an aqueous environment, and this has far reaching implications.
C1 [Shokri, Alireza; Kass, Steven R.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA.
[Wang, Xue-Bin] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA.
[Wang, Xue-Bin] Washington State Univ, Dept Phys, Richland, WA 99354 USA.
RP Wang, XB (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, POB 999,MS K8-88, Richland, WA 99352 USA.
EM kass@umn.edu; xuebin.wang@pnnl.gov
FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences, U.S. Department of Energy (DOE); DOE's Office of
Biological and Environmental Research
FX We thank Dr. K. Murphy for preparing and separating the two
diastereomers of 1. Generous support from the National Science
Foundation, the Petroleum Research Fund as administered by the ACS and
the Minnesota Supercomputer Institute for Advanced Computational
Research are gratefully acknowledged. The photoelectron spectra work was
supported by the Division of Chemical Sciences, Geosciences, and
Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy
(DOE), and was performed at the EMSL, a national scientific user
facility sponsored by DOE's Office of Biological and Environmental
Research and located at Pacific Northwest National Laboratory, which is
operated by Battelle for DOE.
NR 58
TC 26
Z9 26
U1 1
U2 55
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD JUN 26
PY 2013
VL 135
IS 25
BP 9525
EP 9530
DI 10.1021/ja4036384
PG 6
WC Chemistry, Multidisciplinary
SC Chemistry
GA 175NE
UT WOS:000321236600054
PM 23725455
ER
PT J
AU Hoarty, DJ
Allan, P
James, SF
Brown, CRD
Hobbs, LMR
Hill, MP
Harris, JWO
Morton, J
Brookes, MG
Shepherd, R
Dunn, J
Chen, H
Von Marley, E
Beiersdorfer, P
Chung, HK
Lee, RW
Brown, G
Emig, J
AF Hoarty, D. J.
Allan, P.
James, S. F.
Brown, C. R. D.
Hobbs, L. M. R.
Hill, M. P.
Harris, J. W. O.
Morton, J.
Brookes, M. G.
Shepherd, R.
Dunn, J.
Chen, H.
Von Marley, E.
Beiersdorfer, P.
Chung, H. K.
Lee, R. W.
Brown, G.
Emig, J.
TI Observations of the Effect of Ionization-Potential Depression in Hot
Dense Plasma
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID LASER-SHOCKED SOLIDS; TARGETS; SPECTRA; SHIFT; EDGE
AB The newly commissioned Orion laser system has been used to study dense plasmas created by a combination of short pulse laser heating and compression by laser driven shocks. Thus the plasma density was systematically varied between 1 and 10 g/cc by using aluminum samples buried in plastic foils or diamond sheets. The aluminum was heated to electron temperatures between 500 and 700 eV allowing the plasma conditions to be diagnosed by K-shell emission spectroscopy. The K-shell spectra show the effect of the ionization potential depression as a function of density. The data are compared to simulated spectra which account for the change in the ionization potential by the commonly used Stewart and Pyatt prescription and an alternative due to Ecker and Kroll suggested by recent x-ray free-electron laser experiments. The experimental data are in closer agreement with simulations using the model of Stewart and Pyatt.
C1 [Hoarty, D. J.; Allan, P.; James, S. F.; Brown, C. R. D.; Hobbs, L. M. R.; Hill, M. P.; Harris, J. W. O.; Morton, J.; Brookes, M. G.] AWE Plc, Directorate Res & Appl Sci, Reading RG7 4PR, Berks, England.
[Shepherd, R.; Dunn, J.; Chen, H.; Von Marley, E.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Chung, H. K.; Brown, G.; Emig, J.] IAEA, Div Phys & Chem Sci, Nucl Data Sect, A-1400 Vienna, Austria.
[Lee, R. W.] Univ Calif Berkeley, Inst Mat Dynam Extreme Condit, Berkeley, CA 94720 USA.
RP Hoarty, DJ (reprint author), AWE Plc, Directorate Res & Appl Sci, Reading RG7 4PR, Berks, England.
OI Hill, Matthew/0000-0002-0307-0624
FU DOE [DE-AC52-07NA-27344]
FX The authors would like to thank the laser and facility staff of the
Orion laser and D. Lavender for engineering support and the staff of AWE
target fabrication. Work at the Lawrence Livermore National Laboratory
was performed under the auspices of the DOE under Contract No.
DE-AC52-07NA-27344.
NR 20
TC 51
Z9 51
U1 2
U2 32
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 26
PY 2013
VL 110
IS 26
AR 265003
DI 10.1103/PhysRevLett.110.265003
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 172HE
UT WOS:000320990800013
PM 23848885
ER
PT J
AU Litvinenko, VN
Derbenev, YS
AF Litvinenko, Vladimir N.
Derbenev, Yaroslav S.
TI Comment on "Coherent Electron Cooling" Reply
SO PHYSICAL REVIEW LETTERS
LA English
DT Editorial Material
C1 [Litvinenko, Vladimir N.] BNL, Upton, NY 11973 USA.
[Derbenev, Yaroslav S.] JLab, Newport News, VA 23606 USA.
RP Litvinenko, VN (reprint author), BNL, Upton, NY 11973 USA.
NR 6
TC 1
Z9 1
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 26
PY 2013
VL 110
IS 26
AR 269504
DI 10.1103/PhysRevLett.110.269504
PG 2
WC Physics, Multidisciplinary
SC Physics
GA 172HE
UT WOS:000320990800026
PM 23848932
ER
PT J
AU Stupakov, G
Zolotorev, MS
AF Stupakov, G.
Zolotorev, M. S.
TI Comment on "Coherent Electron Cooling"
SO PHYSICAL REVIEW LETTERS
LA English
DT Editorial Material
C1 [Stupakov, G.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Zolotorev, M. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Beam Phys, Berkeley, CA 94720 USA.
RP Stupakov, G (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
NR 3
TC 3
Z9 3
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 26
PY 2013
VL 110
IS 26
AR 269503
DI 10.1103/PhysRevLett.110.269503
PG 1
WC Physics, Multidisciplinary
SC Physics
GA 172HE
UT WOS:000320990800025
PM 23848931
ER
PT J
AU Xu, HX
Stoller, RE
Osetsky, YN
Terentyev, D
AF Xu, Haixuan
Stoller, Roger E.
Osetsky, Yury N.
Terentyev, Dmitry
TI Solving the Puzzle of < 100 > Interstitial Loop Formation in bcc Iron
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID NEUTRON IRRADIATION DAMAGE; HEAVY-ION IRRADIATIONS; FE-CR ALLOYS;
DISLOCATION LOOPS; ALPHA-IRON; RADIATION-DAMAGE; THIN-FOILS; MOLYBDENUM;
EVOLUTION; CLUSTERS
AB The interstitial loop is a unique signature of radiation damage in structural materials for nuclear and other advanced energy systems. Unlike other bcc metals, two types of interstitial loops, 1/2 < 111 > and < 100 >, are formed in bcc iron and its alloys. However, the mechanism by which < 100 > interstitial dislocation loops are formed has remained undetermined since they were first observed more than fifty years ago. We describe our atomistic simulations that have provided the first direct observation of < 100 > loop formation. The process was initially observed using our self-evolving atomistic kinetic Monte Carlo method, and subsequently confirmed using molecular dynamics simulations. Formation of < 100 > loops involves a distinctly atomistic interaction between two 1/2 < 111 > loops, and does not follow the conventional assumption of dislocation theory, which is Burgers vector conservation between the reactants and the product. The process observed is different from all previously proposed mechanisms. Thus, our observations might provide a direct link between experiments and simulations and new insights into defect formation that may provide a basis to increase the radiation resistance of these strategic materials.
C1 [Xu, Haixuan; Stoller, Roger E.; Osetsky, Yury N.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Terentyev, Dmitry] CEN SCK, Nucl Mat Sci Inst, B-2400 Mol, Belgium.
RP Xu, HX (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM xuh1@ornl.gov
RI Xu, Haixuan/C-9841-2009;
OI Osetskiy, Yury/0000-0002-8109-0030
FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division, "Center for Defect Physics," an
Energy Frontier Research Center
FX Research sponsored by the U.S. Department of Energy, Office of Basic
Energy Sciences, Materials Sciences and Engineering Division, "Center
for Defect Physics," an Energy Frontier Research Center. The authors
would like to thank G. M. Stocks, D. J. Bacon, and A. Barashev for their
valuable comments on the manuscript.
NR 33
TC 29
Z9 29
U1 2
U2 64
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 26
PY 2013
VL 110
IS 26
AR 265503
DI 10.1103/PhysRevLett.110.265503
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 172HE
UT WOS:000320990800016
PM 23848895
ER
PT J
AU Karrasch, C
Hauschild, J
Langer, S
Heidrich-Meisner, F
AF Karrasch, C.
Hauschild, J.
Langer, S.
Heidrich-Meisner, F.
TI Drude weight of the spin-1/2 XXZ chain: Density matrix renormalization
group versus exact diagonalization
SO PHYSICAL REVIEW B
LA English
DT Article
ID HEISENBERG-MODEL; TRANSPORT; INTEGRABILITY; CONDUCTIVITY; TEMPERATURES;
STIFFNESS; DYNAMICS; SYSTEMS
AB We revisit the problem of the spin Drude weight D of the integrable spin-1/2 XXZ chain using two complementary approaches, exact diagonalization (ED) and the time-dependent density-matrix renormalization group (tDMRG). We pursue two main goals. First, we present extensive results for the temperature dependence of D. By exploiting time translation invariance within tDMRG, one can extract D for significantly lower temperatures than in previous tDMRG studies. Second, we discuss the numerical quality of the tDMRG data and elaborate on details of the finite-size scaling of the ED results, comparing calculations carried out in the canonical and grand-canonical ensembles. Furthermore, we analyze the behavior of the Drude weight as the point with SU(2)-symmetric exchange is approached and discuss the relative contribution of the Drude weight to the sum rule as a function of temperature.
C1 [Karrasch, C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA.
[Karrasch, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Hauschild, J.; Langer, S.; Heidrich-Meisner, F.] Univ Munich, Dept Phys, D-80333 Munich, Germany.
[Hauschild, J.; Langer, S.; Heidrich-Meisner, F.] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany.
[Langer, S.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Heidrich-Meisner, F.] Univ Erlangen Nurnberg, Inst Theoret Phys 2, D-91054 Erlangen, Germany.
RP Karrasch, C (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA.
RI Heidrich-Meisner, Fabian/B-6228-2009; Karrasch, Christoph/S-5716-2016
OI Karrasch, Christoph/0000-0002-6475-3584
FU Deutsche Forschungsgemeinschaft [KA3360-1/1]; Nanostructured
Thermoelectrics program of LBNL; Deutsche Forschungsgemeinschaft through
Research unit FOR 912 [HE-5242/2-2]
FX We thank W. Brenig, J. E. Moore, T. Prosen, and F. Verstraete for very
helpful discussions and we thank A. Klumper for his comments on a
previous version of the manuscript and for sending us data from Ref. 48.
We gratefully acknowledge support from to the Deutsche
Forschungsgemeinschaft through grant-no. KA3360-1/1 (C.K.) and through
Research unit FOR 912 [Grant No. HE-5242/2-2 (J.H. and F.H.-M.)] as well
as from the Nanostructured Thermoelectrics program of LBNL (C.K.).
NR 71
TC 37
Z9 37
U1 0
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 26
PY 2013
VL 87
IS 24
AR 245128
DI 10.1103/PhysRevB.87.245128
PG 10
WC Physics, Condensed Matter
SC Physics
GA 172FO
UT WOS:000320985600004
ER
PT J
AU Kohley, Z
Liang, JF
Shapira, D
Gross, CJ
Varner, RL
Allmond, JM
Kolata, JJ
Mueller, PE
Roberts, A
AF Kohley, Z.
Liang, J. F.
Shapira, D.
Gross, C. J.
Varner, R. L.
Allmond, J. M.
Kolata, J. J.
Mueller, P. E.
Roberts, A.
TI Sub-barrier fusion enhancement with radioactive Te-134
SO PHYSICAL REVIEW C
LA English
DT Article
ID HEAVY-ION FUSION; NUCLEON-TRANSFER; COULOMB BARRIER; COUPLINGS;
ENERGIES; FISSION; NI+SN; MODEL
AB The fusion cross sections of radioactive Te-134 + Ca-40 were measured at energies above and below the Coulomb barrier. The evaporation residues produced in the reaction were detected in a zero-degree ionization chamber providing high efficiency for inverse kinematics. Both coupled-channel calculations and comparison with similar Sn + Ca systems indicate an increased sub-barrier fusion probability that is correlated with the presence of positive Q-value neutron transfer channels. In comparison, the measured fusion excitation functions of Te-130 + Ni-58,Ni-64, which have positive Q-value neutron transfer channels, were accurately reproduced by coupled-channel calculations including only inelastic excitations. The results demonstrate that the coupling of transfer channels can lead to enhanced sub-barrier fusion but this is not directly correlated with positive Q-value neutron transfer channels in all cases.
C1 [Kohley, Z.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.
[Kohley, Z.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA.
[Kohley, Z.; Liang, J. F.; Shapira, D.; Gross, C. J.; Varner, R. L.; Mueller, P. E.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Allmond, J. M.] Oak Ridge Natl Lab, Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA.
[Kolata, J. J.; Roberts, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Kohley, Z (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.
EM kohley@nscl.msu.edu
OI Allmond, James Mitchell/0000-0001-6533-8721
FU DOE Office of Nuclear Physics; NSF [PHY11-02511, PHY09-69456]
FX We thank Dr. K. Hagino for the providing the CCFULL code. We also thank
the staff members of the Holifield Radioactive Ion Beam Facility for the
excellent quality radioactive and stable beams. This research was
supported by the DOE Office of Nuclear Physics and NSF Grants No.
PHY11-02511 and No. PHY09-69456.
NR 52
TC 15
Z9 15
U1 0
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD JUN 26
PY 2013
VL 87
IS 6
AR 064612
DI 10.1103/PhysRevC.87.064612
PG 6
WC Physics, Nuclear
SC Physics
GA 172FY
UT WOS:000320986800004
ER
PT J
AU Sobczyk, JT
Zmuda, J
AF Sobczyk, Jan T.
Zmuda, Jakub
TI Impact of nuclear effects on weak pion production at energies below 1
GeV
SO PHYSICAL REVIEW C
LA English
DT Article
ID NEUTRINO INTERACTIONS; SCATTERING; EXCITATION; RESONANCES; DEUTERIUM;
REGION
AB Charged-current single-pion production in scattering off C-12 is investigated for neutrino energies up to 1 GeV. A model of Nieves et al. [Phys. Rev. C 83, 045501 (2011)] is further developed by performing exact integration and avoiding several approximations. The effect of exact integration is investigated both for double-differential and total neutrino-nucleus cross sections. The impact of nuclear effects with in-medium modifications of the Delta(1232) resonance properties as well as an effective field theory nonresonant background contribution are discussed. The dependence of the fraction of Delta(1232) decays into n-particle-n-hole states on incident neutrino energy is estimated. The impact of various ingredients of the model on the ratio of muon to electron neutrino cross sections is investigated in detail.
C1 [Sobczyk, Jan T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Sobczyk, Jan T.; Zmuda, Jakub] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland.
RP Sobczyk, JT (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
EM jazmuda@ift.uni.wroc.pl
RI Sobczyk, Jan/C-9761-2016
FU [4525/PB/IFT/11 (UMO-2011/01/N/ST2/03224)]; [4574/PB/IFT/12
(UMO-2011/01/M/ST2/02578)]
FX J.Z. would like to thank L. Alvarez-Ruso, K. Graczyk, and J. Nieves for
many fruitful discussions. This work was sponsored by Grants No.
4525/PB/IFT/11 (UMO-2011/01/N/ST2/03224) and No. 4574/PB/IFT/12
(UMO-2011/01/M/ST2/02578).
NR 43
TC 3
Z9 3
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUN 26
PY 2013
VL 87
IS 6
AR 065503
DI 10.1103/PhysRevC.87.065503
PG 16
WC Physics, Nuclear
SC Physics
GA 172FY
UT WOS:000320986800006
ER
PT J
AU Cao, C
Ford, D
Bishnoi, S
Proslier, T
Albee, B
Hommerding, E
Korczakowski, A
Cooley, L
Ciovati, G
Zasadzinski, JF
AF Cao, C.
Ford, D.
Bishnoi, S.
Proslier, T.
Albee, B.
Hommerding, E.
Korczakowski, A.
Cooley, L.
Ciovati, G.
Zasadzinski, J. F.
TI Detection of surface carbon and hydrocarbons in hot spot regions of
niobium superconducting rf cavities by Raman spectroscopy
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
ID AUGMENTED-WAVE METHOD; CRYSTAL-STRUCTURE; HYDROGEN; SYSTEMS
AB Raman microscopy/spectroscopy measurements are presented on high purity niobium (Nb) samples, including pieces from hot spot regions of a tested superconducting rf cavity that exhibit a high density of etch pits. Measured spectra are compared with density functional theory calculations of Raman-active, vibrational modes of possible surface Nb-O and Nb-H complexes. The Raman spectra inside particularly rough pits in all Nb samples show clear differences from surrounding areas, exhibiting enhanced intensity and sharp peaks. While some of the sharp peaks are consistent with calculated NbH and NbH2 modes, there is better overall agreement with C-H modes in chain-type hydrocarbons. Other spectra reveal two broader peaks attributed to amorphous carbon. Niobium foils annealed to >2000 degrees C in high vacuum develop identical Raman peaks when subjected to cold working. Regions with enhanced C and O have also been found by SEM/EDX spectroscopy in the hot spot samples and cold-worked foils, corroborating the Raman results. Such regions with high concentrations of impurities are expected to suppress the local superconductivity and this may explain the correlation between hot spots in superconducting rf (SRF) cavities and the observation of a high density of surface pits. The origin of localized high carbon and hydrocarbon regions is unclear at present but it is suggested that particular processing steps in SRF cavity fabrication may be responsible.
C1 [Cao, C.; Bishnoi, S.; Albee, B.; Hommerding, E.; Korczakowski, A.; Zasadzinski, J. F.] IIT, Dept Phys, Chicago, IL 60616 USA.
[Cao, C.; Proslier, T.; Zasadzinski, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Ford, D.; Cooley, L.] Fermilab Natl Accelerator Lab, Superconducting Mat Dept, Tech Div, Batavia, IL 60510 USA.
[Ford, D.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA.
[Ciovati, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
RP Zasadzinski, JF (reprint author), IIT, Dept Phys, Chicago, IL 60616 USA.
EM zasadzinski@iit.edu
RI Cooley, Lance/E-7377-2015
OI Cooley, Lance/0000-0003-3488-2980
FU DOE-HEP through FNAL Laboratory; U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; UChicago
Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy Office of
Science laboratory [DE-AC02-06CH11357]; United States Department of
Energy [DE-AC02-07CH11359]
FX This work was supported by DOE-HEP through FNAL Laboratory-University
Collaboration to Understand Performance Limits of SRF Cavities. Use of
the Center for Nanoscale Materials was supported by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357. The electron microscopy was accomplished
at the Electron Microscopy Center for Materials Research at Argonne
National Laboratory, a U.S. Department of Energy Office of Science
Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago
Argonne, LLC. Argonne, a U.S. Department of Energy Office of Science
laboratory, is operated under Contract No. DE-AC02-06CH11357. The
calculations were performed at Fermi National Accelerator Laboratory,
which is operated by Fermi Research Alliance, LLC under Contract No.
DE-AC02-07CH11359 with the United States Department of Energy.
NR 37
TC 11
Z9 11
U1 2
U2 21
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD JUN 26
PY 2013
VL 16
IS 6
AR 064701
DI 10.1103/PhysRevSTAB.16.064701
PG 9
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 172HI
UT WOS:000320991200001
ER
PT J
AU Moore, DB
Beekman, M
Disch, S
Zschack, P
Hausler, I
Neumann, W
Johnson, DC
AF Moore, Daniel B.
Beekman, Matt
Disch, Sabrina
Zschack, Paul
Haeusler, Ines
Neumann, Wolfgang
Johnson, David C.
TI Synthesis, Structure, and Properties of Turbostratically Disordered
(PbSe)(1.18)(TiSe2)(2)
SO CHEMISTRY OF MATERIALS
LA English
DT Article
DE misfit layered compounds; ferecrystals; turbostratic disorder
ID MISFIT LAYER COMPOUND; CRYSTAL-STRUCTURE DETERMINATION;
TRANSPORT-PROPERTIES; DIFFRACTION; ORIENTATION; SULFIDE
AB Synthesis and structural characterization of a turbostratically disordered polymorph of (PbSe)(1.18)(TiSe2)(2) is reported. The structure of this compound consists of an intergrowth between one distorted rock salt structured PbSe bilayer and two transition metal dichalcogenide structured Se-Ti-Se trilayers. In addition to the lattice mismatch, there is extensive rotational disorder between these constituents. The electrical resistivity of (PbSe)(1.18)(TiSe2)(2) is a factor of 9 lower at room temperature, and the Seebeck coefficient is almost double that reported for the crystalline misfit layered compound analogue.
C1 [Moore, Daniel B.; Beekman, Matt; Disch, Sabrina; Neumann, Wolfgang; Johnson, David C.] Univ Oregon, Dept Chem, Eugene, OR 97401 USA.
[Beekman, Matt] Oregon Inst Technol, Dept Nat Sci, Klamath Falls, OR 97601 USA.
[Disch, Sabrina] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France.
[Zschack, Paul] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Haeusler, Ines] Humboldt Univ, Inst Phys, D-10099 Berlin, Germany.
RP Johnson, DC (reprint author), Univ Oregon, Dept Chem, Eugene, OR 97401 USA.
RI Beekman, Matt/I-4470-2014; Disch, Sabrina/K-7185-2013
OI Beekman, Matt/0000-0001-9694-2286; Disch, Sabrina/0000-0002-4565-189X
FU National Science Foundation [DMR 0907049, MRI 0923577]; ONR
[N000141110193]; National Science Foundation through CCI Grant
[CHE-1102637]; U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences [DE-AC02-06CH11357]
FX The authors acknowledge support from the National Science Foundation
under Grant DMR 0907049 and Grant MRI 0923577. Co-author W.N.
acknowledges support from ONR Award No. N000141110193. Coauthors S.D.
and D.C.J. acknowledge support from the National Science Foundation
through CCI Grant CHE-1102637. The authors thank Jenia Karapetrova at
33-BM-C and Doug Robinson at 6-ID-D for technical assistance during
collection of the synchrotron XRD data. Use of the Advanced Photon
Source was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357.
NR 29
TC 25
Z9 25
U1 6
U2 49
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD JUN 25
PY 2013
VL 25
IS 12
BP 2404
EP 2409
DI 10.1021/cm400090f
PG 6
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 173QI
UT WOS:000321093600005
ER
PT J
AU Britt, DK
Yoon, Y
Ercius, P
Ewers, TD
Alivisatos, AP
AF Britt, David K.
Yoon, Yoseob
Ercius, Peter
Ewers, Trevor D.
Alivisatos, A. Paul
TI Hexameric Octahedral Clusters of PbSe Nanocrystals Grown from Amorphous
Lead(II) Carboxylate Nanoparticles
SO CHEMISTRY OF MATERIALS
LA English
DT Article
DE nanocrystal synthesis; lead selenide; oriented attachment; electron
tomography
ID ORIENTED ATTACHMENT; ELECTRON-MICROSCOPY
AB We describe the synthesis and three-dimensional structure of a new single-crystalline "hexameric" nanocrystal composed of six near-spherical PbSe nanocrystals arranged at the vertices of an octahedron. We examine the detailed three-dimensional structure of these nanocrystals using electron tomography and demonstrate single-crystal to single-crystal cation exchange to CdSe. We reveal that the growth of these nanocrystals, which form under conditions similar to other anisotropic PbSe nanocrystals, depends on the initial presence of lead oleate particles with approximate diameters of 1.7-3.1 nm that form upon heating lead(II) acetate hydrate in the presence of oleic acid. These lead oleate particles, which are visible by transmission electron microscopy, constitute the beginning of nearly every synthesis of anisotropic PbSe nanocrystals. We show that the lead oleate particles play a definitive role in determining the morphology of the resultant PbSe nanocrystals. We note that the acetate anion, which was previously identified as the key factor in achieving anisotropic PbSe growth, greatly accelerates the formation of the lead oleate particles, and thus appears to be responsible for the subsequent PbSe morphology. However, we demonstrate that acetate is not required for lead oleate particle formation, nor indeed for anisotropic PbSe growth. The potential role of these new particles in other PbSe synthetic preparations from lead(II) oleate is of high interest for future study.
C1 [Britt, David K.; Yoon, Yoseob; Ewers, Trevor D.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Ercius, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM alivis@berkeley.edu
RI Britt, David/D-4675-2009; Yoon, Yoseob/D-5400-2013; Foundry,
Molecular/G-9968-2014; Alivisatos , Paul /N-8863-2015
OI Yoon, Yoseob/0000-0002-8832-897X; Alivisatos , Paul /0000-0001-6895-9048
FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Physical Chemistry
of Inorganic Nanostructures Program, Office of Science, Office of Basic
Energy Sciences, of the United States Department of Energy
[DE-AC02-05CH11231]
FX Electron Microscopy facilities in the National Center for Electron
Microscopy (NCEM) at Lawrence Berkeley National Laboratory are supported
by the U.S. Department of Energy (DOE) under contract no.
DE-AC02-05CH11231. Work on nanocrystal synthesis and characterization
was supported by the Physical Chemistry of Inorganic Nanostructures
Program, Director, Office of Science, Office of Basic Energy Sciences,
of the United States Department of Energy under contract
DE-AC02-05CH11231.
NR 22
TC 9
Z9 9
U1 2
U2 38
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD JUN 25
PY 2013
VL 25
IS 12
BP 2544
EP 2548
DI 10.1021/cm401083g
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 173QI
UT WOS:000321093600023
ER
PT J
AU Abelev, B
Adam, J
Adamova, D
Adare, AM
Aggarwal, MM
Rinella, GA
Agnello, M
Agocs, AG
Agostinelli, A
Ahammed, Z
Ahmad, N
Masoodi, AA
Ahn, SU
Ahn, SA
Ajaz, M
Akindinov, A
Aleksandrov, D
Alessandro, B
Alici, A
Alkin, A
Avina, EA
Alme, J
Alt, T
Altini, V
Altinpinar, S
Altsybeev, I
Andrei, C
Andronic, A
Anguelov, V
Anielski, J
Anson, C
Anticic, T
Antinori, F
Antonioli, P
Aphecetche, L
Appelshauser, H
Arbor, N
Arcelli, S
Arend, A
Armesto, N
Arnaldi, R
Aronsson, T
Arsene, IC
Arslandok, M
Asryan, A
Augustinus, A
Averbeck, R
Awes, TC
Aysto, J
Azmi, MD
Bach, M
Badala, A
Baek, YW
Bailhache, R
Bala, R
Ferroli, RB
Baldisseri, A
Pedrosa, FBD
Ban, J
Baral, RC
Barbera, R
Barile, F
Barnafoldi, GG
Barnby, LS
Barret, V
Bartke, J
Basile, M
Bastid, N
Basu, S
Bathen, B
Batigne, G
Batyunya, B
Baumann, C
Bearden, IG
Beck, H
Behera, NK
Belikov, I
Bellini, F
Bellwied, R
Belmont-Moreno, E
Bencedi, G
Beole, S
Berceanu, I
Bercuci, A
Berdnikov, Y
Berenyi, D
Bergognon, AAE
Berzano, D
Betev, L
Bhasin, A
Bhati, AK
Bhom, J
Bianchi, N
Bianchi, L
Bielcik, J
Bielcikova, J
Bilandzic, A
Bjelogrlic, S
Blanco, F
Blanco, F
Blau, D
Blume, C
Boccioli, M
Ringer, S
Bogdanov, A
Boggild, H
Bogolyubsky, M
Boldizsar, L
Bombara, M
Book, J
Borel, H
Borissov, A
Bossu, F
Botje, M
Botta, E
Braidot, E
Braun-Munzinger, P
Bregant, M
Breitner, T
Broker, TA
Browning, TA
Broz, M
Brun, R
Bruna, E
Bruno, GE
Budnikov, D
Buesching, H
Bufalino, S
Buncic, R
Busch, O
Buthelezi, Z
Caffarri, D
Cai, X
Caines, H
Villar, EC
Camerini, R
Roman, VC
Romeo, GC
Carena, F
Carena, W
Carlin, N
Carminati, F
Diaz, AC
Castellanos, JC
Hernandez, JFC
Casula, EAR
Catanescu, V
Cavicchioli, C
Sanchez, CC
Cepila, J
Cerello, P
Chang, B
Chapeland, S
Charvet, JL
Chattopadhyay, S
Chattopadhyay, S
Chawla, I
Cherney, M
Cheshkov, C
Cheynis, B
Barroso, VC
Chinellato, DD
Chochula, P
Chojnacki, M
Choudhury, S
Christakoglou, P
Christensen, CH
Christiansen, P
Chujo, T
Chung, SU
Cicalo, C
Cifarelli, L
Cindolo, E
Cleymans, J
Coccetti, E
Colamaria, F
Colella, D
Collu, A
Balbastre, GC
del Valle, ZC
Connors, ME
Contin, G
Contreras, JG
Cormier, TM
Morales, YC
Cortese, P
Maldonado, IC
Cosentino, MR
Costa, F
Cotallo, ME
Crescio, E
Crochet, P
Alaniz, EC
Albino, RC
Cuautle, E
Cunqueiro, L
Dainese, A
Dalsgaard, HH
Danu, A
Das, S
Das, D
Das, K
Das, I
Dash, S
Dash, A
De, S
de Barros, GOV
De Caro, A
de Cataldo, G
de Cuveland, J
De Falco, A
De Gruttola, D
Delagrange, H
Deloff, A
De Marco, N
Denes, E
De Pasquale, S
Deppman, A
Erasmo, GD
de Rooij, R
Corchero, MAD
Di Bari, D
Dietel, T
Di Giglio, C
Di Liberto, S
Di Mauro, A
Di Nezza, P
Divia, R
Djuvsland, O
Dobrin, A
Dobrowolski, T
Donigus, B
Dordic, O
Driga, O
Dubey, AK
Dubla, A
Ducroux, L
Dupieux, P
Majumdar, AKD
Elia, D
Emschermann, D
Engel, H
Erazmus, B
Erdal, HA
Espagnon, B
Estienne, M
Esumi, S
Evans, D
Eyyubova, G
Fabris, D
Faivre, J
Falchieri, D
Fantoni, A
Fasel, M
Fearick, R
Fehlker, D
Feldkamp, L
Felea, D
Feliciello, A
Fenton-Olsen, B
Feofilov, G
Tellez, AF
Ferretti, A
Festanti, A
Figiel, J
Figueredo, MAS
Filchagin, S
Finogeev, D
Fionda, FM
Fiore, EM
Floratos, E
Floris, M
Foertsch, S
Foka, R
Fokin, S
Fragiacomo, E
Francescon, A
Frankenfeld, U
Fuchs, U
Furget, C
Girard, MF
Gaardhoje, JJ
Gagliardi, M
Gago, A
Gallio, M
Gangadharan, DR
Ganoti, P
Garabatos, C
Garcia-Solis, E
Gargiulo, C
Garishvili, I
Gerhard, J
Germain, M
Geuna, C
Gheata, A
Gheata, M
Ghidini, B
Ghosh, P
Gianotti, P
Girard, MR
Giubellino, P
Gladysz-Dziadus, E
Glassel, R
Gomez, R
Ferreiro, EG
Gonzalez-Trueba, LH
Gonzalez-Zamora, P
Gorbunov, S
Goswami, A
Gotovac, S
Graczykowski, LK
Grajcarek, R
Grelli, A
Grigoras, C
Grigoras, A
Grigoriev, V
Grigoryan, A
Grigoryan, S
Grinyov, B
Grion, N
Gros, P
Grosse-Oetringhaus, JF
Grossiord, JY
Grosso, R
Guber, E
Guernane, R
Guerzoni, B
Guilbaud, M
Gulbrandsen, K
Gulkanyan, H
Gunji, T
Gupta, A
Gupta, R
Haake, R
Haaland, O
Hadjidakis, C
Haiduc, M
Hamagaki, H
Hamar, G
Han, BH
Hanratty, LD
Hansen, A
Harmanova-Tothova, Z
Harris, JW
Hartig, M
Harton, A
Hatzifotiadou, D
Hayashi, S
Hayrapetyan, A
Heckel, ST
Heide, M
Helstrup, H
Herghelegiu, A
Corral, GH
Herrmann, N
Hess, BA
Hetland, KF
Hicks, B
Hippolyte, B
Hori, Y
Hristov, P
Hrivnacova, I
Huang, M
Humanic, TJ
Hwang, DS
Ichou, R
Ilkaev, R
Ilkiv, I
Inaba, M
Incani, E
Innocenti, PG
Innocenti, GM
Ippolitov, M
Irfan, M
Ivan, C
Ivanov, V
Ivanov, A
Ivanov, M
Ivanytskyi, O
Jacholkowski, A
Jacobs, PM
Jang, HJ
Janik, MA
Janik, R
Jayarathna, PHSY
Jena, S
Jha, DM
Bustamante, RTJ
Jones, PG
Jung, H
Jusko, A
Kaidalov, AB
Kalcher, S
Kalinak, P
Kalliokoski, T
Kalweit, A
Kang, JH
Kaplin, V
Uysal, AK
Karavichev, O
Karavicheva, T
Karpechev, E
Kazantsev, A
Kebschull, U
Keidel, R
Khan, R
Khan, SA
Khan, MM
Khan, KH
Khanzadeev, A
Kharlov, Y
Kileng, B
Kim, T
Kim, S
Kim, M
Kim, B
Kim, M
Kim, JS
Kim, JH
Kim, DJ
Kim, DW
Kirsch, S
Kisel, I
Kiselev, S
Kisiel, A
Klay, JL
Klein, J
Klein-Bosing, C
Kliemant, M
Kluge, A
Knichel, ML
Knospe, AG
Kohler, MK
Kollegger, T
Kolojvari, A
Kompaniets, M
Kondratiev, V
Kondratyeva, N
Konevskikh, A
Kovalenko, V
Kowalski, M
Kox, S
Meethaleveedu, GK
Kral, J
Kralik, I
Kramer, F
Kravcakova, A
Krawutschke, T
Krelina, M
Kretz, M
Krivda, M
Krizek, F
Krus, M
Kryshen, E
Krzewicki, M
Kucheriaev, Y
Kugathasan, T
Kuhn, C
Kuijer, PG
Kulakov, I
Kumar, J
Kurashvili, R
Kurepin, AB
Kurepin, A
Kuryakin, A
Kushpil, V
Kushpil, S
Kvaerno, H
Kweon, MJ
Kwon, Y
de Guevara, PL
Lakomov, I
Langoy, R
La Pointe, SL
Lara, C
Lardeux, A
La Rocca, P
Lea, R
Lechman, M
Lee, KS
Lee, SC
Lee, GR
Legrand, I
Lehnert, J
Lenhardt, M
Lenti, V
Leon, H
Monzon, IL
Vargas, HL
Levai, R
Li, S
Lien, J
Lietava, R
Lindal, S
Lindenstruth, V
Lippmann, C
Lisa, MA
Ljunggren, HM
Lodato, DF
Loenne, PI
Loggins, VR
Loginov, V
Lohner, D
Loizides, C
Loo, KK
Lopez, X
Torres, EL
Lovhoiden, G
Lu, XG
Luettig, P
Lunardon, M
Luo, J
Luparello, G
Luzzi, C
Ma, R
Ma, K
Madagodahettige-Don, DM
Maevskaya, A
Mager, M
Mahapatra, DP
Maire, A
Malaev, M
Cervantes, IM
Malinina, L
Mal'Kevich, D
Malzacher, R
Mamonov, A
Manceau, L
Mangotra, L
Manko, V
Manso, F
Manzari, V
Mao, Y
Marchisone, M
Mares, J
Margagliotti, GV
Margotti, A
Marin, A
Markert, C
Marquard, M
Martashvili, I
Martin, NA
Martinengo, P
Martinez, MI
Davalos, AM
Garcia, GM
Martynov, Y
Mas, A
Masciocchi, S
Masera, M
Masoni, A
Massacrier, L
Mastroserio, A
Matyja, A
Mayer, C
Mazer, J
Mazzoni, MA
Meddi, F
Menchaca-Rocha, A
Perez, JM
Meres, M
Miake, Y
Milano, L
Milosevic, J
Mischke, A
Mishra, AN
Miskowiec, D
Mitu, C
Mizuno, S
Mlynarz, J
Mohanty, B
Molnar, L
Zetina, LM
Monteno, M
Montes, E
Moon, T
Morando, M
De Godoy, DAM
Moretto, S
Morreale, A
Morsch, A
Muccifora, V
Mudnic, E
Muhuri, S
Mukherjee, M
Muller, H
Munhoz, MG
Murray, S
Musa, L
Musinsky, J
Musso, A
Nandi, BK
Nania, R
Nappi, E
Nattrass, C
Nayak, TK
Nazarenko, S
Nedosekin, A
Nicassio, M
Niculescu, M
Nielsen, BS
Niida, T
Nikoidev, S
Nikolic, V
Nikulin, S
Nikulin, V
Nilsen, BS
Nilsson, MS
Noferini, F
Nomokonov, P
Nooren, G
Novitzky, N
Nyanin, A
Nyatha, A
Nygaard, C
Nystrand, J
Ochirov, A
Oeschler, H
Oh, S
Oh, SK
Oleniacz, J
Da Silva, ACO
Oppedisano, C
Velasquez, AO
Oskarsson, A
Ostrowski, P
Otwinowski, J
Oyama, K
Ozawa, K
Pachmayer, Y
Pachr, M
Padilla, E
Pagano, R
Paic, G
Painke, E
Pajares, C
Pal, SK
Palaha, A
Palmeri, A
Papikyan, V
Pappalardo, GS
Park, WJ
Passfeld, A
Patalakha, DI
Paticchio, V
Paul, B
Pavlinov, A
Pawlak, T
Peitzmann, T
Da Costa, HP
De Oliveira, EP
Peresunko, D
Lara, CEP
Perini, D
Perrino, D
Peryt, W
Pesci, A
Peskov, V
Pestov, Y
Petracek, V
Petran, M
Petris, M
Petrov, R
Petrovici, M
Petta, C
Piano, S
Pikna, M
Pillot, R
Pinazza, O
Pinsky, L
Pitz, N
Piyarathna, DB
Planinic, M
Ploskon, M
Pluta, J
Pocheptsov, T
Pochybova, S
Podesta-Lerma, PLM
Poghosyan, MG
Polak, K
Polichtchouk, B
Pop, A
Porteboeuf-Houssais, S
Pospisil, V
Potukuchi, B
Prasad, SK
Preghenella, R
Prino, F
Pruneau, CA
Pshenichnov, I
Puddu, G
Punin, V
Putis, M
Putschke, J
Quercigh, E
Qvigstad, H
Rachevski, A
Rademakers, A
Raiha, TS
Rak, J
Rakotozafindrabe, A
Ramello, L
Reyes, AR
Raniwala, R
Raniwala, S
Rasanen, SS
Rascanu, BT
Rathee, D
Read, KF
Real, JS
Redlich, K
Reed, RJ
Rehman, A
Reichelt, R
Reicher, M
Reidt, F
Renfordt, R
Reolon, AR
Reshetin, A
Rettig, F
Revol, JR
Reygers, K
Riccati, L
Ricci, RA
Richert, T
Richter, M
Riedler, R
Riegler, W
Riggi, F
Cahuantzi, MR
Manso, AR
Roed, K
Rohr, D
Rohrich, D
Romita, R
Ronchetti, F
Rosnet, R
Rossegger, S
Rossi, A
Roy, P
Roy, C
Montero, AJR
Rui, R
Russo, R
Ryabinkin, E
Rybicki, A
Sadovsky, S
Safafik, K
Sahoo, R
Sahu, PK
Saini, J
Sakaguchi, H
Sakai, S
Sakata, D
Salgado, CA
Salzwedel, J
Sambyal, S
Samsonov, V
Castro, XS
Sandor, L
Sandoval, A
Sano, M
Santagati, G
Santoro, R
Sarkamo, J
Scapparone, E
Scarlassara, F
Scharenberg, RP
Schiaua, C
Schicker, R
Schmidt, HR
Schmidt, C
Schuchmann, S
Schukraft, J
Schuster, T
Schutz, Y
Schwarz, K
Schweda, K
Scioli, G
Scomparin, E
Scott, R
Scott, PA
Segato, G
Selyuzhenkov, I
Senyukov, S
Seo, J
Serci, S
Serradilla, E
Sevcenco, A
Shabetai, A
Shabratova, G
Shahoyan, R
Sharma, N
Sharma, S
Rohni, S
Shigaki, K
Shtejer, K
Sibiriak, Y
Sicking, E
Siddhanta, S
Siemiarczuk, T
Silvermyr, D
Silvestre, C
Simatovic, G
Simonetti, G
Singaraju, R
Singh, R
Singha, S
Singhal, V
Sinha, T
Sinha, BC
Sitar, B
Sitta, M
Skaali, TB
Skjerdal, K
Smakal, R
Smirnov, N
Snellings, RJM
Sogaard, C
Soltz, R
Son, H
Song, J
Song, M
Soos, C
Soramel, E
Sputowska, I
Spyropoulou-Stassinaki, M
Srivastava, BK
Stachel, J
Stan, I
Stefanek, G
Steinpreis, M
Stenlund, E
Steyn, G
Stiller, JH
Stocco, D
Stolpovskiy, M
Strmen, P
Suaide, AAP
Vasquez, MAS
Sugitate, T
Suire, C
Sultanov, R
Sumbera, M
Susa, T
Symons, TJM
de Toledo, AS
Szarka, I
Szczepankiewicz, A
Szymanski, M
Takahashi, J
Tangaro, MA
Takaki, JDT
Peloni, AT
Martinez, AT
Tauro, A
Munoz, GT
Telesca, A
Ter Minasyan, A
Terrevoli, C
Thader, J
Thomas, D
Tieulent, R
Timmins, AR
Tlusty, D
Toia, A
Torii, H
Toscano, L
Trubnikov, V
Truesdale, D
Trzaska, WH
Tsuji, T
Tumkin, A
Turrisi, R
Tveter, TS
Ulery, J
Ullaland, K
Ulrich, J
Uras, A
Urban, J
Urciuoli, GM
Usai, GL
Vajzer, M
Vala, M
Palomo, LV
Vallero, S
Vande Vyvre, P
van Leeuwen, M
Vannucci, L
Vargas, A
Varma, R
Vasileiou, M
Vasiliev, A
Vechernin, V
Veldhoen, M
Venaruzzo, M
Vercellin, E
Vergara, S
Vernet, R
Verweij, M
Vickovic, L
Viesti, G
Viinikainen, J
Vilakazi, Z
Baillie, OV
Vinogradov, Y
Vinogradov, A
Vinogradov, L
Virgili, T
Viyogi, YP
Vodopyanov, A
Voloshin, K
Voloshin, S
Volpe, G
von Haller, B
Vorobyev, I
Vranic, D
Vrlakova, J
Vulpescu, B
Vyushin, A
Wagner, V
Wagner, B
Wan, R
Wang, D
Wang, Y
Wang, M
Wang, Y
Watanabe, K
Weber, M
Wessels, JP
Westerhoff, U
Wiechula, J
Wikne, J
Wilde, M
Wilk, G
Wilk, A
Williams, MCS
Windelband, B
Winn, M
Karampatsos, LX
Yaldo, CG
Yamaguchi, Y
Yang, S
Yang, H
Yasnopolskiy, S
Yi, J
Yin, Z
Too, IK
Yoon, J
Yu, W
Yuan, X
Yushmanov, I
Zaccolo, V
Zach, C
Zampolli, C
Zaporozhets, S
Zarochentsev, A
Zavada, P
Zaviyalov, N
Zbroszczyk, H
Zelnicek, P
Zgura, IS
Zhalov, M
Zhang, X
Zhang, H
Zhou, E
Zhou, Y
Zhou, D
Zhu, J
Zhu, J
Zhu, X
Zhu, H
Zichichi, A
Zimmermann, A
Zinovjev, G
Zoccarato, Y
Zynovyev, M
Zyzak, M
AF Abelev, B.
Adam, J.
Adamova, D.
Adare, A. M.
Aggarwal, M. M.
Rinella, G. Aglieri
Agnello, M.
Agocs, A. G.
Agostinelli, A.
Ahammed, Z.
Ahmad, N.
Masoodi, A. Ahmad
Ahn, S. U.
Ahn, S. A.
Ajaz, M.
Akindinov, A.
Aleksandrov, D.
Alessandro, B.
Alici, A.
Alkin, A.
Almaraz Avina, E.
Alme, J.
Alt, T.
Altini, V.
Altinpinar, S.
Altsybeev, I.
Andrei, C.
Andronic, A.
Anguelov, V.
Anielski, J.
Anson, C.
Anticic, T.
Antinori, F.
Antonioli, P.
Aphecetche, L.
Appelshaeuser, H.
Arbor, N.
Arcelli, S.
Arend, A.
Armesto, N.
Arnaldi, R.
Aronsson, T.
Arsene, I. C.
Arslandok, M.
Asryan, A.
Augustinus, A.
Averbeck, R.
Awes, T. C.
Aysto, J.
Azmi, M. D.
Bach, M.
Badala, A.
Baek, Y. W.
Bailhache, R.
Bala, R.
Ferroli, R. Baldini
Baldisseri, A.
Pedrosa, F. Baltasar Dos Santos
Ban, J.
Baral, R. C.
Barbera, R.
Barile, F.
Barnafoeldi, G. G.
Barnby, L. S.
Barret, V.
Bartke, J.
Basile, M.
Bastid, N.
Basu, S.
Bathen, B.
Batigne, G.
Batyunya, B.
Baumann, C.
Bearden, I. G.
Beck, H.
Behera, N. K.
Belikov, I.
Bellini, F.
Bellwied, R.
Belmont-Moreno, E.
Bencedi, G.
Beole, S.
Berceanu, I.
Bercuci, A.
Berdnikov, Y.
Berenyi, D.
Bergognon, A. A. E.
Berzano, D.
Betev, L.
Bhasin, A.
Bhati, A. K.
Bhom, J.
Bianchi, N.
Bianchi, L.
Bielcik, J.
Bielcikova, J.
Bilandzic, A.
Bjelogrlic, S.
Blanco, F.
Blanco, F.
Blau, D.
Blume, C.
Boccioli, M.
Ringer, S.
Bogdanov, A.
Boggild, H.
Bogolyubsky, M.
Boldizsar, L.
Bombara, M.
Book, J.
Borel, H.
Borissov, A.
Bossu, F.
Botje, M.
Botta, E.
Braidot, E.
Braun-Munzinger, P.
Bregant, M.
Breitner, T.
Broker, T. A.
Browning, T. A.
Broz, M.
Brun, R.
Bruna, E.
Bruno, G. E.
Budnikov, D.
Buesching, H.
Bufalino, S.
Buncic, R.
Busch, O.
Buthelezi, Z.
Caffarri, D.
Cai, X.
Caines, H.
Calvo Villar, E.
Camerini, R.
Canoa Roman, V.
Romeo, G. Cara
Carena, F.
Carena, W.
Carlin Filho, N.
Carminati, F.
Diaz, A. Casanova
Castellanos, J. Castillo
Hernandez, J. F. Castillo
Casula, E. A. R.
Catanescu, V.
Cavicchioli, C.
Ceballos Sanchez, C.
Cepila, J.
Cerello, P.
Chang, B.
Chapeland, S.
Charvet, J. L.
Chattopadhyay, S.
Chattopadhyay, S.
Chawla, I.
Cherney, M.
Cheshkov, C.
Cheynis, B.
Barroso, V. Chibante
Chinellato, D. D.
Chochula, P.
Chojnacki, M.
Choudhury, S.
Christakoglou, P.
Christensen, C. H.
Christiansen, P.
Chujo, T.
Chung, S. U.
Cicalo, C.
Cifarelli, L.
Cindolo, E.
Cleymans, J.
Coccetti, E.
Colamaria, F.
Colella, D.
Collu, A.
Balbastre, G. Conesa
del Valle, Z. Conesa
Connors, M. E.
Contin, G.
Contreras, J. G.
Cormier, T. M.
Morales, Y. Corrales
Cortese, P.
Cortes Maldonado, I.
Cosentino, M. R.
Costa, F.
Cotallo, M. E.
Crescio, E.
Crochet, P.
Cruz Alaniz, E.
Cruz Albino, R.
Cuautle, E.
Cunqueiro, L.
Dainese, A.
Dalsgaard, H. H.
Danu, A.
Das, S.
Das, D.
Das, K.
Das, I.
Dash, S.
Dash, A.
De, S.
de Barros, G. O. V.
De Caro, A.
de Cataldo, G.
de Cuveland, J.
De Falco, A.
De Gruttola, D.
Delagrange, H.
Deloff, A.
De Marco, N.
Denes, E.
De Pasquale, S.
Deppman, A.
Erasmo, G. D.
de Rooij, R.
Diaz Corchero, M. A.
Di Bari, D.
Dietel, T.
Di Giglio, C.
Di Liberto, S.
Di Mauro, A.
Di Nezza, P.
Divia, R.
Djuvsland, O.
Dobrin, A.
Dobrowolski, T.
Doenigus, B.
Dordic, O.
Driga, O.
Dubey, A. K.
Dubla, A.
Ducroux, L.
Dupieux, P.
Majumdar, A. K. Dutta
Elia, D.
Emschermann, D.
Engel, H.
Erazmus, B.
Erdal, H. A.
Espagnon, B.
Estienne, M.
Esumi, S.
Evans, D.
Eyyubova, G.
Fabris, D.
Faivre, J.
Falchieri, D.
Fantoni, A.
Fasel, M.
Fearick, R.
Fehlker, D.
Feldkamp, L.
Felea, D.
Feliciello, A.
Fenton-Olsen, B.
Feofilov, G.
Fernandez Tellez, A.
Ferretti, A.
Festanti, A.
Figiel, J.
Figueredo, M. A. S.
Filchagin, S.
Finogeev, D.
Fionda, F. M.
Fiore, E. M.
Floratos, E.
Floris, M.
Foertsch, S.
Foka, R.
Fokin, S.
Fragiacomo, E.
Francescon, A.
Frankenfeld, U.
Fuchs, U.
Furget, C.
Girard, M. Fusco
Gaardhoje, J. J.
Gagliardi, M.
Gago, A.
Gallio, M.
Gangadharan, D. R.
Ganoti, P.
Garabatos, C.
Garcia-Solis, E.
Gargiulo, C.
Garishvili, I.
Gerhard, J.
Germain, M.
Geuna, C.
Gheata, A.
Gheata, M.
Ghidini, B.
Ghosh, P.
Gianotti, P.
Girard, M. R.
Giubellino, P.
Gladysz-Dziadus, E.
Glassel, R.
Gomez, R.
Ferreiro, E. G.
Gonzalez-Trueba, L. H.
Gonzalez-Zamora, P.
Gorbunov, S.
Goswami, A.
Gotovac, S.
Graczykowski, L. K.
Grajcarek, R.
Grelli, A.
Grigoras, C.
Grigoras, A.
Grigoriev, V.
Grigoryan, A.
Grigoryan, S.
Grinyov, B.
Grion, N.
Gros, P.
Grosse-Oetringhaus, J. F.
Grossiord, J. -Y
Grosso, R.
Guber, E.
Guernane, R.
Guerzoni, B.
Guilbaud, M.
Gulbrandsen, K.
Gulkanyan, H.
Gunji, T.
Gupta, A.
Gupta, R.
Haake, R.
Haaland, O.
Hadjidakis, C.
Haiduc, M.
Hamagaki, H.
Hamar, G.
Han, B. H.
Hanratty, L. D.
Hansen, A.
Harmanova-Tothova, Z.
Harris, J. W.
Hartig, M.
Harton, A.
Hatzifotiadou, D.
Hayashi, S.
Hayrapetyan, A.
Heckel, S. T.
Heide, M.
Helstrup, H.
Herghelegiu, A.
Herrera Corral, G.
Herrmann, N.
Hess, B. A.
Hetland, K. F.
Hicks, B.
Hippolyte, B.
Hori, Y.
Hristov, P.
Hrivnacova, I.
Huang, M.
Humanic, T. J.
Hwang, D. S.
Ichou, R.
Ilkaev, R.
Ilkiv, I.
Inaba, M.
Incani, E.
Innocenti, P. G.
Innocenti, G. M.
Ippolitov, M.
Irfan, M.
Ivan, C.
Ivanov, V.
Ivanov, A.
Ivanov, M.
Ivanytskyi, O.
Jacholkowski, A.
Jacobs, P. M.
Jang, H. J.
Janik, M. A.
Janik, R.
Jayarathna, P. H. S. Y.
Jena, S.
Jha, D. M.
Jimenez Bustamante, R. T.
Jones, P. G.
Jung, H.
Jusko, A.
Kaidalov, A. B.
Kalcher, S.
Kalinak, P.
Kalliokoski, T.
Kalweit, A.
Kang, J. H.
Kaplin, V.
Uysal, A. Karasu
Karavichev, O.
Karavicheva, T.
Karpechev, E.
Kazantsev, A.
Kebschull, U.
Keidel, R.
Khan, R.
Khan, S. A.
Khan, M. M.
Khan, K. H.
Khanzadeev, A.
Kharlov, Y.
Kileng, B.
Kim, T.
Kim, S.
Kim, M.
Kim, B.
Kim, M.
Kim, J. S.
Kim, J. H.
Kim, D. J.
Kim, D. W.
Kirsch, S.
Kisel, I.
Kiselev, S.
Kisiel, A.
Klay, J. L.
Klein, J.
Klein-Boesing, C.
Kliemant, M.
Kluge, A.
Knichel, M. L.
Knospe, A. G.
Kohler, M. K.
Kollegger, T.
Kolojvari, A.
Kompaniets, M.
Kondratiev, V.
Kondratyeva, N.
Konevskikh, A.
Kovalenko, V.
Kowalski, M.
Kox, S.
Meethaleveedu, G. Koyithatta
Kral, J.
Kralik, I.
Kramer, F.
Kravcakova, A.
Krawutschke, T.
Krelina, M.
Kretz, M.
Krivda, M.
Krizek, F.
Krus, M.
Kryshen, E.
Krzewicki, M.
Kucheriaev, Y.
Kugathasan, T.
Kuhn, C.
Kuijer, P. G.
Kulakov, I.
Kumar, J.
Kurashvili, R.
Kurepin, A. B.
Kurepin, A.
Kuryakin, A.
Kushpil, V.
Kushpil, S.
Kvaerno, H.
Kweon, M. J.
Kwon, Y.
Ladron de Guevara, P.
Lakomov, I.
Langoy, R.
La Pointe, S. L.
Lara, C.
Lardeux, A.
La Rocca, P.
Lea, R.
Lechman, M.
Lee, K. S.
Lee, S. C.
Lee, G. R.
Legrand, I.
Lehnert, J.
Lenhardt, M.
Lenti, V.
Leon, H.
Monzon, I. Leon
Vargas, H. Leon
Levai, R.
Li, S.
Lien, J.
Lietava, R.
Lindal, S.
Lindenstruth, V.
Lippmann, C.
Lisa, M. A.
Ljunggren, H. M.
Lodato, D. F.
Loenne, P. I.
Loggins, V. R.
Loginov, V.
Lohner, D.
Loizides, C.
Loo, K. K.
Lopez, X.
Lopez Torres, E.
Lovhoiden, G.
Lu, X. -G.
Luettig, P.
Lunardon, M.
Luo, J.
Luparello, G.
Luzzi, C.
Ma, R.
Ma, K.
Madagodahettige-Don, D. M.
Maevskaya, A.
Mager, M.
Mahapatra, D. P.
Maire, A.
Malaev, M.
Maldonado Cervantes, I.
Malinina, L.
Mal'Kevich, D.
Malzacher, R.
Mamonov, A.
Manceau, L.
Mangotra, L.
Manko, V.
Manso, F.
Manzari, V.
Mao, Y.
Marchisone, M.
Mares, J.
Margagliotti, G. V.
Margotti, A.
Marin, A.
Markert, C.
Marquard, M.
Martashvili, I.
Martin, N. A.
Martinengo, P.
Martinez, M. I.
Martinez Davalos, A.
Martinez Garcia, G.
Martynov, Y.
Mas, A.
Masciocchi, S.
Masera, M.
Masoni, A.
Massacrier, L.
Mastroserio, A.
Matyja, A.
Mayer, C.
Mazer, J.
Mazzoni, M. A.
Meddi, F.
Menchaca-Rocha, A.
Perez, J. Mercado
Meres, M.
Miake, Y.
Milano, L.
Milosevic, J.
Mischke, A.
Mishra, A. N.
Miskowiec, D.
Mitu, C.
Mizuno, S.
Mlynarz, J.
Mohanty, B.
Molnar, L.
Montano Zetina, L.
Monteno, M.
Montes, E.
Moon, T.
Morando, M.
De Godoy, D. A. Moreira
Moretto, S.
Morreale, A.
Morsch, A.
Muccifora, V.
Mudnic, E.
Muhuri, S.
Mukherjee, M.
Mueller, H.
Munhoz, M. G.
Murray, S.
Musa, L.
Musinsky, J.
Musso, A.
Nandi, B. K.
Nania, R.
Nappi, E.
Nattrass, C.
Nayak, T. K.
Nazarenko, S.
Nedosekin, A.
Nicassio, M.
Niculescu, M.
Nielsen, B. S.
Niida, T.
Nikoidev, S.
Nikolic, V.
Nikulin, S.
Nikulin, V.
Nilsen, B. S.
Nilsson, M. S.
Noferini, F.
Nomokonov, P.
Nooren, G.
Novitzky, N.
Nyanin, A.
Nyatha, A.
Nygaard, C.
Nystrand, J.
Ochirov, A.
Oeschler, H.
Oh, S.
Oh, S. K.
Oleniacz, J.
Da Silva, A. C. Oliveira
Oppedisano, C.
Velasquez, A. Ortiz
Oskarsson, A.
Ostrowski, P.
Otwinowski, J.
Oyama, K.
Ozawa, K.
Pachmayer, Y.
Pachr, M.
Padilla, E.
Pagano, R.
Paic, G.
Painke, E.
Pajares, C.
Pal, S. K.
Palaha, A.
Palmeri, A.
Papikyan, V.
Pappalardo, G. S.
Park, W. J.
Passfeld, A.
Patalakha, D. I.
Paticchio, V.
Paul, B.
Pavlinov, A.
Pawlak, T.
Peitzmann, T.
Da Costa, H. Pereira
Pereira De Oliveira Filho, E.
Peresunko, D.
Lara, C. E. Perez
Perini, D.
Perrino, D.
Peryt, W.
Pesci, A.
Peskov, V.
Pestov, Y.
Petracek, V.
Petran, M.
Petris, M.
Petrov, R.
Petrovici, M.
Petta, C.
Piano, S.
Pikna, M.
Pillot, R.
Pinazza, O.
Pinsky, L.
Pitz, N.
Piyarathna, D. B.
Planinic, M.
Ploskon, M.
Pluta, J.
Pocheptsov, T.
Pochybova, S.
Podesta-Lerma, P. L. M.
Poghosyan, M. G.
Polak, K.
Polichtchouk, B.
Pop, A.
Porteboeuf-Houssais, S.
Pospisil, V.
Potukuchi, B.
Prasad, S. K.
Preghenella, R.
Prino, F.
Pruneau, C. A.
Pshenichnov, I.
Puddu, G.
Punin, V.
Putis, M.
Putschke, J.
Quercigh, E.
Qvigstad, H.
Rachevski, A.
Rademakers, A.
Raiha, T. S.
Rak, J.
Rakotozafindrabe, A.
Ramello, L.
Ramirez Reyes, A.
Raniwala, R.
Raniwala, S.
Rasanen, S. S.
Rascanu, B. T.
Rathee, D.
Read, K. F.
Real, J. S.
Redlich, K.
Reed, R. J.
Rehman, A.
Reichelt, R.
Reicher, M.
Reidt, F.
Renfordt, R.
Reolon, A. R.
Reshetin, A.
Rettig, F.
Revol, J. -R
Reygers, K.
Riccati, L.
Ricci, R. A.
Richert, T.
Richter, M.
Riedler, R.
Riegler, W.
Riggi, F.
Rodriguez Cahuantzi, M.
Manso, A. Rodriguez
Roed, K.
Rohr, D.
Roehrich, D.
Romita, R.
Ronchetti, F.
Rosnet, R.
Rossegger, S.
Rossi, A.
Roy, P.
Roy, C.
Rubio Montero, A. J.
Rui, R.
Russo, R.
Ryabinkin, E.
Rybicki, A.
Sadovsky, S.
Safafik, K.
Sahoo, R.
Sahu, P. K.
Saini, J.
Sakaguchi, H.
Sakai, S.
Sakata, D.
Salgado, C. A.
Salzwedel, J.
Sambyal, S.
Samsonov, V.
Castro, X. Sanchez
Sandor, L.
Sandoval, A.
Sano, M.
Santagati, G.
Santoro, R.
Sarkamo, J.
Scapparone, E.
Scarlassara, F.
Scharenberg, R. P.
Schiaua, C.
Schicker, R.
Schmidt, H. R.
Schmidt, C.
Schuchmann, S.
Schukraft, J.
Schuster, T.
Schutz, Y.
Schwarz, K.
Schweda, K.
Scioli, G.
Scomparin, E.
Scott, R.
Scott, P. A.
Segato, G.
Selyuzhenkov, I.
Senyukov, S.
Seo, J.
Serci, S.
Serradilla, E.
Sevcenco, A.
Shabetai, A.
Shabratova, G.
Shahoyan, R.
Sharma, N.
Sharma, S.
Rohni, S.
Shigaki, K.
Shtejer, K.
Sibiriak, Y.
Sicking, E.
Siddhanta, S.
Siemiarczuk, T.
Silvermyr, D.
Silvestre, C.
Simatovic, G.
Simonetti, G.
Singaraju, R.
Singh, R.
Singha, S.
Singhal, V.
Sinha, T.
Sinha, B. C.
Sitar, B.
Sitta, M.
Skaali, T. B.
Skjerdal, K.
Smakal, R.
Smirnov, N.
Snellings, R. J. M.
Sogaard, C.
Soltz, R.
Son, H.
Song, J.
Song, M.
Soos, C.
Soramel, E.
Sputowska, I.
Spyropoulou-Stassinaki, M.
Srivastava, B. K.
Stachel, J.
Stan, I.
Stefanek, G.
Steinpreis, M.
Stenlund, E.
Steyn, G.
Stiller, J. H.
Stocco, D.
Stolpovskiy, M.
Strmen, P.
Suaide, A. A. P.
Vasquez, M. A. Subieta
Sugitate, T.
Suire, C.
Sultanov, R.
Sumbera, M.
Susa, T.
Symons, T. J. M.
de Toledo, A. Szanto
Szarka, I.
Szczepankiewicz, A.
Szymanski, M.
Takahashi, J.
Tangaro, M. A.
Takaki, J. D. Tapia
Peloni, A. Tarantola
Martinez, A. Tarazona
Tauro, A.
Tejeda Munoz, G.
Telesca, A.
Ter Minasyan, A.
Terrevoli, C.
Thaeder, J.
Thomas, D.
Tieulent, R.
Timmins, A. R.
Tlusty, D.
Toia, A.
Torii, H.
Toscano, L.
Trubnikov, V.
Truesdale, D.
Trzaska, W. H.
Tsuji, T.
Tumkin, A.
Turrisi, R.
Tveter, T. S.
Ulery, J.
Ullaland, K.
Ulrich, J.
Uras, A.
Urban, J.
Urciuoli, G. M.
Usai, G. L.
Vajzer, M.
Vala, M.
Palomo, L. Valencia
Vallero, S.
Vande Vyvre, P.
van Leeuwen, M.
Vannucci, L.
Vargas, A.
Varma, R.
Vasileiou, M.
Vasiliev, A.
Vechernin, V.
Veldhoen, M.
Venaruzzo, M.
Vercellin, E.
Vergara, S.
Vernet, R.
Verweij, M.
Vickovic, L.
Viesti, G.
Viinikainen, J.
Vilakazi, Z.
Baillie, O. Villalobos
Vinogradov, Y.
Vinogradov, A.
Vinogradov, L.
Virgili, T.
Viyogi, Y. P.
Vodopyanov, A.
Voloshin, K.
Voloshin, S.
Volpe, G.
von Haller, B.
Vorobyev, I.
Vranic, D.
Vrlakova, J.
Vulpescu, B.
Vyushin, A.
Wagner, V.
Wagner, B.
Wan, R.
Wang, D.
Wang, Y.
Wang, M.
Wang, Y.
Watanabe, K.
Weber, M.
Wessels, J. P.
Westerhoff, U.
Wiechula, J.
Wikne, J.
Wilde, M.
Wilk, G.
Wilk, A.
Williams, M. C. S.
Windelband, B.
Winn, M.
Karampatsos, L. Xaplanteris
Yaldo, C. G.
Yamaguchi, Y.
Yang, S.
Yang, H.
Yasnopolskiy, S.
Yi, J.
Yin, Z.
Yoo, I. -K.
Yoon, J.
Yu, W.
Yuan, X.
Yushmanov, I.
Zaccolo, V.
Zach, C.
Zampolli, C.
Zaporozhets, S.
Zarochentsev, A.
Zavada, P.
Zaviyalov, N.
Zbroszczyk, H.
Zelnicek, P.
Zgura, I. S.
Zhalov, M.
Zhang, X.
Zhang, H.
Zhou, E.
Zhou, Y.
Zhou, D.
Zhu, J.
Zhu, J.
Zhu, X.
Zhu, H.
Zichichi, A.
Zimmermann, A.
Zinovjev, G.
Zoccarato, Y.
Zynovyev, M.
Zyzak, M.
CA ALICE Collaboration
TI Charge correlations using the balance function in Pb-Pb collisions at
root s(NN)=2.76 TeV
SO PHYSICS LETTERS B
LA English
DT Article
DE Balance function; Charge correlations; ALICE LHC
ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; NUCLEAR COLLISIONS;
THERMAL-MODEL; PARTICLE-PRODUCTION; COALESCENCE MODEL; COLLABORATION;
PERSPECTIVE; RESONANCES; PARTON
AB In high-energy heavy-ion collisions, the correlations between the emitted particles can be used as a probe to gain insight into the charge creation mechanisms. In this Letter, we report the first results of such studies using the electric charge balance function in the relative pseudorapidity (Delta eta) and azimuthal angle (Delta phi) in Pb-Pb collisions at root s(NN) = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The width of the balance function decreases with growing centrality (i.e. for more central collisions) in both projections. This centrality dependence is not reproduced by HIJING, while AMPT, a model which incorporates strings and parton rescattering, exhibits qualitative agreement with the measured correlations in Delta phi but fails to describe the correlations in Delta eta. A thermal blast-wave model incorporating local charge conservation and tuned to describe the p(T) spectra and v(2) measurements reported by ALICE, is used to fit the centrality dependence of the width of the balance function and to extract the average separation of balancing charges at freeze-out. The comparison of our results with measurements at lower energies reveals an ordering with root s(NN): the balance functions become narrower with increasing energy for all centralities. This is consistent with the effect of larger radial flow at the LHC energies but also with the late stage creation scenario of balancing charges. However, the relative decrease of the balance function widths in Delta eta and Delta phi, with centrality from the highest SPS to the LHC energy exhibits only small differences. This observation cannot be interpreted solely within the framework where the majority of the charge is produced at a later stage in the evolution of the heavy-ion collision. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved.
C1 [Grigoryan, A.; Gulkanyan, H.; Hayrapetyan, A.; Papikyan, V.] Yerevan Phys Inst, AI Alikhanyan Natl Sci Lab Fdn, Yerevan 375036, Armenia.
[Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico.
[Alkin, A.; Grinyov, B.; Ivanytskyi, O.; Martynov, Y.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine.
[Das, S.] Bose Inst, Dept Phys, Kolkata, India.
[Das, S.] Bose Inst, Ctr Astroparticle Phys & Space Sci, Kolkata, India.
[Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA.
[Cai, X.; Li, S.; Luo, J.; Ma, K.; Mao, Y.; Wan, R.; Wang, D.; Wang, Y.; Wang, M.; Yin, Z.; Yuan, X.; Zhang, X.; Zhang, H.; Zhou, D.; Zhu, J.; Zhu, X.; Zhu, H.] Cent China Normal Univ, Wuhan, Peoples R China.
[Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France.
[Ceballos Sanchez, C.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol Desarrollo Nucl CEADEN, Havana, Cuba.
[Blanco, F.; Cotallo, M. E.; Diaz Corchero, M. A.; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] CIEMAT, E-28040 Madrid, Spain.
[Canoa Roman, V.; Contreras, J. G.; Crescio, E.; Cruz Albino, R.; Gomez, R.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest & Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico.
[Canoa Roman, V.; Contreras, J. G.; Crescio, E.; Cruz Albino, R.; Gomez, R.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest & Estudios Avanzados CINVESTAV, Merida, Mexico.
[Alici, A.; Ferroli, R. Baldini; Cifarelli, L.; Coccetti, E.; De Caro, A.; De Gruttola, D.; Noferini, F.; Preghenella, R.; Santoro, R.; Zichichi, A.] Ctr Fermi, Museo Stor Fis, Rome, Italy.
[Alici, A.; Ferroli, R. Baldini; Cifarelli, L.; Coccetti, E.; De Caro, A.; De Gruttola, D.; Noferini, F.; Preghenella, R.; Santoro, R.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy.
[Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA.
[Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Geuna, C.; Da Costa, H. Pereira; Rakotozafindrabe, A.; Yang, H.] CEA, IRFU, Saclay, France.
[Ajaz, M.; Khan, K. H.] COMSATS Inst Informat Technol, Islamabad, Pakistan.
[Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.; Watanabe, K.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain.
[Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.; Watanabe, K.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain.
[Ahmad, N.; Masoodi, A. Ahmad; Azmi, M. D.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India.
[Altinpinar, S.; Dash, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Langoy, R.; Lien, J.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Roed, K.; Roehrich, D.; Skjerdal, K.; Ullaland, K.; Wagner, B.; Yang, S.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Anson, C.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.; Truesdale, D.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Han, B. H.; Hwang, D. S.; Kim, S.; Kim, J. H.; Son, H.] Sejong Univ, Dept Phys, Seoul, South Korea.
[Dordic, O.; Eyyubova, G.; Kvaerno, H.; Lindal, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.] Univ Oslo, Dept Phys, Oslo, Norway.
[Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Bruna, E.; Bufalino, S.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Marchisone, M.; Masera, M.; Milano, L.; Padilla, E.; Russo, R.; Vasquez, M. A. Subieta; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy.
[Agnello, M.; Alessandro, B.; Arnaldi, R.; Bala, R.; Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Bruna, E.; Bufalino, S.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Feliciello, A.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Manceau, L.; Marchisone, M.; Masera, M.; Milano, L.; Monteno, M.; Musso, A.; Oppedisano, C.; Padilla, E.; Prino, F.; Riccati, L.; Russo, R.; Scomparin, E.; Vasquez, M. A. Subieta; Toscano, L.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy.
[Casula, E. A. R.; Collu, A.; De Falco, A.; Incani, E.; Puddu, G.; Serci, S.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy.
[Casula, E. A. R.; Cicalo, C.; Collu, A.; De Falco, A.; Incani, E.; Masoni, A.; Puddu, G.; Serci, S.; Siddhanta, S.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy.
[Camerini, R.; Contin, G.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartimento Fis, Trieste, Italy.
[Camerini, R.; Contin, G.; Fragiacomo, E.; Grion, N.; Lea, R.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy.
[Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Di Liberto, S.; Mazzoni, M. A.; Meddi, F.; Urciuoli, G. M.] Sezione Ist Nazl Fis Nucl, Rome, Italy.
[Barbera, R.; Jacholkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Sahu, P. K.; Santagati, G.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy.
[Badala, A.; Barbera, R.; Jacholkowski, A.; La Rocca, P.; Palmeri, A.; Pappalardo, G. S.; Petta, C.; Riggi, F.; Sahu, P. K.; Santagati, G.] Sezione Ist Nazl Fis Nucl, Catania, Italy.
[Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy.
[Agostinelli, A.; Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Romeo, G. Cara; Cifarelli, L.; Cindolo, E.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy.
[Caffarri, D.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Segato, G.; Soramel, E.; Toia, A.; Viesti, G.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy.
[Bogolyubsky, M.; Caffarri, D.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Kharlov, Y.; Lunardon, M.; Morando, M.; Moretto, S.; Patalakha, D. I.; Polichtchouk, B.; Rossi, A.; Sadovsky, S.; Scarlassara, F.; Segato, G.; Soramel, E.; Stolpovskiy, M.; Toia, A.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy.
[De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, R.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy.
[De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, R.; Virgili, T.] Ist Nazl Fis Nucl, Grp Collegato, Salerno, Italy.
[Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy.
[Cortese, P.; Ramello, L.; Sitta, M.] Ist Nazl Fis Nucl, Grp Collegato, Alessandria, Italy.
[Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Nicassio, M.; Perrino, D.; Tangaro, M. A.; Terrevoli, C.] Dipartimento Interateneo Fis M Merlin, Bari, Italy.
[Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; de Cataldo, G.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Elia, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Lenti, V.; Mastroserio, A.; Nappi, E.; Nicassio, M.; Paticchio, V.; Perrino, D.; Tangaro, M. A.; Terrevoli, C.] Sezione Ist Nazl Fis Nucl, Bari, Italy.
[Christiansen, P.; Dobrin, A.; Gros, P.; Ljunggren, H. M.; Velasquez, A. Ortiz; Oskarsson, A.; Richert, T.; Sogaard, C.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden.
[Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Betev, L.; Boccioli, M.; Brun, R.; Buncic, R.; Carena, F.; Carena, W.; Carminati, F.; Cavicchioli, C.; Chapeland, S.; Cheshkov, C.; Barroso, V. Chibante; Chochula, P.; Cifarelli, L.; del Valle, Z. Conesa; Costa, F.; Di Mauro, A.; Divia, R.; Erazmus, B.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, C.; Grigoras, A.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hayrapetyan, A.; Hristov, P.; Innocenti, P. G.; Kalweit, A.; Uysal, A. Karasu; Kluge, A.; Kugathasan, T.; Lechman, M.; Legrand, I.; Lippmann, C.; Luzzi, C.; Mager, M.; Martinengo, P.; Molnar, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Oeschler, H.; Perini, D.; Peskov, V.; Pinazza, O.; Poghosyan, M. G.; Quercigh, E.; Rademakers, A.; Revol, J. -R; Riedler, R.; Riegler, W.; Rossegger, S.; Rossi, A.; Safafik, K.; Santoro, R.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Simonetti, G.; Soos, C.; Szczepankiewicz, A.; Martinez, A. Tarazona; Tauro, A.; Telesca, A.; Vande Vyvre, P.; Volpe, G.; von Haller, B.; Wessels, J. P.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland.
[Krawutschke, T.] Fachhsch Koln, Cologne, Germany.
[Alme, J.; Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway.
[Broz, M.; Janik, R.; Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Adam, J.; Agostinelli, A.; Bielcik, J.; Cepila, J.; Krelina, M.; Krus, M.; Pachr, M.; Petracek, V.; Petran, M.; Pospisil, V.; Smakal, R.; Tlusty, D.; Vajzer, M.; Wagner, V.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic.
[Bombara, M.; Harmanova-Tothova, Z.; Kravcakova, A.; Putis, M.; Urban, J.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia.
[Alt, T.; Bach, M.; de Cuveland, J.; Gerhard, J.; Gorbunov, S.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Lindenstruth, V.; Painke, E.; Rettig, F.; Rohr, D.; Toia, A.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany.
[Ahn, S. U.; Baek, Y. W.; Jung, H.; Kim, M.; Kim, J. S.; Kim, D. W.; Lee, K. S.; Lee, S. C.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea.
Gauhati Univ, Dept Phys, Gauhati, India.
[Agostinelli, A.; Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Morreale, A.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.; Viinikainen, J.] Helsinki Inst Phys, Jyvaskyla, Finland.
[Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Morreale, A.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland.
[Sakaguchi, H.; Shigaki, K.; Sugitate, T.] Hiroshima Univ, Hiroshima, Japan.
[Behera, N. K.; Jena, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Nandi, B. K.; Nyatha, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India.
[Mishra, A. N.; Sahoo, R.] Indian Inst Technol Indore, Indore, Madhya Pradesh, India.
[Das, I.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia; Palomo, L. Valencia] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France.
[Bogolyubsky, M.; Kharlov, Y.; Patalakha, D. I.; Polichtchouk, B.; Sadovsky, S.; Stolpovskiy, M.] Inst High Energy Phys, Protvino, Russia.
[Finogeev, D.; Guber, E.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A. B.; Kurepin, A.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia.
[Bjelogrlic, S.; de Rooij, R.; Dubla, A.; Grelli, A.; La Pointe, S. L.; Lodato, D. F.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Snellings, R. J. M.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Yang, H.; Zhou, Y.] NIKHEF H, Natl Inst Subat Phys, Utrecht, Netherlands.
[Bjelogrlic, S.; de Rooij, R.; Dubla, A.; Grelli, A.; La Pointe, S. L.; Lodato, D. F.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Snellings, R. J. M.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands.
[Akindinov, A.; Kaidalov, A. B.; Kiselev, S.; Mal'Kevich, D.; Nedosekin, A.; Sultanov, R.; Voloshin, K.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Ban, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia.
[Baral, R. C.; Mahapatra, D. P.] Inst Phys, Bhubaneswar 751007, Orissa, India.
[Mares, J.; Polak, K.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Mitu, C.; Niculescu, M.; Sevcenco, A.; Stan, I.; Zgura, I. S.] Inst Space Sci, Bucharest, Romania.
[Breitner, T.; Engel, H.; Kebschull, U.; Lara, C.; Ulrich, J.; Zelnicek, P.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany.
[Appelshaeuser, H.; Arend, A.; Arslandok, M.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Hartig, M.; Heckel, S. T.; Kliemant, M.; Kramer, F.; Kulakov, I.; Lehnert, J.; Vargas, H. Leon; Luettig, P.; Marquard, M.; Pitz, N.; Rascanu, B. T.; Reichelt, R.; Renfordt, R.; Schuchmann, S.; Peloni, A. Tarantola; Ulery, J.; Yu, W.; Zyzak, M.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany.
[Kalweit, A.; Mager, M.; Oeschler, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany.
[Anielski, J.; Bathen, B.; Dietel, T.; Emschermann, D.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Boesing, C.; Passfeld, A.; Sicking, E.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Wilk, A.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany.
[Cuautle, E.; Jimenez Bustamante, R. T.; Ladron de Guevara, P.; Maldonado Cervantes, I.; Velasquez, A. Ortiz; Paic, G.; Peskov, V.; Simatovic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico.
[Almaraz Avina, E.; Belmont-Moreno, E.; Cruz Alaniz, E.; Gonzalez-Trueba, L. H.; Leon, H.; Martinez Davalos, A.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico.
[Belikov, I.; Hippolyte, B.; Kuhn, C.; Molnar, L.; Roy, C.; Castro, X. Sanchez; Senyukov, S.] Univ Strasbourg, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France.
[Batyunya, B.; Grigoryan, S.; Malinina, L.; Nomokonov, P.; Pocheptsov, T.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res, Dubna, Russia.
[Ulrich, J.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Ahn, S. U.; Ahn, S. A.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Taejon, South Korea.
[Uysal, A. Karasu] KTO Karatay Univ, Konya, Turkey.
[Baek, Y. W.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P.; Ichou, R.; Lopez, X.; Manso, F.; Marchisone, M.; Porteboeuf-Houssais, S.; Rosnet, R.; Vulpescu, B.; Zhang, X.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Univ Blaise Pascal, CNRS IN2P3, Clermont Ferrand, France.
[Arbor, N.; Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.] Univ Grenoble 1, CNRS, Inst Polytech Grenoble, LPSC, Grenoble, France.
[Bianchi, L.; Diaz, A. Casanova; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Ricci, R. A.; Vannucci, L.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
[Braidot, E.; Cosentino, M. R.; Fenton-Olsen, B.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Sakai, S.; Symons, T. J. M.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Abelev, B.; Garishvili, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.; Ter Minasyan, A.] Moscow Engn Phys Inst, Moscow 115409, Russia.
[Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, R.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland.
[Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Mohanty, B.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India.
[Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Dalsgaard, H. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nygaard, C.; Sogaard, C.; Zaccolo, V.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Botje, M.; Christakoglou, P.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands.
[Adamova, D.; Bielcikova, J.; Kushpil, V.; Kushpil, S.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic.
[Awes, T. C.; Ganoti, P.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Cherney, M.; Nilsen, B. S.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA.
[Aggarwal, M. M.; Bhati, A. K.; Chawla, I.; Rathee, D.; Sharma, N.] Panjab Univ, Dept Phys, Chandigarh 160014, India.
[Floratos, E.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece.
[Azmi, M. D.; Bossu, F.; Buthelezi, Z.; Cleymans, J.; Fearick, R.; Foertsch, S.; Murray, S.; Steyn, G.; Vilakazi, Z.] Univ Cape Town, Dept Phys, Somerset West, South Africa.
[Azmi, M. D.; Bossu, F.; Buthelezi, Z.; Cleymans, J.; Fearick, R.; Foertsch, S.; Murray, S.; Steyn, G.; Vilakazi, Z.] Natl Res Fdn, iThemba LABS, Somerset West, South Africa.
[Bala, R.; Bhasin, A.; Gupta, A.; Gupta, R.; Mangotra, L.; Potukuchi, B.; Sambyal, S.; Sharma, S.; Rohni, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India.
[Goswami, A.; Mishra, A. N.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India.
[Anguelov, V.; Busch, O.; Fasel, M.; Glassel, R.; Grajcarek, R.; Herrmann, N.; Klein, J.; Krawutschke, T.; Kweon, M. J.; Lohner, D.; Lu, X. -G.; Maire, A.; Perez, J. Mercado; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Vallero, S.; Wang, Y.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany.
[Agnello, M.] Politecn Torino, Turin, Italy.
[Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA.
[Chung, S. U.; Seo, J.; Song, J.; Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea.
[Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, R.; Frankenfeld, U.; Garabatos, C.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Kohler, M. K.; Krzewicki, M.; Lenhardt, M.; Lippmann, C.; Malzacher, R.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany.
[Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, R.; Frankenfeld, U.; Garabatos, C.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Kohler, M. K.; Krzewicki, M.; Lenhardt, M.; Lippmann, C.; Malzacher, R.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany.
[Anticic, T.; Nikolic, V.; Planinic, M.; Simatovic, G.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia.
[Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia.
[Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kucheriaev, Y.; Manko, V.; Nikoidev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Ter Minasyan, A.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia.
[Chattopadhyay, S.; Das, D.; Das, K.; Majumdar, A. K. Dutta; Khan, R.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India.
[Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Palaha, A.; Petrov, R.; Scott, P. A.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Calvo Villar, E.; Gago, A.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru.
[Romita, R.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, Cheshire, England.
[Aphecetche, L.; Batigne, G.; Bergognon, A. A. E.; Bregant, M.; Delagrange, H.; Driga, O.; Erazmus, B.; Estienne, M.; Germain, M.; Lardeux, A.; Martinez Garcia, G.; Mas, A.; Massacrier, L.; Pillot, R.; Schutz, Y.; Shabetai, A.; Stocco, D.] Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS IN2P3, Nantes, France.
Suranaree Univ Technol, Nakhon Ratchasima, Thailand.
[Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia.
[Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Kowalski, M.; Matyja, A.; Mayer, C.; Rybicki, A.; Sputowska, I.; Szczepankiewicz, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Knospe, A. G.; Markert, C.; Karampatsos, L. Xaplanteris] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Gomez, R.; Monzon, I. Leon; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico.
[Carlin Filho, N.; de Barros, G. O. V.; Deppman, A.; Figueredo, M. A. S.; De Godoy, D. A. Moreira; Munhoz, M. G.; Da Silva, A. C. Oliveira; Pereira De Oliveira Filho, E.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil.
[Dash, A.; Takahashi, J.] Univ Estadual Campinas, UNICAMP, Campinas, SP, Brazil.
[Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y; Guilbaud, M.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France.
[Bellwied, R.; Blanco, F.; Chinellato, D. D.; Jayarathna, P. H. S. Y.; Madagodahettige-Don, D. M.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.; Weber, M.] Univ Houston, Houston, TX 77004 USA.
Univ Technol, Vienna, Austria.
Austrian Acad Sci, A-1010 Vienna, Austria.
[Martashvili, I.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.] Univ Tennessee, Knoxville, TN USA.
[Gunji, T.; Hamagaki, H.; Hayashi, S.; Hori, Y.; Ozawa, K.; Torii, H.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan.
[Bhom, J.; Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Mizuno, S.; Niida, T.; Sakata, D.; Sano, M.] Univ Tsukuba, Tsukuba, Ibaraki, Japan.
[Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany.
[Ahammed, Z.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; De, S.; Dubey, A. K.; Ghosh, P.; Khan, S. A.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Saini, J.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India.
[Altsybeev, I.; Asryan, A.; Feofilov, G.; Ivanov, A.; Kolojvari, A.; Kompaniets, M.; Kondratyeva, N.; Kovalenko, V.; Ochirov, A.; Vechernin, V.; Vinogradov, L.; Vorobyev, I.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia.
[Girard, M. R.; Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Ostrowski, P.; Pawlak, T.; Peryt, W.; Pluta, J.; Szymanski, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland.
[Borissov, A.; Cormier, T. M.; Dobrin, A.; Jha, D. M.; Loggins, V. R.; Mlynarz, J.; Pavlinov, A.; Prasad, S. K.; Pruneau, C. A.; Putschke, J.; Voloshin, S.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA.
[Agocs, A. G.; Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Levai, R.; Molnar, L.; Pochybova, S.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary.
[Adare, A. M.; Aronsson, T.; Caines, H.; Connors, M. E.; Harris, J. W.; Hicks, B.; Ma, R.; Oh, S.; Reed, R. J.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA.
[Uysal, A. Karasu] Yildiz Tekn Univ, Istanbul, Turkey.
[Chang, B.; Kang, J. H.; Kim, T.; Kim, M.; Kim, B.; Kwon, Y.; Moon, T.; Song, M.; Yoon, J.] Yonsei Univ, Seoul 120749, South Korea.
[Keidel, R.] Fachhsch Worms, Zentrum Technol Transfer & Telekommunikat ZTT, Worms, Germany.
RP Weber, M (reprint author), Univ Houston, Houston, TX 77004 USA.
EM m.weber@cern.ch
RI Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov,
Alexander/J-2674-2016; Nattrass, Christine/J-6752-2016; Suaide,
Alexandre/L-6239-2016; Deppman, Airton/J-5787-2014; Inst. of Physics,
Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto,
Nestor/C-4341-2017; Ferretti, Alessandro/F-4856-2013; Martinez
Hernandez, Mario Ivan/F-4083-2010; HAMAGAKI, HIDEKI/G-4899-2014;
Pshenichnov, Igor/A-4063-2008; Altsybeev, Igor/K-6687-2013; Vinogradov,
Leonid/K-3047-2013; Janik, Malgorzata/O-7520-2015; Graczykowski,
Lukasz/O-7522-2015; Christensen, Christian/D-6461-2012; De Pasquale,
Salvatore/B-9165-2008; de Cuveland, Jan/H-6454-2016; Kompaniets,
Mikhail/F-5025-2013; Kurepin, Alexey/H-4852-2013; Blau,
Dmitry/H-4523-2012; Yang, Hongyan/J-9826-2014; Cosentino,
Mauro/L-2418-2014; Bearden, Ian/M-4504-2014; Sumbera,
Michal/O-7497-2014; Peitzmann, Thomas/K-2206-2012; Kharlov,
Yuri/D-2700-2015; Mitu, Ciprian/E-6733-2011; Usai, Gianluca/E-9604-2015;
Salgado, Carlos A./G-2168-2015; Bruna, Elena/C-4939-2014; Karasu Uysal,
Ayben/K-3981-2015; Chinellato, David/D-3092-2012; feofilov,
grigory/A-2549-2013; Castillo Castellanos, Javier/G-8915-2013;
Pochybova, Sona/A-2835-2014; Takahashi, Jun/B-2946-2012; Martinez
Davalos, Arnulfo/F-3498-2013; Wagner, Vladimir/G-5650-2014; Vajzer,
Michal/G-8469-2014; Krizek, Filip/G-8967-2014; Bielcikova,
Jana/G-9342-2014; Adamova, Dagmar/G-9789-2014; Barnby, Lee/G-2135-2010;
Christensen, Christian Holm/A-4901-2010; Voloshin, Sergei/I-4122-2013;
Kovalenko, Vladimir/C-5709-2013; Vechernin, Vladimir/J-5832-2013;
Zarochentsev, Andrey/J-6253-2013; Sevcenco, Adrian/C-1832-2012;
Kondratiev, Valery/J-8574-2013; Vorobyev, Ivan/K-2304-2013; Bregant,
Marco/I-7663-2012; Barnafoldi, Gergely Gabor/L-3486-2013; Felea,
Daniel/C-1885-2012; Vickovic, Linda/F-3517-2017; Fernandez Tellez,
Arturo/E-9700-2017;
OI Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982;
Akindinov, Alexander/0000-0002-7388-3022; Nattrass,
Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556;
Deppman, Airton/0000-0001-9179-6363; Ferreiro,
Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783;
Ferretti, Alessandro/0000-0001-9084-5784; Martinez Hernandez, Mario
Ivan/0000-0002-8503-3009; Pshenichnov, Igor/0000-0003-1752-4524;
Altsybeev, Igor/0000-0002-8079-7026; Vinogradov,
Leonid/0000-0001-9247-6230; Janik, Malgorzata/0000-0002-3356-3438;
Christensen, Christian/0000-0002-1850-0121; De Pasquale,
Salvatore/0000-0001-9236-0748; de Cuveland, Jan/0000-0003-0455-1398;
Kompaniets, Mikhail/0000-0001-8831-0553; Kurepin,
Alexey/0000-0002-1851-4136; Cosentino, Mauro/0000-0002-7880-8611;
Bearden, Ian/0000-0003-2784-3094; Sumbera, Michal/0000-0002-0639-7323;
Peitzmann, Thomas/0000-0002-7116-899X; Usai,
Gianluca/0000-0002-8659-8378; Salgado, Carlos A./0000-0003-4586-2758;
Bruna, Elena/0000-0001-5427-1461; Karasu Uysal,
Ayben/0000-0001-6297-2532; Chinellato, David/0000-0002-9982-9577;
feofilov, grigory/0000-0003-3700-8623; Castillo Castellanos,
Javier/0000-0002-5187-2779; Takahashi, Jun/0000-0002-4091-1779; Martinez
Davalos, Arnulfo/0000-0002-9481-9548; Barnby, Lee/0000-0001-7357-9904;
Christensen, Christian Holm/0000-0002-1850-0121; Kovalenko,
Vladimir/0000-0001-6012-6615; Vechernin, Vladimir/0000-0003-1458-8055;
Zarochentsev, Andrey/0000-0002-3502-8084; Sevcenco,
Adrian/0000-0002-4151-1056; Kondratiev, Valery/0000-0002-0031-0741;
Vorobyev, Ivan/0000-0002-2218-6905; Felea, Daniel/0000-0002-3734-9439;
Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez,
Arturo/0000-0003-0152-4220; Riggi, Francesco/0000-0002-0030-8377;
Scarlassara, Fernando/0000-0002-4663-8216
FU State Committee of Science; Calouste Gulbenkian Foundation from Lisbon;
Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos
(FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP);
National Natural Science Foundation of China (NSFC); Chinese Ministry of
Education (CMOE); Ministry of Science and Technology of China (MSTC);
Ministry of Education and Youth of the Czech Republic; Danish Natural
Science Research Council; Carlsberg Foundation; Danish National Research
Foundation; European Research Council under the European Community;
Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3;
Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France;
German BMBF; Helmholtz Association; General, Secretariat for Research
and Technology, Ministry of Development, Greece; Hungarian OTKA;
National Office for Research and Technology (NKTH); Department of Atomic
Energy and Department of Science and Technology of the Government of
India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi -
Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi",
Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna;
National Research Foundation of Korea (NRF); CONACYT; DGAPA, Mexico;
ALFA-EC; HELEN Program (High-Energy Physics Latin-American-European
Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM);
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO),
Netherlands; Research. Council of Norway (NFR); Polish Ministry of
Science and Higher Education; National Authority for Scientific Research
- NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS);
Ministry of Education; Science of Russian Federation, International
Science and Technology Center; Russian Academy of Sciences; Russian
Federal Agency of Atomic Energy; Russian Federal Agency for Science and
Innovations; CERN-INTAS; Ministry of Education of Slovakia; Department
of Science and Technology, South Africa; CIEMAT; EELA; Ministerio de
Educacion y Ciencia of Spain; Xunta de Galicia (Conselleria de
Educacion); CEADEN; Cubaenergia; Cuba; IAEA (International Atomic Energy
Agency); Swedish Research Council (VR); Knut & Alice Wallenberg
Foundation (KAW); Ukraine Ministry of Education and Science; United
Kingdom Science and Technology Facilities Council (STFC); United States
Department of Energy; United States National Science Foundation; State
of Texas; State of Ohio
FX The ALICE Collaboration acknowledges the following funding agencies for
their support in building and running the ALICE detector: State
Committee of Science, Calouste Gulbenkian Foundation from Lisbon and
Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos
(FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP);
National Natural Science Foundation of China (NSFC), the Chinese
Ministry of Education (CMOE) and the Ministry of Science and Technology
of China (MSTC); Ministry of Education and Youth of the Czech Republic;
Danish Natural Science Research Council, the Carlsberg Foundation and
the Danish National Research Foundation; The European Research Council
under the European Community's Seventh Framework Programme; Helsinki
Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the
'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA,
France; German BMBF and the Helmholtz Association; General, Secretariat
for Research and Technology, Ministry of Development, Greece; Hungarian
OTKA and National Office for Research and Technology (NKTH); Department
of Atomic Energy and Department of Science and Technology of the
Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and
Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche
"Enrico Fermi", Italy; MEXT Grant-in-Aid for Specially Promoted
Research, Japan; Joint Institute for Nuclear Research, Dubna; National
Research Foundation of Korea (NRF); CONACYT, 'DGAPA, Mexico, ALFA-EC and
the HELEN Program (High-Energy Physics Latin-American-European Network);
Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO),
Netherlands; Research. Council of Norway (NFR); Polish Ministry of
Science and Higher Education; National Authority for Scientific Research
- NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS);
Ministry of Education, and Science of Russian Federation, International
Science and Technology Center, Russian Academy of Sciences, Russian
Federal Agency of Atomic Energy, Russian Federal Agency for Science and
Innovations and CERN-INTAS; Ministry of Education of Slovakia;
Department of Science and Technology, South Africa; CIEMAT, EELA,
Ministerio de Educacion y Ciencia of Spain, Xunta de Galicia
(Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA
(International Atomic Energy Agency); Swedish Research Council (VR) and
Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education
and Science; United Kingdom Science and Technology Facilities Council
(STFC); The United States Department of Energy, the United States
National Science Foundation, the State of Texas, and the State of Ohio.
NR 51
TC 14
Z9 15
U1 0
U2 81
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
EI 1873-2445
J9 PHYS LETT B
JI Phys. Lett. B
PD JUN 25
PY 2013
VL 723
IS 4-5
BP 267
EP 279
DI 10.1016/j.physletb.2013.05.039
PG 13
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 168ZB
UT WOS:000320745400003
ER
PT J
AU Chatrchyan, S
Khachatryan, V
Sirunyan, AM
Tumasyan, A
Adam, W
Aguilo, E
Bergauer, T
Dragicevic, M
Ero, J
Fabjan, C
Friedl, M
Fruhwirth, R
Ghete, VM
Hammer, J
Hormann, N
Hrubec, J
Jeitler, M
Kiesenhofer, W
Knunz, V
Krammer, M
Kratschmer, I
Liko, D
Mikulec, I
Pernicka, M
Rahbaran, B
Rohringer, C
Rohringer, H
Schofbeck, R
Strauss, J
Taurok, A
Waltenberger, W
Walzel, G
Widl, E
Wulz, CE
Mossolov, V
Shumeiko, N
Gonzalez, JS
Bansal, M
Bansal, S
Cornelis, T
De Wolf, EA
Janssen, X
Luyckx, S
Mucibello, L
Ochesanu, S
Roland, B
Rougny, R
Selvaggi, M
Staykova, Z
Van Haevermaet, H
Van Mechelen, P
Van Remortel, N
Van Spilbeeck, A
Blekman, F
Blyweert, S
D'Hondt, J
Suarez, RG
Kalogeropoulos, A
Maes, M
Olbrechts, A
Van Doninck, W
Van Mulders, P
Van Onsem, GP
Villella, I
Clerbaux, B
De Lentdecker, G
Dero, V
Gay, APR
Hreus, T
Leonard, A
Marage, PE
Mohammadi, A
Reis, T
Thomas, L
Vander Marcken, G
Vander Velde, C
Vanlaer, P
Wang, J
Adler, V
Beernaert, K
Cimmino, A
Costantini, S
Garcia, G
Grunewald, M
Klein, B
Lellouch, J
Marinov, A
Mccartin, J
Rios, AAO
Ryckbosch, D
Strobbe, N
Thyssen, F
Tytgat, M
Verwilligen, P
Walsh, S
Yazgan, E
Zaganidis, N
Basegmez, S
Bruno, G
Castello, R
Ceard, L
Delaere, C
du Pree, T
Favart, D
Forthomme, L
Giammanco, A
Hollar, J
Lemaitre, V
Liao, J
Militaru, O
Nuttens, C
Pagano, D
Pin, A
Piotrzkowski, K
Schul, N
Garcia, JMV
Beliy, N
Caebergs, T
Daubie, E
Hammad, GH
Alves, GA
Martins, MC
Martins, T
Pol, ME
Souza, MHG
Alda, WL
Carvalho, W
Custodio, A
Da Costa, EM
Damiao, DD
Martins, CD
De Souza, SF
Figueiredo, DM
Mundim, L
Nogima, H
Oguri, V
Da Silva, WLP
Santoro, A
Jorge, LS
Sznajder, A
Anjos, TS
Bernardes, CA
Dias, FA
Tomei, TRFP
Gregores, EM
Lagana, C
Marinho, F
Mercadante, PG
Novaes, SF
Padula, SS
Genchev, V
Iaydjiev, P
Piperov, S
Rodozov, M
Stoykova, S
Sultanov, G
Tcholakov, V
Trayanov, R
Vutova, M
Dimitrov, A
Hadjiiska, R
Kozhuharov, V
Litov, L
Pavlov, B
Petkov, P
Bian, JG
Chen, GM
Chen, HS
Jiang, CH
Liang, D
Liang, S
Meng, X
Tao, J
Wang, J
Wang, X
Wang, Z
Xiao, H
Xu, M
Zang, J
Zhang, Z
Asawatangtrakuldee, C
Ban, Y
Guo, Y
Li, W
Liu, S
Mao, Y
Qian, SJ
Teng, H
Wang, D
Zhang, L
Zou, W
Avila, C
Gomez, JP
Moreno, BG
Oliveros, AFO
Sanabria, JC
Godinovic, N
Lelas, D
Plestina, R
Polic, D
Puljak, I
Antunovic, Z
Kovac, M
Brigljevic, V
Duric, S
Kadija, K
Luetic, J
Morovic, S
Attikis, A
Galanti, M
Mavromanolakis, G
Mousa, J
Nicolaou, C
Ptochos, F
Razis, PA
Finger, M
Finger, M
Assran, Y
Elgammal, S
Kamel, AE
Mahmoud, MA
Radi, A
Kadastik, M
Muntel, M
Raidal, M
Rebane, L
Tiko, A
Eerola, P
Fedi, G
Voutilainen, M
Harkonen, J
Heikkinen, A
Karimaki, V
Kinnunen, R
Kortelainen, MJ
Lampen, T
Lassila-Perini, K
Lehti, S
Linden, T
Luukka, P
Maenpaa, T
Peltola, T
Tuominen, E
Tuominiemi, J
Tuovinen, E
Ungaro, D
Wendland, L
Banzuzi, K
Karjalainen, A
Korpela, A
Tuuva, T
Besancon, M
Choudhury, S
Dejardin, M
Denegri, D
Fabbro, B
Faure, JL
Ferri, F
Ganjour, S
Givernaud, A
Gras, P
de Monchenault, GH
Jarry, P
Locci, E
Malcles, J
Millischer, L
Nayak, A
Rander, J
Rosowsky, A
Shreyber, I
Titov, M
Baffioni, S
Beaudette, F
Benhabib, L
Bianchini, L
Bluj, M
Broutin, C
Busson, P
Charlot, C
Daci, N
Dahms, T
Dalchenko, M
Dobrzynski, L
de Cassagnac, RG
Haguenauer, M
Mine, P
Mironov, C
Naranjo, IN
Nguyen, M
Ochando, C
Paganini, P
Sabes, D
Salerno, R
Sirois, Y
Veelken, C
Zabi, A
Agram, JL
Andrea, J
Bloch, D
Bodin, D
Brom, JM
Cardaci, M
Chabert, EC
Collard, C
Conte, E
Drouhin, F
Ferro, C
Fontaine, JC
Gele, D
Goerlach, U
Juillot, P
Le Bihan, AC
Van Hove, P
Fassi, F
Mercier, D
Beauceron, S
Beaupere, N
Bondu, O
Boudoul, G
Chasserat, J
Chierici, R
Contardo, D
Depasse, P
El Mamouni, H
Fay, J
Gascon, S
Gouzevitch, M
Ille, B
Kurca, T
Lethuillier, M
Mirabito, L
Perries, S
Sgandurra, L
Sordini, V
Tschudi, Y
Verdier, P
Viret, S
Tsamalaidze, Z
Anagnostou, G
Autermann, C
Beranek, S
Edelhoff, M
Feld, L
Heracleous, N
Hindrichs, O
Jussen, R
Klein, K
Merz, J
Ostapchuk, A
Perieanu, A
Raupach, F
Sammet, J
Schael, S
Sprenger, D
Weber, H
Wittmer, B
Zhukov, V
Ata, M
Caudron, J
Dietz-Laursonn, E
Duchardt, D
Erdmann, M
Fischer, R
Guth, A
Hebbeker, T
Heidemann, C
Hoepfner, K
Klingebiel, D
Kreuzer, P
Merschmeyer, M
Meyer, A
Olschewski, M
Papacz, P
Pieta, H
Reithler, H
Schmitz, SA
Sonnenschein, L
Steggemann, J
Teyssier, D
Weber, M
Bontenackels, M
Cherepanov, V
Erdogan, Y
Flugge, G
Geenen, H
Geisler, M
Ahmad, WH
Hoehle, F
Kargoll, B
Kress, T
Kuessel, Y
Lingemann, J
Nowack, A
Perchalla, L
Pooth, O
Sauerland, P
Stahl, A
Martin, MA
Behr, J
Behrenhoff, W
Behrens, U
Bergholz, M
Bethani, A
Borras, K
Burgmeier, A
Cakir, A
Calligaris, L
Campbell, A
Castro, E
Costanza, F
Dammann, D
Pardos, CD
Eckerlin, G
Eckstein, D
Flucke, G
Geiser, A
Glushkov, I
Gunnellini, P
Habib, S
Hauk, J
Hellwig, G
Jung, H
Kasemann, M
Katsas, P
Kleinwort, C
Kluge, H
Knutsson, A
Kramer, M
Krucker, D
Kuznetsova, E
Lange, W
Lohmann, W
Lutz, B
Mankel, R
Marfin, I
Marienfeld, M
Melzer-Pellmann, IA
Meyer, AB
Mnich, J
Mussgiller, A
Naumann-Emme, S
Novgorodova, O
Olzem, J
Perrey, H
Petrukhin, A
Pitzl, D
Raspereza, A
Cipriano, PMR
Riedl, C
Ron, E
Rosin, M
Salfeld-Nebgen, J
Schmidt, R
Schoerner-Sadenius, T
Sen, N
Spiridonov, A
Stein, M
Walsh, R
Wissing, C
Blobel, V
Draeger, J
Enderle, H
Erfle, J
Gebbert, U
Gorner, M
Hermanns, T
Hoing, RS
Kaschube, K
Kaussen, G
Kirschenmann, H
Klanner, R
Lange, J
Mura, B
Nowak, E
Peiffer, T
Pietsch, N
Rathjens, D
Sander, C
Schettler, H
Schleper, P
Schlieckau, E
Schmidt, A
Schroder, M
Schum, T
Seidel, M
Sibille, J
Sola, V
Stadie, H
Steinbruck, G
Thomsen, J
Vanelderen, L
Barth, C
Berger, J
Boser, C
Wiser, C
Chwalek, T
De Boer, W
Descroix, A
Dierlamm, A
Feindt, M
Guthoff, M
Hackstein, C
Hartmann, F
Hauth, T
Heinrich, M
Held, H
Hoffmann, KH
Husemann, U
Katkov, I
Komaragiri, JR
Pardo, PL
Martschei, D
Mueller, S
Muller, T
Niegel, M
Nurnberg, A
Oberst, O
Oehler, A
Ott, J
Quast, G
Rabbertz, K
Ratnikov, F
Ratnikova, N
Rocker, S
Schilling, FP
Schott, G
Simonis, HJ
Stober, FM
Troendle, D
Ulrich, R
Wagner-Kuhr, J
Wayand, S
Weiler, T
Zeise, M
Daskalakis, G
Geralis, T
Kesisoglou, S
Kyriakis, A
Loukas, D
Manolakos, I
Markou, A
Markou, C
Mavrommatis, C
Ntomari, E
Gouskos, L
Mertzimekis, TJ
Panagiotou, A
Saoulidou, N
Evangelou, I
Foudas, C
Kokkas, P
Manthos, N
Papadopoulos, I
Patras, V
Bencze, G
Hajdu, C
Hidas, P
Horvath, D
Sikler, F
Veszpremi, V
Vesztergombi, G
Beni, N
Czellar, S
Molnar, J
Palinkas, J
Szillasi, Z
Karancsi, J
Raics, P
Trocsanyi, ZL
Ujvari, B
Beri, SB
Bhatnagar, V
Dhingra, N
Gupta, R
Kaur, M
Mehta, MZ
Nishu, N
Saini, LK
Sharma, A
Singh, JB
Kumar, A
Kumar, A
Ahuja, S
Bhardwaj, A
Choudhary, BC
Malhotra, S
Naimuddin, M
Ranjan, K
Sharma, V
Shivpuri, RK
Banerjee, S
Bhattacharya, S
Dutta, S
Gomber, B
Jain, S
Jain, S
Khurana, R
Sarkar, S
Sharan, M
Abdulsalam, A
Choudhury, RK
Dutta, D
Kailas, S
Kumar, V
Mehta, P
Mohanty, AK
Pant, LM
Shukla, P
Aziz, T
Ganguly, S
Guchait, M
Maity, M
Majumder, G
Mazumdar, K
Mohanty, GB
Parida, B
Sudhakar, K
Wickramage, N
Banerjee, S
Dugad, S
Arfaei, H
Bakhshiansohi, H
Etesami, SM
Fahim, A
Hashemi, M
Hesari, H
Jafari, A
Khakzad, M
Najafabadi, MM
Mehdiabadi, SP
Safarzadeh, B
Zeinali, M
Abbrescia, M
Barbone, L
Calabria, C
Chhibra, SS
Colaleo, A
Creanza, D
De Filippis, N
De Palma, M
Fiore, L
Iaselli, G
Maggi, G
Maggi, M
Marangelli, B
My, S
Nuzzo, S
Pacifico, N
Pompili, A
Pugliese, G
Selvaggi, G
Silvestris, L
Singh, G
Venditti, R
Zito, G
Abbiendi, G
Benvenuti, AC
Bonacorsi, D
Braibant-Giacomelli, S
Brigliadori, L
Capiluppi, R
Castro, A
Cavallo, E
Cuffiani, M
Dallavalle, GM
Fabbri, E
Fanfani, A
Fasanella, D
Giacomelli, P
Grandi, C
Guiducci, L
Marcellini, S
Masetti, G
Meneghelli, M
Montanari, A
Navarria, E
Odorici, E
Perrotta, A
Primavera, E
Rossi, AM
Rovelli, T
Siroli, GP
Travaglini, R
Albergo, S
Cappello, G
Chiorboli, M
Costa, S
Potenza, R
Tricomi, A
Tuve, C
Barbagli, G
Ciulli, V
Civinini, C
D'Alessandro, R
Focardi, E
Frosali, S
Gallo, E
Gonzi, S
Meschini, M
Paoletti, S
Sguazzoni, G
Tropiano, A
Benussi, L
Bianco, S
Colafranceschi, S
Fabbri, E
Piccolo, D
Fabbricatore, P
Musenich, R
Tosi, S
Benaglia, A
De Guio, F
Di Matteo, L
Fiorendi, S
Gennai, S
Ghezzi, A
Malvezzi, S
Manzoni, RA
Martelli, A
Massironi, A
Menasce, D
Moroni, L
Paganoni, M
Pedrini, D
Ragazzi, S
Redaelli, N
Sala, S
de Fatis, TT
Buontempo, S
Montoya, CAC
Cavallo, N
De Cosa, A
Dogangun, O
Fabozzi, F
Iorio, AOM
Lista, L
Meola, S
Merola, M
Paolucci, P
Azzi, P
Bacchetta, N
Bisello, D
Branca, A
Carlin, R
Checchia, R
Dorigo, T
Dosselli, U
Gasparini, F
Gozzelino, A
Kanishchev, K
Lacaprara, S
Lazzizzera, I
Margoni, M
Meneguzzo, AT
Pazzini, J
Pozzobon, N
Ronchese, P
Simonetto, F
Torassa, E
Tosi, M
Vanini, S
Zotto, R
Zucchetta, A
Zumerle, G
Gabusi, M
Ratti, SR
Riccardi, C
Torre, P
Vitulo, P
Biasini, M
Bilei, GM
Fano, L
Lariccia, P
Mantovani, G
Menichelli, M
Nappi, A
Romeo, F
Saha, A
Santocchia, A
Spiezia, A
Taroni, S
Azzurri, P
Bagliesi, G
Bernardini, J
Boccali, T
Broccolo, G
Castaldi, R
D'Agnolo, RT
Dell'Orso, R
Fiori, F
Foa, L
Giassi, A
Kraan, A
Ligabue, F
Lomtadze, T
Martini, L
Messineo, A
Palla, F
Rizzi, A
Serban, AT
Spagnolo, P
Squillacioti, P
Tenchini, R
Tonelli, G
Venturi, A
Verdini, PG
Barone, L
Cavallari, F
Del Re, D
Diemoz, M
Fanelli, C
Grassi, M
Longo, E
Meridiani, P
Micheli, F
Nourbakhsh, S
Organtini, G
Paramatti, R
Rahatlou, S
Sigamani, M
Soffi, L
Amapane, N
Arcidiacono, R
Argiro, S
Arneodo, M
Biino, C
Cartiglia, N
Costa, M
Demaria, N
Mariotti, C
Maselli, S
Migliore, E
Monaco, V
Musich, M
Obertino, MM
Pastrone, N
Pelliccioni, M
Potenza, A
Romero, A
Ruspa, M
Sacchi, R
Solano, A
Staiano, A
Pereira, AV
Belforte, S
Candelise, V
Casarsa, M
Cossutti, F
Della Ricca, G
Gobbo, B
Marone, M
Montanino, D
Penzo, A
Schizzi, A
Heo, SG
Kim, TY
Nam, SK
Chang, S
Kim, DH
Kim, GN
Kong, DJ
Park, H
Ro, SR
Son, DC
Son, T
Kim, JY
Kim, ZJ
Song, S
Choi, S
Gyun, D
Hong, B
Jo, M
Kim, H
Kim, TJ
Lee, KS
Moon, DH
Park, SK
Choi, M
Kim, JH
Park, C
Park, IC
Park, S
Ryu, G
Cho, Y
Choi, Y
Choi, YK
Goh, J
Kim, MS
Kwon, E
Lee, B
Lee, J
Lee, S
Seo, H
Yu, I
Bilinskas, MJ
Grigelionis, I
Janulis, M
Juodagalvis, A
Castilla-Valdez, H
De La Cruz-Burelo, E
Heredia-de La Cruz, I
Lopez-Fernandez, R
Villalba, RM
Martinez-Ortega, J
Sanchez-Hernandez, A
Villasenor-Cendejas, LM
Moreno, SC
Valencia, FV
Ibarguen, HAS
Linares, EC
Pineda, AM
Reyes-Santos, MA
Krofcheck, D
Bell, AJ
Butler, PH
Doesburg, R
Reucroft, S
Silverwood, H
Ahmad, M
Ansari, MH
Asghar, MI
Butt, J
Hoorani, HR
Khalid, S
Khan, WA
Khurshid, T
Qazi, S
Shah, MA
Shoaib, M
Bialkowska, H
Boimska, B
Frueboes, T
Gokieli, R
Gorski, M
Kazana, M
Nawrocki, K
Romanowska-Rybinska, K
Szleper, M
Wrochna, G
Zalewski, P
Brona, G
Bunkowski, K
Cwiok, M
Dominik, W
Doroba, K
Kalinowski, A
Konecki, M
Krolikowski, J
Almeida, N
Bargassa, P
David, A
Faccioli, P
Parracho, PGF
Gallinaro, M
Seixas, J
Varela, J
Vischia, P
Bunin, P
Gavrilenko, M
Golutvin, I
Karjavin, V
Konoplyanikov, V
Kozlov, G
Lanev, A
Malakhov, A
Moisenz, P
Palichik, V
Perelygin, V
Savina, M
Shmatov, S
Shulha, S
Smirnov, V
Volodko, A
Zarubin, A
Evstyukhin, S
Golovtsov, V
Ivanov, Y
Kim, V
Levchenko, P
Murzin, V
Oreshkin, V
Smirnov, I
Sulimov, V
Uvarov, L
Vavilov, S
Vorobyev, A
Vorobyev, A
Andreev, Y
Dermenev, A
Gninenko, S
Golubev, N
Kirsanov, M
Krasnikov, N
Matveev, V
Pashenkov, A
Tlisov, D
Toropin, A
Epshteyn, V
Erofeeva, M
Gavrilov, V
Kossov, M
Lychkovskaya, N
Popov, V
Safronov, G
Semenov, S
Stolin, V
Vlasov, E
Zhokin, A
Belyaev, A
Boos, E
Dubinin, M
Dudko, L
Ershov, A
Gribushin, A
Klyukhin, V
Kodolova, A
Lokhtin, I
Markina, A
Obraztsov, S
Perfilov, M
Petrushanko, S
Popov, A
Sarycheva, L
Savrin, V
Snigirev, A
Andreev, V
Azarkin, M
Dremin, I
Kirakosyan, M
Leonidov, A
Mesyats, G
Rusakov, SV
Vinogradov, A
Azhgirey, I
Bayshev, I
Bitioukov, S
Grishin, V
Kachanov, V
Konstantinov, D
Krychkine, V
Petrov, V
Ryutin, R
Sobol, A
Tourtchanovitch, L
Troshin, S
Tyurin, N
Uzunian, A
Volkov, A
Adzic, P
Djordjevic, M
Ekmedzic, M
Krpic, D
Milosevic, J
Aguilar-Benitez, M
Maestre, JA
Arce, P
Battilana, C
Calvo, E
Cerrada, M
Llatas, MC
Colino, N
De La Cruz, B
Peris, AD
Vazquez, DD
Bedoya, CF
Ramos, JPF
Ferrando, A
Flix, J
Fouz, MC
Garcia-Abia, P
Lopez, OG
Lopez, SG
Hernandez, JM
Josa, MI
Merino, G
Pelayo, JP
Olmeda, AQ
Redondo, I
Romero, L
Santaolalla, J
Soares, MS
Willmott, C
Albajar, C
Codispoti, G
de Troconiz, JF
Brun, H
Cuevas, J
Menendez, JF
Folgueras, S
Caballero, IG
Iglesias, LL
Gomez, JP
Cifuentes, JAB
Cabrillo, IJ
Calderon, A
Chuang, SH
Campderros, JD
Felcini, M
Fernandez, M
Gomez, G
Sanchez, JG
Graziano, A
Jorda, C
Virto, AL
Marco, J
Marco, R
Rivero, CM
Matorras, F
Sanchez, FJM
Rodrigo, T
Rodriguez-Marrero, AY
Ruiz-Jimeno, A
Scodellaro, L
Vila, I
Cortabitarte, RV
Abbaneo, D
Auffray, E
Auzinger, G
Bachtis, M
Baillon, P
Ball, AH
Barney, D
Benitez, JF
Bernet, C
Bianchi, G
Bloch, P
Bocci, A
Bonato, A
Botta, C
Breuker, H
Camporesi, T
Cerminara, G
Christiansen, T
Perez, JAC
D'Enterria, D
Dabrowski, A
De Roeck, A
Di Guida, S
Dobson, M
Dupont-Sagorin, N
Elliott-Peisert, A
Frisch, B
Funk, W
Georgiou, G
Giffels, M
Gigi, D
Gill, K
Giordano, D
Girone, M
Giunta, M
Glege, E
Garrido, RGR
Govoni, P
Gowdy, S
Guida, R
Hansen, M
Harris, P
Hartl, C
Harvey, J
Hegner, B
Hinzmann, A
Innocente, V
Janot, P
Kaadze, K
Karavakis, E
Kousouris, K
Lecoq, P
Lee, YJ
Lenzi, P
Lourenco, C
Magini, N
Maki, T
Malberti, M
Malgeri, L
Mannelli, M
Masetti, L
Meijers, F
Mersi, S
Meschi, E
Moser, R
Mozer, MU
Mulders, M
Musella, P
Nesvold, E
Orimoto, T
Orsini, L
Cortezon, EP
Perez, E
Perrozzi, L
Petrilli, A
Pfeiffer, A
Pierini, M
Pimia, M
Piparo, D
Polese, G
Quertenmont, L
Racz, A
Reece, W
Antunes, JR
Rolandi, G
Rovelli, C
Rovere, M
Sakulin, H
Santanastasio, F
Schafer, C
Schwick, C
Segoni, I
Sekmen, S
Sharma, A
Siegrist, P
Silva, P
Simon, M
Sphicas, P
Spiga, D
Tsirou, A
Veres, GI
Vlimant, JR
Wohri, HK
Worm, SD
Zeuner, WD
Bertl, W
Deiters, K
Erdmann, W
Gabathuler, K
Horisberger, R
Ingram, Q
Kaestli, HC
Konig, S
Kotlinski, D
Langenegger, U
Meier, F
Renker, D
Rohe, T
Bani, L
Bortignon, P
Buchmann, MA
Casal, B
Chanon, N
Deisher, A
Dissertori, G
Dittmar, M
Donega, M
Dunser, M
Eugster, J
Freudenreich, K
Grab, C
Hits, D
Lecomte, P
Lustermann, W
Marini, AC
del Arbol, PMR
Mohr, N
Moortgat, F
Nageli, C
Nef, R
Nessi-Tedaldi, F
Pandolfi, F
Pape, L
Pauss, F
Peruzzi, M
Ronga, FJ
Rossini, M
Sala, L
Sanchez, AK
Starodumov, A
Stieger, B
Takahashi, M
Tauscher, L
Thea, A
Theofilatos, K
Treille, D
Urscheler, C
Wallny, R
Weber, HA
Wehrli, L
Amsler, C
Chiochia, V
De Visscher, S
Favaro, C
Rikova, MI
Mejias, BM
Otiougova, P
Robmann, P
Snoek, H
Tupputi, S
Verzetti, M
Chang, YH
Chen, KH
Kuo, CM
Li, SW
Lin, W
Liu, ZK
Lu, YJ
Mekterovic, D
Singh, AP
Volpe, R
Yu, SS
Bartalini, P
Chang, P
Chang, YH
Chang, YW
Chao, Y
Chen, KF
Dietz, C
Grundler, U
Hou, WS
Hsiung, Y
Kao, KY
Lei, YJ
Lu, RS
Majumder, D
Petrakou, E
Shi, X
Shiu, JG
Tzeng, YM
Wan, X
Wang, M
Asavapibhop, B
Srimanobhas, N
Adiguzel, A
Bakirci, MN
Cerci, S
Dozen, C
Dumanoglu, I
Eskut, E
Girgis, S
Gokbulut, G
Gurpinar, E
Hos, I
Kangal, EE
Karaman, T
Karapinar, G
Topaksu, AK
Onengut, G
Ozdemir, K
Ozturk, S
Polatoz, A
Sogut, K
Cerci, DS
Tali, B
Topakli, H
Vergili, LN
Vergili, M
Akin, IV
Aliev, T
Bilin, B
Bilmis, S
Deniz, M
Gamsizkan, H
Guler, AM
Ocalan, K
Ozpineci, A
Serin, M
Sever, R
Surat, UE
Yalvac, M
Yildirim, E
Zeyrek, M
Gulmez, E
Isildak, B
Kaya, M
Kaya, O
Ozkorucuklu, S
Sonmez, N
Cankocak, K
Levchuk, L
Brooke, JJ
Clement, E
Cussans, D
Flacher, H
Frazier, R
Goldstein, J
Grimes, M
Heath, GP
Heath, HF
Kreczko, L
Metson, S
Newbold, DM
Nirunpong, K
Poll, A
Senkin, S
Smith, VJ
Williams, T
Basso, L
Bell, KW
Belyaev, A
Brew, C
Brown, RM
Cockerill, DJA
Coughlan, JA
Harder, K
Harper, S
Jackson, J
Kennedy, BW
Olaiya, E
Petyt, D
Radburn-Smith, BC
Shepherd-Themistocleous, CH
Tomalin, IR
Womersley, WJ
Bainbridge, R
Ball, G
Beuselinck, R
Buchmuller, O
Colling, D
Cripps, N
Cutajar, M
Dauncey, P
Davies, G
Della Negra, M
Ferguson, W
Fulcher, J
Futyan, D
Gilbert, A
Bryer, AG
Hall, G
Hatherell, Z
Hays, J
Iles, G
Jarvis, M
Karapostoli, G
Lyons, L
Magnan, AM
Marrouche, J
Mathias, B
Nandi, R
Nash, J
Nikitenko, A
Papageorgiou, A
Pela, J
Pesaresi, M
Petridis, K
Pioppi, M
Raymond, DM
Rogerson, S
Rose, A
Ryan, MJ
Seez, C
Sharp, P
Sparrow, A
Stoye, M
Tapper, A
Acosta, MV
Virdee, T
Wakefield, S
Wardle, N
Whyntie, T
Chadwick, M
Cole, JE
Hobson, PR
Khan, A
Kyberd, P
Leggat, D
Leslie, D
Martin, W
Reid, ID
Symonds, P
Teodorescu, L
Turner, M
Hatakeyama, K
Liu, H
Scarborough, T
Charaf, O
Henderson, C
Rumerio, P
Avetisyan, A
Bose, T
Fantasia, C
Heister, A
St John, J
Lawson, P
Lazic, D
Rohlf, J
Sperka, D
Sulak, L
Alimena, J
Bhattacharya, S
Cutts, D
Demiragli, Z
Ferapontov, A
Garabedian, A
Heintz, U
Jabeen, S
Kukartsev, G
Laird, E
Landsberg, G
Luk, M
Narain, M
Nguyen, D
Segala, M
Sinthuprasith, T
Speer, T
Tsang, KV
Breedon, R
Breto, G
Sanchez, MCD
Chauhan, S
Chertok, M
Conway, J
Conway, R
Cox, PT
Dolen, J
Erbacher, R
Gardner, M
Houtz, R
Ko, W
Kopecky, A
Lander, R
Mall, O
Miceli, T
Pellett, D
Ricci-Tam, F
Rutherford, B
Searle, M
Smith, J
Squires, M
Tripathi, M
Sierra, RV
Yohay, R
Andreev, V
Cline, D
Cousins, R
Duris, J
Erhan, S
Everaerts, P
Farrell, C
Hauser, J
Ignatenko, M
Jarvis, C
Plager, C
Rakness, G
Schlein, P
Traczyk, P
Valuev, V
Weber, M
Babb, J
Clare, R
Dinardo, ME
Ellison, J
Gary, JW
Giordano, F
Hanson, G
Jeng, GY
Liu, H
Long, OR
Luthra, A
Nguyen, H
Paramesvaran, S
Sturdy, J
Sumowidagdo, S
Wilken, R
Wimpenny, S
Andrews, W
Branson, JG
Cerati, GB
Cittolin, S
Evans, D
Golf, F
Holzner, A
Kelley, R
Lebourgeois, M
Letts, J
Macneill, I
Mangano, B
Padhi, S
Palmer, C
Petrucciani, G
Pieri, M
Sani, M
Sharma, V
Simon, S
Sudano, E
Tadel, M
Tu, Y
Vartak, A
Wasserbaech, S
Wurthwein, E
Yagil, A
Yoo, J
Barge, D
Bellan, R
Campagnari, C
D'Alfonso, M
Danielson, T
Flowers, K
Geffert, P
Incandela, J
Justus, C
Kalavase, P
Koay, SA
Kovalskyi, D
Krutelyov, V
Lowette, S
Mccoll, N
Pavlunin, V
Rebassoo, F
Ribnik, J
Richman, J
Rossin, R
Stuart, D
To, W
West, C
Apresyan, A
Bornheim, A
Chen, Y
Di Marco, E
Duarte, J
Gataullin, M
Ma, Y
Mott, A
Newman, HB
Rogan, C
Spiropulu, M
Timciuc, V
Veverka, J
Wilkinson, R
Xie, S
Yang, Y
Zhu, RY
Akgun, B
Azzolini, V
Calamba, A
Carroll, R
Ferguson, T
Iiyama, Y
Jang, DW
Liu, YF
Paulini, M
Vogel, H
Vorobiev, I
Cumalat, JP
Drell, BR
Ford, WT
Gaz, A
Lopez, EL
Smith, JG
Stenson, K
Ulmer, KA
Wagner, SR
Alexander, J
Chatterjee, A
Eggert, N
Gibbons, LK
Heltsley, B
Khukhunaishvili, A
Kreis, B
Mirman, N
Kaufman, GN
Patterson, JR
Ryd, A
Salvati, E
Sun, W
Teo, WD
Thom, J
Thompson, J
Tucker, J
Vaughan, J
Weng, Y
Winstrom, L
Wittich, P
Winn, D
Abdullin, S
Albrow, M
Anderson, J
Bauerdick, LAT
Beretvas, A
Berryhill, J
Bhat, PC
Bloch, I
Burkett, K
Butler, JN
Chetluru, V
Cheung, HWK
Chlebana, F
Elvira, VD
Fisk, I
Freeman, J
Gao, Y
Green, D
Gutsche, O
Hanlon, J
Harris, RM
Hirschauer, J
Hooberman, B
Jindariani, S
Johnson, M
Joshi, U
Kilminster, B
Klima, B
Kunori, S
Kwan, S
Leonidopoulos, C
Linacre, J
Lincoln, D
Lipton, R
Lykken, J
Maeshima, K
Marraffino, JM
Maruyama, S
Mason, D
McBride, P
Mishra, K
Mrenna, S
Musienko, Y
Newman-Holmes, C
O'Dell, V
Prokofyev, O
Sexton-Kennedy, E
Sharma, S
Spalding, WJ
Spiegel, L
Taylor, L
Tkaczyk, S
Tran, NV
Uplegger, L
Vaandering, EW
Vidal, R
Whitmore, J
Wu, W
Yang, F
Yumiceva, F
Yun, JC
Acosta, D
Avery, P
Bourilkov, D
Chen, M
Cheng, T
Das, S
De Gruttola, M
Di Giovanni, GP
Dobur, D
Drozdetskiy, A
Field, RD
Fisher, M
Fu, Y
Furic, IK
Gartner, J
Hugon, J
Kim, B
Konigsberg, J
Korytov, A
Kropivnitskaya, A
Kypreos, T
Low, JF
Matchev, K
Milenovic, P
Mitselmakher, G
Muniz, L
Park, M
Remington, R
Rinkevicius, A
Sellers, R
Skhirtladze, N
Snowball, M
Yelton, J
Zakaria, M
Gaultney, V
Hewamanage, S
Lebolo, LM
Linn, S
Markowitz, P
Martinez, G
Rodriguez, JL
Adams, T
Askew, A
Bochenek, J
Chen, J
Diamond, B
Gleyzer, SV
Haas, J
Hagopian, S
Hagopian, V
Jenkins, M
Johnson, KF
Prosper, H
Veeraraghavan, V
Weinberg, M
Baarmand, MM
Dorney, B
Hohlmann, M
Kalakhety, H
Vodopiyanov, I
Adams, MR
Anghel, IM
Apanasevich, L
Bai, Y
Bazterra, VE
Betts, RR
Bucinskaite, I
Callner, J
Cavanaugh, R
Evdokimov, O
Gauthier, L
Gerber, CE
Hofman, DJ
Khalatyan, S
Lacroix, F
Malek, M
O'Brien, C
Silkworth, C
Strom, D
Turner, P
Varelas, N
Akgun, U
Albayrak, EA
Bilki, B
Clarida, W
Duru, F
Merlo, JP
Mermerkaya, H
Mestvirishvili, A
Moeller, A
Nachtman, J
Newsom, CR
Norbeck, E
Onel, Y
Ozok, F
Sen, S
Tan, P
Tiras, E
Wetzel, J
Yetkin, T
Yi, K
Barnett, BA
Blumenfeld, B
Bolognesi, S
Fehling, D
Giurgiu, G
Gritsan, AV
Guo, ZJ
Hu, G
Maksimovic, P
Rappoccio, S
Swartz, M
Whitbeck, A
Baringer, P
Bean, A
Benelli, G
Kenny, RP
Murray, M
Noonan, D
Sanders, S
Stringer, R
Tinti, G
Wood, JS
Zhukova, V
Barfuss, AF
Bolton, T
Chakaberia, I
Ivanov, A
Khalil, S
Makouski, M
Maravin, Y
Shrestha, S
Svintradze, I
Gronberg, J
Lange, D
Wright, D
Baden, A
Boutemeur, M
Calvert, B
Eno, SC
Gomez, JA
Hadley, NJ
Kellogg, RG
Kirn, M
Kolberg, T
Lu, Y
Marionneau, M
Mignerey, AC
Pedro, K
Skuja, A
Temple, J
Tonjes, MB
Tonwar, SC
Twedt, E
Apyan, A
Bauer, G
Bendavid, J
Busza, W
Butz, E
Cali, IA
Chan, M
Dutta, V
Ceballos, GG
Goncharov, M
Hahn, KA
Kim, Y
Klute, M
Krajczar, K
Luckey, PD
Ma, T
Nahn, S
Paus, C
Ralph, D
Roland, C
Roland, G
Rudolph, M
Stephans, GSF
Stockli, F
Sumorok, K
Sung, K
Velicanu, D
Wenger, EA
Wolf, R
Wyslouch, B
Yang, M
Yilmaz, Y
Yoon, AS
Zanetti, M
Cooper, SI
Dahmes, B
De Benedetti, A
Franzoni, G
Gude, A
Kao, SC
Klapoetke, K
Kubota, Y
Mans, J
Pastika, N
Rusack, R
Sasseville, M
Singovsky, A
Tambe, N
Turkewitz, J
Cremaldi, LM
Kroeger, R
Perera, L
Rahmat, R
Sanders, DA
Avdeeva, E
Bloom, K
Bose, S
Claes, DR
Dominguez, A
Eads, M
Keller, J
Kravchenko, I
Lazo-Flores, J
Malbouisson, H
Malik, S
Snow, GR
Godshalk, A
Iashvili, I
Jain, S
Kharchilava, A
Kumar, A
Alverson, G
Barberis, E
Baumgartel, D
Chasco, M
Haley, J
Nash, D
Trocino, D
Wood, D
Zhang, J
Anastassov, A
Kubik, A
Lusito, L
Mucia, N
Odell, N
Ofierzynski, RA
Pollack, B
Pozdnyakov, A
Schmitt, M
Stoynev, S
Velasco, M
Won, S
Antonelli, L
Berry, D
Brinkerhoff, A
Chan, KM
Hildreth, M
Jessop, C
Karmgard, DJ
Kolb, J
Lannon, K
Luo, W
Lynch, S
Marinelli, N
Morse, DM
Pearson, T
Planer, M
Ruchti, R
Slaunwhite, J
Valls, N
Wayne, M
Wolf, M
Bylsma, B
Durkin, LS
Hill, C
Hughes, R
Kotov, K
Ling, TY
Puigh, D
Rodenburg, M
Vuosalo, C
Williams, G
Winer, BL
Adam, N
Berry, E
Elmer, P
Gerbaudo, D
Halyo, V
Hebda, P
Hegeman, J
Hunt, A
Jindal, P
Pegna, DL
Lujan, P
Marlow, D
Medvedeva, T
Mooney, M
Olsen, J
Piroue, P
Quan, X
Raval, A
Safdi, B
Saka, H
Stickland, D
Tully, C
Werner, JS
Zuranski, A
Brownson, E
Lopez, A
Mendez, H
Vargas, JER
Alagoz, E
Barnes, VE
Benedetti, D
Bolla, G
Bortoletto, D
De Mattia, M
Everett, A
Hu, Z
Jones, M
Koybasi, O
Kress, M
Laasanen, AT
Leonardo, N
Maroussov, V
Merkel, R
Miller, DH
Neumeister, N
Shipsey, I
Silvers, D
Svyatkovskiy, A
Marono, MV
Yoo, HD
Zablocki, J
Zheng, Y
Guragain, S
Parashar, N
Adair, A
Boulahouache, C
Ecklund, KM
Geurts, FJM
Li, W
Padley, BP
Redjimi, .R
Roberts, J
Zabel, J
Betchart, B
Bodek, A
Chung, YS
Covarelli, R
de Barbaro, P
Demina, R
Eshaq, Y
Ferbel, T
Garcia-Bellido, A
Goldenzweig, P
Han, J
Harel, A
Miner, DC
Vishnevskiy, D
Zielinski, M
Bhatti, A
Ciesielski, R
Demortier, L
Goulianos, K
Lungu, G
Malik, S
Mesropian, C
Arora, S
Barker, A
Chou, JP
Contreras-Campana, C
Contreras-Campana, E
Duggan, D
Ferencek, D
Gershtein, Y
Gray, R
Halkiadakis, E
Hidas, D
Lath, A
Panwalkar, S
Park, M
Patel, R
Rekovic, V
Robles, J
Rose, K
Salur, S
Schnetzer, S
Seitz, C
Somalwar, S
Stone, R
Thomas, S
Walker, M
Cerizza, G
Hollingsworth, M
Spanier, S
Yang, ZC
York, A
Eusebi, R
Flanagan, W
Gilmore, J
Kamon, T
Khotilovich, V
Montalvo, R
Osipenkov, I
Pakhotin, Y
Perloff, A
Roe, J
Safonov, A
Sakuma, T
Sengupta, S
Suarez, I
Tatarinov, A
Toback, D
Akchurin, N
Damgov, J
Dragoiu, C
Dudero, PR
Jeong, C
Kovitanggoon, K
Lee, SW
Libeiro, T
Roh, Y
Volobouev, I
Appelt, E
Delannoy, AG
Florez, C
Greene, S
Gurrola, A
Johns, W
Kurt, P
Maguire, C
Melo, A
Sharma, M
Sheldon, P
Snook, B
Tuo, S
Velkovska, J
Arenton, MW
Balazs, M
Boutle, S
Cox, B
Francis, B
Goodell, J
Hirosky, R
Ledovskoy, A
Lin, C
Neu, C
Wood, J
Gollapinni, S
Harr, R
Karchin, PE
Don, CKK
Lamichhane, P
Sakharov, A
Anderson, M
Belknap, DA
Borrello, L
Carlsmith, D
Cepeda, M
Dasu, S
Friis, E
Gray, L
Grogg, KS
Grothe, M
Hall-Wilton, R
Herndon, M
Herve, A
Klabbers, P
Klukas, J
Lanaro, A
Lazaridis, C
Leonard, J
Loveless, R
Mohapatra, A
Ojalvo, I
Palmonari, F
Pierro, GA
Ross, I
Savin, A
Smith, WH
Swanson, J
AF Chatrchyan, S.
Khachatryan, V.
Sirunyan, A. M.
Tumasyan, A.
Adam, W.
Aguilo, E.
Bergauer, T.
Dragicevic, M.
Eroe, J.
Fabjan, C.
Friedl, M.
Fruehwirth, R.
Ghete, V. M.
Hammer, J.
Hoermann, N.
Hrubec, J.
Jeitler, M.
Kiesenhofer, W.
Knuenz, V.
Krammer, M.
Kraetschmer, I.
Liko, D.
Mikulec, I.
Pernicka, M.
Rahbaran, B.
Rohringer, C.
Rohringer, H.
Schoefbeck, R.
Strauss, J.
Taurok, A.
Waltenberger, W.
Walzel, G.
Widl, E.
Wulz, C. -E.
Mossolov, V.
Shumeiko, N.
Gonzalez, J. Suarez
Bansal, M.
Bansal, S.
Cornelis, T.
De Wolf, E. A.
Janssen, X.
Luyckx, S.
Mucibello, L.
Ochesanu, S.
Roland, B.
Rougny, R.
Selvaggi, M.
Staykova, Z.
Van Haevermaet, H.
Van Mechelen, P.
Van Remortel, N.
Van Spilbeeck, A.
Blekman, F.
Blyweert, S.
D'Hondt, J.
Suarez, R. Gonzalez
Kalogeropoulos, A.
Maes, M.
Olbrechts, A.
Van Doninck, W.
Van Mulders, P.
Van Onsem, G. P.
Villella, I.
Clerbaux, B.
De Lentdecker, G.
Dero, V.
Gay, A. P. R.
Hreus, T.
Leonard, A.
Marage, P. E.
Mohammadi, A.
Reis, T.
Thomas, L.
Vander Marcken, G.
Vander Velde, C.
Vanlaer, P.
Wang, J.
Adler, V.
Beernaert, K.
Cimmino, A.
Costantini, S.
Garcia, G.
Grunewald, M.
Klein, B.
Lellouch, J.
Marinov, A.
Mccartin, J.
Rios, A. A. Ocampo
Ryckbosch, D.
Strobbe, N.
Thyssen, F.
Tytgat, M.
Verwilligen, P.
Walsh, S.
Yazgan, E.
Zaganidis, N.
Basegmez, S.
Bruno, G.
Castello, R.
Ceard, L.
Delaere, C.
du Pree, T.
Favart, D.
Forthomme, L.
Giammanco, A.
Hollar, J.
Lemaitre, V.
Liao, J.
Militaru, O.
Nuttens, C.
Pagano, D.
Pin, A.
Piotrzkowski, K.
Schul, N.
Garcia, J. M. Vizan
Beliy, N.
Caebergs, T.
Daubie, E.
Hammad, G. H.
Alves, G. A.
Correa Martins Junior, M.
Martins, T.
Pol, M. E.
Souza, M. H. G.
Alda Junior, W. L.
Carvalho, W.
Custodio, A.
Da Costa, E. M.
De Jesus Damiao, D.
De Oliveira Martins, C.
Fonseca De Souza, S.
Matos Figueiredo, D.
Mundim, L.
Nogima, H.
Oguri, V.
Prado Da Silva, W. L.
Santoro, A.
Soares Jorge, L.
Sznajder, A.
Anjos, T. S.
Bernardes, C. A.
Dias, F. A.
Fernandez Perez Tomei, T. R.
Gregores, E. M.
Lagana, C.
Marinho, F.
Mercadante, P. G.
Novaes, S. F.
Padula, Sandra S.
Genchev, V.
Iaydjiev, P.
Piperov, S.
Rodozov, M.
Stoykova, S.
Sultanov, G.
Tcholakov, V.
Trayanov, R.
Vutova, M.
Dimitrov, A.
Hadjiiska, R.
Kozhuharov, V.
Litov, L.
Pavlov, B.
Petkov, P.
Bian, J. G.
Chen, G. M.
Chen, H. S.
Jiang, C. H.
Liang, D.
Liang, S.
Meng, X.
Tao, J.
Wang, J.
Wang, X.
Wang, Z.
Xiao, H.
Xu, M.
Zang, J.
Zhang, Z.
Asawatangtrakuldee, C.
Ban, Y.
Guo, Y.
Li, W.
Liu, S.
Mao, Y.
Qian, S. J.
Teng, H.
Wang, D.
Zhang, L.
Zou, W.
Avila, C.
Gomez, J. P.
Gomez Moreno, B.
Osorio Oliveros, A. F.
Sanabria, J. C.
Godinovic, N.
Lelas, D.
Plestina, R.
Polic, D.
Puljak, I.
Antunovic, Z.
Kovac, M.
Brigljevic, V.
Duric, S.
Kadija, K.
Luetic, J.
Morovic, S.
Attikis, A.
Galanti, M.
Mavromanolakis, G.
Mousa, J.
Nicolaou, C.
Ptochos, F.
Razis, P. A.
Finger, M.
Finger, M., Jr.
Assran, Y.
Elgammal, S.
Kamel, A. Ellithi
Mahmoud, M. A.
Radi, A.
Kadastik, M.
Muentel, M.
Raidal, M.
Rebane, L.
Tiko, A.
Eerola, P.
Fedi, G.
Voutilainen, M.
Harkonen, J.
Heikkinen, A.
Karimaki, V.
Kinnunen, R.
Kortelainen, M. J.
Lampen, T.
Lassila-Perini, K.
Lehti, S.
Linden, T.
Luukka, P.
Maenpaa, T.
Peltola, T.
Tuominen, E.
Tuominiemi, J.
Tuovinen, E.
Ungaro, D.
Wendland, L.
Banzuzi, K.
Karjalainen, A.
Korpela, A.
Tuuva, T.
Besancon, M.
Choudhury, S.
Dejardin, M.
Denegri, D.
Fabbro, B.
Faure, J. L.
Ferri, F.
Ganjour, S.
Givernaud, A.
Gras, P.
de Monchenault, G. Hamel
Jarry, P.
Locci, E.
Malcles, J.
Millischer, L.
Nayak, A.
Rander, J.
Rosowsky, A.
Shreyber, I.
Titov, M.
Baffioni, S.
Beaudette, F.
Benhabib, L.
Bianchini, L.
Bluj, M.
Broutin, C.
Busson, P.
Charlot, C.
Daci, N.
Dahms, T.
Dalchenko, M.
Dobrzynski, L.
de Cassagnac, R. Granier
Haguenauer, M.
Mine, P.
Mironov, C.
Naranjo, I. N.
Nguyen, M.
Ochando, C.
Paganini, P.
Sabes, D.
Salerno, R.
Sirois, Y.
Veelken, C.
Zabi, A.
Agram, J. -L.
Andrea, J.
Bloch, D.
Bodin, D.
Brom, J. -M.
Cardaci, M.
Chabert, E. C.
Collard, C.
Conte, E.
Drouhin, F.
Ferro, C.
Fontaine, J. -C.
Gele, D.
Goerlach, U.
Juillot, P.
Le Bihan, A. -C.
Van Hove, P.
Fassi, F.
Mercier, D.
Beauceron, S.
Beaupere, N.
Bondu, . O.
Boudoul, G.
Chasserat, J.
Chierici, R.
Contardo, D.
Depasse, P.
El Mamouni, H.
Fay, J.
Gascon, S.
Gouzevitch, M.
Ille, B.
Kurca, T.
Lethuillier, M.
Mirabito, L.
Perries, S.
Sgandurra, L.
Sordini, V.
Tschudi, Y.
Verdier, P.
Viret, S.
Tsamalaidze, Z.
Anagnostou, G.
Autermann, C.
Beranek, S.
Edelhoff, M.
Feld, L.
Heracleous, N.
Hindrichs, O.
Jussen, R.
Klein, K.
Merz, J.
Ostapchuk, A.
Perieanu, A.
Raupach, F.
Sammet, J.
Schael, S.
Sprenger, D.
Weber, H.
Wittmer, B.
Zhukov, V.
Ata, M.
Caudron, J.
Dietz-Laursonn, E.
Duchardt, D.
Erdmann, M.
Fischer, R.
Gueth, A.
Hebbeker, T.
Heidemann, C.
Hoepfner, K.
Klingebiel, D.
Kreuzer, P.
Merschmeyer, M.
Meyer, A.
Olschewski, M.
Papacz, P.
Pieta, H.
Reithler, H.
Schmitz, S. A.
Sonnenschein, L.
Steggemann, J.
Teyssier, D.
Weber, M.
Bontenackels, M.
Cherepanov, V.
Erdogan, Y.
Fluegge, G.
Geenen, H.
Geisler, M.
Ahmad, W. Haj
Hoehle, F.
Kargoll, B.
Kress, T.
Kuessel, Y.
Lingemann, J.
Nowack, A.
Perchalla, L.
Pooth, O.
Sauerland, P.
Stahl, A.
Martin, M. Aldaya
Behr, J.
Behrenhoff, W.
Behrens, U.
Bergholz, M.
Bethani, A.
Borras, K.
Burgmeier, A.
Cakir, A.
Calligaris, L.
Campbell, A.
Castro, E.
Costanza, F.
Dammann, D.
Pardos, C. Diez
Eckerlin, G.
Eckstein, D.
Flucke, G.
Geiser, A.
Glushkov, I.
Gunnellini, P.
Habib, S.
Hauk, J.
Hellwig, G.
Jung, H.
Kasemann, M.
Katsas, P.
Kleinwort, C.
Kluge, H.
Knutsson, A.
Kraemer, M.
Kruecker, D.
Kuznetsova, E.
Lange, W.
Lohmann, W.
Lutz, B.
Mankel, R.
Marfin, I.
Marienfeld, M.
Melzer-Pellmann, I. -A.
Meyer, A. B.
Mnich, J.
Mussgiller, A.
Naumann-Emme, S.
Novgorodova, O.
Olzem, J.
Perrey, H.
Petrukhin, A.
Pitzl, D.
Raspereza, A.
Cipriano, P. M. Ribeiro
Riedl, C.
Ron, E.
Rosin, M.
Salfeld-Nebgen, J.
Schmidt, R.
Schoerner-Sadenius, T.
Sen, N.
Spiridonov, A.
Stein, M.
Walsh, R.
Wissing, C.
Blobel, V.
Draeger, J.
Enderle, H.
Erfle, J.
Gebbert, U.
Goerner, M.
Hermanns, T.
Hoeing, R. S.
Kaschube, K.
Kaussen, G.
Kirschenmann, H.
Klanner, R.
Lange, J.
Mura, B.
Nowak, E.
Peiffer, T.
Pietsch, N.
Rathjens, D.
Sander, C.
Schettler, H.
Schleper, P.
Schlieckau, E.
Schmidt, A.
Schroeder, M.
Schum, T.
Seidel, M.
Sibille, J.
Sola, V.
Stadie, H.
Steinbrueck, G.
Thomsen, J.
Vanelderen, L.
Barth, C.
Berger, J.
Boeser, C.
Wiser, C.
Chwalek, T.
De Boer, W.
Descroix, A.
Dierlamm, A.
Feindt, M.
Guthoff, M.
Hackstein, C.
Hartmann, F.
Hauth, T.
Heinrich, M.
Held, H.
Hoffmann, K. H.
Husemann, U.
Katkov, I.
Komaragiri, J. R.
Pardo, P. Lobelle
Martschei, D.
Mueller, S.
Mueller, Th.
Niegel, M.
Nuernberg, A.
Oberst, O.
Oehler, A.
Ott, J.
Quast, G.
Rabbertz, K.
Ratnikov, F.
Ratnikova, N.
Roecker, S.
Schilling, F. -P.
Schott, G.
Simonis, H. J.
Stober, F. M.
Troendle, D.
Ulrich, R.
Wagner-Kuhr, J.
Wayand, S.
Weiler, T.
Zeise, M.
Daskalakis, G.
Geralis, T.
Kesisoglou, S.
Kyriakis, A.
Loukas, D.
Manolakos, I.
Markou, A.
Markou, C.
Mavrommatis, C.
Ntomari, E.
Gouskos, L.
Mertzimekis, T. J.
Panagiotou, A.
Saoulidou, N.
Evangelou, I.
Foudas, C.
Kokkas, P.
Manthos, N.
Papadopoulos, I.
Patras, V.
Bencze, G.
Hajdu, C.
Hidas, P.
Horvath, D.
Sikler, F.
Veszpremi, V.
Vesztergombi, G.
Beni, N.
Czellar, S.
Molnar, J.
Palinkas, J.
Szillasi, Z.
Karancsi, J.
Raics, P.
Trocsanyi, Z. L.
Ujvari, B.
Beri, S. B.
Bhatnagar, V.
Dhingra, N.
Gupta, R.
Kaur, M.
Mehta, M. Z.
Nishu, N.
Saini, L. K.
Sharma, A.
Singh, J. B.
Kumar, Ashok
Kumar, Arun
Ahuja, S.
Bhardwaj, A.
Choudhary, B. C.
Malhotra, S.
Naimuddin, M.
Ranjan, K.
Sharma, V.
Shivpuri, R. K.
Banerjee, S.
Bhattacharya, S.
Dutta, S.
Gomber, B.
Jain, Sa.
Jain, Sh.
Khurana, R.
Sarkar, S.
Sharan, M.
Abdulsalam, A.
Choudhury, R. K.
Dutta, D.
Kailas, S.
Kumar, V.
Mehta, P.
Mohanty, A. K.
Pant, L. M.
Shukla, P.
Aziz, T.
Ganguly, S.
Guchait, M.
Maity, M.
Majumder, G.
Mazumdar, K.
Mohanty, G. B.
Parida, B.
Sudhakar, K.
Wickramage, N.
Banerjee, S.
Dugad, S.
Arfaei, H.
Bakhshiansohi, H.
Etesami, S. M.
Fahim, A.
Hashemi, M.
Hesari, H.
Jafari, A.
Khakzad, M.
Najafabadi, M. Mohammadi
Mehdiabadi, S. Paktinat
Safarzadeh, B.
Zeinali, M.
Abbrescia, M.
Barbone, L.
Calabria, C.
Chhibra, S. S.
Colaleo, A.
Creanza, D.
De Filippis, N.
De Palma, M.
Fiore, L.
Iaselli, G.
Maggi, G.
Maggi, M.
Marangelli, B.
My, S.
Nuzzo, S.
Pacifico, N.
Pompili, A.
Pugliese, G.
Selvaggi, G.
Silvestris, L.
Singh, G.
Venditti, R.
Zito, G.
Abbiendi, G.
Benvenuti, A. C.
Bonacorsi, D.
Braibant-Giacomelli, S.
Brigliadori, L.
Capiluppi, R.
Castro, A.
Cavallo, Er.
Cuffiani, M.
Dallavalle, G. M.
Fabbri, E.
Fanfani, A.
Fasanella, D.
Giacomelli, P.
Grandi, C.
Guiducci, L.
Marcellini, S.
Masetti, G.
Meneghelli, M.
Montanari, A.
Navarria, El.
Odorici, E.
Perrotta, A.
Primavera, E.
Rossi, A. M.
Rovelli, T.
Siroli, G. P.
Travaglini, R.
Albergo, S.
Cappello, G.
Chiorboli, M.
Costa, S.
Potenza, R.
Tricomi, A.
Tuve, C.
Barbagli, G.
Ciulli, V.
Civinini, C.
D'Alessandro, R.
Focardi, E.
Frosali, S.
Gallo, E.
Gonzi, S.
Meschini, M.
Paoletti, S.
Sguazzoni, G.
Tropiano, A.
Benussi, L.
Bianco, S.
Colafranceschi, S.
Fabbri, E.
Piccolo, D.
Fabbricatore, P.
Musenich, R.
Tosi, S.
Benaglia, A.
De Guio, F.
Di Matteo, L.
Fiorendi, S.
Gennai, S.
Ghezzi, A.
Malvezzi, S.
Manzoni, R. A.
Martelli, A.
Massironi, A.
Menasce, D.
Moroni, L.
Paganoni, M.
Pedrini, D.
Ragazzi, S.
Redaelli, N.
Sala, S.
de Fatis, T. Tabarelli
Buontempo, S.
Montoya, C. A. Carrillo
Cavallo, N.
De Cosa, A.
Dogangun, O.
Fabozzi, F.
Iorio, A. O. M.
Lista, L.
Meola, S.
Merola, M.
Paolucci, P.
Azzi, P.
Bacchetta, N.
Bisello, D.
Branca, A.
Carlin, R.
Checchia, R.
Dorigo, T.
Dosselli, U.
Gasparini, F.
Gozzelino, A.
Kanishchev, K.
Lacaprara, S.
Lazzizzera, I.
Margoni, M.
Meneguzzo, A. T.
Pazzini, J.
Pozzobon, N.
Ronchese, P.
Simonetto, F.
Torassa, E.
Tosi, M.
Vanini, S.
Zotto, R.
Zucchetta, A.
Zumerle, G.
Gabusi, M.
Ratti, S. R.
Riccardi, C.
Torre, P.
Vitulo, P.
Biasini, M.
Bilei, G. M.
Fano, L.
Lariccia, P.
Mantovani, G.
Menichelli, M.
Nappi, A.
Romeo, F.
Saha, A.
Santocchia, A.
Spiezia, A.
Taroni, S.
Azzurri, P.
Bagliesi, G.
Bernardini, J.
Boccali, T.
Broccolo, G.
Castaldi, R.
D'Agnolo, R. T.
Dell'Orso, R.
Fiori, F.
Foa, L.
Giassi, A.
Kraan, A.
Ligabue, F.
Lomtadze, T.
Martini, L.
Messineo, A.
Palla, F.
Rizzi, A.
Serban, A. T.
Spagnolo, P.
Squillacioti, P.
Tenchini, R.
Tonelli, G.
Venturi, A.
Verdini, P. G.
Barone, L.
Cavallari, F.
Del Re, D.
Diemoz, M.
Fanelli, C.
Grassi, M.
Longo, E.
Meridiani, P.
Micheli, F.
Nourbakhsh, S.
Organtini, G.
Paramatti, R.
Rahatlou, S.
Sigamani, M.
Soffi, L.
Amapane, N.
Arcidiacono, R.
Argiro, S.
Arneodo, M.
Biino, C.
Cartiglia, N.
Costa, M.
Demaria, N.
Mariotti, C.
Maselli, S.
Migliore, E.
Monaco, V.
Musich, M.
Obertino, M. M.
Pastrone, N.
Pelliccioni, M.
Potenza, A.
Romero, A.
Ruspa, M.
Sacchi, R.
Solano, A.
Staiano, A.
Pereira, A. Vilela
Belforte, S.
Candelise, V.
Casarsa, M.
Cossutti, F.
Della Ricca, G.
Gobbo, B.
Marone, M.
Montanino, D.
Penzo, A.
Schizzi, A.
Heo, S. G.
Kim, T. Y.
Nam, S. K.
Chang, S.
Kim, D. H.
Kim, G. N.
Kong, D. J.
Park, H.
Ro, S. R.
Son, D. C.
Son, T.
Kim, J. Y.
Kim, Zero J.
Song, S.
Choi, S.
Gyun, D.
Hong, B.
Jo, M.
Kim, H.
Kim, T. J.
Lee, K. S.
Moon, D. H.
Park, S. K.
Choi, M.
Kim, J. H.
Park, C.
Park, I. C.
Park, S.
Ryu, G.
Cho, Y.
Choi, Y.
Choi, Y. K.
Goh, J.
Kim, M. S.
Kwon, E.
Lee, B.
Lee, J.
Lee, S.
Seo, H.
Yu, I.
Bilinskas, M. J.
Grigelionis, I.
Janulis, M.
Juodagalvis, A.
Castilla-Valdez, H.
De La Cruz-Burelo, E.
Heredia-de La Cruz, I.
Lopez-Fernandez, R.
Magana Villalba, R.
Martinez-Ortega, J.
Sanchez-Hernandez, A.
Villasenor-Cendejas, L. M.
Carrillo Moreno, S.
Vazquez Valencia, F.
Salazar Ibarguen, H. A.
Casimiro Linares, E.
Morelos Pineda, A.
Reyes-Santos, M. A.
Krofcheck, D.
Bell, A. J.
Butler, P. H.
Doesburg, R.
Reucroft, S.
Silverwood, H.
Ahmad, M.
Ansari, M. H.
Asghar, M. I.
Butt, J.
Hoorani, H. R.
Khalid, S.
Khan, W. A.
Khurshid, T.
Qazi, S.
Shah, M. A.
Shoaib, M.
Bialkowska, H.
Boimska, B.
Frueboes, T.
Gokieli, R.
Gorski, M.
Kazana, M.
Nawrocki, K.
Romanowska-Rybinska, K.
Szleper, M.
Wrochna, G.
Zalewski, P.
Brona, G.
Bunkowski, K.
Cwiok, M.
Dominik, W.
Doroba, K.
Kalinowski, A.
Konecki, M.
Krolikowski, J.
Almeida, N.
Bargassa, P.
David, A.
Faccioli, P.
Ferreira Parracho, P. G.
Gallinaro, M.
Seixas, J.
Varela, J.
Vischia, P.
Bunin, P.
Gavrilenko, M.
Golutvin, I.
Karjavin, V.
Konoplyanikov, V.
Kozlov, G.
Lanev, A.
Malakhov, A.
Moisenz, P.
Palichik, V.
Perelygin, V.
Savina, M.
Shmatov, S.
Shulha, S.
Smirnov, V.
Volodko, A.
Zarubin, A.
Evstyukhin, S.
Golovtsov, V.
Ivanov, Y.
Kim, V.
Levchenko, P.
Murzin, V.
Oreshkin, V.
Smirnov, I.
Sulimov, V.
Uvarov, L.
Vavilov, S.
Vorobyev, A.
Vorobyev, An.
Andreev, Yu.
Dermenev, A.
Gninenko, S.
Golubev, N.
Kirsanov, M.
Krasnikov, N.
Matveev, V.
Pashenkov, A.
Tlisov, D.
Toropin, A.
Epshteyn, V.
Erofeeva, M.
Gavrilov, V.
Kossov, M.
Lychkovskaya, N.
Popov, V.
Safronov, G.
Semenov, S.
Stolin, V.
Vlasov, E.
Zhokin, A.
Belyaev, A.
Boos, E.
Dubinin, M.
Dudko, L.
Ershov, A.
Gribushin, A.
Klyukhin, V.
Kodolova, A.
Lokhtin, I.
Markina, A.
Obraztsov, S.
Perfilov, M.
Petrushanko, S.
Popov, A.
L., Sarycheva T.
Savrin, V.
Snigirev, A.
Andreev, V.
Azarkin, M.
Dremin, I.
Kirakosyan, M.
Leonidov, A.
Mesyats, G.
Rusakov, S. V.
Vinogradov, A.
Azhgirey, I.
Bayshev, I.
Bitioukov, S.
Grishin, V.
Kachanov, V.
Konstantinov, D.
Krychkine, V.
Petrov, V.
Ryutin, R.
Sobol, A.
Tourtchanovitch, L.
Troshin, S.
Tyurin, N.
Uzunian, A.
Volkov, A.
Adzic, P.
Djordjevic, M.
Ekmedzic, M.
Krpic, D.
Milosevic, J.
Aguilar-Benitez, M.
Alcaraz Maestre, J.
Arce, P.
Battilana, C.
Calvo, E.
Cerrada, M.
Chamizo Llatas, M.
Colino, N.
De La Cruz, B.
Delgado Peris, A.
Dominguez Vazquez, D.
Fernandez Bedoya, C.
Fernandez Ramos, J. P.
Ferrando, A.
Flix, J.
Fouz, M. C.
Garcia-Abia, P.
Gonzalez Lopez, O.
Goy Lopez, S.
Hernandez, J. M.
Josa, M. I.
Merino, G.
Puerta Pelayo, J.
Quintario Olmeda, A.
Redondo, I.
Romero, L.
Santaolalla, J.
Soares, M. S.
Willmott, C.
Albajar, C.
Codispoti, G.
de Troconiz, J. F.
Brun, H.
Cuevas, J.
Fernandez Menendez, J.
Folgueras, S.
Gonzalez Caballero, I.
Lloret Iglesias, L.
Piedra Gomez, J.
Brochero Cifuentes, J. A.
Cabrillo, I. J.
Calderon, A.
Chuang, S. H.
Duarte Campderros, J.
Felcini, M.
Fernandez, M.
Gomez, G.
Gonzalez Sanchez, J.
Graziano, A.
Jorda, C.
Lopez Virto, A.
Marco, J.
Marco, R.
Martinez Rivero, C.
Matorras, F.
Munoz Sanchez, F. J.
Rodrigo, T.
Rodriguez-Marrero, A. Y.
Ruiz-Jimeno, A.
Scodellaro, L.
Vila, I.
Vilar Cortabitarte, R.
Abbaneo, D.
Auffray, E.
Auzinger, G.
Bachtis, M.
Baillon, P.
Ball, A. H.
Barney, D.
Benitez, J. F.
Bernet, C.
Bianchi, G.
Bloch, P.
Bocci, A.
Bonato, A.
Botta, C.
Breuker, H.
Camporesi, T.
Cerminara, G.
Christiansen, T.
Perez, J. A. Coarasa
D'Enterria, D.
Dabrowski, A.
De Roeck, A.
Di Guida, S.
Dobson, M.
Dupont-Sagorin, N.
Elliott-Peisert, A.
Frisch, B.
Funk, W.
Georgiou, G.
Giffels, M.
Gigi, D.
Gill, K.
Giordano, D.
Girone, M.
Giunta, M.
Glege, E.
Garrido, R. Gomez-Reino
Govoni, P.
Gowdy, S.
Guida, R.
Hansen, M.
Harris, P.
Hartl, C.
Harvey, J.
Hegner, B.
Hinzmann, A.
Innocente, V.
Janot, P.
Kaadze, K.
Karavakis, E.
Kousouris, K.
Lecoq, P.
Lee, Y. -J.
Lenzi, P.
Lourenco, C.
Magini, N.
Maeki, T.
Malberti, M.
Malgeri, L.
Mannelli, M.
Masetti, L.
Meijers, F.
Mersi, S.
Meschi, E.
Moser, R.
Mozer, M. U.
Mulders, M.
Musella, P.
Nesvold, E.
Orimoto, T.
Orsini, L.
Cortezon, E. Palencia
Perez, E.
Perrozzi, L.
Petrilli, A.
Pfeiffer, A.
Pierini, M.
Pimiae, M.
Piparo, D.
Polese, G.
Quertenmont, L.
Racz, A.
Reece, W.
Antunes, J. Rodrigues
Rolandi, G.
Rovelli, C.
Rovere, M.
Sakulin, H.
Santanastasio, F.
Schaefer, C.
Schwick, C.
Segoni, I.
Sekmen, S.
Sharma, A.
Siegrist, P.
Silva, P.
Simon, M.
Sphicas, P.
Spiga, D.
Tsirou, A.
Veres, G. I.
Vlimant, J. R.
Woehri, H. K.
Worm, S. D.
Zeuner, W. D.
Bertl, W.
Deiters, K.
Erdmann, W.
Gabathuler, K.
Horisberger, R.
Ingram, Q.
Kaestli, H. C.
Koenig, S.
Kotlinski, D.
Langenegger, U.
Meier, F.
Renker, D.
Rohe, T.
Baeni, L.
Bortignon, P.
Buchmann, M. A.
Casal, B.
Chanon, N.
Deisher, A.
Dissertori, G.
Dittmar, M.
Donega, M.
Duenser, M.
Eugster, J.
Freudenreich, K.
Grab, C.
Hits, D.
Lecomte, P.
Lustermann, W.
Marini, A. C.
del Arbol, P. Martinez Ruiz
Mohr, N.
Moortgat, F.
Naegeli, C.
Nef, R.
Nessi-Tedaldi, F.
Pandolfi, F.
Pape, L.
Pauss, F.
Peruzzi, M.
Ronga, F. J.
Rossini, M.
Sala, L.
Sanchez, A. K.
Starodumov, A.
Stieger, B.
Takahashi, M.
Tauscher, L.
Thea, A.
Theofilatos, K.
Treille, D.
Urscheler, C.
Wallny, R.
Weber, H. A.
Wehrli, L.
Amsler, C.
Chiochia, V.
De Visscher, S.
Favaro, C.
Rikova, M. Ivova
Mejias, B. Millan
Otiougova, P.
Robmann, P.
Snoek, H.
Tupputi, S.
Verzetti, M.
Chang, Y. H.
Chen, K. H.
Kuo, C. M.
Li, S. W.
Lin, W.
Liu, Z. K.
Lu, Y. J.
Mekterovic, D.
Singh, A. P.
Volpe, R.
Yu, S. S.
Bartalini, P.
Chang, P.
Chang, Y. H.
Chang, Y. W.
Chao, Y.
Chen, K. F.
Dietz, C.
Grundler, U.
Hou, W. -S.
Hsiung, Y.
Kao, K. Y.
Lei, Y. J.
Lu, R. -S.
Majumder, D.
Petrakou, E.
Shi, X.
Shiu, J. G.
Tzeng, Y. M.
Wan, X.
Wang, M.
Asavapibhop, B.
Srimanobhas, N.
Adiguzel, A.
Bakirci, M. N.
Cerci, S.
Dozen, C.
Dumanoglu, I.
Eskut, E.
Girgis, S.
Gokbulut, G.
Gurpinar, E.
Hos, I.
Kangal, E. E.
Karaman, T.
Karapinar, G.
Topaksu, A. Kayis
Onengut, G.
Ozdemir, K.
Ozturk, S.
Polatoz, A.
Sogut, K.
Cerci, D. Sunar
Tali, B.
Topakli, H.
Vergili, L. N.
Vergili, M.
Akin, I. V.
Aliev, T.
Bilin, B.
Bilmis, S.
Deniz, M.
Gamsizkan, H.
Guler, A. M.
Ocalan, K.
Ozpineci, A.
Serin, M.
Sever, R.
Surat, U. E.
Yalvac, M.
Yildirim, E.
Zeyrek, M.
Gulmez, E.
Isildak, B.
Kaya, M.
Kaya, O.
Ozkorucuklu, S.
Sonmez, N.
Cankocak, K.
Levchuk, L.
Brooke, J. J.
Clement, E.
Cussans, D.
Flacher, H.
Frazier, R.
Goldstein, J.
Grimes, M.
Heath, G. P.
Heath, H. F.
Kreczko, L.
Metson, S.
Newbold, D. M.
Nirunpong, K.
Poll, A.
Senkin, S.
Smith, V. J.
Williams, T.
Basso, L.
Bell, K. W.
Belyaev, A.
Brew, C.
Brown, R. M.
Cockerill, D. J. A.
Coughlan, J. A.
Harder, K.
Harper, S.
Jackson, J.
Kennedy, B. W.
Olaiya, E.
Petyt, D.
Radburn-Smith, B. C.
Shepherd-Themistocleous, C. H.
Tomalin, I. R.
Womersley, W. J.
Bainbridge, R.
Ball, G.
Beuselinck, R.
Buchmuller, .
Colling, D.
Cripps, N.
Cutajar, M.
Dauncey, P.
Davies, G.
Della Negra, M.
Ferguson, W.
Fulcher, J.
Futyan, D.
Gilbert, A.
Bryer, A. Guneratne
Hall, G.
Hatherell, Z.
Hays, J.
Iles, G.
Jarvis, M.
Karapostoli, G.
Lyons, L.
Magnan, A. -M.
Marrouche, J.
Mathias, B.
Nandi, R.
Nash, J.
Nikitenko, A.
Papageorgiou, A.
Pela, J.
Pesaresi, M.
Petridis, K.
Pioppi, M.
Raymond, D. M.
Rogerson, S.
Rose, A.
Ryan, M. J.
Seez, C.
Sharp, P.
Sparrow, A.
Stoye, M.
Tapper, A.
Acosta, M. Vazquez
Virdee, T.
Wakefield, S.
Wardle, N.
Whyntie, T.
Chadwick, M.
Cole, J. E.
Hobson, P. R.
Khan, A.
Kyberd, P.
Leggat, D.
Leslie, D.
Martin, W.
Reid, I. D.
Symonds, P.
Teodorescu, L.
Turner, M.
Hatakeyama, K.
Liu, H.
Scarborough, T.
Charaf, O.
Henderson, C.
Rumerio, P.
Avetisyan, A.
Bose, T.
Fantasia, C.
Heister, A.
St John, J.
Lawson, P.
Lazic, D.
Rohlf, J.
Sperka, D.
Sulak, L.
Alimena, J.
Bhattacharya, S.
Cutts, D.
Demiragli, Z.
Ferapontov, A.
Garabedian, A.
Heintz, U.
Jabeen, S.
Kukartsev, G.
Laird, E.
Landsberg, G.
Luk, M.
Narain, M.
Nguyen, D.
Segala, M.
Sinthuprasith, T.
Speer, T.
Tsang, K. V.
Breedon, R.
Breto, G.
Sanchez, M. Calderon De La Barca
Chauhan, S.
Chertok, M.
Conway, J.
Conway, R.
Cox, P. T.
Dolen, J.
Erbacher, R.
Gardner, M.
Houtz, R.
Ko, W.
Kopecky, A.
Lander, R.
Mall, O.
Miceli, T.
Pellett, D.
Ricci-Tam, F.
Rutherford, B.
Searle, M.
Smith, J.
Squires, M.
Tripathi, M.
Sierra, R. Vasquez
Yohay, R.
Andreev, V.
Cline, D.
Cousins, R.
Duris, J.
Erhan, S.
Everaerts, P.
Farrell, C.
Hauser, J.
Ignatenko, M.
Jarvis, C.
Plager, C.
Rakness, G.
Schlein, P.
Traczyk, P.
Valuev, V.
Weber, M.
Babb, J.
Clare, R.
Dinardo, M. E.
Ellison, J.
Gary, J. W.
Giordano, F.
Hanson, G.
Jeng, G. Y.
Liu, H.
Long, O. R.
Luthra, A.
Nguyen, H.
Paramesvaran, S.
Sturdy, J.
Sumowidagdo, S.
Wilken, R.
Wimpenny, S.
Andrews, W.
Branson, J. G.
Cerati, G. B.
Cittolin, S.
Evans, D.
Golf, F.
Holzner, A.
Kelley, R.
Lebourgeois, M.
Letts, J.
Macneill, I.
Mangano, B.
Padhi, S.
Palmer, C.
Petrucciani, G.
Pieri, M.
Sani, M.
Sharma, V.
Simon, S.
Sudano, E.
Tadel, M.
Tu, Y.
Vartak, A.
Wasserbaech, S.
Wuerthwein, E.
Yagil, A.
Yoo, J.
Barge, D.
Bellan, R.
Campagnari, C.
D'Alfonso, M.
Danielson, T.
Flowers, K.
Geffert, P.
Incandela, J.
Justus, C.
Kalavase, P.
Koay, S. A.
Kovalskyi, D.
Krutelyov, V.
Lowette, S.
Mccoll, N.
Pavlunin, V.
Rebassoo, F.
Ribnik, J.
Richman, J.
Rossin, R.
Stuart, D.
To, W.
West, C.
Apresyan, A.
Bornheim, A.
Chen, Y.
Di Marco, E.
Duarte, J.
Gataullin, M.
Ma, Y.
Mott, A.
Newman, H. B.
Rogan, C.
Spiropulu, M.
Timciuc, V.
Veverka, J.
Wilkinson, R.
Xie, S.
Yang, Y.
Zhu, R. Y.
Akgun, B.
Azzolini, V.
Calamba, A.
Carroll, R.
Ferguson, T.
Iiyama, Y.
Jang, D. W.
Liu, Y. F.
Paulini, M.
Vogel, H.
Vorobiev, I.
Cumalat, J. P.
Drell, B. R.
Ford, W. T.
Gaz, A.
Lopez, E. Luiggi
Smith, J. G.
Stenson, K.
Ulmer, K. A.
Wagner, S. R.
Alexander, J.
Chatterjee, A.
Eggert, N.
Gibbons, L. K.
Heltsley, B.
Khukhunaishvili, A.
Kreis, B.
Mirman, N.
Kaufman, G. Nicolas
Patterson, J. R.
Ryd, A.
Salvati, E.
Sun, W.
Teo, W. D.
Thom, J.
Thompson, J.
Tucker, J.
Vaughan, J.
Weng, Y.
Winstrom, L.
Wittich, P.
Winn, D.
Abdullin, S.
Albrow, M.
Anderson, J.
Bauerdick, L. A. T.
Beretvas, A.
Berryhill, J.
Bhat, P. C.
Bloch, I.
Burkett, K.
Butler, J. N.
Chetluru, V.
Cheung, H. W. K.
Chlebana, F.
Elvira, V. D.
Fisk, I.
Freeman, J.
Gao, Y.
Green, D.
Gutsche, O.
Hanlon, J.
Harris, R. M.
Hirschauer, J.
Hooberman, B.
Jindariani, S.
Johnson, M.
Joshi, U.
Kilminster, B.
Klima, B.
Kunori, S.
Kwan, S.
Leonidopoulos, C.
Linacre, J.
Lincoln, D.
Lipton, R.
Lykken, J.
Maeshima, K.
Marraffino, J. M.
Maruyama, S.
Mason, D.
McBride, P.
Mishra, K.
Mrenna, S.
Musienko, Y.
Newman-Holmes, C.
O'Dell, V.
Prokofyev, O.
Sexton-Kennedy, E.
Sharma, S.
Spalding, W. J.
Spiegel, L.
Taylor, L.
Tkaczyk, S.
Tran, N. V.
Uplegger, L.
Vaandering, E. W.
Vidal, R.
Whitmore, J.
Wu, W.
Yang, F.
Yumiceva, F.
Yun, J. C.
Acosta, D.
Avery, P.
Bourilkov, D.
Chen, M.
Cheng, T.
Das, S.
De Gruttola, M.
Di Giovanni, G. P.
Dobur, D.
Drozdetskiy, A.
Field, R. D.
Fisher, M.
Fu, Y.
Furic, I. K.
Gartner, J.
Hugon, J.
Kim, B.
Konigsberg, J.
Korytov, A.
Kropivnitskaya, A.
Kypreos, T.
Low, J. F.
Matchev, K.
Milenovic, P.
Mitselmakher, G.
Muniz, L.
Park, M.
Remington, R.
Rinkevicius, A.
Sellers, R.
Skhirtladze, N.
Snowball, M.
Yelton, J.
Zakaria, M.
Gaultney, V.
Hewamanage, S.
Lebolo, L. M.
Linn, S.
Markowitz, P.
Martinez, G.
Rodriguez, J. L.
Adams, T.
Askew, A.
Bochenek, J.
Chen, J.
Diamond, B.
Gleyzer, S. V.
Haas, J.
Hagopian, S.
Hagopian, V.
Jenkins, M.
Johnson, K. F.
Prosper, H.
Veeraraghavan, V.
Weinberg, M.
Baarmand, M. M.
Dorney, B.
Hohlmann, M.
Kalakhety, H.
Vodopiyanov, I.
Adams, M. R.
Anghel, I. M.
Apanasevich, L.
Bai, Y.
Bazterra, V. E.
Betts, R. R.
Bucinskaite, I.
Callner, J.
Cavanaugh, R.
Evdokimov, O.
Gauthier, L.
Gerber, C. E.
Hofman, D. J.
Khalatyan, S.
Lacroix, F.
Malek, M.
O'Brien, C.
Silkworth, C.
Strom, D.
Turner, P.
Varelas, N.
Akgun, U.
Albayrak, E. A.
Bilki, B.
Clarida, W.
Duru, F.
Merlo, J. -P.
Mermerkaya, H.
Mestvirishvili, A.
Moeller, A.
Nachtman, J.
Newsom, C. R.
Norbeck, E.
Onel, Y.
Ozok, F.
Sen, S.
Tan, P.
Tiras, E.
Wetzel, J.
Yetkin, T.
Yi, K.
Barnett, B. A.
Blumenfeld, B.
Bolognesi, S.
Fehling, D.
Giurgiu, G.
Gritsan, A. V.
Guo, Z. J.
Hu, G.
Maksimovic, P.
Rappoccio, S.
Swartz, M.
Whitbeck, A.
Baringer, P.
Bean, A.
Benelli, G.
Kenny, R. P., III
Murray, M.
Noonan, D.
Sanders, S.
Stringer, R.
Tinti, G.
Wood, J. S.
Zhukova, V.
Barfuss, A. F.
Bolton, T.
Chakaberia, I.
Ivanov, A.
Khalil, S.
Makouski, M.
Maravin, Y.
Shrestha, S.
Svintradze, I.
Gronberg, J.
Lange, D.
Wright, D.
Baden, A.
Boutemeur, M.
Calvert, B.
Eno, S. C.
Gomez, J. A.
Hadley, N. J.
Kellogg, R. G.
Kirn, M.
Kolberg, T.
Lu, Y.
Marionneau, M.
Mignerey, A. C.
Pedro, K.
Skuja, A.
Temple, J.
Tonjes, M. B.
Tonwar, S. C.
Twedt, E.
Apyan, A.
Bauer, G.
Bendavid, J.
Busza, W.
Butz, E.
Cali, I. A.
Chan, M.
Dutta, V.
Ceballos, G. Gomez
Goncharov, M.
Hahn, K. A.
Kim, Y.
Klute, M.
Krajczar, K.
Luckey, P. D.
Ma, T.
Nahn, S.
Paus, C.
Ralph, D.
Roland, C.
Roland, G.
Rudolph, M.
Stephans, G. S. F.
Stoeckli, F.
Sumorok, K.
Sung, K.
Velicanu, D.
Wenger, E. A.
Wolf, R.
Wyslouch, B.
Yang, M.
Yilmaz, Y.
Yoon, A. S.
Zanetti, M.
Cooper, S. I.
Dahmes, B.
De Benedetti, A.
Franzoni, G.
Gude, A.
Kao, S. C.
Klapoetke, K.
Kubota, Y.
Mans, J.
Pastika, N.
Rusack, R.
Sasseville, M.
Singovsky, A.
Tambe, N.
Turkewitz, J.
Cremaldi, L. M.
Kroeger, R.
Perera, L.
Rahmat, R.
Sanders, D. A.
Avdeeva, E.
Bloom, K.
Bose, S.
Claes, D. R.
Dominguez, A.
Eads, M.
Keller, J.
Kravchenko, I.
Lazo-Flores, J.
Malbouisson, H.
Malik, S.
Snow, G. R.
Godshalk, A.
Iashvili, I.
Jain, S.
Kharchilava, A.
Kumar, A.
Alverson, G.
Barberis, E.
Baumgartel, D.
Chasco, M.
Haley, J.
Nash, D.
Trocino, D.
Wood, D.
Zhang, J.
Anastassov, A.
Kubik, A.
Lusito, L.
Mucia, N.
Odell, N.
Ofierzynski, R. A.
Pollack, B.
Pozdnyakov, A.
Schmitt, M.
Stoynev, S.
Velasco, M.
Won, S.
Antonelli, L.
Berry, D.
Brinkerhoff, A.
Chan, K. M.
Hildreth, M.
Jessop, C.
Karmgard, D. J.
Kolb, J.
Lannon, K.
Luo, W.
Lynch, S.
Marinelli, N.
Morse, D. M.
Pearson, T.
Planer, M.
Ruchti, R.
Slaunwhite, J.
Valls, N.
Wayne, M.
Wolf, M.
Bylsma, B.
Durkin, L. S.
Hill, C.
Hughes, R.
Kotov, K.
Ling, T. Y.
Puigh, D.
Rodenburg, M.
Vuosalo, C.
Williams, G.
Winer, B. L.
Adam, N.
Berry, E.
Elmer, P.
Gerbaudo, D.
Halyo, V.
Hebda, P.
Hegeman, J.
Hunt, A.
Jindal, P.
Pegna, D. Lopes
Lujan, P.
Marlow, D.
Medvedeva, T.
Mooney, M.
Olsen, J.
Piroue, P.
Quan, X.
Raval, A.
Safdi, B.
Saka, H.
Stickland, D.
Tully, C.
Werner, J. S.
Zuranski, A.
Brownson, E.
Lopez, A.
Mendez, H.
Vargas, J. E. Ramirez
Alagoz, E.
Barnes, V. E.
Benedetti, D.
Bolla, G.
Bortoletto, D.
De Mattia, M.
Everett, A.
Hu, Z.
Jones, M.
Koybasi, O.
Kress, M.
Laasanen, A. T.
Leonardo, N.
Maroussov, V.
Merkel, R.
Miller, D. H.
Neumeister, N.
Shipsey, I.
Silvers, D.
Svyatkovskiy, A.
Marono, M. Vidal
Yoo, H. D.
Zablocki, J.
Zheng, Y.
Guragain, S.
Parashar, N.
Adair, A.
Boulahouache, C.
Ecklund, K. M.
Geurts, F. J. M.
Li, W.
Padley, B. P.
Redjimi, . R.
Roberts, J.
Zabel, J.
Betchart, B.
Bodek, A.
Chung, Y. S.
Covarelli, R.
de Barbaro, P.
Demina, R.
Eshaq, Y.
Ferbel, T.
Garcia-Bellido, A.
Goldenzweig, P.
Han, J.
Harel, A.
Miner, D. C.
Vishnevskiy, D.
Zielinski, M.
Bhatti, A.
Ciesielski, R.
Demortier, L.
Goulianos, K.
Lungu, G.
Malik, S.
Mesropian, C.
Arora, S.
Barker, A.
Chou, J. P.
Contreras-Campana, C.
Contreras-Campana, E.
Duggan, D.
Ferencek, D.
Gershtein, Y.
Gray, R.
Halkiadakis, E.
Hidas, D.
Lath, A.
Panwalkar, S.
Park, M.
Patel, R.
Rekovic, V.
Robles, J.
Rose, K.
Salur, S.
Schnetzer, S.
Seitz, C.
Somalwar, S.
Stone, R.
Thomas, S.
Walker, M.
Cerizza, G.
Hollingsworth, M.
Spanier, S.
Yang, Z. C.
York, A.
Eusebi, R.
Flanagan, W.
Gilmore, J.
Kamon, T.
Khotilovich, V.
Montalvo, R.
Osipenkov, I.
Pakhotin, Y.
Perloff, A.
Roe, J.
Safonov, A.
Sakuma, T.
Sengupta, S.
Suarez, I.
Tatarinov, A.
Toback, D.
Akchurin, N.
Damgov, J.
Dragoiu, C.
Dudero, P. R.
Jeong, C.
Kovitanggoon, K.
Lee, S. W.
Libeiro, T.
Roh, Y.
Volobouev, I.
Appelt, E.
Delannoy, A. G.
Florez, C.
Greene, S.
Gurrola, A.
Johns, W.
Kurt, P.
Maguire, C.
Melo, A.
Sharma, M.
Sheldon, P.
Snook, B.
Tuo, S.
Velkovska, J.
Arenton, M. W.
Balazs, M.
Boutle, S.
Cox, B.
Francis, B.
Goodell, J.
Hirosky, R.
Ledovskoy, A.
Lin, C.
Neu, C.
Wood, J.
Gollapinni, S.
Harr, R.
Karchin, P. E.
Don, C. Kottachchi Kankanamge
Lamichhane, P.
Sakharov, A.
Anderson, M.
Belknap, D. A.
Borrello, L.
Carlsmith, D.
Cepeda, M.
Dasu, S.
Friis, E.
Gray, L.
Grogg, K. S.
Grothe, M.
Hall-Wilton, R.
Herndon, M.
Herve, A.
Klabbers, P.
Klukas, J.
Lanaro, A.
Lazaridis, C.
Leonard, J.
Loveless, R.
Mohapatra, A.
Ojalvo, I.
Palmonari, F.
Pierro, G. A.
Ross, I.
Savin, A.
Smith, W. H.
Swanson, J.
CA CMS Collaboration
TI Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp
collisions at 7 TeV
SO PHYSICS LETTERS B
LA English
DT Article
DE CMS; Physics; Dijet; Jet substructure; Resonances
ID ROOT-S=7 TEV; Z BOSONS; PHENOMENOLOGY; PHYSICS; LEPTON
AB A search has been made for massive resonances decaying into a quark and a vector boson, qW or qZ, or a pair of vector bosons, WW, WZ, or ZZ, where each vector boson decays to hadronic final states. This search is based on a data sample corresponding to an integrated luminosity of 5.0 fb(-1) of proton-proton collisions collected in the CMS experiment at the LHC in 2011 at a center-of-mass energy of 7 TeV. For sufficiently heavy resonances the decay products of each vector boson are merged into a single jet, and the event effectively has a dijet topology. The background from QCD dijet events is reduced using recently developed techniques that resolve jet substructure. A 95% CL lower limit is set on the mass of excited quark resonances decaying into qW (qZ) at 2.38 TeV (2.15 TeV) and upper limits are set on the cross section for resonances decaying to qW, qZ, WW, WZ, or ZZ final states. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved.
C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria.
[Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium.
[Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium.
[Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium.
[Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium.
[Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-3000 Louvain, Belgium.
[Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium.
[Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil.
[Alda Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil.
[Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil.
[Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria.
[Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria.
[Wang, J.; Militaru, O.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China.
[Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China.
[Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia.
[Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia.
[Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia.
[Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia.
[Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus.
[Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic.
[Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt.
[Giammanco, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia.
[Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland.
[Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland.
[Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France.
[Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France.
[Fassi, F.; Mercier, D.] Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, CNRS, IN2P3, Villeurbanne, France.
[Beauceron, S.; Beaupere, N.; Bondu, . O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France.
[Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia.
[Anagnostou, G.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Phys Inst 1, Aachen, Germany.
[Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst 3A, Aachen, Germany.
[Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst 3B, Aachen, Germany.
[Martin, M. Aldaya; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany.
[Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, E.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany.
[Barth, C.; Berger, J.; Boeser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Oehler, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany.
[Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece.
[Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Sphicas, P.] Univ Athens, Athens, Greece.
[Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.] Univ Ioannina, GR-45110 Ioannina, Greece.
[Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Krajczar, K.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary.
[Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary.
[Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary.
[Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India.
[Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India.
[Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India.
[Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, EHEP, Bombay 400005, Maharashtra, India.
[Banerjee, S.; Guchait, M.; Dugad, S.] Tata Inst Fundamental Res, HECR, Bombay 400005, Maharashtra, India.
[Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran.
[Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy.
[Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy.
[Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, R.; Castro, A.; Cavallo, Er.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, E.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, El.; Odorici, E.; Perrotta, A.; Primavera, E.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy.
[Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, R.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, El.; Primavera, E.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] Univ Bologna, Bologna, Italy.
[Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy.
[Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy.
[Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy.
[Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Tropiano, A.] Univ Florence, Florence, Italy.
[Fabbri, E.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Fabbricatore, P.; Musenich, R.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Tosi, S.] Univ Genoa, Genoa, Italy.
[Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy.
[Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy.
[Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy.
[De Cosa, A.; Dogangun, O.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy.
[Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, R.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, R.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy.
[Bisello, D.; Branca, A.; Carlin, R.; Gasparini, F.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Vanini, S.; Zotto, R.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy.
[Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy.
[Gabusi, M.; Ratti, S. R.; Riccardi, C.; Torre, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Gabusi, M.; Ratti, S. R.; Riccardi, C.; Torre, P.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy.
[Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Nicolaou, C.; Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Taroni, S.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy.
[Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Rolandi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Fiori, F.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy.
[Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.; Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy.
[Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
[Barone, L.; Del Re, D.; Fanelli, C.; Grassi, M.; Longo, E.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.; Rovelli, C.] Univ Rome, Rome, Italy.
[Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Pereira, A. Vilela; Rovelli, C.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Amapane, N.; Argiro, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy.
[Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientate Novara, Turin, Italy.
[Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy.
[Candelise, V.; Della Ricca, G.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy.
[Heo, S. G.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea.
[Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea.
[Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea.
[Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.] Korea Univ, Seoul, South Korea.
[Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea.
[Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea.
[Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania.
[Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magana Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest Estudios Avanzados, Mexico City 07738, DF, Mexico.
[Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico.
[Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico.
[Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico.
[Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand.
[Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand.
[Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan.
[Bluj, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland.
[Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland.
[Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal.
[Tsamalaidze, Z.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia.
[Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia.
[Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, A.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; L., Sarycheva T.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia.
[Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia.
[Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia.
[Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia.
[Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain.
[Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain.
[Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain.
[Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain.
[Puljak, I.; Chierici, R.; Sharma, A.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, E.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenco, C.; Magini, N.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland.
[Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland.
[Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, R.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.] ETH, Inst Particle Phys, Zurich, Switzerland.
[Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland.
[Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan.
[Chang, Y. H.; Bartalini, P.; Chang, P.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan.
[Asavapibhop, B.; Srimanobhas, N.] Chulalongkorn Univ, Bangkok, Thailand.
[Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey.
[Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey.
[Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey.
[Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey.
[Levchuk, L.] Natl Sci Ctr, Kharkov Inst Phys & Technol, Kharkov, Ukraine.
[Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England.
[Belyaev, A.; Worm, S. D.; Newbold, D. M.; Basso, L.; Bell, K. W.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Nicolaou, C.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, .; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA.
[Charaf, O.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA.
[Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA.
[Bhattacharya, S.; Alimena, J.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA.
[Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA.
[Weber, M.; Andreev, V.; Felcini, M.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Veverka, J.] Univ Calif Los Angeles, Los Angeles, CA USA.
[Liu, H.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, E.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Dias, F. A.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA.
[Akgun, B.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Nicolaou, C.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA.
[Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA.
[Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA.
[Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, R.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA.
[Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA.
[Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA.
[Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA.
[Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA.
[Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA.
[Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA.
[Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA.
[Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA.
[Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA.
[Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA.
[Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA.
[Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.] Univ Mississippi, Oxford, MS USA.
[Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA.
[Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA.
[Anastassov, A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA.
[Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA.
[Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA.
[Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA.
[Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, R.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA.
[Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA.
[Li, W.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, . R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA.
[Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA.
[Park, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA.
[Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA.
[Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA.
[Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA.
[Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA.
[Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA.
[Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA.
[Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI USA.
[Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria.
[Assran, Y.] Suez Canal Univ, Suez, Egypt.
[Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt.
[Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt.
[Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt.
[Radi, A.] British Univ Egypt, Cairo, Egypt.
[Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France.
[Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany.
[Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary.
[Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India.
[Arfaei, H.; Fahim, A.] Sharif Univ Technol, Tehran, Iran.
[Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran.
[Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran.
[Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy.
[Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy.
[Meola, S.] Univ Guglielmo Marconi, Rome, Italy.
[Martini, L.] Univ Siena, I-53100 Siena, Italy.
[Serban, A. T.] Univ Bucharest, Fac Phys, Bucharest, Romania.
[Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey.
[Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey.
[Karapinar, G.] Izmir Inst Technol, Izmir, Turkey.
[Sogut, K.] Mersin Univ, Mersin, Turkey.
[Isildak, B.] Ozyegin Univ, Istanbul, Turkey.
[Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey.
[Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey.
[Sonmez, N.] Ege Univ, Izmir, Turkey.
[Belyaev, A.; Basso, L.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England.
[Jeng, G. Y.] Univ Sydney, Sydney, NSW 2006, Australia.
[Wasserbaech, S.] Utah Valley Univ, Orem, UT USA.
[Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey.
[Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey.
RP Alverson, G (reprint author), Northeastern Univ, Boston, MA 02115 USA.
EM George.Alverson@cern.ch
RI Montanari, Alessandro/J-2420-2012; Gribushin, Andrei/J-4225-2012;
Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz,
Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa,
Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini,
Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson,
Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Popov,
Andrey/E-1052-2012; Menasce, Dario Livio/A-2168-2016; Haj Ahmad,
Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh,
Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni,
Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014;
Gerbaudo, Davide/J-4536-2012; Arce, Pedro/L-1268-2014; Flix,
Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei,
Thiago/E-7091-2012; Azarkin, Maxim/N-2578-2015; Dubinin,
Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan,
Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013;
Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016;
Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014;
My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Ragazzi,
Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin,
Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov,
Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE',
Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Leonidov,
Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Dahms,
Torsten/A-8453-2015; da Cruz e Silva, Cristovao/K-7229-2013; Grandi,
Claudio/B-5654-2015; Raidal, Martti/F-4436-2012; Lazzizzera,
Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro,
Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl,
Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki,
Marcin/G-4164-2015; Tinoco Mendes, Andre David/D-4314-2011; Marlow,
Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Oguri,
Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Novaes,
Sergio/D-3532-2012; Bartalini, Paolo/E-2512-2014; Alves,
Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Ligabue,
Franco/F-3432-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Codispoti,
Giuseppe/F-6574-2014; Wimpenny, Stephen/K-8848-2013; Markina,
Anastasia/E-3390-2012; Dudko, Lev/D-7127-2012; Dermenev,
Alexander/M-4979-2013; Mundim, Luiz/A-1291-2012; Tinti,
Gemma/I-5886-2013; Ivanov, Andrew/A-7982-2013; Lokhtin,
Igor/D-7004-2012; Petrushanko, Sergey/D-6880-2012; Hill,
Christopher/B-5371-2012; Liu, Sheng/K-2815-2013; Zhukov,
Valery/K-3615-2013; Venturi, Andrea/J-1877-2012
OI Montanari, Alessandro/0000-0003-2748-6373; Cerrada,
Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo
Alamillo, Enrique/0000-0002-1100-2963; Paulini,
Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023;
Ferguson, Thomas/0000-0001-5822-3731; Benussi,
Luigi/0000-0002-2363-8889; Vidal Marono, Miguel/0000-0002-2590-5987;
Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740;
Grassi, Marco/0000-0003-2422-6736; Ulrich, Ralf/0000-0002-2535-402X;
Gutsche, Oliver/0000-0002-8015-9622; Torassa, Ezio/0000-0003-2321-0599;
Verdier, Patrice/0000-0003-3090-2948; Martinez Ruiz del Arbol,
Pablo/0000-0002-7737-5121; Demaria, Natale/0000-0003-0743-9465; Staiano,
Amedeo/0000-0003-1803-624X; Ciulli, Vitaliano/0000-0003-1947-3396;
Tonelli, Guido Emilio/0000-0003-2606-9156; Beuselinck,
Raymond/0000-0003-2613-7446; Abbiendi, Giovanni/0000-0003-4499-7562;
HSIUNG, YEE/0000-0003-4801-1238; Costa, Salvatore/0000-0001-9919-0569;
Kasemann, Matthias/0000-0002-0429-2448; WANG,
MIN-ZU/0000-0002-0979-8341; Popov, Andrey/0000-0002-1207-0984;
Landsberg, Greg/0000-0002-4184-9380; Rizzi, Andrea/0000-0002-4543-2718;
Gershtein, Yuri/0000-0002-4871-5449; Malik, Sudhir/0000-0002-6356-2655;
Leonidopoulos, Christos/0000-0002-7241-2114; Blekman,
Freya/0000-0002-7366-7098; Boccali, Tommaso/0000-0002-9930-9299;
Menasce, Dario Livio/0000-0002-9918-1686; Bilki,
Burak/0000-0001-9515-3306; Haj Ahmad, Wael/0000-0003-1491-0446; Xie,
Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh,
Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni,
Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan,
Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de
Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Toback,
David/0000-0003-3457-4144; CHANG, PAO-TI/0000-0003-4064-388X; Reis,
Thomas/0000-0003-3703-6624; Arce, Pedro/0000-0003-3009-0484; Flix,
Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982;
Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175;
Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X;
Seixas, Joao/0000-0002-7531-0842; Vilela Pereira,
Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108;
Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya,
Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680;
Matorras, Francisco/0000-0003-4295-5668; Ragazzi,
Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842;
TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434;
Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070;
Lazzizzera, Ignazio/0000-0001-5092-7531; Sen,
Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306;
Belyaev, Alexander/0000-0002-1733-4408; Stahl,
Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279;
Konecki, Marcin/0000-0001-9482-4841; Tinoco Mendes, Andre
David/0000-0001-5854-7699; de Jesus Damiao, Dilson/0000-0002-3769-1680;
Novaes, Sergio/0000-0003-0471-8549; Ligabue, Franco/0000-0002-1549-7107;
Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Codispoti,
Giuseppe/0000-0003-0217-7021; Wimpenny, Stephen/0000-0003-0505-4908;
Dudko, Lev/0000-0002-4462-3192; Mundim, Luiz/0000-0001-9964-7805;
Ivanov, Andrew/0000-0002-9270-5643; Hill,
Christopher/0000-0003-0059-0779;
FU BMWF; FWF (Austria); FNRS; FWO (Belgium); CNPq; CAPES; FAPERJ; FAPESP
(Brazil); MEYS (Bulgaria); CERN; CAS; MoST; NSFC (China); COLCIENCIAS
(Colombia); MSES (Croatia); RPF (Cyprus); MoER [SF0690030s09]; ERDF
(Estonia); Academy of Finland; MEC; HIP (Finland); CEA; CNRS/IN2P3
(France); BMBF; DFG; HGF (Germany); GSRT (Greece); OTKA; NKTH (Hungary);
DAE; DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF; WCU
(Republic of Korea); LAS (Lithuania); CINVESTAV; CONACYT; SEP; UASLP-FAI
(Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE; NSC (Poland); FCT
(Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR
(Ukraine); JINR (Uzbekistan); MON; RosAtom; RAS; RFBR (Russia); MSTD
(Serbia); SEIDI; CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC
(Taipei); ThEPCenter; IPST; NSTDA (Thailand); TUBITAK; TAEK (Turkey);
NASU (Ukraine); STFC (United Kingdom); DOE; NSF (USA)
FX We congratulate our colleagues in the CERN accelerator departments for
the excellent performance of the LHC and thank the technical and
administrative staffs at CERN and at other CMS institutes for their
contributions to the success of the CMS effort. In addition, we
gratefully acknowledge the computing centres and personnel of the
Worldwide LHC Computing Grid for delivering so effectively the computing
infrastructure essential to our analyses. Finally, we acknowledge the
enduring support for the construction and operation of the LHC and the
CMS detector provided by the following funding agencies: BMWF and FWF
(Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP
(Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China);
COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09
and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and
CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA
and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN
(Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV,
CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC
(Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia,
Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR
(Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies
(Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand);
TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE
and NSF (USA).
NR 50
TC 18
Z9 18
U1 4
U2 111
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
EI 1873-2445
J9 PHYS LETT B
JI Phys. Lett. B
PD JUN 25
PY 2013
VL 723
IS 4-5
BP 280
EP 301
DI 10.1016/j.physletb.2013.05.040
PG 22
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 168ZB
UT WOS:000320745400004
ER
PT J
AU Fukushima, K
Kashiwa, K
AF Fukushima, Kenji
Kashiwa, Kouji
TI Polyakov loop and QCD thermodynamics from the gluon and ghost
propagators
SO PHYSICS LETTERS B
LA English
DT Article
ID INFRARED BEHAVIOR; LANDAU GAUGE; FINITE-TEMPERATURE; PHASE-STRUCTURE;
MEAN-FIELD; MODEL; DECONFINEMENT; CONFINEMENT; DIAGRAM; SU(3)
AB We investigate quark deconfinement by calculating the effective potential of the Polyakov loop using the non-perturbative propagators in the Landau gauge measured in the finite-temperature lattice simulation. With the leading term in the 2-particle-irreducible formalism the resultant effective potential exhibits a first-order phase transitions for the pure SU(3) Yang-Mills theory at the critical temperature consistent with the empirical value. We also estimate the thermodynamic quantities to confirm qualitative agreement with the lattice data near the critical temperature. We then apply our effective potential to the chiral model-study and calculate the order parameters and the thermodynamic quantities. Unlike the case in the pure Yang-Mills theory the thermodynamic quantities are sensitive to the temperature dependence of the non-perturbative propagators, while the behavior of the order parameters is less sensitive, which implies the importance of the precise determination of the temperature-dependent propagators. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Fukushima, Kenji] Keio Univ, Dept Phys, Kanagawa 2238522, Japan.
[Kashiwa, Kouji] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA.
RP Fukushima, K (reprint author), Keio Univ, Dept Phys, Kanagawa 2238522, Japan.
EM fuku@rk.phys.keio.ac.jp
OI Fukushima, Kenji/0000-0003-0899-740X
FU RIKEN; [24740169]
FX The authors thank Wolfram Weise for kind hospitality at TUM where this
work was initiated. They also thank Jens Braun, David Dudal, Michael
Ilgenfritz, and Marco Ruggieri for comments. K.F. thanks Jan Pawlowski
and Nan Su for useful discussions. K.K. is supported by RIKEN Special
Postdoctoral Researchers Program. K.F. is supported by Grant-in-Aid for
Young Scientists B (24740169).
NR 70
TC 19
Z9 19
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
J9 PHYS LETT B
JI Phys. Lett. B
PD JUN 25
PY 2013
VL 723
IS 4-5
BP 360
EP 364
DI 10.1016/j.physletb.2013.05.037
PG 5
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 168ZB
UT WOS:000320745400014
ER
PT J
AU Sutter, EA
Tong, X
Jungjohann, K
Sutter, PW
AF Sutter, Eli A.
Tong, Xiao
Jungjohann, Katherine
Sutter, Peter W.
TI Oxidation of nanoscale Au-In alloy particles as a possible route toward
stable Au-based catalysts
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE transmission electron microscopy; temperature programmed desorption;
X-ray photoelectron spectroscopy
ID AMINE N-OXIDES; LOW-TEMPERATURE; CO OXIDATION; ROOM-TEMPERATURE;
NANOPARTICLES; GOLD; KINETICS; ADSORPTION; OXYGEN; INTERDIFFUSION
AB The oxidation of bimetallic alloy nanoparticles comprising a noble and a nonnoble metal is expected to cause the formation of a single-component surface oxide of the nonnoble metal, surrounding a core enriched with the noble metal. Studying the room temperature oxidation of Au-In nanoparticles, we show that this simple picture does not apply to an important class of bimetallic alloys, in which the oxidation proceeds via predominant oxygen diffusion. Instead of a crystalline In2O3 shell, such oxidation leads to an amorphous shell of mixed Au-In oxide that remains stable to high temperatures and whose surface layer is enriched with Au. The Au-rich mixed oxide is capable of adsorbing both CO and O-2 and converting them to CO2, which desorbs near room temperature. The oxidation of Au-In alloys to a mixed Au-In oxide shows significant promise as a viable approach toward Au-based oxidation catalysts, which do not require any complex synthesis processes and resist deactivation up to at least 300 degrees C.
C1 [Sutter, Eli A.; Tong, Xiao; Jungjohann, Katherine; Sutter, Peter W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Sutter, EA (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
EM esutter@bnl.gov
FU Department of Energy [DE-AC02-98CH10886]
FX We thank Kim Kisslinger for technical assistance. This work was
performed at the Center for Functional Nanomaterials, Brookhaven
National Laboratory, under the auspices of the Department of Energy,
under Contract DE-AC02-98CH10886.
NR 48
TC 10
Z9 10
U1 2
U2 42
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUN 25
PY 2013
VL 110
IS 26
BP 10519
EP 10524
DI 10.1073/pnas.1305388110
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 179EY
UT WOS:000321503700028
PM 23754412
ER
PT J
AU Guthrie, M
Boehler, R
Tulk, CA
Molaison, JJ
dos Santos, AM
Li, K
Hemley, RJ
AF Guthrie, Malcolm
Boehler, Reinhard
Tulk, Christopher A.
Molaison, Jamie J.
dos Santos, Antonio M.
Li, Kuo
Hemley, Russell J.
TI Neutron diffraction observations of interstitial protons in dense ice
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE crystallography; high pressure; water
ID HYDROGEN-BOND SYMMETRIZATION; X-RAY-DIFFRACTION; HIGH-PRESSURE;
DISORDERED STRUCTURE; INFRARED-ABSORPTION; RAMAN-SPECTROSCOPY; POWDER
DIFFRACTION; GPA; VII; PHASE
AB The motif of distinct H2O molecules in H-bonded networks is believed to persist up to the densest molecular phase of ice. At even higher pressures, where the molecule dissociates, it is generally assumed that the proton remains localized within these same networks. We report neutron-diffraction measurements on D2O that reveal the location of the D atoms directly up to 52 GPa, a pressure regime not previously accessible to this technique. The data show the onset of a structural change at similar to 13 GPa and cannot be described by the conventional network structure of ice VII above similar to 26 GPa. Our measurements are consistent with substantial deuteron density in the octahedral, interstitial voids of the oxygen lattice. The observation of this "interstitial" ice VII form provides a framework for understanding the evolution of hydrogen bonding in ice that contrasts with the conventional picture. It may also be a precursor for the superionic phase reported at even higher pressure with important consequences for our understanding of dense matter and planetary interiors.
C1 [Guthrie, Malcolm; Boehler, Reinhard; Li, Kuo; Hemley, Russell J.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA.
[Tulk, Christopher A.; Molaison, Jamie J.; dos Santos, Antonio M.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA.
RP Guthrie, M (reprint author), Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA.
EM mguthrie@ciw.edu; hemley@gl.ciw.edu
RI dos Santos, Antonio/A-5602-2016; Boehler, Reinhard/L-3971-2016; Tulk,
Chris/R-6088-2016
OI dos Santos, Antonio/0000-0001-6900-0816; Boehler,
Reinhard/0000-0003-0222-6997; Tulk, Chris/0000-0003-3400-3878
FU EFree, an Energy Frontier Research Center; US Department of Energy
(DOE), Office of Science, Office of Basic Energy Sciences (BES)
[DE-SC0001057]; Scientific User Facilities division, BES, DOE
[DE-AC05-00OR22725]; UT-Battelle, LLC
FX We thank M. Somayazulu and A. Karandikar for experimental assistance and
H. K. Mao, A. F. Goncharov, R. E. Cohen, R. Von Dreele, and B. H. Toby
for discussions. This work is supported by EFree, an Energy Frontier
Research Center funded by the US Department of Energy (DOE), Office of
Science, Office of Basic Energy Sciences (BES) under Award DE-SC0001057.
Research conducted at the Spallation Neutron Source (SNS) was supported
by the Scientific User Facilities division, BES, DOE, under Contract
DE-AC05-00OR22725 with UT-Battelle, LLC.
NR 38
TC 16
Z9 16
U1 2
U2 62
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUN 25
PY 2013
VL 110
IS 26
BP 10552
EP 10556
DI 10.1073/pnas.1309277110
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 179EY
UT WOS:000321503700034
PM 23757495
ER
PT J
AU Lu, SF
Li, QZ
Wei, HR
Chang, MJ
Tunlaya-Anukit, S
Kim, H
Liu, J
Song, JY
Sun, YH
Yuan, LC
Yeh, TF
Peszlen, I
Ralph, J
Sederoff, RR
Chiang, VL
AF Lu, Shanfa
Li, Quanzi
Wei, Hairong
Chang, Mao-Ju
Tunlaya-Anukit, Sermsawat
Kim, Hoon
Liu, Jie
Song, Jingyuan
Sun, Ying-Hsuan
Yuan, Lichai
Yeh, Ting-Feng
Peszlen, Ilona
Ralph, John
Sederoff, Ronald R.
Chiang, Vincent L.
TI Ptr-miR397a is a negative regulator of laccase genes affecting lignin
content in Populus trichocarpa
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
ID STRESS-RESPONSIVE MICRORNAS; MOLECULAR-CLONING; DOWN-REGULATION; COPPER;
BIOSYNTHESIS; ARABIDOPSIS; PEROXIDASE; EXPRESSION; PLANTS;
IDENTIFICATION
AB Laccases, as early as 1959, were proposed to catalyze the oxidative polymerization of monolignols. Genetic evidence in support of this hypothesis has been elusive due to functional redundancy of laccase genes. An Arabidopsis double mutant demonstrated the involvement of laccases in lignin biosynthesis. We previously identified a subset of laccase genes to be targets of a microRNA (miRNA) ptr-miR397a in Populus trichocarpa. To elucidate the roles of ptr-miR397a and its targets, we characterized the laccase gene family and identified 49 laccase gene models, of which 29 were predicted to be targets of ptr-miR397a. We overexpressed Ptr-MIR397a in transgenic P. trichocarpa. In each of all nine transgenic lines tested, 17 PtrLACs were down-regulated as analyzed by RNA-seq. Transgenic lines with severe reduction in the expression of these laccase genes resulted in an similar to 40% decrease in the total laccase activity. Overexpression of Ptr-MIR397a in these transgenic lines also reduced lignin content, whereas levels of all monolignol biosynthetic gene transcripts remained unchanged. A hierarchical genetic regulatory network(GRN) built by a bottom-up graphic Gaussian model algorithm provides additional support for a role of ptr-miR397a as a negative regulator of laccases for lignin biosynthesis. Full transcriptome-based differential gene expression in the overexpressed transgenics and protein domain analyses implicate previously unidentified transcription factors and their targets in an extended hierarchical GRN including ptr-miR397a and laccases that coregulate lignin biosynthesis in wood formation. Ptr-miR397a, laccases, and other regulatory components of this network may provide additional strategies for genetic manipulation of lignin content.
C1 [Lu, Shanfa; Song, Jingyuan; Yuan, Lichai] Chinese Acad Med Sci, Inst Med Plant Dev, Beijing 100193, Peoples R China.
[Lu, Shanfa; Song, Jingyuan; Yuan, Lichai] Peking Union Med Coll, Beijing 100193, Peoples R China.
[Li, Quanzi; Tunlaya-Anukit, Sermsawat; Liu, Jie; Sederoff, Ronald R.; Chiang, Vincent L.] N Carolina State Univ, Dept Forestry & Environm Resources, Forest Biotechnol Grp, Raleigh, NC 27695 USA.
[Li, Quanzi] Shandong Agr Univ, Coll Forestry, Tai An 271018, Shandong, Peoples R China.
[Wei, Hairong] Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA.
[Chang, Mao-Ju; Yeh, Ting-Feng] Natl Taiwan Univ, Sch Forestry & Resource Conservat, Taipei 10617, Taiwan.
[Kim, Hoon; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Dept Biochem, Madison, WI 53726 USA.
[Kim, Hoon; Ralph, John] Univ Wisconsin, Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA.
[Sun, Ying-Hsuan] Natl Chung Hsing Univ, Dept Forestry, Taichung 40227, Taiwan.
[Peszlen, Ilona] N Carolina State Univ, Dept Forest Biomat, Raleigh, NC 27695 USA.
RP Sederoff, RR (reprint author), N Carolina State Univ, Dept Forestry & Environm Resources, Forest Biotechnol Grp, Raleigh, NC 27695 USA.
EM ron_sederoff@ncsu.edu; vchiang@ncsu.edu
RI Liu, Jie/E-6220-2012;
OI Yeh, Ting-Feng/0000-0002-4114-6714
FU National Science Foundation Plant Genome Research Program [DBI-0922391];
National Key Basic Research Program of China (973 program)
[2012CB114502]; National Natural Science Foundation of China [31070534];
DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER)
[DE-FC02-07ER64494]; North Carolina State University Forest
Biotechnology Industrial Research Consortium [556051]
FX This work was supported by grants from National Science Foundation Plant
Genome Research Program Grant (DBI-0922391) to V. L. C.; the National
Key Basic Research Program of China (973 program) (2012CB114502) to S.
L.; the National Natural Science Foundation of China (31070534) to L.Y.;
the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER
DE-FC02-07ER64494) to J.R. and H. K., and the North Carolina State
University Forest Biotechnology Industrial Research Consortium (grant
no. 556051) to Q. L. and J.L.
NR 41
TC 76
Z9 84
U1 2
U2 74
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUN 25
PY 2013
VL 110
IS 26
BP 10848
EP 10853
DI 10.1073/pnas.1308936110
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 179EY
UT WOS:000321503700084
PM 23754401
ER
PT J
AU Oosterkamp, MJ
Veuskens, T
Saia, FT
Weelink, SAB
Goodwin, LA
Daligault, HE
Bruce, DC
Detter, JC
Tapia, R
Han, CS
Land, ML
Hauser, LJ
Langenhoff, AAM
Gerritse, J
van Berkel, WJH
Pieper, DH
Junca, H
Smidt, H
Schraa, G
Davids, M
Schaap, PJ
Plugge, CM
Stams, AJM
AF Oosterkamp, Margreet J.
Veuskens, Teun
Saia, Flavia Talarico
Weelink, Sander A. B.
Goodwin, Lynne A.
Daligault, Hajnalka E.
Bruce, David C.
Detter, John C.
Tapia, Roxanne
Han, Cliff S.
Land, Miriam L.
Hauser, Loren J.
Langenhoff, Alette A. M.
Gerritse, Jan
van Berkel, Willem J. H.
Pieper, Dietmar H.
Junca, Howard
Smidt, Hauke
Schraa, Gosse
Davids, Mark
Schaap, Peter J.
Plugge, Caroline M.
Stams, Alfons J. M.
TI Genome Analysis and Physiological Comparison of Alicycliphilus
denitrificans Strains BC and K601(T)
SO PLOS ONE
LA English
DT Article
ID PERIPLASMIC NITRATE REDUCTASE; ANAEROBIC BENZENE DEGRADATION;
CYTOCHROME-C-OXIDASE; AROMATIC-COMPOUNDS; PERCHLORATE REDUCTION;
CHLORITE DISMUTASE; REDUCING BACTERIA; RNA GENES; 1ST STEP; METABOLISM
AB The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601(T) have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601(T) is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601(T) are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601(T) and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601(T). Genes involved in cyclohexanol degradation were only found in strain K601(T). Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono-and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.
C1 [Oosterkamp, Margreet J.; Veuskens, Teun; Saia, Flavia Talarico; Weelink, Sander A. B.; Smidt, Hauke; Schraa, Gosse; Plugge, Caroline M.; Stams, Alfons J. M.] Wageningen Univ, Microbiol Lab, NL-6700 AP Wageningen, Netherlands.
[Goodwin, Lynne A.; Daligault, Hajnalka E.; Bruce, David C.; Detter, John C.; Tapia, Roxanne; Han, Cliff S.] Los Alamos Natl Lab, Joint Genome Inst, Los Alamos, NM USA.
[Land, Miriam L.; Hauser, Loren J.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA.
[Land, Miriam L.; Hauser, Loren J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.
[Langenhoff, Alette A. M.; Gerritse, Jan] Deltares, Utrecht, Netherlands.
[van Berkel, Willem J. H.] Wageningen Univ, Biochem Lab, NL-6700 AP Wageningen, Netherlands.
[Pieper, Dietmar H.] Helmholz Ctr Infect Res, Microbial Interact & Proc Res Grp, Braunschweig, Germany.
[Junca, Howard] CorpoGen, Res Grp Microbial Ecol Metab Genom & Evolut Commu, Bogota, Colombia.
[Davids, Mark; Schaap, Peter J.] Wageningen Univ, Lab Syst & Synth Biol, NL-6700 AP Wageningen, Netherlands.
[Stams, Alfons J. M.] Univ Minho, Ctr Biol Engn, Braga, Portugal.
RP Stams, AJM (reprint author), Wageningen Univ, Microbiol Lab, NL-6700 AP Wageningen, Netherlands.
EM fons.stams@wur.nl
RI van Berkel, Willem/O-2431-2014; Land, Miriam/A-6200-2011; Stams,
Alfons/C-8167-2014;
OI van Berkel, Willem/0000-0002-6551-2782; Land,
Miriam/0000-0001-7102-0031; Stams, Alfons/0000-0001-7840-6500; Smidt,
Hauke/0000-0002-6138-5026; Junca, Howard/0000-0003-4546-6229
FU Technology Foundation; Applied Science Division (STW) of the Netherlands
Organization for Scientific Research (NWO) [08053]; graduate school
WIMEK (Wageningen Institute for Environment and Climate Research, which
is part of SENSE Research School for Socio-Economic and Natural Sciences
of the Environment); SKB (Dutch Centre for Soil Quality Management and
Knowledge Transfer); Consolider project [CSD-2007-00055]; FAPESP (the
State of Sao Paulo Research Foundation) [2006-01997/ 5]; Office of
Science of the United States Department of Energy [DE-AC02-05CH11231];
ERC (European Research Counsil) [323009]
FX This research was supported by the Technology Foundation, the Applied
Science Division (STW) of the Netherlands Organization for Scientific
Research (NWO), project number 08053, the graduate school WIMEK
(Wageningen Institute for Environment and Climate Research, which is
part of SENSE Research School for Socio-Economic and Natural Sciences of
the Environment, www.wimek-new.wur.nl and www.sense.nl), SKB (Dutch
Centre for Soil Quality Management and Knowledge Transfer,
www.skbodem.nl) and the Consolider project CSD-2007-00055. The research
was incorporated in the TRIAS (TRIpartite Approaches 469 toward Soil
systems processes) program
(http://www.nwo.nl/en/research-and-results/programmes/alw/trias-triparti
te-approach-to-soil-system-processes/index.html). Flavia Talarico Saia
was supported by a FAPESP (the State of Sao Paulo Research Foundation)
scholarship (2006-01997/ 5). The work conducted by the DOE JGI is
supported by the Office of Science of the United States Department of
Energy under contract number DE-AC02-05CH11231. Alfons Stams
acknowledges support by an ERC (European Research Counsil) advanced
grant (project 323009). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript.
NR 75
TC 8
Z9 8
U1 0
U2 74
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 25
PY 2013
VL 8
IS 6
AR e66971
DI 10.1371/journal.pone.0066971
PG 10
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 175IB
UT WOS:000321223000055
PM 23825601
ER
PT J
AU Lorenz, S
Cantor, AJ
Rape, M
Kuriyan, J
AF Lorenz, Sonja
Cantor, Aaron J.
Rape, Michael
Kuriyan, John
TI Macromolecular juggling by ubiquitylation enzymes
SO BMC BIOLOGY
LA English
DT Review
ID UBIQUITIN-ACTIVATING ENZYME; INDUCED CONFORMATIONAL-CHANGE; COLI
THIOREDOXIN REDUCTASE; MITOTIC CHECKPOINT COMPLEX; CULLIN-RING LIGASES;
ESCHERICHIA-COLI; C-CBL; STRUCTURAL BASIS; CRYSTAL-STRUCTURE; TYROSINE
PHOSPHORYLATION
AB The posttranslational modification of target proteins with ubiquitin and ubiquitin-like proteins is accomplished by the sequential action of E1, E2, and E3 enzymes. Members of the E1 and E3 enzyme families can undergo particularly large conformational changes during their catalytic cycles, involving the remodeling of domain interfaces. This enables the efficient, directed and regulated handover of ubiquitin from one carrier to the next one. We review some of these conformational transformations, as revealed by crystallographic studies.
C1 [Lorenz, Sonja; Cantor, Aaron J.; Rape, Michael; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Lorenz, Sonja; Cantor, Aaron J.; Rape, Michael; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.
[Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.
[Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.
EM kuriyan@berkeley.edu
OI Lorenz, Sonja/0000-0002-9639-2381
FU Leukemia and Lymphoma Society; University of California Cancer Research
Coordinating Committee Graduate Fellowship
FX We acknowledge support by a Leukemia and Lymphoma Society postdoctoral
fellowship award (SL) and a University of California Cancer Research
Coordinating Committee Graduate Fellowship (AJC). We thank Dr Tiago
Barros for assistance with preparation of the movie.
NR 105
TC 19
Z9 19
U1 1
U2 17
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1741-7007
J9 BMC BIOL
JI BMC Biol.
PD JUN 25
PY 2013
VL 11
AR 65
DI 10.1186/1741-7007-11-65
PG 12
WC Biology
SC Life Sciences & Biomedicine - Other Topics
GA 170OI
UT WOS:000320862300001
PM 23800009
ER
PT J
AU Wang, YJ
Tsai, WF
Lin, H
Xu, SY
Neupane, M
Hasan, MZ
Bansil, A
AF Wang, Yung Jui
Tsai, Wei-Feng
Lin, Hsin
Xu, Su-Yang
Neupane, M.
Hasan, M. Z.
Bansil, A.
TI Nontrivial spin texture of the coaxial Dirac cones on the surface of
topological crystalline insulator SnTe
SO PHYSICAL REVIEW B
LA English
DT Article
ID TRANSITION; PHASE
AB We present first-principles calculations of the nontrivial surface states and their spin textures in the topological crystalline insulator SnTe. The surface state dispersion on the [001] surface exhibits four Dirac cones centered along the intersection of the mirror plane and the surface plane. We propose a simple model of two interacting coaxial Dirac cones to describe both the surface state dispersion and the associated spin texture. The out-of-plane spin polarization is found to be zero due to the crystalline and time-reversal symmetries. The in-plane spin texture shows helicity with some distortion due to the interaction of the two coaxial Dirac cones, indicating a nontrivial mirror Chern number of -2, distinct from the value of -1 in a Z(2) topological insulator such as Bi/Sb alloys or Bi2Se3. The surface state dispersion and its spin texture would provide an experimentally accessible signature for determining the nontrivial mirror Chern number.
C1 [Wang, Yung Jui; Lin, Hsin; Bansil, A.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA.
[Wang, Yung Jui] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94305 USA.
[Tsai, Wei-Feng] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan.
[Xu, Su-Yang; Neupane, M.; Hasan, M. Z.] Princeton Univ, Joseph Henry Lab, Dept Phys, Princeton, NJ 08544 USA.
RP Wang, YJ (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA.
RI HASAN, M. Zahid/D-8237-2012; Lin, Hsin/F-9568-2012
OI Lin, Hsin/0000-0002-4688-2315
FU Division of Materials Science and Engineering, Basic Energy Sciences, US
Department of Energy [DE-FG02-07ER46352, DE-FG-02-05ER46200,
AC02-05CH11231]; Advanced Light Source, Berkeley; NSC in Taiwan
[100-2112-M-110-001-MY2]
FX It is a pleasure to thank Liang Fu and Chen Fang for useful discussions.
The work at Northeastern and Princeton is supported by the Division of
Materials Science and Engineering, Basic Energy Sciences, US Department
of Energy, Grants No. DE-FG02-07ER46352, No. DE-FG-02-05ER46200, and No.
AC02-05CH11231, and benefited from theory support at the Advanced Light
Source, Berkeley, and the allocation of supercomputer time at NERSC and
Northeastern University's Advanced Scientific Computation Center (ASCC).
W.F.T. is supported by the NSC in Taiwan under Grant No.
100-2112-M-110-001-MY2.
NR 22
TC 28
Z9 28
U1 3
U2 49
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 25
PY 2013
VL 87
IS 23
AR 235317
DI 10.1103/PhysRevB.87.235317
PG 5
WC Physics, Condensed Matter
SC Physics
GA 171TX
UT WOS:000320953300003
ER
PT J
AU Liu, YH
Daughton, W
Karimabadi, H
Li, H
Roytershteyn, V
AF Liu, Yi-Hsin
Daughton, W.
Karimabadi, H.
Li, H.
Roytershteyn, V.
TI Bifurcated Structure of the Electron Diffusion Region in
Three-Dimensional Magnetic Reconnection
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SOLAR CORONA; FIELD LINES; INSTABILITIES; MAGNETOPAUSE; SIMULATIONS;
PLASMA; SHEAR
AB Three-dimensional kinetic simulations of magnetic reconnection reveal that the electron diffusion region is composed of two or more current sheets in regimes with weak magnetic shear angles phi less than or similar to 80 degrees. This new morphology is explained by oblique tearing modes which produce flux ropes while simultaneously driving enhanced current at multiple resonance surfaces. This physics persists into the nonlinear regime leading to multiple electron layers embedded within a larger Alfvenic inflow and outflow. Surprisingly, the thickness of these layers and the reconnection rate both remain comparable to two-dimensional models. The parallel electric fields are supported predominantly by the electron pressure tensor and electron inertia, while turbulent dissipation remains small.
C1 [Liu, Yi-Hsin; Daughton, W.; Li, H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Karimabadi, H.; Roytershteyn, V.] SciberQuest, Del Mar, CA 92014 USA.
RP Liu, YH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RI Daughton, William/L-9661-2013;
OI Roytershteyn, Vadim/0000-0003-1745-7587
FU NASA through the Heliophysics Theory program; DOE/OFES through CMSO;
LDRD program at LANL; NASA [NNH11CC65C]; NSF through EAGER [1105084];
NSF [OCI 07-25070]; state of Illinois
FX We are grateful for support from NASA through the Heliophysics Theory
program, DOE/OFES through CMSO, and from the LDRD program at LANL.
Contributions from H. K. and V. R. were supported by NASA Grant No.
NNH11CC65C, and NSF through EAGER 1105084. This research is part of the
Blue Waters sustained-petascale computing project, which is supported by
the NSF (OCI 07-25070) and the state of Illinois. Additional simulations
were performed at the National Center for Computational Sciences at ORNL
and with LANL institutional computing. We thank Burlen Loring for
visualization assistance with ParaView.
NR 32
TC 29
Z9 29
U1 4
U2 20
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 25
PY 2013
VL 110
IS 26
AR 265004
DI 10.1103/PhysRevLett.110.265004
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 171WH
UT WOS:000320960300010
PM 23848886
ER
PT J
AU Qin, H
Liu, WD
Li, H
Squire, J
AF Qin, Hong
Liu, Wandong
Li, Hong
Squire, Jonathan
TI Comment on "Woltjer-Taylor State without Taylor's Conjecture: Plasma
Relaxation at All Wavelengths" Reply
SO PHYSICAL REVIEW LETTERS
LA English
DT Editorial Material
C1 [Qin, Hong; Liu, Wandong; Li, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.
[Qin, Hong] Chinese Acad Sci, Ctr Magnet Fus Theory, Hefei 230031, Anhui, Peoples R China.
[Qin, Hong; Squire, Jonathan] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Qin, H (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.
RI Liu, Wandong/K-6119-2012
NR 2
TC 1
Z9 1
U1 4
U2 22
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 25
PY 2013
VL 110
IS 26
AR 269502
DI 10.1103/PhysRevLett.110.269502
PG 1
WC Physics, Multidisciplinary
SC Physics
GA 171WH
UT WOS:000320960300020
PM 23848930
ER
PT J
AU Im, KS
Cheong, SK
Powell, CF
Lai, MCD
Wang, J
AF Im, Kyoung-Su
Cheong, Seong-Kyun
Powell, Christopher F.
Lai, Ming-chia D.
Wang, Jin
TI Unraveling the Geometry Dependence of In-Nozzle Cavitation in
High-Pressure Injectors
SO SCIENTIFIC REPORTS
LA English
DT Article
ID FUEL SPRAYS; SHOCK-WAVES; LIQUID JET; FLOWS; MODEL; EROSION;
ATOMIZATION; RADIOGRAPHY; ENGINE
AB Cavitation is an intricate multiphase phenomenon that interplays with turbulence in fluid flows. It exhibits clear duality in characteristics, being both destructive and beneficial in our daily lives and industrial processes. Despite the multitude of occurrences of this phenomenon, highly dynamic and multiphase cavitating flows have not been fundamentally well understood in guiding the effort to harness the transient and localized power generated by this process. In a microscale, multiphase flow liquid injection system, we synergistically combined experiments using time-resolved x-radiography and a novel simulation method to reveal the relationship between the injector geometry and the in-nozzle cavitation quantitatively. We demonstrate that a slight alteration of the geometry on the micrometer scale can induce distinct laminar-like or cavitating flows, validating the multiphase computational fluid dynamics simulation. Furthermore, the simulation identifies a critical geometric parameter with which the high-speed flow undergoes an intriguing transition from non-cavitating to cavitating.
C1 [Im, Kyoung-Su; Cheong, Seong-Kyun; Powell, Christopher F.; Wang, Jin] Argonne Natl Lab, Argonne, IL 60439 USA.
[Im, Kyoung-Su] Livermore Software Technol Corp, Livermore, CA 94551 USA.
[Lai, Ming-chia D.] Wayne State Univ, Detroit, MI 48202 USA.
RP Wang, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM ksim@lstc.com; wangj@aps.anl.gov
FU U.S. Department of Energy (DoE) Vehicle Technology Program; DoE, Office
of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Daegu
Technopark, Korea, Basic R&D Supporting Program for Convergence
Technology
FX We thank J. Schaller for providing the nozzles. Beamline staff at
Sectors 1 and 7 of the Advanced Photon Source is acknowledged for the
technical support. We are also grateful for the sponsorship of U.S.
Department of Energy (DoE) Vehicle Technology Program. This work and the
use of the APS were supported by the DoE, Office of Science, Office of
Basic Energy Sciences, under contract No. DE-AC02-06CH11357. This work
is also partially supported by Daegu Technopark, Korea, as part of Basic
R&D Supporting Program for Convergence Technology.
NR 50
TC 6
Z9 6
U1 0
U2 12
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD JUN 25
PY 2013
VL 3
AR 2067
DI 10.1038/srep02067
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 170JW
UT WOS:000320847200003
PM 23797665
ER
PT J
AU Mitchell, C
Qiang, J
Emma, P
AF Mitchell, Chad
Qiang, Ji
Emma, Paul
TI Longitudinal pulse shaping for the suppression of coherent synchrotron
radiation-induced emittance growth
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
ID ACCELERATORS
AB The damaging effect of coherent synchrotron radiation (CSR) on the emittance and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. We propose a mitigation approach in which the dynamical effect of the longitudinal component of CSR is suppressed by appropriately preparing the initial longitudinal current profile of the beam. In a chicane, a linear theory for the mechanism of CSR-induced emittance growth is used to demonstrate how this procedure can produce a beam whose core experiences suppressed transverse emittance growth. The dynamics of such a beam is illustrated for the Berlin-Zeuthen CSR benchmark chicane.
C1 [Mitchell, Chad; Qiang, Ji; Emma, Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Mitchell, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM ChadMitchell@lbl.gov
FU U.S. Department of Energy [DE-FG02-96ER40949]
FX This work was supported by U.S. Department of Energy Grant No.
DE-FG02-96ER40949.
NR 25
TC 13
Z9 13
U1 1
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD JUN 25
PY 2013
VL 16
IS 6
AR 060703
DI 10.1103/PhysRevSTAB.16.060703
PG 17
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 171WQ
UT WOS:000320961200001
ER
PT J
AU Hsiao, SC
Liu, H
Holstlaw, TA
Liu, C
Francis, CY
Francis, MB
AF Hsiao, Sonny C.
Liu, Hong
Holstlaw, Taylor A.
Liu, Cheng
Francis, Catherine Y.
Francis, Matthew B.
TI Real Time Assays for Quantifying Cytotoxicity with Single Cell
Resolution
SO PLOS ONE
LA English
DT Article
ID ANTI-CD20 ANTIBODY IDEC-C2B8; CHRONIC LYMPHOCYTIC-LEUKEMIA;
NATURAL-KILLER-CELL; RITUXIMAB; COMPLEMENT; RESISTANCE; LYMPHOMA;
THERAPY; DNA; MECHANISMS
AB A new live cell-based assay platform has been developed for the determination of complement dependent cytotoxicity (CDC), antibody dependent cellular cytotoxicity (ADCC), and overall cytotoxicity in human whole blood. In these assays, the targeted tumor cell populations are first labeled with fluorescent Cell Tracker dyes and immobilized using a DNA-based adhesion technique. This allows the facile generation of live cell arrays that are arranged arbitrarily or in ordered rectilinear patterns. Following the addition of antibodies in combination with serum, PBMCs, or whole blood, cell death within the targeted population can be assessed by the addition of propidium iodide (PI) as a viability probe. The array is then analyzed with an automated microscopic imager. The extent of cytotoxicity can be quantified accurately by comparing the number of surviving target cells to the number of dead cells labeled with both Cell Tracker and PI. Excellent batch-to-batch reproducibility has been achieved using this method. In addition to allowing cytotoxicity analysis to be conducted in real time on a single cell basis, this new assay overcomes the need for hazardous radiochemicals. Fluorescently-labeled antibodies can be used to identify individual cells that bear the targeted receptors, but yet resist the CDC and ADCC mechanisms. This new approach also allows the use of whole blood in cytotoxicity assays, providing an assessment of antibody efficacy in a highly relevant biological mixture. Given the rapid development of new antibody-based therapeutic agents, this convenient assay platform is well-poised to streamline the drug discovery process significantly.
C1 [Hsiao, Sonny C.; Holstlaw, Taylor A.; Francis, Catherine Y.] Adheren Inc, Berkeley, CA USA.
[Liu, Hong; Liu, Cheng] Eureka Therapeut, Emeryville, CA USA.
[Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Hsiao, SC (reprint author), Adheren Inc, Berkeley, CA USA.
EM sonny@adheren.com
NR 29
TC 5
Z9 6
U1 2
U2 15
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 24
PY 2013
VL 8
IS 6
AR e66739
DI 10.1371/journal.pone.0066739
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 182JP
UT WOS:000321738400043
PM 23826123
ER
PT J
AU Bender, DA
Cederberg, JG
Wang, CG
Sheik-Bahae, M
AF Bender, Daniel A.
Cederberg, Jeffrey G.
Wang, Chengao
Sheik-Bahae, Mansoor
TI Development of high quantum efficiency GaAs/GaInP double
heterostructures for laser cooling
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; SPONTANEOUS EMISSION; SEMICONDUCTOR;
INGAP/GAAS; PHOTOLUMINESCENCE; RECOMBINATION; INTERFACE;
HETEROINTERFACES; SUPERLATTICES; LUMINESCENCE
AB We report on the growth and characterization of high external quantum efficiency (EQE) GaAs/GaInP double heterostructures. By properly treating the GaAs/GaInP interface, we are able to produce structures measuring a record EQE of 99.5% +/- 0.1% in GaAs. This efficiency exceeds the requirement for achieving laser cooling in GaAs. However, net cooling has not yet been realized due to residual below gap background absorption. (C) 2013 AIP Publishing LLC.
C1 [Bender, Daniel A.; Cederberg, Jeffrey G.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Wang, Chengao; Sheik-Bahae, Mansoor] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
RP Bender, DA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM dabende@sandia.gov
FU Laboratory Directed Research and Development program at Sandia National
Laboratories; United States Department of Energy's National Nuclear
Security Administration [DE-AC04-94AL85000]; NSF [DMR-1207489]
FX The authors acknowledge the expert assistance of Darrell Alliman in the
preparation of the GaAs/GaInP double heterostructures. This work was
supported by the Laboratory Directed Research and Development program at
Sandia National Laboratories. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy's National Nuclear Security
Administration under Contract DE-AC04-94AL85000. The work at UNM was
supported by the NSF under Award DMR-1207489.
NR 27
TC 8
Z9 8
U1 3
U2 23
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 24
PY 2013
VL 102
IS 25
AR 252102
DI 10.1063/1.4811759
PG 4
WC Physics, Applied
SC Physics
GA 174HG
UT WOS:000321145200045
ER
PT J
AU Bora, M
Behymer, EM
Dehlinger, DA
Britten, JA
Larson, CC
Chang, ASP
Munechika, K
Nguyen, HT
Bond, TC
AF Bora, Mihail
Behymer, Elaine M.
Dehlinger, Dietrich A.
Britten, Jerald A.
Larson, Cindy C.
Chang, Allan S. P.
Munechika, Keiko
Nguyen, Hoang T.
Bond, Tiziana C.
TI Plasmonic black metals in resonant nanocavities
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID NEAR-FIELD
AB We investigate a plasmonic resonant structure tunable from ultra-violet to near infrared wavelengths with maximum absorbance strength over 95% due to a highly efficient coupling with incident light. Additional harmonics are excited at higher frequencies extending the absorbance range to multiple wavelengths. We propose the concept of a plasmonic black metal nanoresonator that exhibits broadband absorbance characteristics by spacing the modes closer through increasing the resonator length and by employing adiabatic plasmonic nano-focusing on the tapered end of the cavity. (C) 2013 AIP Publishing LLC.
C1 [Bora, Mihail; Behymer, Elaine M.; Dehlinger, Dietrich A.; Britten, Jerald A.; Larson, Cindy C.; Chang, Allan S. P.; Munechika, Keiko; Nguyen, Hoang T.; Bond, Tiziana C.] Lawrence Livermore Natl Lab, Livermore, CA 94501 USA.
RP Bora, M (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94501 USA.
EM bora1@llnl.gov; bond7@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344, LLNLJRNL-425128]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract Nos.
DE-AC52-07NA27344 and LLNLJRNL-425128.
NR 20
TC 11
Z9 11
U1 4
U2 35
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 24
PY 2013
VL 102
IS 25
AR 251105
DI 10.1063/1.4802910
PG 5
WC Physics, Applied
SC Physics
GA 174HG
UT WOS:000321145200005
ER
PT J
AU Jiang, CS
Repins, IL
Mansfield, LM
Contreras, MA
Moutinho, HR
Ramanathan, K
Noufi, R
Al-Jassim, MM
AF Jiang, C. -S.
Repins, I. L.
Mansfield, L. M.
Contreras, M. A.
Moutinho, H. R.
Ramanathan, K.
Noufi, R.
Al-Jassim, M. M.
TI Electrical conduction channel along the grain boundaries of
Cu(In,Ga)Se-2 thin films
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SPREADING RESISTANCE MICROSCOPY; SOLAR-CELLS; SILICON
AB We report on a direct nm-resolution resistance mapping on the Cu(In,Ga)Se-2 photovoltaic thin films, using scanning spreading resistance microcopy. We found a conductance channel along the grain boundaries (GBs) of the polycrystalline materials, which is consistent with the argument that carrier polarity of the GB and the space charge region around it is inverted. To minimize the probe/film contact resistance, so that the local spreading resistance beneath the probe is measured, the probe must be adequately indented to the film and a bias voltage larger than the onset value of the probe/film barrier should be applied. (C) 2013 AIP Publishing LLC.
C1 [Jiang, C. -S.; Repins, I. L.; Mansfield, L. M.; Contreras, M. A.; Moutinho, H. R.; Ramanathan, K.; Noufi, R.; Al-Jassim, M. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Jiang, CS (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
RI jiang, chun-sheng/F-7839-2012
FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy
Laboratory
FX This work was supported by the U.S. Department of Energy under Contract
No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory.
NR 21
TC 10
Z9 10
U1 1
U2 23
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 24
PY 2013
VL 102
IS 25
AR 253905
DI 10.1063/1.4812827
PG 5
WC Physics, Applied
SC Physics
GA 174HG
UT WOS:000321145200102
ER
PT J
AU Luisier, M
Boykin, TB
Ye, Z
Martini, A
Klimeck, G
Kharche, N
Jiang, X
Nayak, S
AF Luisier, M.
Boykin, T. B.
Ye, Z.
Martini, A.
Klimeck, G.
Kharche, N.
Jiang, X.
Nayak, S.
TI Investigation of ripple-limited low-field mobility in large-scale
graphene nanoribbons
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID TRANSISTORS; TRANSPORT; SIO2
AB Combining molecular dynamics and quantum transport simulations, we study the degradation of mobility in graphene nanoribbons caused by substrate-induced ripples. First, the atom coordinates of large-scale structures are relaxed such that surface properties are consistent with those of graphene on a substrate. Then, the electron current and low-field mobility of the resulting non-flat nanoribbons are calculated within the Non-equilibrium Green's Function formalism in the coherent transport limit. An accurate tight-binding basis coupling the sigma- and pi-bands of graphene is used for this purpose. It is found that the presence of ripples decreases the mobility of graphene nanoribbons on SiO2 below 3000 cm(2)/Vs, which is comparable to experimentally reported values. (C) 2013 AIP Publishing LLC.
C1 [Luisier, M.] ETH, Integrated Syst Lab, CH-8092 Zurich, Switzerland.
[Boykin, T. B.] Univ Alabama, Dept ECE, Huntsville, AL 35899 USA.
[Ye, Z.; Martini, A.] Univ Calif Merced, Sch Engn, Merced, CA 95343 USA.
[Klimeck, G.] Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA.
[Kharche, N.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Jiang, X.; Nayak, S.] Rensselaer Polytech Inst, Dept Phys, Troy, NY 12180 USA.
[Nayak, S.] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar 751013, Orissa, India.
RP Luisier, M (reprint author), ETH, Integrated Syst Lab, CH-8092 Zurich, Switzerland.
RI Kharche, Neerav/F-4331-2015; Klimeck, Gerhard/A-1414-2012
OI Kharche, Neerav/0000-0003-1014-6022; Klimeck,
Gerhard/0000-0001-7128-773X
FU SNF [PP00P2_133591]; Swiss National Supercomputing Centre (CSCS) [s363];
NSF [EEC-0228390]; NSF PetaApps [0749140]; NSF through XSEDE; National
Institute for Computational Sciences (NICS)
FX This work was supported by SNF grant (No. PP00P2_133591), by a grant
from the Swiss National Supercomputing Centre (CSCS) under project ID
s363, by NSF grant (No. EEC-0228390) that funds the Network for
Computational Nanotechnology, by NSF PetaApps grant (No. 0749140), and
by NSF through XSEDE resources provided by the National Institute for
Computational Sciences (NICS).
NR 24
TC 1
Z9 1
U1 0
U2 17
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 24
PY 2013
VL 102
IS 25
AR 253506
DI 10.1063/1.4811761
PG 4
WC Physics, Applied
SC Physics
GA 174HG
UT WOS:000321145200092
ER
PT J
AU Murray, CE
Graves-Abe, T
Robison, R
Cai, Z
AF Murray, Conal E.
Graves-Abe, T.
Robison, R.
Cai, Z.
TI Submicron mapping of strain distributions induced by three-dimensional
through-silicon via features
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID MECHANICAL-STRESS; RAMAN-SPECTROSCOPY; IMPACT; SI; CU
AB Strain distributions within the active layer of a silicon-on-insulator substrate induced by through-silicon via (TSV) structures were mapped using x-ray microbeam diffraction. The interaction region of the out-of-plane strain, epsilon(33), from a TSV feature containing copper metallization extended approximately 6 mu m from the TSV outer edge for circular and annular geometries. Measurements conducted on identical TSV structures without copper reveal that strain fields generated by the liner materials extend a similar distance and with comparable magnitude as those with copper. FEM-based simulations show the total interaction region induced by the TSV can extend farther than that of epsilon(33). (C) 2013 AIP Publishing LLC.
C1 [Murray, Conal E.] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA.
[Graves-Abe, T.] IBM Corp, Semicond Res & Dev Ctr, Hopewell Jct, NY 12257 USA.
[Robison, R.] IBM Corp, Microelect Div, Essex Jct, VT 05452 USA.
[Cai, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Murray, CE (reprint author), IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA.
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357, DE-AC02-98CH10886]
FX We would like to thank Dr. Jean-Jordan Sweet for assistance with the
stress measurements and Dr. Chandrasekara Kothandaraman for discussions.
This work was performed by the Research Alliance Teams at various IBM
Research and Development facilities. Use of the Advanced Photon Source
was supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Use of the National Synchrotron Light Source, Brookhaven National
Laboratory, was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-98CH10886.
NR 23
TC 12
Z9 12
U1 0
U2 25
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 24
PY 2013
VL 102
IS 25
AR 251910
DI 10.1063/1.4812481
PG 5
WC Physics, Applied
SC Physics
GA 174HG
UT WOS:000321145200040
ER
PT J
AU Romanenko, A
Grassellino, A
AF Romanenko, A.
Grassellino, A.
TI Dependence of the microwave surface resistance of superconducting
niobium on the magnitude of the rf field
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID MAGNETIC-FIELD; INDUCED ANISOTROPY; 1.5 GHZ; IMPEDANCE; CAVITIES;
ABSORPTION; TIN; STATES
AB Utilizing difference in temperature dependencies we decoupled Bardeen-Cooper-Schrieffer (BCS) and residual components of the microwave surface resistance of superconducting niobium at all rf fields up to B-rf similar to 115 mT. We reveal that the residual resistance decreases with field at B-rf <= 40mT and strongly increases in chemically treated niobium at B-rf > 80 mT. We find that BCS surface resistance is weakly dependent on field in the clean limit, whereas a strong and peculiar field dependence emerges after 120 degrees C vacuum baking. (C) 2013 AIP Publishing LLC.
C1 [Romanenko, A.; Grassellino, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Romanenko, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
EM aroman@fnal.gov
FU United States Department of Energy; DOE Office of Nuclear Physics;
[De-AC02-07CH11359]
FX The authors would like to acknowledge the help and useful discussions of
A. Crawford, D. Sergatskov, D. Bice, A. Rowe, M. Wong-Squires, J. P.
Ozelis, F. Barkov, A. Melnitchouk, and A. Sukhanov. Fermilab is operated
by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359
with the United States Department of Energy. A. R. was partially
supported by the DOE Office of Nuclear Physics.
NR 48
TC 16
Z9 16
U1 3
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 24
PY 2013
VL 102
IS 25
AR 252603
DI 10.1063/1.4812665
PG 4
WC Physics, Applied
SC Physics
GA 174HG
UT WOS:000321145200064
ER
PT J
AU Tong, WM
Brodie, AD
Mane, AU
Sun, FG
Kidwingira, F
McCord, MA
Bevis, CF
Elam, JW
AF Tong, William M.
Brodie, Alan D.
Mane, Anil U.
Sun, Fuge
Kidwingira, Francoise
McCord, Mark A.
Bevis, Christopher F.
Elam, Jeffrey W.
TI Nanoclusters of MoO3-x embedded in an Al2O3 matrix engineered for
customizable mesoscale resistivity and high dielectric strength
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID LAYER DEPOSITION TECHNIQUES; GROWTH
AB We have synthesized a material consisting of conducting metal oxide (MoO3-x) nanoclusters embedded in a high-dielectric-strength insulator (Al2O3) matrix. The resistivity of this material can be customized by varying the concentration of the MoO3-x nanoclusters. The Al2O3 protects the MoO3-x from stoichiometry change, thus conserving the number of carriers and maintaining a high dielectric strength. This composite material is grown by atomic layer deposition, a thin film deposition technique suitable for coating 3D structures. We applied these atomic layer deposition composite films to our 3D electron-optical micro electrical mechanical systems devices and greatly improved their performance. (C) 2013 AIP Publishing LLC.
C1 [Tong, William M.; Brodie, Alan D.; Sun, Fuge; Kidwingira, Francoise; McCord, Mark A.; Bevis, Christopher F.] KLA Tencor Corp, REBL Program, Off CTO, Milpitas, CA 95035 USA.
[Mane, Anil U.; Elam, Jeffrey W.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Tong, WM (reprint author), KLA Tencor Corp, REBL Program, Off CTO, 1 Technol Dr, Milpitas, CA 95035 USA.
FU Defense Advanced Research Projects Agency [HR0011-07-9-0007]; U. S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
and Office of High Energy Physics of the Large Area Picosecond
Photodetector (LAPPD) project [DE-AC02-06CH11357]
FX We thank Alec Talin of Sandia National Laboratories for a careful review
of the manuscript. This work was partly sponsored by Defense Advanced
Research Projects Agency under Contract No. HR0011-07-9-0007. The views,
opinions, and/or findings contained in this article/presentation are
those of the author/presenter and should not be interpreted as
representing the official views or policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the
Department of Defense. The work at Argonne was funded in part by the U.
S. Department of Energy, Office of Science, Office of Basic Energy
Sciences and Office of High Energy Physics under Contract No.
DE-AC02-06CH11357 as part of the Large Area Picosecond Photodetector
(LAPPD) project.
NR 13
TC 8
Z9 8
U1 2
U2 22
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 24
PY 2013
VL 102
IS 25
AR 252901
DI 10.1063/1.4811480
PG 5
WC Physics, Applied
SC Physics
GA 174HG
UT WOS:000321145200065
ER
PT J
AU Chen, JW
Pu, S
Wang, Q
Wang, XN
AF Chen, Jiunn-Wei
Pu, Shi
Wang, Qun
Wang, Xin-Nian
TI Berry Curvature and Four-Dimensional Monopoles in the Relativistic
Chiral Kinetic Equation
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID TRANSPORT-THEORY
AB We derive a relativistic chiral kinetic equation with manifest Lorentz covariance from Wigner functions of spin-1/2 massless fermions in a constant background electromagnetic field. It contains vorticity terms and a four-dimensional Euclidean Berry monopole which gives an axial anomaly. By integrating out the zeroth component of the 4-momentum p, we reproduce the previous three-dimensional results derived from the Hamiltonian approach, together with the newly derived vorticity terms. The phase space continuity equation has an anomalous source term proportional to the product of electric and magnetic fields (F-sigma rho(F) over tilde (sigma rho)similar to E sigma B sigma). This provides a unified interpretation of the chiral magnetic and vortical effects, chiral anomaly, Berry curvature, and the Berry monopole in the framework of Wigner functions.
C1 [Chen, Jiunn-Wei; Pu, Shi] Natl Taiwan Univ, Dept Phys, Natl Ctr Theoret Sci, Taipei 10617, Taiwan.
[Chen, Jiunn-Wei; Pu, Shi] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan.
[Pu, Shi; Wang, Qun] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Peoples R China.
[Pu, Shi; Wang, Qun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China.
[Wang, Xin-Nian] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.
[Wang, Xin-Nian] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China.
[Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Chen, JW (reprint author), Natl Taiwan Univ, Dept Phys, Natl Ctr Theoret Sci, Taipei 10617, Taiwan.
OI Wang, Xin-Nian/0000-0002-9734-9967; Chen, Jiunn-Wei/0000-0002-8650-9371;
Pu, Shi/0000-0002-6784-7447
FU NSFC [11125524, 1221504, 11205150]; U.S. DOE [DE-AC02-05CH11231]; NSC;
NTU-CTS; NTU-CASTS of R.O.C.
FX This work is supported by the NSFC under Grants No. 11125524, No.
1221504, and No. 11205150 and by the U.S. DOE under Contract No.
DE-AC02-05CH11231 and within the framework of the JET Collaboration.
J.-W.C. and S. P. are supported in part by the NSC, NTU-CTS, and the
NTU-CASTS of R.O.C.
NR 31
TC 63
Z9 63
U1 2
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 24
PY 2013
VL 110
IS 26
AR UNSP 262301
DI 10.1103/PhysRevLett.110.262301
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 171UY
UT WOS:000320956500003
PM 23848865
ER
PT J
AU Ray, D
Reichhardt, CJO
Janko, B
Reichhardt, C
AF Ray, D.
Reichhardt, C. J. Olson
Janko, B.
Reichhardt, C.
TI Strongly Enhanced Pinning of Magnetic Vortices in Type-II
Superconductors by Conformal Crystal Arrays
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID VORTEX PLASTIC-FLOW; HYSTERESIS LOOPS; REGULAR ARRAY; FLUX-DENSITY;
EQUILIBRIUM; DYNAMICS; LATTICES; CURRENTS; DEFECTS; FILMS
AB Conformal crystals are nonuniform structures created by a conformal transformation of regular two-dimensional lattices. We show that gradient-driven vortices interacting with a conformal pinning array exhibit substantially stronger pinning effects over a much larger range of field than found for random or periodic pinning arrangements. The pinning enhancement is partially due to matching of the critical flux gradient with the pinning gradient, but the preservation of local ordering in the conformally transformed hexagonal lattice and the arching arrangement of the pinning also play crucial roles. Our results can be generalized to a wide class of gradient-driven interacting particle systems such as colloids on optical trap arrays.
C1 [Ray, D.; Janko, B.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Ray, D.; Reichhardt, C. J. Olson; Reichhardt, C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Ray, D (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
OI Reichhardt, Cynthia/0000-0002-3487-5089
FU NNSA of the U.S. DOE at LANL [DE-AC52-06NA25396]
FX This work was carried out under the auspices of the NNSA of the U.S. DOE
at LANL under Contract No. DE-AC52-06NA25396.
NR 51
TC 25
Z9 25
U1 0
U2 39
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 24
PY 2013
VL 110
IS 26
AR UNSP 267001
DI 10.1103/PhysRevLett.10.267001
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 171UY
UT WOS:000320956500012
PM 23848910
ER
PT J
AU Sanloup, C
Bonev, SA
Hochlaf, M
Maynard-Casely, HE
AF Sanloup, Chrystele
Bonev, Stanimir A.
Hochlaf, Majdi
Maynard-Casely, Helen E.
TI Reactivity of Xenon with Ice at Planetary Conditions
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID GIANT PLANETS; NOBLE; VOLATILES; MOLECULES
AB We report results from high pressure and temperature experiments that provide evidence for the reactivity of xenon with water ice at pressures above 50 GPa and a temperature of 1500 K-conditions that are found in the interiors of Uranus and Neptune. The x-ray data are sufficient to determine a hexagonal lattice with four Xe atoms per unit cell and several possible distributions of O atoms. The measurements are supplemented with ab initio calculations, on the basis of which a crystallographic structure with a Xe4O12H12 primitive cell is proposed. The newly discovered compound is formed in the stability fields of superionic ice and eta-O-2, and has the same oxygen subnetwork as the latter. Furthermore, it has a weakly metallic character and likely undergoes sublattice melting of the H subsystem. Our findings indicate that Xe is expected to be depleted in the atmospheres of the giant planets as a result of sequestration at depth.
C1 [Sanloup, Chrystele] Univ Paris 06, CNRS, ISTEP, UMR 7193, F-75005 Paris, France.
[Bonev, Stanimir A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Bonev, Stanimir A.] Dalhousie Univ, Dept Phys, Halifax, NS B3H 3J5, Canada.
[Hochlaf, Majdi] Univ Paris Est, MSME, CNRS, Lab Modelisat & Simulat MultiEchelle,UMR 8208, F-77454 Marne La Vallee, France.
[Maynard-Casely, Helen E.] Univ Edinburgh, Sch Chem, Edinburgh EH9 3JZ, Midlothian, Scotland.
RP Sanloup, C (reprint author), Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland.
RI Sanloup, Chrystele/D-9923-2015;
OI Sanloup, Chrystele/0000-0003-2412-6073; Maynard-Casely,
Helen/0000-0001-6364-9665
FU European Research Council under the European Community's Seventh
Framework Programme [259649]; U.S. Department of Energy
[DE-AC52-07NA27344]
FX We acknowledge the ESRF for provision of beam time on ID27 and LLNL for
computational resources. We thank M. Mezouar and E. Gregoryanz for their
help with collecting in situ x-ray diffraction data, and Y. Noel and M.
Marques for useful discussions. C. S. is funded by the European Research
Council under the European Community's Seventh Framework Programme
(Grants No. FP7/2007-2013 and No. 259649). S. A. B. performed work at
LLNL under the auspices of the U.S. Department of Energy under Grant No.
DE-AC52-07NA27344.
NR 33
TC 17
Z9 17
U1 1
U2 36
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 24
PY 2013
VL 110
IS 26
AR UNSP 265501
DI 10.1103/PhysRevLett.110.265501
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 171UY
UT WOS:000320956500007
PM 23848893
ER
PT J
AU Flynn, TM
Sanford, RA
Ryu, H
Bethke, CM
Levine, AD
Ashbolt, NJ
Domingo, JWS
AF Flynn, Theodore M.
Sanford, Robert A.
Ryu, Hodon
Bethke, Craig M.
Levine, Audrey D.
Ashbolt, Nicholas J.
Domingo, Jorge W. Santo
TI Functional microbial diversity explains groundwater chemistry in a
pristine aquifer
SO BMC MICROBIOLOGY
LA English
DT Article
ID ANAEROBIC METHANE OXIDATION; SULFATE REDUCTION; MULTIVARIATE ANALYSES;
REDUCING BACTERIA; CRETACEOUS ROCK; BEDROCK VALLEY; SUBSURFACE;
SEDIMENTS; SEQUENCE; SYSTEMS
AB Background: The diverse microbial populations that inhabit pristine aquifers are known to catalyze critical in situ biogeochemical reactions, yet little is known about how the structure and diversity of this subsurface community correlates with and impacts upon groundwater chemistry. Herein we examine 8,786 bacterial and 8,166 archaeal 16S rRNA gene sequences from an array of monitoring wells in the Mahomet aquifer of east-central Illinois. Using multivariate statistical analyses we provide a comparative analysis of the relationship between groundwater chemistry and the microbial communities attached to aquifer sediment along with those suspended in groundwater.
Results: Statistical analyses of 16S rRNA gene sequences showed a clear distinction between attached and suspended communities; with iron-reducing bacteria far more abundant in attached samples than suspended, while archaeal clones related to groups associated with anaerobic methane oxidation and deep subsurface gold mines (ANME-2D and SAGMEG-1, respectively) distinguished the suspended community from the attached. Within the attached bacterial community, cloned sequences most closely related to the sulfate-reducing Desulfobacter and Desulfobulbus genera represented 20% of the bacterial community in wells where the concentration of sulfate in groundwater was high (> 0.2 mM), compared to only 3% in wells with less sulfate. Sequences related to the genus Geobacter, a genus containing ferric-iron reducers, were of nearly equal abundance (15%) to the sulfate reducers under high sulfate conditions, however their relative abundance increased to 34% when sulfate concentrations were < 0.03 mM. Also, in areas where sulfate concentrations were < 0.03 mM, archaeal 16S rRNA gene sequences similar to those found in methanogens such as Methanosarcina and Methanosaeta comprised 73-80% of the community, and dissolved CH4 ranged between 220 and 1240 mu M in these groundwaters. In contrast, methanogens (and their product, CH4) were nearly absent in samples collected from groundwater samples with > 0.2 mM sulfate. In the suspended fraction of wells where the concentration of sulfate was between 0.03 and 0.2 mM, the archaeal community was dominated by sequences most closely related to the ANME-2D, a group of archaea known for anaerobically oxidizing methane. Based on available energy (Delta G(A)) estimations, results varied little for both sulfate reduction and methanogenesis throughout all wells studied, but could favor anaerobic oxidation of methane (AOM) in wells containing minimal sulfate and dihydrogen, suggesting AOM coupled with H-2-oxidizing organisms such as sulfate or iron reducers could be an important pathway occurring in the Mahomet aquifer.
Conclusions: Overall, the results show several distinct factors control the composition of microbial communities in the Mahomet aquifer. Bacteria that respire insoluble substrates such as iron oxides, i.e. Geobacter, comprise a greater abundance of the attached community than the suspended regardless of groundwater chemistry. Differences in community structure driven by the concentration of sulfate point to a clear link between the availability of substrate and the abundance of certain functional groups, particularly iron reducers, sulfate reducers, methanogens, and methanotrophs. Integrating both geochemical and microbiological observations suggest that the relationships between these functional groups could be driven in part by mutualism, especially between ferric-iron and sulfate reducers.
C1 [Flynn, Theodore M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
[Flynn, Theodore M.; Sanford, Robert A.; Bethke, Craig M.] Univ Illinois, Dept Geol, Urbana, IL 60616 USA.
[Ryu, Hodon; Levine, Audrey D.; Ashbolt, Nicholas J.; Domingo, Jorge W. Santo] US EPA, Off Res & Dev, Cincinnati, OH 45248 USA.
[Levine, Audrey D.] Battelle Mem Inst, Washington, DC 20024 USA.
RP Domingo, JWS (reprint author), US EPA, Off Res & Dev, Cincinnati, OH 45248 USA.
EM santodomingo.jorge@epa.gov
RI Flynn, Theodore/C-1221-2008; Ryu, Hodon/E-4610-2011
OI Flynn, Theodore/0000-0002-1838-8942; Ryu, Hodon/0000-0002-6992-2519
FU U.S. Environmental Protection Agency, through its Office of Research and
Development; RARE program; National Research Council; Department of
Energy [DE-FG02-02ER15317]; Argonne National Laboratory; SBR SFA at
Argonne National Laboratory by the Subsurface Biogeochemical Research
Program, Office of Biological and Environmental Research, Office of
Science, U.S. Department of Energy (DOE) [DE-AC02-06CH11357]
FX The U.S. Environmental Protection Agency, through its Office of Research
and Development and the RARE program, funded, managed, and collaborated
in the research described herein. This work has been subjected to the
agency's administrative review and has been approved for external
publication. Any opinions expressed in this paper are those of the
authors and do not necessarily reflect the views of the agency;
therefore, no official endorsement should be inferred. Any mention of
trade names or commercial products does not constitute endorsement or
recommendation for use. The authors thank B. Iker, M. Kyrias, D.
Strattan, B. Farrell, E. Luber, M. Nolan, C. Salvatori, J. Shelton, and
P. Bermudez for their assistance in the laboratory and the field. H. Ryu
received funding through a fellowship from the National Research
Council. This work was also supported in part through funding from the
Department of Energy grant DE-FG02-02ER15317, a Director's Postdoctoral
Fellowship from Argonne National Laboratory to T. Flynn, and the SBR SFA
at Argonne National Laboratory which is supported by the Subsurface
Biogeochemical Research Program, Office of Biological and Environmental
Research, Office of Science, U.S. Department of Energy (DOE), under
contract DE-AC02-06CH11357.
NR 61
TC 30
Z9 30
U1 5
U2 91
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2180
J9 BMC MICROBIOL
JI BMC Microbiol.
PD JUN 24
PY 2013
VL 13
AR 146
DI 10.1186/1471-2180-13-146
PG 15
WC Microbiology
SC Microbiology
GA 176AI
UT WOS:000321274700001
PM 23800252
ER
PT J
AU Somma, RD
Hughes, RJ
AF Somma, Rolando D.
Hughes, Richard J.
TI Security of decoy-state protocols for general photon-number-splitting
attacks
SO PHYSICAL REVIEW A
LA English
DT Article
ID QUANTUM KEY DISTRIBUTION
AB Decoy-state protocols provide a way to defeat photon-number-splitting attacks in quantum cryptography implemented with weak coherent pulses. We point out that previous security analyses of such protocols relied on assumptions about eavesdropping attacks that considered treating each pulse equally and independently. We give an example to demonstrate that, without such assumptions, the security parameters of previous decoy-state implementations could be worse than the ones claimed. Next we consider more general photon-number-splitting attacks, which correlate different pulses, and give an estimation procedure for the number of single-photon signals with rigorous security statements. The impact of our result is that previous analyses of the number of times a decoy-state quantum cryptographic system can be reused before it makes a weak key must be revised.
C1 [Somma, Rolando D.; Hughes, Richard J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Somma, RD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM somma@lanl.gov; rxh@lanl.gov
FU Laboratory Directed Research and Development (LDRD) Program at Los
Alamos National Laboratory
FX We thank Jane Nordholt, KevinMcCabe, Raymond Newell, Charles Peterson,
and Stephanie Wehner for discussions. We thank the Laboratory Directed
Research and Development (LDRD) Program at Los Alamos National
Laboratory for support.
NR 18
TC 5
Z9 6
U1 0
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD JUN 24
PY 2013
VL 87
IS 6
AR 062330
DI 10.1103/PhysRevA.87.062330
PG 7
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 171RM
UT WOS:000320946800007
ER
PT J
AU Black-Schaffer, AM
Balatsky, AV
AF Black-Schaffer, Annica M.
Balatsky, Alexander V.
TI Proximity-induced unconventional superconductivity in topological
insulators
SO PHYSICAL REVIEW B
LA English
DT Article
ID SURFACE; TRANSPORT; BI2SE3; BI2TE3
AB We study and classify the proximity-induced superconducting pairing in a topological insulator (TI)-superconductor (SC) hybrid structure for SCs with different symmetries. The Dirac surface state gives a coupling between spin-singlet and spin-triplet pairing amplitudes as well as pairing that is odd in frequency for p-wave SCs. We also find that all SCs induce pairing that is odd in both frequency and orbital (band) index, with oddness in frequency and orbital index being completely interchangeable. The different induced pairing amplitudes significantly modify the density of states in the TI surface layer.
C1 [Black-Schaffer, Annica M.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden.
[Balatsky, Alexander V.] Nord Inst Theoret Phys NORDITA, S-10691 Stockholm, Sweden.
[Balatsky, Alexander V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Balatsky, Alexander V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Black-Schaffer, AM (reprint author), Uppsala Univ, Dept Phys & Astron, POB 516, S-75120 Uppsala, Sweden.
FU Swedish and European research councils (VR, ERC); US DoE Basic Energy
Sciences; Center for Integrated Nanotechnologies; US Department of
Energy [DE-AC52-06NA25396]
FX We are grateful to E. Abrahams for discussions and the Swedish and
European research councils (VR, ERC) for funding. Work at Los Alamos was
supported by US DoE Basic Energy Sciences and in part by the Center for
Integrated Nanotechnologies, operated by LANS, LLC, for the National
Nuclear Security Administration of the US Department of Energy under
contract DE-AC52-06NA25396.
NR 35
TC 36
Z9 36
U1 2
U2 29
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 24
PY 2013
VL 87
IS 22
AR 220506
DI 10.1103/PhysRevB.87.220506
PG 5
WC Physics, Condensed Matter
SC Physics
GA 171SF
UT WOS:000320948700002
ER
PT J
AU Erwin, SC
Snijders, PC
AF Erwin, Steven C.
Snijders, Paul C.
TI Silicon spin chains at finite temperature: Dynamics of Si(553)-Au
SO PHYSICAL REVIEW B
LA English
DT Article
ID AUGMENTED-WAVE METHOD; AB-INITIO; ONE-DIMENSION; WIRES; RECONSTRUCTION;
MODELS
AB When gold is deposited on Si(553), the surface self-assembles to form a periodic array of steps with nearly perfect structural order. In scanning tunneling microscopy these steps resemble quasi-one-dimensional atomic chains. At temperatures below similar to 50 K the chains develop a tripled periodicity. We recently predicted, on the basis of density-functional theory calculations at T = 0, that this tripled periodicity arises from the complete polarization of the electron spin on every third silicon atom along the step; in the ground state these linear chains of silicon spins are antiferromagnetically ordered. Here we explore, using ab initio molecular dynamics and kinetic Monte Carlo simulations, the behavior of silicon spin chains on Si(553)-Au at finite temperature. Thermodynamic phase transitions at T > 0 in one-dimensional systems are prohibited by the Mermin-Wagner theorem. Nevertheless we find that a surprisingly sharp onset occurs upon cooling-at about 30 K for perfect surfaces and at higher temperature for surfaces with defects-to a well-ordered phase with tripled periodicity, in good agreement with experiment.
C1 [Erwin, Steven C.] Naval Res Lab, Ctr Computat Mat Sci, Washington, DC 20375 USA.
[Snijders, Paul C.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Erwin, SC (reprint author), Naval Res Lab, Ctr Computat Mat Sci, Washington, DC 20375 USA.
EM steve.erwin@nrl.navy.mil
FU Office of Naval Research through the Naval Research Laboratory's Basic
Research Program; Department of Energy, Basic Energy Sciences, Materials
Sciences and Engineering Division
FX Many discussions with F. J. Himpsel are gratefully acknowledged. This
work was supported by the Office of Naval Research through the Naval
Research Laboratory's Basic Research Program (SCE) and by the Department
of Energy, Basic Energy Sciences, Materials Sciences and Engineering
Division (PCS). Computations were performed at the DoD Major Shared
Resource Centers at AFRL and ERDC.
NR 35
TC 6
Z9 6
U1 0
U2 31
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 24
PY 2013
VL 87
IS 23
AR UNSP 235316
DI 10.1103/PhysRevB.87.235316
PG 8
WC Physics, Condensed Matter
SC Physics
GA 171SO
UT WOS:000320949600009
ER
PT J
AU Huang, C
Voter, AF
Perez, D
AF Huang, Chen
Voter, Arthur F.
Perez, Danny
TI Scalable kernel polynomial method for calculating transition rates
SO PHYSICAL REVIEW B
LA English
DT Article
ID CHEMICAL-REACTIONS; DENSITIES; MOMENTS; STATES
AB We present an efficient method for calculating the prefactors of harmonic transition state theory rates. We reformulate the prefactors in terms of the density of states (DOS) of the Hessian matrices at the basin minimum and the saddle point. The DOS is then approximated using the kernel polynomial method as an expansion in terms of Chebyshev polynomials. The cost of the calculation scales linearly with the number of atoms, in contrast with the cubic scaling of the direct method. This approach hence greatly facilitates the investigations of kinetic processes in very large systems. We demonstrate the method by calculating the prefactors of the transition rates for two processes in bulk silver: vacancy hopping and Frenkel pair formation.
C1 [Huang, Chen; Voter, Arthur F.; Perez, Danny] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Huang, C (reprint author), Los Alamos Natl Lab, Div Theoret, T-1, Los Alamos, NM 87545 USA.
EM afv@lanl.gov; danny_perez@lanl.gov
RI Huang, Chen/C-4598-2013;
OI Voter, Arthur/0000-0001-9788-7194
FU United States Department of Energy (US DOE) Office of Science; Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering;
Office of Advanced Scientific Computing Research; US DOE
[DE-AC52-06NA25396]
FX This work was supported by the United States Department of Energy (US
DOE) Office of Science. Initial development of this method and final
stages of the work were supported by the Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering. The middle
stage was supported by the Office of Advanced Scientific Computing
Research. Los Alamos National Laboratory is operated by Los Alamos
National Security, LLC, for the National Nuclear Security administration
of the US DOE under Contract No. DE-AC52-06NA25396.
NR 37
TC 0
Z9 0
U1 0
U2 20
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 24
PY 2013
VL 87
IS 21
AR 214106
DI 10.1103/PhysRevB.87.214106
PG 8
WC Physics, Condensed Matter
SC Physics
GA 171RW
UT WOS:000320947800001
ER
PT J
AU Julien, MH
Simonet, V
Canals, B
Ballou, R
Hassan, AK
Affronte, M
Garlea, VO
Darie, C
Bordet, P
AF Julien, M. -H.
Simonet, V.
Canals, B.
Ballou, R.
Hassan, A. K.
Affronte, M.
Garlea, V. O.
Darie, C.
Bordet, P.
TI Inhomogeneous magnetism in the doped kagome lattice of LaCuO2.66
SO PHYSICAL REVIEW B
LA English
DT Article
ID FRUSTRATED MAGNETS; POWDER DIFFRACTION; CU2+ CATIONS; DELAFOSSITES;
DILUTION; ANTIFERROMAGNET; OXIDES; PLANES; ORDER; NMR
AB The hole-doped kagome lattice of Cu2+ ions in LaCuO2.66 was investigated by nuclear quadrupole resonance, electron spin resonance, electrical resistivity, bulk magnetization, and specific-heat measurements. For temperatures above similar to 180 K, the spin and charge properties show an activated behavior suggestive of a narrow-gap semiconductor. At lower temperatures, the results indicate an insulating ground state which may or may not be charge ordered. While the frustrated spins in remaining patches of the original kagome lattice might not be directly detected here, the observation of coexisting nonmagnetic sites, free spins, and frozen moments reveals an intrinsically inhomogeneous magnetism. Numerical simulations of a 1/3-diluted kagome lattice rationalize this magnetic state in terms of a heterogeneous distribution of cluster sizes and morphologies near the site-percolation threshold.
C1 [Julien, M. -H.; Hassan, A. K.] CNRS UJF UPS INSA, Lab Natl Champs Magnet Intenses, F-38042 Grenoble 9, France.
[Simonet, V.; Canals, B.; Ballou, R.; Garlea, V. O.; Darie, C.; Bordet, P.] CNRS, Inst Neel, F-38042 Grenoble 9, France.
[Simonet, V.; Canals, B.; Ballou, R.; Garlea, V. O.; Darie, C.; Bordet, P.] Univ Grenoble 1, F-38042 Grenoble 9, France.
[Affronte, M.] Univ Modena & Reggio Emilia, CNR, NANO S3, I-41125 Modena, Italy.
[Affronte, M.] Univ Modena & Reggio Emilia, Dipartimento Fis, I-41125 Modena, Italy.
[Garlea, V. O.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Julien, MH (reprint author), CNRS UJF UPS INSA, Lab Natl Champs Magnet Intenses, F-38042 Grenoble 9, France.
EM marc-henri.julien@lncmi.cnrs.fr; virginie.simonet@grenoble.cnrs.fr
RI Garlea, Vasile/A-4994-2016; Julien, Marc-Henri/A-2352-2010; Affronte,
Marco/P-2504-2016
OI Garlea, Vasile/0000-0002-5322-7271; Affronte, Marco/0000-0001-5711-7822
FU Scientific User Facilities Division, Office of Basic Energy Sciences, US
Department of Energy
FX We are grateful to F. Bert, C. Berthier, C. Lacroix, H. Mayaffre, P.
Mendels, and D. Nunez-Regueiro for enlightening discussions and to Y.
Berthier for assistance in the NQR experiments. We also thank T. Grenet,
J. Delahaye, and F. Gay for help and advice concerning the resistivity
measurements. V.O.G. acknowledges the support by the Scientific User
Facilities Division, Office of Basic Energy Sciences, US Department of
Energy.
NR 61
TC 2
Z9 2
U1 5
U2 30
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 24
PY 2013
VL 87
IS 21
AR 214423
DI 10.1103/PhysRevB.87.214423
PG 9
WC Physics, Condensed Matter
SC Physics
GA 171RW
UT WOS:000320947800004
ER
PT J
AU Holt, JD
Engel, J
AF Holt, Jason D.
Engel, Jonathan
TI Effective double-beta-decay operator for Ge-76 and Se-82
SO PHYSICAL REVIEW C
LA English
DT Article
ID MATRIX-ELEMENTS; NUCLEI; FORCES
AB We use diagrammatic many-body perturbation theory in combination with low-momentum interactions derived from chiral effective field theory to construct effective shell-model transition operators for the neutrinoless double-beta decay of Ge-76 and Se-82. We include all unfolded diagrams that are first and second order in the interaction and all singly folded diagrams that can be constructed from them. The resulting effective operator, which accounts for physics outside the shell-model space, increases the nuclear matrix element by about 20% in Ge-76 and 30% in Se-82.
C1 [Holt, Jason D.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
[Holt, Jason D.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany.
[Holt, Jason D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Holt, Jason D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Engel, Jonathan] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27516 USA.
RP Holt, JD (reprint author), Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
EM jason.holt@physik.tu-darmstadt.de; engelj@physics.unc.edu
OI Holt, Jason/0000-0003-4833-7959
FU BMBF [06DA70471]; Helmholtz Association through the Helmholtz Alliance
Program [HA216/EMMI]; U.S. DOE [DE-FC02-07ER41457, DE-FG02-96ER40963];
U.S. Department of Energy [DE-FG02-97ER41019]
FX We thank M. Hjorth-Jensen, M. Horoi, J. Menendez, and A. Poves for
helpful discussions, and Drs. Horoi and Poves for providing us with
their shell-model densities. This work was supported by the BMBF under
Contract No. 06DA70471, the Helmholtz Association through the Helmholtz
Alliance Program, Contract No. HA216/EMMI "Extremes of Density and
Temperature: Cosmic Matter in the Laboratory," and the U.S. DOE Grants
No. DE-FC02-07ER41457 (UNEDF SciDAC Collaboration) and No.
DE-FG02-96ER40963. J.E. gratefully acknowledges in addition the support
of the U.S. Department of Energy through Contract No. DE-FG02-97ER41019.
NR 36
TC 21
Z9 21
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD JUN 24
PY 2013
VL 87
IS 6
AR 064315
DI 10.1103/PhysRevC.87.064315
PG 7
WC Physics, Nuclear
SC Physics
GA 171TE
UT WOS:000320951200001
ER
PT J
AU Detmold, W
Orginos, K
AF Detmold, William
Orginos, Kostas
TI Nuclear correlation functions in lattice QCD
SO PHYSICAL REVIEW D
LA English
DT Article
AB We consider the problem of calculating the large number of Wick contractions necessary to compute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive approach and a determinant-based approach and show that these methods allow the required contractions to be performed in a computationally manageable amount of time for certain choices of interpolating operators. Examples of correlation functions computed using these techniques are shown for the quantum numbers of the light nuclei, He-4, Be-8, C-12, O-16, and Si-28.
C1 [Detmold, William] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA.
[Orginos, Kostas] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA.
[Orginos, Kostas] Jefferson Lab, Newport News, VA 23606 USA.
RP Detmold, W (reprint author), MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA.
OI Detmold, William/0000-0002-0400-8363
FU National Energy Research Scientific Computing Center (NERSC, Office of
Science of the US DOE) [DE-AC02-05CH11231]; DOE [DE-AC05-06OR23177,
DE-FG02-04ER41302]; DOE OJI [DE-SC0001784]; Jeffress Memorial Trust
[J-968]
FX We thank M. G. Endres, D. B. Kaplan, M. J. Savage, and the members of
the NPLQCD Collaboration for insightful discussions on the topic of this
work. We also thank R. Edwards and B. Joo for help with QDP ++ and
Chroma software suites [24], which are the software bases of all
computations presented here. We acknowledge computational support from
the National Energy Research Scientific Computing Center (NERSC, Office
of Science of the US DOE, Grant No. DE-AC02-05CH11231), and the NSF
through XSEDE resources provided by NICS. This work was supported in
part by DOE Grants No. DE-AC05-06OR23177 (J. S. A.) and No.
DE-FG02-04ER41302. W. D. was also supported by DOE OJI Grant No.
DE-SC0001784 and Jeffress Memorial Trust, Grant No. J-968.
NR 28
TC 17
Z9 17
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUN 24
PY 2013
VL 87
IS 11
AR 114512
DI 10.1103/PhysRevD.87.114512
PG 9
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 171TH
UT WOS:000320951500003
ER
PT J
AU Akdogan, EK
Savkliyildiz, I
Bicer, H
Paxton, W
Toksoy, F
Zhong, Z
Tsakalakos, T
AF Akdogan, E. K.
Savkliyildiz, I.
Bicer, H.
Paxton, W.
Toksoy, F.
Zhong, Z.
Tsakalakos, T.
TI Anomalous lattice expansion in yttria stabilized zirconia under
simultaneous applied electric and thermal fields: A time-resolved in
situ energy dispersive x-ray diffractometry study with an ultrahigh
energy synchrotron probe
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID SINTERING CRYSTALLINE SOLIDS; GRAIN-GROWTH; NANOGRAIN ZIRCONIA;
DIFFUSION; FERROELECTRICS; CONDUCTIVITY; DIMENSIONS; SIMULATION;
KINETICS; STRESSES
AB Nonisothermal densification in 8% yttria doped zirconia (8YSZ) particulate matter of 250 nm median particle size was studied under 215 V/cm dc electric field and 9 degrees C/min heating rate, using time-resolved in-situ high temperature energy dispersive x-ray diffractometry with a polychromatic 200 keV synchrotron probe. Densification occurred in the 876-905 degrees C range, which resulted in 97% of the theoretical density. No local melting at particle-particle contacts was observed in scanning electron micrographs, implying densification was due to solid state mass transport processes. The maximum current draw at 905 degrees C was 3 A, corresponding to instantaneous absorbed power density of 570 W/cm(3). Densification of 8YSZ was accompanied by anomalous elastic volume expansions of the unit cell by 0.45% and 2.80% at 847 degrees C and 905 degrees C, respectively. The anomalous expansion at 905 degrees C at which maximum densification was observed is characterized by three stages: (I) linear stage, (II) anomalous stage, and (III) anelastic recovery stage. The densification in stage I (184 s) and II (15 s) was completed in 199 s, while anelastic relaxation in stage III lasted 130 s. The residual strains (epsilon) at room temperature, as computed from tetragonal (112) and (211) reflections, are epsilon((112)) = 0.05% and epsilon((211)) = 0.13%, respectively. Time dependence of (211) and (112) peak widths (beta) show a decrease with both exhibiting a singularity at 905 degrees C. An anisotropy in (112) and (211) peak widths of {beta((112))/beta((211))} = (3:1) magnitude was observed. No phase transformation occurred at 905 degrees C as verified from diffraction spectra on both sides of the singularity, i.e., the unit cell symmetry remains tetragonal. We attribute the reduction in densification temperature and time to ultrafast ambipolar diffusion of species arising from the superposition of mass fluxes due to Fickian diffusion, thermodiffusion (Soret effect), and electromigration, which in turn are a consequence of a superposition of chemical, temperature, and electrical potential gradients. On the other hand, we propose defect pile-up at particle-particle contacts and subsequent tunneling as a mechanism creating the "burst-mode" discontinuous densification at the singularities observed at 847 and 905 degrees C. (C) 2013 AIP Publishing LLC.
C1 [Akdogan, E. K.; Savkliyildiz, I.; Bicer, H.; Paxton, W.; Toksoy, F.; Tsakalakos, T.] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA.
[Zhong, Z.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
RP Akdogan, EK (reprint author), Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA.
EM eka@rci.rutgers.edu
OI Paxton, William/0000-0001-5899-9038
FU Office of Naval Research (ONR) [N00014-10-1-042]; U.S. Department of
Energy, Division of Material Sciences and Division of Chemical Sciences
[DE-AC02-76CH00016]
FX The authors wish to express their gratitude for the financial support
provided by the Office of Naval Research (ONR) under Contract No.
N00014-10-1-042. The authors wish to thank Dr. L. Kabacoff of the ONR
for his valuable technical feedback and support of this project. This
research was carried out in part at the NSLS, which is supported by the
U.S. Department of Energy, Division of Material Sciences and Division of
Chemical Sciences, under Contract No. DE-AC02-76CH00016.
NR 61
TC 5
Z9 5
U1 2
U2 32
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 21
PY 2013
VL 113
IS 23
AR 233503
DI 10.1063/1.4811362
PG 9
WC Physics, Applied
SC Physics
GA 172NT
UT WOS:000321011700013
ER
PT J
AU Guo, HW
Sun, DL
Wang, WB
Gai, Z
Kravchenko, I
Shao, J
Jiang, L
Ward, TZ
Snijders, PC
Yin, LF
Shen, J
Xu, XS
AF Guo, Hangwen
Sun, Dali
Wang, Wenbin
Gai, Zheng
Kravchenko, Ivan
Shao, Jian
Jiang, Lu
Ward, Thomas Z.
Snijders, Paul C.
Yin, Lifeng
Shen, Jian
Xu, Xiaoshan
TI Growth diagram of La0.7Sr0.3MnO3 thin films using pulsed laser
deposition
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID LOW-FIELD MAGNETORESISTANCE; ABLATION; TEMPERATURE; MORPHOLOGY
AB An experimental study was conducted on controlling the growth mode of La0.7Sr0.3MnO3 thin films on SrTiO3 substrates using pulsed laser deposition (PLD) by tuning growth temperature, pressure, and laser fluence. Different thin film morphology, crystallinity, and stoichiometry have been observed depending on growth parameters. To understand the microscopic origin, the adatom nucleation, step advance processes, and their relationship to film growth were theoretically analyzed and a growth diagram was constructed. Three boundaries between highly and poorly crystallized growth, 2D and 3D growth, stoichiometric and non-stoichiometric growth were identified in the growth diagram. A good fit of our experimental observation with the growth diagram was found. This case study demonstrates that a more comprehensive understanding of the growth mode in PLD is possible. (C) 2013 AIP Publishing LLC.
C1 [Guo, Hangwen; Wang, Wenbin; Jiang, Lu; Shen, Jian] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Guo, Hangwen; Sun, Dali; Wang, Wenbin; Gai, Zheng; Jiang, Lu; Ward, Thomas Z.; Snijders, Paul C.; Xu, Xiaoshan] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Sun, Dali] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Gai, Zheng; Kravchenko, Ivan] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Shao, Jian; Yin, Lifeng; Shen, Jian] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China.
[Shao, Jian; Yin, Lifeng; Shen, Jian] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
RP Shen, J (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
EM shenj5494@fudan.edu.cn; xiaoshan.xu@gatech.edu
RI Gai, Zheng/B-5327-2012; Xu, Xiaoshan/B-1255-2009; Kravchenko,
Ivan/K-3022-2015; Ward, Thomas/I-6636-2016
OI Gai, Zheng/0000-0002-6099-4559; Xu, Xiaoshan/0000-0002-4363-392X;
Kravchenko, Ivan/0000-0003-4999-5822; Ward, Thomas/0000-0002-1027-9186
FU US Department of Energy, Basic Energy Sciences, Materials Sciences, and
Engineering Division; Office of Basic Energy Sciences, US Department of
Energy; National Basic Research Program of China (973 Program)
[2011CB921801]; US DOE Office of Basic Energy Sciences, the US DOE
[DE-SC0002136]
FX Research supported by the US Department of Energy, Basic Energy
Sciences, Materials Sciences, and Engineering Division (P. C. S.,
T.Z.W., X. S. X.) and performed in part at the Center for Nanophase
Materials Sciences (CNMS) (Z.G., I. K.) User Facility, which are
sponsored at Oak Ridge National Laboratory by the Office of Basic Energy
Sciences, US Department of Energy. We also acknowledge partial funding
supports from the National Basic Research Program of China (973 Program)
under Grant No. 2011CB921801 (J.S.), and the US DOE Office of Basic
Energy Sciences, the US DOE Grant No. DE-SC0002136 (H.W.G., W.B.W.).
NR 36
TC 3
Z9 3
U1 3
U2 45
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 21
PY 2013
VL 113
IS 23
AR 234301
DI 10.1063/1.4811187
PG 8
WC Physics, Applied
SC Physics
GA 172NT
UT WOS:000321011700049
ER
PT J
AU Levesque, G
Vitello, P
Howard, WM
AF Levesque, G.
Vitello, P.
Howard, W. M.
TI Hot-spot contributions in shocked high explosives from mesoscale
ignition models
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID INITIATION; COLLAPSE
AB High explosive performance and sensitivity is strongly related to the mesoscale defect densities. Bracketing the population of mesoscale hot spots that are active in the shocked ignition of explosives is important for the development of predictive reactive flow models. By coupling a multiphysics-capable hydrodynamics code (ALE3D) with a chemical kinetics solver (CHEETAH), we can parametrically analyze different pore sizes undergoing collapse in high pressure shock conditions with evolving physical parameter fields. Implementing first-principles based decomposition kinetics, burning hot spots are monitored, and the regimes of pore sizes that contribute significantly to burnt mass faction and those that survive thermal conduction on the time scales of ignition are elucidated. Comparisons are drawn between the thermal explosion theory and the multiphysics models for the determination of nominal pore sizes that burn significantly during ignition for the explosive 1,3,5-triamino-2,4,6-trinitrobenzene. (C) 2013 AIP Publishing LLC.
C1 [Levesque, G.; Vitello, P.; Howard, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Levesque, G (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
EM Levesque6@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX Larry E. Fried, Riad Manaa, Fady Najjar, Jack Reaugh, Craig M. Tarver,
and Albert L. Nichols III of Lawrence Livermore National Laboratory are
all thanked for their thoughtful contributions. This work performed
under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.
NR 41
TC 8
Z9 8
U1 4
U2 29
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 21
PY 2013
VL 113
IS 23
AR 233513
DI 10.1063/1.4811233
PG 9
WC Physics, Applied
SC Physics
GA 172NT
UT WOS:000321011700023
ER
PT J
AU Teixeira, FS
Salvadori, MC
Araujo, WWR
Amorim, HJM
Cattani, M
Brown, IG
AF Teixeira, F. S.
Salvadori, M. C.
Araujo, W. W. R.
Amorim, H. J. M.
Cattani, M.
Brown, I. G.
TI Isotropic and anisotropic wrinkling of diamond-like carbon films on
polydimethylsiloxane substrates
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID THIN-FILMS; POLYMER
AB We describe experimental results about the spontaneous wrinkling of diamond-like carbon films over the thickness range 2 nm-58 nm, grown on polydimethylsiloxane (PDMS) substrates with a 5 nm gold film deposited as adhesion layer. Using Atomic Force Microscopy data with suitable processing, we explore both isotropic and anisotropic wrinkling, the latter done by creating trench structures on PDMS substrates. We show new non-predictable results based on the known literature. (C) 2013 AIP Publishing LLC.
C1 [Teixeira, F. S.; Salvadori, M. C.; Araujo, W. W. R.; Amorim, H. J. M.; Cattani, M.] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil.
[Brown, I. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Teixeira, FS (reprint author), Univ Sao Paulo, Inst Phys, CP 66318, BR-05315970 Sao Paulo, Brazil.
EM nandast@if.usp.br
RI Cattani, Mauro/N-9749-2013; Teixeira, Fernanda/A-9395-2013; Salvadori,
Maria Cecilia/A-9379-2013
FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho
Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Coordenacao
de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Brazil
FX This work was supported by the Fundacao de Amparo a Pesquisa do Estado
de Sao Paulo (FAPESP), the Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico (CNPq), and Coordenacao de Aperfeicoamento de
Pessoal de Nivel Superior (CAPES), Brazil.
NR 10
TC 1
Z9 1
U1 0
U2 18
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 21
PY 2013
VL 113
IS 23
AR 234904
DI 10.1063/1.4811456
PG 4
WC Physics, Applied
SC Physics
GA 172NT
UT WOS:000321011700079
ER
PT J
AU Bianchetti, CM
Harmann, CH
Takasuka, TE
Hura, GL
Dyer, K
Fox, BG
AF Bianchetti, Christopher M.
Harmann, Connor H.
Takasuka, Taichi E.
Hura, Gregory L.
Dyer, Kevin
Fox, Brian G.
TI Fusion of Dioxygenase and Lignin-binding Domains in a Novel Secreted
Enzyme from Cellulolytic Streptomyces sp SirexAA-E
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID RHODOCOCCUS-OPACUS 1CP; X-RAY-SCATTERING; PROTOCATECHUATE
3,4-DIOXYGENASE; CRYSTAL-STRUCTURE; BREVIBACTERIUM-FUSCUM; KEY ENZYME;
CELL-WALL; 1,2-DIOXYGENASE; CRYSTALLOGRAPHY; BIOSYNTHESIS
AB Streptomyces sp. SirexAA-E is a highly cellulolytic bacterium isolated from an insect/microbe symbiotic community. When grown on lignin-containing biomass, it secretes SACTE_2871, an aromatic ring dioxygenase domain fused to a family 5/12 carbohydrate-binding module (CBM 5/12). Here we present structural and catalytic studies of this novel fusion enzyme, thus providing insight into its function. The dioxygenase domain has the core beta-sandwich fold typical of this enzyme family but lacks a dimerization domain observed in other intradiol dioxygenases. Consequently, the x-ray structure shows that the enzyme is monomeric and the Fe(III)-containing active site is exposed to solvent in a shallow depression on a planar surface. Purified SACTE_2871 catalyzes the O-2-dependent intradiol cleavage of catechyl compounds from lignin biosynthetic pathways, but not their methylated derivatives. Binding studies show that SACTE_2871 binds synthetic lignin polymers and chitin through the interactions of the CBM 5/12 domain, representing a new binding specificity for this fold-family. Based on its unique structural features and functional properties, we propose that SACTE_2871 contributes to the invasive nature of the insect/microbial community by destroying precursors needed by the plant for de novo lignin biosynthesis as part of its natural wounding response.
C1 [Bianchetti, Christopher M.; Harmann, Connor H.; Takasuka, Taichi E.; Fox, Brian G.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA.
[Hura, Gregory L.; Dyer, Kevin] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Fox, BG (reprint author), Univ Wisconsin, 433 Babcock Dr, Madison, WI 53706 USA.
EM bgfox@biochem.wisc.edu
FU United States Department of Energy, Basic Energy Sciences, Office of
Science [W-31-109-ENG-38]; College of Agricultural and Life Sciences,
Department of Biochemistry; Graduate School of the University of
Wisconsin; Michigan Economic Development Corporation; Michigan
Technology Tri-Corridor Grant [085P1000817]; DOE program Integrated
Diffraction Analysis Technologies [IDAT-DE-AC02-05CH11231]
FX We thank the Dr. Craig A. Bingman (University of Wisconsin Center for
Eukaryotic Structural Genomics) for access to crystallization robotics,
Grzegory Sabat (Biotechnology Center, University of Wisconsin-Madison)
for assistance with mass spectrometry, Dr. John Ralph and Dr. Yuki
Tobimatsu (Great Lakes Bioenergy Research Center, University of
Wisconsin) for gifts of synthetic lignins and 5-OH-ferulate, and Dr.
Curtis Wilkerson and Saunia Withers (Great Lakes Bioenergy Research
Center, Michigan State University) for the gift of the caffeoyl-CoA
synthesis enzyme Nt4CL1. We also thank Dr. Ralph for many stimulating
discussions on the complexities of lignin. Use of the Advanced Photon
Source was supported by the United States Department of Energy, Basic
Energy Sciences, Office of Science, under contract number
W-31-109-ENG-38. Use of the Life Science Collaborative Access Team at
the Advanced Photon Source was supported by the College of Agricultural
and Life Sciences, Department of Biochemistry, the Graduate School of
the University of Wisconsin, the Michigan Economic Development
Corporation, and Michigan Technology Tri-Corridor Grant 085P1000817).
X-ray scattering studies at the SIBYLS was supported by DOE program
Integrated Diffraction Analysis Technologies (IDAT-DE-AC02-05CH11231).
NR 60
TC 9
Z9 9
U1 5
U2 27
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
EI 1083-351X
J9 J BIOL CHEM
JI J. Biol. Chem.
PD JUN 21
PY 2013
VL 288
IS 25
BP 18574
EP 18587
DI 10.1074/jbc.M113.475848
PG 14
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 168QZ
UT WOS:000320721900057
PM 23653358
ER
PT J
AU Butler, MC
Kervern, G
Theis, T
Ledbetter, MP
Ganssle, PJ
Blanchard, JW
Budker, D
Pines, A
AF Butler, Mark C.
Kervern, Gwendal
Theis, Thomas
Ledbetter, Micah P.
Ganssle, Paul J.
Blanchard, John W.
Budker, Dmitry
Pines, Alexander
TI Parahydrogen-induced polarization at zero magnetic field
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID PARA-HYDROGEN; SPIN SYSTEMS; NMR; RESONANCE; MAGNETOMETRY; STATES; ORDER
AB We use symmetry arguments and simple model systems to describe the conversion of the singlet state of parahydrogen into an oscillating sample magnetization at zero magnetic field. During an initial period of free evolution governed by the scalar-coupling Hamiltonian H-J, the singlet state is converted into scalar spin order involving spins throughout the molecule. A short dc pulse along the z axis rotates the transverse spin components of nuclear species I and S through different angles, converting a portion of the scalar order into vector order. The development of vector order can be described analytically by means of single-transition operators, and it is found to be maximal when the transverse components of I are rotated by an angle of +/-pi/2 relative to those of S. A period of free evolution follows the pulse, during which the vector order evolves as a set of oscillating coherences. The imaginary parts of the coherences represent spin order that is not directly detectable, while the real parts can be identified with oscillations in the z component of the molecular spin dipole. The dipole oscillations are due to a periodic exchange between I-z and S-z, which have different gyromagnetic ratios. The frequency components of the resulting spectrum are imaginary, since the pulse cannot directly induce magnetization in the sample; it is only during the evolution under H-J that the vector order present at the end of the pulse evolves into detectable magnetization. (C) 2013 AIP Publishing LLC.
C1 [Butler, Mark C.; Kervern, Gwendal; Theis, Thomas; Ganssle, Paul J.; Blanchard, John W.; Pines, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Butler, Mark C.; Kervern, Gwendal; Theis, Thomas; Ganssle, Paul J.; Blanchard, John W.; Pines, Alexander] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Ledbetter, Micah P.; Budker, Dmitry] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Budker, Dmitry] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Butler, MC (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
EM mrkcbutler@gmail.com
RI Butler, Mark/L-6906-2013; Theis, Thomas/J-2304-2014; Budker,
Dmitry/F-7580-2016
OI Blanchard, John/0000-0002-1621-6637; Butler, Mark/0000-0002-1273-5771;
Theis, Thomas/0000-0001-6779-9978; Budker, Dmitry/0000-0002-7356-4814
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering [DE-AC02-05CH11231];
National Science Foundation (NSF) [CHE-095765]
FX Research was supported by the U.S. Department of Energy (DOE), Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering
under Contract No. DE-AC02-05CH11231 [theoretical work, PHIP
experiments, salaries for G. Kervern, T. Theis, P. Ganssle, J.
Blanchard, A. Pines], and by the National Science Foundation (NSF) under
Award No. CHE-095765 [zero-field instrumentation, salaries for M.
Butler, M. Ledbetter, D. Budker, A. Pines].
NR 32
TC 5
Z9 5
U1 0
U2 28
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 21
PY 2013
VL 138
IS 23
AR 234201
DI 10.1063/1.4805062
PG 21
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 172NZ
UT WOS:000321012400009
PM 23802953
ER
PT J
AU Pronskikh, VS
AF Pronskikh, V. S.
TI RADIATION STUDIES FOR THE Mu2e EXPERIMENT: A REVIEW
SO MODERN PHYSICS LETTERS A
LA English
DT Review
DE Muon to electron conversion; apparatus design; energy deposition;
radiation damage; neutron background; Monte Carlo simulations
ID DEFECT PRODUCTION; METALS; RECOVERY
AB The Mu2e experiment being designed at Fermilab will be searching for a rare event - conversion of muon into electron in the field of a nucleus without emission of neutrinos - observation of which would provide unambiguous evidence for physics beyond the Standard Model, making use of an 8 GeV 8 kW proton beam. As an experiment to be performed at the Intensity Frontier, taking advantage of high-intensity proton beams, the Mu2e experimental setup will be residing in a harsh radiation environment created by secondary particle fluxes.
Radiation quantities in different parts of the Mu2e apparatus, such as neutron flux, peak power density, displacements per atom (DPA), absorbed dose, dynamic heat load simulated using the MARS15 code are reviewed in this work. Radiation levels and requirements for Heat and Radiation Shield (HRS), Transport Solenoid (TS), residual dose and decay heat from the Mu2e target, beam dump design, rates in Cosmic Ray Veto (CRV) counters as well as stopping target monitor (STM) are considered. Airflow, surface and ground water activation are estimated. Recent developments in the MARS15 DPA model applied in this work are described, their consequences are discussed.
C1 Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA.
RP Pronskikh, VS (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, MS 220,Kirk Rd & Pine Str, Batavia, IL 60510 USA.
EM vspron@fnal.gov
NR 23
TC 1
Z9 1
U1 0
U2 2
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-7323
J9 MOD PHYS LETT A
JI Mod. Phys. Lett. A
PD JUN 21
PY 2013
VL 28
IS 19
AR 1330014
DI 10.1142/S0217732313300140
PG 16
WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical
SC Physics
GA 170UD
UT WOS:000320878800001
ER
PT J
AU Fishman, RS
AF Fishman, Randy S.
TI Field dependence of the spin state and spectroscopic modes of
multiferroic BiFeO3
SO PHYSICAL REVIEW B
LA English
DT Article
AB The spectroscopic modes of multiferroic BiFeO3 provide detailed information about the very small anisotropy and Dzyaloshinskii-Moriya (DM) interactions responsible for the long-wavelength, distorted cycloid below T-N = 640 K. A microscopic model that includes two DM interactions and easy-axis anisotropy predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field applied along a cubic axis. While only six modes are optically active in zero field, all modes at the cycloidal wave vector are activated by a magnetic field. The three magnetic domains of the cycloid are degenerate in zero field but one domain has lower energy than the other two in nonzero field. Measurements imply that the higher-energy domains are depopulated above about 6 T and have a maximum critical field of 16 T, below the critical field of 19 T for the lowest-energy domain. Despite the excellent agreement with the measured spectroscopic frequencies, some discrepancies with the measured spectroscopic intensities suggest that other weak interactions may be missing from the model.
C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA.
FU US Department of Energy, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division
FX I gratefully acknowledge conversations with Nobuo Furukawa, Masaaki
Matsuda, Shin Miyahara, Jan Musfeldt, Urmas Nagel, Satoshi Okamoto,
Toomas Room, Rogerio de Sousa, and Diyar Talbayev. Research was
sponsored by the US Department of Energy, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division.
NR 36
TC 13
Z9 13
U1 0
U2 24
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 21
PY 2013
VL 87
IS 22
AR 224419
DI 10.1103/PhysRevB.87.224419
PG 8
WC Physics, Condensed Matter
SC Physics
GA 169FX
UT WOS:000320766100004
ER
PT J
AU Dhaka, RS
Lee, Y
Anand, VK
Johnston, DC
Harmon, BN
Kaminski, A
AF Dhaka, R. S.
Lee, Y.
Anand, V. K.
Johnston, D. C.
Harmon, B. N.
Kaminski, Adam
TI Angle-resolved photoemission spectroscopy study of BaCo2As2
SO PHYSICAL REVIEW B
LA English
DT Article
ID 43 K; SUPERCONDUCTIVITY; LAO1-XFXFEAS; TRANSITION
AB We use angle-resolved photoemission spectroscopy and full-potential linearized augmented-plane-wave (FP-LAPW) calculations to study the electronic structure of BaCo2As2. The Fermi surface (FS) maps and the corresponding band dispersion data (at 90 and 200 K) reveal a small electron pocket at the center and a large electron pocket at the corner of the Brillouin zone. Therefore the nesting between electron and hole FS pockets is absent in this compound, in contrast to the parent compounds of FeAs-based high-T-c superconductors. The electron pockets at the center of the zone are surrounded by two sets of four smaller electron pockets. The electronic structure at about 500 meV binding energy is very similar to features at the chemical potential in BaFe2As2. This indicates that complete substitution of Co for Fe causes a nearly rigid shift in the chemical potential by adding two electrons per formula unit at higher binding energies. However at lower binding energies similar to 270 meV, the electron pocket at the center of the zone is absent, unlike in the Co-substituted Fe-based materials. This demonstrates that the rigid band picture is valid only at higher binding energies and breaks down closer to the chemical potential in BaCo2As2. We also observed the presence of a flat band near the Fermi energy that may have consequences for transport and thermodynamical properties. The experimental FS topology as well as band dispersion data are in reasonable agreement with the FP-LAPW calculations.
C1 Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Dhaka, RS (reprint author), Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
EM kaminski@ameslab.gov
RI Dhaka, Rajendra/C-2486-2013; Anand, Vivek Kumar/J-3381-2013
OI Anand, Vivek Kumar/0000-0003-2023-7040
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering; U.S. Department of Energy by Iowa
State University [DE-AC02-07CH11358]; Office of Basic Energy Sciences,
U.S. Department of Energy [DE-AC02-05CH11231]
FX We thank Aaron Bostwick and Eli Rotenberg for excellent support at the
ALS and Abhishek Pandey for helpful discussions. This research was
supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering. Ames
Laboratory is operated for the U.S. Department of Energy by Iowa State
University under Contract No. DE-AC02-07CH11358. The Advanced Light
Source is supported by the Office of Basic Energy Sciences, U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.
NR 32
TC 15
Z9 15
U1 3
U2 44
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 21
PY 2013
VL 87
IS 21
AR 214516
DI 10.1103/PhysRevB.87.214516
PG 6
WC Physics, Condensed Matter
SC Physics
GA 169FR
UT WOS:000320765200004
ER
PT J
AU Kim, H
Kogan, VG
Cho, K
Tanatar, MA
Prozorov, R
AF Kim, H.
Kogan, V. G.
Cho, K.
Tanatar, M. A.
Prozorov, R.
TI Rutgers relation for the analysis of superfluid density in
superconductors
SO PHYSICAL REVIEW B
LA English
DT Article
ID MAGNETIC PENETRATION DEPTH; MUON SPIN ROTATION; UPPER CRITICAL-FIELD;
T-C SUPERCONDUCTORS; VORTEX CORES; NIOBIUM; TEMPERATURE; EXCITATIONS;
CRYSTALS; MGB2
AB It is shown that the thermodynamic Rutgers relation for the second-order phase transitions can be used for the analysis of the superfluid density data irrespective of complexities of the Fermi surface, structure of the superconducting gap, pairing strength, or scattering. The only limitation is that critical fluctuations should be weak so that the mean-field theory of the second-order phase transitions is applicable. By using the Rutgers relation, the zero-temperature value of the London penetration depth lambda(0) is related to the specific heat jump Delta C and the slope of upper critical field dH(c2)/dT at the transition temperature T-c, provided the data on Delta lambda = lambda(T) - lambda(0) are available in a broad temperature domain. We then provide a way to determine lambda(0), the quantity difficult to determine within many techniques.
C1 [Kim, H.; Kogan, V. G.; Cho, K.; Tanatar, M. A.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA.
[Kim, H.; Tanatar, M. A.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Prozorov, R (reprint author), Ames Lab, Ames, IA 50011 USA.
EM prozorov@ameslab.gov
FU US Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-AC02-07CH11358]
FX We thank A. Chubukov for useful discussions. The work was supported by
the US Department of Energy, Office of Basic Energy Sciences, Division
of Materials Sciences and Engineering under Contract No.
DE-AC02-07CH11358.
NR 45
TC 3
Z9 3
U1 2
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 21
PY 2013
VL 87
IS 21
AR 214518
DI 10.1103/PhysRevB.87.214518
PG 6
WC Physics, Condensed Matter
SC Physics
GA 169FR
UT WOS:000320765200006
ER
PT J
AU de Oteyza, DG
Gorman, P
Chen, YC
Wickenburg, S
Riss, A
Mowbray, DJ
Etkin, G
Pedramrazi, Z
Tsai, HZ
Rubio, A
Crommie, MF
Fischer, FR
AF de Oteyza, Dimas G.
Gorman, Patrick
Chen, Yen-Chia
Wickenburg, Sebastian
Riss, Alexander
Mowbray, Duncan J.
Etkin, Grisha
Pedramrazi, Zahra
Tsai, Hsin-Zon
Rubio, Angel
Crommie, Michael F.
Fischer, Felix R.
TI Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical
Reactions
SO SCIENCE
LA English
DT Article
ID ATOMIC-FORCE MICROSCOPY; CYCLIZATION; ENEDIYNES; RESOLUTION; CATALYSIS;
STEPS
AB Observing the intricate chemical transformation of an individual molecule as it undergoes a complex reaction is a long-standing challenge in molecular imaging. Advances in scanning probe microscopy now provide the tools to visualize not only the frontier orbitals of chemical reaction partners and products, but their internal covalent bond configurations as well. We used noncontact atomic force microscopy to investigate reaction-induced changes in the detailed internal bond structure of individual oligo-(phenylene-1,2-ethynylenes) on a (100) oriented silver surface as they underwent a series of cyclization processes. Our images reveal the complex surface reaction mechanisms underlying thermally induced cyclization cascades of enediynes. Calculations using ab initio density functional theory provide additional support for the proposed reaction pathways.
C1 [de Oteyza, Dimas G.; Chen, Yen-Chia; Wickenburg, Sebastian; Riss, Alexander; Pedramrazi, Zahra; Tsai, Hsin-Zon; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[de Oteyza, Dimas G.; Rubio, Angel] UPV EHU Mat Phys Ctr, Ctr Fis Mat CSIC, E-20018 San Sebastian, Spain.
[Gorman, Patrick; Etkin, Grisha; Fischer, Felix R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Chen, Yen-Chia; Wickenburg, Sebastian; Crommie, Michael F.; Fischer, Felix R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA.
[Mowbray, Duncan J.; Rubio, Angel] Donostia Int Phys Ctr, E-20018 San Sebastian, Spain.
[Mowbray, Duncan J.; Rubio, Angel] Univ Pais Vasco UPV, EHU, Nanobio Spect Grp, E-20018 San Sebastian, Spain.
[Mowbray, Duncan J.; Rubio, Angel] Univ Pais Vasco UPV, EHU, ETSF Sci Dev Ctr, Dpto Fis Mat, E-20018 San Sebastian, Spain.
RP Crommie, MF (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM crommie@berkeley.edu; ffischer@berkeley.edu
RI de Oteyza, Dimas/H-5955-2013; Riss, Alexander/C-1565-2014; Mowbray,
Duncan/A-5531-2010; Rubio, Angel/A-5507-2008; DONOSTIA INTERNATIONAL
PHYSICS CTR., DIPC/C-3171-2014; Tsai, Hsin-Zon/J-1682-2016;
CSIC-UPV/EHU, CFM/F-4867-2012
OI de Oteyza, Dimas/0000-0001-8060-6819; Riss,
Alexander/0000-0002-3212-7925; Mowbray, Duncan/0000-0002-8520-0364;
Rubio, Angel/0000-0003-2060-3151; Tsai, Hsin-Zon/0000-0003-2097-0170;
FU Office of Naval Research BRC Program; Helios Solar Energy Research
Center; Office of Science, Office of Basic Energy Sciences, U.S.
Department of Energy [DE-AC02-05CH11231]; NSF [DMR-1206512]; European
Research Council [DYNamo ERC-2010-AdG-267374]; European Union
[FP7-PEOPLE-2010-IOF-271909]; Austrian Science Fund (FWF) [J3026-N16];
Spanish "Juan de la Cierva" program [JCI-2010-08156]
FX Supported by the Office of Naval Research BRC Program (molecular
synthesis, characterization, and STM imaging); the Helios Solar Energy
Research Center supported by the Office of Science, Office of Basic
Energy Sciences, U.S. Department of Energy under contract
DE-AC02-05CH11231 (STM and nc-AFM instrumentation development, AFM
operation); NSF grant DMR-1206512 (image analysis); and European
Research Council advanced grant DYNamo ERC-2010-AdG-267374 (ab initio
calculations). Computing time was provided by the Barcelona
Supercomputing Center "Red Espanola de Supercomputacion." D.G.d.O.
acknowledges fellowship support by the European Union under
FP7-PEOPLE-2010-IOF-271909, A.R. by Austrian Science Fund (FWF) grant
J3026-N16, and D.J.M. by the Spanish "Juan de la Cierva" program
(JCI-2010-08156). The data presented in the manuscript are tabulated in
the main paper and in the supplementary materials. The authors declare
no conflicts of interest.
NR 26
TC 146
Z9 148
U1 13
U2 260
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD JUN 21
PY 2013
VL 340
IS 6139
BP 1434
EP 1437
DI 10.1126/science.1238187
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 167QL
UT WOS:000320647000037
PM 23722428
ER
PT J
AU Croft, S
Henzlova, D
AF Croft, S.
Henzlova, D.
TI Determining Cf-252 source strength by absolute passive neutron
correlation counting
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Source calibration; Multiplicity counting; Neutron correlation analysis;
Californium neutrons; Absolute metrology
AB Physically small, lightly encapsulated, radionuclide sources containing Cf-252 are widely used for a vast variety of industrial, medical, educational and research applications requiring a convenient source of neutrons. For many quantitative applications, such as detector efficiency calibrations, the absolute strength of the neutron emission is needed. In this work we show how, by using a neutron multiplicity counter the neutron emission rate can be obtained with high accuracy. This provides an independent and alternative way to create reference sources in-house for laboratories such as ours engaged in international safeguards metrology. The method makes use of the unique and well known properties of the Cf-252 spontaneous fission system and applies advanced neutron correlation counting methods. We lay out the foundation of the method and demonstrate it experimentally. We show that accuracy comparable to the best methods currently used by national bodies to certify neutron source strengths is possible. (c) 2013 Elsevier B.V. All rights reserved.
C1 [Croft, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Henzlova, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Henzlova, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM henzlova@lanl.gov
FU U.S. Department of Energy (DOE), National Nuclear Security
Administration (NNSA), Office of Nonproliferation Research and
Development [NA-22]
FX This work was funded in part by the U.S. Department of Energy (DOE),
National Nuclear Security Administration (NNSA), Office of
Nonproliferation Research and Development (NA-22). We also warmly thank
Dr. Martyn Swinhoe for reading the manuscript and providing us with
enthusiastic encouragement.
NR 21
TC 3
Z9 5
U1 0
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUN 21
PY 2013
VL 714
BP 5
EP 12
DI 10.1016/j.nima.2013.02.002
PG 8
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 148NO
UT WOS:000319251800002
ER
PT J
AU Aielli, G
Ball, R
Bilki, B
Chapman, JW
Cardarelli, R
Dai, T
Diehl, E
Dubbert, J
Ferretti, C
Feng, H
Francis, K
Guan, L
Han, L
Hou, S
Levin, D
Li, B
Liu, L
Paolozzi, L
Repond, J
Roloff, J
Santonico, R
Song, HY
Wang, XL
Wu, Y
Xia, L
Xu, L
Zhao, T
Zhao, Z
Zhou, B
Zhu, J
AF Aielli, G.
Ball, R.
Bilki, B.
Chapman, J. W.
Cardarelli, R.
Dai, T.
Diehl, E.
Dubbert, J.
Ferretti, C.
Feng, H.
Francis, K.
Guan, L.
Han, L.
Hou, S.
Levin, D.
Li, B.
Liu, L.
Paolozzi, L.
Repond, J.
Roloff, J.
Santonico, R.
Song, H. Y.
Wang, X. L.
Wu, Y.
Xia, L.
Xu, L.
Zhao, T.
Zhao, Z.
Zhou, B.
Zhu, J.
TI Studies on fast triggering and high precision tracking with Resistive
Plate Chambers
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE RPC; Trigger; Tracking; Time resolution; Spatial resolution
ID OF-FLIGHT DETECTOR; SPATIAL-RESOLUTION; ALICE EXPERIMENT; RPC SYSTEM;
PERFORMANCE; LHC
AB We report on studies of fast triggering and high precision tracking using Resistive Plate Chambers (RPCs). Two beam tests were carried out with the 180 GeV/c muon beam at CERN using glass RPCs with gas gaps of 1.15 mm and equipped with readout strips with 1.27 mm pitch. This is the first beam test of RPCs with fine-pitch readout strips that explores precision tracking and triggering capabilities. RPC signals were acquired with precision timing and charge integrating readout electronics at both ends of the strips. The time resolution was measured to be better than 600 ps and the average spatial resolution was found to be 220 mu m using charge information and 287 mu m only using signal arrival time information. The dual-ended readout allows the determination of the average and the difference of the signal arrival times. The average time was found to be independent of the incident particle position along the strip and is useful for triggering purposes. The time difference yielded a determination of the hit position with a precision of 7.5 mm along the strip. These results demonstrate the feasibility using RPCs for fast and high-resolution triggering and tracking. (c) 2013 Elsevier B.V. All rights reserved.
C1 [Aielli, G.; Cardarelli, R.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Cardarelli, R.; Paolozzi, L.; Santonico, R.] INFN Roma Tor Vergata, Rome, Italy.
[Ball, R.; Chapman, J. W.; Dai, T.; Diehl, E.; Dubbert, J.; Ferretti, C.; Feng, H.; Guan, L.; Levin, D.; Liu, L.; Roloff, J.; Wu, Y.; Xu, L.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bilki, B.; Francis, K.; Repond, J.; Xia, L.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Guan, L.; Han, L.; Li, B.; Song, H. Y.; Wang, X. L.; Wu, Y.; Xu, L.; Zhao, Z.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Hou, S.; Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Zhu, J (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA.
EM junjie@umich.edu
OI Bilki, Burak/0000-0001-9515-3306
FU Department of Energy [DE-SC0007859, DE-AC02-98CH10886]; National Science
Foundation of China [11025528]
FX The authors would like to thank M. Lippert and P. Schwegler from the Max
Plank Institute, and G. Mikenberg, M. Shoa and their colleagues from the
ATLAS TGC group for their help during the beam tests. The authors would
also like to acknowledge the precious help of M.C.S. Williams and R.
Zouevski on using NINO front-end electronics. This work is supported in
part by the Department of Energy under contracts DE-SC0007859 and
DE-AC02-98CH10886, and by National Science Foundation of China under
contract 11025528.
NR 19
TC 4
Z9 4
U1 1
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUN 21
PY 2013
VL 714
BP 115
EP 120
DI 10.1016/j.nima.2013.02.044
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 148NO
UT WOS:000319251800017
ER
PT J
AU De Boer, RJ
Perelson, AS
AF De Boer, Rob J.
Perelson, Alan S.
TI Quantifying T lymphocyte turnover
SO JOURNAL OF THEORETICAL BIOLOGY
LA English
DT Review
DE Labeling; Modeling; Parameter estimation; Immune system; Life spans
ID SIMIAN IMMUNODEFICIENCY VIRUS; ACTIVE ANTIRETROVIRAL THERAPY; DIACETATE
SUCCINIMIDYL ESTER; HEMATOPOIETIC STEM-CELLS; STRUCTURED
POPULATION-MODELS; DEPENDENT BRANCHING-PROCESS; EXCISION CIRCLE CONTENT;
RECENT THYMIC EMIGRANTS; PROLIFERATION IN-VITRO; PEPTIDE-MHC COMPLEXES
AB Peripheral T cell populations are maintained by production of naive T cells in the thymus, clonal expansion of activated cells, cellular self-renewal (or homeostatic proliferation), and density dependent cell life spans. A variety of experimental techniques have been employed to quantify the relative contributions of these processes. In modern studies lymphocytes are typically labeled with 5-bromo-2'-deoxyuridine (BrdU), deuterium, or the fluorescent dye carboxy-fluorescein diacetate succinimidyl ester (CFSE), their division history has been studied by monitoring telomere shortening and the dilution of T cell receptor excision circles (TRECs) or the dye CFSE, and clonal expansion has been documented by recording changes in the population densities of antigen specific cells. Proper interpretation of such data in terms of the underlying rates of T cell production, division, and death has proven to be notoriously difficult and involves mathematical modeling.
We review the various models that have been developed for each of these techniques, discuss which models seem most appropriate for what type of data, reveal open problems that require better models, and pinpoint how the assumptions underlying a mathematical model may influence the interpretation of data. Elaborating various successful cases where modeling has delivered new insights in T cell population dynamics, this review provides quantitative estimates of several processes involved in the maintenance of naive and memory, CD4(+) and CD8(+) T cell pools in mice and men. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [De Boer, Rob J.] Univ Utrecht, NL-3508 TC Utrecht, Netherlands.
[Perelson, Alan S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[De Boer, Rob J.; Perelson, Alan S.] Santa Fe Inst, Santa Fe, NM 87501 USA.
RP De Boer, RJ (reprint author), Univ Utrecht, NL-3508 TC Utrecht, Netherlands.
EM r.j.deboer@uu.nl; asp@lanl.gov
RI De Boer, Rob/B-6050-2011
OI De Boer, Rob/0000-0002-2130-691X
FU U.S. Department of Energy [DE-AC52-06NA25396]; NIH [AI028433, OD011095,
P01-AI071195, P20-RR018754, HHSN272201000055C]; Netherlands Organisation
for Scientific Research NWO [016.048.603]; National Science Foundation
[NSF PHY11-25915]
FX We thank Jose Borghans, Vitaly Ganusov, Andrew Yates and Ruy Ribeiro for
discussions and helpful comments on various parts of this review.
Portions of this work were done under the auspices of the U.S.
Department of Energy under contract DE-AC52-06NA25396 and supported by
NIH Grants AI028433, OD011095, P01-AI071195, and P20-RR018754, and
contract HHSN272201000055C. RdB thanks the Netherlands Organisation for
Scientific Research NWO (VICI Grant 016.048.603) for financial support.
Part of this paper was written at the Santa Fe Institute and it was
finished at the KITP at UCSB. This research was supported in part by the
National Science Foundation under Grant no. NSF PHY11-25915.
NR 248
TC 46
Z9 47
U1 5
U2 43
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-5193
J9 J THEOR BIOL
JI J. Theor. Biol.
PD JUN 21
PY 2013
VL 327
BP 45
EP 87
DI 10.1016/j.jtbi.2012.12.025
PG 43
WC Biology; Mathematical & Computational Biology
SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational
Biology
GA 135AM
UT WOS:000318258400005
PM 23313150
ER
PT J
AU Lau, EY
Wong, SE
Baker, SE
Bearinger, JP
Koziol, L
Valdez, CA
Satcher, JH
Aines, RD
Lightstone, FC
AF Lau, Edmond Y.
Wong, Sergio E.
Baker, Sarah E.
Bearinger, Jane P.
Koziol, Lucas
Valdez, Carlos A.
Satcher, Joseph H., Jr.
Aines, Roger D.
Lightstone, Felice C.
TI Comparison and Analysis of Zinc and Cobalt-Based Systems as Catalytic
Entities for the Hydration of Carbon Dioxide
SO PLOS ONE
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; HYDROGEN-BOND NETWORK; ANHYDRASE-II;
ACTIVE-SITE; METHANOSARCINA-THERMOPHILA; PROTON-TRANSFER; CO2 CAPTURE;
X-RAY; SPECTROSCOPIC MODEL; SYNTHETIC ANALOGS
AB In nature, the zinc metalloenzyme carbonic anhydrase II (CAII) efficiently catalyzes the conversion of carbon dioxide (CO2) to bicarbonate under physiological conditions. Many research efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolyl)phosphine, and tris(2-benzimidazolylmethyl)amine, in their complexed form either with the Zn2+ or the Co2+ ion and studied their reaction coordinate for CO2 hydration. These calculations demonstrated that the ability of the complex to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Furthermore, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts.
C1 [Lau, Edmond Y.; Wong, Sergio E.; Baker, Sarah E.; Bearinger, Jane P.; Koziol, Lucas; Valdez, Carlos A.; Satcher, Joseph H., Jr.; Aines, Roger D.; Lightstone, Felice C.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA.
RP Aines, RD (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA.
EM aines1@llnl.gov; felice@llnl.gov
FU Laboratory Directed Research and Development Program at Lawrence
Livermore National Laboratory [10-ERD-035]
FX The authors thank the Laboratory Directed Research and Development
Program at Lawrence Livermore National Laboratory for funding
10-ERD-035. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
NR 89
TC 3
Z9 3
U1 3
U2 27
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 20
PY 2013
VL 8
IS 6
AR e66187
DI 10.1371/journal.pone.0066187
PG 14
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 190LY
UT WOS:000322342800040
PM 23840420
ER
PT J
AU Bouwman, J
Fournier, M
Sims, IR
Leone, SR
Wilson, KR
AF Bouwman, Jordy
Fournier, Martin
Sims, Ian R.
Leone, Stephen R.
Wilson, Kevin R.
TI Reaction Rate and Isomer-Specific Product Branching Ratios of C2H +
C4H8: 1-Butene, cis-2-Butene, trans-2-Butene, and Isobutene at 79 K
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PHOTOIONIZATION MASS-SPECTROMETRY; NEUTRAL-NEUTRAL REACTIONS; LAVAL
NOZZLE APPARATUS; SET MODEL CHEMISTRY; ETHYNYL RADICAL C2H; TITANS
ATMOSPHERE; RATE COEFFICIENTS; CROSS-SECTIONS; LOW-TEMPERATURE; HAZE
FORMATION
AB The reactions of C2H radicals with C4H8 isomers 1-butene, cis-2-butene, trans-2-butene, and isobutene are studied by laser photolysis-vacuum ultraviolet mass spectrometry in a Laval nozzle expansion at 79 K. Bimolecular-reaction rate constants are obtained by measuring the formation rate of the reaction product species as a function of the reactant density under pseudo-first-order conditions. The rate constants are (1.9 +/- 0.5) x 10(-10), (1.7 +/- 0.5) x 10(-10), (2.1 +/- 0.7) x 10(-10), and (1.8 +/- 0.9) x 10(-10) cm(3) s(-1) for the reaction of C2H with 1-butene, cis-2-butene, trans-2-butene, and isobutene, respectively. Bimolecular rate constants for 1-butene and isobutene compare well to values measured previously at 103 K using C2H chemiluminescence. Photoionization spectra of the reaction products are measured and fitted to ionization spectra of the contributing isomers. In conjunction with absolute-ionization cross sections, these fits provide isomer-resolved product branching fractions. The reaction between C2H and 1-butene yields (65 +/- 10)% C4H4 in the form of vinylacetylene and (35 +/- 10)% C5H6 in the form of 4-penten-1-yne. The cis-2-butene and trans-2-butene reactions yield solely 3-penten-1-yne, and no discrimination is made between cis- and trans-3-penten-1-yne. Last, the isobutene reaction yields (26 +/- 15)% 3-penten-1-yne, (35 +/- 15)% 2-methyl-1-buten-3-yne, and (39 +/- 15)% 4-methyl-3-penten-1-yne. The branching fractions reported for the C2H and butene reactions indicate that these reactions preferentially proceed via CH3 or C2H3 elimination rather than H-atom elimination. Within the experimental uncertainties, no evidence is found for the formation of cyclic species.
C1 [Bouwman, Jordy; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Bouwman, Jordy; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Fournier, Martin; Sims, Ian R.] Univ Rennes 1, CNRS, UMR 6251, Inst Phys Rennes, F-35042 Rennes, France.
[Leone, Stephen R.; Wilson, Kevin R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Wilson, KR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM krwilson@lbl.gov
RI Sims, Ian/F-8989-2014;
OI Sims, Ian/0000-0001-7870-1585; Fournier, Martin/0000-0002-8771-3913
FU Office of Science, Office of Basic Energy Sciences of the U.S.
Department of Energy at the Lawrence Berkeley National Laboratory
[DE-AC02-05CH11231]; NASA [NNH13AV43I]; National Science Foundation
Engineering Research Center for Extreme Ultraviolet Science and
Technology; CNRS; French Programme National de Planetologie; French
Ministere de l'Enseignement Superieur et de la Recherche;
France-Berkeley Fund
FX The Advanced Light Source and Chemical Sciences Division (K.R.W. and
S.R.L.) are supported by the Director, Office of Science, Office of
Basic Energy Sciences of the U.S. Department of Energy under contract
no. DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory.
K.R.W. and S.R.L. are supported in part by NASA grant no. NNH13AV43I.
Support for J.B. was obtained from the National Science Foundation
Engineering Research Center for Extreme Ultraviolet Science and
Technology. Construction of this Laval instrument was made possible by a
National Aeronautics and Space Administration Planetary Major Equipment
grant. I.R.S. thanks the CNRS for the award of sabbatical funding during
the period of this research and the French Programme National de
Planetologie for financial support. M.F. thanks the French Ministere de
l'Enseignement Superieur et de la Recherche for a doctoral grant. We
thank the France-Berkeley Fund for financial support.
NR 64
TC 6
Z9 6
U1 3
U2 44
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUN 20
PY 2013
VL 117
IS 24
BP 5093
EP 5105
DI 10.1021/jp403637t
PG 13
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 171FR
UT WOS:000320911000011
PM 23701666
ER
PT J
AU Goldman, N
Tamblyn, I
AF Goldman, Nir
Tamblyn, Isaac
TI Prebiotic Chemistry within a Simple Impacting Icy Mixture
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID TIGHT-BINDING METHOD; MOLECULAR-DYNAMICS; AMINO-ACIDS; EARLY EARTH;
EXTREME CONDITIONS; PRIMITIVE EARTH; COMETARY DELIVERY;
ORGANIC-MOLECULES; HIGH-PRESSURE; SIMULATIONS
AB We present results of prebiotic organic synthesis in shock compressed mixtures of simple ices from quantum molecular dynamics (MD) simulations extended to close to equilibrium time scales. Given the likelihood of an inhospitable prebiotic atmosphere on early Earth, it is possible that impact processes of comets or other icy bodies were a source of prebiotic chemical compounds on the primitive planet. We observe that moderate shock pressures and temperatures within a CO2-rich icy mixture (36 GPa and 2800 K) produce a number of nitrogen containing heterocycles, which dissociate to form functionalized aromatic hydrocarbons upon expansion and cooling to ambient conditions. In contrast, higher shock conditions (48-60 GPa, 3700-4800 K) resulted in the synthesis of long carbon-chain molecules, CH4, and formaldehyde. All shock compression simulations at these conditions have produced significant quantities of simple C-N bonded compounds such as HCN, HNC, and HNCO upon expansion and cooling to ambient conditions. Our results elucidate a mechanism for impact synthesis of prebiotic molecules at realistic impact conditions that is independent of external constraints such as the presence of a catalyst, illuminating UV radiation, or pre-existing conditions on a planet.
C1 [Goldman, Nir] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Tamblyn, Isaac] Univ Ontario Inst Technol, Dept Phys, Oshawa, ON L1H 7K4, Canada.
RP Goldman, N (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
EM ngoldman@llnl.gov
OI Tamblyn, Isaac/0000-0002-8146-6667
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; National Aeronautics and Space Administration
(NASA), Astrobiology: Exobiology and Evolutionary Biology program
[NNH11AQ67I]
FX The authors thank Lukasz Koziol for a critical reading of the
manuscript, and Liam Krauss for creation of the graphical TOC image.
This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 and was funded by the National Aeronautics and Space
Administration (NASA), Astrobiology: Exobiology and Evolutionary Biology
program (#NNH11AQ67I). Computations were performed at LLNL using the
Aztec and RZCereal massively parallel computers.
NR 74
TC 19
Z9 19
U1 10
U2 54
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUN 20
PY 2013
VL 117
IS 24
BP 5124
EP 5131
DI 10.1021/jp402976n
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 171FR
UT WOS:000320911000014
PM 23639050
ER
PT J
AU Kelly, DN
Lam, RK
Duffin, AM
Saykally, RJ
AF Kelly, Daniel N.
Lam, Royce K.
Duffin, Andrew M.
Saykally, Richard J.
TI Exploring Solid/Aqueous Interfaces with Ultradilute Electrokinetic
Analysis of Liquid Microjets
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID WATER MICROJETS; SURFACES; GENERATION; CHARGE
AB We describe a novel method that exploits electrokinetic streaming current measurements for the study of ion-interface affinity. Through the use of liquid microjets and ultradilute solutions (<1 mu M), we are able to overcome inherent difficulties in electrokinetic surface measurements engendered by changing double-layer thicknesses. Varying bulk KCl concentrations produce statistically significant changes in streaming current down at picomolar concentrations. Because the attending ion concentrations are below that from water autoionization, these data are compared with those from ultradilute HCl and KOH solutions assuming that the K+ and Cl- introduce no new counterions. This permits comparison of the individual effects of K+ and Cl- on the interface, evidencing a cooperative effect between these ions at silica surfaces. Altogether, these results establish the effectiveness of this experimental approach in revealing new ion-surface phenomena and indicate its promise for the general study of aqueous interfaces.
C1 [Kelly, Daniel N.; Lam, Royce K.; Duffin, Andrew M.; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Kelly, Daniel N.; Lam, Royce K.; Duffin, Andrew M.; Saykally, Richard J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM saykally@berkeley.edu
OI Lam, Royce/0000-0003-2878-038X
FU NSF EAGER program [CHE-0963844]; Siemens Corporation through the Siemens
AG-UC Berkeley Strategic Partnership
FX This work was supported by grants from the NSF EAGER program (Grant
CHE-0963844) and from the Siemens Corporation through the Siemens AG-UC
Berkeley Strategic Partnership.
NR 25
TC 5
Z9 5
U1 2
U2 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD JUN 20
PY 2013
VL 117
IS 24
BP 12702
EP 12706
DI 10.1021/jp403583r
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 171FS
UT WOS:000320911100033
ER
PT J
AU Som, S
Liu, W
Zhou, DDY
Magnotti, GM
Sivaramakrishnan, R
Longman, DE
Skodje, RT
Davis, MJ
AF Som, Sibendu
Liu, Wei
Zhou, Dingyu D. Y.
Magnotti, Gina M.
Sivaramakrishnan, Raghu
Longman, Douglas E.
Skodje, Rex T.
Davis, Michael J.
TI Quantum Tunneling Affects Engine Performance
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID SENSITIVITY-ANALYSIS; TRANSITION-STATE; COMBUSTION; IGNITION; KINETICS;
SYSTEMS; MODEL; HO2
AB We study the role of individual reaction rates on engine performance, with an emphasis on the contribution of quantum tunneling. It is demonstrated that the effect of quantum tunneling corrections for the reaction HO2 + HO2 = H2O2 +O-2 can have a noticeable impact on the performance of a high-fidelity model of a compression-ignition (e.g., diesel) engine, and that an accurate prediction of ignition delay time for the engine model requires an accurate estimation of the tunneling correction for this reaction. The three-dimensional model includes detailed descriptions of the chemistry of a surrogate for a biodiesel fuel, as well as all the features of the engine, such as the liquid fuel spray and turbulence. This study is part of a larger investigation of how the features of the dynamics and potential energy surfaces of key reactions, as well as their reaction rate uncertainties, affect engine performance, and results in these directions are also presented here.
C1 [Som, Sibendu; Magnotti, Gina M.; Longman, Douglas E.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Liu, Wei; Sivaramakrishnan, Raghu; Davis, Michael J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Zhou, Dingyu D. Y.; Skodje, Rex T.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
[Magnotti, Gina M.] Georgia Inst Technol, Dept Mech Engn, Atlanta, GA 30332 USA.
RP Som, S (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI SIVARAMAKRISHNAN, RAGHU/C-3481-2008
OI SIVARAMAKRISHNAN, RAGHU/0000-0002-1867-1254
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences
[DE-AC02-06CH11357]; DOE's Office of Vehicle Technologies, Office of
Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]
FX This work was supported by the U.S. Department of Energy (DOE), Office
of Basic Energy Sciences, Division of Chemical Sciences, Geosciences,
and Biosciences, under Contract No. DE-AC02-06CH11357. This research was
also funded by the DOE's Office of Vehicle Technologies, Office of
Energy Efficiency and Renewable Energy, under contract No.
DE-AC02-06CH11357. The authors wish to thank Wade Sisk and Gupreet
Singh, program managers at the DOE, for their support. We gratefully
acknowledge the computing resources provided on "Fusion," a 320-node
computing cluster operated by the Laboratory Computing Resource Center
at Argonne National Laboratory.
NR 27
TC 9
Z9 9
U1 0
U2 37
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD JUN 20
PY 2013
VL 4
IS 12
BP 2021
EP 2025
DI 10.1021/jz400874s
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 172DE
UT WOS:000320979400006
PM 26283246
ER
PT J
AU Stewart, JT
Padilha, LA
Bae, WK
Koh, WK
Pietryga, JM
Klimov, VI
AF Stewart, John T.
Padilha, Lazaro A.
Bae, Wan Ki
Koh, Weon-Kyu
Pietryga, Jeffrey M.
Klimov, Victor I.
TI Carrier Multiplication in Quantum Dots within the Framework of Two
Competing Energy Relaxation Mechanisms
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID MULTIPLE EXCITON GENERATION; SEMICONDUCTOR NANOCRYSTALS; MULTIEXCITON
GENERATION; SILICON NANOCRYSTALS; SOLAR-CELLS; ELECTRONIC-STRUCTURE;
AUGER RECOMBINATION; PBSE NANOCRYSTALS; COLLOIDAL PBSE; SINGLE-PHOTON
AB The realization of high-yield, low-threshold carrier multiplication (CM) in semiconductor quantum dots (QDs) is a promising step toward third-generation photovoltaics (PV). Recent studies of QD solar cells have shown that CM can indeed produce greater-than-unity quantum efficiencies in photon-to-charge-carrier conversion, establishing the relevance of this process to practical PV technologies. While being appreciable, the reported CM yields are still not high enough for a significant increase in the power conversion efficiency over traditional bulk materials. At present, the design of nanomaterials with improved CM is hindered by a poor understanding of the mechanism underlying this process. Here, we present a possible solution to this problem by introducing a model that treats CM as a competition between impact-ionization-like scattering and non-CM energy losses. Importantly, it allows for evaluation of expected CM yields from fairly straightforward measurements of Auger recombination (inverse of CM) and near-band-edge carrier cooling. The validation of this model via a comparative CM study of PbTe, PbSe, and PbS QDs suggests that it indeed represents a predictive capability, which might help in the development of nanomaterials with improved CM performance.
C1 [Stewart, John T.; Padilha, Lazaro A.; Bae, Wan Ki; Koh, Weon-Kyu; Pietryga, Jeffrey M.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Ctr Adv Solar Photophys, C PCS, Los Alamos, NM 87545 USA.
RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, Ctr Adv Solar Photophys, C PCS, POB 1663, Los Alamos, NM 87545 USA.
EM klimov@lanl.gov
RI Koh, Weon-kyu/G-8623-2013; Padilha, Lazaro/G-1523-2013;
OI Koh, Weon-kyu/0000-0002-6913-4184; Klimov, Victor/0000-0003-1158-3179
FU Center for Advanced Solar Photophysics (CASP), an Energy Frontier
Research Center; U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences
FX We acknowledge support of the Center for Advanced Solar Photophysics
(CASP), an Energy Frontier Research Center funded by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences.
NR 70
TC 26
Z9 26
U1 4
U2 68
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD JUN 20
PY 2013
VL 4
IS 12
BP 2061
EP 2068
DI 10.1021/jz4004334
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 172DE
UT WOS:000320979400013
PM 26283253
ER
PT J
AU Wang, QQ
Nemoto, M
Li, DS
Weaver, JC
Weden, B
Stegemeier, J
Bozhilov, KN
Wood, LR
Milliron, GW
Kim, CS
DiMasi, E
Kisailus, D
AF Wang, Qianqian
Nemoto, Michiko
Li, Dongsheng
Weaver, James C.
Weden, Brian
Stegemeier, John
Bozhilov, Krassimir N.
Wood, Leslie R.
Milliron, Garrett W.
Kim, Christopher S.
DiMasi, Elaine
Kisailus, David
TI Phase Transformations and Structural Developments in the Radular Teeth
of Cryptochiton Stelleri
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
DE radula; biomineralization; -chitin; ferrihydrite; magnetite
ID CHITON ACANTHOPLEURA-HIRTOSA; 6-LINE FERRIHYDRITE; MINERALIZATION
PATHWAYS; IRON MINERALIZATION; CRYSTAL-STRUCTURE; ORGANIC MATRIX;
ALPHA-CHITIN; BIOMINERALIZATION; MAGNETITE; PROTEIN
AB During mineralization, the hard outer magnetite-containing shell of the radular teeth of Cryptochiton stelleri undergoes four distinct stages of structural and phase transformations: (i) the formation of a crystalline -chitin organic matrix that forms the structural framework of the non-mineralized teeth, (ii) the templated synthesis of ferrihydrite crystal aggregates along these organic fibers, (iii) subsequent solid state phase transformation from ferrihydrite to magnetite, and (iv) progressive magnetite crystal growth to form continuous parallel rods within the mature teeth. The underlying -chitin organic matrix appears to influence magnetite crystal aggregate density and the diameter and curvature of the resulting rods, both of which likely play critical roles in determining the local mechanical properties of the mature radular teeth.
C1 [Wang, Qianqian; Nemoto, Michiko; Li, Dongsheng; Milliron, Garrett W.; Kisailus, David] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA.
[Weaver, James C.] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA.
[Weden, Brian; Wood, Leslie R.] Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA.
[Stegemeier, John; Kim, Christopher S.] Chapman Univ, Sch Earth & Environm Sci, Orange, CA 92866 USA.
[Bozhilov, Krassimir N.] Univ Calif Riverside, Cent Facil Adv Microscopy & Microanal, Riverside, CA 92521 USA.
[DiMasi, Elaine] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
RP Wang, QQ (reprint author), Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA.
EM david@engr.ucr.edu
FU USDOE [DE-AC02-98CH10886]; JSPS; ARO [W911NF-12-1-0257]; AFOSR
[FA9550-12-1-0249]
FX Q.W. and M.N. contributed equally to this work. We thank Sara Krause for
the illustration in Figure 1 A, Dr. Kenneth Evans-Lutterodt of the
National Synchrotron Light Source in Brookhaven National Laboratory for
contributing his expertise at the microdiffraction endstation X13B, Dr.
Vesna Stanic of the NSLS in BNL for her help in conducting experiments
at the diffraction endstation X6B, and Dr. Sam Webb of Stanford
Synchrotron Radiation Lightsource for his instrumental help with the mu
XRF measurements. The NSLS is supported under USDOE Contract
DE-AC02-98CH10886. Portions of this research were carried out at the
Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC
National Accelerator Laboratory and an Office of Science User Facility
operated for the U.S. Department of Energy Office of Science by Stanford
University. M.N. was supported, in part, by the JSPS International
Training Program (ITP). We acknowledge the Central Facility for Advanced
Microscopy and Microanalysis at UC Riverside for use of sample prep and
electron microscopy imaging. This work was supported in part by ARO:
W911NF-12-1-0257 and AFOSR: FA9550-12-1-0249.
NR 48
TC 16
Z9 16
U1 2
U2 57
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1616-301X
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD JUN 20
PY 2013
VL 23
IS 23
BP 2908
EP 2917
DI 10.1002/adfm.201202894
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 164BD
UT WOS:000320382800001
ER
PT J
AU Qiao, L
Zhang, KHL
Bowden, ME
Varga, T
Shutthanandan, V
Colby, R
Du, Y
Kabius, B
Sushko, PV
Biegalski, MD
Chambers, SA
AF Qiao, L.
Zhang, K. H. L.
Bowden, M. E.
Varga, T.
Shutthanandan, V.
Colby, R.
Du, Y.
Kabius, B.
Sushko, P. V.
Biegalski, M. D.
Chambers, S. A.
TI The Impacts of Cation Stoichiometry and Substrate Surface Quality on
Nucleation, Structure, Defect Formation, and Intermixing in Complex
Oxide Heteroepitaxy-LaCrO3 on SrTiO3(001)
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
DE oxide heteroepitaxy; nonstoichiometry; intermixing; molecular beam
epitaxy
ID PULSED-LASER DEPOSITION; THIN-FILMS; INTERFACES; GROWTH; DIAMOND
AB The ability to design and fabricate electronic devices with reproducible properties using complex oxides is critically dependent on our ability to controllably synthesize these materials in thin-film form. Structure-property relationships are intimately tied to film and interface composition. Here the effect of cation stoichiometry on structural quality and defect formation in LaCrO3 heteroepitaxial films prepared using molecular beam epitaxy is reported. From first principles the regions of stability of various candidate defects, along with the predicted effects of these defects on structural parameters, are calculated as a function of Cr and O chemical potential. Epitaxial LaCrO3 films readily nucleate and remain coherently strained on SrTiO3(001) over a wide range of La-to-Cr atom ratios, but La-rich films are of considerably lower structural quality than stoichiometric and Cr-rich films. Cation imbalances are accompanied by anti-site defect formation. Cation mixing occurs at the interface for all La-to-Cr ratios investigated and is not quenched by deposition on SrTiO3(001) at ambient temperature. Indiffused La atoms occupy Sr sites. Intermixing is effectively quenched by using molecular beam epitaxy to deposit LaCrO3 at ambient temperature on defect free Si(001). However, analogous pulsed laser deposition on Si is accompanied by cation mixing.
C1 [Qiao, L.; Zhang, K. H. L.; Chambers, S. A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA.
[Qiao, L.; Biegalski, M. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Bowden, M. E.; Varga, T.; Shutthanandan, V.; Colby, R.; Du, Y.; Kabius, B.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA.
[Sushko, P. V.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Sushko, P. V.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England.
RP Qiao, L (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA.
EM sa.chambers@pnnl.gov
RI Qiao, Liang/A-8165-2012; Zhang, Kelvin/F-5434-2014; Sushko,
Peter/F-5171-2013
OI Sushko, Peter/0000-0001-7338-4146
FU U.S. Department of Energy, Office of Science, Division of Materials
Sciences and Engineering [10122]; Division of Chemical Sciences [48526];
EMSL William Wiley Postdoctoral Fellow program; Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy; Royal Society; Department of Energy's Office of Biological and
Environmental Research
FX This work was supported by the U.S. Department of Energy, Office of
Science, Division of Materials Sciences and Engineering under Award
#10122 (MBE growth and XPS measurements), Division of Chemical Sciences
under Award #48526 (XPS analysis and RBS measurements and analysis), and
the EMSL William Wiley Postdoctoral Fellow program (TEM analysis). A
portion of this research was conducted at the Center for Nanophase
Materials Sciences, which is sponsored at Oak Ridge National Laboratory
by the Scientific User Facilities Division, Office of Basic Energy
Sciences, U.S. Department of Energy. P.V.S. thanks the Royal Society for
the support. The work was performed in the Environmental Molecular
Sciences Laboratory, a national science user facility sponsored by the
Department of Energy's Office of Biological and Environmental Research
and located at Pacific Northwest National Laboratory.
NR 55
TC 19
Z9 19
U1 8
U2 112
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1616-301X
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD JUN 20
PY 2013
VL 23
IS 23
BP 2953
EP 2963
DI 10.1002/adfm.201202655
PG 11
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 164BD
UT WOS:000320382800006
ER
PT J
AU Kennea, JA
Burrows, DN
Kouveliotou, C
Palmer, DM
Gogus, E
Kaneko, Y
Evans, PA
Degenaar, N
Reynolds, MT
Miller, JM
Wijnands, R
Mori, K
Gehrels, N
AF Kennea, J. A.
Burrows, D. N.
Kouveliotou, C.
Palmer, D. M.
Gogus, E.
Kaneko, Y.
Evans, P. A.
Degenaar, N.
Reynolds, M. T.
Miller, J. M.
Wijnands, R.
Mori, K.
Gehrels, N.
TI SWIFT DISCOVERY OF A NEW SOFT GAMMA REPEATER, SGR J1745-29, NEAR
SAGITTARIUS A*
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE pulsars: general; pulsars: individual (SGR J1745-29); stars: neutron;
X-rays: bursts
ID X-RAY PULSARS; GALACTIC-CENTER; TELESCOPE; BURSTS; GRBS
AB Starting in 2013 February, Swift has been performing short daily monitoring observations of the G2 gas cloud near Sgr A* with the X-Ray Telescope to determine whether the cloud interaction leads to an increase in the flux from the Galactic center. On 2013 April 24 Swift detected an order of magnitude rise in the X-ray flux from the region near Sgr A*. Initially thought to be a flare from Sgr A*, the detection of a short hard X-ray burst from the same region by the Burst Alert Telescope suggested that the flare was from an unresolved new Soft Gamma Repeater, SGR J1745-29. Here we present the discovery of SGR J1745-29 by Swift, including analysis of data before, during, and after the burst. We find that the spectrum in the 0.3-10 keV range is well fit by an absorbed blackbody model with kT(BB) similar or equal to 1 keV and absorption consistent with previously measured values from the quiescent emission from Sgr A*, strongly suggesting that this source is at a similar distance. Only one SGR burst has been detected so far from the new source, and the persistent light curve shows little evidence of decay in approximately two weeks of monitoring after outburst. We discuss this light curve trend and compare it with those of other well covered SGR outbursts. We suggest that SGR J1745-29 belongs to an emerging subclass of magnetars characterized by low burst rates and prolonged steady X-ray emission one to two weeks after outburst onset.
C1 [Kennea, J. A.; Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, Sci & Technol Off, Huntsville, AL 35812 USA.
[Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Gogus, E.; Kaneko, Y.] Sabanci Univ, TR-34956 Istanbul, Turkey.
[Evans, P. A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[Degenaar, N.; Reynolds, M. T.; Miller, J. M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Wijnands, R.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands.
[Mori, K.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Gehrels, N.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
RP Kennea, JA (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA.
EM kennea@swift.psu.edu
FU NASA grant through the Swift Guest Investigator Program [NAS5-00135]
FX This work was supported by NASA grant NAS5-00135 through the Swift Guest
Investigator Program. This work made use of data supplied by the UK
Swift Science Data Centre at the University of Leicester. We acknowledge
the use of public data from the Swift data archive. This research has
made use of the XRT Data Analysis Software (XRTDAS) developed under the
responsibility of the ASI Science Data Center (ASDC), Italy.
NR 39
TC 45
Z9 45
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUN 20
PY 2013
VL 770
IS 2
AR L24
DI 10.1088/2041-8205/770/2/L24
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 168MJ
UT WOS:000320709900008
ER
PT J
AU Shen, KJ
Guillochon, J
Foley, RJ
AF Shen, Ken J.
Guillochon, James
Foley, Ryan J.
TI CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE binaries: close; novae, cataclysmic variables; nuclear reactions,
nucleosynthesis, abundances; supernovae: general; white dwarfs
ID ACCRETING WHITE-DWARFS; SODIUM-ABSORPTION; CLOSE BINARIES;
MASS-TRANSFER; EVOLUTION; MERGERS; NOVAE; STARS; GAS; APPROXIMATIONS
AB Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.
C1 [Shen, Ken J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Shen, Ken J.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Shen, Ken J.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA.
[Guillochon, James] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Foley, Ryan J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Shen, KJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM kenshen@astro.berkeley.edu
OI Guillochon, James/0000-0002-9809-8215
FU NASA through Einstein Postdoctoral Fellowship [PF1-120088]; Chandra
X-ray Center; NASA [NAS8-03060]
FX We thank Jason Dexter, Dan Kasen, Rodolfo Perez, Eliot Quataert, Cody
Raskin, and Jeff Silverman for discussions. K.J.S. is supported by NASA
through Einstein Postdoctoral Fellowship grant number PF1-120088 awarded
by the Chandra X-ray Center, which is operated by the Smithsonian
Astrophysical Observatory for NASA under contract NAS8-03060.
NR 46
TC 47
Z9 47
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUN 20
PY 2013
VL 770
IS 2
AR L35
DI 10.1088/2041-8205/770/2/L35
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 168MJ
UT WOS:000320709900019
ER
PT J
AU Allan, MP
Tamai, A
Rozbicki, E
Fischer, MH
Voss, J
King, PDC
Meevasana, W
Thirupathaiah, S
Rienks, E
Fink, J
Tennant, DA
Perry, RS
Mercure, JF
Wang, MA
Lee, J
Fennie, CJ
Kim, EA
Lawler, MJ
Shen, KM
Mackenzie, AP
Shen, ZX
Baumberger, F
AF Allan, M. P.
Tamai, A.
Rozbicki, E.
Fischer, M. H.
Voss, J.
King, P. D. C.
Meevasana, W.
Thirupathaiah, S.
Rienks, E.
Fink, J.
Tennant, D. A.
Perry, R. S.
Mercure, J. F.
Wang, M. A.
Lee, Jinho
Fennie, C. J.
Kim, E-A
Lawler, M. J.
Shen, K. M.
Mackenzie, A. P.
Shen, Z-X
Baumberger, F.
TI Formation of heavy d-electron quasiparticles in Sr3Ru2O7
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID RUTHENATE SR3RU2O7
AB The phase diagram of Sr3Ru2O7 shows hallmarks of strong electron correlations despite the modest Coulomb interaction in the Ru 4d shell. We use angle-resolved photoelectron spectroscopy measurements to provide microscopic insight into the formation of the strongly renormalized heavy d-electron liquid that controls the physics of Sr3Ru2O7. Our data reveal itinerant Ru 4d-states confined over large parts of the Brillouin zone to an energy range of <6 meV, nearly three orders of magnitude lower than the bare band width. We show that this energy scale agrees quantitatively with a characteristic thermodynamic energy scale associated with quantum criticality and illustrate how it arises from a combination of back-folding due to a structural distortion and the hybridization of light and strongly renormalized, heavy quasiparticle bands. The resulting heavy Fermi liquid has a marked k-dependence of the renormalization which we relate to orbital mixing along individual Fermi surface sheets.
C1 [Allan, M. P.; Tamai, A.; Rozbicki, E.; King, P. D. C.; Meevasana, W.; Perry, R. S.; Mercure, J. F.; Mackenzie, A. P.; Baumberger, F.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland.
[Allan, M. P.; Fischer, M. H.; Wang, M. A.; Lee, Jinho; Kim, E-A; Lawler, M. J.; Shen, K. M.] Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA.
[Voss, J.; Fennie, C. J.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA.
[Meevasana, W.] Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand.
[Thirupathaiah, S.; Rienks, E.; Fink, J.] Elektronenspeicherring BESSY II, Helmholtz Zentrum Berlin, D-12489 Berlin, Germany.
[Fink, J.] IFW Dresden, D-01171 Dresden, Germany.
[Tennant, D. A.] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany.
[Lee, Jinho] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea.
[Lawler, M. J.] SUNY Binghamton, Dept Phys, Binghamton, NY 13902 USA.
[Shen, Z-X] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
[Shen, Z-X] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA.
RP Allan, MP (reprint author), Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland.
EM milan.allan@gmail.com
RI Fischer, Mark/K-2548-2013; Tennant, David/Q-2497-2015; Allan,
Milan/D-7763-2012; Fink, Joerg/A-6003-2012; Baumberger,
Felix/A-5170-2008; Tamai, Anna/B-9219-2014; King, Philip/D-3809-2014;
Mackenzie, Andrew/K-6742-2015; Lawler, Michael/K-6770-2012
OI Fischer, Mark/0000-0003-0810-6064; Tennant, David/0000-0002-9575-3368;
Allan, Milan/0000-0002-5437-1945; Mercure,
Jean-Francois/0000-0003-2620-9200; Baumberger,
Felix/0000-0001-7104-7541; Tamai, Anna/0000-0001-5239-6826; King,
Philip/0000-0002-6523-9034; Lawler, Michael/0000-0002-2319-2274
FU European Research Council; Scottish Funding Council; UK EPSRC; Cornell
Center for Materials Research; NSF MRSEC program [DMR-1120296]; ETH
Fellowship
FX We gratefully acknowledge discussions with A Georges, M S Golden, R G
Hennig, C Hooley, J Mravlje, A W Rost, S C Sundar and J Zaanen. This
work has been supported by the European Research Council, the Scottish
Funding Council and the UK EPSRC. SSRL is operated by the DOE's office
of Basic Energy Science. Work by MHF, E-AK, KMS, CJF and JV was
supported by the Cornell Center for Materials Research with funding from
the NSF MRSEC program (DMR-1120296). Work by MPA during the write-up of
this paper was supported by an ETH Fellowship.
NR 41
TC 6
Z9 6
U1 1
U2 48
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD JUN 20
PY 2013
VL 15
AR 063029
DI 10.1088/1367-2630/15/6/063029
PG 10
WC Physics, Multidisciplinary
SC Physics
GA 168IG
UT WOS:000320698500003
ER
PT J
AU Bzdak, A
Schenke, B
Tribedy, P
Venugopalan, R
AF Bzdak, Adam
Schenke, Bjoern
Tribedy, Prithwish
Venugopalan, Raju
TI Initial-state geometry and the role of hydrodynamics in proton-proton,
proton-nucleus, and deuteron-nucleus collisions
SO PHYSICAL REVIEW C
LA English
DT Article
ID HEAVY-ION COLLISIONS; GLUON DISTRIBUTION-FUNCTIONS; P-PB COLLISIONS;
HIGH-ENERGIES; ANGULAR-CORRELATIONS; PPB COLLISIONS; ELLIPTIC FLOW;
LONG-RANGE; SIDE; MULTIPLICITY
AB We apply the successful Monte Carlo Glauber and IP-Glasma initial-state models of heavy-ion collisions to the much smaller size systems produced in proton-proton, proton-nucleus, and deuteron-nucleus collisions. We observe a significantly greater sensitivity of the initial-state geometry to details of multiparticle production in these models compared to nucleus-nucleus collisions. In particular, we find that the size of the system produced in p + A collisions is very similar to the one produced in p + p collisions and predict comparable Hanbury-Brown-Twiss radii in the absence of flow in both systems. Differences in the eccentricities computed in the models are large, while differences among the generated flow coefficients upsilon(2) and upsilon(3) are smaller. For a large number of participants in proton-lead collisions, the upsilon(2) generated in the IP-Glasma model is comparable to the value obtained in proton-proton collisions. Viscous corrections to flow are large over characteristic lifetimes in the smaller size systems. In contrast, viscous contributions are significantly diminished over the longer space-time evolution of a heavy-ion collision.
C1 [Bzdak, Adam] RIKEN, Brookhaven Natl Lab, BNL Res Ctr, Upton, NY 11973 USA.
[Schenke, Bjoern; Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Tribedy, Prithwish] Ctr Variable Energy Cyclotron, Kolkata 700064, India.
RP Bzdak, A (reprint author), RIKEN, Brookhaven Natl Lab, BNL Res Ctr, Upton, NY 11973 USA.
FU RIKEN-BNL Research Center; DOE [DE-AC02-98CH10886]
FX We thank Adrian Dumitru, Kevin Dusling, Larry McLerran, Jamie Nagle, Zhi
Qiu, Anne Sickles, and Derek Teaney for interesting discussions. A. B.
is supported through the RIKEN-BNL Research Center. B. P. S. and R. V.
are supported under DOE Contract No. DE-AC02-98CH10886.
NR 63
TC 112
Z9 112
U1 0
U2 16
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUN 20
PY 2013
VL 87
IS 6
AR 064906
DI 10.1103/PhysRevC.87.064906
PG 10
WC Physics, Nuclear
SC Physics
GA 169FH
UT WOS:000320763700004
ER
PT J
AU Bousso, R
AF Bousso, Raphael
TI Complementarity is not enough
SO PHYSICAL REVIEW D
LA English
DT Article
ID BLACK-HOLES; ENTROPY
AB The near-horizon field B of an old black hole is maximally entangled with the early Hawking radiation R, by unitarity of the S-matrix. But B must be maximally entangled with the black hole interior A, by the equivalence principle. Causal patch complementarity fails to reconcile these conflicting requirements. The system B can be probed by a freely falling observer while there is still time to turn around and remain outside the black hole. Therefore, the entangled state of the BR system is dictated by unitarity even in the infalling patch. If, by monogamy of entanglement, B is not entangled with A, the horizon is replaced by a singularity or "firewall." To illustrate the radical nature of the ideas that are needed, I briefly discuss two approaches for avoiding a firewall: the identification of A with a subsystem of R; and a combination of patch complementarity with the Horowitz-Maldacena final-state proposal.
C1 [Bousso, Raphael] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Bousso, Raphael] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA.
[Bousso, Raphael] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Bousso, R (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
FU Berkeley Center for Theoretical Physics; National Science Foundation
[0855653, 0756174]; fqxi Grant [RFP3-1004]; U.S. Department of Energy
[DE-AC02-05CH11231]
FX I would like to thank B. Freivogel, D. Harlow, P. Hayden, J. Maldacena,
D. Marolf, J. Polchinski, J. Preskill, V. Rosenhaus, D. Stanford, L.
Susskind, and R. Wald for many discussions, comments, and explanations.
This work was supported by the Berkeley Center for Theoretical Physics,
by the National Science Foundation (Awards No. 0855653 and No. 0756174),
by fqxi Grant No. RFP3-1004, and by the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.
NR 45
TC 44
Z9 44
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUN 20
PY 2013
VL 87
IS 12
AR 124023
DI 10.1103/PhysRevD.87.124023
PG 7
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 169FS
UT WOS:000320765300007
ER
PT J
AU Anand, VK
Kim, H
Tanatar, MA
Prozorov, R
Johnston, DC
AF Anand, V. K.
Kim, H.
Tanatar, M. A.
Prozorov, R.
Johnston, D. C.
TI Superconducting and normal-state properties of APd(2)As(2) (A = Ca, Sr,
Ba) single crystals
SO PHYSICAL REVIEW B
LA English
DT Article
ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; HIGH-FIELD SUPERCONDUCTORS;
MAGNETIC-SUSCEPTIBILITY; PURITY DEPENDENCE; PENETRATION DEPTH;
TRANSITION; PNICTIDES; METALS; HC2
AB The synthesis and crystallography, magnetic susceptibility chi, magnetization M, specific heat C-p, in-plane electrical resistivity rho, and in-plane magnetic penetration depth measurements are reported for single crystals of APd(2)As(2) (A = Ca, Sr, Ba) versus temperature T and magnetic field H. The crystals were grown using PdAs self-flux. CaPd2As2 and SrPd2As2 crystallize in a collapsed body-centered tetragonal ThCr2Si2-type structure (I4/mmm), whereas BaPd2As2 crystallizes in the primitive tetragonal CeMg2Si2-type structure (P4/mmm), in agreement with literature data. The rho(T) data exhibit metallic behavior for all three compounds. Bulk superconductivity is reported for CaPd2As2 and SrPd2As2 below T-c = 1.27 and 0.92 K, respectively, whereas only a trace of superconductivity is found in BaPd2As2. No other phase transitions were observed. The chi(T) and M(H) data reveal anisotropic diamagnetism in the normal state, with chi(c) > chi(ab) for CaPd2As2 and BaPd2As2, and chi(c) < chi(ab) for SrPd2As2. The normal and superconducting state data indicate that CaPd2As2 and SrPd2As2 are conventional type-II nodeless s-wave electron-phonon superconductors. The electronic superconducting state heat capacity data for CaPd2As2, which has an extremely sharp heat capacity jump at T-c, are analyzed using our recent elaboration of the alpha-model of the BCS theory of superconductivity, which indicates that the s-wave gap in this compound is anisotropic in momentum space.
C1 [Anand, V. K.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Anand, VK (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM vanand@ameslab.gov; johnston@ameslab.gov
RI Anand, Vivek Kumar/J-3381-2013
OI Anand, Vivek Kumar/0000-0003-2023-7040
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering; U.S. Department of Energy by Iowa
State University [DE-AC02-07CH11358]
FX This research was supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering.
Ames Laboratory is operated for the U.S. Department of Energy by Iowa
State University under Contract No. DE-AC02-07CH11358.
NR 81
TC 26
Z9 26
U1 6
U2 61
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 20
PY 2013
VL 87
IS 22
AR 224510
DI 10.1103/PhysRevB.87.224510
PG 22
WC Physics, Condensed Matter
SC Physics
GA 169ET
UT WOS:000320761700004
ER
PT J
AU Louca, D
Park, K
Li, B
Neuefeind, J
Yan, JQ
AF Louca, Despina
Park, Keeseong
Li, Bing
Neuefeind, Joerg
Yan, Jiaqiang
TI The hybrid lattice of KxFe2-ySe2: where superconductivity and magnetism
coexist
SO SCIENTIFIC REPORTS
LA English
DT Article
ID DENSITY-WAVE; ORDER
AB Much remains unknown of the microscopic origin of superconductivity in atomically disordered systems of amorphous alloys or in crystals riddled with defects. A manifestation of this conundrum is envisaged in the highly defective superconductor of KxFe2-ySe2. How can superconductivity survive under such crude conditions that call for strong electron localization? Here, we show that the Fe sublattice is locally distorted and accommodates two kinds of Fe valence environments giving rise to a bimodal bond-distribution, with short and long Fe bonds. The bimodal bonds are present even as the system becomes superconducting in the presence of antiferromagnetism, with the weight continuously shifting from the short to the long with increasing K content. Such a hybrid state is most likely found in cuprates as well while our results point to the importance of the local atomic symmetry by which exchange interactions between local moments materialize.
C1 [Louca, Despina; Park, Keeseong; Li, Bing] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA.
[Neuefeind, Joerg; Yan, Jiaqiang] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Yan, Jiaqiang] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Louca, D (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA.
EM louca@virginia.edu
RI Neuefeind, Joerg/D-9990-2015; Li, Bing /A-4610-2010
OI Neuefeind, Joerg/0000-0002-0563-1544;
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-FG02-01ER45927]
FX The work at the University of Virginia has been supported by the U.S.
Department of Energy, Office of Basic Energy Sciences, under contract
number DE-FG02-01ER45927.
NR 31
TC 14
Z9 14
U1 2
U2 20
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD JUN 20
PY 2013
VL 3
AR UNSP 2047
DI 10.1038/srep02047
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 167QT
UT WOS:000320648300001
PM 23782976
ER
PT J
AU Aliu, E
Archambault, S
Arlen, T
Aune, T
Beilicke, M
Benbow, W
Bird, R
Bouvier, A
Bradbury, SM
Buckley, JH
Bugaev, V
Byrum, K
Cannon, A
Cesarini, A
Ciupik, L
Collins-Hughes, E
Connolly, MP
Cui, W
Dickherber, R
Duke, C
Dumm, J
Dwarkadas, VV
Errando, M
Falcone, A
Federici, S
Feng, Q
Finley, JP
Finnegan, G
Fortson, L
Furniss, A
Galante, N
Gall, D
Gillanders, GH
Godambe, S
Gotthelf, EV
Griffin, S
Grube, J
Gyuk, G
Hanna, D
Holder, J
Huan, H
Hughes, G
Humensky, TB
Kaaret, P
Karlsson, N
Kertzman, M
Khassen, Y
Kieda, D
Krawczynski, H
Krennrich, F
Lang, MJ
Lee, K
Madhavan, AS
Maier, G
Majumdar, P
McArthur, S
McCann, A
Millis, J
Moriarty, P
Mukherjee, R
Nelson, T
de Bhroithe, AO
Ong, RA
Orr, M
Otte, AN
Pandel, D
Park, N
Perkins, JS
Pohl, M
Popkow, A
Prokoph, H
Quinn, J
Ragan, K
Reyes, LC
Reynolds, PT
Roache, E
Rose, HJ
Ruppel, J
Saxon, DB
Schroedter, M
Sembroski, GH
Senturk, GD
Skole, C
Telezhinsky, I
Tesic, G
Theiling, M
Thibadeau, S
Tsurusaki, K
Tyler, J
Varlotta, A
Vassiliev, VV
Vincent, S
Wakely, SP
Ward, JE
Weekes, TC
Weinstein, A
Weisgarber, T
Welsing, R
Williams, DA
Zitzer, B
AF Aliu, E.
Archambault, S.
Arlen, T.
Aune, T.
Beilicke, M.
Benbow, W.
Bird, R.
Bouvier, A.
Bradbury, S. M.
Buckley, J. H.
Bugaev, V.
Byrum, K.
Cannon, A.
Cesarini, A.
Ciupik, L.
Collins-Hughes, E.
Connolly, M. P.
Cui, W.
Dickherber, R.
Duke, C.
Dumm, J.
Dwarkadas, V. V.
Errando, M.
Falcone, A.
Federici, S.
Feng, Q.
Finley, J. P.
Finnegan, G.
Fortson, L.
Furniss, A.
Galante, N.
Gall, D.
Gillanders, G. H.
Godambe, S.
Gotthelf, E. V.
Griffin, S.
Grube, J.
Gyuk, G.
Hanna, D.
Holder, J.
Huan, H.
Hughes, G.
Humensky, T. B.
Kaaret, P.
Karlsson, N.
Kertzman, M.
Khassen, Y.
Kieda, D.
Krawczynski, H.
Krennrich, F.
Lang, M. J.
Lee, K.
Madhavan, A. S.
Maier, G.
Majumdar, P.
McArthur, S.
McCann, A.
Millis, J.
Moriarty, P.
Mukherjee, R.
Nelson, T.
de Bhroithe, A. O'Faolain
Ong, R. A.
Orr, M.
Otte, A. N.
Pandel, D.
Park, N.
Perkins, J. S.
Pohl, M.
Popkow, A.
Prokoph, H.
Quinn, J.
Ragan, K.
Reyes, L. C.
Reynolds, P. T.
Roache, E.
Rose, H. J.
Ruppel, J.
Saxon, D. B.
Schroedter, M.
Sembroski, G. H.
Sentuerk, G. D.
Skole, C.
Telezhinsky, I.
Tesic, G.
Theiling, M.
Thibadeau, S.
Tsurusaki, K.
Tyler, J.
Varlotta, A.
Vassiliev, V. V.
Vincent, S.
Wakely, S. P.
Ward, J. E.
Weekes, T. C.
Weinstein, A.
Weisgarber, T.
Welsing, R.
Williams, D. A.
Zitzer, B.
TI DISCOVERY OF TeV GAMMA-RAY EMISSION TOWARD SUPERNOVA REMNANT SNR
G78.2+2.1
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE acceleration of particles; cosmic rays; gamma rays: general; ISM:
supernova remnants
ID PARTICLE-ACCELERATION; FERMI; HESS; SEARCH; COUNTERPART; 2CG078+2;
CATALOG; ORIGIN
AB We report the discovery of an unidentified, extended source of very-high-energy gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hr of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0 degrees.23 +/- 0 degrees.03(stat-0 degrees.02sys)(+0 degrees.04) and its spectrum is well-characterized by a differential power law (dN/dE = N-0 x (E/TeV)-Gamma) with a photon index of Gamma = 2.37 +/- 0.14(stat) +/- 0.20(sys) and a flux normalization of N-0 = 1.5 +/- 0.2(stat) +/- 0.4(sys) x 10(-12) photon TeV-1 cm(-2) s(-1). This yields an integral flux of 5.2 +/- 0.8(stat) +/- 1.4(sys) x 10(-12) photon cm(-2) s(-1) above 320 GeV, corresponding to 3.7% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the SNR shock.
C1 [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA.
[Archambault, S.; Griffin, S.; Hanna, D.; Ragan, K.; Tesic, G.; Tyler, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Arlen, T.; Aune, T.; Majumdar, P.; Ong, R. A.; Popkow, A.; Vassiliev, V. V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; Lee, K.; Thibadeau, S.; Ward, J. E.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Benbow, W.; Galante, N.; Roache, E.; Schroedter, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA.
[Bird, R.; Cannon, A.; Collins-Hughes, E.; Khassen, Y.; de Bhroithe, A. O'Faolain; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland.
[Bouvier, A.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Bouvier, A.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA.
[Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England.
[Byrum, K.; Zitzer, B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Cesarini, A.; Connolly, M. P.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland.
[Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA.
[Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Theiling, M.; Varlotta, A.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA.
[Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA.
[Dumm, J.; Fortson, L.; Karlsson, N.; Nelson, T.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Dwarkadas, V. V.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA.
[Federici, S.; Hughes, G.; Maier, G.; Pohl, M.; Prokoph, H.; Ruppel, J.; Skole, C.; Telezhinsky, I.; Vincent, S.; Welsing, R.] DESY, D-15738 Zeuthen, Germany.
[Federici, S.; Pohl, M.; Ruppel, J.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany.
[Finnegan, G.; Godambe, S.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Gall, D.; Kaaret, P.; Tsurusaki, K.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Gotthelf, E. V.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Holder, J.; Saxon, D. B.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Holder, J.; Saxon, D. B.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Huan, H.; McArthur, S.; Park, N.; Wakely, S. P.; Weisgarber, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Humensky, T. B.; Sentuerk, G. D.] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA.
[Krennrich, F.; Madhavan, A. S.; Orr, M.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Majumdar, P.] Saha Inst Nucl Phys, Kolkata 700064, India.
[McCann, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA.
[Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland.
[Otte, A. N.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Otte, A. N.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Pandel, D.] Grand Valley State Univ, Dept Phys, Allendale, MI 49401 USA.
[Perkins, J. S.] NASA GSFC, CRESST, Greenbelt, MD 20771 USA.
[Perkins, J. S.] NASA GSFC, Astroparticle Phys Lab, Greenbelt, MD 20771 USA.
[Perkins, J. S.] Univ Maryland, Baltimore, MD 21250 USA.
[Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA.
[Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland.
RP Aliu, E (reprint author), Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA.
EM amandajw@iastate.edu
RI Khassen, Yerbol/I-3806-2015;
OI Khassen, Yerbol/0000-0002-7296-3100; Cui, Wei/0000-0002-6324-5772;
Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794;
Pandel, Dirk/0000-0003-2085-5586; Lang, Mark/0000-0003-4641-4201; Bird,
Ralph/0000-0002-4596-8563
FU U.S. Department of Energy Office of Science; U.S. National Science
Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation
Ireland [SFI 10/RFP/AST2748]; Science and Technology Facilities Council
in the UK; NASA [NNX11A086G]
FX This research is supported by grants from the U.S. Department of Energy
Office of Science, the U.S. National Science Foundation and the
Smithsonian Institution, by NSERC in Canada, by the Science Foundation
Ireland (SFI 10/RFP/AST2748) and by the Science and Technology
Facilities Council in the UK. We acknowledge the excellent work of the
technical support staff at the Fred Lawrence Whipple Observatory and at
the collaborating institutions in the construction and operation of the
instrument. Dr. Weinstein and Dr. Dwarkadas' research was also supported
in part by NASA grant NNX11A086G.
NR 35
TC 17
Z9 17
U1 0
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2013
VL 770
IS 2
AR 93
DI 10.1088/0004-637X/770/2/93
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 160HZ
UT WOS:000320111200011
ER
PT J
AU Bodenheimer, P
D'Angelo, G
Lissauer, JJ
Fortney, JJ
Saumon, D
AF Bodenheimer, Peter
D'Angelo, Gennaro
Lissauer, Jack J.
Fortney, Jonathan J.
Saumon, Didier
TI DEUTERIUM BURNING IN MASSIVE GIANT PLANETS AND LOW-MASS BROWN DWARFS
FORMED BY CORE-NUCLEATED ACCRETION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; brown dwarfs; planets and satellites:
formation; planets and satellites: individual (beta Pictoris b); planets
and satellites: physical evolution
ID PROTOPLANETARY ATMOSPHERES; BETA-PICTORIS; HR 8799; EVOLUTION; JUPITER;
MODELS; OPACITIES; GRAINS; DISKS; GAS
AB Using detailed numerical simulations, we study the formation of bodies near the deuterium-burning limit according to the core-nucleated giant planet accretion scenario. The objects, with heavy-element cores in the range 5-30 M-circle plus, are assumed to accrete gas up to final masses of 10-15 Jupiter masses (M-Jup). After the formation process, which lasts 1-5 Myr and which ends with a "cold-start," low-entropy configuration, the bodies evolve at constant mass up to an age of several Gyr. Deuterium burning via proton capture is included in the calculation, and we determined the mass, M-50, above which more than 50% of the initial deuterium is burned. This often-quoted borderline between giant planets and brown dwarfs is found to depend only slightly on parameters, such as core mass, stellar mass, formation location, solid surface density in the protoplanetary disk, disk viscosity, and dust opacity. The values for M-50 fall in the range 11.6-13.6 M-Jup, in agreement with previous determinations that do not take the formation process into account. For a given opacity law during the formation process, objects with higher core masses form more quickly. The result is higher entropy in the envelope at the completion of accretion, yielding lower values of M-50. For masses above M-50, during the deuterium-burning phase, objects expand and increase in luminosity by one to three orders of magnitude. Evolutionary tracks in the luminosity versus time diagram are compared with the observed position of the companion to Beta Pictoris.
C1 [Bodenheimer, Peter] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA.
[D'Angelo, Gennaro; Lissauer, Jack J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA.
[Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Saumon, Didier] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[D'Angelo, Gennaro] SETI Inst, Mountain View, CA 94043 USA.
RP Bodenheimer, P (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA.
EM peter@ucolick.org; gennaro.dangelo@nasa.gov; Jack.J.Lissauer@nasa.gov;
jfortney@ucolick.org; dsaumon@lanl.gov
RI D'Angelo, Gennaro/L-7676-2014;
OI D'Angelo, Gennaro/0000-0002-2064-0801; Fortney,
Jonathan/0000-0002-9843-4354
FU NASA [NNX11AK54G, NNX11AD20G, NNH11AQ54I, NNH12AT89I]; NSF [AST0908807]
FX Primary funding for this project was provided by the NASA Origins of
Solar Systems Program grant NNX11AK54G (P.B., G.D., J.L.). G.D.
acknowledges additional support from NASA grant NNX11AD20G. P.B.
acknowledges additional support from NSF grant AST0908807. D.S. is
supported in part by NASA grants NNH11AQ54I and NNH12AT89I. The authors
are indebted to Gilles Chabrier for the use of his nuclear screening
factors. The 3D hydrodynamical simulations reported in this work were
performed using resources provided by the NASA High-End Computing (HEC)
Program through the NASA Advanced Supercomputing (NAS) Division at Ames
Research Center. G.D. thanks Los Alamos National Laboratory for its
hospitality. The authors thank the referee Dr. Christoph Mordasini for a
detailed and constructive review.
NR 54
TC 20
Z9 20
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2013
VL 770
IS 2
AR 120
DI 10.1088/0004-637X/770/2/120
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 160HZ
UT WOS:000320111200038
ER
PT J
AU Childress, M
Aldering, G
Antilogus, P
Aragon, C
Bailey, S
Baltay, C
Bongard, S
Buton, C
Canto, A
Cellier-Holzem, F
Chotard, N
Copin, Y
Fakhouri, HK
Gangler, E
Guy, J
Hsiao, EY
Kerschhaggl, M
Kim, AG
Kowalski, M
Loken, S
Nugent, P
Paech, K
Pain, R
Pecontal, E
Pereira, R
Perlmutter, S
Rabinowitz, D
Rigault, M
Runge, K
Scalzo, R
Smadja, G
Tao, C
Thomas, RC
Weaver, BA
Wu, C
AF Childress, M.
Aldering, G.
Antilogus, P.
Aragon, C.
Bailey, S.
Baltay, C.
Bongard, S.
Buton, C.
Canto, A.
Cellier-Holzem, F.
Chotard, N.
Copin, Y.
Fakhouri, H. K.
Gangler, E.
Guy, J.
Hsiao, E. Y.
Kerschhaggl, M.
Kim, A. G.
Kowalski, M.
Loken, S.
Nugent, P.
Paech, K.
Pain, R.
Pecontal, E.
Pereira, R.
Perlmutter, S.
Rabinowitz, D.
Rigault, M.
Runge, K.
Scalzo, R.
Smadja, G.
Tao, C.
Thomas, R. C.
Weaver, B. A.
Wu, C.
TI HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM
THE NEARBY SUPERNOVA FACTORY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE dark energy; supernovae: general
ID DIGITAL SKY SURVEY; INITIAL MASS FUNCTION; STAR-FORMING GALAXIES;
LIGHT-CURVE SHAPES; STELLAR POPULATION SYNTHESIS; HIGH-REDSHIFT
SUPERNOVAE; OR-EQUAL-TO; METALLICITY RELATION; SPACE-TELESCOPE;
DARK-ENERGY
AB We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 +/- 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 <= log(M*/M-circle dot) <= 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.
C1 [Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Perlmutter, S.; Runge, K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Childress, M.; Fakhouri, H. K.; Perlmutter, S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Childress, M.; Scalzo, R.] Australian Natl Univ, Mt Stromlo Observ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia.
[Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Pain, R.; Wu, C.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, F-75252 Paris 05, France.
[Baltay, C.; Rabinowitz, D.] Yale Univ, Dept Phys, New Haven, CT 06250 USA.
[Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany.
[Chotard, N.; Copin, Y.; Gangler, E.; Pereira, R.; Rigault, M.; Smadja, G.] Univ Lyon, F-69622 Lyon, France.
[Chotard, N.; Copin, Y.; Gangler, E.; Pereira, R.; Rigault, M.; Smadja, G.] Univ Lyon 1, F-69622 Villeurbanne, France.
[Chotard, N.; Copin, Y.; Gangler, E.; Pereira, R.; Rigault, M.; Smadja, G.] CNRS, IN2P3, Inst Phys Nucl Lyon, F-75700 Paris, France.
[Nugent, P.; Thomas, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Computat Res Div, Berkeley, CA 94720 USA.
[Pecontal, E.] Univ Lyon 1, Ctr Rech Astron Lyon, F-69561 St Genis Laval, France.
[Tao, C.] Aix Marseille Univ, Ctr Phys Particules Marseille, CNRS, IN2P3, F-13288 Marseille 09, France.
[Tao, C.] Tsinghua Univ, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China.
[Weaver, B. A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA.
[Wu, C.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China.
RP Childress, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RI Copin, Yannick/B-4928-2015; Perlmutter, Saul/I-3505-2015;
OI Copin, Yannick/0000-0002-5317-7518; Perlmutter,
Saul/0000-0002-4436-4661; Scalzo, Richard/0000-0003-3740-1214
FU NASA [NAS5-98034]; GALEX Archival Research Grant [08-GALEX508-0008];
Office of Science, Office of High Energy Physics, of the U.S. Department
of Energy [DE-AC02-05CH11231]; U.S. Department of Energy Scientific
Discovery through Advanced Computing (SciDAC) program
[DE-FG02-06ER06-04]; Gordon & Betty Moore Foundation; CNRS/IN2P3 France;
CNRS/INSU France; PNC France; DFG Germany [TRR33]; Henri Chretien
International Research Grant; France-Berkeley Fund; Explora'Doc Grant by
the Region Rhone Alpes; Office of Science, Office of Advanced Scientific
Computing Research, of the U.S. Department of Energy
[DE-AC02-05CH11231]; National Science Foundation [ANI-0087344];
University of California, San Diego; Australian Research Council Centre
of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; W. M.
Keck Foundation; Alfred P. Sloan Foundation; U.S. Department of Energy
Office of Science
FX Based in part on observations made with the NASA Galaxy Evolution
Explorer. GALEX is operated from NASA by the California Institute of
Technology under NASA contract NAS5-98034. The authors graciously
acknowledge support from GALEX Archival Research Grant 08-GALEX508-0008
for program GI5-047 (PI: Aldering). This work was supported by the
Director, Office of Science, Office of High Energy Physics, of the U.S.
Department of Energy under contract No. DE-AC02-05CH11231; the U.S.
Department of Energy Scientific Discovery through Advanced Computing
(SciDAC) program under contract No. DE-FG02-06ER06-04; by a grant from
the Gordon & Betty Moore Foundation; in France by support from
CNRS/IN2P3, CNRS/INSU, and PNC; and in Germany by the DFG through TRR33
"The Dark Universe." Funding was also provided by a Henri Chretien
International Research Grant administrated by the American Astronomical
Society; the France-Berkeley Fund; and by an Explora'Doc Grant by the
Region Rhone Alpes. This research used resources of the National Energy
Research Scientific Computing Center, which is supported by the
Director, Office of Science, Office of Advanced Scientific Computing
Research, of the U.S. Department of Energy under contract No.
DE-AC02-05CH11231. We thank them for a generous allocation of storage
and computing time. HPWREN is funded by National Science Foundation
Grant Number ANI-0087344, and the University of California, San Diego.
Part of this research was conducted by the Australian Research Council
Centre of Excellence for All-sky Astrophysics (CAASTRO), through project
number CE110001020.; The authors would like to thank the excellent
technical and scientific staff at the many observatories where data were
taken for this paper: the University of Hawaii 2.2 m telescope, Lick
Observatory, Keck Observatory, the Blanco 4 m telescope, the SOAR
telescope, and Gemini South. Some data presented herein were obtained at
the W. M. Keck Observatory, which is operated as a scientific
partnership among the California Institute of Technology, the University
of California, and the National Aeronautics and Space Administration;
the Observatory was made possible by the generous financial support of
the W. M. Keck Foundation. We wish to recognize and acknowledge the very
significant cultural role and reverence that the summit of Mauna Kea has
always had within the indigenous Hawaiian community, and we are
extremely grateful for the opportunity to conduct observations from this
mountain. We also thank Dan Birchall for assistance with SNIFS
observations. We are very grateful to David Rubin for providing SALT2.2
light curve fits to the CfA light curves in advance of the forthcoming
Union3 analysis. We also thank Josh Meyers and Dan Kasen for useful
discussions. We thank the anonymous referee who provided very helpful
comments. Some of the data analyzed here were obtained from the Sloan
Digital Sky Survey Eight Data Release (SDSS-III DR8). Funding for
SDSS-III has been provided by the Alfred P. Sloan Foundation, the
Participating Institutions, the National Science Foundation, and the
U.S. Department of Energy Office of Science. The SDSS-III Web site is
http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research
Consortium for the Participating Institutions of the SDSS-III
Collaboration including the University of Arizona, the Brazilian
Participation Group, Brookhaven National Laboratory, University of
Cambridge, Carnegie Mellon University, University of Florida, the French
Participation Group, the German Participation Group, Harvard University,
the Instituto de Astrofisica de Canarias, the Michigan State/Notre
Dame/JINA Participation Group, Johns Hopkins University, Lawrence
Berkeley National Laboratory, Max Planck Institute for Astrophysics, New
Mexico State University, New York University, Ohio State University,
Pennsylvania State University, University of Portsmouth, Princeton
University, the Spanish Participation Group, University of Tokyo,
University of Utah, Vanderbilt University, University of Virginia,
University of Washington, and Yale University.
NR 118
TC 41
Z9 41
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2013
VL 770
IS 2
AR UNSP 108
DI 10.1088/0004-637X/770/2/108
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 160HZ
UT WOS:000320111200026
ER
PT J
AU Childress, M
Aldering, G
Antilogus, P
Aragon, C
Bailey, S
Baltay, C
Bongard, S
Buton, C
Canto, A
Cellier-Holzem, F
Chotard, N
Copin, Y
Fakhouri, HK
Gangler, E
Guy, J
Hsiao, EY
Kerschhaggl, M
Kim, AG
Kowalski, M
Loken, S
Nugent, P
Paech, K
Pain, R
Pecontal, E
Pereira, R
Perlmutter, S
Rabinowitz, D
Rigault, M
Runge, K
Scalzo, R
Smadja, G
Tao, C
Thomas, RC
Weaver, BA
Wu, C
AF Childress, M.
Aldering, G.
Antilogus, P.
Aragon, C.
Bailey, S.
Baltay, C.
Bongard, S.
Buton, C.
Canto, A.
Cellier-Holzem, F.
Chotard, N.
Copin, Y.
Fakhouri, H. K.
Gangler, E.
Guy, J.
Hsiao, E. Y.
Kerschhaggl, M.
Kim, A. G.
Kowalski, M.
Loken, S.
Nugent, P.
Paech, K.
Pain, R.
Pecontal, E.
Pereira, R.
Perlmutter, S.
Rabinowitz, D.
Rigault, M.
Runge, K.
Scalzo, R.
Sma