FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Wong, CY Wilk, G AF Wong, Cheuk-Yin Wilk, Grzegorz TI Tsallis fits to p(T) spectra and multiple hard scattering in pp collisions at the LHC SO PHYSICAL REVIEW D LA English DT Article ID LARGE TRANSVERSE-MOMENTUM; MULTIPARTON SEMIHARD INTERACTIONS; NUCLEUS-NUCLEUS COLLISIONS; PROTON-PROTON COLLISIONS; HIGH-ENERGY COLLISIONS; PARTICLE-PRODUCTION; CROSS-SECTION; EXCLUSIVE REACTIONS; CHARGED-PARTICLES; JET FRAGMENTATION AB Phenomenological Tsallis fits to the CMS, ATLAS, and ALICE transverse momentum spectra of hadrons for pp collisions at LHC were recently found to extend over a large range of the transverse momentum. We investigate whether the few degrees of freedom in the Tsallis parametrization may arise from the relativistic parton-parton hard-scattering and related processes. The effects of the multiple hard-scattering and parton showering processes on the power law are discussed. We find empirically that whereas the transverse spectra of both hadrons and jets exhibit power- law behavior of 1/p(T)(n) at high p(T), the power indices n for hadrons are systematically greater than those for jets, for which n similar to 4-5. C1 [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Wilk, Grzegorz] Natl Ctr Nucl Res, PL-00681 Warsaw, Poland. RP Wong, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM wongc@ornl.gov; wilk@fuw.edu.pl OI Wong, Cheuk-Yin/0000-0001-8223-0659 FU Division of Nuclear Physics, U.S. Department of Energy; Ministry of Science and Higher Education [DPN/N97/CERN/2009] FX The authors would like to thank Professor R. Blankenbecler, Professor Vince Cianciolo, Professor R. Hwa, Professor Jiangyong Jia, Professor D. Silvermyr, Professor T. Trainor, and Professor Z. Wlodarczyk for helpful discussions and communications. The research was supported in part by the Division of Nuclear Physics, U.S. Department of Energy (C.-Y.W.) and by the Ministry of Science and Higher Education under Contract No. DPN/N97/CERN/2009 (G.W.). NR 104 TC 62 Z9 62 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 5 PY 2013 VL 87 IS 11 AR UNSP 114007 DI 10.1103/PhysRevD.87.114007 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 160GM UT WOS:000320106100006 ER PT J AU Brinzari, TV Chen, P Sun, QC Liu, J Tung, LC Wang, Y Schlueter, JA Singleton, J Manson, JL Whangbo, MH Litvinchuk, AP Musfeldt, JL AF Brinzari, T. V. Chen, P. Sun, Q. -C. Liu, J. Tung, L. -C. Wang, Y. Schlueter, J. A. Singleton, J. Manson, J. L. Whangbo, M. -H. Litvinchuk, A. P. Musfeldt, J. L. TI Quantum Critical Transition Amplifies Magnetoelastic Coupling in Mn[N(CN)(2)](2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOLECULE-BASED MAGNET; EXCHANGE INTERACTIONS; THERMAL-EXPANSION; CRYSTAL-STRUCTURE; PHASE-TRANSITION; MAGNETOSTRICTION; MAGNETIZATION; FERROMAGNETS; SPECTROSCOPY; DICYANAMIDE AB We report the discovery of a magnetic quantum critical transition in Mn[N(CN)(2)](2) that drives the system from a canted antiferromagnetic state to the fully polarized state with amplified magnetoelastic coupling as an intrinsic part of the process. The local lattice distortions, revealed through systematic phonon frequency shifts, suggest a combined MnN6 octahedra distortion + counterrotation mechanism that reduces antiferromagnetic interactions and acts to accommodate the field-induced state. These findings deepen our understanding of magnetoelastic coupling near a magnetic quantum critical point and away from the static limit. C1 [Brinzari, T. V.; Chen, P.; Sun, Q. -C.; Musfeldt, J. L.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Liu, J.; Whangbo, M. -H.] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. [Tung, L. -C.; Wang, Y.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Schlueter, J. A.] Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. [Singleton, J.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Manson, J. L.] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. [Litvinchuk, A. P.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Litvinchuk, A. P.] Univ Houston, Dept Phys, Houston, TX 77204 USA. RP Brinzari, TV (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RI Sun, Qi/A-2686-2009; Litvinchuk, Alexander/K-6991-2012 OI Sun, Qi/0000-0001-7341-7470; Litvinchuk, Alexander/0000-0002-5128-5232 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-01ER45885]; NHMFL; Office of Science laboratory [DE-AC02-06CH11357]; Division of Materials Research at the National Science Foundation [DMR-1005825, DMR-0654118]; computing resources of the NERSC center; computing resources of the NCSU HPC center; State of Florida (NHMFL) FX Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-01ER45885 (J. L. M., UT), the NHMFL, and Office of Science laboratory under DE-AC02-06CH11357 (J. A. S.) and by the Division of Materials Research at the National Science Foundation under DMR-1005825 (J. L. M., EWU), DMR-0654118 (NHMFL), the computing resources of the NERSC and NCSU HPC centers, and the State of Florida (NHMFL). We thank R. K. Kaul, D. Smirnov, and X. S. Xu for useful discussions. NR 44 TC 8 Z9 8 U1 2 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 5 PY 2013 VL 110 IS 23 AR UNSP 237202 DI 10.1103/PhysRevLett.110.237202 PG 5 WC Physics, Multidisciplinary SC Physics GA 160JJ UT WOS:000320115400009 PM 25167527 ER PT J AU Wang, YL Latimer, ML Xiao, ZL Divan, R Ocola, LE Crabtree, GW Kwok, WK AF Wang, Y. L. Latimer, M. L. Xiao, Z. L. Divan, R. Ocola, L. E. Crabtree, G. W. Kwok, W. K. TI Enhancing the critical current of a superconducting film in a wide range of magnetic fields with a conformal array of nanoscale holes SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; ANTIDOT LATTICE; MAGNETORESISTANCE; OSCILLATIONS AB The maximum current (critical current) a type-II superconductor can transmit without energy loss is limited by the motion of the quantized magnetic flux penetrating into a superconductor. Introducing nanoscale holes into a superconducting film has been long pursued as a promising way to increase the critical current. So far the critical current enhancement was found to be mostly limited to low magnetic fields. Here we experimentally investigate the critical currents of superconducting films with a conformal array of nanoscale holes that have nonuniform density while preserving the local ordering. We find that the conformal array of nanoscale holes provides a more significant critical current enhancement at high magnetic fields. The better performance can be attributed to its arching effect that not only gives rise to the gradient in hole density for pinning vortices with a wide range of densities but also prevents vortex channeling occurring in samples with a regular lattice of holes. C1 [Wang, Y. L.; Latimer, M. L.; Xiao, Z. L.; Crabtree, G. W.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Latimer, M. L.; Xiao, Z. L.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Divan, R.; Ocola, L. E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Crabtree, G. W.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Crabtree, G. W.] Univ Illinois, Dept Elect & Mech Engn, Chicago, IL 60607 USA. RP Wang, YL (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ylwang@anl.gov; xiao@anl.gov RI Wang, Yong-Lei/N-7940-2013 OI Wang, Yong-Lei/0000-0003-0391-7757 FU DOE BES [DE-AC02-06CH11357, DE-FG02-06ER46334] FX This work was supported by DOE BES under Contract No. DE-AC02-06CH11357 which also funds Argonne's Center for Nanoscale Materials (CNM) and Electron Microscopy Center (EMC) where the nanopatterning and morphological analysis were performed. M.L.L. and Z.L.X. acknowledge DOE BES Grant No. DE-FG02-06ER46334 (sample fabrication). We are grateful to Charles Reichhardt in Los Alamos National Laboratory for stimulating discussions and sharing their simulation results prior to publication. NR 43 TC 19 Z9 19 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 5 PY 2013 VL 87 IS 22 AR 220501 DI 10.1103/PhysRevB.87.220501 PG 5 WC Physics, Condensed Matter SC Physics GA 160FU UT WOS:000320103700001 ER PT J AU Hershberger, MT Hupalo, M Thiel, PA Tringides, MC AF Hershberger, M. T. Hupalo, M. Thiel, P. A. Tringides, M. C. TI Growth of fcc(111) Dy multi-height islands on 6H-SiC(0001) graphene SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID FILMS; ANISOTROPY; SURFACE; MODEL; TB; GD AB Graphene based spintronic devices require an understanding of the growth of magnetic metals. Rare earth metals have large bulk magnetic moments so they are good candidates for such applications, and it is important to identify their growth mode. Dysprosium was deposited on epitaxial graphene, prepared by thermally annealing 6H-SiC(0001). The majority of the grown islands have triangular instead of hexagonal shapes. This is observed both for single layer islands nucleating at the top of incomplete islands and for fully completed multi-height islands. We analyze the island shape distribution and stacking sequence of successively grown islands to deduce that the Dy islands have fcc(111) structure, and that the triangular shapes result from asymmetric barriers to corner crossing. C1 [Hershberger, M. T.; Hupalo, M.; Thiel, P. A.; Tringides, M. C.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Hershberger, M. T.; Tringides, M. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Hershberger, MT (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM tringides@ameslab.gov FU Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy (USDOE) [DE-AC02-07CH11358]; US Department of Energy FX This work was supported by the Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy (USDOE), under Contract No. DE-AC02-07CH11358 with the US Department of Energy. NR 29 TC 6 Z9 6 U1 0 U2 35 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 5 PY 2013 VL 25 IS 22 AR 225005 DI 10.1088/0953-8984/25/22/225005 PG 6 WC Physics, Condensed Matter SC Physics GA 148QU UT WOS:000319262200006 PM 23674169 ER PT J AU Huang, GY Abdul-Jabbar, NM Wirth, BD AF Huang, Gui-Yang Abdul-Jabbar, N. M. Wirth, B. D. TI First-principles study of the structure and band structure of Ga2Se3 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID VACANCY-ORDERED GA2SE3; MOLECULAR-BEAM EPITAXY; AUGMENTED-WAVE METHOD; OPTICAL-PROPERTIES; THIN-FILMS; SINGLE-CRYSTALS; PHOTOELECTRIC PROPERTIES; SOLID SOLUTION; HIGH-PRESSURE; GA2TE3 AB Our first-principles calculations show that the ordering of stoichiometric cation vacancies in Ga2Se3 has a large influence on the bandgap, up to 0.55 eV. Therein, the zigzag-line vacancy-ordered Ga2Se3 has the maximum bandgap (similar to 2.56 eV direct bandgap), and the straight-line vacancy-ordered Ga2Se3 has the minimum bandgap (similar to 1.99 eV indirect bandgap) at 0 K, according to scGW calculations. The bandgap difference (0.55 eV) is almost the same for normal density functional theory (DFT) calculations, hybrid DFT calculations and GW calculations. The calculation results are consistent with the experimental bandgap range of 2.0-2.6 eV at room temperature. Also, hydrostatic pressure (<9 GPa) tends to increase the bandgap, consistent with the experiments in the literature. C1 [Huang, Gui-Yang; Wirth, B. D.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Abdul-Jabbar, N. M.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Abdul-Jabbar, N. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wirth, B. D.] Oak Ridge Natl Lab, Knoxville, TN USA. RP Huang, GY (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM huangguiyang@gmail.com; bdwirth@utk.edu RI Wirth, Brian/O-4878-2015 OI Wirth, Brian/0000-0002-0395-0285 FU US Department of Energy, Office of Nuclear Energy [00091204, 81.049] FX This research has been funded by the US Department of Energy, Office of Nuclear Energy through the Nuclear Energy University Program, administered by Battelle Energy Alliance, LLC, Subcontract No. 00091204, CFDA#81.049. NR 82 TC 6 Z9 6 U1 2 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 5 PY 2013 VL 25 IS 22 AR 225503 DI 10.1088/0953-8984/25/22/225503 PG 15 WC Physics, Condensed Matter SC Physics GA 148QU UT WOS:000319262200012 PM 23673396 ER PT J AU Abdel-Fattah, AI Zhou, DX Boukhalfa, H Tarimala, S Ware, SD Keller, AA AF Abdel-Fattah, Amr I. Zhou, Dongxu Boukhalfa, Hakim Tarimala, Sowmitri Ware, S. Doug Keller, Arturo A. TI Dispersion Stability and Electrokinetic Properties of Intrinsic Plutonium Colloids: Implications for Subsurface Transport SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID NANOPARTICLES; ADSORPTION; CHEMISTRY; BEHAVIOR; MEDIA; OXIDE AB Subsurface transport of Plutonium (Pu) may be facilitated by the formation of intrinsic Pu colloids. While this colloid-facilitated transport is stability gely governed by the electrokinetic properties and dispersion (resistance to aggregation) of the colloids, reported experimental data is scarce. Here, we quantify the dependence of zeta potential of intrinsic Fu(IV colloids on PH and their aggregation rate on ionic strength. Results indicate an si electric point of pH 8.6 and a critical coagulation concentration of 0.1 M of 1:1 electrolyte at pH 11.4. The zeta-Potelitial/PH dependence of the Pu(IV) colloids is similar to that of goethite and hematite colloids. Colloid interaction energy calculations using these, values reveal an effective Hamaker constant of the intrinsic Pu(IV) colloids in water of 1.85 x 10(-19) J corresponding to a relative permittivity of 6.21 and refractive of 2.33, in agreement with first principles calculations. This relatively high Hamaker constant combined with the positive charge of Pu(IV) colloids under typical groundwater aquifer conditions led to two contradicting hypotheses: (a) the Pu(IV) colloids will exhibit significant aggregation and deposition, leading to a negligible subsurface transport or (b) the Pu(IV) colloids will associate with the relatively stable native groundwater colloids, leading to a considerable subsurface transport. Packed column transport experiments supported the second hypothesis. C1 [Abdel-Fattah, Amr I.; Boukhalfa, Hakim; Tarimala, Sowmitri; Ware, S. Doug] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Zhou, Dongxu; Keller, Arturo A.] Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA. [Zhou, Dongxu; Keller, Arturo A.] Univ Calif Santa Barbara, UC Ctr Environm Implicat Nanotechnol, Santa Barbara, CA 93106 USA. EM amr.abdelfattah@aramco.com FU Institute for Multiscale Materials Studies; DOE Underground Test Area (UGTA) program; National Science Foundation; U.S. Environmental Protection Agency [DBI-0830117] FX Funding for this work was provided by the Institute for Multiscale Materials Studies, the DOE Underground Test Area (UGTA) program, and the National Science Foundation and the U.S. Environmental Protection Agency under Cooperative Agreement Number DBI-0830117. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies. NR 35 TC 14 Z9 15 U1 4 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 4 PY 2013 VL 47 IS 11 BP 5626 EP 5634 DI 10.1021/es304729d PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 160DO UT WOS:000320097400017 PM 23675849 ER PT J AU Rui, X Kwon, MJ O'Loughlin, EJ Dunham-Cheatham, S Fein, JB Bunker, B Kemner, KM Boyanov, MI AF Rui, Xue Kwon, Man Jae O'Loughlin, Edward J. Dunham-Cheatham, Sarrah Fein, Jeremy B. Bunker, Bruce Kemner, Kenneth M. Boyanov, Maxim I. TI Bioreduction of Hydrogen Uranyl Phosphate: Mechanisms and U(IV) Products SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID EXTRACELLULAR ELECTRON-TRANSFER; METAL-REDUCING BACTERIUM; ONEIDENSIS STRAIN MR-1; SOLID-PHASE U(VI); MICROBIAL REDUCTION; SHEWANELLA-PUTREFACIENS; CONTAMINATED SUBSURFACE; ANAEROMYXOBACTER-DEHALOGENANS; URANIUM IMMOBILIZATION; APATITE DISSOLUTION AB The mobility of uranium (U) in subsurface environments is controlled by interrelated adsorption, redox, and precipitation reactions. Previous work demonstrated the formation of nanorneter-sized hydrogen uranyl phosphate (abbreviated as HUP) crystals on the cell walls of Bacillus subtilis, a non-U-VI-reducing, Gram-positive bacterium. The current examined the reduction of this biogenic, cell-associated HUP mineral by three dissimilatory metal-reducing bacteria Anaeromyxobacter dehalogenans strain K, Geobacter sulfurreducals strain. PCA, and Shewanella putrefaciens strain CN-32, and compared it to the bioreduction of abiotically formed and freely suspended HUP of larger particle size. Uranium speciation hi the solid phase was followed over a 10- to 20-day reaction period by X-ray absorption fine structure spectroscopy (XCANES and EXAFS) an showed biogenic than with the abiotic material under the same experimental conditions. A greater extent of HUP reduction was observed varying extents of U-VI reduction to U-IV. The reduction extent of the same mass of HUP to U-IV was consistent the presence of bicarbonate in solution, whereas a decreased extent of HUP reduction was observed with the addition of, dissolved phosphate These results indicate that the extent of U-VI reduction is controlled by dissolution of the HUP h suggesting that the metal-reducing bacteria transfer electrons to the dissolved or bacterially adsorbed U-VI species formed after; HUP dissolution rather than to solid-phase U-VI in the HUP mineral. Interestingly, the bioreduced U-VI atoms were not immediately coordinated to other U-IV atoms (as in uraninite, UO2) but were similar in structure to the phosphate-complexed U-IV species found in ningyoite [CaU(PO4)(2)center dot H2O] This indicates a strong control by phosphate on the speciation of bioreduced U-IV, expressed as inhibition of the typical formation of uraninite under phosphate-free conditions. C1 [Rui, Xue; Bunker, Bruce] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Kwon, Man Jae; O'Loughlin, Edward J.; Kemner, Kenneth M.; Boyanov, Maxim I.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Kwon, Man Jae] Korea Inst Sci & Technol, Kangnung 210340, South Korea. [Dunham-Cheatham, Sarrah; Fein, Jeremy B.] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA. RP Boyanov, MI (reprint author), Argonne Natl Lab, Biosci Div, 9700 South Cass Ave,Bldg 203, Argonne, IL 60439 USA. EM mboyanov@anl.gov RI BM, MRCAT/G-7576-2011; ID, MRCAT/G-7586-2011; O'Loughlin, Edward/C-9565-2013 OI O'Loughlin, Edward/0000-0003-1607-9529 FU Argonne Director's Fellowship; KIST-Gangneung Institute [2Z03860]; DOE Subsurface Biogeochemical Research Program, Office of Biological and Environmental Research, Office of Science [DE-AC02-06CH11357]; DOE [DE-AC02-06CH11357]; MRCAT/EnviroCAT FX We thank B. Mishra and the MRCAT/EnviroCAT beamline staff for assistance during EXAFS data collection. M. J. Kwon was supported by an Argonne Director's Fellowship and the KIST-Gangneung Institute (Grant 2Z03860). This research is part of the Subsurface Science Scientific Focus Area at Argonne National Laboratory supported by the DOE Subsurface Biogeochemical Research Program, Office of Biological and Environmental Research, Office of Science, under contract DE-AC02-06CH11357. Use of the Advanced Photon Source, a user facility operated for the DOE Office of Science by Argonne National Laboratory, was supported by DOE under contract DE-AC02-06CH11357. MRCAT/EnviroCAT operations are supported by DOE and the MRCAT/EnviroCAT member institutions. NR 89 TC 23 Z9 24 U1 15 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 4 PY 2013 VL 47 IS 11 BP 5668 EP 5678 DI 10.1021/es305258p PG 11 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 160DO UT WOS:000320097400022 PM 23634690 ER PT J AU Lee, HJ Laskin, A Laskin, J Nizkorodov, SA AF Lee, Hyun Ji (Julie) Laskin, Alexander Laskin, Julia Nizkorodov, Sergey A. TI Excitation-Emission Spectra and Fluorescence Quantum Yields for Fresh and Aged Biogenic Secondary Organic Aerosols SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID AIRBORNE BIOLOGICAL PARTICLES; REAL-TIME MEASUREMENT; ATMOSPHERIC AEROSOL; HUMIC-LIKE; OPTICAL-PROPERTIES; GLYOXAL UPTAKE; BROWN CARBON; MATTER; PRODUCTS; SPECTROSCOPY AB Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines, and their salts. Fluorescent SOA may potentially be mistaken for biological Particles by detection methods relying on fluorescence. This work quantifies the spectral - 'distribution' and effective quantum yields of fluorescence of water-soluble SOA; generated from two monoterpenes, limonene and alpha-pinene, and two different oxidants, ozone (O-3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to similar to 100 ppb ammonia in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (similar to 0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for lambda(excitation) = 420 +/- 50 nm and lambda(emission) = 475 +/- 38 nm. The window of the strongest fluorescence shifted to lambda(excitation) = 320 +/- 25 nm and lambda(emission) = 425 +/- 38 nm for the alpha-pinene-derived SOA. Both regions overlap with the EEM spectra of some of the fluorophores found in aerosols. Despite the low quantum yield, the aged SOA particles may have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols. C1 [Lee, Hyun Ji (Julie); Nizkorodov, Sergey A.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Laskin, Alexander] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Laskin, Julia] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Nizkorodov, SA (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. EM nizkorod@uci.edu RI Laskin, Julia/H-9974-2012; Laskin, Alexander/I-2574-2012; Nizkorodov, Sergey/I-4120-2014 OI Laskin, Julia/0000-0002-4533-9644; Laskin, Alexander/0000-0002-7836-8417; Nizkorodov, Sergey/0000-0003-0891-0052 FU NSF [AGS-1227579, CHEM-0909227]; Chemical Sciences Division; Office of Basic Energy Sciences of the U.S. DOE; Laboratory Directed Research and Development program of the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a national scientific user facility at PNNL; Office of Biological and Environmental Research of the U.S.; US DOE by Battelle Memorial Institute [DE-AC06-76RL0 1830] FX The UCI group acknowledges support by the NSF grants AGS-1227579 (H.J.L.) and CHEM-0909227 (S.A.N.). The PNNL group acknowledges support from the Chemical Sciences Division (J.L.), Office of Basic Energy Sciences of the U.S. DOE, and Laboratory Directed Research and Development program (A.L.) of the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a national scientific user facility located at PNNL, and sponsored by the Office of Biological and Environmental Research of the U.S. PNNL is operated for US DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RL0 1830. NR 65 TC 22 Z9 23 U1 2 U2 104 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 4 PY 2013 VL 47 IS 11 BP 5763 EP 5770 DI 10.1021/es400644c PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 160DO UT WOS:000320097400033 PM 23663151 ER PT J AU Tang, GP Luo, WS Watson, DB Brooks, SC Gu, BH AF Tang, Guoping Luo, Wensui Watson, David B. Brooks, Scott C. Gu, Baohua TI Prediction of Aluminum, Uranium, and Co-Contaminants Precipitation and Adsorption during Titration of Acidic Sediments SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID WEATHERED FRACTURED SAPROLITE/SHALE; CONTAMINATED GROUNDWATER; TRACE-METALS; SULFATE; WATERS; MOBILIZATION; IRON; SOLUBILITY; DEPOSITION; TRANSPORT AB Batch and column recirculation titration tests were performed with contaminated acidic sediments. A generic geochemical model was developed combining precipitation, cation exchange, and surface complexation reactions to describe the observed pH and metal ion concentrations in experiments with or without the presence of CO2. Experimental results showed a slow pH increase due to strong buffering by Al hydrolysis and precipitation and CO2 uptake. The cation concentrations generally decreased at higher pH than those observed in previous tests without CO2. Using amorphous Al(OH)(3) and basaluminite precipitation reactions and a cation exchange selectivity coefficient K-Na\Al of 0.3, the model approximately described the observed (1) pH titration curve, (2) Ca, Mg, and Mn concentration by cation exchange, and (3) U concentrations by surface complexation with Fe hydroxides at pH < 5 and with liebigite (Ca2UO2(CO3)(3)center dot 10H(2)O) precipitation at pH > 5. The model indicated that the formation of aqueous carbonate complexes and competition with carbonate for surface sites could inhibit U and Ni adsorption and precipitation. Our results suggested that the uncertainty in basaluminite solubility is an important source of prediction uncertainty and ignoring labile solid phase Al underestimates the base requirement in titration of acidic sediments. C1 [Tang, Guoping; Luo, Wensui; Watson, David B.; Brooks, Scott C.; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Luo, Wensui] Chinese Acad Sci, Inst Urban Environm, Xiamen 361021, Fujian, Peoples R China. RP Tang, GP (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,MS 6038, Oak Ridge, TN 37831 USA. EM tangg@ornl.gov RI Tang, Guoping/A-5141-2010; Brooks, Scott/B-9439-2012; Gu, Baohua/B-9511-2012; Watson, David/C-3256-2016 OI Tang, Guoping/0000-0003-1090-3564; Brooks, Scott/0000-0002-8437-9788; Gu, Baohua/0000-0002-7299-2956; Watson, David/0000-0002-4972-4136 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Subsurface Biogeochemical Research Program; U.S. Department of Energy [DE-AC05-18 00OR22725] FX We thank David Parkhurst for help with PHREEQC modeling. This research was sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Subsurface Biogeochemical Research Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-18 00OR22725. NR 34 TC 5 Z9 5 U1 1 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 4 PY 2013 VL 47 IS 11 BP 5787 EP 5793 DI 10.1021/es400169y PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 160DO UT WOS:000320097400036 PM 23641798 ER PT J AU Whitaker, MB Heath, GA Burkhardt, JJ Turchi, CS AF Whitaker, Michael B. Heath, Garvin A. Burkhardt, John J., III Turchi, Craig S. TI Life Cycle Assessment of a Power Tower Concentrating Solar Plant and the Impacts of Key Design Alternatives SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID GREENHOUSE-GAS EMISSIONS AB A hybrid life cycle assessment (LCA) is used to evaluate four sustainability metrics over the life cycle of a power tower concentrating solar power (CSP) greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). The reference design is for a dry-cooled, 106 MWnet power tower facility located near Tucson, AZ that Uses a mixture of mined nitrite salts as the heat. transfer. fluid and storage medium, a two-tank thermal energy storage system designed for six hours of full load-equivalent storage, and receives auxiliary power from the local electric grid. A thermocline-based storage system, synthetically derived salts, and natural gas auxiliary power are evaluated as design alternatives. Over its life cycle, the reference plant is to have GHG emissions of 37 g CO2eq/kWh, consume 1.4 L/kWh of water and 0.49 MJ/kWh of energy, and have an EPBT of 15 months. Using synthetic salts is estimated to increase GHG emissions by 12%, CED by 7%, and water consumption by 4% compared to mined salts. Natural gas auxiliary power results in greater than 10% decreases in GHG emissions, water consumption, and CED. The thermocline design is most advantageous when coupled with the use of synthetic salts. C1 [Whitaker, Michael B.] ICF Int, Fairfax, VA 22031 USA. [Heath, Garvin A.; Burkhardt, John J., III; Turchi, Craig S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Heath, GA (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Garvin.heath@nrel.gov FU U.S. Department of Energy's Solar Energy Technologies Program [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy's Solar Energy Technologies Program under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. We are thankful for the contributions of the staff of Worley Parsons Group for supplying detailed material and cost data for the hypothetical facility. Results and interpretation reported here do not necessarily reflect the views of Worley Parsons Group. The work of J.J.B. was performed at NREL and as private consultant to NREL. NR 33 TC 11 Z9 11 U1 1 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 4 PY 2013 VL 47 IS 11 BP 5896 EP 5903 DI 10.1021/es400821x PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 160DO UT WOS:000320097400050 PM 23663111 ER PT J AU Giuffre, AJ Hamm, LM Han, N De Yoreo, JJ Dove, PM AF Giuffre, Anthony J. Hamm, Laura M. Han, Nizhou De Yoreo, James J. Dove, Patricia M. TI Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biomineralization; calcium carbonate; free energy; algae; crustacean ID SELF-ASSEMBLED MONOLAYERS; ORGANIC MATRIX; EMILIANIA-HUXLEYI; ACIDIC POLYSACCHARIDE; CRYSTAL NUCLEATION; SHELL FORMATION; MOLLUSK SHELLS; FINE-STRUCTURE; CHITIN; ELECTRODEPOSITION AB Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate-crystal and substrate-liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate-crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate-crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate-crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation. C1 [Giuffre, Anthony J.; Hamm, Laura M.; Han, Nizhou; Dove, Patricia M.] Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA. [Hamm, Laura M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hamm, Laura M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [De Yoreo, James J.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Dove, PM (reprint author), Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA. EM dove@vt.edu RI Giuffre, Anthony/D-4192-2016 OI Giuffre, Anthony/0000-0001-9269-7922 FU US Department of Energy (USDOE) [DOE BES-FG02-00ER15112]; National Science Foundation [NSF OCE-1061763]; Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the USDOE [DE-AC02-05CH11231] FX We thank J. D. Rimstidt and M. Roman for thoughtful insights and discussions. This research was supported by US Department of Energy (USDOE) Grant DOE BES-FG02-00ER15112 (to P.M.D.) and National Science Foundation Grant NSF OCE-1061763. This work was also supported by the Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the USDOE under Contract DE-AC02-05CH11231. NR 54 TC 33 Z9 33 U1 8 U2 133 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 4 PY 2013 VL 110 IS 23 BP 9261 EP 9266 DI 10.1073/pnas.1222162110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 165SD UT WOS:000320503000028 PM 23690577 ER PT J AU Karki, AB Garlea, VO Custelcean, R Stadler, S Plummer, EW Jin, RY AF Karki, Amar B. Garlea, V. Ovidiu Custelcean, Radu Stadler, Shane Plummer, E. W. Jin, Rongying TI Interplay between superconductivity and magnetism in Fe1-xPdxTe SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID FERROMAGNETISM; PALLADIUM; COEXISTENCE; IRON; DESTRUCTION; TELLURIDES; ALLOYS; METALS; ORDER AB The attractive/repulsive relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions, and Fe pnictides, showed superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds [RRh4B4 (R = Nd, Sm, Tm, Er), R'Mo6X8 (R' = Tb, Dy, Er, Ho, and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoin(5), EuFe2(As1-xPx)(2), etc.], providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe1-xPdxTe. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature T-N/S, and turns into short-range AFM correlation with a characteristic peak in magnetic susceptibility at T'(N). Superconductivity sets in when T'(N) reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (short-range) cross-over regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic (FM and AFM) interactions. C1 [Karki, Amar B.; Stadler, Shane; Plummer, E. W.; Jin, Rongying] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Garlea, V. Ovidiu] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Custelcean, Radu] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Plummer, EW (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM wplummer@phys.lsu.edu; rjin@lsu.edu RI Custelcean, Radu/C-1037-2009; Garlea, Vasile/A-4994-2016 OI Custelcean, Radu/0000-0002-0727-7972; Garlea, Vasile/0000-0002-5322-7271 FU National Science Foundation [DMR-1002622, DMR-0965009]; Scientific User Facilities Division; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy FX We acknowledge the support of National Science Foundation Grants DMR-1002622 (to E.W.P. and R.J.) and DMR-0965009 (to S.S.). Research at the Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division (V.O.G.) and the Division of Chemical Sciences, Geosciences, and Biosciences (R.C.), Office of Basic Energy Sciences, US Department of Energy. NR 54 TC 8 Z9 8 U1 1 U2 43 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 4 PY 2013 VL 110 IS 23 BP 9283 EP 9288 DI 10.1073/pnas.1307113110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 165SD UT WOS:000320503000032 PM 23690601 ER PT J AU Wittke, JH Weaver, JC Bunch, TE Kennett, JP Kennett, DJ Moore, AMT Hillman, GC Tankersley, KB Goodyear, AC Moore, CR Daniel, IR Ray, JH Lopinot, NH Ferraro, D Israde-Alcantara, I Bischoff, JL DeCarli, PS Hermes, RE Kloosterman, JB Revay, Z Howard, GA Kimbel, DR Kletetschka, G Nabelek, L Lipo, CP Sakai, S West, A Firestone, RB AF Wittke, James H. Weaver, James C. Bunch, Ted E. Kennett, James P. Kennett, Douglas J. Moore, Andrew M. T. Hillman, Gordon C. Tankersley, Kenneth B. Goodyear, Albert C. Moore, Christopher R. Daniel, I. Randolph, Jr. Ray, Jack H. Lopinot, Neal H. Ferraro, David Israde-Alcantara, Isabel Bischoff, James L. DeCarli, Paul S. Hermes, Robert E. Kloosterman, Johan B. Revay, Zsolt Howard, George A. Kimbel, David R. Kletetschka, Gunther Nabelek, Ladislav Lipo, Carl P. Sakai, Sachiko West, Allen Firestone, Richard B. TI Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Clovis-Folsom; lechatelierite; tektite; wildfires ID EXTRATERRESTRIAL IMPACT; COSMIC SPHERULES; INDEPENDENT EVALUATION; MURRAY SPRINGS; BLACK MAT; YOUNGER; BOUNDARY; HYPOTHESIS; EXTINCTIONS; METEORITE AB Airbursts/impacts by a fragmented comet or asteroid have been proposed at the Younger Dryas onset (12.80 +/- 0.15 ka) based on identification of an assemblage of impact-related proxies, including microspherules, nanodiamonds, and iridium. Distributed across four continents at the Younger Dryas boundary (YDB), spherule peaks have been independently confirmed in eight studies, but unconfirmed in two others, resulting in continued dispute about their occurrence, distribution, and origin. To further address this dispute and better identify YDB spherules, we present results from one of the largest spherule investigations ever undertaken regarding spherule geochemistry, morphologies, origins, and processes of formation. We investigated 18 sites across North America, Europe, and the Middle East, performing nearly 700 analyses on spherules using energy dispersive X-ray spectroscopy for geochemical analyses and scanning electron microscopy for surface microstructural characterization. Twelve locations rank among the world's premier end-Pleistocene archaeological sites, where the YDB marks a hiatus in human occupation or major changes in site use. Our results are consistent with melting of sediments to temperatures >2,200 degrees C by the thermal radiation and air shocks produced by passage of an extraterrestrial object through the atmosphere; they are inconsistent with volcanic, cosmic, anthropogenic, lightning, or authigenic sources. We also produced spherules from wood in the laboratory at >1,730 degrees C, indicating that impact-related incineration of biomass may have contributed to spherule production. At 12.8 ka, an estimated 10 million tonnes of spherules were distributed across similar to 50 million square kilometers, similar to well-known impact strewnfields and consistent with a major cosmic impact event. C1 [Wittke, James H.; Bunch, Ted E.] No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Geol Program, Flagstaff, AZ 86011 USA. [Weaver, James C.] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA. [Kennett, James P.] Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA. [Kennett, James P.] Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA. [Kennett, Douglas J.] Penn State Univ, Dept Anthropol, University Pk, PA 16802 USA. [Moore, Andrew M. T.] Rochester Inst Technol, Coll Liberal Arts, Rochester, NY 14623 USA. [Hillman, Gordon C.] UCL, Inst Archaeol, London WC1H 0PY, England. [Tankersley, Kenneth B.] Univ Cincinnati, Dept Anthropol, Cincinnati, OH 45221 USA. [Tankersley, Kenneth B.] Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. [Goodyear, Albert C.] Univ S Carolina, South Carolina Inst Archaeol & Anthropol, Columbia, SC 29208 USA. [Moore, Christopher R.] Univ S Carolina, South Carolina Inst Archaeol & Anthropol, Savannah River Archaeol Res Program, New Ellenton, SC 29809 USA. [Daniel, I. Randolph, Jr.] E Carolina Univ, Dept Anthropol, Greenville, NC 27858 USA. [Ray, Jack H.; Lopinot, Neal H.] Missouri State Univ, Ctr Archaeol Res, Springfield, MO 65897 USA. [Ferraro, David] Viejo Calif Associates, Joshua Tree, CA 92252 USA. [Israde-Alcantara, Isabel] Univ Michoacana, Inst Invest Met, Dept Geolog & Mineral, Morelia 58060, Michoacan, Mexico. [Bischoff, James L.] US Geol Survey, Menlo Pk, CA 94025 USA. [DeCarli, Paul S.] SRI Int, Menlo Pk, CA 94025 USA. [Hermes, Robert E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kloosterman, Johan B.] Explorat Geologist, Amsterdam, Netherlands. [Revay, Zsolt] Tech Univ Munich, Forsch Neutronenquelle Heinz Maier Leibnitz, D-85748 Garching, Germany. [Howard, George A.] Restorat Syst, Raleigh, NC 27604 USA. [Kimbel, David R.] Kimstar Res, Fayetteville, NC 28312 USA. [Kletetschka, Gunther; Nabelek, Ladislav] Charles Univ Prague, Fac Sci, Prague 12843, Czech Republic. [Nabelek, Ladislav] Acad Sci Czech Republic, Publ Res Inst, Inst Geol, Prague 16500, Czech Republic. [Lipo, Carl P.; Sakai, Sachiko] Calif State Univ Long Beach, Inst Integrated Res Mat Environments & Soc, Long Beach, CA 90840 USA. [West, Allen] GeoSci Consulting, Dewey, AZ 86327 USA. [Firestone, Richard B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bunch, TE (reprint author), No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Geol Program, Flagstaff, AZ 86011 USA. EM tbear1@cableone.net RI Kletetschka, Gunther/C-9996-2011; Nabelek, Ladislav/I-8782-2014; Kennett, Douglas/I-7613-2015 OI Firestone, Richard/0000-0003-3833-5546; Kletetschka, Gunther/0000-0002-0645-9037; Kennett, Douglas/0000-0001-5133-9010 FU Cleveland Museum of Natural History; Court Family Foundation; Charles Phelps Taft Foundation; University of Cincinnati Research Council; US Department of Energy [DE-AC02-05CH11231]; US National Science Foundation [9986999, ATM-0713769, OCE-0825322]; Marine Geology and Geophysics; Ministry of Education Youth and Sports [LK21303] FX We are grateful for receiving crucial samples, data, and/or assistance from William Topping, Vance Haynes, Joanne Dickinson, Don Simons, Scott Harris, Malcolm LeCompte, Mark Demitroff, Yvonne Malinowski, Paula Zitzelberger, and Lawrence Edge. Bulk sample collection and/or preparation for various sites were conducted by Brendan Culleton, Carley Smith, and Karen Thompson. Dustin Thompson produced an age-depth plot for the Big Eddy site. Ferdi Geerts, Ab Goutbeek, and Henri Jutten provided field assistance in the Netherlands and Belgium. The assistance and support of Keith Hendricks of Indian Trail Caverns (Sheriden Cave), Brian Redmond, and the Cleveland Museum of Natural History are greatly appreciated, as are the suggestions of four anonymous reviewers. Support for this study was provided by the Court Family Foundation, Charles Phelps Taft Foundation, and University of Cincinnati Research Council (K. B. T.); US Department of Energy Contract DE-AC02-05CH11231 and US National Science Foundation Grant 9986999 (to R. B. F.); US National Science Foundation Grants ATM-0713769 and OCE-0825322, Marine Geology and Geophysics (to J.P.K.); and Ministry of Education Youth and Sports Grant LK21303 (to G.K.). NR 65 TC 31 Z9 32 U1 8 U2 87 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 4 PY 2013 VL 110 IS 23 BP E2088 EP E2097 DI 10.1073/pnas.1301760110 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 165SD UT WOS:000320503000005 PM 23690611 ER PT J AU Trewhella, J Hendrickson, WA Kleywegt, GJ Sali, A Sato, M Schwede, T Svergun, DI Tainer, JA Westbrook, J Berman, HM AF Trewhella, Jill Hendrickson, Wayne A. Kleywegt, Gerard J. Sali, Andrej Sato, Mamoru Schwede, Torsten Svergun, Dmitri I. Tainer, John A. Westbrook, John Berman, Helen M. TI Report of the wwPDB Small-Angle Scattering Task Force: Data Requirements for Biomolecular Modeling and the PDB SO STRUCTURE LA English DT News Item ID X-RAY-SCATTERING; COMPLEXES; SAXS; ASSEMBLIES; VALIDATION; INHIBITOR; BINDING; NMR AB This report presents the conclusions of the July 12-13, 2012 meeting of the Small-Angle Scattering Task Force of the worldwide Protein Data Bank (wwPDB; Berman et al., 2003) at Rutgers University in New Brunswick, New Jersey. The task force includes experts in small-angle scattering (SAS), crystallography, data archiving, and molecular modeling who met to consider questions regarding the contributions of SAS to modern structural biology. Recognizing there is a rapidly growing community of structural biology researchers acquiring and interpreting SAS data in terms of increasingly sophisticated molecular models, the task force recommends that (1) a global repository is needed that holds standard format X-ray and neutron SAS data that is searchable and freely accessible for download; (2) a standard dictionary is required for definitions of terms for data collection and for managing the SAS data repository; (3) options should be provided for including in the repository SAS-derived shape and atomistic models based on rigid-body refinement against SAS data along with specific information regarding the uniqueness and uncertainty of the model, and the protocol used to obtain it; (4) criteria need to be agreed upon for assessment of the quality of deposited SAS data and the accuracy of SAS-derived models, and the extent to which a given model fits the SAS data; (5) with the increasing diversity of structural biology data and models being generated, archiving options for models derived from diverse data will be required; and (6) thought leaders from the various structural biology disciplines should jointly define what to archive in the PDB and what complementary archives might be needed, taking into account both scientific needs and funding. C1 [Trewhella, Jill] Univ Sydney, Sch Mol Biosci, Sydney, NSW 2006, Australia. [Hendrickson, Wayne A.] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA. [Kleywegt, Gerard J.] European Bioinformat Inst, European Mol Biol Lab, Cambridge CB10 1SD, England. [Sali, Andrej] Univ Calif San Francisco, Calif Inst Quantitat Biosci, Dept Bioengn, San Francisco, CA 94143 USA. [Sali, Andrej] Univ Calif San Francisco, Calif Inst Quantitat Biosci, Dept Therapeut Sci, San Francisco, CA 94143 USA. [Sali, Andrej] Univ Calif San Francisco, Calif Inst Quantitat Biosci, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. [Sato, Mamoru] Yokohama City Univ, Grad Sch Med Life Sci, Yokohama, Kanagawa 2360027, Japan. [Schwede, Torsten] Univ Basel, Biozentrum, CH-4003 Basel, Switzerland. [Schwede, Torsten] SIB, CH-4056 Basel, Switzerland. [Svergun, Dmitri I.] DESY, European Mol Biol Lab, D-22603 Hamburg, Germany. [Tainer, John A.] Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94704 USA. [Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, Dept Integrat Struct & Computat Biol, La Jolla, CA 92037 USA. [Westbrook, John; Berman, Helen M.] Rutgers State Univ, Dept Chem & Chem Biol, Newark, NJ 07102 USA. RP Trewhella, J (reprint author), Univ Sydney, Sch Mol Biosci, Sydney, NSW 2006, Australia. EM jill.trewhella@sydney.edu.au OI Svergun, Dmitri/0000-0003-0830-5696; Westbrook, John/0000-0002-6686-5475; Trewhella, Jill/0000-0002-8555-6766; Schwede, Torsten/0000-0003-2715-335X; Kleywegt, Gerard J./0000-0002-4670-0331 FU NCI NIH HHS [P01 CA092584]; Wellcome Trust [088944] NR 35 TC 28 Z9 28 U1 2 U2 22 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD JUN 4 PY 2013 VL 21 IS 6 BP 875 EP 881 DI 10.1016/j.str.2013.04.020 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 168WY UT WOS:000320739800004 PM 23747111 ER PT J AU Querol-Audi, J Sun, CM Vogan, JM Smith, MD Gu, Y Cate, JHD Nogales, E AF Querol-Audi, Jordi Sun, Chaomin Vogan, Jacob M. Smith, M. Duane Gu, Yu Cate, Jamie H. D. Nogales, Eva TI Architecture of Human Translation Initiation Factor 3 SO STRUCTURE LA English DT Article ID 40S RIBOSOMAL-SUBUNIT; RNA RECOGNITION MOTIF; AUG START CODONS; FACTOR EIF3; CRYSTAL-STRUCTURE; 26S PROTEASOME; PREINITIATION COMPLEX; MULTIFACTOR COMPLEX; STRUCTURAL INSIGHTS; PROTEIN-SYNTHESIS AB Eukaryotic translation initiation factor 3 (eIF3) plays a central role in protein synthesis by organizing the formation of the 43S preinitiation complex. Using genetic tag visualization by electron microscopy, we reveal the molecular organization of ten human elF3 subunits, including an octameric core. The structure of elF3 bears a close resemblance to that of the proteasome lid, with a conserved spatial organization of eight core subunits containing PCI and MPN domains that coordinate functional interactions in both complexes. We further show that elF3 subunits a and c interact with initiation factors elF1 and elF1A, which control the stringency of start codon selection. Finally, we find that subunit j, which modulates messenger RNA interactions with the small ribosomal subunit, makes multiple independent interactions with the elF3 octameric core. These results highlight the conserved architecture of elF3 and how it scaffolds key factors that control translation initiation in higher eukaryotes, including humans. C1 [Querol-Audi, Jordi; Sun, Chaomin; Vogan, Jacob M.; Smith, M. Duane; Gu, Yu; Cate, Jamie H. D.; Nogales, Eva] Univ Calif Berkeley, Dept Mol & Cell Biol, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Dept Cell & Mol Biol, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Cate, JHD (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Calif Inst Quantitat Biosci, 229 Stanley Hall, Berkeley, CA 94720 USA. EM jcate@lbl.gov; enogales@lbl.gov FU National Institutes of Health [R56-AI095687, P50-GM102706] FX We would like to thank G. Lander and E. Arias for their invaluable technical help and Patricia Grob and Tom Houweling for electron microscopy and computational support, respectively. This work was funded by grants from the National Institutes of Health (R56-AI095687 and P50-GM102706) (to J.H.D.C.). E.N. is a Howard Hughes Medical Institute Investigator. NR 52 TC 34 Z9 35 U1 1 U2 8 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD JUN 4 PY 2013 VL 21 IS 6 BP 920 EP 928 DI 10.1016/j.str.2013.04.002 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 168WY UT WOS:000320739800009 PM 23623729 ER PT J AU Duda, DM Olszewski, JL Schuermann, JP Kurinov, I Miller, DJ Nourse, A Alpi, AF Schulman, BA AF Duda, David M. Olszewski, Jennifer L. Schuermann, Jonathan P. Kurinov, Igor Miller, Darcie J. Nourse, Amanda Alpi, Arno F. Schulman, Brenda A. TI Structure of HHARI, a RING-IBR-RING Ubiquitin Ligase: Autoinhibition of an Ariadne-Family E3 and Insights into Ligation Mechanism SO STRUCTURE LA English DT Article ID CONJUGATING ENZYME; CONFORMATIONAL-CHANGE; PARKINSONS-DISEASE; CRYSTAL-STRUCTURE; COMPLEX; PROTEIN; DOMAIN; REVEALS; ACTIVATION; BINDING AB A distinct mechanism for ubiquitin (Ub) ligation has recently been proposed for the RING1-IBR-RING2 (RBR) family of E3s: an N-terminal RING1 domain recruits a thioester-linked intermediate complex between Ub and the E2 UbcH7, and a structurally distinct C-terminal RING2 domain displays a catalytic cysteine required for Ub ligation. To obtain insights into RBR E3s, we determined the crystal structure of the human homolog of Ariadne (HHARI), which reveals the individual RING1, IBR, and RING2 domains embedded in superdomains involving sequences specific to the Ariadne RBR subfamily. The central IBR is flanked on one side by RING1, which is exposed and binds UbcH7. On the other side, a C-terminal autoinhibitory "Ariadne domain" masks the RING2 active site. Insights into RBR E3 mechanisms are provided by structure-based mutations that indicate distinct steps of relief from autoinhibition, Ub transfer from E2 to HHARI, and ligation from the HHARI cysteine to a terminal acceptor. C1 [Duda, David M.; Schulman, Brenda A.] St Jude Childrens Res Hosp, Howard Hughes Med Inst, Memphis, TN 38105 USA. [Duda, David M.; Olszewski, Jennifer L.; Miller, Darcie J.; Schulman, Brenda A.] St Jude Childrens Res Hosp, Dept Biol Struct, Memphis, TN 38105 USA. [Nourse, Amanda] St Jude Childrens Res Hosp, Hartwell Ctr Bioinformat & Biotechnol, Memphis, TN 38105 USA. [Schuermann, Jonathan P.; Kurinov, Igor] Cornell Univ, Argonne Natl Lab, Northeastern Collaborat Access Team, Dept Chem & Chem Biol,Adv Photon Source, Argonne, IL 60439 USA. [Alpi, Arno F.] Univ Dundee, Coll Life Sci, MRC Prot Phosphorylat & Ubiquitylat Unit, Dundee DD1 5EH, Scotland. RP Schulman, BA (reprint author), St Jude Childrens Res Hosp, Howard Hughes Med Inst, 332 N Lauderdale St, Memphis, TN 38105 USA. EM brenda.schulman@stjude.org OI Alpi, Arno/0000-0002-9572-7266 FU ALSAC, PHS [5P30CA021765, R01GM069530]; Scottish Institute for CeLL Signalling; NCRR [5P41RR015301-10]; NIH [8 P41 GM103403-10]; US DOE [DE-AC02-06CH11357]; AstraZeneca; Boehringer Ingelheim; GlaxoSmithKline; Janssen Pharmaceutica; Merck-Serono; Pfizer FX This work was supported by ALSAC, PHS grants 5P30CA021765, and R01GM069530 (to B.A.S.). B.A.S. is an investigator for the Howard Hughes Medical Institute. This work was supported by the Scottish Institute for CeLL Signalling and pharmaceutical companies supporting the Division of Signal Transduction Therapy (AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Janssen Pharmaceutica, Merck-Serono, and Pfizer). We are grateful to S. Bozeman, D.W. Miller, and J. Bollinger for administrative/computational support and I. Kelsall, W. Harper, D. Scott, and members of the Schulman lab for helpful discussions. We thank D. King for mass spec. The Northeastern Collaborative Access Team at the Advanced Photon Source (APS) is supported by the NCRR (5P41RR015301-10) and NIH (8 P41 GM103403-10). Use of APS, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by US DOE contract no. DE-AC02-06CH11357. NR 63 TC 40 Z9 40 U1 0 U2 6 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD JUN 4 PY 2013 VL 21 IS 6 BP 1030 EP 1041 DI 10.1016/j.str.2013.04.019 PG 12 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 168WY UT WOS:000320739800019 PM 23707686 ER PT J AU Baalrud, SD Daligault, J AF Baalrud, Scott D. Daligault, Jerome TI Effective Potential Theory for Transport Coefficients across Coupling Regimes SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIFFUSION-COEFFICIENTS; KINETIC EQUATION; IONIZED GASES; DENSE-PLASMAS; STARS; DWARF; MODEL AB A plasma transport theory that spans weak to strong coupling is developed from a binary collision picture, but where the interaction potential is taken to be an effective potential that includes correlation effects and screening self-consistently. This physically motivated approach provides a practical model for evaluating transport coefficients across coupling regimes. The theory is shown to compare well with classical molecular dynamics simulations of temperature relaxation in electron-ion plasmas as well as simulations and experiments of self-diffusion in one-component plasmas. The approach is versatile and can be applied to other transport coefficients as well. C1 [Baalrud, Scott D.; Daligault, Jerome] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Baalrud, Scott D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Baalrud, SD (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The authors thank Dr. G. Bannasch for providing the experimental data points from Ref. [24] that were plotted in Fig. 3. This research was supported under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 44 TC 25 Z9 25 U1 0 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 4 PY 2013 VL 110 IS 23 AR 235001 DI 10.1103/PhysRevLett.110.235001 PG 5 WC Physics, Multidisciplinary SC Physics GA 160JF UT WOS:000320115000011 PM 25167502 ER PT J AU Gamberg, L Kang, ZB Prokudin, A AF Gamberg, Leonard Kang, Zhong-Bo Prokudin, Alexei TI Indication on the Process Dependence of the Sivers Effect SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSVERSE-SPIN ASYMMETRIES; DRELL-YAN PROCESSES; SINGLE-SPIN; HARD SCATTERING; DIS; DISTRIBUTIONS; AZIMUTHAL; MOMENTUM AB We analyze the spin asymmetry for single inclusive jet production in proton-proton collisions collected by the ANDY experiment at the Relativistic Heavy Ion Collider and the Sivers asymmetry data from semi-inclusive deep inelastic scattering experiments. In particular, we consider the role color gauge invariance plays in determining the process dependence of the Sivers effect. We find that after carefully taking into account the initial-state and final-state interactions between the active parton and the remnant of the polarized hadron, the calculated jet spin asymmetry based on the Sivers functions extracted from HERMES and COMPASS experiments is consistent with the ANDY experimental data. This provides a first indication for the process dependence of the Sivers effect in these processes. We also make predictions for both direct photon and Drell-Yan spin asymmetry, to further test the process dependence of the Sivers effect in future experiments. C1 [Gamberg, Leonard] Penn State Univ Berks, Div Sci, Reading, PA 19610 USA. [Kang, Zhong-Bo] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Prokudin, Alexei] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. RP Gamberg, L (reprint author), Penn State Univ Berks, Div Sci, Reading, PA 19610 USA. RI Kang, Zhongbo/P-3645-2014 FU U.S. Department of Energy [DE-FG02-07ER41460, DE-AC02-05CH11231, DE-AC05-06OR23177] FX We thank M. Anselmino, L. Bland, H. Crawford, K. O. Eyser, R. Fatemi, C. Perkins, W. Vogelsang, and F. Yuan for helpful discussions. This work is supported by the U.S. Department of Energy under Contracts No. DE-FG02-07ER41460 (L. G.), No. DE-AC02-05CH11231 (Z. K.), and No. DE-AC05-06OR23177 (A. P.). We thank L. Bland and H. Crawford for valuable discussions on the experimental measurement of direct photon production. NR 48 TC 18 Z9 18 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 4 PY 2013 VL 110 IS 23 AR 232301 DI 10.1103/PhysRevLett.110.232301 PG 5 WC Physics, Multidisciplinary SC Physics GA 160JF UT WOS:000320115000006 PM 25167485 ER PT J AU Ke, X Belenky, LJ Lauter, V Ambaye, H Bark, CW Eom, CB Rzchowski, MS AF Ke, X. Belenky, L. J. Lauter, V. Ambaye, H. Bark, C. W. Eom, C. B. Rzchowski, M. S. TI Spin Structure in an Interfacially Coupled Epitaxial Ferromagnetic Oxide Heterostructure SO PHYSICAL REVIEW LETTERS LA English DT Article ID POSITIVE EXCHANGE BIAS; BILAYERS; REFLECTION; ANISOTROPY; SRRUO3 AB We report the spin structure of an exchange-biased ferromagnetic oxide heterostructure, La0.67Sr0.33MnO3/SrRuO3, through magnetization and polarized neutron reflectometry measurements. We reveal that the magnetization reversal process of the La0.67Sr0.33MnO3 biased layer critically depends on the frozen-in spin structure of the SrRuO3 biasing layer during the cooling process. Furthermore, we observe unexpected double-shifted hysteresis loops of the biased layer that originates from the formation of lateral 180 degrees magnetic domains within the biasing layer, a new mechanism not found in conventional exchange-bias systems. C1 [Ke, X.; Lauter, V.; Ambaye, H.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Ke, X.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Belenky, L. J.; Bark, C. W.; Eom, C. B.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Rzchowski, M. S.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Ke, X (reprint author), Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. EM ke@pa.msu.edu RI Bark, Chung Wung/B-9534-2014; Eom, Chang-Beom/I-5567-2014; Ambaye, Haile/D-1503-2016 OI Bark, Chung Wung/0000-0002-9394-4240; Ambaye, Haile/0000-0002-8122-9952 FU Scientific User Facilities Division, Office of Basic Energy Sciences, DOE; National Science Foundation [ECCS0708759] FX The work was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE, and the National Science Foundation through Grant No. ECCS0708759 (C.B.E. and M.S.R.). X. Ke. and V. Lauter contributed equally to this work. NR 25 TC 19 Z9 19 U1 7 U2 72 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 4 PY 2013 VL 110 IS 23 AR UNSP 237201 DI 10.1103/PhysRevLett.110.237201 PG 5 WC Physics, Multidisciplinary SC Physics GA 160JF UT WOS:000320115000021 PM 25167526 ER PT J AU Liang, Y Gong, XZ Gan, KF Gauthier, E Wang, L Rack, M Wang, YM Zeng, L Denner, P Wingen, A Lv, B Ding, BJ Chen, R Hu, LQ Hu, JS Liu, FK Jie, YX Pearson, J Qian, JP Shan, JF Shen, B Shi, TH Sun, Y Wang, FD Wang, HQ Wang, M Wu, ZW Zhang, SB Zhang, T Zhang, XJ Yan, N Xu, GS Guo, HY Wan, BN Li, JG AF Liang, Y. Gong, X. Z. Gan, K. F. Gauthier, E. Wang, L. Rack, M. Wang, Y. M. Zeng, L. Denner, P. Wingen, A. Lv, B. Ding, B. J. Chen, R. Hu, L. Q. Hu, J. S. Liu, F. K. Jie, Y. X. Pearson, J. Qian, J. P. Shan, J. F. Shen, B. Shi, T. H. Sun, Y. Wang, F. D. Wang, H. Q. Wang, M. Wu, Z. W. Zhang, S. B. Zhang, T. Zhang, X. J. Yan, N. Xu, G. S. Guo, H. Y. Wan, B. N. Li, J. G. CA EAST Team TI Magnetic Topology Changes Induced by Lower Hybrid Waves and their Profound Effect on Edge-Localized Modes in the EAST Tokamak SO PHYSICAL REVIEW LETTERS LA English DT Article AB Strong mitigation of edge-localized modes has been observed on Experimental Advanced Superconducting Tokamak, when lower hybrid waves (LHWs) are applied to H-mode plasmas with ion cyclotron resonant heating. This has been demonstrated to be due to the formation of helical current filaments flowing along field lines in the scrape-off layer induced by LHW. This leads to the splitting of the outer divertor strike points during LHWs similar to previous observations with resonant magnetic perturbations. The change in the magnetic topology has been qualitatively modeled by considering helical current filaments in a field-line-tracing code. C1 [Liang, Y.; Rack, M.; Zeng, L.; Denner, P.; Pearson, J.] Forschungszentrum Julich, Assoc EURATOM FZ Julich, Inst Energie & Klimaforsch Plasmaphys, Trilateral Euregio Cluster, D-52425 Julich, Germany. [Gong, X. Z.; Gan, K. F.; Wang, L.; Wang, Y. M.; Zeng, L.; Lv, B.; Ding, B. J.; Chen, R.; Hu, L. Q.; Hu, J. S.; Liu, F. K.; Jie, Y. X.; Qian, J. P.; Shan, J. F.; Shen, B.; Shi, T. H.; Sun, Y.; Wang, F. D.; Wang, H. Q.; Wang, M.; Wu, Z. W.; Zhang, S. B.; Zhang, T.; Zhang, X. J.; Yan, N.; Xu, G. S.; Guo, H. Y.; Wan, B. N.; Li, J. G.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Gauthier, E.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Wingen, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Liang, Y (reprint author), Forschungszentrum Julich, Assoc EURATOM FZ Julich, Inst Energie & Klimaforsch Plasmaphys, Trilateral Euregio Cluster, D-52425 Julich, Germany. EM y.liang@fz-juelich.de RI Wingen, Andreas/K-8822-2013; Xu, Guosheng/B-4857-2013; Sun, Youwen/B-3553-2012; OI Sun, Youwen/0000-0002-9934-1328; Wingen, Andreas/0000-0001-8855-1349 FU National Magnetic Confinement Fusion Science Program of China [2013GB106003, 2011GB107001]; Helmholtz Association in the frame of the Helmholtz-University Young Investigators Group [VH-NG-410] FX This work was supported by the National Magnetic Confinement Fusion Science Program of China under Contracts No. 2013GB106003 and No. 2011GB107001. Support from the Helmholtz Association in the frame of the Helmholtz-University Young Investigators Group VH-NG-410 is gratefully acknowledged. NR 16 TC 34 Z9 35 U1 10 U2 67 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 4 PY 2013 VL 110 IS 23 AR 235002 DI 10.1103/PhysRevLett.110.235002 PG 5 WC Physics, Multidisciplinary SC Physics GA 160JF UT WOS:000320115000012 PM 25167503 ER PT J AU Ma, J Wei, SH AF Ma, Jie Wei, Su-Huai TI Origin of Novel Diffusions of Cu and Ag in Semiconductors: The Case of CdTe SO PHYSICAL REVIEW LETTERS LA English DT Article ID FILM SOLAR-CELLS; GALLIUM ARSENIDE; COPPER; SOLUBILITY; NANOCRYSTALS; IMPURITY; CONTACT; SILICON; TEMPERATURE; MIGRATION AB It is well known in experimental studies that Cu is usually a fast diffuser in semiconductors. In some semiconductors (e.g., CdTe), Ag is also a fast diffuser. The diffusion plays an important role in many applications when Cu (Ag) is employed to tune the semiconductor's electrical or optical properties. However, the origin of why Cu (Ag) shows different diffusion behavior compared to group-IA elements is still unclear. Using first-principles method, we compare the diffusion behaviors between Cu (Ag) and group-IA elements in CdTe, and find that the novel diffusion is due to the strong coupling between Cu (Ag) d levels and unoccupied host s levels. This coupling alters the stable doping site, diffusion pathway, and diffusion energy curve from those of group-IA elements, which have no active d levels, thus making the Cu (Ag) diffusion faster in many semiconductors. C1 [Ma, Jie; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wei, SH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM swei@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308] FX We are grateful to Juarez L.F. Da Silva for useful discussions. The work at NREL is supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 42 TC 19 Z9 19 U1 6 U2 69 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 4 PY 2013 VL 110 IS 23 AR 235901 DI 10.1103/PhysRevLett.110.235901 PG 5 WC Physics, Multidisciplinary SC Physics GA 160JF UT WOS:000320115000016 PM 25167513 ER PT J AU Nishida, Y Moroz, S Son, DT AF Nishida, Yusuke Moroz, Sergej Dam Thanh Son TI Super Efimov Effect of Resonantly Interacting Fermions in Two Dimensions SO PHYSICAL REVIEW LETTERS LA English DT Article ID SHORT-RANGE INTERACTIONS; TOPOLOGICAL INSULATORS; QUANTUM COMPUTATION; 3-BODY SYSTEM; ENERGY-LEVELS; ANYONS; STATES; GASES AB We study a system of spinless fermions in two dimensions with a short-range interaction fine-tuned to a p-wave resonance. We show that three such fermions form an infinite tower of bound states of orbital angular momentum l = +/- 1 and their binding energies obey a universal doubly exponential scaling E-3((n)) proportional to exp(-2e(3 pi n/4+theta)) at large n. This "super Efimov effect'' is found by a renormalization group analysis and confirmed by solving the bound state problem. We also provide an indication that there are l = +/- 2 four-body resonances associated with every three-body bound state at E-4((n)) proportional to exp(-2e(3 pi n/4+theta-0.188)). These universal few-body states may be observed in ultracold atom experiments and should be taken into account in future many-body studies of the system. C1 [Nishida, Yusuke] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Moroz, Sergej] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Dam Thanh Son] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Nishida, Y (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Nishida, Yusuke/B-9334-2015 OI Nishida, Yusuke/0000-0003-4350-3161 FU U.S. DOE [DE-FG02-97ER41014]; NSF MRSEC [DMR-0820054] FX The authors thank Richard Schmidt for valuable discussions. This work was supported by U.S. DOE Grant No. DE-FG02-97ER41014 and NSF MRSEC Grant No. DMR-0820054. Part of the numerical calculations were carried out at the YITP computer facility in Kyoto University. NR 29 TC 21 Z9 21 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 4 PY 2013 VL 110 IS 23 AR 235301 DI 10.1103/PhysRevLett.110.235301 PG 4 WC Physics, Multidisciplinary SC Physics GA 160JF UT WOS:000320115000013 PM 25167507 ER PT J AU Tournier-Colletta, C Moreschini, L Autes, G Moser, S Crepaldi, A Berger, H Walter, AL Kim, KS Bostwick, A Monceau, P Rotenberg, E Yazyev, OV Grioni, M AF Tournier-Colletta, C. Moreschini, L. Autes, G. Moser, S. Crepaldi, A. Berger, H. Walter, A. L. Kim, K. S. Bostwick, A. Monceau, P. Rotenberg, E. Yazyev, O. V. Grioni, M. TI Electronic Instability in a Zero-Gap Semiconductor: The Charge-DensityWave in (TaSe4)(2)I SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHOTOEMISSION-SPECTROSCOPY; CONDUCTOR (TASE4)2I; SPECTRAL-FUNCTION; WAVE TRANSPORT; TRANSITION; METALS AB We report a comprehensive study of the paradigmatic quasi-1D compound (TaSe4)(2)I performed by means of angle-resolved photoemission spectroscopy (ARPES) and first-principles electronic structure calculations. We find it to be a zero-gap semiconductor in the nondistorted structure, with non-negligible interchain coupling. Theory and experiment support a Peierls-like scenario for the charge-density wave formation below T-CDW = 263 K, where the incommensurability is a direct consequence of the finite interchain coupling. The formation of small polarons, strongly suggested by the ARPES data, explains the puzzling semiconductor-to-semiconductor transition observed in transport at T-CDW. C1 [Tournier-Colletta, C.; Moser, S.; Crepaldi, A.; Berger, H.; Grioni, M.] Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland. [Moreschini, L.; Walter, A. L.; Kim, K. S.; Bostwick, A.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Autes, G.; Yazyev, O. V.] Ecole Polytech Fed Lausanne, Inst Theoret Phys, CH-1015 Lausanne, Switzerland. [Monceau, P.] Univ Grenoble 1, CNRS, Inst Neel, F-38042 Grenoble, France. RP Tournier-Colletta, C (reprint author), Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland. EM cedric.tournier@epfl.ch RI Autes, Gabriel/A-5553-2008; Yazyev, Oleg/A-4073-2008; Rotenberg, Eli/B-3700-2009; Walter, Andrew/B-9235-2011 OI Autes, Gabriel/0000-0002-5265-8512; Yazyev, Oleg/0000-0001-7281-3199; Rotenberg, Eli/0000-0002-3979-8844; FU Swiss NSF [PP00P2_133552, PBELP2-125484]; Swiss National Supercomputing Centre (CSCS) [s336]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We acknowledge fruitful discussions with J.E. Lorenzo. This work was supported by the Swiss NSF, namely, through Grants No. PP00P2_133552 (G. A. and O. V. Y.) and No. PBELP2-125484 (L. M.). First-principles computations have been performed at the Swiss National Supercomputing Centre (CSCS) under Project No. s336. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. C. T.-C. and L. M. contributed equally to this work. NR 35 TC 2 Z9 2 U1 2 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 4 PY 2013 VL 110 IS 23 AR 236401 DI 10.1103/PhysRevLett.110.236401 PG 5 WC Physics, Multidisciplinary SC Physics GA 160JF UT WOS:000320115000017 PM 25167517 ER PT J AU Wang, WB Zhao, J Wang, WB Gai, Z Balke, N Chi, MF Lee, HN Tian, W Zhu, LY Cheng, XM Keavney, DJ Yi, JY Ward, TZ Snijders, PC Christen, HM Wu, WD Shen, J Xu, XS AF Wang, Wenbin Zhao, Jun Wang, Wenbo Gai, Zheng Balke, Nina Chi, Miaofang Lee, Ho Nyung Tian, Wei Zhu, Leyi Cheng, Xuemei Keavney, David J. Yi, Jieyu Ward, Thomas Z. Snijders, Paul C. Christen, Hans M. Wu, Weida Shen, Jian Xu, Xiaoshan TI Room-Temperature Multiferroic Hexagonal LuFeO3 Films SO PHYSICAL REVIEW LETTERS LA English DT Article ID WEAK FERROMAGNETISM; YMNO3; HETEROSTRUCTURES; ORTHOFERRITES; DIFFRACTION AB The crystal and magnetic structures of single-crystalline hexagonal LuFeO3 films have been studied using x-ray, electron, and neutron diffraction methods. The polar structure of these films are found to persist up to 1050 K; and the switchability of the polar behavior is observed at room temperature, indicating ferroelectricity. An antiferromagnetic order was shown to occur below 440 K, followed by a spin reorientation resulting in a weak ferromagnetic order below 130 K. This observation of coexisting multiple ferroic orders demonstrates that hexagonal LuFeO3 films are room-temperature multiferroics. C1 [Wang, Wenbin; Yi, Jieyu; Shen, Jian] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Wang, Wenbin; Chi, Miaofang; Lee, Ho Nyung; Ward, Thomas Z.; Snijders, Paul C.; Christen, Hans M.; Xu, Xiaoshan] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhao, Jun] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wang, Wenbo; Wu, Weida] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Gai, Zheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Balke, Nina; Zhu, Leyi] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Tian, Wei] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Cheng, Xuemei] Bryn Mawr Coll, Dept Phys, Bryn Mawr, PA 19010 USA. [Keavney, David J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Shen, Jian] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Shen, Jian] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. RP Shen, J (reprint author), Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. EM shenj5494@fudan.edu.cn; xiaoshan.xu@gatech.edu RI Christen, Hans/H-6551-2013; Xu, Xiaoshan/B-1255-2009; Gai, Zheng/B-5327-2012; Wu, Weida/F-2092-2011; Cheng, Xuemei/D-2388-2010; Lee, Ho Nyung/K-2820-2012; Balke, Nina/Q-2505-2015; Chi, Miaofang/Q-2489-2015; Zhao, Jun/A-2492-2010; Ward, Thomas/I-6636-2016; Tian, Wei/C-8604-2013 OI Christen, Hans/0000-0001-8187-7469; Xu, Xiaoshan/0000-0002-4363-392X; Gai, Zheng/0000-0002-6099-4559; Wu, Weida/0000-0003-1691-6091; Cheng, Xuemei/0000-0001-6670-4316; Lee, Ho Nyung/0000-0002-2180-3975; Balke, Nina/0000-0001-5865-5892; Chi, Miaofang/0000-0003-0764-1567; Zhao, Jun/0000-0002-0421-8934; Ward, Thomas/0000-0002-1027-9186; Tian, Wei/0000-0001-7735-3187 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences, and Engineering Division; Office of Basic Energy Sciences, U.S. Department of Energy; National Basic Research Program of China (973 Program) [2011CB921801]; U.S. DOE Office of Basic Energy Sciences; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE [DE-SC0002136]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC0206CH11357]; DOEBES [DE-SC0008147]; National Science Foundation [1053854]; Miller Institute for Basic Research in Science and Thousand Young Talents Program FX This research was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences, and Engineering Division (H.M.C., H.N.L, P.C.S., T.Z.W., X.S.X.) and performed in part at the Center for Nanophase Materials Sciences (CNMS) (Z.G., N.B.) and ORNL's Shared Research Equipment (SHaRE)(M.C.) User Facility, which are sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. We also acknowledge partial funding support from the National Basic Research Program of China (973 Program) under Grant No. 2011CB921801 (J.S.) and the U.S. DOE Office of Basic Energy Sciences, the U.S. DOE Grant No. DE-SC0002136 (W.B.W.). The work at the ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH11357. The work at Rutgers is supported by DOEBES under Grant No. DE-SC0008147. X.M. Cheng acknowledges support from the National Science Foundation under Grant No. 1053854. J.Z. is supported by Miller Institute for Basic Research in Science and Thousand Young Talents Program. NR 32 TC 59 Z9 59 U1 13 U2 181 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 4 PY 2013 VL 110 IS 23 AR 237601 DI 10.1103/PhysRevLett.110.237601 PG 5 WC Physics, Multidisciplinary SC Physics GA 160JF UT WOS:000320115000022 PM 25167529 ER PT J AU Yuzawa, S Eng, CH Katz, L Keasling, JD AF Yuzawa, Satoshi Eng, Clara H. Katz, Leonard Keasling, Jay D. TI Broad Substrate Specificity of the Loading Didomain of the Lipomycin Polyketide Synthase SO BIOCHEMISTRY LA English DT Article ID 6-DEOXYERYTHRONOLIDE B SYNTHASE; ERYTHROMYCIN BIOSYNTHESIS; STREPTOMYCES-AVERMITILIS; CRYSTAL-STRUCTURE; AVERMECTINS; MECHANISM; ORIGIN AB LipPks1, a polyketide synthase subunit of the lipomycin synthase, is believed to catalyze the polyketide chain initiation reaction using isobutyryl-CoA as a substrate, followed by an elongation reaction with methylmalonyl-CoA to start the biosynthesis of antibiotic alpha-lipomycin in Streptomyces aureofaciens Tu117. Recombinant LipPks1, containing the thioesterase domain from the 6-deoxyerythronolide B synthase, was produced in Escherichia coli, and its substrate specificity was investigated in vitro. Surprisingly, several different acyl-CoAs, including isobutyryl-CoA, were accepted as the starter substrates, while no product was observed with acetyl-CoA. These results demonstrate the broad substrate specificity of LipPks1 and may be applied to producing new antibiotics. C1 [Yuzawa, Satoshi; Eng, Clara H.; Katz, Leonard; Keasling, Jay D.] Univ Calif Berkeley, Inst QB3, Berkeley, CA 94270 USA. [Eng, Clara H.; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94270 USA. [Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Eng, Clara H.; Katz, Leonard; Keasling, Jay D.] Synthet Biol Engn Res Ctr, Emeryville, CA 94608 USA. [Keasling, Jay D.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94270 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94270 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Inst QB3, Berkeley, CA 94270 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy [DE-AR0000091]; National Science Foundation [EEC-0540879]; Joint BioEnergy Institute (JBEI); U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was funded by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, via Grant DE-AR0000091, by the National Science Foundation, via Grant EEC-0540879 to the Synthetic Biology Research Center, and by the Joint BioEnergy Institute (JBEI), which is funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, under Contract DE-AC02-05CH11231. NR 17 TC 12 Z9 12 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUN 4 PY 2013 VL 52 IS 22 BP 3791 EP 3793 DI 10.1021/bi400520t PG 3 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 160DM UT WOS:000320097200001 PM 23692164 ER PT J AU Li, XX Fleetwood, AD Bayas, C Bilwes, AM Ortega, DR Falke, JJ Zhulin, IB Crane, BR AF Li, Xiaoxiao Fleetwood, Aaron D. Bayas, Camille Bilwes, Alexandrine M. Ortega, Davi R. Falke, Joseph J. Zhulin, Igor B. Crane, Brian R. TI The 3.2 angstrom Resolution Structure of a Receptor:CheA:CheW Signaling Complex Defines Overlapping Binding Sites and Key Residue Interactions within Bacterial Chemosensory Arrays SO BIOCHEMISTRY LA English DT Article ID ESCHERICHIA-COLI CHEMOTAXIS; CHEMORECEPTOR-COUPLING DOMAIN; PROTEIN-PROTEIN INTERACTIONS; HISTIDINE KINASE CHEA; SERINE CHEMORECEPTOR; COOPERATIVE INTERACTIONS; RHODOBACTER-SPHAEROIDES; CAULOBACTER-CRESCENTUS; COVALENT MODIFICATION; INTERACTION SURFACES AB Bacterial chemosensory arrays are composed of extended networks of chemoreceptors (also known as methyl-accepting chemotaxis proteins, MCPs), the histidine kinase CheA, and the adaptor protein CheW. Models of these arrays have been developed from cryoelectron microscopy, crystal structures of binary and ternary complexes, NMR spectroscopy, mutational, data and biochemical studies. A new 3.2 angstrom resolution crystal structure of a Thermotoga maritima MCP protein interaction region in complex with the CheA kinase-regulatory module (P4-P5) and adaptor protein CheW provides sufficient detail to define residue contacts at the interfaces formed among the three proteins. As in a previous 4.5 angstrom resolution structure, CheA-P5 and CheW interact through conserved hydrophobic surfaces at the ends of their beta-barrels to form pseudo 6-fold symmetric rings in which the two proteins alternate around the circumference. The interface between P5 subdomain 1 and CheW subdomain 2 was anticipated from previous studies, whereas the related interface between CheW subdomain 1 and P5 subdomain 2 has only been observed in these ring assemblies. The receptor forms an unexpected structure in that the helical hairpin tip of each subunit has "unzipped" into a continuous a-helix; four such helices associate into a bundle, and the tetramers bridge adjacent P5-CheW rings in the lattice through interactions with both P5 and CheW. P5 and CheW each bind a receptor helix with a groove of conserved hydrophobic residues between subdomains 1 and 2. P5 binds the receptor helix N-terminal to the tip region (lower site), whereas CheW binds the same helix with inverted polarity near the bundle end (upper site). Sequence comparisons among different evolutionary classes of chemotaxis proteins show that the binding partners undergo correlated changes at key residue positions that involve the lower site. Such evolutionary analyses argue that both CheW and P5 bind to the receptor tip at overlapping positions. Computational genomics further reveal that two distinct CheW proteins in Thermotogae utilize the analogous recognition motifs to couple different receptor classes to the same CheA kinase. Important residues for function previously identified by mutagenesis, chemical modification and biophysical approaches also map to these same interfaces. Thus, although the native CheW-receptor interaction is not observed in the present crystal structure, the bioinformatics and previous data predict key features of this interface. The companion study of the P5-receptor interface in native arrays (accompanying paper Piasta et al. (2013) Biochemistry, DOI: 10.1021/bi400385c) shows that, despite the non-native receptor fold in the present crystal structure, the local helix-in-groove contacts of the crystallographic P5-receptor interaction are present in native arrays and are essential for receptor regulation of kinase activity. C1 [Li, Xiaoxiao; Bayas, Camille; Bilwes, Alexandrine M.; Crane, Brian R.] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. [Fleetwood, Aaron D.; Ortega, Davi R.; Zhulin, Igor B.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Fleetwood, Aaron D.; Ortega, Davi R.; Zhulin, Igor B.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Falke, Joseph J.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Falke, Joseph J.] Univ Colorado, Mol Biophys Program, Boulder, CO 80309 USA. RP Crane, BR (reprint author), Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. EM joulineib@ornl.gov; bc69@cornell.edu RI Zhulin, Igor/A-2308-2012 OI Zhulin, Igor/0000-0002-6708-5323 FU NIH [GM-040731, GM-072285, GM-066775] FX Support provided by NIH Grants GM-040731 (J.J.F.), GM-072285 (I.B.Z.), and GM-066775 (B.R.C.) NR 101 TC 24 Z9 24 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUN 4 PY 2013 VL 52 IS 22 BP 3852 EP 3865 DI 10.1021/bi400383e PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 160DM UT WOS:000320097200008 PM 23668907 ER PT J AU Root, S Cochrane, KR Carpenter, JH Mattsson, TR AF Root, Seth Cochrane, Kyle R. Carpenter, John H. Mattsson, Thomas R. TI Carbon dioxide shock and reshock equation of state data to 8 Mbar: Experiments and simulations SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; HIGH-PRESSURE; MAGNETIC-FIELDS; ELECTRON-GAS; TEMPERATURE; REGION; URANUS AB We present density functional theory (DFT) simulations and shock-reshock experiments for liquid carbon dioxide (CO2) in the range 100 to 800 GPa. The simulations support the previously suggested dissociation threshold around 50 GPa [W. J. Nellis et al., J. Chem. Phys. 95, 5268 (1991)] for shocked liquid CO2 and describe a very steep Hugoniot past dissociation. We performed the shock-reshock experiments using the Sandia Z machine. The Z machine magnetically accelerated aluminum flyer plates to shock compress cryogenic liquid CO2 to 550 GPa and attained reshock states up to 840 GPa. The plate impact experiments combined with well-characterized impedance matching standards and laser velocimetry results in high-accuracy measurements of the principal Hugoniot and reshock states of liquid CO2. The experimental results validated the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds such as CO2. C1 [Root, Seth; Cochrane, Kyle R.; Carpenter, John H.; Mattsson, Thomas R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Root, S (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sroot@sandia.gov FU US Department of Energy's National Nuclear Securities Administration [DE-AC04-94AL85000] FX We thank Marcus Knudson and Mike Desjarlais for discussions on the quartz release and for the use of their unpublished data. We greatly appreciate Phil Sterne and Christine Wu for allowing us to use their LEOS 2274 EOS and for many helpful discussions regarding their EOS. We thank Ryan Rigg for many productive discussions. We thank Aaron Bowers, Nicole Cofer, and Jesse Lynch for assembling the cryotargets and Andrew Lopez, Keegan Shelton, and Jose Villalva for running the cryogenics system. We also thank all members of the Z operations team who assisted in performing the experiments. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000. NR 43 TC 16 Z9 16 U1 4 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN 4 PY 2013 VL 87 IS 22 AR 224102 DI 10.1103/PhysRevB.87.224102 PG 10 WC Physics, Condensed Matter SC Physics GA 157PS UT WOS:000319912000001 ER PT J AU Jenkins, DG Bouhelal, M Courtin, S Freer, M Fulton, BR Haas, F Janssens, RVF Khoo, TL Lister, CJ Moore, EF Richter, WA Truett, B Wuosmaa, AH AF Jenkins, D. G. Bouhelal, M. Courtin, S. Freer, M. Fulton, B. R. Haas, F. Janssens, R. V. F. Khoo, T. L. Lister, C. J. Moore, E. F. Richter, W. A. Truett, B. Wuosmaa, A. H. TI gamma-ray spectroscopy of the A=23, T=1/2 nuclei Na-23 and Mg-23: High-spin states, mirror symmetry, and applications to nuclear astrophysical reaction rates SO PHYSICAL REVIEW C LA English DT Article ID C-12&C-12 RESONANCE; ISOSPIN SYMMETRY; MODEL; SHELL; NE-22; BAND; DECAY AB Background: Obtaining reaction rates for nuclear astrophysics applications is often limited by the availability of radioactive beams. Indirect techniques to establish reaction rates often rely heavily on the properties of excited states inferred from mirror symmetry arguments. Mirror energy differences can depend sensitively on nuclear structure effects. Purpose: The present work sets out to establish a detailed comparison of mirror symmetry in the A = 23, T = 1/2 mirror nuclei Na-23 and Mg-23 both to high spin, and high excitation energy, including beyond the proton threshold. These data can be used to benchmark state-of-the-art shell-model calculations of these nuclei. Methods: Excited states in Na-23 and Mg-23 were populated using the C-12(C-12, p) and C-12(C-12,n) reactions at beam energies of 16 and 22 MeV, and their resulting gamma decay was measured with Gammasphere. Results: Level schemes for Na-23 and Mg-23 have been considerably extended; highly excited structures have been found in Na-23, as well as their counterparts in Mg-23 for previously known rotational structures in Na-23. Mirror symmetry has been investigated up to an excitation energy of 8 MeV and spin-parity of 13/2(+). Excited states in the region above the proton threshold have been studied in both nuclei. Conclusions: A detailed exploration of mirror symmetry has been performed which heavily constrains expectations as to how mirror energy differences should evolve for different structures. Agreement with shell-model calculations provides confidence in using such estimations where real data are absent. C1 [Jenkins, D. G.; Fulton, B. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Bouhelal, M.] Univ Tebessa, Lab Phys Appl & Theor, Tebessa, Algeria. [Courtin, S.; Haas, F.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Freer, M.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Janssens, R. V. F.; Khoo, T. L.; Lister, C. J.; Moore, E. F.; Truett, B.; Wuosmaa, A. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Richter, W. A.] iThemba Labs, ZA-7129 Somerset West, South Africa. [Richter, W. A.] Univ Western Cape, Dept Phys, ZA-7535 Bellville, South Africa. RP Jenkins, DG (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. EM david.jenkins@york.ac.uk FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX Discussions with Gavin Lotay, Mike Bentley, John Wood, Oliver Kirsebom and Antti Saistamoinen are gratefully acknowledged. This work was supported in part by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 63 TC 15 Z9 15 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 4 PY 2013 VL 87 IS 6 AR 064301 DI 10.1103/PhysRevC.87.064301 PG 20 WC Physics, Nuclear SC Physics GA 157QU UT WOS:000319914900002 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akesson, TPA Akimoto, G Akimov, AV Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amoroso, S Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Argyropoulos, S Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Artamonov, A Artoni, G Arutinov, D Asai, S Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astbury, A Atkinson, M Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Avolio, G Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bittner, B Black, CW Black, JE Black, KM Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blocki, J Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Buuscher, V Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chapleau, B Chapman, JD Chapman, JW Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Courneyea, L Cowan, G Cox, BE Cranmer, K Crepe-Renaudin, S Crescioli, F Cristinziani, M Crosetti, G Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallaire, F Dallapiccola, C Dam, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Dassoulas, JA Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Dohmae, T Doi, Y Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dressnandt, N Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duerdoth, IP Duflot, L Dufour, MA Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Duxfield, R Dwuznik, M Ebenstein, WL Ebke, J Eckweiler, S Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Fitzgerald, EA Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadatsch, S Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gillman, AR Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gopfert, T Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gosselink, M Gossling, C Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohsjean, A Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hajduk, Z Hakobyan, H Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM van Huysduynen, LH Horner, S Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Jeng, GY Jen-La Plante, I Jennens, D Jenni, P Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karagounis, M Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Keller, JS Kenyon, M Keoshkerian, H Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koenig, S Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolachev, GM Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Koneke, K Konig, AC Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Krejci, F Kretzschmar, J Kreutzfeldt, K Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, MK Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, D Liu, JB Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Lukas, W Luminari, L Lund, E Lundberg, B Lundberg, J Lundberg, O Lund-Jensen, B Lundquist, J Lungwitz, M Lynn, D Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madar, R Madaras, RJ Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mamuzic, J Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Outschoorn, VM Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsunaga, H Matsushita, T Mattig, P Mattig, S Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Michal, S Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Mohapatra, S Mohr, W Moles-Valls, R Molfetas, A Monig, K Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, N Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Mueller, T Muenstermann, D Muller, TA Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Nguyen, DH Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novakova, J Nozaki, M Nozka, L Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, E Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poblaguev, A Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Puldon, D Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Raas, M Radeka, V Radescu, V Radloff, P Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinsch, A Reisinger, I Relich, M Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rieck, P Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Ritsch, E Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarrazin, B Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaelicke, A Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sood, A Sopko, V Sopko, B Sosebee, M Soualah, R Soueid, P Soukharev, A South, D Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Su, D Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokaar, S Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Vacavant, L Vacek, V Vachon, B Vahsen, S Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, R Wang, SM Wang, T Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Williams, S Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yasu, Y Yatsenko, E Ye, J Ye, S Yen, AL Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, D Yu, DR Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zibell, A Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Nedden, MZ Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Argyropoulos, S. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astbury, A. Atkinson, M. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bittner, B. Black, C. W. Black, J. E. Black, K. M. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Buecher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Courneyea, L. Cowan, G. Cox, B. E. Cranmer, K. Crepe-Renaudin, S. Crescioli, F. Cristinziani, M. Crosetti, G. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallaire, F. Dallapiccola, C. Dam, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Dohmae, T. Doi, Y. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dressnandt, N. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duerdoth, I. P. Duflot, L. Dufour, M-A. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Duxfield, R. Dwuznik, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadatsch, S. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gillman, A. R. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Goepfert, T. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gosselink, M. Goessling, C. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohsjean, A. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hajduk, Z. Hakobyan, H. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Horner, S. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jeng, G. -Y. Jen-La Plante, I. Jennens, D. Jenni, P. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Rozas, A. Juste Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karagounis, M. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kenyon, M. Keoshkerian, H. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koenig, S. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolachev, G. M. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Koeneke, K. Koenig, A. C. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Krejci, F. Kretzschmar, J. Kreutzfeldt, K. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, M. K. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, D. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Lopez Mateos, D. Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Lukas, W. Luminari, L. Lund, E. Lundberg, B. Lundberg, J. Lundberg, O. Lund-Jensen, B. Lundquist, J. Lungwitz, M. Lynn, D. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madar, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mamuzic, J. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Manjarres Ramos, J. A. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Outschoorn, V. Martinez Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsunaga, H. Matsushita, T. Maettig, P. Maettig, S. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Michal, S. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Moeller, V. Mohapatra, S. Mohr, W. Moles-Valls, R. Molfetas, A. Moenig, K. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moeser, N. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Muenstermann, D. Mueller, T. A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Nguyen, D. H. Nguyen Thi Hong, V. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novakova, J. Nozaki, M. Nozka, L. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Oliveira Damazio, D. Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Pagan Griso, S. Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panduro Vazquez, J. G. Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Paredes Hernandez, D. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedraza Lopez, S. Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pizio, C. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poblaguev, A. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Puldon, D. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Raas, M. Radeka, V. Radescu, V. Radloff, P. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinsch, A. Reisinger, I. Relich, M. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rieck, P. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Ritsch, E. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Rocha de Lima, J. G. Roda, C. Roda Dos Santos, D. Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santamarina Rios, C. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarrazin, B. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. South, D. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Su, D. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vu Anh, T. Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Williams, S. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yasu, Y. Yatsenko, E. Ye, J. Ye, S. Yen, A. L. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. Yu, D. R. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Nedden, M. zur Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurements of W gamma and Z gamma production in pp collisions at root s=7 TeV with the ATLAS detector at the LHC SO PHYSICAL REVIEW D LA English DT Article ID GAUGE BOSON COUPLINGS; CROSS-SECTION; P(P)OVER-BAR COLLISIONS; PARTON DISTRIBUTIONS; SYMMETRY-BREAKING; SEARCH; TEVATRON; PARTICLE; SECTOR; LIMITS AB The integrated and differential fiducial cross sections for the production of a W or Z boson in association with a high-energy photon are measured using pp collisions at root s = 7 TeV. The analyses use a data sample with an integrated luminosity of 4.6 fb(-1) collected by the ATLAS detector during the 2011 LHC data-taking period. Events are selected using leptonic decays of the W and Z bosons [W(e nu, mu nu) and Z(e(+)e(-), mu(+)mu(-), nu(nu) over bar)] with the requirement of an associated isolated photon. The data are used to test the electroweak sector of the Standard Model and search for evidence for new phenomena. The measurements are used to probe the anomalous WW gamma, ZZ gamma, and Z gamma gamma triple-gauge-boson couplings and to search for the production of vector resonances decaying to Z gamma and W gamma. No deviations from Standard Model predictions are observed and limits are placed on anomalous triple-gauge-boson couplings and on the production of new vector meson resonances. C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Edson, W.; Ernst, J.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Huseynov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Pagan Griso, S.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Pagan Griso, S.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Nikiforov, A.; Rieck, P.; Schulz, H.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Grafstroem, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Abajyan, T.; Arutinov, D.; Backhaus, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Karagounis, M.; Karakostas, K.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moser, H. G.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Sarrazin, B.; Schaepe, S.; Schmieden, K.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, W.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Oliveira Damazio, D.; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Subramaniam, R.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Asner, D.; Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froidevaux, D.; Gabaldon, C.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Gillberg, D.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Roda Dos Santos, D.; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Jen-La Plante, I.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cottin, G.; Diaz, M. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Wang, J.; Xu, D.; Yao, L.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, B.; Li, S.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Wu, Y.; Xu, C.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Meng, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Paredes Hernandez, D.; Podlyski, F.; Santoni, C.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Paredes Hernandez, D.; Podlyski, F.; Santoni, C.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Paredes Hernandez, D.; Podlyski, F.; Santoni, C.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Bain, T.; Brooijmans, G.; Chen, Y.; Dodd, J.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Perez, K.; Perez Reale, V.; Scherzer, M. I.; Spousta, M.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Loevschall-Jensen, A. E.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Cosenza, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Namasivayam, H.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Hamburg, Germany. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Korn, A.; Martin, V. J.; O'Brien, B. J.; Pino, S. A. Olivares; Schaelicke, A.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Ahmad, A.; Annovi, A.; Antonelli, M.; Bilokon, H.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Amoroso, S.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Fehling-Kaschek, M.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Madar, R.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Vu Anh, T.; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Bucci, F.; Clark, A.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, D.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Hamer, M.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subat & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Lopez Mateos, D.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Geweniger, C.; Hanke, P.; Khomich, A.; Kluge, E. -E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Karnevskiy, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Halladjian, G.; Limper, M.; Mallik, U.; Mandrysch, R.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.; Ventura, D.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Snidero, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Panduro Vazquez, J. G.; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Ochoa, M. I.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beauchemin, P. H.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fys Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buecher, V.; Caputo, R.; Eckweiler, S.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Snow, S. W.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Klemetti, M.; Mantifel, R.; Mc Donald, J.; Robertson, S. H.; Santamarina Rios, C.; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Quebec City, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Searcy, J.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Ge, P.; Hauser, R.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Banerjee, P.; Bouchami, J.; Dallaire, F.; Davies, M.; Gauthier, L.; Giunta, M.; Leroy, C.; Martin, J. P.; Soueid, P.] Univ Montreal, Grp Particle Phys, Quebec City, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schmitt, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Ince, T.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; Dao, V.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koetsveld, F.; Koenig, A. C.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Doxiadis, A. D.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Doxiadis, A. D.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; Rocha de Lima, J. G.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. S.; Bogdanchikov, A.; Kazanin, V. F.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Andari, N.; Auge, E.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, E.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abdelalim, A. A.; Andari, N.; Auge, E.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, E.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Simion, S.; Tanaka, R.; Teinturier, M.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J. S.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Dressnandt, N.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Roda Dos Santos, D.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Holy, T.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Torregrosa, E. Fullana; Kodys, P.; Leitner, R.; Novakova, J.; Pleskot, V.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Messina, A.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Reseau Univ Phys Hautes Energies Univ Hassan II, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Manjarres Ramos, J. A.; Mansoulie, B.; Martinez, H.; Meyer, J-P.; Mijovic, L.; Morange, N.; Mountricha, E.; Nguyen Thi Hong, V.; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwindling, J.; Simard, O.; Tsionou, D.; Vranjes, N.; Xiao, M.; Xu, C.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, DSM IRFU Inst Rech Lois Fondamentales Univers, F-91191 Gif Sur Yvette, France. [Damiani, D. S.; Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Ahmad, A.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, T. M.; Carrillo-Montoya, G. D.; Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Plucinski, P.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Plucinski, P.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, A. T.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Di Mattia, A.; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Cheung, S. L.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Krieger, P.; Orr, R. S.; Polifka, R.; Rezvani, R.; Rosenbaum, G. A.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Oakham, F. G.; Oram, C. J.; Perez Codina, E.; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Eschrich, I. Gough; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim & Fis Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Fedorko, W.; Gay, C.; Gecse, Z.; Lister, A.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Castillo, L. R. Flores; Gutzwiller, O.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, K.; Becks, K. H.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fleischmann, S.; Flick, T.; Gerlach, P.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Sherman, D.; Tipton, P.; Wall, R.; Walsh, B.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Maximov, D. A.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Toronto, ON, Canada. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Wemans, A. Do Valle] Univ Nova Lisboa, Dep Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Ferrer, Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Kuday, Sinan/C-8528-2014; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Snesarev, Andrey/H-5090-2013; Warburton, Andreas/N-8028-2013; Sukharev, Andrey/A-6470-2014; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Fabbri, Laura/H-3442-2012; Villa, Mauro/C-9883-2009; Nozka, Libor/G-5550-2014; Kepka, Oldrich/G-6375-2014; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Jakoubek, Tomas/G-8644-2014; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Brooks, William/C-8636-2013; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Marti-Garcia, Salvador/F-3085-2011; Shabalina, Elizaveta/M-2227-2013; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; De, Kaushik/N-1953-2013; Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Ventura, Andrea/A-9544-2015; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Amorim, Antonio/C-8460-2013; Solfaroli Camillocci, Elena/J-1596-2012; Conde Muino, Patricia/F-7696-2011; Andreazza, Attilio/E-5642-2011; Vanyashin, Aleksandr/H-7796-2013; Ferrando, James/A-9192-2012; Moorhead, Gareth/B-6634-2009; Doyle, Anthony/C-5889-2009; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Smirnov, Sergei/F-1014-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Olshevskiy, Alexander/I-1580-2016 OI Ferrer, Antonio/0000-0003-0532-711X; Prokoshin, Fedor/0000-0001-6389-5399; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Warburton, Andreas/0000-0002-2298-7315; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Villa, Mauro/0000-0002-9181-8048; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Brooks, William/0000-0001-6161-3570; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; De, Kaushik/0000-0002-5647-4489; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Haas, Andrew/0000-0002-4832-0455; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Smestad, Lillian/0000-0002-0244-8736; Giordani, Mario/0000-0002-0792-6039; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Ventura, Andrea/0000-0002-3368-3413; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Conde Muino, Patricia/0000-0002-9187-7478; Andreazza, Attilio/0000-0001-5161-5759; Vanyashin, Aleksandr/0000-0002-0367-5666; Ferrando, James/0000-0002-1007-7816; Moorhead, Gareth/0000-0002-9299-9549; Doyle, Anthony/0000-0001-6322-6195; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Smirnov, Sergei/0000-0002-6778-073X; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Geneva, Switzerland; SNSF, Geneva, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, USA; NSF, USA FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide. NR 74 TC 12 Z9 12 U1 7 U2 158 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN 4 PY 2013 VL 87 IS 11 AR 112003 DI 10.1103/PhysRevD.87.112003 PG 40 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 157RW UT WOS:000319917800001 ER PT J AU Minakata, H Parke, SJ AF Minakata, Hisakazu Parke, Stephen J. TI Correlated, precision measurements of theta(23) and delta using only the electron neutrino appearance experiments SO PHYSICAL REVIEW D LA English DT Article AB Precision measurement of the leptonic CP violating phase delta will suffer from the, then surviving, large uncertainty of sin(2) theta(23) of 10-20% in the experimentally interesting region near maximal mixing of theta(23). We advocate a new method for determination of both theta(23) and delta at the same time using only the nu(e) and (nu) over bar (e) appearance channels and show that sin (2)theta(23) can be determined automatically with much higher accuracy, approximately a factor of six, than sin delta. In this method, we identify a new degeneracy for the simultaneous determination of theta(23) and delta, the theta(23) intrinsic degeneracy, which must be resolved in order to achieve precision measurement of these two parameters. Spectral information around the vacuum oscillation maxima is shown to be the best way to resolve this degeneracy. C1 [Minakata, Hisakazu; Parke, Stephen J.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Minakata, H (reprint author), Pontificia Univ Catolica Rio de Janeiro, Dept Fis, CP 38071, BR-22452970 Rio De Janeiro, Brazil. EM hisakazu.minakata@gmail.com; parke@fnal.gov OI Parke, Stephen/0000-0003-2028-6782 FU KAKENHI [23540315]; European Union FP7 ITN INVISIBLES (Marie Curie Actions) [PITN-GA-2011-289442]; Fermi Research Alliance [DE-AC02-07CH11359]; U.S. Department of Energy FX We thank Pilar Coloma for useful discussions. H. M. thanks the Theory Group of Fermilab, where this work was started and essentially completed, for warm hospitality during a visit in the winter of 2012-2013. He is grateful to CNPq for support that enables him to visit the Dept. Fisica, PUC, in Rio de Janeiro. He is also supported in part by KAKENHI received through TMU, Grant-in-Aid for Scientific Research No. 23540315, Japan Society for the Promotion of Science. S. P. acknowledges partial support from the European Union FP7 ITN INVISIBLES (Marie Curie Actions, PITN-GA-2011-289442). Fermilab is operated by the Fermi Research Alliance under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 25 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 4 PY 2013 VL 87 IS 11 AR 113005 DI 10.1103/PhysRevD.87.113005 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 157RW UT WOS:000319917800004 ER PT J AU Duclut, C Backhaus, S Chertkov, M AF Duclut, Charlie Backhaus, Scott Chertkov, Michael TI Hysteresis, phase transitions, and dangerous transients in electrical power distribution systems SO PHYSICAL REVIEW E LA English DT Article ID STABILITY; NETWORKS; SYNCHRONIZATION AB The majority of dynamical studies in power systems focus on the high-voltage transmission grids where models consider large generators interacting with crude aggregations of individual small loads. However, new phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of these small loads in the low-voltage distribution grid is crucial to the outcome of these dynamical transients. To elucidate the phenomenon, we study the dynamics of voltage and power flows in a spatially extended distribution feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1+1 (space+time) dimensional system exhibits a plethora of nontrivial spatiotemporal effects, some of which may be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and electrical power flows result in coexistence and segregation of spatially extended phases defined by individual motor states, a "normal" state where the motors' mechanical (rotation) frequency is slightly smaller than the nominal frequency of the basic ac flows and a "stalled" state where the mechanical frequency is small. Transitions between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1+1 dimensional model shows many other properties of a first-order phase transition with the spatial distribution of the motors' mechanical frequency playing the role of the order parameter. In particular, we observe (a) propagation of the phase-transition front with the constant speed (in very long feeders) and (b) hysteresis in transitions between the normal and stalled (or partially stalled) phases. C1 [Duclut, Charlie] ENS, ICFP, Dept Phys, F-75005 Paris, France. [Duclut, Charlie; Backhaus, Scott; Chertkov, Michael] New Mexico Consortium, Los Alamos, NM 87544 USA. [Backhaus, Scott] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Chertkov, Michael] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chertkov, Michael] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Duclut, C (reprint author), ENS, ICFP, Dept Phys, 24 Rue Lhomond, F-75005 Paris, France. RI Chertkov, Michael/O-8828-2015; OI Backhaus, Scott/0000-0002-0344-6791; Chertkov, Michael/0000-0002-6758-515X FU National Science Foundation, EECS Collaborative Research "Power Grid Spectroscopy" under NMC [1128501]; National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We are grateful to D. Chassin and I. Hiskens for very helpful discussions, advice, and explanations on the history of the FIDVR-related research and literature. We are also grateful to I. Kolkolov, V. Lebedev, and K. Turitsyn for comments and suggestions. This material is based upon work supported by the National Science Foundation Award No. 1128501, EECS Collaborative Research "Power Grid Spectroscopy" under NMC. The work at LANL was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 28 TC 3 Z9 3 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN 4 PY 2013 VL 87 IS 6 AR 062802 DI 10.1103/PhysRevE.87.062802 PG 16 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 157RY UT WOS:000319918000002 PM 23848724 ER PT J AU Ambattu, PK Burt, G Grudiev, A Dolgashev, V Dexter, A AF Ambattu, P. K. Burt, G. Grudiev, A. Dolgashev, V. Dexter, A. TI Coupler induced monopole component and its minimization in deflecting cavities SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Deflecting cavities are used in particle accelerators for the manipulation of charged particles by deflecting or crabbing (rotating) them. For short deflectors, the effect of the power coupler on the deflecting field can become significant. The particular power coupler type can introduce multipole rf field components and coupler-specific wakefields. Coupler types that would normally be considered like standard on-cell coupler, waveguide coupler, or mode-launcher coupler could have one or two rf feeds. The major advantage of a dual-feed coupler is the absence of monopole and quadrupole rf field components in the deflecting structure. However, a dual-feed coupler is mechanically more complex than a typical single-feed coupler and needs a splitter. For most applications, deflecting structures are placed in regions where there is small space hence reducing the size of the structure is very desirable. This paper investigates the multipole field components of the deflecting mode in single-feed couplers and ways to overcome the effect of the monopole component on the beam. Significant advances in performance have been demonstrated. Additionally, a novel coupler design is introduced which has no monopole field component to the deflecting mode and is more compact than the conventional dual-feed coupler. C1 [Ambattu, P. K.; Burt, G.; Dexter, A.] Cockcroft Inst, Warrington WA4 4AD, Cheshire, England. [Ambattu, P. K.; Burt, G.; Dexter, A.] Univ Lancaster, Lancaster LA1 4YR, England. [Grudiev, A.] CERN, CH-1211 Geneva, Switzerland. [Dolgashev, V.] SLAC, Menlo Pk, CA 94025 USA. RP Ambattu, PK (reprint author), Cockcroft Inst, Warrington WA4 4AD, Cheshire, England. FU European Commission [227579]; STFC through the Cockcroft Institute FX The research discussed in the paper has been supported by the European Commission under the FP7 Research Infrastructure project EuCARD, Grant Agreement No. 227579 and by STFC through the Cockcroft Institute. NR 22 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN 4 PY 2013 VL 16 IS 6 AR 062001 DI 10.1103/PhysRevSTAB.16.062001 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 157SI UT WOS:000319919000002 ER PT J AU Freund, HP AF Freund, H. P. TI Comparison of free-electron laser amplifiers based on a step-tapered optical klystron and a conventional tapered wiggler SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID HARMONIC-GENERATION; RADIATION AB Free-electron laser amplifiers have been operated at high efficiency at wavelengths from the microwave through the visible. Typically, these amplifiers require long tapered sections and produce spent beams with large energy spreads that are 4-5 times the electronic efficiency. In addition, while optical guiding during exponential growth in the uniform wiggler section confines the optical mode, the guiding disappears in the tapered wiggler section resulting in a relatively large optical mode at the wiggler exit. Optical klystrons consist of a Modulator wiggler that induces a velocity modulation on the electron beam followed by a magnetic dispersive section that enhances the velocity modulation prior to injection into a second, radiator wiggler. Optical klystrons have been operated over a broad spectral range; however, no optical klystron has been built with a tapered radiator wiggler. A comparison between a optical klystron with a step-tapered Radiator wiggler and a conventional tapered wiggler amplifier is analyzed in this paper. The purpose of the step taper is to both enhance the efficiency and to extend the range of the exponential gain and so preserve the optical guiding over a longer interaction length. The step-tapered optical klystron and a tapered wiggler amplifier are compared for a nominal set of parameters to determine the differences in the efficiency, interaction length, spent beam energy spread, and the size of the optical mode at the wiggler exit. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Freund, HP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. FU Office of Naval Research; Joint Technology Office FX This work was supported by the Office of Naval Research and the Joint Technology Office. NR 18 TC 3 Z9 3 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN 4 PY 2013 VL 16 IS 6 AR 060701 DI 10.1103/PhysRevSTAB.16.060701 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 157SI UT WOS:000319919000001 ER PT J AU Klatt, CG Inskeep, WP Herrgard, MJ Jay, ZJ Rusch, DB Tringe, SG Parenteau, MN Ward, DM Boomer, SM Bryant, DA Miller, SR AF Klatt, Christian G. Inskeep, William P. Herrgard, Markus J. Jay, Zackary J. Rusch, Douglas B. Tringe, Susannah G. Parenteau, M. Niki Ward, David M. Boomer, Sarah M. Bryant, Donald A. Miller, Scott R. TI Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE microbial mats; microbial interactions; phototrophic bacteria; functional genomics; thermophilic bacteria ID YELLOWSTONE-NATIONAL-PARK; BLUE-GREEN-ALGAE; CANDIDATUS CHLORACIDOBACTERIUM THERMOPHILUM; CYANOBACTERIUM MASTIGOCLADUS-LAMINOSUS; PHOTOTROPHIC FE(II) OXIDATION; ALKALINE HOT-SPRINGS; CHLOROFLEXUS-AURANTIACUS; SULFIDEQUINONE OXIDOREDUCTASE; SOFTWARE ENVIRONMENT; NONSULFUR BACTERIA AB Six phototrophic microbial mat communities from different geothermal springs (YNP) were studied using metagenome sequencing and geochemical analyses. The primary goals of this work were to determine differences in community composition of high-temperature phototrophic mats distributed across the Yellowstone geothermal ecosystem, and to identify metabolic attributes of predominant organisms present in these communities that may correlate with environmental attributes important in niche differentiation. Random shotgun metagenome sequences from six phototrophic communities (average similar to 53 Mbp/site) were subjected to multiple taxonomic, phylogenetic, and functional analyses. All methods, including G + C content distribution, MEGAN analyses, and oligonucleotide frequency-based clustering, provided strong support for the dominant community members present in each site. Cyanobacteria were only observed in non-sulfidic sites; de novo assemblies were obtained for Synechococcus-like populations at Chocolate Pots (CP_7) and Fischerella-like populations at White Creek (WC_6). Chloroflexi-like sequences (esp. Rosei-flexus and/or Chloroflexus spp.) were observed in all six samples and contained genes involved in bacteriochlorophyll biosynthesis and the 3-hydroxypropionate carbon fixation pathway. Other major sequence assemblies were obtained for a Chlorobiales population from CP_7 (proposed family Thermochlorobacteriaceae), and an anoxygenic, sulfur-oxidizing Thermochromatium-like (Gamma-proteobacteria) population from Bath Lake Vista Annex (BLVA_20). Additional sequence coverage is necessary to establish more complete assemblies of other novel bacteria in these sites (e.g., Bacteroidetes and Firmicutes); however, current assemblies suggested that several of these organisms play important roles in heterotrophic and fermentative metabolisms. Definitive linkages were established between several of the dominant phylotypes present in these habitats and important functional processes such as photosynthesis, carbon fixation, sulfur oxidation, and fermentation. C1 [Klatt, Christian G.; Inskeep, William P.; Jay, Zackary J.; Ward, David M.] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA. [Klatt, Christian G.; Inskeep, William P.; Jay, Zackary J.; Ward, David M.] Montana State Univ, Thermal Biol Inst, Bozeman, MT 59717 USA. [Herrgard, Markus J.] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Horsholm, Denmark. [Rusch, Douglas B.] Indiana Univ, Ctr Genom & Bioinformat, Bloomington, IN USA. [Tringe, Susannah G.] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Parenteau, M. Niki] Search Extraterr Intelligence Inst, Mountain View, CA USA. [Parenteau, M. Niki] NASA, Ames Res Ctr, Mountain View, CA USA. [Boomer, Sarah M.] Western Oregon Univ, Monmouth, OR USA. [Bryant, Donald A.] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. [Bryant, Donald A.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Miller, Scott R.] Univ Montana, Dept Biol Sci, Missoula, MT USA. RP Inskeep, WP (reprint author), Montana State Univ, Bozeman, MT 59717 USA. EM binskeep@montana.edu OI Tringe, Susannah/0000-0001-6479-8427 FU National Science Foundation Research Coordination Network Program [MCB 0342269]; DOE-Joint Genome Institute Community Sequencing Program [CSP 787081]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; YNP metagenome project [YELL-5568] FX Authors appreciate support from the National Science Foundation Research Coordination Network Program (MCB 0342269), the DOE-Joint Genome Institute Community Sequencing Program (CSP 787081) as well as all individual author institutions and associated research support that together has made this study possible. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Authors appreciate research permitting focused on the YNP metagenome project (Permit No, YELL-5568, 2007-2010), and managed by C. Hendrix and S. Guenther (Center for Resources, YNP). NR 105 TC 24 Z9 25 U1 4 U2 40 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD JUN 3 PY 2013 VL 4 AR 106 DI 10.3389/fmicb.2013.00106 PG 23 WC Microbiology SC Microbiology GA AA5US UT WOS:000331165700001 PM 23761787 ER PT J AU Beekman, C Siemons, W Ward, TZ Budai, JD Tischler, JZ Xu, R Liu, W Balke, N Nam, JH Christen, HM AF Beekman, C. Siemons, W. Ward, T. Z. Budai, J. D. Tischler, J. Z. Xu, R. Liu, W. Balke, N. Nam, J. H. Christen, H. M. TI Unit cell orientation of tetragonal-like BiFeO3 thin films grown on highly miscut LaAlO3 substrates SO APPLIED PHYSICS LETTERS LA English DT Article ID SRTIO3 AB Synchrotron and lab-scale x-ray diffraction shows that tetragonal-like T'-BiFeO3 films on miscut LaAlO3 substrates (alpha < 5 degrees) exhibit (00l)-planes tilted away from those of the substrate as predicted by the "Nagai model" (except for miscut <0.2 degrees). Tilts as large as 1 degrees are achieved even in 100 nm thick films, strikingly larger than those observed in other perovskites. We attribute this to the large c/a ratio and the high crystalline coherency of the T'-BiFeO3/LaAlO3 interface. This coherency is possible through an observed "diagonal-on-diagonal" film/substrate alignment. Interestingly, the substrate miscut does not influence the relative population of monoclinic domains. (C) 2013 AIP Publishing LLC. C1 [Beekman, C.; Siemons, W.; Ward, T. Z.; Budai, J. D.; Nam, J. H.; Christen, H. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Tischler, J. Z.; Xu, R.; Liu, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Balke, N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Nam, J. H.] Korea Inst Ceram Engn & Technol, Opt & Elect Ceram Div, Seoul 153801, South Korea. RP Beekman, C (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Xu, Ruqing/K-3586-2012; Christen, Hans/H-6551-2013; Balke, Nina/Q-2505-2015; Ward, Thomas/I-6636-2016; Budai, John/R-9276-2016 OI Xu, Ruqing/0000-0003-1037-0059; Christen, Hans/0000-0001-8187-7469; Balke, Nina/0000-0001-5865-5892; Ward, Thomas/0000-0002-1027-9186; Budai, John/0000-0002-7444-1306 FU U. S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Science and Engineering Division; Scientific User Facilities Division of DOE-BES FX Research supported by the U. S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Science and Engineering Division (H.M.C., J.D.B., W.S., C.B., T.W.Z., and J.H.N.). Piezoresponse force microscopy (N.B.) was conducted at the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, and x-ray microdiffraction (J.Z.T., R.X., W.L.) at the Advanced Photon Source, Argonne National Laboratory, both supported by the Scientific User Facilities Division of DOE-BES. NR 25 TC 7 Z9 7 U1 8 U2 68 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 3 PY 2013 VL 102 IS 22 AR 221910 DI 10.1063/1.4809601 PG 5 WC Physics, Applied SC Physics GA 167HH UT WOS:000320621600033 ER PT J AU Friedlein, R Fleurence, A Sadowski, JT Yamada-Takamura, Y AF Friedlein, R. Fleurence, A. Sadowski, J. T. Yamada-Takamura, Y. TI Tuning of silicene-substrate interactions with potassium adsorption SO APPLIED PHYSICS LETTERS LA English DT Article ID SURFACE AB The evolution of the electronic structure and the structural stability of epitaxial silicene on ZrB2(0001) thin films exposed to K atoms has been studied by angle-resolved photoelectron spectroscopy and low-energy electron diffraction. Potassium adsorption leads to charge donation to the silicene lattice, which is accompanied by the partial filling of a formerly unoccupied pi* band and by the increasing hybridization between the diboride surface state and the lower branch of the back-folded pi band. The results allow an identification of silicene-derived pi electronic states and confirm that before K adsorption, the interactions at the silicene-substrate interface are rather weak. (C) 2013 AIP Publishing LLC. C1 [Friedlein, R.; Fleurence, A.; Yamada-Takamura, Y.] JAIST, Sch Mat Sci, Nomi, Ishikawa 9231292, Japan. [Sadowski, J. T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Friedlein, R (reprint author), JAIST, Sch Mat Sci, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan. EM friedl@jaist.ac.jp OI Sadowski, Jerzy/0000-0002-4365-7796 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; KAKENHI [22560006]; Funding Program for Next-Generation World-Leading Researchers [GR046] FX We are grateful for experimental help from A. Harasawa and K. Yaji (Institute for Solid State Physics, The University of Tokyo) and A. Al-Mahboob (Center for Functional Nanomaterials, BNL). Part of this work has been performed under the approval of the Photon Factory Advisory Committee (Proposal No. 2010G571). This research has been carried out in part at the Center for Functional Nanomaterials and the National Synchrotron Light Source (BNL), which are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We acknowledge financial support from KAKENHI (No. 22560006) and also from the Funding Program for Next-Generation World-Leading Researchers (GR046). NR 25 TC 29 Z9 29 U1 0 U2 52 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 3 PY 2013 VL 102 IS 22 AR 221603 DI 10.1063/1.4808214 PG 4 WC Physics, Applied SC Physics GA 167HH UT WOS:000320621600022 ER PT J AU Li, DS Xu, ZJ Ahzi, S AF Li, Dongsheng Xu, Zhijie Ahzi, Said TI Dynamic composition determination in heterogeneous ensembles using angular autocorrelation functions as signatures SO APPLIED PHYSICS LETTERS LA English DT Article ID X-RAY-SCATTERING; PARTICLES; PROTEIN AB Signatures of heterogeneous ensembles composed of multiple types of random oriented particles are represented by the angular autocorrelation functions of the systems. These signatures are retrieved by averaging oversampled angular correlation functions calculated from simulated high throughput X-ray diffraction patterns. Using a component signature matrix, the composition of the heterogeneous system will be directly calculated from the signature of the ensemble. Dynamic composition of a heterogeneous ensemble is determined by fluctuation X-ray scattering using the angular autocorrelation functions as signatures. (C) 2013 AIP Publishing LLC. C1 [Li, Dongsheng; Xu, Zhijie] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Ahzi, Said] Univ Strasbourg, IMFS CNRS, F-67000 Strasbourg, France. RP Li, DS (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM dongsheng.li@pnnl.gov RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 FU Chemical Imaging Initiative, a Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy [DE-AC05-76RL01830] FX The authors acknowledge funding support from the Chemical Imaging Initiative, a Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 18 TC 0 Z9 0 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 3 PY 2013 VL 102 IS 22 AR 223701 DI 10.1063/1.4809667 PG 5 WC Physics, Applied SC Physics GA 167HH UT WOS:000320621600094 ER PT J AU Lin, SZ Reichhardt, C Saxena, A AF Lin, Shi-Zeng Reichhardt, Charles Saxena, Avadh TI Manipulation of skyrmions in nanodisks with a current pulse and skyrmion rectifier SO APPLIED PHYSICS LETTERS LA English DT Article ID ANISOTROPIC SUPEREXCHANGE INTERACTION; LANDAU-LIFSHITZ EQUATION; WEAK FERROMAGNETISM; CHIRAL MAGNET; CRYSTALS; LATTICE; STATES AB A skyrmion in a nanosized disk of a chiral magnet can be used as a bit of information. To this end, it is desirable to control the creation and removal of a skyrmion only by currents without using external magnetic fields. Here, we propose to create a skyrmion by applying a current pulse to a nanodisk. The skyrmion can be removed from the disk by applying a dc current. We show that the dynamics of the created skyrmion can lead to a rectification effect, in which a dc voltage is generated by the motion of skyrmion in the presence of an ac current. (C) 2013 AIP Publishing LLC. C1 [Lin, Shi-Zeng; Reichhardt, Charles; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Lin, SZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Lin, Shi-Zeng/B-2906-2008 OI Lin, Shi-Zeng/0000-0002-4368-5244 FU Los Alamos Laboratory Directed Research and Development Program [20110138ER]; NNSA of the U.S. DoE at LANL [DE-AC52-06NA25396] FX We thank Cristian D. Batista, Boris A. Maiorov, and Yasuyuki Kato for useful discussions and Cynthia J. O. Reichhardt for a critical reading of the manuscript. This publication was made possible by funding from the Los Alamos Laboratory Directed Research and Development Program, Project No. 20110138ER. This work was carried out under the auspices of the NNSA of the U.S. DoE at LANL under Contract No. DE-AC52-06NA25396. NR 37 TC 19 Z9 19 U1 9 U2 61 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 3 PY 2013 VL 102 IS 22 AR 222405 DI 10.1063/1.4809751 PG 5 WC Physics, Applied SC Physics GA 167HH UT WOS:000320621600047 ER PT J AU Meeker, MA Magill, BA Merritt, TR Bhowmick, M McCutcheon, K Khodaparast, GA Tischler, JG McGill, S Choi, SG Palmstrom, CJ AF Meeker, M. A. Magill, B. A. Merritt, T. R. Bhowmick, M. McCutcheon, K. Khodaparast, G. A. Tischler, J. G. McGill, S. Choi, S. G. Palmstrom, C. J. TI Dynamics of photoexcited carriers and spins in InAsP ternary alloys SO APPLIED PHYSICS LETTERS LA English DT Article ID RELAXATION AB The recent rapid progress in the field of spintronics involves extensive measurements of carrier and spin relaxation dynamics in III-V semiconductors. In addition, as the switching rates in devices are pushed to higher frequencies, it is important to understand carrier dynamic phenomena in semiconductors on femtosecond time-scales. In this work, we employed time and spin resolved differential transmission measurements; to probe carrier and spin relaxation times in several InAsP ternary alloys. Our results demonstrate the sensitivity of the spin and carrier dynamics in this material system to the excitation wavelengths, the As concentrations, and temperature. (C) 2013 AIP Publishing LLC. C1 [Meeker, M. A.; Magill, B. A.; Merritt, T. R.; Bhowmick, M.; McCutcheon, K.; Khodaparast, G. A.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Tischler, J. G.] Naval Res Lab, Washington, DC 20375 USA. [McGill, S.] Natl High Magnet Field Lab Florida, Tallahassee, FL 32310 USA. [Choi, S. G.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Palmstrom, C. J.] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. RP Khodaparast, GA (reprint author), Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. EM khoda@vt.edu RI Bhowmick, Mithun/B-5599-2014; Choi, Sukgeun/J-2345-2014 FU NSF-Career Award [DMR-0846834]; National High Magnetic Field Laboratory through a UCGP; Institute of Critical Technology and Applied Sciences (ICTAS) at Virginia Tech FX This work was supported by NSF-Career Award No. DMR-0846834 and by the National High Magnetic Field Laboratory through a UCGP. G. A. Khodaparast thanks the inputs from Professor Tigran Shahbazyan and the funding from the Institute of Critical Technology and Applied Sciences (ICTAS) at Virginia Tech. The samples studied in this work were grown and characterized as part of S. G. Choi's Ph.D. work at the University of Minnesota. NR 15 TC 4 Z9 4 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 3 PY 2013 VL 102 IS 22 AR 222102 DI 10.1063/1.4808346 PG 5 WC Physics, Applied SC Physics GA 167HH UT WOS:000320621600035 ER PT J AU Mickel, PR Lohn, AJ Choi, BJ Yang, JJ Zhang, MX Marinella, MJ James, CD Williams, RS AF Mickel, Patrick R. Lohn, Andrew J. Choi, Byung Joon Yang, J. Joshua Zhang, Min-Xian Marinella, Matthew J. James, Conrad D. Williams, R. Stanley TI A physical model of switching dynamics in tantalum oxide memristive devices SO APPLIED PHYSICS LETTERS LA English DT Article ID MEMORY; MECHANISM; SYSTEMS AB We present resistive switching model for TaOx memristors, which demonstrates that the radius of a tantalum rich conducting filament is the state variable controlling resistance. The model tracks the flux of individual oxygen ions and permits the derivation and solving of dynamical and static state equations. Model predictions for ON/OFF switching were tested experimentally with TaOx devices and shown to be in close quantitative agreement, including the experimentally observed transition from linear to non-linear conduction between R-ON and R-OFF. This work presents a quantitative model of state variable dynamics in TaOx memristors, with direct comparison to high-speed resistive switching data. (C) 2013 AIP Publishing LLC. C1 [Mickel, Patrick R.; Lohn, Andrew J.; Marinella, Matthew J.; James, Conrad D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Choi, Byung Joon; Yang, J. Joshua; Zhang, Min-Xian; Williams, R. Stanley] Hewlett Packard Corp, Palo Alto, CA 94304 USA. RP Mickel, PR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Choi, Byungjoon/H-4513-2011; Yang, Jianhua/B-3358-2010; Williams, R. Stanley/A-8281-2009 OI Williams, R. Stanley/0000-0003-0213-4259 NR 23 TC 31 Z9 31 U1 0 U2 76 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 3 PY 2013 VL 102 IS 22 AR 223502 DI 10.1063/1.4809530 PG 5 WC Physics, Applied SC Physics GA 167HH UT WOS:000320621600085 ER PT J AU Wang, XF He, L Halas, S Pienkos, T Lin, JG Durakiewicz, T AF Wang, X. F. He, L. Halas, S. Pienkos, T. Lin, J. G. Durakiewicz, T. TI The canonical work function-strain relationship of the platinum metal: A first-principles approach to metal-gate transistor optimization SO APPLIED PHYSICS LETTERS LA English DT Article ID STACKS; CU AB Work function Phi is a crucial factor in improving the high-k/metal gate stack. Here we present a systematic study of the strain-dependent work function on the Pt metal gate (100) surface using the first-principles calculation. We find that the compressive strain increases Phi , while the tensile strain decreases its value, with the biaxial strain leading to the maximum change of Phi. We identify the mechanism of Phi modification by analyzing the effect of strain on the bulk electronic structure and surface dipole. Finally, we propose a canonical strain-Phi relationship, which provides a design principle for the work function tuning with strain. (C) 2013 AIP Publishing LLC. C1 [Wang, X. F.; He, L.; Lin, J. G.] Xiangtan Univ, Key Lab Low Dimens Mat & Applicat Technol, Minist Educ, Fac Mat Optoelect & Phys, Xiangtan 411105, Hunan, Peoples R China. [Halas, S.; Pienkos, T.] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. [Durakiewicz, T.] Los Alamos Natl Lab, MPA CMMS Grp, Los Alamos, NM 87545 USA. RP Wang, XF (reprint author), Xiangtan Univ, Key Lab Low Dimens Mat & Applicat Technol, Minist Educ, Fac Mat Optoelect & Phys, Xiangtan 411105, Hunan, Peoples R China. EM onexf@xtu.edu.cn; tomasz@lanl.gov RI WANG, XF/B-6708-2009 FU National Natural Science Foundation of China [11202178, 10972190]; Key Laboratory of Low Dimensional Materials and Application Technology (Ministry of Education) [DW0907]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; LANL LDRD Programs FX The authors would like to thank the financial support of the National Natural Science Foundation of China (Nos. 11202178 and 10972190) and the Project (No. DW0907) from Key Laboratory of Low Dimensional Materials and Application Technology (Ministry of Education). Work of T. D. was performed at Los Alamos National Laboratory under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and LANL LDRD Programs. NR 24 TC 8 Z9 8 U1 0 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 3 PY 2013 VL 102 IS 22 AR 223504 DI 10.1063/1.4807939 PG 4 WC Physics, Applied SC Physics GA 167HH UT WOS:000320621600087 ER PT J AU Wehrenberg, C Daniil, M Willard, M Zande, B Sankar, S Thadhani, N AF Wehrenberg, C. Daniil, M. Willard, M. Zande, B. Sankar, S. Thadhani, N. TI Nanoscale anisotropic Nd-Fe-B particles with high coercivity prepared by attrition milling SO APPLIED PHYSICS LETTERS LA English DT Article ID NANOCOMPOSITE MAGNETS AB Nanoscale Nd-Fe-B particles were fabricated with room temperature coercivity of 4.9 kOe by attrition (stirred media) milling. For longer milling times, more than 80% of the particles were less than 500 nm diameter, and 50-200 nm particles can be selected by a decanting process. Anisotropy was demonstrated by field alignment, as shown by creation of strong texture in x-ray diffraction (XRD) patterns. Limited peak broadening in XRD patterns indicates that attrition milling produces less deformation and amorphous material than high-energy milling. Compared to other magnetic nanoparticles, the higher coercivity is attributed to limited plastic deformation and larger sized particles. (C) 2013 AIP Publishing LLC. C1 [Wehrenberg, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Daniil, M.; Willard, M.] Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA. [Zande, B.; Sankar, S.] Adv Mat Corp, Pittsburgh, PA 15220 USA. [Thadhani, N.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. RP Wehrenberg, C (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Willard, Matthew/A-8492-2009 OI Willard, Matthew/0000-0001-5052-8012 FU DARPA/ARO [W911NF-08-1-0249]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank P. Marshall and W. Daloz for their help with attrition milling, J. Breidenich for her advice on separation of nanoparticles, and the Naval Research Lab for their support in making magnetic measurements. Funding for this work was provided by DARPA/ARO Grant No. W911NF-08-1-0249. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 19 TC 2 Z9 2 U1 1 U2 39 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 3 PY 2013 VL 102 IS 22 AR 223111 DI 10.1063/1.4808434 PG 4 WC Physics, Applied SC Physics GA 167HH UT WOS:000320621600075 ER PT J AU Yan, ZL Guillon, O Martin, CL Wang, S Lee, CS Bouvard, D AF Yan, Zilin Guillon, Olivier Martin, Christophe L. Wang, Steve Lee, Chul-Seung Bouvard, Didier TI In-situ synchrotron x-ray transmission microscopy of the sintering of multilayers SO APPLIED PHYSICS LETTERS LA English DT Article ID CAPACITORS; DEFECTS AB This letter reports on in-situ characterization of the high temperature sintering of multilayer ceramic capacitors by high-resolution synchrotron x-ray imaging. Microstructural evolution was obtained in real time by a continuous recording of 2-dimensional radiographs. Anisotropic strains were measured for different layers. Quantification of defects was conducted with 3-dimensional nano-computed tomography. These in-situ observations prove that electrode discontinuities occur at the early stage of sintering and originate from initial heterogeneities linked to the particulate nature of the starting powders. (C) 2013 AIP Publishing LLC. C1 [Yan, Zilin; Martin, Christophe L.; Bouvard, Didier] Univ Grenoble, CNRS, SIMaP Lab, F-38402 St Martin Dheres, France. [Yan, Zilin] Tech Univ Darmstadt, Dept Mat Sci, Darmstadt, Germany. [Guillon, Olivier] Univ Jena, Inst Mat Sci & Technol, D-07743 Jena, Germany. [Wang, Steve] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lee, Chul-Seung] Samsung Electromech, LCR Div, Suwon 443743, South Korea. RP Yan, ZL (reprint author), Univ Grenoble, CNRS, SIMaP Lab, F-38402 St Martin Dheres, France. EM zilin.yan@simap.grenoble-inp.fr RI Guillon, Olivier/E-3744-2010; OI Guillon, Olivier/0000-0003-4831-5725; Yan, Zilin/0000-0001-5690-7881 FU European Commission; U.S. Department of Energy, Office of Sciences, Office of Basic Energy Sciences [W-31-109-Eng.-38] FX Financial support from Erasmus Mundus IDS-FUNMAT Program of the European Commission is kindly acknowledged. The authors would like to thank Gerhard Brey of Goethe Universitat Frankfurt for giving access to the drilling machine for sample preparation. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Sciences, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng.-38. Sincere thanks to Alex Deriy for his support for the experimental setup. NR 18 TC 6 Z9 6 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 3 PY 2013 VL 102 IS 22 AR 223107 DI 10.1063/1.4809602 PG 4 WC Physics, Applied SC Physics GA 167HH UT WOS:000320621600071 ER PT J AU Zhou, Q Zettl, A AF Zhou, Qin Zettl, A. TI Electrostatic graphene loudspeaker SO APPLIED PHYSICS LETTERS LA English DT Article ID MONOLAYER GRAPHENE; SOUND GENERATION; RESONATORS; CARBON; TRANSPARENT; DEPOSITION; DEVICES; FILMS AB Graphene has extremely low mass density and high mechanical strength, and key qualities for efficient wide-frequency-response electrostatic audio speaker design. Low mass ensures good high frequency response, while high strength allows for relatively large free-standing diaphragms necessary for effective low frequency response. Here, we report on construction and testing of a miniaturized graphene-based electrostatic audio transducer. The speaker/earphone is straightforward in design and operation and has excellent frequency response across the entire audio frequency range (20 Hz-20 kHz), with performance matching or surpassing commercially available audio earphones. (C) 2013 AIP Publishing LLC. C1 [Zhou, Qin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhou, Q (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Zettl, Alex/O-4925-2016 OI Zettl, Alex/0000-0001-6330-136X FU Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Naval Research [N00014-09-1066]; National Science Foundation [EEC-083819] FX This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, which provided for graphene growth and characterization; by the Office of Naval Research under Grant No. N00014-09-1066, which provided for graphene transfer and electrode manufacture, and by the National Science Foundation under Grant No. EEC-083819, which provided for design, construction, and testing of the device. The authors thank Yung-Kan Chen and Professor David Bogy for assistance with LDV measurements. NR 29 TC 18 Z9 18 U1 6 U2 90 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 3 PY 2013 VL 102 IS 22 AR 223109 DI 10.1063/1.4806974 PG 5 WC Physics, Applied SC Physics GA 167HH UT WOS:000320621600073 ER PT J AU Nguyen, SL Malliakas, CD Francisco, MC Kanatzidis, MG AF Nguyen, Sandy L. Malliakas, Christos D. Francisco, Melanie C. Kanatzidis, Mercouri G. TI Lattice-Matched Transition Metal Disulfide Intergrowths: The Metallic Conductors Ag2Te(MS2)(3) (M = V, Nb) SO INORGANIC CHEMISTRY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; CHARGE-DENSITY WAVES; PHYSICAL-PROPERTIES; X-RAY; ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURE; INTERCALATION COMPOUNDS; MAGNETIC-PROPERTIES; TANTALUM DICHALCOGENIDES; TRANSPORT-PROPERTIES AB We present new chalcogenide compounds, Ag2Te(MS2)(3) (M = V, Nb), built up of alternating planes of [MS2] and [Ag2Te]. The Ag and Te atoms are linearly coordinated by S atoms in the [MS2] layers and held in place by covalent interactions. Structural polymorphism was found by single crystal X-ray diffraction studies, where long-range ordering or disorder of the Ag and Te atoms within the hexagonal planar [Ag2Te] layer yielded two distinct crystal forms. When the Ag and Te atoms are ordered, the two isostructural compounds crystallize in the non-centrosymmetric P (6) over bar 2m space group, with a = 5.5347(8) angstrom, c = 8.0248(16) angstrom, and V = 212 89(6) angstrom(3) for alpha-Ag2Te(VS2)(3) and a = 5.7195(8) angstrom, c = 8.2230(16) angstrom, and V = 232.96(6) angstrom(3) for alpha-Ag2Te(NbS2)(3). For the occupationally disordered Ag/Te arrangement, a subcell of the ordered phase that crystallizes in the non-centrosymmetric P (6) over bar m2 space group, with a = 31956(6) angstrom (=a(a)/(3)(1/2)), c = 8.220(2) angstrom, and V = 77.31(3) angstrom(3) for beta-Ag2Te(VS2)(3), was identified. Furthermore, pair distribution function analysis revealed local distortions in the [Ag2Te] layer. Band structure calculations at the density functional theory level were carried out to investigate the electronic structure of Ag2Te(MS2)(3). Electronic transport measurements on Ag2Te(MS2)(3) show that they exhibit p-type metallic behavior. Thermal analyses and temperature-dependent powder X-ray diffraction studies were focused on the stability and transformation/decomposition of the Ag2Te(MS2)(3) phases. Magnetic susceptibility data are also reported. The new intercalated Ag2Te(MS2)(3) system features a unique hypervalent Te with a three-center, four-electron bonding environment isoelectronic to that found in I-3(-). C1 [Nguyen, Sandy L.; Malliakas, Christos D.; Francisco, Melanie C.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu FU National Science Foundation [DMR-1104965]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University; U.S. DOE [DE-AC02-06CH11357] FX This research was supported by the National Science Foundation grant DMR-1104965. The authors would like to thank Dr. Mahali Balisubramanian (Argonne National Laboratory) and Michael Mara (Northwestern University) for their assistance with XANES experiments and data interpretation and Drs. Jung-Hwan Song and Hosub Jin for band structure discussions. SEM and EDS analyses were performed at the EPIC facility of the NUANCE Center at Northwestern University, supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 92 TC 0 Z9 0 U1 3 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JUN 3 PY 2013 VL 52 IS 11 BP 6520 EP 6532 DI 10.1021/ic400483d PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 159AF UT WOS:000320015700032 PM 23672316 ER PT J AU Cha, M Chung, DW Elkins, JG Guss, AM Westpheling, J AF Cha, Minseok Chung, Daehwan Elkins, James G. Guss, Adam M. Westpheling, Janet TI Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE ldh; Metabolic engineering; Switchgrass; Biohydrogen; Caldicellulosiruptor ID HYPERTHERMOPHILIC ARCHAEON; CLOSTRIDIUM-THERMOCELLUM; THERMOTOGA-MARITIMA; ESCHERICHIA-COLI; PLANT BIOMASS; ETHANOL; PRETREATMENT; DEGRADATION; CULTURE; GLUCOSE AB Background: Members of the anaerobic thermophilic bacterial genus Caldicellulosiruptor are emerging candidates for consolidated bioprocessing (CBP) because they are capable of efficiently growing on biomass without conventional pretreatment. C. bescii produces primarily lactate, acetate and hydrogen as fermentation products, and while some Caldicellulosiruptor strains produce small amounts of ethanol C. bescii does not, making it an attractive background to examine the effects of metabolic engineering. The recent development of methods for genetic manipulation has set the stage for rational engineering of this genus for improved biofuel production. Here, we report the first targeted gene deletion, the gene encoding lactate dehydrogenase (ldh), for metabolic engineering of a member of this genus. Results: A deletion of the C. bescii L-lactate dehydrogenase gene (ldh) was constructed on a non-replicating plasmid and introduced into the C. bescii chromosome by marker replacement. The resulting strain failed to produce detectable levels of lactate from cellobiose and maltose, instead increasing production of acetate and H-2 by 21-34% relative to the wild type and Delta pyrFA parent strains. The same phenotype was observed on a real-world substrate - switchgrass (Panicum virgatum). Furthermore, the ldh deletion strain grew to a higher maximum optical density than the wild type on maltose and cellobiose, consistent with the prediction that the mutant would gain additional ATP with increased acetate production. Conclusions: Deletion of ldh in C. bescii is the first use of recently developed genetic methods for metabolic engineering of these bacteria. This deletion resulted in a redirection of electron flow from production of lactate to acetate and hydrogen. New capabilities in metabolic engineering combined with intrinsic utilization of lignocellulosic materials position these organisms to provide a new paradigm for consolidated bioprocessing of fuels and other products from biomass. C1 [Cha, Minseok; Chung, Daehwan; Westpheling, Janet] Univ Georgia, Dept Genet, Athens, GA 30602 USA. [Elkins, James G.; Guss, Adam M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Cha, Minseok; Chung, Daehwan; Elkins, James G.; Guss, Adam M.; Westpheling, Janet] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Westpheling, J (reprint author), Univ Georgia, Dept Genet, Athens, GA 30602 USA. EM janwest@uga.edu RI Guss, Adam/A-6204-2011; Elkins, James/A-6199-2011 OI Guss, Adam/0000-0001-5823-5329; Elkins, James/0000-0002-8052-5688 FU Office of Biological and Environmental Research in the DOE Office of Science FX We thank Jennifer Copeland for outstanding technical assistance, Bob Kelly and Sara Blumer-Schuette for providing the Caldicellulosiruptor species, Maria Pena and William York for NMR analysis, Li Tan and Debra Mohnen for assistance with the HPLC analysis and Jonathan Mielenz for providing the switchgrass used in this study. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 35 TC 29 Z9 29 U1 3 U2 60 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD JUN 3 PY 2013 VL 6 AR 85 DI 10.1186/1754-6834-6-85 PG 8 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 158PC UT WOS:000319983500001 PM 23731756 ER PT J AU Alves, F Grbovic, D Kearney, B Lavrik, NV Karunasiri, G AF Alves, Fabio Grbovic, Dragoslav Kearney, Brian Lavrik, Nickolay V. Karunasiri, Gamani TI Bi-material terahertz sensors using metamaterial structures SO OPTICS EXPRESS LA English DT Article ID QUANTUM CASCADE LASER; ABSORBER; TRANSMISSION; SENSITIVITY; PERFORMANCE; DETECTORS; DESIGN; CAMERA; MODEL; BAND AB In this paper we report on the design, fabrication and characterization of terahertz (THz) bi-material sensors with metamaterial absorbers. MEMS fabrication-friendly SiOx and Al are used to maximize the bimetallic effect and metamaterial absorption at 3.8 THz, the frequency of a quantum cascade laser illumination source. Sensors with different configurations were fabricated and the measured absorption is near 100% and responsivity is around 1.2 deg/mu W, which agree well with finite element simulations. The results indicate the potential of using these detectors to fabricate focal plane arrays for real time THz imaging. (C) 2013 Optical Society of America C1 [Alves, Fabio; Grbovic, Dragoslav; Kearney, Brian; Karunasiri, Gamani] USN, Postgrad Sch, Dept Phys, Monterey, CA 93943 USA. [Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Alves, F (reprint author), USN, Postgrad Sch, Dept Phys, 833 Dyer Rd, Monterey, CA 93943 USA. EM fdalves@nps.edu RI Lavrik, Nickolay/B-5268-2011 OI Lavrik, Nickolay/0000-0002-9543-5634 FU ONR; NRO; Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy FX This work is supported in part by grants from the ONR and NRO. The authors would like to thank John Dunec, Emmanuel Dupont, Elison Montagner, Mun Wai Raymond and Sam Barone for technical assistance. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. NR 44 TC 33 Z9 33 U1 4 U2 91 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 3 PY 2013 VL 21 IS 11 BP 13256 EP 13271 DI 10.1364/OE.21.013256 PG 16 WC Optics SC Optics GA 156II UT WOS:000319814900030 PM 23736579 ER PT J AU Fransson, J She, JH Pietronero, L Balatsky, AV AF Fransson, J. She, J. -H. Pietronero, L. Balatsky, A. V. TI Inelastic electron tunneling spectroscopy at local defects in graphene SO PHYSICAL REVIEW B LA English DT Article ID SURFACE; BI2SR2CACU2O8+DELTA; MICROSCOPY; CARBON AB We address local inelastic scattering from the vibrational impurity adsorbed onto graphene and the evolution of the local density of electron states near the impurity from a weak to strong coupling regime. For weak coupling the local electronic structure is distorted by inelastic scattering developing peaks or dips and steps. These features should be detectable in the inelastic electron tunneling spectroscopy d(2)I/dV(2) using local probing techniques. Inelastic Friedel oscillations distort the spectral density at energies close to the inelastic mode. In the strong coupling limit, a local negative U center forms in the atoms surrounding the impurity site. For those atoms, the Dirac cone structure is fully destroyed, that is, the linear energy dispersion as well as the V-shaped local density of electron states is completely destroyed. We further consider the effects of the negative U formation and its evolution from weak to strong coupling. The negative U site effectively acts as a local impurity such that sharp resonances appear in the local electronic structure. The main resonances are caused by elastic scattering off the impurity site, and the features are dressed by the presence of vibrationally activated side resonances. Going from weak to strong coupling, changes the local electronic structure from being Dirac-cone-like including midgap states, to a fully destroyed Dirac cone with only the impurity resonances remaining. C1 [Fransson, J.] Uppsala Univ, Dept Phys & Astron, SE-75121 Uppsala, Sweden. [She, J. -H.; Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pietronero, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Pietronero, L.] CNR, ISC, I-00185 Rome, Italy. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Balatsky, A. V.] NORDITA, SE-10691 Stockholm, Sweden. RP Fransson, J (reprint author), Uppsala Univ, Dept Phys & Astron, Box 516, SE-75121 Uppsala, Sweden. EM Jonas.Fransson@physics.uu.se RI Fransson, Jonas/A-9238-2009; She, Jian-Huang/B-1683-2013 FU Swedish Research Council; EU; Nordita; US DOE through the Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC52-06NA25396]; UC Research Fee Program FX J.F. acknowledges B. Sanyal for communicating unpublished results and J.-X. Zhu for fruitful discussions. The authors thank the Swedish Research Council, EU, and Nordita for support. J.F. further acknowledges the Wenner-Gren Foundation for travel support. Work at LANL was carried out under the auspices of the US DOE under Contract No. DE-AC52-06NA25396 through the Office of Basic Energy Sciences, Division of Materials Science and Engineering, and the UC Research Fee Program. NR 30 TC 7 Z9 7 U1 1 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 3 PY 2013 VL 87 IS 24 AR 245404 DI 10.1103/PhysRevB.87.245404 PG 7 WC Physics, Condensed Matter SC Physics GA 157OX UT WOS:000319909600006 ER PT J AU Wang, KF Graf, D Petrovic, C AF Wang, Kefeng Graf, D. Petrovic, C. TI Quasi-two-dimensional Dirac fermions and quantum magnetoresistance in LaAgBi2 SO PHYSICAL REVIEW B LA English DT Article ID TOPOLOGICAL INSULATORS; GRAPHENE; SURFACE; OSCILLATIONS AB We report quasi-two-dimensional (2D) Dirac fermions and quantum magnetoresistance in LaAgBi2. The band structure shows several narrow bands with nearly linear energy dispersion and Dirac-cone-like points at the Fermi level. The quantum oscillation experiments revealed one quasi-two-dimensional Fermi pocket and another complex pocket with a small cyclotron resonant mass. The in-plane transverse magnetoresistance exhibits a crossover at a critical field B* from semiclassical weak-field B-2 dependence to the high-field unsaturated linear magnetoresistance which is attributed to the quantum limit of the Dirac fermions. Our results suggest the existence of quasi-2D Dirac fermions in rare-earth-based layered compounds with two-dimensional double-sized Bi square nets, similar to (Ca, Sr) MnBi2, irrespective of magnetic order. C1 [Wang, Kefeng; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Graf, D.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. RP Wang, KF (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Wang, Kefeng/E-7683-2011; Petrovic, Cedomir/A-8789-2009 OI Wang, Kefeng/0000-0002-8449-9720; Petrovic, Cedomir/0000-0001-6063-1881 FU U.S. DOE [DE-AC02-98CH10886]; NSF [DMR-0654118]; State of Florida; DOE NNSA [DE-FG52-10NA29659] FX We than John Warren for help with scanning electron microscopy measurements. Work at Brookhaven is supported by the U.S. DOE under Contract No. DE-AC02-98CH10886. The high magnetic field studies in NHMFL were supported by NSF DMR-0654118, the State of Florida, and DOE NNSA DE-FG52-10NA29659. NR 36 TC 13 Z9 15 U1 6 U2 57 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 3 PY 2013 VL 87 IS 23 AR 235101 DI 10.1103/PhysRevB.87.235101 PG 7 WC Physics, Condensed Matter SC Physics GA 157OS UT WOS:000319908900001 ER PT J AU Singh, V Behera, BR Kaur, M Kumar, A Sugathan, P Golda, KS Jhingan, A Chatterjee, MB Bhowmik, RK Siwal, D Goyal, S Sadhukhan, J Pal, S Saxena, A Santra, S Kailas, S AF Singh, Varinderjit Behera, B. R. Kaur, Maninder Kumar, A. Sugathan, P. Golda, K. S. Jhingan, A. Chatterjee, M. B. Bhowmik, R. K. Siwal, Davinder Goyal, S. Sadhukhan, Jhilam Pal, Santanu Saxena, A. Santra, S. Kailas, S. TI Neutron multiplicity measurements for F-19+Pt-194,Pt-196,Pt-198 systems to investigate the effect of shell closure on nuclear dissipation SO PHYSICAL REVIEW C LA English DT Article ID ION-INDUCED FISSION; FUSION-FISSION; QUASI-FISSION; MODEL; DYNAMICS; ORIENTATION; COLLISIONS; EMISSION; FRICTION AB Pre- and post-scission neutron multiplicities are measured for the three isotopes of Fr (Fr-217, Fr-215, and Fr-213) in the excitation energy range of 48-91.8 MeV. Out of these three isotopes, Fr-213 has shell closure (N-C = 126) while the other two are non-closed-shell nuclei. Statistical model calculations using Kramers' fission width are performed to investigate shell effects on the dissipation strength which fit the experimental data. It is observed that shell correction to the binding energies of the evaporated particles strongly affects the fitted values of the dissipation strength. However, the best-fit dissipation strength is only weakly influenced by the inclusion of shell correction in fission barrier. C1 [Singh, Varinderjit; Behera, B. R.; Kaur, Maninder; Kumar, A.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Sugathan, P.; Golda, K. S.; Jhingan, A.; Chatterjee, M. B.; Bhowmik, R. K.] Inter Univ Accelerator Ctr, New Delhi 110067, India. [Siwal, Davinder; Goyal, S.] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India. [Sadhukhan, Jhilam] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Sadhukhan, Jhilam] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Pal, Santanu] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Saxena, A.; Santra, S.; Kailas, S.] Bhabha Atom Res Ctr, Div Nucl Phys, Mumbai 400085, Maharashtra, India. RP Behera, BR (reprint author), Panjab Univ, Dept Phys, Chandigarh 160014, India. EM bivash@pu.ac.in FU Council of Scientific and Industrial Research (CSIR), Government of India; Department of Atomic Energy (DAE), Government of India FX The authors thank the accelerator groups (LINAC and Pelletron) of IUAC, New Delhi, for providing beams of excellent quality throughout the experiment. The authors are grateful to Dr. A. Roy for his constant encouragement during the entire duration of the project. Thanks are also due to R. P. Singh, P. Barua, and M. Oswal for their help at various stages of the experiment. The financial support from the Council of Scientific and Industrial Research (CSIR), Government of India, in terms of a Shyama Prasad Mukherjee Fellowship (SPMF) to one of the authors (V. S.) is gratefully acknowledged. B. R. B. acknowledges the Department of Atomic Energy (DAE), Government of India, for a DAE young scientist research grant (YSRA). The calculations were performed at the high-performance computing center (HPCC) of the Department of Physics, Panjab University, Chandigarh. NR 35 TC 20 Z9 20 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 3 PY 2013 VL 87 IS 6 AR UNSP 064601 DI 10.1103/PhysRevC.87.064601 PG 11 WC Physics, Nuclear SC Physics GA 157PD UT WOS:000319910300001 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Atkinson, M Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Avramidou, R Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Balek, P Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, AK Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bittner, B Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Bloch, I Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocca, C Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cogneras, E Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Dassoulas, JA Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lorenzi, F de Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Papa, C Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobbs, M Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dressnandt, N Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Duguid, L Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Duren, M Ebenstein, WL Ebke, J Eckweiler, S Edmonds, K Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilchriese, M Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Goldfarb, S Golling, T Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gosdzik, B Goshaw, AT Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Guicheney, C Guindon, S Gul, U Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Hall, D Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM van Huysduynen, LH Horner, S Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Iliadis, D Ilic, N Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Jantsch, A Janus, M Jarlskog, G Jeanty, L Jen-La Plante, I Jennens, D Jenni, P Loevschall-Jensen, AE Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazama, S Kazanin, VA Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Keller, JS Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kreiss, S Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lukas, W Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundberg, O Lundquist, J Lungwitz, M Lynn, D Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Maddocks, HJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A Mangeard, PS de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Martens, FK Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maurer, J Maxfield, SJ Mayne, A Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Moles-Valls, R Molfetas, A Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Muller, TA Mueller, T Muenstermann, D Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pinto, B Pizio, C Plamondon, M Pleier, MA Plotnikova, E Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radloff, P Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schafer, U Schaelicke, A Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schneider, B Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerer, M Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Sykora, I Sykora, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Urquijo, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valentinetti, S Valero, A Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, R Wang, SM Wang, T Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Weber, P Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJ Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zajacova, Z Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zinonos, Z Zenz, S Zerwas, D della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zibell, A Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amor Dos Santos, S. P. Amorim, A. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Atkinson, M. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Avramidou, R. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Balek, P. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, A. K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bittner, B. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Castaneda Hernandez, A. M. Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocca, C. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cogneras, E. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. de Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Papa, C. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dressnandt, N. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Duguid, L. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edmonds, K. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilchriese, M. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goldfarb, S. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gosdzik, B. Goshaw, A. T. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Guicheney, C. Guindon, S. Gul, U. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Hall, D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Horner, S. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jen-La Plante, I. Jennens, D. Jenni, P. Loevschall-Jensen, A. E. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Juste Rozas, A. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazama, S. Kazanin, V. A. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kreiss, S. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lukas, W. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundberg, O. Lundquist, J. Lungwitz, M. Lynn, D. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Mangeard, P. S. Manhaes de Andrade Filho, L. Manjarres Ramos, J. A. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Martens, F. K. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maurer, J. Maxfield, S. J. Mayne, A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Moles-Valls, R. Molfetas, A. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Nguyen Thi Hong, V. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Olivares Pino, S. A. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orlov, I. Oropeza Barrera, C. Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Pedraza Lopez, S. Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pinto, B. Pizio, C. Plamondon, M. Pleier, M. -A. Plotnikova, E. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radloff, P. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, U. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Sykora, I. Sykora, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valentinetti, S. Valero, A. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vu Anh, T. Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Weber, P. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zinonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of W+W- production in pp collisions at root s=7 TeV with the ATLAS detector and limits on anomalous WWZ and WW gamma couplings SO PHYSICAL REVIEW D LA English DT Article ID GAUGE-BOSON COUPLINGS; HIGGS-BOSON; LHC; COLLIDERS; SEARCH; SECTOR; DECAY; LEP AB This paper presents a measurement of the W+W- production cross section in pp collisions at root s = 7 TeV. The leptonic decay channels are analyzed using data corresponding to an integrated luminosity of 4: 6 fb(-1) collected with the ATLAS detector at the Large Hadron Collider. The W+W- production cross section sigma(pp -> W+W- + X) is measured to be 51.9 +/- 2.0(stat) +/- 3.9(syst) +/- 2.0(lumi) pb, compatible with the Standard Model prediction of 44.7(-1.9)(+2.1) pb. A measurement of the normalized fiducial cross section as a function of the leading lepton transverse momentum is also presented. The reconstructed transverse momentum distribution of the leading lepton is used to extract limits on anomalous WWZ and WW gamma couplings. C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Alam, M. S.; Edson, W.; Ernst, J.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Bahinipati, S.; Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Fellmann, D.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.; Kono, T.; Wildt, M. A.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Marti, L. F.; Pretzl, K.; Schneider, B.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Giusti, P.; Grafstroem, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Milan, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Abajyan, T.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Subramaniam, R.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Gillberg, D.; Koffas, T.; Lacey, J.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Bachas, K.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Dydak, F.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Geweniger, C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lamanna, M.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Meyer, T. C.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, A.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Sfyrla, A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Jen-La Plante, I.; Kapliy, A.; Li, H. L.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Olivares Pino, S. A.; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Yao, L.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Liang, Z.; Soh, D. A.; Weng, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Brooijmans, G.; Chen, Y.; Dodd, J.; Grau, N.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Spousta, M.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Loevschall-Jensen, A. E.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Milan, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Hamburg, Germany. [Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Vu Anh, T.; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nikolics, K.; Onofre, A.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Milan, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Oropeza Barrera, C.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Hamer, M.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Univ Grenoble 1, Lab Phys Subat & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Lukas, W.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; de Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Milan, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fys Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Maettig, S.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, D.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Lin, S. C.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Lin, S. C.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Klemetti, M.; Mc Donald, J.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Quebec City, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Giunta, M.; Leroy, C.; Martin, J. P.] Univ Montreal, Grp Particle Phys, Quebec City, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Ince, T.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Milan, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, S.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen, NIKHEF H, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Ahmad, A.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Korn, A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Milan, Italy. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Dressnandt, N.; Fratina, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Milan, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Arik, E.; Bogouch, A.; Braun, H. M.; Carvalho, J.; Caso, C.; Castro, N. F.; Chikovani, L.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Doi, Y.; Dolgoshein, B. A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Kolachev, G. M.; Lopes, L.; Losty, M. J.; Machado Miguens, J.; Maio, A.; Maneira, J.; McFarlane, K. W.; Mouraviev, S. V.; Oliveira, M.; Onofre, A.; Palma, A.; Pastore, F.; Pina, J.; Pinto, B.; Dos Santos, D. Roda; Saraiva, J. G.; Sauvage, G.; Silva, J.; Sisakyan, A. N.; Stavina, P.; Strong, J. A.; Stumer, I.; Veloso, F.; Virchaux, M.; Wolters, H.; Zmouchko, V. V.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Castaneda-Miranda, E.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Milan, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Mountricha, E.; Rossi, E.; Camillocci, E. Solfaroli; Xu, C.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Milan, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Milan, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Reseau Univ Phys Hautes Energies Univ Hassan II, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Manjarres Ramos, J. A.; Mansoulie, B.; Meyer, J-P.; Mijovic, L.; Morange, N.; Nessi, M.; Nguyen Thi Hong, V.; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.] CEA Saclay, Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondamentales Univers, F-91191 Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tsionou, D.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Cuthbert, C.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Messina, A.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, H.; Wang, J.; Wang, S. M.; Weng, Z.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Kajomovitz, E.; Kopeliansky, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Bain, T.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Krieger, P.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Deng, J.; Farrell, S.; Eschrich, I. Gough; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Milan, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, G.; Fassi, F.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, G.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Navarro, G.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Carrillo-Montoya, G. D.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Chen, X.; Di Mattia, A.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gutzwiller, O.; Ji, H.; Ju, X.; Kashif, L.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, A. K.; Becks, K. H.; Boek, J.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lantzsch, K.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Loginov, A.; Sherman, D.; Tipton, P.; Wall, R.; Walsh, B.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Institut Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Canelli, F.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Castaneda Hernandez, A. M.] UASLP, Dept Phys, San Luis Potosi, Mexico. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Toronto, ON, Canada. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dep Fis, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Huseynov, N.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Li, S.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Park, W.; Purohit, M.] Univ Minho, Dept Fis, Braga, Portugal. [Pasztor, G.; Toth, J.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Perez, K.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, Lisbon, Portugal. [Konoplich, R.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Olshevskiy, Alexander/I-1580-2016; Ventura, Andrea/A-9544-2015; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Jakoubek, Tomas/G-8644-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Kuday, Sinan/C-8528-2014; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Snesarev, Andrey/H-5090-2013; Warburton, Andreas/N-8028-2013; Sukharev, Andrey/A-6470-2014; Fazio, Salvatore /G-5156-2010; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Fabbri, Laura/H-3442-2012; Villa, Mauro/C-9883-2009; Nozka, Libor/G-5550-2014; Kepka, Oldrich/G-6375-2014; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Brooks, William/C-8636-2013; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Marti-Garcia, Salvador/F-3085-2011; Shabalina, Elizaveta/M-2227-2013; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; De, Kaushik/N-1953-2013; Amorim, Antonio/C-8460-2013; Solfaroli Camillocci, Elena/J-1596-2012; Vanyashin, Aleksandr/H-7796-2013; Ferrando, James/A-9192-2012; Moorhead, Gareth/B-6634-2009; Doyle, Anthony/C-5889-2009; Casadei, Diego/I-1785-2013; Conde Muino, Patricia/F-7696-2011; Andreazza, Attilio/E-5642-2011; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Smirnov, Sergei/F-1014-2011 OI Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Smestad, Lillian/0000-0002-0244-8736; Giordani, Mario/0000-0002-0792-6039; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Prokoshin, Fedor/0000-0001-6389-5399; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Lei, Xiaowen/0000-0002-2564-8351; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Warburton, Andreas/0000-0002-2298-7315; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Villa, Mauro/0000-0002-9181-8048; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Brooks, William/0000-0001-6161-3570; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; De, Kaushik/0000-0002-5647-4489; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanyashin, Aleksandr/0000-0002-0367-5666; Ferrando, James/0000-0002-1007-7816; Moorhead, Gareth/0000-0002-9299-9549; Doyle, Anthony/0000-0001-6322-6195; Conde Muino, Patricia/0000-0002-9187-7478; Andreazza, Attilio/0000-0001-5161-5759; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Smirnov, Sergei/0000-0002-6778-073X FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, USA; NSF, USA FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide. NR 59 TC 36 Z9 36 U1 7 U2 150 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN 3 PY 2013 VL 87 IS 11 AR UNSP 112001 DI 10.1103/PhysRevD.87.112001 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 157PO UT WOS:000319911500002 ER PT J AU Aaltonen, T Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Bae, T Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bedeschi, F Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Bromberg, C Brucken, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Butti, P Buzatu, A Calamba, A Camarda, S Campanelli, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Chokheli, D Ciocci, MA Clark, A Clarke, C Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Cremonesi, M Cruz, D Cuevas, J Culbertson, R d'Ascenzo, N Datta, M De Barbaro, P Demortier, L Deninno, M d'Errico, M Devoto, F Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dorigo, M Driutti, A Ebina, K Edgar, R Elagin, A Erbacher, R Errede, S Esham, B Eusebi, R Farrington, S Ramos, JPF Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Frisch, H Funakoshi, Y Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Lopez, OG Gorelov, I Goshaw, AT Goulianos, K Gramellini, E Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Hahn, SR Han, JY Happacher, F Hara, K Hare, M Harr, RF Harrington-Taber, T Hatakeyama, K Hays, C Heinrich, J Herndon, M Hocker, A Hong, Z Hopkins, W Hou, S Hughes, RE Husemann, U Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kambeitz, M Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YJ Kim, YK Kimura, N Kirby, M Knoepfel, K Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Kruse, M Kuhr, T Kurata, M Laasanen, AT Lammel, S Lancaster, M Lannon, K Latino, G Lee, HS Lee, JS Leo, S Leone, S Lewis, JD Limosani, A Lipeles, E Lister, A Liu, H Liu, Q Liu, T Lockwitz, S Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maestro, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, P Martinez, M Matera, K Mattson, ME Mazzacane, A Mazzanti, P McNulty, R Mehta, A Mehtala, P Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, MJ Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Nigmanov, T Nodulman, L Noh, SY Norniella, O Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Pagliarone, C Palencia, E Palni, P Papadimitriou, V Parker, W Pauletta, G Paulini, M Paus, C Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Poprocki, S Potamianos, K Pranko, A Prokoshin, F Ptohos, F Punzi, G Ranjan, N Fernandez, IR Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodriguez, T Rolli, S Ronzani, M Roser, R Rosner, JL Ruffini, F Ruiz, A Russ, J Rusu, V Sakumoto, WK Sakurai, Y Santi, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, EE Schwarz, T Scodellaro, L Scuri, F Seidel, S Seiya, Y Semenov, A Sforza, F Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shochet, M Shreyber-Tecker, I Simonenko, A Sinervo, P Sliwa, K Smith, JR Snider, FD Song, H Sorin, V Stancari, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thomson, E Thukral, V Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Ukegawa, F Uozumi, S Vazquez, F Velev, G Vellidis, C Vernieri, C Vidal, M Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wallny, R Wang, SM Warburton, A Waters, D Wester, WC Whiteson, D Wicklund, AB Wilbur, S Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamato, D Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Zanetti, AM Zeng, Y Zhou, C Zucchelli, S AF Aaltonen, T. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Bae, T. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Bromberg, C. Brucken, E. Budagov, J. Budd, H. S. Burkett, K. Busetto, G. Bussey, P. Butti, P. Buzatu, A. Calamba, A. Camarda, S. Campanelli, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Chokheli, D. Ciocci, M. A. Clark, A. Clarke, C. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Cremonesi, M. Cruz, D. Cuevas, J. Culbertson, R. d'Ascenzo, N. Datta, M. De Barbaro, P. Demortier, L. Deninno, M. d'Errico, M. Devoto, F. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dorigo, M. Driutti, A. Ebina, K. Edgar, R. Elagin, A. Erbacher, R. Errede, S. Esham, B. Eusebi, R. Farrington, S. Fernandez Ramos, J. P. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Frisch, H. Funakoshi, Y. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez Lopez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gramellini, E. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Hahn, S. R. Han, J. Y. Happacher, F. Hara, K. Hare, M. Harr, R. F. Harrington-Taber, T. Hatakeyama, K. Hays, C. Heinrich, J. Herndon, M. Hocker, A. Hong, Z. Hopkins, W. Hou, S. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kambeitz, M. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. J. Kim, Y. K. Kimura, N. Kirby, M. Knoepfel, K. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Kruse, M. Kuhr, T. Kurata, M. Laasanen, A. T. Lammel, S. Lancaster, M. Lannon, K. Latino, G. Lee, H. S. Lee, J. S. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lipeles, E. Lister, A. Liu, H. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maestro, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, P. Martinez, M. Matera, K. Mattson, M. E. Mazzacane, A. Mazzanti, P. McNulty, R. Mehta, A. Mehtala, P. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Nigmanov, T. Nodulman, L. Noh, S. Y. Norniella, O. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Pagliarone, C. Palencia, E. Palni, P. Papadimitriou, V. Parker, W. Pauletta, G. Paulini, M. Paus, C. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Poprocki, S. Potamianos, K. Pranko, A. Prokoshin, F. Ptohos, F. Punzi, G. Ranjan, N. Redondo Fernandez, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodriguez, T. Rolli, S. Ronzani, M. Roser, R. Rosner, J. L. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Sakumoto, W. K. Sakurai, Y. Santi, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, E. E. Schwarz, T. Scodellaro, L. Scuri, F. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shochet, M. Shreyber-Tecker, I. Simonenko, A. Sinervo, P. Sliwa, K. Smith, J. R. Snider, F. D. Song, H. Sorin, V. Stancari, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thomson, E. Thukral, V. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Ukegawa, F. Uozumi, S. Vazquez, F. Velev, G. Vellidis, C. Vernieri, C. Vidal, M. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Wester, W. C., III Whiteson, D. Wicklund, A. B. Wilbur, S. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamato, D. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Zanetti, A. M. Zeng, Y. Zhou, C. Zucchelli, S. CA CDF Collaboration TI Measurement of R = B(t -> Wb)/B(t -> Wq) in top-quark-pair decays using lepton plus jets events and the full CDF run II dataset SO PHYSICAL REVIEW D LA English DT Article ID CROSS-SECTION; DETECTOR AB We present a measurement of the ratio of the top-quark branching fractions R = B(t -> Wb)/B(t -> Wq), where q represents quarks of type b, s, or d, in the final state with a lepton and hadronic jets. The measurement uses root s = 1.96 TeV proton-antiproton collision data from 8.7 fb(-1) of integrated luminosity collected with the Collider Detector at Fermilab during Run II of the Tevatron. We simultaneously measure R = 0.94 +/- 0.09 (stat + syst) and the t (t) over bar production cross section sigma(t (t) over bar) = 7.5 +/- 1.0 (stat + syst) pb. The magnitude of the Cabibbo-Kobayashi-Maskawa matrix element, vertical bar V-tb vertical bar = 0.97 +/- 0.05 (stat + syst) is extracted assuming three generations of quarks, and a lower limit of vertical bar V-tb vertical bar > 0.89 at 95% credibility level is set. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis dAltes Energies, ICREA, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Gramellini, E.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Yu, G. B.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander 39005, Spain. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Canelli, F.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hocker, A.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. H.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Campanelli, M.; Cerrito, L.; Lancaster, M.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber-Tecker, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Cremonesi, M.; Di Canto, A.; Donati, S.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Punzi, G.; Ronzani, M.; Ruffini, F.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Maestro, P.] Univ Siena, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Introzzi, G.] INFN Pavia, I-27100 Pavia, Italy. [Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy. [Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; De Barbaro, P.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, Sez Roma 1, I-00185 Rome, Italy. [Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Eusebi, R.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Thukral, V.; Toback, D.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl Trieste Udine, I-34127 Trieste, Italy. [Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy. [Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA. [Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI vilar, rocio/P-8480-2014; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Prokoshin, Fedor/E-2795-2012; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015; Chiarelli, Giorgio/E-8953-2012; Ivanov, Andrew/A-7982-2013; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Punzi, Giovanni/J-4947-2012; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Robson, Aidan/G-1087-2011; maestro, paolo/E-3280-2010 OI ciocci, maria agnese /0000-0003-0002-5462; Prokoshin, Fedor/0000-0001-6389-5399; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Marino, Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; Chiarelli, Giorgio/0000-0001-9851-4816; Ivanov, Andrew/0000-0002-9270-5643; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Warburton, Andreas/0000-0002-2298-7315; maestro, paolo/0000-0002-4193-1288 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University Program, National Research Foundation of Korea; Science and Technology Facilities Council, UK; Royal Society, UK; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, Spain; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC) FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC). NR 29 TC 8 Z9 8 U1 2 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 3 PY 2013 VL 87 IS 11 AR 111101 DI 10.1103/PhysRevD.87.111101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 157PO UT WOS:000319911500001 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Aguilo, E Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruwirth, R Ghete, VM Hammer, J Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Reis, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Castello, R Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Jorge, LS Sznajder, A Pereira, AV Anjos, TS Bernardes, CA Dias, FA Tomei, TR Gregores, EMFP Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, D Zhang, L Zou, W Avila, C Gomez, JP Moreno, BG Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Mekterovic, D Morovic, S Attikis, A Galanti, M Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Radi, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Karjalainen, A Korpela, A Tuuva, T Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Juillot, P Le Bihan, AC Van Hove, P Fassi, F Mercier, D Beauceron, S Beaupere, N Bondu, O Boudoul, G Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Tschudi, Y Verdier, P Viret, S Tsamalaidze, Z Autermann, C Beranek, S Calpas, B Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Thuer, S Weber, M Bontenackels, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Martin, MA Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Castro, E Costanza, F Dammann, D Pardos, CD Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Leonard, J Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Olzem, J Perrey, H Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Riedl, C Ron, E Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Walsh, R Wissing, C Blobel, V Enderle, H Erfle, J Gebbert, U Gorner, M Gosselink, M Haller, J Hermanns, T Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Nowak, F Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Vanelderen, L Barth, C Berger, J Boser, C Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hackstein, C Hartmann, F Hauth, T Heinrich, M Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Pardo, PL Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Oehler, A Ott, J Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Aziz, T Ganguly, S Guchait, M Gurtu, A Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Gasparini, F Gasparini, U Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Sgaravatto, M Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Gabusi, M Ratti, SP Riccardi, C Torre, P Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Taroni, S Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Grassi, M Longo, E Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Sigamani, M Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Casasso, S Costa, M Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Schizzi, A Kim, TY Nam, SK Chang, S Kim, DH Kim, GN Kong, DJ Park, H Son, DC Son, T Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-De La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Seixas, J Varela, J Vischia, P Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Malakhov, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Kossov, M Lychkovskaya, N Popov, V Safronov, G Semenov, S Shreyber, I Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Popov, A Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC D'Enterria, D Dabrowski, A De Roeck, A Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Govoni, P Gowdy, S Guida, R Gundacker, S Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Lecoq, P Lee, YJ Lenzi, P Lourenco, C Magini, N Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Musella, P Nesvold, E Orimoto, T Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rojo, J Rolandi, G Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eugster, J Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Marini, AC del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Wehrli, L Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Kilminster, B Mejias, BM Otiougova, P Robmann, P Snoek, H Tupputi, S Verzetti, M Chang, YH Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Singh, AP Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wan, X Wang, M Asavapibhop, B Srimanobhas, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Karaman, T Karapinar, G Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Cankocak, K Levchuk, L Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Stoye, M Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Hatakeyama, K Liu, H Scarborough, T Charaf, O Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Breedon, R Breto, G Sanchez, MCDLB Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Yohay, R Andreev, V Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Traczyk, P Valuev, V Weber, M Babb, J Clare, R Dinardo, ME Ellison, J Gary, JW Giordano, F Hanson, G Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Golf, F Incandela, J Justus, C Kalavase, P Kovalskyi, D Krutelyov, V Lowette, S Villalba, RM Mccoll, N Pavlunin, V Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Chen, Y Di Marco, E Duarte, J Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Yang, Y Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Vaughan, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Elvira, VD Fisk, I Freeman, J Gao, Y Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Klima, B Kunori, S Kwan, S Leonidopoulos, C Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Park, M Remington, R Rinkevicius, A Sellers, P Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Yumiceva, F Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Onel, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Tinti, G Wood, JS Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Kim, Y Klute, M Krajczar, K Levin, A Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Zhukova, V Cooper, SI Dahmes, B De Benedetti, A Franzoni, G Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Keller, J Kravchenko, I Lazo-Flores, J Malik, S Snow, GR Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Nash, D Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Vuosalo, C Williams, G Winer, BL Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Akgun, B Boulahouache, C Ecklund, KM Geurts, FJM Li, W Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R De Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Walker, M Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dragoiu, C Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Roh, Y Volobouev, I Appelt, E Delannoy, AG Florez, C Greene, S Gurrola, A Johns, W Kurt, P Maguire, C Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Anderson, M Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Loveless, R Mohapatra, A Ojalvo, I Palmonari, F Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Aguilo, E. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Reis, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Castello, R. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Soares Jorge, L. Sznajder, A. Vilela Pereira, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Tomei, T. R. Fernandez Perez Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, D. Zhang, L. Zou, W. Avila, C. Gomez, J. P. Gomez Moreno, B. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Attikis, A. Galanti, M. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Karjalainen, A. Korpela, A. Tuuva, T. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Juillot, P. Le Bihan, A. -C. Van Hove, P. Fassi, F. Mercier, D. Beauceron, S. Beaupere, N. Bondu, O. Boudoul, G. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Tschudi, Y. Verdier, P. Viret, S. Tsamalaidze, Z. Autermann, C. Beranek, S. Calpas, B. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Thueer, S. Weber, M. Bontenackels, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Martin, M. Aldaya Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Castro, E. Costanza, F. Dammann, D. Pardos, C. Diez Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Leonard, J. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Walsh, R. Wissing, C. Blobel, V. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Gosselink, M. Haller, J. Hermanns, T. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Nowak, F. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Vanelderen, L. Barth, C. Berger, J. Boeser, C. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hackstein, C. Hartmann, F. Hauth, T. Heinrich, M. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Pardo, P. Lobelle Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Oehler, A. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Ganguly, S. Guchait, M. Gurtu, A. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Gasparini, F. Gasparini, U. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Sgaravatto, M. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Taroni, S. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Grassi, M. Longo, E. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Sigamani, M. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Kim, T. Y. Nam, S. K. Chang, S. Kim, D. H. Kim, G. N. Kong, D. J. Park, H. Son, D. C. Son, T. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Moreno, S. Carrillo Valencia, F. Vazquez Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Almeida, N. Bargassa, P. David, A. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Seixas, J. Varela, J. Vischia, P. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Malakhov, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kossov, M. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Shreyber, I. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Popov, A. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa D'Enterria, D. Dabrowski, A. De Roeck, A. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Govoni, P. Gowdy, S. Guida, R. Gundacker, S. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Lecoq, P. Lee, Y. -J. Lenzi, P. Lourenco, C. Magini, N. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Musella, P. Nesvold, E. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rojo, J. Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eugster, J. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Wehrli, L. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Tupputi, S. Verzetti, M. Chang, Y. H. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Singh, A. P. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Asavapibhop, B. Srimanobhas, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Karapinar, G. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Guelmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Cankocak, K. Levchuk, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Stoye, M. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Hatakeyama, K. Liu, H. Scarborough, T. Charaf, O. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Yohay, R. Andreev, V. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Dinardo, M. E. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Golf, F. Incandela, J. Justus, C. Kalavase, P. Kovalskyi, D. Krutelyov, V. Lowette, S. Villalba, R. Magana Mccoll, N. Pavlunin, V. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Chen, Y. Di Marco, E. Duarte, J. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Yang, Y. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kunori, S. Kwan, S. Leonidopoulos, C. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Park, M. Remington, R. Rinkevicius, A. Sellers, P. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Yumiceva, F. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, F. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Onel, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Tinti, G. Wood, J. S. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Kim, Y. Klute, M. Krajczar, K. Levin, A. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Zhukova, V. Cooper, S. I. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kravchenko, I. Lazo-Flores, J. Malik, S. Snow, G. R. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Nash, D. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Vuosalo, C. Williams, G. Winer, B. L. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Akgun, B. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Li, W. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. De Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Walker, M. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dragoiu, C. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Roh, Y. Volobouev, I. Appelt, E. Delannoy, A. G. Florez, C. Greene, S. Gurrola, A. Johns, W. Kurt, P. Maguire, C. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Anderson, M. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Loveless, R. Mohapatra, A. Ojalvo, I. Palmonari, F. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Measurements of differential jet cross sections in proton-proton collisions at root s=7 TeV with the CMS detector SO PHYSICAL REVIEW D LA English DT Article AB Measurements of inclusive jet and dijet production cross sections are presented. Data from LHC proton-proton collisions at root s = 7 TeV, corresponding to 5.0 fb(-1) of integrated luminosity, have been collected with the CMS detector. Jets are reconstructed up to rapidity 2.5, transverse momentum 2 TeV, and dijet invariant mass 5 TeV, using the anti-k(T) clustering algorithm with distance parameter R = 0.7. The measured cross sections are corrected for detector effects and compared to perturbative QCD predictions at next-to-leading order, using five sets of parton distribution functions. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Aguilo, E.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Klein, K.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Tomei, T. R.; Lagana, C.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Anjos, T. S.; Bernardes, C. A.; Fernandez Perez Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Wang, J.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] Inst Natl Phys Nucl & Phys Particules, CNRS, IN2P3, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Abdulsalam, A.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A3, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B3, Aachen, Germany. [Martin, M. Aldaya; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Berger, J.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, C.; Mavrommatis, C.; Ntomari, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, EHEP, Bombay 400005, Maharashtra, India. [Banerjee, S.; Guchait, M.; Dugad, S.] Tata Inst Fundamental Res, HECR, Bombay 400005, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Tropiano, A.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Dogangun, O.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Sgaravatto, M.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Taroni, S.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Fiori, F.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Fanelli, C.; Grassi, M.; Longo, E.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Casasso, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Son, T.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest Estudios Avanzados, Mexico City 07738, DF, Mexico. [Montoya, C. A. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Abdulsalam, A.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bluj, M.; Abdulsalam, A.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentaco & Fis Expt Particulas, Lisbon, Portugal. [Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Santoro, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Genchev, V.; Iaydjiev, P.; Puljak, I.; Chierici, R.; Sharma, A.; Masetti, G.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Gundacker, S.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenco, C.; Magini, N.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rojo, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, Y. H.; Bartalini, P.; Chang, P.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Srimanobhas, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Guelmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Worm, S. D.; Newbold, D. M.; Basso, L.; Bell, K. W.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Andreev, V.; Felcini, M.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Gomez, G.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, IN USA. [Li, W.; Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; De Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY USA. [Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Park, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Giammanco, A.] NICPB, Tallinn, Estonia. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Hashemi, M.] Shiraz Univ, Shiraz, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Meola, S.] Univ Guglielmo Marconi, Rome, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Serban, A. T.] Univ Bucharest, Fac Phys, Bucharest, Romania. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Belyaev, A.; Basso, L.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Rovelli, T.] Univ Rome, Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Dudko, Lev/D-7127-2012; Dermenev, Alexander/M-4979-2013; Tinoco Mendes, Andre David/D-4314-2011; Dogangun, Oktay/L-9252-2013; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Janssen, Xavier/E-1915-2013; Novaes, Sergio/D-3532-2012; Bartalini, Paolo/E-2512-2014; Alves, Gilvan/C-4007-2013; Ligabue, Franco/F-3432-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Codispoti, Giuseppe/F-6574-2014; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Fassi, Farida/F-3571-2016; Liu, Sheng/K-2815-2013; Zhukov, Valery/K-3615-2013; Venturi, Andrea/J-1877-2012; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Lokhtin, Igor/D-7004-2012; Tomei, Thiago/E-7091-2012; Zalewski, Piotr/H-7335-2013; Mundim, Luiz/A-1291-2012; Kodolova, Olga/D-7158-2012; Tinti, Gemma/I-5886-2013; Ivanov, Andrew/A-7982-2013; Petrushanko, Sergey/D-6880-2012; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Della Ricca, Giuseppe/B-6826-2013; Azarkin, Maxim/N-2578-2015; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Yazgan, Efe/C-4521-2014; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Ragazzi, Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE', Cristina/P-3933-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Raidal, Martti/F-4436-2012; Bernardes, Cesar Augusto/D-2408-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Montanari, Alessandro/J-2420-2012; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014 OI Dudko, Lev/0000-0002-4462-3192; Tinoco Mendes, Andre David/0000-0001-5854-7699; Dogangun, Oktay/0000-0002-1255-2211; de Jesus Damiao, Dilson/0000-0002-3769-1680; Novaes, Sergio/0000-0003-0471-8549; Ligabue, Franco/0000-0002-1549-7107; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Codispoti, Giuseppe/0000-0003-0217-7021; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Heath, Helen/0000-0001-6576-9740; Lloret Iglesias, Lara/0000-0002-0157-4765; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; Casarsa, Massimo/0000-0002-1353-8964; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Fassi, Farida/0000-0002-6423-7213; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Wimpenny, Stephen/0000-0003-0505-4908; Tomei, Thiago/0000-0002-1809-5226; Mundim, Luiz/0000-0001-9964-7805; Ivanov, Andrew/0000-0002-9270-5643; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Della Ricca, Giuseppe/0000-0003-2831-6982; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Yazgan, Efe/0000-0001-5732-7950; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Ragazzi, Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Montanari, Alessandro/0000-0003-2748-6373; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889 FU Austrian Federal Ministry of Science and Research; Belgian Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; CNPq; CAPES; FAPERJ; FAPESP; Bulgarian Ministry of Education, Youth and Science; CERN; Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; COLCIENCIAS; Croatian Ministry of Science, Education and Sport; Research Promotion Foundation, Cyprus; Ministry of Education and Research, Estonia [SF0690030s09]; European Regional Development Fund, Estonia; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules/CNRS, France; Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; Bundesministerium fur Bildung und Forschung, Germany; Deutsche Forschungsgemeinschaft, Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation, Hungary; National Office for Research and Technology, Hungary; Department of Atomic Energy, India; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Korean Ministry of Education, Science and Technology, Republic of Korea; World Class University program of NRF, Republic of Korea; Lithuanian Academy of Sciences; CINVESTAV; CONACYT; SEP; UASLP-FAI; Ministry of Science and Innovation, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education, Poland; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Science and Technological Development of Serbia; Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Spain; Programa Consolider-Ingenio, Spain; ETH Board; ETH Zurich; PSI; SNF; UniZH; Canton Zurich; SER; National Science Council, Taipei; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; Science and Technology Facilities Council, U.K.; U.S. Department of Energy; U.S. National Science Foundation; Marie-Curie program (European Union); European Research Council (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS program of Foundation for Polish Science; European Union, Regional Development Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science and Research; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education, Youth and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent financing contract SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules/CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, U.K.; the U.S. Department of Energy, and the U.S. National Science Foundation.; Individuals have received support from the Marie-Curie program and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS program of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund. NR 25 TC 34 Z9 34 U1 3 U2 120 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN 3 PY 2013 VL 87 IS 11 AR UNSP 112002 DI 10.1103/PhysRevD.87.112002 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 157PO UT WOS:000319911500003 ER PT J AU Furman, MA Pivi, MTF AF Furman, M. A. Pivi, M. T. F. TI Probabilistic model for the simulation of secondary electron emission (vol 5, 124404, 2002) SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Correction RP Furman, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Beam Phys, Accelerator & Fus Res Div, MS 71-211, Berkeley, CA 94720 USA. EM mafurman@lbl.gov; mauro.pivi@ims.co.at NR 1 TC 0 Z9 0 U1 3 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN 3 PY 2013 VL 16 IS 6 AR 069901 DI 10.1103/PhysRevSTAB.16.069901 PG 1 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 157QO UT WOS:000319914300002 ER PT J AU Porsgaard, S Ono, LK Zeuthen, H Knudsen, J Schnadt, J Merte, LR Chevallier, J Helveg, S Salmeron, M Wendt, S Besenbacher, F AF Porsgaard, Soeren Ono, Luis K. Zeuthen, Helene Knudsen, Jan Schnadt, Joachim Merte, Lindsay R. Chevallier, Jacques Helveg, Stig Salmeron, Miquel Wendt, Stefan Besenbacher, Flemming TI In Situ Study of CO Oxidation on HOPG-Supported Pt Nanoparticles SO CHEMPHYSCHEM LA English DT Article DE CO oxidation; high-pressure flow cells; nanoparticles; photoelectron spectroscopy; platinum ID X-RAY PHOTOELECTRON; PT(111) SURFACE; PLATINUM; OXYGEN; SPECTROSCOPY; REACTIVITY; CLUSTERS; CHEMISORPTION; STABILITY C1 [Porsgaard, Soeren; Ono, Luis K.; Zeuthen, Helene; Merte, Lindsay R.; Chevallier, Jacques; Wendt, Stefan; Besenbacher, Flemming] Interdisplinary Nanosci Ctr iNANO, DK-8000 Aarhus C, Denmark. [Knudsen, Jan; Schnadt, Joachim] Lund Univ, Dept Phys, Div Synchrotron Radiat Res, S-22100 Lund, Sweden. [Helveg, Stig] Haldor Topsoe Res Labs, DK-2800 Lyngby, Denmark. [Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wendt, S (reprint author), Interdisplinary Nanosci Ctr iNANO, DK-8000 Aarhus C, Denmark. EM swendt@inano.au.dk; fbe@inano.au.dk OI Schnadt, Joachim/0000-0001-9375-831X FU Danish Research Agency; Strategic Research Council; Villum Kahn Rasmussen Foundation; Carlsberg Foundation; Lundbeck Foundation; European Research Council; Swedish Research Council (VR) [2010-5080]; Office of Basic Energy Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Danish Research Agency, the Strategic Research Council, the Villum Kahn Rasmussen Foundation, the Carlsberg Foundation, the Lundbeck Foundation, the European Research Council through an Advanced ERC grant (F.B.), the Swedish Research Council (VR, grant No. 2010-5080) (J.S.), and Office of Basic Energy Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (M.S.). Support from the MAX IV Laboratory staff is acknowledged. NR 37 TC 7 Z9 7 U1 2 U2 63 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUN 3 PY 2013 VL 14 IS 8 BP 1553 EP 1557 DI 10.1002/cphc.201300217 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 150UD UT WOS:000319415900004 PM 23553961 ER PT J AU Newby, M Cole, N Newberg, HJ Desell, T Magdon-Ismail, M Szymanski, B Varela, C Willett, B Yanny, B AF Newby, Matthew Cole, Nathan Newberg, Heidi Jo Desell, Travis Magdon-Ismail, Malik Szymanski, Boleslaw Varela, Carlos Willett, Benjamin Yanny, Brian TI A SPATIAL CHARACTERIZATION OF THE SAGITTARIUS DWARF GALAXY TIDAL TAILS SO ASTRONOMICAL JOURNAL LA English DT Article DE catalogs; Galaxy: halo; Galaxy: structure; methods: data analysis; methods: statistical ID DIGITAL SKY SURVEY; DARK-MATTER HALO; SURVEY COMMISSIONING DATA; RR-LYRAE STARS; MILKY-WAY; GALACTIC HALO; GLOBULAR-CLUSTERS; SURVEY VIEW; STELLAR STREAM; DATA RELEASE AB We measure the spatial density of F turnoff stars in the Sagittarius dwarf tidal stream, from Sloan Digital Sky Survey data, using statistical photometric parallax. We find a set of continuous, consistent parameters that describe the leading Sgr stream's position, direction, and width for 15 stripes in the north Galactic cap, and three stripes in the south Galactic cap. We produce a catalog of stars that has the density characteristics of the dominant leading Sgr tidal stream that can be compared with simulations. We find that the width of the leading (north) tidal tail is consistent with recent triaxial and axisymmetric halo model simulations. The density along the stream is roughly consistent with common disruption models in the north, but possibly not in the south. We explore the possibility that one or more of the dominant Sgr streams has been misidentified, and that one or more of the "bifurcated" pieces is the real Sgr tidal tail, but we do not reach definite conclusions. If two dwarf progenitors are assumed, fits to the planes of the dominant and "bifurcated" tidal tails favor an association of the Sgr dwarf spheroidal galaxy with the dominant southern stream and the "bifurcated" stream in the north. In the north Galactic cap, the best fit Hernquist density profile for the smooth component of the stellar halo is oblate, with a flattening parameter q = 0.53, and a scale length of r(0) = 6.73. The southern data for both the tidal debris and the smooth component of the stellar halo do not match the model fits to the north, although the stellar halo is still overwhelmingly oblate. Finally, we verify that we can reproduce the parameter fits on the asynchronous MilkyWay@home volunteer computing platform. C1 [Newby, Matthew; Cole, Nathan; Newberg, Heidi Jo; Willett, Benjamin] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Desell, Travis] U North Dakota, Dept Comp Sci, Grand Forks, ND 58202 USA. [Magdon-Ismail, Malik; Szymanski, Boleslaw; Varela, Carlos] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Newby, M (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. EM newbym2@rpi.edu; heidi@rpi.edu RI Szymanski, Boleslaw/A-9121-2009 OI Szymanski, Boleslaw/0000-0002-0307-6743 FU National Science Foundation [AST 10-09670]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX We would like to thank our referee, David Law, for comments that improved the quality of this paper. Portions of this text have been copied or adapted from the PhD thesis of Nathan Cole (Cole 2009). We would also like to thank the over 140,000 participants who have contributed to MilkyWay@home over the past several years. Most participants have volunteered computing time to our project, although many participants have contributed financial resources or equipment, several participants have contributed to error-checking and troubleshooting, and a few participants have assisted in developing the project software. We would like to acknowledge and thank David Glogau and The Marvin Clan for their significant donations toward the project. We would also like to thank the Dudley Observatory for their assistance. This publication is based upon work supported by the National Science Foundation under grant No. AST 10-09670.; We use data from the Sloan Digital Sky Survey. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www,sdssoorg/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermi lab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 83 TC 11 Z9 11 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUN PY 2013 VL 145 IS 6 AR UNSP 163 DI 10.1088/0004-6256/145/6/163 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AD6DH UT WOS:000333343700006 ER PT J AU Tridon, F Battaglia, A Kollias, P Luke, E Williams, CR AF Tridon, Frederic Battaglia, Alessandro Kollias, Pavlos Luke, Edward Williams, Christopher R. TI Signal Postprocessing and Reflectivity Calibration of the Atmospheric Radiation Measurement Program 915-MHz Wind Profilers SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID WAVELENGTH RADARS; DOPPLER SPECTRA; CLOUD; PRECIPITATION; DISDROMETER; SCATTERING; DESIGN; TRMM AB The Department of Energy Atmospheric Radiation Measurement ( ARM) Program has recently initiated a new research avenue toward a better characterization of the transition from cloud to precipitation. Dual-wavelength techniques applied to millimeter-wavelength radars and a Rayleigh reference have a great potential for rain-rate retrievals directly from dual-wavelength ratio measurements. In this context, the recent reconfiguration of the ARM 915-MHz wind profilers in a vertically pointing mode makes these instruments the ideal candidate for providing the Rayleigh reflectivity/Doppler velocity reference. Prior to any scientific study, the wind profiler data must be carefully quality checked. This work describes the signal postprocessing steps that are essential for the delivery of high-quality reflectivity and mean Doppler velocity products-that is, the estimation of the noise floor from clear-air echoes, the absolute calibration with a collocated dis-drometer, the dealiasing of Doppler velocities, and the merging of the different modes of the wind profiler. The improvement added by the proposed postprocessing is confirmed by comparison with a high-quality S-band profiler deployed at the ARM Southern Great Plains site during the Midlatitude Continental Convective Clouds Experiment. With the addition of a vertically pointing mode and with the postprocessing described in this work in place, besides being a key asset for wind research wind profilers observations may therefore become a centerpiece for rain studies in the years to come. C1 [Tridon, Frederic; Battaglia, Alessandro] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Kollias, Pavlos] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada. [Luke, Edward] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. [Williams, Christopher R.] Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA. [Williams, Christopher R.] Atmospher Adm Earth Syst Res Lab, Boulder, CO USA. RP Tridon, F (reprint author), Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. EM f.tridon@leicester.ac.uk RI Tridon, Frederic/M-4127-2013; Williams, Christopher/A-2723-2015; Measurement, Global/C-4698-2015; OI Tridon, Frederic/0000-0002-0436-283X; Williams, Christopher/0000-0001-9394-8850; Battaglia, Alessandro/0000-0001-9243-3484 FU U.K. Natural Environment Research Council FX This work was part of the Profiling Optimal-Estimates for Rain-Cloud Efficiency Study (PERICLES) project funded by the U.K. Natural Environment Research Council. The authors thank Dr. Arunchandra Chandra for providing some of the 2DVD data and a first guess of the wind profiler calibration constant. Other data were obtained from the Atmospheric Radiation Measurement Program of the U. S. Department of Energy, and the National Oceanic and Atmospheric Administration Earth System Research Laboratory. NR 24 TC 8 Z9 8 U1 0 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JUN PY 2013 VL 30 IS 6 BP 1038 EP 1054 DI 10.1175/JTECH-D-12-00146.1 PG 17 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 301EF UT WOS:000330514900002 ER PT J AU Han, L Lowell, RP Lewis, KC AF Han, Liang Lowell, Robert P. Lewis, Kayla C. TI The dynamics of two-phase hydrothermal systems at a seafloor pressure of 25 MPa SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE seafloor hydrothermal system; two-phase flow; numerical modeling ID EAST PACIFIC RISE; DEEP GEOTHERMAL BRINES; EQUATION-OF-STATE; MULTIPHASE THERMOHALINE CONVECTION; VOLUME SOLUTION TECHNIQUE; HYPER-SALINE BRINES; MIDOCEAN RIDGE; THERMODYNAMIC PROPERTIES; PHASE-EQUILIBRIA; NUMERICAL-SIMULATION AB We present 2-D numerical simulations of two-phase flow in seafloor hydrothermal systems using the NaCl-H2O numerical code Fully Implicit Seafloor Hydrothermal Event Simulator to better understand phase separation and the evolution of the temperature and salinity of vent fluids in seafloor hydrothermal systems. We consider a fixed seafloor pressure of 25MPa, a range of homogeneous and isotropic permeabilities, and various constant bottom temperatures to represent a subaxial magma chamber. The goal is to investigate how permeability and maximum bottom temperature affect vent fluid temperature and salinity. The simulations show that hydrothermal heat output increases nearly linearly with permeability, or Rayleigh number, but maximum bottom temperature has a greater effect on vent fluid temperature and salinity than the permeability. Although plume structures are relatively stable, the high Rayleigh numbers considered here result in temporal and spatial variations in temperature and salinity of vent fluids. The frequency of the fluctuations in the temperature and salinity of vent fluids increases with Rayleigh number. Vapor- and brine-derived fluids can vent simultaneously in close proximity and at different times and locations throughout a simulation. The simulations also show that vent fluids are complex mixtures between phase separated fluids formed near the base of the system and seawater. Consequently, neither the spatial and temporal variability, nor the temperature and salinity of vent fluids can be used to uniquely determine P-T conditions or indicate temporal changes in such conditions at depth. C1 [Han, Liang; Lowell, Robert P.] Virginia Polytech & State Univ, Dept Geosci, Blacksburg, VA 24061 USA. [Lewis, Kayla C.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Lowell, RP (reprint author), Virginia Polytech & State Univ, Dept Geosci, 4044 Derring Hall, Blacksburg, VA 24061 USA. EM rlowell@vt.edu FU NSF [OCE-0819084, OCE-0926418, OCE-0818783] FX We thank the Associate Editor, Shaul Hurwitz, and an anonymous reviewer for their helpful comments on earlier versions of this manuscript. We thank Robert Bodnar for valuable suggestions and discussion. This research was supported under NSF grants OCE-0819084 and OCE-0926418 to R.P.L and OCE-0818783 to K.C.L. NR 64 TC 8 Z9 8 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD JUN PY 2013 VL 118 IS 6 BP 2635 EP 2647 DI 10.1002/jgrb.50158 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 295LW UT WOS:000330118600001 ER PT J AU Gardner, WP Susong, DD Solomon, DK Heasler, HP AF Gardner, W. Payton Susong, David D. Solomon, D. Kip Heasler, Henry P. TI Using environmental tracers and numerical simulation to investigate regional hydrothermal basins-Norris Geyser Basin area, Yellowstone National Park, USA SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE Hydrothermal; Tracers; Coupled Physics; Heat Flow; Regional Hydrology ID GROUNDWATER-FLOW SYSTEMS; MOUNTAINOUS TERRAIN; INTRUSION; DYNAMICS; CALDERA; UPLIFT AB Heat and fluid flow fields are simulated for several conceptual permeability fields and compared to processes inferred from environmental tracers in springs around Norris Geyser Basin, Yellowstone National Park. Large hydrothermal basins require specific permeability distributions in the upper crust. High permeability connections must exist between the land surface and high-temperature environments at depths of up to 5 km. The highest modeled temperatures are produced with a vertical conduit permeability of 10(-15)m(2). Permeability at depths of 3-5 km must be within one order of magnitude of the near-surface permeability and must be10(-16)m(2). Environmental tracers from springs are used to develop a plausible numerical model of the local to regional groundwater flow field for the Norris Geyser Basin area. The model simulations provide insight into the dynamics of heat and fluid flow in a large regional hydrothermal system. C1 [Gardner, W. Payton] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Susong, David D.] USGS Utah Water Sci Ctr, West Valley City, UT USA. [Solomon, D. Kip] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA. [Heasler, Henry P.] Natl Pk Serv, Mammoth, WY USA. RP Gardner, WP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wpgardn@sandia.gov RI Solomon, Douglas/C-7951-2016 OI Solomon, Douglas/0000-0001-6370-7124 FU National Park Service; University of Utah FX The seismic interpretation benefited greatly from the help of Bob Smith's group at the University of Utah including Jamie Farrell and Christine Puskas. Reviews from David Chapman, B.J. McPherson, Steve Ingebritsen and an anonymous reviewer greatly improved the manuscript. This work was supported in part by the National Park Service and the University of Utah. NR 38 TC 0 Z9 0 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD JUN PY 2013 VL 118 IS 6 BP 2777 EP 2787 DI 10.1002/jgrb.50210 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 295LW UT WOS:000330118600009 ER PT J AU Lu, J Wen, MX Huang, YR He, XQ Wang, YS Wu, Q Li, ZC Castellanos-Martin, A Abad, M Cruz-Hernandez, JJ Rodriguez, CA Perez-Losada, J Mao, JH Wei, GW AF Lu, Jing Wen, Mingxin Huang, Yurong He, Xiuquan Wang, Yunshan Wu, Qi Li, Zengchun Castellanos-Martin, Andres Abad, Mar Cruz-Hernandez, Juan J. Rodriguez, Cesar A. Perez-Losada, Jesus Mao, Jian-Hua Wei, Guangwei TI C2ORF40 suppresses breast cancer cell proliferation and invasion through modulating expression of M phase cell cycle genes SO EPIGENETICS LA English DT Article DE C2ORF40; DNA methylation; breast cancer; proliferation; metastasis; mitosis ID ANAPHASE-PROMOTING COMPLEX; ESOPHAGEAL CANCER; ECRG4; CARCINOMA; HYPERMETHYLATION; OVEREXPRESSION; IDENTIFICATION; GROWTH; LINES AB Recently, it has been suggested that C2ORF40 is a candidate tumor suppressor gene in breast cancer. However, the mechanism for reduced expression of C2ORF40 and its functional role in breast cancers remain unclear. Here we show that C2ORF40 is frequently silenced in human primary breast cancers and cell lines through promoter hypermethylation. C2ORF40 mRNA level is significantly associated with patient disease-free survival and distant cancer metastasis. Overexpression of C2ORF40 inhibits breast cancer cell proliferation, migration and invasion. By contrast, silencing C2ORF40 expression promotes these biological phenotypes. Bioinformatics and FACS analysis reveal C2ORF40 functions at G2/M phase by downregulation of mitotic genes expression, including UBE2C. Our results suggest that C2ORF40 acts as a tumor suppressor gene in breast cancer pathogenesis and progression and is a candidate prognostic marker for this disease. C1 [Lu, Jing; Wen, Mingxin; He, Xiuquan; Wang, Yunshan; Wu, Qi; Wei, Guangwei] Shandong Univ, Sch Med, Minist Educ, Dept Anat, Jinan 250100, Shandong, Peoples R China. [Lu, Jing; Wen, Mingxin; He, Xiuquan; Wang, Yunshan; Wu, Qi; Wei, Guangwei] Shandong Univ, Sch Med, Minist Educ, Key Lab Expt Teratol, Jinan 250100, Shandong, Peoples R China. [Huang, Yurong; Mao, Jian-Hua; Wei, Guangwei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. [Li, Zengchun] Tongji Univ, East Hosp, Shanghai 200092, Peoples R China. [Castellanos-Martin, Andres; Perez-Losada, Jesus] Univ Salamanca, Inst Mixto, IBMCC, CSIC, E-37008 Salamanca, Spain. [Abad, Mar] Hosp Univ Salamanca, Dept Pathol, Salamanca, Spain. [Cruz-Hernandez, Juan J.; Rodriguez, Cesar A.] Hosp Univ Salamanca, Dept Med Oncol, Salamanca, Spain. RP Mao, JH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. EM JHMao@lbl.gov; gwwei@yahoo.com RI Castellanos, Andres/F-3302-2016 FU National Natural Science Foundation of China [81172528, 31271461]; Ministry of Education of China [20110131110035]; Shandong Provincial Natural Science Foundation, China [ZR2011HM034]; National Institutes of Health, National Cancer Institute [R01 CA116481]; Low Dose Scientific Focus Area, Office of Biological and Environmental Research, US Department of Energy [DE-AC02-05CH11231]; Laboratory Directed Research and Development Program (LDRD) FX This work was supported by National Natural Science Foundation of China (grant numbers 81172528, 31271461 to G. W.); Doctoral Fund of Ministry of Education of China (grant number 20110131110035 to G. W.); Shandong Provincial Natural Science Foundation, China (grant number ZR2011HM034 to G. W.); by the National Institutes of Health, National Cancer Institute grant (grant number R01 CA116481 to J.H.M.); the Low Dose Scientific Focus Area, Office of Biological and Environmental Research, US Department of Energy (grant number DE-AC02-05CH11231 to J.H.M.); and Laboratory Directed Research and Development Program (LDRD) (to J.H.M.). NR 28 TC 17 Z9 20 U1 0 U2 2 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1559-2294 EI 1559-2308 J9 EPIGENETICS-US JI Epigenetics PD JUN 1 PY 2013 VL 8 IS 6 BP 571 EP 583 DI 10.4161/epi.24626 PG 13 WC Biochemistry & Molecular Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Genetics & Heredity GA 260VR UT WOS:000327623100002 PM 23770814 ER PT J AU Gibbons, JW AF Gibbons, J. Whitfield TI A Long-Term Perspective of Delayed Emergence (aka Overwintering) in Hatchling Turtles: Some They Do and Some They Don't, and Some You Just Can't Tell SO JOURNAL OF HERPETOLOGY LA English DT Article ID PAINTED TURTLES; CHRYSEMYS-PICTA; EMYDOIDEA-BLANDINGII; COLD-HARDINESS; LIFE-HISTORY; MUD TURTLE; DEIROCHELYS-RETICULARIA; KINOSTERNON-FLAVESCENS; GRAPTEMYS-GEOGRAPHICA; MALACLEMYS-TERRAPIN AB I re-examine the phenomenon of delayed timing of emergence from the nest by hatchling turtles (known as overwintering in temperate climates) within the context of the original summary of the topic in an article by Gibbons and Nelson in 1978. I base the overview on cumulative data from research at the Savannah River Ecology Laboratory since 1968 and reports from other locations during the past 34 yr. Investigators have reported known or suspected delayed emergence of hatchling turtles for 43 species, 22 genera, and 8 families from 11 countries and 36 U.S. states and Canadian provinces. The following perspective suggests questions to address and provides recommendations for how herpetologists should proceed in further investigating the phenomenon of hatchling emergence in turtles. The topic is one on Which answers must be forthcoming to address turtle conservation on a global scale. For freshwater turtles, which include the majority of the world's turtles, natural selection has favored hatchlings that enter the aquatic habitat at the most propitious season for survival and subsequent growth. Nesting in most species spans several weeks; therefore, at the end of incubation hatchlings must use proximal environmental cues to adjust their timing of departure from the nest and entry into the aquatic habitat. Because of its widespread prevalence, delayed hatchling emergence in a turtle species should be considered the default behavior until evidence to the contrary is provided. Specifically, many turtles emerge several months after hatching, and in temperate climates emergence delayed by up to a year (overwintering) is likely the norm even though conventional wisdom predicts late summer or fall emergence. C1 Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Gibbons, JW (reprint author), Savannah River Ecol Lab, Aiken, SC 29802 USA. EM wgibbons@srel.edu FU U.S. Department of Energy [DE-FC09-07SR22506]; National Science Foundation [DEB-79-04758] FX I appreciate the recognition by E. Muths and G. Perry that I was suitably advanced in age to provide a "multi-decade perspective on a herpetological issue" and for their latitude and leniency in how it was written and how long it would take to do so. I thank J. Greene and many others in the SREL herpetology program who contributed to the more than 40 yr of turtle data across 2 centuries. I appreciate the information provided on the phenomenon of delayed emergence by hatchling turtles through personal communication by several colleagues including M. Aresco, K. Buhlmann, J. Christiansen, J. Congdon, S. Doody, C. Hagen, J. Iverson, D. Jackson, J. Lovich, J. Mitchell, B. Turner, and R. Vogt. I thank J. Congdon for discussion of the topic and for providing constructive comments on an early version of the manuscript, as did E. Muths and J. Greene. I am also greatly appreciative of the constructive comments and recommendations by G. Smith and two reviewers who were anonymous during the review process but who deserve acknowledgment. Any remaining errors are, of course, my own. M. Benabib prepared the Spanish abstract for the paper. M. Wead provided invaluable assistance in preparation of the literature cited aspects of the manuscript. Support for research and manuscript preparation was provided by the U.S. Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation and Savannah River Ecology Laboratory and from National Science Foundation grant #DEB-79-04758. NR 128 TC 9 Z9 10 U1 4 U2 22 PU SOC STUDY AMPHIBIANS REPTILES PI ST LOUIS PA C/O ROBERT D ALDRIDGE, ST LOUIS UNIV, DEPT BIOLOGY, 3507 LACLEDE, ST LOUIS, MO 63103 USA SN 0022-1511 EI 1937-2418 J9 J HERPETOL JI J. Herpetol. PD JUN PY 2013 VL 47 IS 2 BP 203 EP 214 DI 10.1670/12-122 PG 12 WC Zoology SC Zoology GA 264TI UT WOS:000327903500001 ER PT J AU Nunziata, SO Lannoo, MJ Robb, JR Karns, DR Lance, SL Richter, SC AF Nunziata, Schyler O. Lannoo, Michael J. Robb, Joseph R. Karns, Daryl R. Lance, Stacey L. Richter, Stephen C. TI Population and Conservation Genetics of Crawfish Frogs, Lithobates areolatus, at Their Northeastern Range Limit SO JOURNAL OF HERPETOLOGY LA English DT Article ID GOPHER FROG; METAPOPULATION DYNAMICS; HABITAT FRAGMENTATION; REPRODUCTIVE SUCCESS; BREEDING AMPHIBIANS; MICROSATELLITE DATA; F-STATISTICS; RARE FROG; DISPERSAL; DISTANCE AB Crawfish Frogs (Lithobates areolatus) are a North American ranid, considered near threatened globally with populations in decline throughout their range. We studied populations of Crawfish Frogs on local and regional scales at their northeastern range limit to (1) assess the level of genetic diversity within populations, (2) estimate fine-scale genetic structure, and (3) estimate genetic differentiation between populations at the regional level. We used 10 microsatellite loci to genotype frogs collected from three regional sites in Indiana separated by 50-172 km and at one of these sites within a network of three breeding ponds <1 km apart. Heterozygosity estimates revealed high levels of diversity within these populations (mean H-O: 0.54-0.67 per site), which is encouraging for future management. The degree of population subdivision was low at the regional level (F-ST = 0.071 for sites within 172 km). Genetic differentiation was related to geographic distance between sampling sites, as predicted by an isolation-by-distance model. We observed no genetic differentiation between individuals sampled from ponds approximately 250 m apart and slight divergence of individuals from a pond approximately 750 m away. This suggests ponds within 1 km form a genetically distinct single breeding unit composed of multiple subpopulations. Finally, we observed high genetic differentiation between southwest and southeast Indiana sites indicating historical (rather than recent) isolation of these sites. These data will be applied to a regional management plan in an attempt to recover Crawfish Frogs along the northeastern extreme of their range. C1 [Nunziata, Schyler O.; Richter, Stephen C.] Eastern Kentucky Univ, Dept Biol Sci, Richmond, KY 40475 USA. [Nunziata, Schyler O.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Lannoo, Michael J.] Indiana Univ Sch Med, Terre Haute, IN 47809 USA. [Robb, Joseph R.] Big Oaks Natl Wildlife Refuge, Madison, IN 47250 USA. [Karns, Daryl R.] Hanover Coll, Dept Biol, Hanover, IN 47243 USA. RP Nunziata, SO (reprint author), Eastern Kentucky Univ, Dept Biol Sci, Richmond, KY 40475 USA. EM schyler.nunziata@uky.edu RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU U.S. Fish and Wildlife Service State Wildlife Grant [E2-08-WDS13]; Department of Energy [DE-FC09-07SR22506] FX We thank J. Heemeyer, V. Kinney, N. Engbrecht, S. Lannoo, T. Wheat, A. Hoffman, P. Williams, A. Robinson, A. Leffel, G. Stillings, and P. Lannoo. We also thank Eastern Kentucky University's Department of Biological Sciences. This project was partially funded by U.S. Fish and Wildlife Service State Wildlife Grant, contract E2-08-WDS13, and manuscript preparation was partially supported by the Department of Energy under award DE-FC09-07SR22506 to the University of Georgia Research Foundation. Special thanks to K. Smith and R. Ronk, Indiana Department of Natural Resources, for enabling this project. Research was conducted under IACUC 3-24-2008 issued by Indiana State University and Indiana Scientific Purposes License Permit 09-0084 issued by the Indiana Department of Natural Resources. NR 67 TC 1 Z9 1 U1 1 U2 16 PU SOC STUDY AMPHIBIANS REPTILES PI ST LOUIS PA C/O ROBERT D ALDRIDGE, ST LOUIS UNIV, DEPT BIOLOGY, 3507 LACLEDE, ST LOUIS, MO 63103 USA SN 0022-1511 EI 1937-2418 J9 J HERPETOL JI J. Herpetol. PD JUN PY 2013 VL 47 IS 2 BP 361 EP 368 DI 10.1670/12-034 PG 8 WC Zoology SC Zoology GA 264TI UT WOS:000327903500024 ER PT J AU Crease, RP AF Crease, Robert P. TI The new idols SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JUN PY 2013 VL 26 IS 6 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 264JO UT WOS:000327873200017 ER PT J AU Bajas, H Ambrosio, G Anerella, M Bajko, M Bossert, R Caspi, S Chiuchiolo, A Chlachidze, G Dietderich, D Dunkel, O Felice, H Ferracin, P Feuvrier, J Fiscarelli, L Ghosh, A Giloux, C Godeke, A Hafalia, AR Marchevsky, M Russenschuck, S Sabbi, GL Salmi, T Schmalzle, J Todesco, E Wanderer, P Wang, X Yu, M AF Bajas, H. Ambrosio, G. Anerella, M. Bajko, M. Bossert, R. Caspi, S. Chiuchiolo, A. Chlachidze, G. Dietderich, D. Dunkel, O. Felice, H. Ferracin, P. Feuvrier, J. Fiscarelli, L. Ghosh, A. Giloux, C. Godeke, A. Hafalia, A. R. Marchevsky, M. Russenschuck, S. Sabbi, G. L. Salmi, T. Schmalzle, J. Todesco, E. Wanderer, P. Wang, X. Yu, M. TI Cold Test Results of the LARP HQ Nb3Sn Quadrupole Magnet at 1.9 K SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE High gradient quadrupole (HQ); LHC Accelerator Research Program (LARP); magnet protection; Nb3Sn quadrupole AB The high gradient quadrupole magnet is a 120-mmaperture, 1-m-long Nb3Sn quadrupole developed by the LHC Accelerator Research Program collaboration in support of the High-Luminosity LHC project. Several tests were performed at Lawrence Berkeley National Laboratory in 2010-2011 achieving a maximum gradient of 170 T/m at 4.4 K. As a next step in the program, the latest model (HQ01e) was sent to CERN for testing at 1.9 K. As part of this test campaign, the magnet training has been done up to a maximum current of 16.2 kA corresponding to 85% of the short sample limit. The ramp rate dependence of the quench current is also identified. The efficiency of the quench heaters is then studied at 4.2 K and at 1.9 K. The analyses of the magnet resistance evolution during fast current discharge showed evidence of quench whereas high energy quenches have been successfully achieved and sustained with no dump resistor. C1 [Bajas, H.; Bajko, M.; Chiuchiolo, A.; Dunkel, O.; Feuvrier, J.; Fiscarelli, L.; Giloux, C.; Russenschuck, S.; Todesco, E.] CERN, Geneva, Switzerland. [Caspi, S.; Dietderich, D.; Felice, H.; Ferracin, P.; Godeke, A.; Hafalia, A. R.; Marchevsky, M.; Sabbi, G. L.; Salmi, T.; Wang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ambrosio, G.; Bossert, R.; Chlachidze, G.; Yu, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Anerella, M.; Ghosh, A.; Schmalzle, J.; Wanderer, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bajas, H (reprint author), CERN, Geneva, Switzerland. EM hugues.bajas@cern.ch FU European Commission under the FP7 project Hi-Lumi LHC [GA 284404]; DoE, USA; KEK, Japan FX This work was supported by the European Commission under the FP7 project Hi-Lumi LHC, GA 284404, co-funded by the DoE, USA and KEK, Japan. NR 12 TC 15 Z9 15 U1 2 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 EI 1558-2515 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR UNSP 4002606 DI 10.1109/TASC.2013.2245281 PN 2 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 254AX UT WOS:000327133600003 ER PT J AU Felice, H Borgnolutti, F Caspi, S Cheng, DW Dietderich, DR Ferracin, P Godeke, A Hafalia, AR Joseph, JM Lizarazo, J Marchevsky, M Prestemon, S Sabbi, G Wang, XR AF Felice, H. Borgnolutti, F. Caspi, S. Cheng, D. W. Dietderich, D. R. Ferracin, P. Godeke, A. Hafalia, A. R. Joseph, J. M. Lizarazo, J. Marchevsky, M. Prestemon, S. Sabbi, G. Wang, X. R. TI Challenges in the Support Structure Design and Assembly of HD3, a Nb3Sn Block-Type Dipole Magnet SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Dipole magnet; Nb3Sn; support structure AB As part of the development of very high field dipole magnets for particle accelerators, the Superconducting Magnet Program at Lawrence Berkeley National Laboratory is developing block-type dipole magnets. One of the main challenges of this geometry is to provide support to the coil in the aperture while maintaining an adequate clear bore. Through finite element method analysis, strain-gauge measurements, and test results, this paper reviews the design of HD3, a 1-m-long, 43-mm-bore Nb3Sn dipole magnet, presents the findings in terms of strain gauges monitoring, and summarizes their implications. C1 [Felice, H.; Borgnolutti, F.; Caspi, S.; Cheng, D. W.; Dietderich, D. R.; Godeke, A.; Hafalia, A. R.; Joseph, J. M.; Lizarazo, J.; Marchevsky, M.; Prestemon, S.; Sabbi, G.; Wang, X. R.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ferracin, P.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. RP Felice, H (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM hfelice@lbl.gov FU Office of Science, High Energy Physics, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, High Energy Physics, U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 6 TC 3 Z9 3 U1 3 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 EI 1558-2515 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4001705 DI 10.1109/TASC.2013.2243794 PN 2 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 254AX UT WOS:000327133600002 ER PT J AU Andrews, MJ AF Andrews, Malcolm J. TI The Use of Dual-Number-Automatic-Differentiation With Sensitivity Analysis to Investigate Physical Models SO JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article ID TURBULENCE; CHANNEL AB Local sensitivities are explored using dual-number-automatic-differentiation (DNAD) across three mathematical models of physical systems that have increasing complexity. The models are: (1) a model for the approach of a sphere to free fall; (2) the Taylor-analogy-breakup (TAB) model for liquid droplet atomization; and, (3) an evaluation of the BHR model of turbulence for the development of one-dimensional Rayleigh-Taylor driven material mixing. Sensitivity and functional shape parameters are developed that permit a relative study to be quickly performed for each model. Furthermore, compensating errors, measurement parameter sensitivity, and feature sensitivities are investigated. The test problems consider transient (initial condition effects), steady state (final functional forms), and measures of functional shape. Reduced model forms are explored and selected according to sensitivity. Aside from the local sensitivity studies of the models and associated results, DNAD is shown to be one of several useful, quickly implemented tools to investigate a variety of sensitivity effects in models and together with the present results may serve as a means to simplify a model or focus future model developments and associated experiments. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Andrews, MJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mandrews@lanl.gov NR 23 TC 0 Z9 0 U1 1 U2 1 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0098-2202 EI 1528-901X J9 J FLUID ENG-T ASME JI J. Fluids Eng.-Trans. ASME PD JUN PY 2013 VL 135 IS 6 AR 061206 DI 10.1115/1.4023788 PG 10 WC Engineering, Mechanical SC Engineering GA 240NJ UT WOS:000326103300007 ER PT J AU Zhao, HY Ehmann, KF AF Zhao, Huyue Ehmann, Kornel F. TI Stability Analysis of Chatter in Tandem Rolling Mills-Part 2: The Regenerative Effect SO JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article ID 3RD-OCTAVE-MODE CHATTER; STAND MILL AB Using the multi-stand chatter models derived in Part 1, a stability analysis, based on the integral criterion of stability for delay differential equations, will be carried out for the regenerative mechanism to better understand the effects of rolling parameters on regenerative instability. It will be shown that the interactions between consecutive stands through the time delay effect of the strip thickness variations consistently boost the tendency of each stand to chatter and, therefore, reduce the stability of the rolling process. Simulations will demonstrate stable and unstable behaviors of multi-stand rolling mills and aid in verifying stability charts created through stability analysis based on analytical models. They will be instrumental in identifying the critical vibration propagation paths of the regenerative mechanism in multi-stand mills through strip thickness and instant inter-stand tension variations. The critical vibration propagation paths of the regenerative mechanism will explain the modulation frequency observed in tandem mills that, as it will be shown, is inversely proportional to the shortest time delay during strip transport from the upstream stands to the downstream stands. C1 [Zhao, Huyue] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Ehmann, Kornel F.] Northwestern Univ, Dept Mech Engn, Evanston, IL 60201 USA. RP Zhao, HY (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hzhao@anl.gov; k-ehmann@northwestern.edu RI Ehmann, Kornel/B-7593-2009 FU National Science Foundation [DMI_0099567] FX The authors gratefully acknowledge the support of the National Science Foundation under Grant No. DMI_0099567. NR 13 TC 4 Z9 4 U1 0 U2 2 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1087-1357 EI 1528-8935 J9 J MANUF SCI E-T ASME JI J. Manuf. Sci. Eng.-Trans. ASME PD JUN PY 2013 VL 135 IS 3 AR 031002 DI 10.1115/1.4024033 PG 11 WC Engineering, Manufacturing; Engineering, Mechanical SC Engineering GA 241QJ UT WOS:000326181900002 ER PT J AU Zhao, HY Ehmann, KF AF Zhao, Huyue Ehmann, Kornel F. TI Stability Analysis of Chatter in Tandem Rolling Mills-Part 1: Single- and Multi-Stand Negative Damping Effect SO JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE third-octave-mode chatter; rolling dynamics; rolling stability; rolling chatter; negative damping effect; regenerative chatter ID 3RD-OCTAVE-MODE CHATTER AB Many different modes of chatter in rolling and their possible causes have been identified after years of research, yet no clear and definite theory of their mechanics has been fully established and accepted. In this two-part paper, stability of tandem mills is investigated. In Part 1, state-space models of single-and multi-stand chatter are formulated in a rigorous and comprehensive mathematical form. Then, the stability of the rolling system is investigated in the sense of the single-and multi-stand negative damping effects. First, a single-stand chatter model in state-space representation is proposed by coupling a dynamic rolling process model with a structural model for the mill stand. Subsequently, a multi-stand chatter model is developed by incorporating the inter-stand tension variations and the time delay effect of the strip transportation based on the single-stand chatter model. Stability criteria are proposed and stability analyses are performed to create corresponding stability charts in terms of the single-and multi-stand negative damping mechanism through numerical simulations. Particularly, the effect of friction conditions on chatter is examined and an explanation is given for the existence of an optimum friction condition. In Part 2, the regenerative effect and resulting instabilities are examined. Suitable stability criteria for each mechanism are established and stability charts are demonstrated in terms of relevant rolling process parameters. C1 [Zhao, Huyue] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Ehmann, Kornel F.] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. RP Zhao, HY (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hzhao@anl.gov; k-ehmann@northwestern.edu RI Ehmann, Kornel/B-7593-2009 FU National Science Foundation [DMI_0099567] FX The authors gratefully acknowledge the support of the National Science Foundation under Grant No. DMI_0099567. NR 13 TC 6 Z9 6 U1 1 U2 5 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1087-1357 EI 1528-8935 J9 J MANUF SCI E-T ASME JI J. Manuf. Sci. Eng.-Trans. ASME PD JUN PY 2013 VL 135 IS 3 AR 031001 DI 10.1115/1.4024032 PG 8 WC Engineering, Manufacturing; Engineering, Mechanical SC Engineering GA 241QJ UT WOS:000326181900001 ER PT J AU Hopkins, JB Lange, KJ Spadaccini, CM AF Hopkins, Jonathan B. Lange, Kyle J. Spadaccini, Christopher M. TI Designing Microstructural Architectures With Thermally Actuated Properties Using Freedom, Actuation, and Constraint Topologies SO JOURNAL OF MECHANICAL DESIGN LA English DT Article DE microstructure design; microstructural architectures; zero or negative-thermal expansion; thermal actuators; freedom actuation and constraint topologies; FACT ID FLEXURE SYSTEM CONCEPTS; DEGREE-OF-FREEDOM; COMPLIANT MECHANISMS; SCREW SYSTEMS; EXPANSION; OPTIMIZATION; FACT AB In this paper, we demonstrate how the principles of the freedom, actuation, and constraint topologies (FACT) approach may be applied to the synthesis, analysis, and optimization of microstructural architectures that possess extreme or unusual thermal expansion properties (e.g., zero or large negative-thermal expansion coefficients). FACT provides designers with a comprehensive library of geometric shapes, which may be used to visualize the regions wherein various microstructural elements can be placed for achieving desired bulk material properties. In this way, designers can rapidly consider and compare a multiplicity of microstructural concepts that satisfy the desired design requirements before selecting the final concept. A complementary analytical tool is also provided to help designers rapidly calculate and optimize the desired thermal properties of the microstructural concepts that are generated using FACT. As a case study, this tool is used to calculate the negative-thermal expansion coefficient of a microstructural architecture synthesized using FACT. The result of this calculation is verified using a finite element analysis (FEA) package called ALE3D. C1 [Hopkins, Jonathan B.; Lange, Kyle J.; Spadaccini, Christopher M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Hopkins, JB (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM hopkins30@llnl.gov; lange9@llnl.gov; spadaccini2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344. LLNL-JRNL-545772]; DARPA FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. LLNL-JRNL-545772. Support from DARPA's Materials with Controlled Microtructural Architecture program in the Defense Sciences Office, Program Manager Judah Goldwasser, is gratefully acknowledged. NR 41 TC 12 Z9 13 U1 1 U2 13 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1050-0472 J9 J MECH DESIGN JI J. Mech. Des. PD JUN PY 2013 VL 135 IS 6 AR 061004 DI 10.1115/1.4024122 PG 10 WC Engineering, Mechanical SC Engineering GA 241MQ UT WOS:000326171700006 ER PT J AU Sydney, A Nutaro, J Scoglio, C Gruenbacher, D Schulz, N AF Sydney, Ali Nutaro, James Scoglio, Caterina Gruenbacher, Don Schulz, Noel TI Simulative Comparison of Multiprotocol Label Switching and OpenFlow Network Technologies for Transmission Operations SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Load management; multiprotocol label switching; network operating system (NOX); networking; openFlow; power system communication AB Utility companies are integrating multiprotocol label switching (MPLS) technologies into existing backbone networks, including networks between substations and control centers. MPLS has mechanisms for efficient overlay technologies as well as mechanisms to enhance security: features essential to the functioning of the smart grid. However, with MPLS routing and other switching technologies innovation is restricted to the features enclosed "in the box." More specifically, there is no practical way for utility operators or researchers to test new ideas such as alternatives to IP or MPLS on a realistic scale to obtain the experience and confidence necessary for real world deployments. As a result, novel ideas go untested. Conversely, the OpenFlow framework has enabled significant advancements in network research. OpenFlow provides utility operators and researchers the programmability and flexibility necessary to enable innovation in next-generation communication architectures for the smart grid. This level of flexibility allows OpenFlow to provide all features of MPLS and also allows OpenFlow devices to co-exist with existing MPLS devices. The simulation results in this paper demonstrate that OpenFlow performs as well as MPLS, and may therefore be considered an alternative to MPLS for smart grid applications. C1 [Sydney, Ali; Scoglio, Caterina; Gruenbacher, Don; Schulz, Noel] Kansas State Univ, Manhattan, KS 66506 USA. [Nutaro, James] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Sydney, A (reprint author), Kansas State Univ, Manhattan, KS 66506 USA. EM asydney@k-state.edu; nutarojj@ornl.gov; caterina@k-state.edu; grue@k-state.edu; noels@k-state.edu OI Nutaro, James/0000-0001-7360-2836 FU Department of Energy (DOE); Electrical Power Affiliates Program (EPAP) [2465, GEEC001666] FX This research was supported by Department of Energy (DOE) and the Electrical Power Affiliates Program (EPAP) under award numbers 2465 and GEEC001666 respectively. The authors would like to thank Daniel Bayouth and Jonathan Leffert of Burns & McDonnell for contributing to this work. NR 22 TC 7 Z9 7 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD JUN PY 2013 VL 4 IS 2 BP 763 EP 770 DI 10.1109/TSG.2012.2227516 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA 232IU UT WOS:000325487800013 ER PT J AU Lu, N Zhang, Y AF Lu, Ning Zhang, Yu TI Design Considerations of a Centralized Load Controller Using Thermostatically Controlled Appliances for Continuous Regulation Reserves SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Air conditioning; ancillary service; demand response; direct load control; HVAC; load balancing; load following; regulation service; renewable integration; smart grid; thermostatically controlled appliances ID OPERATIONAL COST; SYSTEM; MANAGEMENT; DEMAND AB This paper presents design considerations for a centralized load controller to control thermostatically controlled appliances (TCAs) for continuous regulation reserves (CRRs). The controller logics for setting up the baseline load, generating priority lists, issuing dispatch commands, and tuning the simplified forecaster model using measurement data are described. To study the impacts of different control parameter settings on control performance and device lifetimes, a system consisting of 1000 heating, ventilating, and air-conditioning (HVAC) units in their heating modes is modeled to provide a +/- 1-MW CRR 24 hours a day. Four cases are modeled to evaluate the impact of forecasting errors, minimum HVAC turn-off times, response delays, and consumer overrides. The results demonstrate that a centralized TCA load controller can provide robust, good quality CRRs with reduced communication needs for the two-way communication network and inexpensive load control devices. Most importantly, because the controller precisely controls the aggregated HVAC load shapes while maintaining load diversity, the controllable and measurable load services that it provides can be used for many other demand response applications, such as peak shaving, load shifting, and arbitrage. C1 [Lu, Ning; Zhang, Yu] Pacific NW Natl Lab, Energy Sci & Technol Div, Richland, WA 99352 USA. RP Lu, N (reprint author), Pacific NW Natl Lab, Energy Sci & Technol Div, Richland, WA 99352 USA. EM nlu2@ncsu.edu; yu.zhang@pnnl.gov FU U.S. Department of Energy [DE-AC05-76RL01830] FX Manuscript received December 26, 2011; revised May 01, 2012; accepted September 29, 2012. Date of publication January 04, 2013; date of current version May 18, 2013. This work was conducted by Pacific Northwest National Laboratory, which is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. Paper no. TSG-00703-2011. NR 21 TC 49 Z9 52 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD JUN PY 2013 VL 4 IS 2 BP 914 EP 921 DI 10.1109/TSG.2012.2222944 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA 232IU UT WOS:000325487800029 ER PT J AU Sullivan, M Bode, J Kellow, B Woehleke, S Eto, J AF Sullivan, Michael Bode, Josh Kellow, Bashar Woehleke, Sarah Eto, Joseph TI Using Residential AC Load Control in Grid Operations: PG&E's Ancillary Service Pilot SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Air conditioner; ancillary services; direct load control; load management; ramp speed; reserves; start time AB This paper summarizes the results from a PG&E pilot designed to assess the ability to use air conditioner direct load control to provide ancillary services. The study included nearly 2000 residential households with control devices that were instructed to cause an immediate and complete shutdown of the air conditioner compressor 71 times over a two and half month period. It summarizes the start and total ramp time of AC load response, the magnitude of the response, the effect of the curtailments on customer comfort and satisfaction, and the approach to providing near real time visibility of the air conditioner electricity demand [1]. C1 [Sullivan, Michael; Bode, Josh; Woehleke, Sarah] FSC Grp, San Francisco, CA 94104 USA. [Kellow, Bashar] Pacific Gas & Elect Co, San Francisco, CA 94104 USA. [Eto, Joseph] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Sullivan, M (reprint author), FSC Grp, San Francisco, CA 94104 USA. EM michaelsullivan@fscgroup.com FU California Energy Commission Public Interest Energy Research (PIER) Program [500-05-001] FX This work was supported by the California Energy Commission Public Interest Energy Research (PIER) Program under Contract 500-05-001. Paper no. TSG-00353-2012. NR 10 TC 12 Z9 12 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD JUN PY 2013 VL 4 IS 2 BP 1162 EP 1170 DI 10.1109/TSG.2012.2233503 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 232IU UT WOS:000325487800054 ER PT J AU Li, FY Collins, WD Wehner, MF Leung, LR AF Li, Fuyu Collins, William D. Wehner, Michael F. Leung, L. Ruby TI Hurricanes in an aquaplanet world: Implications of the impacts of external forcing and model horizontal resolution SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE hurricane; horizontal resolution; aquaplanet; climate model; tropical storm ID REGIONAL CLIMATE MODEL; CYCLONE-LIKE VORTICES; GENERAL-CIRCULATION MODEL; TROPICAL STORM FREQUENCY; COMMUNITY-ATMOSPHERIC-MODEL; INTERANNUAL VARIABILITY; PRECIPITATION EXTREMES; GCM INTEGRATIONS; GLOBAL-MODEL; SIMULATION AB High-resolution climate models have been shown to improve the statistics of tropical storms (TCs) and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the TC simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea-level pressure, and mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariance. C1 [Li, Fuyu; Collins, William D.; Wehner, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Collins, William D.] Univ Calif Berkeley, Earth & Planetary Sci Dept, Berkeley, CA 94720 USA. [Leung, L. Ruby] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Li, FY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 50A4037, Berkeley, CA 94720 USA. EM fuyuli123@gmail.com RI Collins, William/J-3147-2014 OI Collins, William/0000-0002-4463-9848 FU Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank David Williamson and Jerry Olson (National Center for Atmospheric Research) for their help with the configurations of the aquaplanet framework and their useful comments in the analysis. This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 as part of their Global Climate Modeling Program (RGCM) and used resources of the National Energy Research Scientific Computing Center (NERSC), also supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 48 TC 4 Z9 4 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD JUN PY 2013 VL 5 IS 2 BP 134 EP 145 DI 10.1002/jame.20020 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 229OR UT WOS:000325277300003 ER PT J AU Blossey, PN Bretherton, CS Zhang, MH Cheng, AN Endo, S Heus, T Liu, YG Lock, AP de Roode, SR Xu, KM AF Blossey, Peter N. Bretherton, Christopher S. Zhang, Minghua Cheng, Anning Endo, Satoshi Heus, Thijs Liu, Yangang Lock, Adrian P. de Roode, Stephan R. Xu, Kuan-Man TI Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE cloud feedbacks ID LARGE-EDDY SIMULATION; BOUNDARY-LAYER CLOUDS; STRATIFORM CLOUDS; STRATOCUMULUS; MODEL; PARAMETERIZATION; FEEDBACKS; UNCERTAINTIES; ENTRAINMENT; FORMULATION AB Subtropical marine low cloud sensitivity to an idealized climate change is compared in six large-eddy simulation (LES) models as part of CGILS. July cloud cover is simulated at three locations over the subtropical northeast Pacific Ocean, which are typified by cold sea surface temperatures (SSTs) under well-mixed stratocumulus, cool SSTs under decoupled stratocumulus, and shallow cumulus clouds overlying warmer SSTs. The idealized climate change includes a uniform 2 K SST increase with corresponding moist-adiabatic warming aloft and subsidence changes, but no change in free-tropospheric relative humidity, surface wind speed, or CO2. For each case, realistic advective forcings and boundary conditions are generated for the control and perturbed states which each LES runs for 10 days into a quasi-steady state. For the control climate, the LESs correctly produce the expected cloud type at all three locations. With the perturbed forcings, all models simulate boundary-layer deepening due to reduced subsidence in the warmer climate, with less deepening at the warm-SST location due to regulation by precipitation. The models do not show a consistent response of liquid water path and albedo in the perturbed climate, though the majority predict cloud thickening (negative cloud feedback) at the cold-SST location and slight cloud thinning (positive cloud feedback) at the cool-SST and warm-SST locations. In perturbed climate simulations at the cold-SST location without the subsidence decrease, cloud albedo consistently decreases across the models. Thus, boundary-layer cloud feedback on climate change involves compensating thermodynamic and dynamic effects of warming and may interact with patterns of subsidence change. C1 [Blossey, Peter N.; Bretherton, Christopher S.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Zhang, Minghua] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Cheng, Anning] Sci Syst & Applicat Inc, Hampton, VA USA. [Endo, Satoshi; Liu, Yangang] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. [Heus, Thijs] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. [Lock, Adrian P.] Met Off, Fdn Sci, Exeter, Devon, England. [de Roode, Stephan R.] Delft Univ Technol, Dept Multiscale Phys, Delft, Netherlands. [Xu, Kuan-Man] NASA Langley Res Ctr, Sci Directorate, Hampton, VA USA. RP Blossey, PN (reprint author), Univ Washington, Box 351640, Seattle, WA 98195 USA. EM pblossey@uw.edu RI Liu, Yangang/H-6154-2011; Xu, Kuan-Man/B-7557-2013; Heus, Thijs/E-7336-2012 OI Xu, Kuan-Man/0000-0001-7851-2629; Heus, Thijs/0000-0003-2650-2423 FU Center for Multiscale Modeling and Prediction (CMMAP); NSF; European Union Cloud Intercomparison, Process Study & Evaluation Project (EUCLIPSE); European Union; Deutscher Wetter Dienst (DWD) through the Hans-Ertel Centre for Weather Research; National Computing Facilities Foundation (NCF); U.S. Department of Energy (DOE) Earth System Modeling (ESM) program through the FASTER project; NASA Modeling and Analysis Program (MAP); U.S. National Science Foundation FX Blossey and Bretherton acknowledge support from the Center for Multiscale Modeling and Prediction (CMMAP), supported by NSF. The authors also thank Marat Khairoutdinov of Stony Brook University for his sustained leadership in maintaining SAM, Matthew Wyant for providing Figure 5, and Andy Ackerman for proposing the approach for computing effective radius. De Roode is supported through the European Union Cloud Intercomparison, Process Study & Evaluation Project (EUCLIPSE), funded under Framework Program 7 of the European Union. Heus was funded by the Deutscher Wetter Dienst (DWD) through the Hans-Ertel Centre for Weather Research. The simulations with the Dutch LES model were sponsored by the National Computing Facilities Foundation (NCF). Endo, Liu, and Zhang were supported by the U.S. Department of Energy (DOE) Earth System Modeling (ESM) program through the FASTER project (www.bnl.gov/esm). Zhang was also supported by the NASA Modeling and Analysis Program (MAP) and the U.S. National Science Foundation. The authors would also like to thank two anonymous referees for their comments. NR 53 TC 43 Z9 43 U1 2 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD JUN PY 2013 VL 5 IS 2 BP 234 EP 258 DI 10.1002/jame.20025 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 229OR UT WOS:000325277300015 ER PT J AU Galametz, A Grazian, A Fontana, A Ferguson, HC Ashby, MLN Barro, G Castellano, M Dahlen, T Donley, JL Faber, SM Grogin, N Guo, Y Huang, KH Kocevski, DD Koekemoer, AM Lee, KS McGrath, EJ Peth, M Willner, SP Almaini, O Cooper, M Cooray, A Conselice, CJ Dickinson, M Dunlop, JS Fazio, GG Foucaud, S Gardner, JP Giavalisco, M Hathi, NP Hartley, WG Koo, DC Lai, K de Mello, DF McLure, RJ Lucas, RA Paris, D Pentericci, L Santini, P Simpson, C Sommariva, V Targett, T Weiner, BJ Wuyts, S AF Galametz, Audrey Grazian, Andrea Fontana, Adriano Ferguson, Henry C. Ashby, M. L. N. Barro, Guillermo Castellano, Marco Dahlen, Tomas Donley, Jennifer L. Faber, Sandy M. Grogin, Norman Guo, Yicheng Huang, Kuang-Han Kocevski, Dale D. Koekemoer, Anton M. Lee, Kyoung-Soo McGrath, Elizabeth J. Peth, Michael Willner, S. P. Almaini, Omar Cooper, Michael Cooray, Asantha Conselice, Christopher J. Dickinson, Mark Dunlop, James S. Fazio, G. G. Foucaud, Sebastien Gardner, Jonathan P. Giavalisco, Mauro Hathi, N. P. Hartley, Will G. Koo, David C. Lai, Kamson de Mello, Duilia F. McLure, Ross J. Lucas, Ray A. Paris, Diego Pentericci, Laura Santini, Paola Simpson, Chris Sommariva, Veronica Targett, Thomas Weiner, Benjamin J. Wuyts, Stijn CA CANDELS Team TI CANDELS MULTIWAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS UKIDSS ULTRA-DEEP SURVEY FIELD SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: photometry; methods: data analysis; techniques: image processing ID EXTRAGALACTIC LEGACY SURVEY; GALAXY LUMINOSITY FUNCTION; SPITZER-SPACE-TELESCOPE; ACTIVE GALACTIC NUCLEI; EARLY DATA RELEASE; IMAGE SUBTRACTION; EVOLUTION SURVEY; SURVEY SXDS; SELECTION; CLUSTER AB We present the multiwavelength-ultraviolet to mid-infrared-catalog of the UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra-Deep Survey field observed as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). Based on publicly available data, the catalog includes the CANDELS data from the Hubble Space Telescope (near-infrared WFC3 F125W and F160W data and visible ACS F606W and F814W data); u-band data from CFHT/Megacam; B, V, R-c, i', and z' band data from Subaru/Suprime-Cam; Y and K-s band data from VLT/HAWK-I; J, H, and K band data from UKIDSS (Data Release 8); and Spitzer/IRAC data (3.6, 4.5 mu m from SEDS; 5.8 and 8.0 mu m from SpUDS). The present catalog is F160W-selected and contains 35, 932 sources over an area of 201.7 arcmin(2) and includes radio-and X-ray-detected sources and spectroscopic redshifts available for 210 sources. C1 [Galametz, Audrey; Grazian, Andrea; Fontana, Adriano; Castellano, Marco; Paris, Diego; Pentericci, Laura; Santini, Paola; Sommariva, Veronica] INAF Osservatorio Roma, I-00040 Monte Porzio Catone, Italy. [Ferguson, Henry C.; Dahlen, Tomas; Grogin, Norman; Huang, Kuang-Han; Koekemoer, Anton M.; Lai, Kamson; Lucas, Ray A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Barro, Guillermo; Faber, Sandy M.; Guo, Yicheng; Koo, David C.] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Donley, Jennifer L.] Los Alamos Natl Lab, Los Alamos, NM USA. [Guo, Yicheng; Giavalisco, Mauro] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Huang, Kuang-Han; Peth, Michael] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Kocevski, Dale D.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Lee, Kyoung-Soo] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [McGrath, Elizabeth J.] Colby Coll, Dept Phys & Astron, Waterville, ME 04901 USA. [Almaini, Omar; Conselice, Christopher J.; Hartley, Will G.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Cooper, Michael; Cooray, Asantha] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Dickinson, Mark] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Dunlop, James S.; McLure, Ross J.; Targett, Thomas] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh, Midlothian, Scotland. [Foucaud, Sebastien] Natl Taiwan Normal Univ, Taipei, Taiwan. [Gardner, Jonathan P.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Hathi, N. P.] Observ Carnegie Inst Sci, Pasadena, CA USA. [de Mello, Duilia F.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Simpson, Chris] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead, Merseyside, England. [Weiner, Benjamin J.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Wuyts, Stijn] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. RP Galametz, A (reprint author), INAF Osservatorio Roma, I-00040 Monte Porzio Catone, Italy. EM audrey.galametz@oa-roma.inaf.it RI Hathi, Nimish/J-7092-2014; OI Hathi, Nimish/0000-0001-6145-5090; Castellano, Marco/0000-0001-9875-8263; Weiner, Benjamin/0000-0001-6065-7483; Santini, Paola/0000-0002-9334-8705; Koekemoer, Anton/0000-0002-6610-2048; fontana, adriano/0000-0003-3820-2823 NR 54 TC 73 Z9 73 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2013 VL 206 IS 2 AR UNSP 10 DI 10.1088/0067-0049/206/2/10 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 234OX UT WOS:000325654800001 ER PT J AU Terziev, E Law, NM Arcavi, I Baranec, C Bloom, JS Bui, K Burse, MP Chorida, P Das, HK Dekany, RG Kraus, AL Kulkarni, SR Nugent, P Ofek, EO Punnadi, S Ramaprakash, AN Riddle, R Sullivan, M Tendulkar, SP AF Terziev, Emil Law, Nicholas M. Arcavi, Iair Baranec, Christoph Bloom, Joshua S. Bui, Khanh Burse, Mahesh P. Chorida, Pravin Das, H. K. Dekany, Richard G. Kraus, Adam L. Kulkarni, S. R. Nugent, Peter Ofek, Eran O. Punnadi, Sujit Ramaprakash, A. N. Riddle, Reed Sullivan, Mark Tendulkar, Shriharsh P. TI MILLIONS OF MULTIPLES: DETECTING AND CHARACTERIZING CLOSE-SEPARATION BINARY SYSTEMS IN SYNOPTIC SKY SURVEYS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE binaries: close; methods: data analysis; stars: statistics; surveys; techniques: image processing ID ADAPTIVE OPTICS SYSTEM; APERTURE MASKING; STAR-FORMATION; TELESCOPE; DWARF; MASS; PHOTOMETRY; LUCKY; 2MASS AB The direct detection of binary systems in wide- field surveys is limited by the size of the stars' point-spread functions (PSFs). A search for elongated objects can find closer companions, but is limited by the precision to which the PSF shape can be calibrated for individual stars. Based on a technique from weak-lensing analysis, we have developed the BinaryFinder algorithm to search for close binaries by using precision measurements of PSF ellipticity across wide-field survey images. We show that the algorithm is capable of reliably detecting binary systems down to similar to 1/ 5 of the seeing limit, and can directly measure the systems' position angles, separations, and contrast ratios. To verify the algorithm's performance we evaluated 100,000 objects in Palomar Transient Factory (PTF) wide-field-survey data for signs of binarity, and then used the Robo-AO robotic laser adaptive optics system to verify the parameters of 44 high-confidence targets. We show that BinaryFinder correctly predicts the presence of close companions with a < 11% false-positive rate, measures the detected binaries' position angles within 1. to 4. (depending on signal-to-noise ratio and separation), and separations within 25%, and weakly constrains their contrast ratios. When applied to the full PTF data set, we estimate that BinaryFinder will discover and characterize similar to 450,000 physically associated binary systems with separations < 2 arcsec and magnitudes brighter than mR = 18. New wide-field synoptic surveys with high sensitivity and sub-arcsecond angular resolution, such as LSST, will allow BinaryFinder to reliably detect millions of very faint binary systems with separations as small as 0.1 arcsec. C1 [Terziev, Emil; Law, Nicholas M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Arcavi, Iair] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Baranec, Christoph; Bui, Khanh; Dekany, Richard G.; Kulkarni, S. R.; Riddle, Reed; Tendulkar, Shriharsh P.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Bloom, Joshua S.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Burse, Mahesh P.; Chorida, Pravin; Das, H. K.; Punnadi, Sujit; Ramaprakash, A. N.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Kraus, Adam L.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Nugent, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Ofek, Eran O.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Sullivan, Mark] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. RP Terziev, E (reprint author), Univ Toronto, Dunlap Inst Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. EM emil.terziev@utoronto.ca OI Sullivan, Mark/0000-0001-9053-4820 FU California Institute of Technology and the Inter-University Centre for Astronomy and Astrophysics; National Science Foundation [AST-0906060, AST-0960343]; Mt. Cuba Astronomical Foundation; NASA [51257.01]; STScI; AURA, Inc. [NAS 5-26555] FX We thank Yanqin Wu for very useful discussions, and the Palomar Observatory staff for their superb support of RoboAO and PTF operations. E.T. participated in the Summer Undergraduate Research Program (SURP) at the Dunlap Institute for Astronomy & Astrophysics, University of Toronto. N.M.L. is a Dunlap Fellow at the Dunlap Institute for Astronomy & Astrophysics, University of Toronto. The Dunlap Institute is funded through an endowment established by the David Dunlap family and the University of Toronto. The Robo-AO system is supported by collaborating partner institutions, the California Institute of Technology and the Inter-University Centre for Astronomy and Astrophysics, and by the National Science Foundation under Grant Nos. AST-0906060 and AST-0960343, by a grant from the Mt. Cuba Astronomical Foundation, and by a gift from Samuel Oschin. Observations were obtained with the Samuel Oschin Telescope at the Palomar Observatory as part of the Palomar Transient Factory project, a scientific collaboration between the California Institute of Technology, Columbia University, Las Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. A.L.K. was supported by NASA through Hubble Fellowship grant 51257.01 awarded by STScI, which is operated by AURA, Inc., for ANSA, under contract NAS 5-26555. NR 36 TC 10 Z9 10 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2013 VL 206 IS 2 DI 10.1088/0067-0049/206/2/18 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 234OX UT WOS:000325654800009 ER PT J AU Cholis, I Hooper, D AF Cholis, Ilias Hooper, Dan TI On the origin of IceCube's PeV neutrinos SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE neutrino astronomy; ultra high energy cosmic rays; gamma ray bursts theory; active galactic nuclei ID GAMMA-RAY BURSTS; HIGH-ENERGY NEUTRINOS; 1ST 2 YEARS; COSMIC-RAYS; LUMINOSITY FUNCTION; FERMI; CATALOG; CONSTRAINTS; POPULATION; REDSHIFT AB The IceCube collaboration has recently reported the observation of two events with energies in excess of 1 PeV. While an atmospheric origin of these events cannot be ruled out at this time, this pair of showers may potentially represent the first observation of high-energy astrophysical neutrinos. In this paper, we argue that if these events are neutrino-induced, then the neutrinos are very likely to have been produced via photo-meson interactions taking place in the same class of astrophysical objects that are responsible for the acceleration of the similar to 10(17) eV cosmic ray spectrum. Among the proposed sources of such cosmic rays, gamma-ray bursts stand out as particularly capable of generating PeV neutrinos at the level implied by IceCube's two events. In contrast, the radiation fields in typical active galactic nuclei models are likely dominated by lower energy (UV) photons, and thus feature higher energy thresholds for pion production, leading to neutrino spectra which peak at EeV rather than PeV energies (models with significant densities of x-ray emission, however, could evade this problem). Cosmogenic neutrinos generated from the propagation of ultra-high energy cosmic rays similarly peak at energies that are much higher than those of the events reported by IceCube. C1 [Cholis, Ilias; Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Cholis, I (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM cholis@fnal.gov; dhooper@fnal.gov OI Cholis, Ilias/0000-0002-3805-6478 FU US Department of Energy FX We would like to thank Francis Halzen for helpful discussions. This work has been supported by the US Department of Energy. NR 61 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD JUN PY 2013 IS 6 DI 10.1088/1475-7516/2013/06/030 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 175AB UT WOS:000321200100030 ER PT J AU Song, CC Wang, LL Tian, HQ Liu, DY Lu, CQ Xu, XF Zhang, LH Yang, GS Wan, ZM AF Song, Changchun Wang, Lili Tian, Hanqin Liu, Deyan Lu, Chaoqun Xu, Xiaofeng Zhang, Lihua Yang, Guisheng Wan, Zhongmei TI Effect of continued nitrogen enrichment on greenhouse gas emissions from a wetland ecosystem in the Sanjiang Plain, Northeast China: A 5 year nitrogen addition experiment SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article DE nitrogen addition; ecosystem respiration; CH4 flux; N2O flux; marshland ID FRESH-WATER MARSHES; METHANE OXIDATION; ATMOSPHERIC NITROGEN; TEMPERATE FORESTS; SOIL RESPIRATION; CARBON EXCHANGE; CLIMATE-CHANGE; CH4 EMISSIONS; N DEPOSITION; CO2 AB Mounting evidence supports that wetland ecosystems, one of the largest carbon pools on the earth, are exposed to ample nitrogen (N) additions due to atmospheric deposition or N loading from upstream agricultural fertilizer application. However, our understanding of how N enrichment affects the fluxes of greenhouse gases (GHGs) in wetlands is weak. A 5year N addition experiment was conducted to examine the responses of CH4 and N2O fluxes as well as ecosystem respiration from wetlands in the Sanjiang Plain, Northeast China, through 2005 to 2009. Four levels of N addition (control, 0kgN ha(-1)yr(-1); low-level, 60kgN ha(-1)yr(-1); medium-level, 120kgN ha(-1)yr(-1); high-level, 240kgN ha(-1)yr(-1)) were designed in this study. Overall, our results show that medium and high levels of N addition increased ecosystem respiration by 28% and 69% (P<0.05), respectively, while low-level N addition has no effect on ecosystem respiration (P>0.05). High-level N fertilization exerted stronger effects on ecosystem respiration in the initial year than the following years. It indicated that the effects of high-level N fertilization on CO2 might be overestimated by short-term observations. High-level N fertilization increased N2O emissions by 396% over the 5years (P<0.05), but the low- and medium-level-N addition did not exert any apparent effect on N2O emissions (P>0.05). N2O emission under high-level N addition in the first and fifth years showed stronger pronounced responses to N addition compared with that from the third and fourth years, indicating the importance of long-term field observation. Over the 5years, however, the low and medium-level N addition showed no effect on N2O emissions. The four levels of N addition exerted no effect on CH4 emissions (P>0.05). Furthermore, the relationship between GHGs and soil temperature or water table depth varied among different plots and experimental time. Our findings highlighted the importance of gas species, experimental time, and the amount of fertilizer N with regard to the responses of GHG emissions to N fertilization. C1 [Song, Changchun; Wang, Lili; Yang, Guisheng] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun 130102, Peoples R China. [Tian, Hanqin; Lu, Chaoqun] Auburn Univ, Int Ctr Climate & Global Change Res, Auburn, AL 36849 USA. [Liu, Deyan] Chinese Acad Sci, Inst Soil Sci, Nanjing, Jiangsu, Peoples R China. [Xu, Xiaofeng] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Xu, Xiaofeng] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Zhang, Lihua] Chinese Acad Sci, Inst Bot, Beijing, Peoples R China. [Wan, Zhongmei] Jilin Univ, Coll Earth Sci, Changchun 130023, Peoples R China. RP Song, CC (reprint author), Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun 130102, Peoples R China. EM songcc@neigae.ac.cn; wanglili@neigae.ac.cn RI Tian, Hanqin/A-6484-2012; Xu, Xiaofeng/B-2391-2008 OI Tian, Hanqin/0000-0002-1806-4091; Xu, Xiaofeng/0000-0002-6553-6514 FU Chinese Academy of Sciences [XDA05050508, XDA05020502, KZCX2-YW-JC301]; National Natural Science Foundation of China [40930527, 41101090, 41125001, 41171169]; National Key Basic Research Support Foundation of China [2009CB421103] FX We thank the editors and two anonymous referees for their valuable suggestions to improve this manuscript a lot. We thank Li-Hua Zhang, De-Yan Liu, and Ruijuan Ge for the maintenance of the field experimental plots. This work has been supported by Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issue of the Chinese Academy of Sciences, Grant No. XDA05050508 and XDA05020502, the National Natural Science Foundation of China (40930527, 41101090, 41125001, and 41171169), the National Key Basic Research Support Foundation of China (2009CB421103), and the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-JC301). NR 69 TC 5 Z9 7 U1 9 U2 74 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD JUN PY 2013 VL 118 IS 2 BP 741 EP 751 DI 10.1002/jgrg.20063 PG 11 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 224TU UT WOS:000324913100027 ER PT J AU Nowicki, S Bindschadler, RA Abe-Ouchi, A Aschwanden, A Bueler, E Choi, H Fastook, J Granzow, G Greve, R Gutowski, G Herzfeld, U Jackson, C Johnson, J Khroulev, C Larour, E Levermann, A Lipscomb, WH Martin, MA Morlighem, M Parizek, BR Pollard, D Price, SF Ren, DD Rignot, E Saito, F Sato, T Seddik, H Seroussi, H Takahashi, K Walker, R Wang, WL AF Nowicki, Sophie Bindschadler, Robert A. Abe-Ouchi, Ayako Aschwanden, Andy Bueler, Ed Choi, Hyeungu Fastook, Jim Granzow, Glen Greve, Ralf Gutowski, Gail Herzfeld, Ute Jackson, Charles Johnson, Jesse Khroulev, Constantine Larour, Eric Levermann, Anders Lipscomb, William H. Martin, Maria A. Morlighem, Mathieu Parizek, Byron R. Pollard, David Price, Stephen F. Ren, Diandong Rignot, Eric Saito, Fuyuki Sato, Tatsuru Seddik, Hakime Seroussi, Helene Takahashi, Kunio Walker, Ryan Wang, Wei Li TI Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article DE Antarctica; ice-sheet; sea-level; model; ensemble ID GROUNDING-LINE MIGRATION; INTERCOMPARISON PROJECT; OCEAN CIRCULATION; CLIMATE-CHANGE; SEA-LEVEL; PISM-PIK; PART 1; GREENLAND; SHELF; FLOW AB Atmospheric, oceanic, and subglacial forcing scenarios from the Sea-level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three-dimensional thermomechanical ice-sheet models to assess Antarctic ice sheet sensitivity over a 500year timescale and to inform future modeling and field studies. Results indicate (i) growth with warming, except within low-latitude basins (where inland thickening is outpaced by marginal thinning); (ii) mass loss with enhanced sliding (with basins dominated by high driving stresses affected more than basins with low-surface-slope streaming ice); and (iii) mass loss with enhanced ice shelf melting (with changes in West Antarctica dominating the signal due to its marine setting and extensive ice shelves; cf. minimal impact in the Terre Adelie, George V, Oates, and Victoria Land region of East Antarctica). Ice loss due to dynamic changes associated with enhanced sliding and/or sub-shelf melting exceeds the gain due to increased precipitation. Furthermore, differences in results between and within basins as well as the controlling impact of sub-shelf melting on ice dynamics highlight the need for improved understanding of basal conditions, grounding-zone processes, ocean-ice interactions, and the numerical representation of all three. C1 [Nowicki, Sophie; Bindschadler, Robert A.; Walker, Ryan; Wang, Wei Li] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Abe-Ouchi, Ayako] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan. [Aschwanden, Andy; Bueler, Ed; Khroulev, Constantine] Univ Alaska, Inst Geophys, Fairbanks, AR USA. [Choi, Hyeungu] Sigma Space Corp, Lanham, MD USA. [Fastook, Jim] Univ Maine, Comp Sci Quaternary Inst, Orono, ME USA. [Granzow, Glen; Johnson, Jesse] Univ Montana, Coll Arts & Sci, Missoula, MT 59812 USA. [Greve, Ralf; Sato, Tatsuru; Seddik, Hakime] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 060, Japan. [Gutowski, Gail; Jackson, Charles] Univ Texas Austin, Inst Geophys, Austin, TX USA. [Herzfeld, Ute] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. [Herzfeld, Ute] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Larour, Eric; Rignot, Eric; Seroussi, Helene] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Levermann, Anders; Martin, Maria A.] Potsdam Inst Climate Res, Potsdam, Germany. [Lipscomb, William H.; Price, Stephen F.] Los Alamos Natl Lab, Los Alamos, NM USA. [Morlighem, Mathieu; Rignot, Eric] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Parizek, Byron R.] Penn State DuBois, Math & Geosci, Du Bois, PA USA. [Pollard, David] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. [Ren, Diandong] Curtin Univ Technol, Dept Phys, Perth, WA, Australia. [Saito, Fuyuki; Takahashi, Kunio] Japan Agcy Marine Earth Sci & Technol, Res Inst Global Change, Kanazawa Ku, Yokohama, Kanagawa, Japan. [Walker, Ryan] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Nowicki, S (reprint author), NASA, Goddard Space Flight Ctr, Code 615, Greenbelt, MD 20771 USA. EM sophie.nowicki@nasa.gov RI Jackson, Charles/A-2202-2009; Ren, Diandong/C-8870-2013; Levermann, Anders/G-4666-2011; Greve, Ralf/G-2336-2010; Abe-Ouchi, Ayako/M-6359-2013; Price, Stephen /E-1568-2013; Rignot, Eric/A-4560-2014; Seddik, Hakime/F-7640-2014; Morlighem, Mathieu/O-9942-2014 OI Jackson, Charles/0000-0002-2870-4494; Ren, Diandong/0000-0002-5757-7527; Levermann, Anders/0000-0003-4432-4704; Greve, Ralf/0000-0002-1341-4777; Abe-Ouchi, Ayako/0000-0003-1745-5952; Price, Stephen /0000-0001-6878-2553; Rignot, Eric/0000-0002-3366-0481; SAITO, Fuyuki/0000-0001-5935-9614; Seddik, Hakime/0000-0002-0241-590X; Morlighem, Mathieu/0000-0001-5219-1310 FU Japan Society for the Promotion of Science (JSPS) [22244058]; NASA [NNX11AP39G, NNX-09-AV94G, NNX-10-AI04G, 281945.02.53.02.19]; German Federal Ministry of Education and Research (BMBF); U.S. National Science Foundation [0531211, 0758274, 0909335]; Center for Remote Sensing of Ice Sheets (CReSIS) [0424589]; US National Science Foundation [ANT-0424589, 1043018, 25-0550-0001, OCE-1202632]; U.S. Department of Energy (DOE) Office of Science Office of Biological and Environmental Research; DOE's Office of Science [DE-AC02-05CH11231, DE-AC05-00OR22725]; NASA Cryospheric Sciences Program; Jet Propulsion Laboratory Research Technology and Development Program; NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center; NSF [0909335, CReSIS 0424589]; NASA Cryospheric Science program FX A project of this magnitude and scope required extensive support from many persons not listed as authors. Data sets, both published and in pre-publication forms, were contributed by A. LeBrocq, H. Pritchard, B. Csatho (dh/dt), T. Bracegirdle, CReSIS, and NASA's IceBridge mission and posted on the University of Montana CISM web site to be available to all SeaRISE modelers. This web site also served as a discussion forum for SeaRISE during its early stages of model initialization and experiment design. The Los Alamos National Laboratory also offered use of a web site that became the repository of all communication files (telecom notes and meeting presentations of SeaRISE). Participation in SeaRISE remained voluntary and, in most cases, came without financial support. Thus, participants had to leverage off of existing funding activities with objectives that overlapped with SeaRISE goals. [51] R. Greve, H. Seddik, and T. Sato were supported by a Grant-in-Aid for Scientific Research A (22244058) from the Japan Society for the Promotion of Science (JSPS). U. Herzfeld was supported by a NASA Cryospheric Sciences Award (NNX11AP39G). M. A. Martin was supported by the German Federal Ministry of Education and Research (BMBF). B. Parizek was supported by the U.S. National Science Foundation under grants 0531211, 0758274, 0909335, and the Center for Remote Sensing of Ice Sheets (CReSIS) 0424589 and by NASA under grants NNX-09-AV94G and NNX-10-AI04G. D. Pollard was supported by the US National Science Foundation under grants ANT-0424589, 1043018, 25-0550-0001, and OCE-1202632. S. F. Price and W. H. Lipscomb were supported by the U.S. Department of Energy (DOE) Office of Science Office of Biological and Environmental Research. Simulations were conducted at The National Energy Research Scientific Computing Center (supported by DOE's Office of Science under contract DE-AC02-05CH11231) using time awarded through DOE's ASCR Leadership Computing Challenge allocation to the project "Projections of Ice Sheet Evolution Using Advanced Ice and Ocean Models." Model development and simulations were also conducted at the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, supported by DOE's Office of Science under contract DE-AC05-00OR22725. CISM development and simulations relied on additional support by K. J. Evans, P. H. Worley, and J. A. Nichols (all of Oak Ridge National Laboratory) and by A. G. Salinger (Sandia National Laboratories). H. Seroussi and M. Morlighem are supported by the NASA Cryospheric Sciences Program and Modeling Analysis and Prediction Program and a contract with the Jet Propulsion Laboratory Research Technology and Development Program. H. Seroussi was also supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. E. Larour and E. Rignot further enabled their participation on SeaRISE. R. Walker was supported by NSF through grants 0909335 and CReSIS 0424589, by NASA under grants NNX-09-AV94G and NNX-10-AI04G, and by the Gary Comer Science and Education Foundation. W. Wang was supported by the NASA Cryospheric Science program (grant 281945.02.53.02.19). Finally, S. Nowicki and R.; Bindschadler wish to gratefully acknowledge the unwavering encouragement and financial support from the NASA Cryospheric Science program for the core funding enabling SeaRISE to reach a successful conclusion. We thank the reviewers (two anonymous and A. Vieli), the Associate Editor P. Christoffersen, and the Editor B. Hubbard for their very thoughtful comments to the original draft that led to a more constructive final manuscript. NR 119 TC 20 Z9 20 U1 0 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD JUN PY 2013 VL 118 IS 2 BP 1002 EP 1024 DI 10.1002/jgrf.20081 PG 23 WC Geosciences, Multidisciplinary SC Geology GA 225VU UT WOS:000324993900042 ER PT J AU Nowicki, S Bindschadler, RA Abe-Ouchi, A Aschwanden, A Bueler, E Choi, H Fastook, J Granzow, G Greve, R Gutowski, G Herzfeld, U Jackson, C Johnson, J Khroulev, C Larour, E Levermann, A Lipscomb, WH Martin, MA Morlighem, M Parizek, BR Pollard, D Price, SF Ren, DD Rignot, E Saito, F Sato, T Seddik, H Seroussi, H Takahashi, K Walker, R Wang, WL AF Nowicki, Sophie Bindschadler, Robert A. Abe-Ouchi, Ayako Aschwanden, Andy Bueler, Ed Choi, Hyeungu Fastook, Jim Granzow, Glen Greve, Ralf Gutowski, Gail Herzfeld, Ute Jackson, Charles Johnson, Jesse Khroulev, Constantine Larour, Eric Levermann, Anders Lipscomb, William H. Martin, Maria A. Morlighem, Mathieu Parizek, Byron R. Pollard, David Price, Stephen F. Ren, Diandong Rignot, Eric Saito, Fuyuki Sato, Tatsuru Seddik, Hakime Seroussi, Helene Takahashi, Kunio Walker, Ryan Wang, Wei Li TI Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article DE Greenland; ice-sheet; sea-level; model; ensemble ID OUTLET GLACIER; CLIMATE-CHANGE; SURFACE MELT; SEA-LEVEL; ANTARCTICA; ACCELERATION; FLOW; SIMULATIONS; VARIABILITY; BALANCE AB The Sea-level Response to Ice Sheet Evolution (SeaRISE) effort explores the sensitivity of the current generation of ice sheet models to external forcing to gain insight into the potential future contribution to sea level from the Greenland and Antarctic ice sheets. All participating models simulated the ice sheet response to three types of external forcings: a change in oceanic condition, a warmer atmospheric environment, and enhanced basal lubrication. Here an analysis of the spatial response of the Greenland ice sheet is presented, and the impact of model physics and spin-up on the projections is explored. Although the modeled responses are not always homogeneous, consistent spatial trends emerge from the ensemble analysis, indicating distinct vulnerabilities of the Greenland ice sheet. There are clear response patterns associated with each forcing, and a similar mass loss at the full ice sheet scale will result in different mass losses at the regional scale, as well as distinct thickness changes over the ice sheet. All forcings lead to an increased mass loss for the coming centuries, with increased basal lubrication and warmer ocean conditions affecting mainly outlet glaciers, while the impacts of atmospheric forcings affect the whole ice sheet. C1 [Nowicki, Sophie; Bindschadler, Robert A.; Walker, Ryan; Wang, Wei Li] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Abe-Ouchi, Ayako] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan. [Aschwanden, Andy; Bueler, Ed; Khroulev, Constantine] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. [Choi, Hyeungu] Sigma Space Corp, Lanham, MD USA. [Fastook, Jim] Univ Maine, Comp Sci Quaternary Inst, Orono, ME USA. [Granzow, Glen; Johnson, Jesse] Univ Montana, Coll Arts & Sci, Missoula, MT 59812 USA. [Greve, Ralf; Sato, Tatsuru; Seddik, Hakime] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 060, Japan. [Gutowski, Gail; Jackson, Charles] Univ Texas Austin, Inst Geophys, Austin, TX USA. [Herzfeld, Ute] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. [Herzfeld, Ute] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Larour, Eric; Rignot, Eric; Seroussi, Helene] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Levermann, Anders; Martin, Maria A.] Univ Potsdam, Inst Phys, Potsdam, Germany. [Lipscomb, William H.; Price, Stephen F.] Los Alamos Natl Lab, Los Alamos, NM USA. [Morlighem, Mathieu; Rignot, Eric] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Parizek, Byron R.] Penn State DuBois, Dept Math & Geosci, Du Bois, PA USA. [Pollard, David] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. [Ren, Diandong] Curtin Univ Technol, Dept Phys, Perth, WA, Australia. [Saito, Fuyuki; Takahashi, Kunio] Japan Agcy Marine Earth Sci & Technol, Res Inst Global Change, Yokohama, Kanagawa, Japan. [Walker, Ryan] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Nowicki, S (reprint author), NASA, Goddard Space Flight Ctr, Code 615, Greenbelt, MD 20771 USA. EM sophie.nowicki@nasa.gov RI Greve, Ralf/G-2336-2010; Abe-Ouchi, Ayako/M-6359-2013; Price, Stephen /E-1568-2013; Rignot, Eric/A-4560-2014; Seddik, Hakime/F-7640-2014; Morlighem, Mathieu/O-9942-2014; Jackson, Charles/A-2202-2009; Ren, Diandong/C-8870-2013; Levermann, Anders/G-4666-2011; OI Greve, Ralf/0000-0002-1341-4777; Abe-Ouchi, Ayako/0000-0003-1745-5952; Price, Stephen /0000-0001-6878-2553; Rignot, Eric/0000-0002-3366-0481; Seddik, Hakime/0000-0002-0241-590X; Morlighem, Mathieu/0000-0001-5219-1310; Jackson, Charles/0000-0002-2870-4494; Ren, Diandong/0000-0002-5757-7527; Levermann, Anders/0000-0003-4432-4704; SAITO, Fuyuki/0000-0001-5935-9614 FU Japan Society for the Promotion of Science (JSPS) [22244058]; NASA Cryospheric Sciences Award [NNX11AP39G]; German Federal Ministry of Education and Research (BMBF); U.S. National Science Foundation [0531211, 0758274, 0909335, ANT-0424589, 1043018, 25-0550-0001, OCE-1202632]; Center for Remote Sensing of Ice Sheets (CReSIS) [0424589]; NASA [NNX-09-AV94G, NNX-10-AI04G]; U.S. Department of Energy (DOE) Office of Science, Biological and Environmental Research; DOE's Office of Science [DE-AC02-05CH11231, DE-AC05-00OR22725]; DOE's ASCR; NASA Postdoctoral Program at the Jet Propulsion Laboratory; NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center; NSF [0909335, CReSIS 0424589]; Gary Comer Science and Education Foundation; NASA Cryospheric Science program [281945.02.53.02.19]; NASA Cryospheric Science program FX R. Greve, H. Seddik, and T. Sato were supported by a Grant-in-Aid for Scientific Research (22244058) from the Japan Society for the Promotion of Science (JSPS). U. Herzfeld was supported by a NASA Cryospheric Sciences Award (NNX11AP39G). M. A. Martin was supported by the German Federal Ministry of Education and Research (BMBF). B. Parizek was supported by the U.S. National Science Foundation under grants 0531211, 0758274, 0909335 and the Center for Remote Sensing of Ice Sheets (CReSIS) 0424589, and by NASA under grants NNX-09-AV94G and NNX-10-AI04G. D. Pollard was supported by the U.S. National Science Foundation under grants ANT-0424589, 1043018, 25-0550-0001, and OCE-1202632. S. F. Price and W. H. Lipscomb were supported by the U.S. Department of Energy (DOE) Office of Science, Biological and Environmental Research. Simulations were conducted at the National Energy Research Scientific Computing Center (supported by DOE's Office of Science under contract DE-AC02-05CH11231) using time awarded through DOE's ASCR Leadership Computing Challenge allocation to the project "Projections of Ice Sheet Evolution Using Advanced Ice and Ocean Models." Model development and simulations were also conducted at the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, supported by DOE's Office of Science under contract DE-AC05-00OR22725. CISM development and simulations relied on additional support by K.J. Evans, P. H. Worley, and J.A. Nichols (all of Oak Ridge National Laboratory) and A. G. Salinger (Sandia National Laboratories). H Seroussi and M. Morlighem are supported by the NASA Cryospheric Sciences Program and Modeling Analysis and Prediction Program and a contract with the Jet Propulsion Laboratory Research Technology and Development Program. H Seroussi was also supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. E. Larour and E. Rignot further enabled their participation on SeaRISE. R. Walker was supported by NSF through grants 0909335 and CReSIS 0424589, by NASA under grants NNX-09-AV94G and NNX-10-AI04G, and by the Gary Comer Science and Education Foundation. W. Wang was supported by the NASA Cryospheric Science program (grant 281945.02.53.02.19). Finally, S. Nowicki and R. Bindschadler wish to gratefully acknowledge the unwavering encouragement and financial support from the NASA Cryospheric Science program for the core funding enabling SeaRISE to reach a successful conclusion. We thank the reviewers (one anonymous and A. Vieli) and the Associate Editor P. Christoffersen for their very thoughtful comments to the original draft that led to a more constructive final manuscript. NR 84 TC 31 Z9 31 U1 3 U2 37 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD JUN PY 2013 VL 118 IS 2 BP 1025 EP 1044 DI 10.1002/jgrf.20076 PG 20 WC Geosciences, Multidisciplinary SC Geology GA 225VU UT WOS:000324993900043 ER PT J AU Jones, SL Lessard, MR Rychert, K Spanswick, E Donovan, E Jaynes, AN AF Jones, S. L. Lessard, M. R. Rychert, K. Spanswick, E. Donovan, E. Jaynes, A. N. TI Persistent, widespread pulsating aurora: A case study SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE pulsating aurora; substorm onset; recovery phase ID PITCH-ANGLE DIFFUSION; MORNINGSIDE AURORAE; FAST SATELLITE; MORPHOLOGY; OBSERVATORIES; GENERATION; SUBSTORMS; EXPANSION; ELECTRONS; REGION AB Observations of a pulsating aurora event occurring on 11 February 2008, using the Time History of Events and Macroscale Interactions during Substorms (THEMIS) All-Sky Imager (ASI) array, indicate a spatially and temporally continuous event with a duration of greater than 15h and covering a region with a maximum size of greater than 10h magnetic local time. The optical pulsations are at times locally interrupted or drowned out by auroral substorm activity but are observed in the same location once the discrete aurora recedes. The pulsations following the auroral breakup appear to be brighter and have a larger patch size than before breakup. This suggests that, while the onset of pulsating aurora is not necessarily dependent upon a substorm precursor, the pulsations are affected and possibly enhanced by the substorm process. The long duration of this pulsating aurora event, lasting approximately 8h without interruption as imaged from Gillam station, is significantly longer than the typical 2-3h substorm recovery phase, suggesting that pulsating aurora is not strictly a recovery phase phenomenon. This paper is accompanied by a movie of the THEMIS ASI array data, from 0000 to 1715UT, plotted in mosaic and superimposed onto a map of North America. C1 [Jones, S. L.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. [Lessard, M. R.; Rychert, K.; Jaynes, A. N.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Spanswick, E.] Los Alamos Natl Lab, Los Alamos, NM USA. [Donovan, E.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. RP Jones, SL (reprint author), NASA, Goddard Space Flight Ctr, Space Weather Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM sarah.l.jones@nasa.gov RI Jones, Sarah/D-5293-2012; OI Jones, Sarah/0000-0002-3816-4954; Donovan, Eric/0000-0002-8557-4155 FU NASA [NNX08AT38H] FX Research at the University of New Hampshire was supported by NASA grant NNX08AT38H. Ground magnetometer data was provided by the Danish Meteorological Institute (Narsarsuaq) and by the Geological Survey of Canada (Iqaluit) through World Data Center for Geomagnetism, Kyoto. AU and AL indices were provided by the World Data Center for Geomagnetism, Kyoto. NR 38 TC 10 Z9 10 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2013 VL 118 IS 6 BP 2998 EP 3006 DI 10.1002/jgra.50301 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 228UQ UT WOS:000325217100025 ER PT J AU Birn, J Hesse, M AF Birn, J. Hesse, M. TI The substorm current wedge in MHD simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE substorm; current wedge; field-aligned currents ID BURSTY BULK FLOWS; FIELD-ALIGNED CURRENTS; PLASMA SHEET; AURORAL STREAMERS; MAGNETIC RECONNECTION; FLUX TUBES; MAGNETOTAIL; TAIL; DIPOLARIZATION; MAGNETOSPHERE AB Using magnetohydrodynamic (MHD) simulations of magnetotail dynamics, we investigate the build-up and evolution of the substorm current wedge (SCW) and its association with plasma flows from the tail. Three different scenarios are considered: the propagation of magnetic flux ropes of artificially reduced entropy (bubbles), and the formation and propagation of bubbles resulting from magnetic reconnection in the near and far tail. The simulations confirm the important role of the entropy reduction in the earthward penetration of bubbles, as well as in the build-up of field-aligned current signatures attributed to the SCW. Low-entropy flow channels can indeed propagate close to the Earth from the distant tail, as suggested recently. However, this requires substantial entropy reduction, presumably from progression of reconnection into the lobes. The major SCW and pressure build-up occurred when the low-entropy flow channels were braked and the flow diverted azimuthally in the near-Earth region. The flows commonly exhibit multiple narrow channels, separated in space and time, whereas the associated increases in B-z (dipolarization) accumulate over a wider spatial range, spreading both azimuthally and radially. This suggests a picture of the SCW as being composed of multiple smaller wedgelets, rather than one big wedge. C1 [Birn, J.] Space Sci Inst, Boulder, CO 80301 USA. [Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Birn, J.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Birn, J (reprint author), Space Sci Inst, Boulder, CO 80301 USA. EM jbirn@spacescience.org RI feggans, john/F-5370-2012; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU US Department of Energy at Los Alamos; NASA; NSF GEM [1203711]; International Space Science Institute, Bern, Switzerland FX This work was performed mostly at Los Alamos under the auspices of the US Department of Energy, supported by NASA's MMS/SMART Theory and Modeling and SR&T Programs and NSF GEM grant 1203711. JB also acknowledges the hospitality and support of the International Space Science Institute, Bern, Switzerland, and fruitful discussions with Mike Henderson, Los Alamos, and the members of the ISSI team, Larry Kepko, Olaf Amm, Mark Lester, Bob McPherron, Rumi Nakamura, Tuija Pulkkinen, and Victor Sergeev. NR 55 TC 30 Z9 30 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2013 VL 118 IS 6 BP 3364 EP 3376 DI 10.1002/jgra.50187 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 228UQ UT WOS:000325217100056 ER PT J AU Valek, PW Goldstein, J McComas, DJ Ilie, R Buzulukova, N Fok, MC Perez, JD AF Valek, P. W. Goldstein, J. McComas, D. J. Ilie, R. Buzulukova, N. Fok, M. -C. Perez, J. D. TI Oxygen-hydrogen differentiated observations from TWINS: The 22 July 2009 storm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE magnetic storms; ENAs; Oxygen; TWINS ID THIN CARBON FOILS; RING CURRENT; GEOMAGNETIC STORM; ION COMPOSITION; SOLAR-ACTIVITY; IMAGE MISSION; ENA EMISSION; MAGNETOSPHERE; ALTITUDES AB The 22 July 2009 magnetic storm is the first significant storm during the emergence of the recent prolonged solar cycle minimum. This moderate storm (minimum Dst approximately -78 nT) has received a good deal of attention in the community. We present here global observations of the H and O populations in the inner magnetosphere using Energetic Neutral Atom (ENA) observations from the TWINS mission. We develop and provide the methodology for separating H and O ENAs, based on mass dependent differences in the pulse height distributions of the microchannel plate (MCP) based detectors. We present the first composition separated H and O ENA images at central energies of 16 and 32keV. We also show that TWINS has sufficient angular resolution to separate the High Altitude Emissions (HAEs) from the Low Altitude Emissions (LAEs). We observe that all ENA emissions in this energy range quickly rise, but the O ENAs have a larger relative increase, and stay at elevated levels much longer, well into the recovery phase. C1 [Valek, P. W.; Goldstein, J.; McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Valek, P. W.; Goldstein, J.; McComas, D. J.] Univ Texas San Antonio, San Antonio, TX USA. [Ilie, R.] Los Alamos Natl Lab, Los Alamos, NM USA. [Buzulukova, N.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Buzulukova, N.; Fok, M. -C.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Buzulukova, N.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Perez, J. D.] Auburn Univ, Auburn, AL 36849 USA. RP Valek, PW (reprint author), SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA. EM PValek@swri.edu RI Fok, Mei-Ching/D-1626-2012; OI Valek, Philip/0000-0002-2318-8750 FU TWINS mission, NASA's Explorer program FX This work was supported by the TWINS mission, which is a part of NASA's Explorer program. We thank the World Data Center for Geomagnetism, Kyoto for suppling Real Time Dst and AE indices. We also thank the ACE and Wind plasma and magnetometer teams for L1 data and the OMNI data set for their propagation of these data. NR 49 TC 7 Z9 7 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2013 VL 118 IS 6 BP 3377 EP 3393 DI 10.1002/jgra.50204 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 228UQ UT WOS:000325217100057 ER PT J AU Camporeale, E Delzanno, GL Zaharia, S Koller, J AF Camporeale, E. Delzanno, G. L. Zaharia, S. Koller, J. TI On the numerical simulation of particle dynamics in the radiation belt: 1. Implicit and semi-implicit schemes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE radiation belt; numerical simulations; diffusion code ID QUASI-LINEAR DIFFUSION; COEFFICIENTS; ELECTRONS; WAVES; MODEL AB The particle dynamics in the Earth's radiation belt is generally modeled by means of a two-dimensional diffusion equation for the particle distribution function in energy and pitch angle. The goal of this paper is to survey and compare different numerical schemes for the solution of the diffusion equation, and to outline the optimal strategy from a numerical point of view. We focus on the general (and more computationally challenging) case where the mixed terms in the diffusion tensor are retained. In Part 1, we compare fully implicit and semi-implicit schemes. For the former, we have analyzed a direct solver based on a LU decomposition routine for sparse matrices, and an iterative incomplete LU preconditioned Generalized Minimal REsidual solver. For the semi-implicit scheme, we have studied an alternating direction implicit scheme. We present a convergence study for a realistic case that shows that the time step and grid size are strongly constrained by the desired accuracy of the solution. We show that the fully implicit scheme is to be preferred in most cases as the more computationally efficient. C1 [Camporeale, E.; Delzanno, G. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zaharia, S.; Koller, J.] Los Alamos Natl Lab, ISR 1, Los Alamos, NM 87545 USA. RP Camporeale, E (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM enrico@lanl.gov RI Koller, Josef/C-5591-2009 OI Koller, Josef/0000-0002-6770-4980 FU DREAM; NNSA of the U.S. DOE by LANL [DE-AC52-06NA25396] FX The authors thank Dmitriy Subbotin, Qiuhua Zheng, and ZhenPeng Su for discussing the technical details of the VERB and STEERB codes. David Moulton and Luis Chacon are acknowledged for useful discussions on linear solvers. This research was conducted as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project at Los Alamos National Laboratory. We are grateful to the sponsors of DREAM for financial and technical support. This research was performed under the auspices of the NNSA of the U.S. DOE by LANL, operated by LANS LLC under contract DE-AC52-06NA25396. NR 44 TC 8 Z9 8 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2013 VL 118 IS 6 BP 3463 EP 3475 DI 10.1002/jgra.50293 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 228UQ UT WOS:000325217100063 ER PT J AU Camporeale, E Delzanno, GL Zaharia, S Koller, J AF Camporeale, E. Delzanno, G. L. Zaharia, S. Koller, J. TI On the numerical simulation of particle dynamics in the radiation belt: 2. Procedure based on the diagonalization of the diffusion tensor SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE radiation belt; diffusion code; numerical simulation ID QUASI-LINEAR DIFFUSION; MODEL AB In this paper, we conclude the survey and comparison of different numerical methods used to solve the diffusion equation for particle dynamics in the Earth's radiation belt, initiated in Camporeale et al. (2013). Here we focus on the diagonalization procedure introduced by Albert and Young (2005) that, by performing a change of coordinates, solves the diffusion equation in a space where the mixed diffusion terms are null. We describe the diagonalization procedure and its numerical implementation, which is not as straightforward as the implementation of a traditional solver in a rectangular domain. We compare the computing times with and without the diagonalization procedure, and we conclude that this procedure is generally not advantageous from the point of view of computational efficiency. C1 [Camporeale, E.; Delzanno, G. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zaharia, S.; Koller, J.] Los Alamos Natl Lab, ISR 1, Los Alamos, NM 87545 USA. RP Camporeale, E (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM enrico@lanl.gov RI Koller, Josef/C-5591-2009 OI Koller, Josef/0000-0002-6770-4980 FU DREAM; NNSA of the U.S. DOE by LANL [DE-AC52-06NA25396] FX This research was conducted as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project at Los Alamos National Laboratory. We are grateful to the sponsors of DREAM for financial and technical support. This research was performed under the auspices of the NNSA of the U.S. DOE by LANL, operated by LANS LLC under contract DE-AC52-06NA25396. NR 15 TC 5 Z9 5 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2013 VL 118 IS 6 BP 3476 EP 3484 DI 10.1002/jgra.50278 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 228UQ UT WOS:000325217100064 ER PT J AU Briggs, MS Xiong, SL Connaughton, V Tierney, D Fitzpatrick, G Foley, S Grove, JE Chekhtman, A Gibby, M Fishman, GJ McBreen, S Chaplin, VL Guiriec, S Layden, E Bhat, PN Hughes, M Greiner, J von Kienlin, A Kippen, RM Meegan, CA Paciesas, WS Preece, RD Wilson-Hodge, C Holzworth, RH Hutchins, ML AF Briggs, Michael S. Xiong, Shaolin Connaughton, Valerie Tierney, Dave Fitzpatrick, Gerard Foley, Suzanne Grove, J. Eric Chekhtman, Alexandre Gibby, Melissa Fishman, Gerald J. McBreen, Shelia Chaplin, Vandiver L. Guiriec, Sylvain Layden, Emily Bhat, P. N. Hughes, Maximilian Greiner, Jochen von Kienlin, Andreas Kippen, R. Marc Meegan, Charles A. Paciesas, William S. Preece, Robert D. Wilson-Hodge, Colleen Holzworth, Robert H. Hutchins, Michael L. TI Terrestrial gamma-ray flashes in the Fermi era: Improved observations and analysis methods SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE TGFs; terrestrial gamma-ray flashes; lightning; gamma-ray; Fermi GBM; WWLLN ID OPTICAL TRANSIENT DETECTOR; LIGHTNING LOCATION; BURST; SPACE; AIR AB A new data mode and new analysis methods are used to detect Terrestrial Gamma-ray Flashes (TGFs) with the Fermi Gamma-ray Burst Monitor (GBM) 10 times more frequently than previously. In 1037h of observations at times and over regions for which TGFs are expected, 384 new TGFs were found in addition to the 39 TGFs and two Terrestrial Electron Beam events already detected without the new data mode and methodology. Cosmic ray showers were found to be an important background; they show characteristic signatures in the data of both GBM and the Fermi Large Area Telescope Calorimeter that enable their removal, leaving a sample estimated to consist of approximate to 98% TGFs. The sample includes shorter TGFs than previously found with GBM. The true duration distribution likely contains additional short TGFs because their detection by GBM is limited by detector dead time. One-third of this sample has matches with locations from the World Wide Lightning Location Network (WWLLN)maps of these locations show the geographic and meteorological features more clearly than maps of spacecraft locations. The intrinsic TGF rate is evaluated using the lightning rate maps of the Lightning Imaging Sensor, accounting for the detection efficiency of GBM as a function of spacecraft-source offset, from which we estimate a global TGF rate of approximate to 400,000 per year. With continuous production of data in the new mode we estimate that GBM will detect approximate to 850 TGFs per year. C1 [Briggs, Michael S.; Xiong, Shaolin; Connaughton, Valerie; Chaplin, Vandiver L.; Guiriec, Sylvain; Layden, Emily; Bhat, P. N.; Preece, Robert D.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Briggs, Michael S.; Connaughton, Valerie] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Tierney, Dave; Fitzpatrick, Gerard; Foley, Suzanne; McBreen, Shelia] Univ Coll Dublin, Sch Phys, Dublin 2, Ireland. [Grove, J. Eric] US Naval Res Lab, Space Sci Div, Washington, DC 20375 USA. [Chekhtman, Alexandre] George Mason Univ, Sch Phys, Fairfax, VA 22030 USA. [Gibby, Melissa] Jacobs Engn Grp Inc, Huntsville, VA USA. [Fishman, Gerald J.; Wilson-Hodge, Colleen] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Greiner, Jochen] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hughes, Maximilian] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Greiner, Jochen; von Kienlin, Andreas] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kippen, R. Marc] Los Alamos Natl Lab, ISR 1, Los Alamos, NM USA. [Meegan, Charles A.; Paciesas, William S.] NASA, George C Marshall Space Flight Ctr, Univ Space Res Assoc, Huntsville, AL 35812 USA. [Holzworth, Robert H.; Hutchins, Michael L.] Univ Washington, Seattle, WA 98195 USA. RP Briggs, MS (reprint author), CSPAR, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM michael.briggs@uah.edu OI Preece, Robert/0000-0003-1626-7335 FU Fermi Guest Investigator Program; Irish Research Council for Science, Engineering and Technology; Marie Curie Actions under FP7; Science Foundation Ireland [09-RFP-AST-2400] FX We thank Richard Blakeslee, Garry Case, Martino Marisaldi, David Smith, Steven Cummer and Michael Splitt for discussions or assistance. The Fermi GBM Collaboration acknowledges support for GBM development, operations, and data analysis from National Aeronautics and Space Administration (NASA) in the United States and from the Bundesministerium fur Wirtschaft und Technologie (BMWi)/Deutsches Zentrum fur Luft und Raumfahrt (DLR) in Germany. This work was supported in part by the Fermi Guest Investigator Program. The authors wish to thank the World Wide Lightning Location Network (http://wwlln.net), a collaboration among over 50 universities and institutions, for providing the lightning location data used in this paper. The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include NASA and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. G. F. acknowledges the support of the Irish Research Council for Science, Engineering and Technology. S. F. acknowledges the support of the Irish Research Council for Science, Engineering and Technology, co-funded by Marie Curie Actions under FP7. D. T. acknowledges support from Science Foundation Ireland under grant number 09-RFP-AST-2400. The authors thank Nikolai Ostgaard and an anonymous reviewer for their comments, which improved the paper. NR 67 TC 36 Z9 36 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN PY 2013 VL 118 IS 6 BP 3805 EP 3830 DI 10.1002/jgra.50205 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 228UQ UT WOS:000325217100097 ER PT J AU Xia, T Hamilton, RF Bonner, JC Crandall, ED Elder, A Fazlollahi, F Girtsman, TA Kim, K Mitra, S Ntim, SA Orr, G Tagmount, M Taylor, AJ Telesca, D Tolic, A Vulpe, CD Walker, AJ Wang, X Witzmann, FA Wu, NQ Xie, YM Zink, JI Nel, A Holian, A AF Xia, Tian Hamilton, Raymond F., Jr. Bonner, James C. Crandall, Edward D. Elder, Alison Fazlollahi, Farnoosh Girtsman, Teri A. Kim, Kwang Mitra, Somenath Ntim, Susana A. Orr, Galya Tagmount, Mani Taylor, Alexia J. Telesca, Donatello Tolic, Ana Vulpe, Christopher D. Walker, Andrea J. Wang, Xiang Witzmann, Frank A. Wu, Nianqiang Xie, Yumei Zink, Jeffery I. Nel, Andre Holian, Andrij TI Interlaboratory Evaluation of in Vitro Cytotoxicity and Inflammatory Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE cell viability; inflammation; in vitro; MWCNT; nanotoxicology; round-robin testing; TiO2; ZnO ID NALP3 INFLAMMASOME; CARBON NANOTUBES; NANOPARTICLES; TOXICITY; DISPERSION; ACTIVATION; PATHWAYS; SILICA AB BACKGROUND: Differences in interlaboratory research protocols contribute to the conflicting data in the literature regarding engineered nanomaterial (ENM) bioactivity. OBJECTIVES: Grantees of a National Institute of Health Sciences (NIEHS)-funded consortium program performed two phases of in vitro testing with selected ENMs in an effort to identify and minimize sources of variability. METHODS: Consortium program participants (CPPs) conducted ENM bioactivity evaluations on zinc oxide (ZnO), three forms of titanium dioxide (TiO2), and three forms of multiwalled carbon nanotubes (MWCNTs). In addition, CPPs performed bioassays using three mammalian cell lines (BEAS-2B, RLE-6TN, and THP-1) selected in order to cover two different species (rat and human), two different lung epithelial cells (alveolar type II and bronchial epithelial cells), and two different cell types (epithelial cells and macrophages). CPPs also measured cytotoxicity in all cell types while measuring inflammasome activation [interleukin-1 beta (IL-1 beta) release] using only THP-1 cells. RESULTS: The overall in vitro toxicity profiles of ENM were as follows: ZnO was cytotoxic to all cell types at >= 50 mu g/mL, but did not induce IL-1 beta. TiO2 was not cytotoxic except for the nanobelt form, which was cytotoxic and induced significant IL-1 beta production in THP-1 cells. MWCNTs did not produce cytotoxicity, but stimulated lower levels of IL-1 beta production in THP-1 cells, with the original MWCNT producing the most IL-1 beta. CONCLUSIONS: The results provide justification for the inclusion of mechanism-linked bioactivity assays along with traditional cytotoxicity assays for in vitro screening. In addition, the results suggest that conducting studies with multiple relevant cell types to avoid false-negative outcomes is critical for accurate evaluation of ENM bioactivity. C1 [Xia, Tian; Telesca, Donatello; Wang, Xiang; Zink, Jeffery I.; Nel, Andre] Univ Calif Los Angeles, Dept Med, Div NanoMed, Ctr Environm Implicat Nanotechnol,Calif Nanosyst, Los Angeles, CA 90024 USA. [Hamilton, Raymond F., Jr.; Girtsman, Teri A.; Holian, Andrij] Univ Montana, Ctr Environm Hlth Sci, Dept Biomed & Pharmaceut Sci, Missoula, MT 59812 USA. [Bonner, James C.; Taylor, Alexia J.] N Carolina State Univ, Dept Environm & Mol Toxicol, Raleigh, NC 27695 USA. [Crandall, Edward D.; Fazlollahi, Farnoosh; Kim, Kwang] Univ So Calif, Dept Med, Los Angeles, CA USA. [Elder, Alison; Walker, Andrea J.] Univ Rochester, Dept Environm Med, Rochester, NY USA. [Mitra, Somenath; Ntim, Susana A.] New Jersey Inst Technol, Dept Chem & Environm Sci, Newark, NJ 07102 USA. [Orr, Galya; Tolic, Ana; Xie, Yumei] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Tagmount, Mani; Vulpe, Christopher D.] Univ Calif Berkeley, Dept Nutr Sci & Toxicol, Berkeley, CA 94720 USA. [Witzmann, Frank A.] Indiana Univ Sch Med, Dept Cellular & Integrat Physiol, Indianapolis, IN 46202 USA. [Wu, Nianqiang] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. RP Holian, A (reprint author), Univ Montana, Ctr Environm Hlth Sci, 280 Skaggs Bldg,32 Campus Dr, Missoula, MT 59812 USA. EM andrij.holian@mso.umt.edu RI Nel, Andre/J-2808-2012; Wang, Xiang/J-2054-2014; Wu, Nianqiang/B-9798-2015; Geracitano, Laura/E-6926-2013; xia, tian/C-3158-2013 OI Wang, Xiang/0000-0002-6647-0684; Wu, Nianqiang/0000-0002-8888-2444; xia, tian/0000-0003-0123-1305 FU American Recovery and Reinvestment Act [ARRA] [RC2 ES018742, RC2 ES018810, RC2 ES018786, RC2 ES018772, RC2 ES018766, RC2 ES018812, RC2 ES018741, RC2 ES018782]; Centers of Biomedical Research Excellence [COBRE] [P20 RR017670] FX This work was supported by the American Recovery and Reinvestment Act [ARRA, grants RC2 ES018742 (A. H.), RC2 ES018810 (F. W.), RC2 ES018786 (G.O.), RC2 ES018772 (J.C.B.), RC2 ES018766 (A.N.), RC2 ES018812 (C. V.), RC2 ES018741 (A. E.), and RC2 ES018782 (E. D. C.)]. Support was also provided by the Centers of Biomedical Research Excellence [COBRE, grant P20 RR017670 (AH)]. NR 27 TC 61 Z9 61 U1 3 U2 73 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD JUN PY 2013 VL 121 IS 6 BP 683 EP 690 DI 10.1289/ehp.1306561 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 208VN UT WOS:000323709400017 PM 23649538 ER PT J AU Chlachidze, G Andreev, N Apollinari, G Auchmann, B Barzi, E Bossert, R Karppinen, M Nobrega, F Novitski, I Rossi, L Smekens, D Tartaglia, M Yamada, R Zlobin, AV AF Chlachidze, G. Andreev, N. Apollinari, G. Auchmann, B. Barzi, E. Bossert, R. Karppinen, M. Nobrega, F. Novitski, I. Rossi, L. Smekens, D. Tartaglia, M. Yamada, R. Zlobin, A. V. TI Quench Protection Study of a Single-Aperture 11 T Nb3Sn Demonstrator Dipole for LHC Upgrades SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Accelerator magnets; LHC; magnet quench protection; quench protection heaters; superconducting magnets AB The planned upgrade of the Large Hadron Collider (LHC) collimation system will include installation of additional collimators in the dispersion suppressor areas. The longitudinal space for the collimators could be provided by replacing 15-m-long 8.33 T NbTi LHC main dipoles with shorter 11 T Nb3Sn dipoles compatible with the LHC lattice and main systems. FNAL and CERN have started a joint program with the goal of building a 5.5-m-long twin-aperture Nb3Sn dipole prototype suitable for installation in the LHC. The first step of this program is the development of a 2-m-long single-aperture demonstrator dipole with a nominal field of 11 T at the LHC nominal current of 11.85 kA. This paper summarizes the results of quench protection studies of 11 T dipoles performed using the single-aperture Nb3Sn demonstrator. C1 [Chlachidze, G.; Andreev, N.; Apollinari, G.; Barzi, E.; Bossert, R.; Nobrega, F.; Novitski, I.; Tartaglia, M.; Yamada, R.; Zlobin, A. V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Auchmann, B.; Karppinen, M.; Rossi, L.; Smekens, D.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. RP Chlachidze, G (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM guram@fnal.gov; andreev@fnal.gov; apollina@fnal.gov; bernhard.auchmann@cern.ch; barzi@fnal.gov; bossert@fnal.gov; Mikko.Karppinen@cern.ch; nobrega@fnal.gov; novitski@fnal.gov; Lucio.Rossi@cern.ch; david.smekens@cern.ch; tartaglia@fnal.gov; yamada@fnal.gov; zlobin@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; US Department of Energy; European Commission under FP7 project HiLumi LHC [GA 284404] FX This work was supported by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the US Department of Energy and European Commission under FP7 project HiLumi LHC, GA 284404. NR 13 TC 4 Z9 4 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4001205 DI 10.1109/TASC.2013.2237871 PN 2 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100019 ER PT J AU Kashikhin, V Bross, A Carcagno, R Orris, D Turrioni, D AF Kashikhin, Vladimir Bross, Alan Carcagno, Ruben Orris, Darryl Turrioni, Daniele TI MuCool Superconducting Solenoid Quench Simulations and Test Stand at FNAL SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Magnetic field; quench; superconducting solenoid; test stand; 3-D simulations AB Fabrication and preparation for test of the MuCool superconducting solenoid are now in progress. The solenoid's passive quench protection system is based on cold diodes and shunt resistors. The solenoid does not have heaters, and quench propagation relies on the superconductor quenching and the subsequent "quench back" effect caused by eddy currents in the coil's Al mandrel. The solenoid has a very large inductance of similar to 600 H and the stored energy is 100% dissipated into the cold mass during a quench. This makes the solenoid protection a challenging task. This paper presents the quench analysis of the solenoid based on a 3-D FEA solution of the coupled transient electromagnetic and thermal properties during the quench. The simulations used the Vector Fields QUENCH code. A new test facility, the solenoid test stand (STS), is being built at Fermilab to test these coils. One of the critical issues regarding the STS is the fringe field produced by the magnet under test, which interacts with the surrounding equipment. In this paper, we present the stray-field analysis and the corresponding magnetic forces. The STS includes a sophisticated DAQ system to carefully monitor quench events and temperatures. C1 [Kashikhin, Vladimir; Bross, Alan; Carcagno, Ruben; Orris, Darryl; Turrioni, Daniele] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Kashikhin, V (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM kash@fnal.gov NR 10 TC 2 Z9 2 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4101704 DI 10.1109/TASC.2013.2239336 PN 2 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100039 ER PT J AU Smith, BA Prestemon, SO Pan, H DeMello, AJ AF Smith, B. A. Prestemon, S. O. Pan, H. DeMello, A. J. TI Design and Analysis of the Quench Protection System for the MICE Coupling Coils SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Cold diodes; Muon Ionization Cooling Experiment (MICE); NbTi; quench protection; superconducting magnets AB Two identical MICE coupling coils have the largest diameter and stored energy, at 13 MJ each, of all coils in the Muon Ionization Cooling Experiment (MICE). The coils have an inner diameter of 1.5 m and radial and axial builds of 102.5 and 285 mm, respectively. The coils contain approximately 15 936 turns and are wound with a single rectangular NbTi strand with a copper-to-superconductor ratio of 3.9:1. Each coil is conduction cooled using three cryocoolers, which maintain an operating temperature at about 4.5 K. Each coil is powered through a pair of series-connected copper and 500 A HTS current leads. The quench protection analyses described here show that subdividing the winding into four or more, cold-diode-protected subsections maintain hot spot temperatures below 150 K and internal winding voltages below 300 V. The superconducting subdivision interconnect loops are protected by heat sinking them to the aluminum winding housing. Stabilizing the coil leads from the winding to HTS current leads minimizes the likelihood of lead quench. The first of three coils will be tested at Fermi Lab and the final two coils will be installed in MICE at Rutherford Laboratory. C1 [Smith, B. A.] MIT, Cambridge, MA 02139 USA. [Prestemon, S. O.; Pan, H.; DeMello, A. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Smith, BA (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM bsmith@psfc.mit.edu; SOPrestemon@lbl.gov; HengPan@lbl.gov; AJDeMello@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX Manuscript received October 3, 2012; accepted November 15, 2012. Date of publication November 19, 2012; date of current version December 15, 2012. This work was supported in part by the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 14 TC 2 Z9 2 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4700304 DI 10.1109/TASC.2012.2228892 PN 2 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 080WW UT WOS:000314275800066 ER PT J AU Guo, JH AF Guo, Jinghua TI The development of in situ photon-in/photon-out soft X-ray spectroscopy on beamline 7.0.1 at the ALS SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Electronic structure; In situ soft X-ray spectroscopy; Gas and liquid ID HYDROGEN-BOND NETWORK; ADVANCED LIGHT-SOURCE; EMISSION-SPECTROSCOPY; LIQUID WATER; SYMMETRY-BREAKING; HIGH-RESOLUTION; FLUORESCENCE SPECTROSCOPY; SYNCHROTRON-RADIATION; SPECTRA; EXCITATION AB This is a mini-review about the development of various cells built over the years for in situ electronic structure study of gas molecules, molecular liquids, gas/solid and liquid/solid interfaces. In the study of gas molecules, the role of the parity selection rule in the case of homonuclear diatomic molecules (N-2 and O-2) is revealed and illustrated by the resonant X-ray emission spectra, while the occurrence of forbidden transitions in CO2 is explained in terms of dynamical symmetry breaking due to vibronic coupling. X-ray emission spectroscopy has been used to elucidate the molecular structure of liquid water, liquid methanol, methanol-water mixtures, as well as cation-water solutions, and to reveal the influence of the intermolecular interaction on the local electronic structure of water molecules. The in situ soft X-ray spectroscopy experimental studies of electrochemical reactions were also performed under ambient conditions. (C) 2012 Elsevier B.V. All rights reserved. C1 [Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Guo, Jinghua] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. RP Guo, JH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM jguo@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The mini-review has included many important contributions in regards to the scientific ideas and engineering designs of in early stage from colleagues of Nordgren's group in the Department of Physics, Uppsala University: Joseph Nordgren, Nial wassadahl Per Skytt, Peter Glans, Conny Sathe, Kerstin Gunnelin, Carlo-Johan Englund (mechanical engineering of gas cell and static cell), Laurent Duda, Jan-Erik Rubensson, Sergei Butorin, and later Berkeley Colleagues, to name a few: Per-Anders Glans, Sheraz Gul, Mark West (mechanical engineering of in situ liquid flow cell and catalytic reaction cell), Miquel Salmeron, Gabor Somorjai, hongjian Liu, Xinyi Deng, Tirma Herranz, Peng Jiang, Ferenc Borondics, Fan Zheng, Carlos Escudero, Elzbieta Pach, Simon Beaumont, Selim Alayoglu, Juan Velasco Velez, Anders Tuxen, Sophie Carenco, Mahati Chintapalli, Benedikt Lassalle, Junko Yano, Vittal Yachandra and many other collaborators, Emad Aziz, Chinglin Chang, Way-Faung Pong, Jau-Wern Chiou, Chungli Dong, Jun Zhong, Chi-Wen Bo, Yi-Sheng Liu, Jeng-Lung Chen, Wei-Cheng Wang, Cheng-Hao Chuang, Bo-Yao Wang, Hui Zhang, Xuefei Feng, some of the ALS staff members, James Floyd, Doug Toube, Donna Hammamoto, David Malone, and also important theoretical support from the collaborators: Yi Luo, Hans Agren etc. The work performed at the ALS is support by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 70 TC 13 Z9 13 U1 1 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD JUN PY 2013 VL 188 SI SI BP 71 EP 78 DI 10.1016/j.elspec.2012.12.007 PG 8 WC Spectroscopy SC Spectroscopy GA 212US UT WOS:000324008900011 ER PT J AU Weinhardt, L Blum, M Fuchs, O Benkert, A Meyer, F Bar, M Denlinger, JD Yang, W Reinert, F Heske, C AF Weinhardt, L. Blum, M. Fuchs, O. Benkert, A. Meyer, F. Baer, M. Denlinger, J. D. Yang, W. Reinert, F. Heske, C. TI RIXS investigations of liquids, solutions, and liquid/solid interfaces SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE RIXS; Liquids; In situ; Nuclear dynamics; X-ray emission spectroscopy ID X-RAY-EMISSION; SOLAR-CELL ABSORBERS; PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; AMINO-ACIDS; ABSORPTION-SPECTROSCOPY; SYNCHROTRON-RADIATION; INDUCED DECOMPOSITION; SURFACE-CHEMISTRY; WATER AB We summarize our development of instrumentation for the study of liquids, aqueous solutions, and liquid/solid interfaces using resonant inelastic soft X-ray scattering (RIXS) and illustrate the value of the experimental approach with a few instructional examples. Using a high-transmission, high-resolution soft X-ray spectrometer, we are able to measure complete RIXS maps, i.e., record the soft X-ray emission intensity as a function of emission and absorption energy. As a first example, we show that a comparison of RIXS maps of "normal" and deuterated liquid and gas-phase water allows us to identify dissociation processes on the time scale of the oxygen 1 s core-hole lifetime. Similar dissociation effects are found for aqueous solutions of ammonia and amino acids. For the latter, the pH value has a strong influence on the nitrogen K emission spectra, which can thus be used to identify protonation and deprotonation processes in the solution. Finally, we review the investigation of the interface between liquid water and a Culn(S,Se)(2) thin-film solar cell absorber, demonstrating the power of the technique to study liquid solid interfaces in real-world systems. Under X-ray irradiation, the formation of sulfate on the absorber surface can be found. (C) 2012 Elsevier B.V. All rights reserved. C1 [Weinhardt, L.; Benkert, A.; Heske, C.] Karlsruhe Inst Technol, Inst Photon Sci & Synchrotron Radiat, D-76344 Eggenstein Leopoldshafen, Germany. [Weinhardt, L.; Fuchs, O.; Benkert, A.; Meyer, F.; Reinert, F.] Univ Wurzburg, D-97072 Wurzburg, Germany. [Weinhardt, L.; Blum, M.; Baer, M.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Baer, M.] Helmholtz Zentrum Berlin Mat & Energie GmbH, Solar Energy Res, D-14109 Berlin, Germany. [Baer, M.] Brandenburg Tech Univ Cottbus, Inst Chem & Phys, D-03046 Cottbus, Germany. [Denlinger, J. D.; Yang, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Reinert, F.] Karlsruhe Inst Technol, Gemeinschaftslab Nanoanalyt, D-76021 Karlsruhe, Germany. [Heske, C.] Karlsruhe Inst Technol, Inst Chem Technol & Polymer Chem, D-76128 Karlsruhe, Germany. [Heske, C.] Karlsruhe Inst Technol, ANKA Synchrotron Radiat Facil, D-76344 Eggenstein Leopoldshafen, Germany. RP Weinhardt, L (reprint author), Karlsruhe Inst Technol, Inst Photon Sci & Synchrotron Radiat, Hermann V Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. EM l.weinhardt@kit.edu RI Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 FU German BMBF [05KS4WWA/6, 05KS4VHA/4, FKZ 01SF007, FKZ 05KS1WW1/6]; German BMWI [FKZ 0329889, FKZ 0329218C]; German DFG [SFB410, TP B3]; Impuls- und Vernetzungsfonds of the Helmholtz-Association [VH-NG-423]; Department of Energy, Basic Energy Sciences [DE-AC02-05CH11231] FX This work was supported by the German BMBF (projects nos. 05KS4WWA/6 and 05KS4VHA/4, FKZ 01SF007, and FKZ 05KS1WW1/6) and the German BMWI (FKZ 0329889, and FKZ 0329218C), as well as the German DFG through SFB410, TP B3. M. Bar acknowledges the financial support by the Impuls- und Vernetzungsfonds of the Helmholtz-Association (VH-NG-423). The ALS is supported by the Department of Energy, Basic Energy Sciences, Contract No. DE-AC02-05CH11231. NR 73 TC 16 Z9 16 U1 4 U2 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD JUN PY 2013 VL 188 SI SI BP 111 EP 120 DI 10.1016/j.elspec.2012.10.006 PG 10 WC Spectroscopy SC Spectroscopy GA 212US UT WOS:000324008900015 ER PT J AU Shvyd'ko, YV Hill, JP Burns, CA Coburn, DS Brajuskovic, B Casa, D Goetze, K Gog, T Khachatryan, R Kim, JH Kodituwakku, CN Ramanathan, M Roberts, T Said, A Sinn, H Shu, D Stoupin, S Upton, M Wieczorek, M Yavas, H AF Shvyd'ko, Yu. V. Hill, J. P. Burns, C. A. Coburn, D. S. Brajuskovic, B. Casa, D. Goetze, K. Gog, T. Khachatryan, R. Kim, J. -H. Kodituwakku, C. N. Ramanathan, M. Roberts, T. Said, A. Sinn, H. Shu, D. Stoupin, S. Upton, M. Wieczorek, M. Yavas, H. TI MERIX-Next generation medium energy resolution inelastic X-ray scattering instrument at the APS SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Electronic excitations; X-rays; Resonant Inelastic X-rayScattering (RIXS); Spectrometer; Monochromator; Analyzer ID ANALYZER; SPECTROSCOPY; SPECTROMETER; EXCITATIONS; PERFORMANCE; DETECTORS; CRYSTALS; BEAMLINE AB MERIX (Medium Energy Resolution Inelastic X-ray Scattering) is an instrument for Resonant Inelastic X-ray Scattering (RIXS) studies, in the hard X-ray regime, designed to work with photons in the 5-12 key range, spanning atomic resonances near the K-edges of 3d elements, and the L-edges of 4f and 5d elements. The energy analysis of inelastically scattered photons is performed with segmented spherical crystal analyzers in close to Bragg backscattering geometry. For each resonance (edge) a specially designed analyzer is used, fabricated from Ge, Si, or LiNbO3 crystals. MERIX uses a position sensitive (micro-strip) detector to take snapshots of IXS spectra which are dispersed in space and over an energy range of a few eV with similar or equal to 20-40 meV energy resolution. The spectral resolution of the MERIX spectrometer depends on the analyzer and varies from similar or equal to 45 meV to similar or equal to 170 meV, while the momentum transfer resolution is similar or equal to 1-4 nm(-1). Samples are illuminated by micro-focused beams of size similar or equal to 10 mu m x 45 mu m, allowing for studies at high-pressure and other extreme conditions. Polarization selectivity is ensured by vertical or horizontal momentum transfer scans. MERIX features similar or equal to 100 times higher count-rates compared to previously built RIXS instruments. Published by Elsevier B.V. C1 [Shvyd'ko, Yu. V.; Brajuskovic, B.; Casa, D.; Goetze, K.; Gog, T.; Khachatryan, R.; Kim, J. -H.; Kodituwakku, C. N.; Ramanathan, M.; Roberts, T.; Said, A.; Sinn, H.; Shu, D.; Stoupin, S.; Upton, M.; Wieczorek, M.; Yavas, H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Hill, J. P.; Coburn, D. S.; Kodituwakku, C. N.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Burns, C. A.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Sinn, H.] European XFEL, D-22547 Hamburg, Germany. [Yavas, H.] DESY, D-22607 Hamburg, Germany. RP Shvyd'ko, YV (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RI Yavas, Hasan/A-7164-2014; Casa, Diego/F-9060-2016 OI Yavas, Hasan/0000-0002-8940-3556; FU DOE [DE-FG02-02ER45969, DE-FG02-99ER45772]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; US DOE, Office of Science, Office of Basic Energy Sciences [DE-AC-02-98CH10886] FX This project was supported by DOE Grant nos. DE-FG02-02ER45969 and DE-FG02-99ER45772. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Work carried out at BNL was supported by US DOE, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC-02-98CH10886. NR 40 TC 15 Z9 15 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD JUN PY 2013 VL 188 SI SI BP 140 EP 149 DI 10.1016/j.elspec.2012.09.003 PG 10 WC Spectroscopy SC Spectroscopy GA 212US UT WOS:000324008900019 ER PT J AU Vanko, G Bordage, A Glatzel, P Gallo, E Rovezzi, M Gawelda, W Galler, A Bressler, C Doumy, G March, AM Kanter, EP Young, L Southworth, SH Canton, SE Uhlig, J Smolentsev, G Sundstrom, V Haldrup, K van Driel, TB Nielsen, MM Kjaer, KS Lemke, HT AF Vanko, Gyoergy Bordage, Amelie Glatzel, Pieter Gallo, Erik Rovezzi, Mauro Gawelda, Wojciech Galler, Andreas Bressler, Christian Doumy, Gilles March, Anne Marie Kanter, Elliot P. Young, Linda Southworth, Stephen H. Canton, Sophie E. Uhlig, Jens Smolentsev, Grigory Sundstrom, Villy Haldrup, Kristoffer van Driel, Tim Brandt Nielsen, Martin M. Kjaer, Kasper S. Lemke, Henrik T. TI Spin-state studies with XES and RIXS: From static to ultrafast SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Molecular switching; Time-resolved spectroscopy; X-ray spectroscopy; Spin transition; Photoinduced transition; Ultrafast phenomena; Pump-probe experiments ID RAY-ABSORPTION SPECTROSCOPY; TRANSITION-METAL-COMPLEXES; EMISSION-SPECTROSCOPY; STRUCTURAL DYNAMICS; COORDINATION-COMPOUNDS; MOLECULAR-STRUCTURES; LOWER MANTLE; PRE-EDGE; K-EDGE; PICOSECOND AB We report on extending hard X-ray emission spectroscopy (XES) along with resonant inelastic X-ray scattering (RIXS) to study ultrafast phenomena in a pump-probe scheme at MHz repetition rates. The investigated systems include low-spin (LS) Fe-II complex compounds, where optical pulses induce a spin-state transition to their (sub)nanosecond-lived high-spin (HS) state. Time-resolved XES clearly reflects the spin-state variations with very high signal-to-noise ratio, in agreement with HS-LS difference spectra measured at thermal spin crossover, and reference HS-LS systems in static experiments, next to multiplet calculations. The 1s2p RIXS, measured at the Fe Is pre-edge region, shows variations after laser excitation, which are consistent with the formation of the HS state. Our results demonstrate that X-ray spectroscopy experiments with overall rather weak signals, such as RIXS, can now be reliably exploited to study chemical and physical transformations on ultrafast time scales. (C) 2012 Elsevier B.V. All rights reserved. C1 [Vanko, Gyoergy; Bordage, Amelie] Hungarian Acad Sci, Wigner Res Ctr Phys, H-1525 Budapest, Hungary. [Glatzel, Pieter; Gallo, Erik; Rovezzi, Mauro] European Synchrotron Radiat Facil, F-38043 Grenoble 9, France. [Gawelda, Wojciech; Galler, Andreas; Bressler, Christian] European XFEL, D-22761 Hamburg, Germany. [Glatzel, Pieter; Doumy, Gilles; March, Anne Marie; Kanter, Elliot P.; Young, Linda] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Canton, Sophie E.] Lund Univ, Dept Synchrotron Instrumentat, MAXlab, SE-22100 Lund, Sweden. [Uhlig, Jens; Smolentsev, Grigory; Sundstrom, Villy] Lund Univ, Dept Chem Phys, SE-22100 Lund, Sweden. [Haldrup, Kristoffer; van Driel, Tim Brandt; Nielsen, Martin M.] Tech Univ Denmark, Dept Phys, Ctr Mol Movies, DK-2800 Lyngby, Denmark. [Kjaer, Kasper S.; Lemke, Henrik T.] Univ Copenhagen, Niels Bohr Inst, Ctr Mol Movies, DK-2100 Copenhagen, Denmark. RP Vanko, G (reprint author), Hungarian Acad Sci, Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary. EM vanko.gyorgy@wigner.mta.hu RI Vanko, Gyorgy/B-8176-2012; Gawelda, Wojciech/B-7878-2014; Haldrup, Kristoffer/J-6875-2013; Glatzel, Pieter/E-9958-2010; Bressler, Christian/G-1864-2010; Uhlig, Jens/A-5475-2010; Nielsen, Martin/A-5133-2009; Canton, Sophie/A-8432-2016; Lemke, Henrik Till/N-7419-2016 OI Rovezzi, Mauro/0000-0003-2539-6198; Vanko, Gyorgy/0000-0002-3095-6551; Gawelda, Wojciech/0000-0001-7824-9197; Haldrup, Kristoffer/0000-0002-0565-6397; Glatzel, Pieter/0000-0001-6532-8144; Uhlig, Jens/0000-0002-0528-0422; Nielsen, Martin/0000-0002-8135-434X; Lemke, Henrik Till/0000-0003-1577-8643 FU European Research Council [ERC-StG-259709]; German research community (DFG) [SFB925]; European CRISP project; European XFEL; Hungarian Scientific Research Fund (OTKA) [K 72597]; U.S. Department of Energy (DOE) Office of Science, Division of Chemical, Geological and Biological Sciences [DE-AC02-06CH11357]; U.S. DOE [DE-AC02-06CH11357]; Danish National Research Foundation; DANSCATT; Swedish Research Council FX This project was supported by the European Research Council via contract ERC-StG-259709, by the German research community (DFG) via contract SFB925, the European CRISP project, by the European XFEL, and by the Hungarian Scientific Research Fund (OTKA) under contract no. K 72597. AMM, GD, SHS, EPK, and LY acknowledge support from the U.S. Department of Energy (DOE) Office of Science, Division of Chemical, Geological and Biological Sciences under contract no. DE-AC02-06CH11357. Use of the Advanced Photon Source, an Office of Science User Facility operated for DOE Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under contract no. DE-AC02-06CH11357. KH, MN, T van D, KK and HL acknowledge support from The Danish National Research Foundation and DANSCATT, and SEC acknowledges funding from the Swedish Research Council. We acknowledge the assistance of Pablo Fajardo, Christian Herve, Christophe Lapras, and the staff of ID26 and ID9 from the ESRF as well as the staff of 7-ID from the APS. NR 59 TC 29 Z9 29 U1 9 U2 77 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD JUN PY 2013 VL 188 SI SI BP 166 EP 171 DI 10.1016/j.elspec.2012.09.012 PG 6 WC Spectroscopy SC Spectroscopy GA 212US UT WOS:000324008900023 ER PT J AU Myers, KS Yan, HH Ong, IM Chung, D Liang, K Tran, F Keles, S Landick, R Kiley, PJ AF Myers, Kevin S. Yan, Huihuang Ong, Irene M. Chung, Dongjun Liang, Kun Frances Tran Keles, Suenduez Landick, Robert Kiley, Patricia J. TI Genome-scale Analysis of Escherichia coli FNR Reveals Complex Features of Transcription Factor Binding SO PLOS GENETICS LA English DT Article ID NUCLEOID-ASSOCIATED PROTEINS; INTEGRATION HOST FACTOR; CHIP-SEQ DATA; PYRUVATE-DEHYDROGENASE COMPLEX; ENTERICA SEROVAR TYPHIMURIUM; AMP RECEPTOR PROTEIN; OXIDASE CYDAB OPERON; H-NS; GENE-EXPRESSION; E.-COLI AB FNR is a well-studied global regulator of anaerobiosis, which is widely conserved across bacteria. Despite the importance of FNR and anaerobiosis in microbial lifestyles, the factors that influence its function on a genome-wide scale are poorly understood. Here, we report a functional genomic analysis of FNR action. We find that FNR occupancy at many target sites is strongly influenced by nucleoid-associated proteins (NAPs) that restrict access to many FNR binding sites. At a genome-wide level, only a subset of predicted FNR binding sites were bound under anaerobic fermentative conditions and many appeared to be masked by the NAPs H-NS, IHF and Fis. Similar assays in cells lacking H-NS and its paralog StpA showed increased FNR occupancy at sites bound by H-NS in WT strains, indicating that large regions of the genome are not readily accessible for FNR binding. Genome accessibility may also explain our finding that genome-wide FNR occupancy did not correlate with the match to consensus at binding sites, suggesting that significant variation in ChIP signal was attributable to cross-linking or immunoprecipitation efficiency rather than differences in binding affinities for FNR sites. Correlation of FNR ChIP-seq peaks with transcriptomic data showed that less than half of the FNR-regulated operons could be attributed to direct FNR binding. Conversely, FNR bound some promoters without regulating expression presumably requiring changes in activity of condition-specific transcription factors. Such combinatorial regulation may allow Escherichia coli to respond rapidly to environmental changes and confer an ecological advantage in the anaerobic but nutrient-fluctuating environment of the mammalian gut. C1 [Myers, Kevin S.] Univ Wisconsin, Microbiol Doctoral Training Program, Madison, WI 53715 USA. [Myers, Kevin S.; Kiley, Patricia J.] Univ Wisconsin, Dept Biomol Chem, Madison, WI USA. [Yan, Huihuang; Ong, Irene M.; Landick, Robert; Kiley, Patricia J.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Chung, Dongjun; Liang, Kun; Keles, Suenduez] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA. [Liang, Kun; Keles, Suenduez] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI USA. [Frances Tran; Landick, Robert] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA. [Landick, Robert] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. RP Myers, KS (reprint author), Univ Wisconsin, Microbiol Doctoral Training Program, Madison, WI 53715 USA. EM landick@bact.wisc.edu; pjkiley@wisc.edu OI Chung, Dongjun/0000-0002-8072-5671 FU NSF [MCB0640642]; UW-Madison NIH [5T32GM08349]; DOE BACTER Program [DE-FG02-04ER25627]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494]; Office of Science of the U.S. DOE [DE-AC02-05CH11231]; NIH [GM045844, GM38660, HG003747, HG006716] FX This work was funded by grants from the NSF (MCB0640642) to RL, NIH to PJK (GM045844), RL (GM38660), and SK (HG003747 and HG006716). KSM was supported by the UW-Madison NIH Biotechnology Training Grant (5T32GM08349), and the DOE BACTER Program, (DE-FG02-04ER25627). This work was also funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). HT sequencing was provided by the DOE Joint Genome Institute (supported by the Office of Science of the U.S. DOE under contract no. DE-AC02-05CH11231) and the UW-Madison Biotechnology Center. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 160 TC 43 Z9 43 U1 2 U2 28 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD JUN PY 2013 VL 9 IS 6 AR e1003565 DI 10.1371/journal.pgen.1003565 PG 24 WC Genetics & Heredity SC Genetics & Heredity GA 175HX UT WOS:000321222600041 PM 23818864 ER PT J AU da Silva, LGGVD Alvarez, G Summers, MS Dagotto, E AF Dias da Silva, Luis G. G. V. Alvarez, G. Summers, M. S. Dagotto, E. TI Charge Excitations in Two-Leg Ladders: A tDMRG Approach SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article; Proceedings Paper CT 20th Latin American Symposium on Solid State Physics (SLAFES) CY MAR 27-31, 2011 CL Maragogi/AL, BRAZIL DE DMRG; Hubbard model; Two-leg ladders; Excitations ID QUANTUM RENORMALIZATION-GROUPS AB We study the dynamics of holon-doublon pairs in two-leg Hubbard ladders with the time-dependent Density Matrix Renormalization-Group approach. Benchmark results show that the Krylov algorithm is well suited to calculate the time dependence of observables in these systems. Furthermore, we show that the dynamics of the holon-doublon depend strongly on the coupling asymmetry within the ladder, indicating that the ladder geometry plays a role in the decay of these elementary charge excitations. C1 [Dias da Silva, Luis G. G. V.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Alvarez, G.; Summers, M. S.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Alvarez, G.; Summers, M. S.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Dagotto, E.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dagotto, E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP da Silva, LGGVD (reprint author), Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo, Brazil. EM luisdias@if.usp.br RI Dias da Silva, Luis/D-8381-2013 OI Dias da Silva, Luis/0000-0002-8156-9463 FU Center for Nanophase Materials Sciences; Scientific User Facilities Division, Basic Energy Sciences, US Department of Energy; UT-Battelle FX This work was supported by the Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division, Basic Energy Sciences, US Department of Energy, under contract with UT-Battelle. This research used resources of the National Center for Computational Sciences, as well as the OIC at Oak Ridge National Laboratory. L. G. G. V. D. S. acknowledges support from Brazilian agencies CNPq and FAPESP. E. D. was supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. NR 13 TC 0 Z9 0 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-1939 EI 1557-1947 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD JUN PY 2013 VL 26 IS 6 BP 2193 EP 2196 DI 10.1007/s10948-012-1484-6 PG 4 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 211LQ UT WOS:000323909500015 ER PT J AU Gin, S Abdelouas, A Criscenti, LJ Ebert, WL Ferrand, K Geisler, T Harrison, MT Inagaki, Y Mitsui, S Mueller, KT Marra, JC Pantano, CG Pierce, EM Ryan, JV Schofield, JM Steefel, CI Vienna, JD AF Gin, S. Abdelouas, A. Criscenti, L. J. Ebert, W. L. Ferrand, K. Geisler, T. Harrison, M. T. Inagaki, Y. Mitsui, S. Mueller, K. T. Marra, J. C. Pantano, C. G. Pierce, E. M. Ryan, J. V. Schofield, J. M. Steefel, C. I. Vienna, J. D. TI An international initiative on long-term behavior of high-level nuclear waste glass SO MATERIALS TODAY LA English DT Article ID BOROSILICATE GLASS; DISSOLUTION KINETICS; WATER PENETRATION; ION-EXCHANGE; R7T7 GLASS; RATE LAW; CORROSION; SON68; MECHANISMS; SILICA AB Nations using borosilicate glass as an immobilization material for radioactive waste have reinforced the importance of scientific collaboration to obtain a consensus on the mechanisms controlling the long-term dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research using modern materials science techniques. This paper briefly reviews the radioactive waste vitrification programs of the six participant nations and summarizes the current state of glass corrosion science, emphasizing the common scientific needs and justifications for on-going initiatives. C1 [Gin, S.] CEA Marcoule DTCD SECM LCLT, F-30207 Bagnols Sur Ceze, France. [Abdelouas, A.] SUBATECH, UMR 6457, F-44307 Nantes 03, France. [Criscenti, L. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ebert, W. L.] Argonne Natl Lab, DivChemEngn, Argonne, IL 60439 USA. [Ferrand, K.] SCK CEN, B-2400 Mol, Belgium. [Geisler, T.] Univ Bonn, Steinmann Inst Geol Mineral & Palaontol, D-53115 Bonn, Germany. [Harrison, M. T.] Natl Nucl Lab, Sellafield CA20 1PG, Cumbria, England. [Inagaki, Y.] Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Fukuoka 8190395, Japan. [Mitsui, S.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191194, Japan. [Mueller, K. T.] Pacific NW Natl Lab, Env & Mol Sci Lab, Richland, WA 99352 USA. [Marra, J. C.] Savannah River Natl Lab, Aiken, SC 29802 USA. [Pantano, C. G.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Pierce, E. M.] Oak Ridge Natl Lab, Biol & EnvironmSci Directorate, Oak Ridge, TN 37831 USA. [Ryan, J. V.; Vienna, J. D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Schofield, J. M.] AMEC, Didcot OX11 0QB, Oxon, England. [Steefel, C. I.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Gin, S (reprint author), CEA Marcoule DTCD SECM LCLT, F-30207 Bagnols Sur Ceze, France. EM stephane.gin@cea.fr RI Steefel, Carl/B-7758-2010; Mueller, Karl/A-3637-2010; U-ID, Kyushu/C-5291-2016; Pierce, Eric/G-1615-2011 OI Pierce, Eric/0000-0002-4951-1931 FU U.S. DOE Department of Nuclear Energy FX Since the beginning of this initiative, a number of scientists have contributed to the project in addition to the authors: M. Aertsens (SCK-CEN), F. Angeli (CEA), I. Bourg (LBNL), M. Cowper (NDA), C. Crawford (SRNL), J.M. Delaye (CEA), J. Fortner (ANL), P. Frugier (CEA), R. Gens (Ondraf), B. Grambow (SUBATECH), N. Gribble (NNL), J. Icenhower (LBNL), C. Jantzen (SRNL), P. Jolivet (CEA), S. Kerisit (PNNL), K. Lemmens (SCK-CEN), T. Maeda (JAEA), Y. Minet (CEA), K. Murphy (PSU), J. Neeway (PNNL), T. Ohe (Tokai Univ), C. Padovani (NDA), D. Rebiscoul (CEA), P. Reike (PNNL), D. Schreiber (PNNL), R. Short (NNL), D. Strachan (PNNL), C. Steele (Sellafield Ltd), S. Swanton (AMEC), P. Van Iseghem (SCK-CEN), N. Washton (PNNL), R. Williford (PNNL), P. Wood (NDA), P. Zapol (ANL). Authors from the USA wish to thank the U.S. DOE Department of Nuclear Energy for supporting this work. NR 67 TC 65 Z9 66 U1 14 U2 92 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 EI 1873-4103 J9 MATER TODAY JI Mater. Today PD JUN PY 2013 VL 16 IS 6 BP 243 EP 248 DI 10.1016/j.mattod.2013.06.008 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 211RG UT WOS:000323926800018 ER PT J AU Chen, ZY Jin, HZ Dai, CS Wu, G Nelson, M Cheng, YF AF Chen, Zhenyu Jin, Haizu Dai, Changsong Wu, Gang Nelson, Mark Cheng, Yuanfang TI Effects of Carbon Source on Performance of Li3V2(PO4)(3)/C Cathode Materials Synthesized via Carbon Thermal Reduction for Li-ion Batteries SO INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE LA English DT Article DE Lithium ion batteries; lithium vanadium phosphate; carbothermal reduction method; carbon nanotubes; sucrose ID RECHARGEABLE LITHIUM BATTERIES; POSITIVE-ELECTRODE MATERIALS; SOL-GEL METHOD; ELECTROCHEMICAL PROPERTIES; VANADIUM PHOSPHATE; COMPOSITE-MATERIAL; OLIVINES; PHASE AB Effects of the source of carbon on properties and performance of Li3V2(PO4)(3)/C composite cathode materials were studied using five different carbon containing materials (sucrose, graphite, carbon nanotubes, citric acid, and carbon black) in synthesis via the carbothermal reduction method. It was found that the electrochemical performance of the cathode material was greatly dependent on particle size, carbon content, and electron conductivity, which were all functions of the carbon source. When the ratio of carbon to vanadium was tentatively fixed at 1.25, Li3V2(PO4)(3)/C synthesized with carbon nanotubes showed the best electrochemical performance due to a high carbon content and uniformly distributed small particle size. In the further optimization of the ratio of carbon to vanadium in sucrose-synthesized cathode materials, sucrose was verified as more suitable carbon source and able to achieve to higher cathode performance. C1 [Chen, Zhenyu; Jin, Haizu; Dai, Changsong] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. [Wu, Gang; Nelson, Mark] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Cheng, Yuanfang] Heilongjiang Yuanfang New Energy Resource Technol, Jixi 158100, Peoples R China. RP Chen, ZY (reprint author), Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. EM changsd@hit.edu.cn RI Wu, Gang/E-8536-2010 OI Wu, Gang/0000-0003-4956-5208 FU National Natural Science Foundation of China [51274075]; National Environmental Technology Special Project [201009028]; Guangdong Province-department University-industry Collaboration Project [2012B091100315] FX This work was supported by the National Natural Science Foundation of China (Grant nos. 51274075), the National Environmental Technology Special Project (No. 201009028), and Guangdong Province-department University-industry Collaboration Project (Grant nos. 2012B091100315). NR 31 TC 8 Z9 8 U1 3 U2 25 PU ESG PI BELGRADE PA BORIVOJA STEVANOVICA 25-7, BELGRADE, 11000, SERBIA SN 1452-3981 J9 INT J ELECTROCHEM SC JI Int. J. Electrochem. Sci. PD JUN PY 2013 VL 8 IS 6 BP 8153 EP 8166 PG 14 WC Electrochemistry SC Electrochemistry GA 206TP UT WOS:000323546100056 ER PT J AU Buch, H Mahapatra, S Rahman, R Morello, A Simmons, MY AF Buech, H. Mahapatra, S. Rahman, R. Morello, A. Simmons, M. Y. TI Spin readout and addressability of phosphorus-donor clusters in silicon SO NATURE COMMUNICATIONS LA English DT Article ID ELECTRON-SPIN; SI; RELAXATION AB The spin states of an electron bound to a single phosphorus donor in silicon show remarkably long coherence and relaxation times, which makes them promising building blocks for the realization of a solid-state quantum computer. Here we demonstrate, by high-fidelity (93%) electrical spin readout, that a long relaxation time T-1 of about 2s, at B-1.2 T and T approximate to 100 mK, is also characteristic of electronic spin states associated with a cluster of few phosphorus donors, suggesting their suitability as hosts for spin qubits. Owing to the difference in the hyperfine coupling, electronic spin transitions of such clusters can be sufficiently distinct from those of a single phosphorus donor. Our atomistic tight-binding calculations reveal that when neighbouring qubits are hosted by a single phosphorus atom and a cluster of two phosphorus donors, the difference in their electron spin resonance frequencies allows qubit rotations with error rates approximate to 10(-4). These results provide a new approach to achieving individual qubit addressability. C1 [Buech, H.; Mahapatra, S.; Morello, A.; Simmons, M. Y.] Univ New S Wales, Australian Res Council Ctr Excellence Quantum Com, Sydney, NSW 2052, Australia. [Rahman, R.] Sandia Natl Labs, Adv Device Technol, Albuquerque, NM 87185 USA. RP Simmons, MY (reprint author), Univ New S Wales, Australian Res Council Ctr Excellence Quantum Com, Sydney, NSW 2052, Australia. EM michelle.simmons@unsw.edu.au RI Morello, Andrea/B-6475-2008; Simmons, Michelle/B-2755-2010; OI Morello, Andrea/0000-0001-7445-699X; Simmons, Michelle/0000-0002-6422-5888; Rahman, Rajib/0000-0003-1649-823X FU Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology [CE110001027]; US national Security Agency; US Army Research Office [W911NF-13-1-0024]; Federation fellowship; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank R. P. Starrett and D. Barber for technical assistance and acknowledge support of the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (project number CE110001027), the US national Security Agency and the US Army Research Office under contract number W911NF-13-1-0024. M.Y.S. acknowledges a Federation fellowship. R.R. thanks G. Klimeck for the NEMO-3D tool and acknowledges support of Sandia National Laboratories, which is a a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 25 TC 33 Z9 33 U1 6 U2 42 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUN PY 2013 VL 4 AR 2017 DI 10.1038/ncomms3017 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 207TB UT WOS:000323625700001 PM 23774081 ER PT J AU Das, T Balatsky, AV AF Das, Tanmoy Balatsky, A. V. TI Engineering three-dimensional topological insulators in Rashba-type spin-orbit coupled heterostructures SO NATURE COMMUNICATIONS LA English DT Article ID SINGLE DIRAC CONE; PHASE-TRANSITION; SURFACE-STATES; BI2TE3; FILMS; BI2SE3 AB Topological insulators represent a new class of quantum phase defined by invariant symmetries and spin-orbit coupling that guarantees metallic Dirac excitations at its surface. The discoveries of these states have sparked the hope of realizing non-trivial excitations and novel effects such as a magnetoelectric effect and topological Majorana excitations. Here we develop a theoretical formalism to show that a three-dimensional topological insulator can be designed artificially via stacking bilayers of two-dimensional Fermi gases with opposite Rashba-type spin-orbit coupling on adjacent layers, and with interlayer quantum tunneling. We demonstrate that in the stack of bilayers grown along a (001)-direction, a non-trivial topological phase transition occurs above a critical number of Rashba bilayers. In the topological phase, we find the formation of a single spin-polarized Dirac cone at the G-point. This approach offers an accessible way to design artificial topological insulators in a set up that takes full advantage of the atomic layer deposition approach. This design principle is tunable and also allows us to bypass limitations imposed by bulk crystal geometry. C1 [Das, Tanmoy; Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Nanotechnol, Los Alamos, NM 87545 USA. [Balatsky, A. V.] KTH Royal Inst Technol, NORDITA, SE-10691 Stockholm, Sweden. [Balatsky, A. V.] Stockholm Univ, SE-10691 Stockholm, Sweden. RP Das, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM tnmydas@gmail.com FU Los Alamos National Laboratory under LDRD; US Department of Energy under BES; VR [621-2012-2983]; ERC DM [321031] FX We are indebted to S. Basak, Q. Jia, H. Lin, J. Halardsen, and A. M. Black-Schaffer for numerous discussions. We also thank Paul Ruden for critical reading of our manuscript. This work is supported by by Los Alamos National Laboratory under LDRD, by the US Department of Energy under BES, and benefited from the allocation of supercomputer time at NERSC. Work at NORDITA is supported by VR 621-2012-2983 and by ERC DM 321031. NR 40 TC 19 Z9 19 U1 1 U2 57 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUN PY 2013 VL 4 AR 1972 DI 10.1038/ncomms2972 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 207SM UT WOS:000323624100040 PM 23739724 ER PT J AU Ingall, ED Diaz, JM Longo, AF Oakes, M Finney, L Vogt, S Lai, B Yager, PL Twining, BS Brandes, JA AF Ingall, Ellery D. Diaz, Julia M. Longo, Amelia F. Oakes, Michelle Finney, Lydia Vogt, Stefan Lai, Barry Yager, Patricia L. Twining, Benjamin S. Brandes, Jay A. TI Role of biogenic silica in the removal of iron from the Antarctic seas SO NATURE COMMUNICATIONS LA English DT Article ID DIATOM THALASSIOSIRA-PSEUDONANA; SOUTHERN-OCEAN; ROSS-SEA; DEPOSITION; CARBON; WATERS; ZINC; FERTILIZATION; SPECTROSCOPY; SOLUBILITY AB Iron has a key role in controlling biological production in the Southern Ocean, yet the mechanisms regulating iron availability in this and other ocean regions are not completely understood. Here, based on analysis of living phytoplankton in the coastal seas of West Antarctica, we present a new pathway for iron removal from marine systems involving structural incorporation of reduced, organic iron into biogenic silica. Export of iron incorporated into biogenic silica may represent a substantial unaccounted loss of iron from marine systems. For example, in the Ross Sea, burial of iron incorporated into biogenic silica is conservatively estimated as 11 mu mol m(-2) per year, which is in the same range as the major bioavailable iron inputs to this region. As a major sink of bioavailable iron, incorporation of iron into biogenic silica may shift microbial population structure towards taxa with relatively lower iron requirements, and may reduce ecosystem productivity and associated carbon sequestration. C1 [Ingall, Ellery D.; Diaz, Julia M.; Longo, Amelia F.; Oakes, Michelle] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Finney, Lydia; Vogt, Stefan; Lai, Barry] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Yager, Patricia L.] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA. [Twining, Benjamin S.] Bigelow Lab Ocean Sci, East Boothbay, ME 04544 USA. [Brandes, Jay A.] Skidaway Inst Oceanog, Savannah, GA 31411 USA. RP Ingall, ED (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, 311 Ferst Dr, Atlanta, GA 30332 USA. EM ingall@eas.gatech.edu RI Yager, Patricia/K-8020-2014; Ingall, Ellery/A-5447-2008; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Yager, Patricia/0000-0002-8462-6427; Ingall, Ellery/0000-0003-1954-0317; Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Twining, Benjamin/0000-0002-1365-9192 FU NSF [0849494, 0836144, 1060884]; NSF-GRFP; Ford Foundation Fellowship Program; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was supported by NSF grant(s) 0849494(EDI), 0836144 (PLY) and 1060884 (EDI), the NSF-GRFP (JMD) and the Ford Foundation Fellowship Program (JMD). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. We thank the Swedish Antarctic Research Programme (SWEDARP) and our colleagues and crew aboard the 2008/2009 expedition of the icebreaker Oden. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Basic Energy Sciences (DE-AC02-06CH11357). NR 35 TC 12 Z9 12 U1 0 U2 72 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUN PY 2013 VL 4 AR 1981 DI 10.1038/ncomms2981 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 207SR UT WOS:000323624600004 PM 23749035 ER PT J AU Kim, D Syers, P Butch, NP Paglione, J Fuhrer, MS AF Kim, Dohun Syers, Paul Butch, Nicholas P. Paglione, Johnpierre Fuhrer, Michael S. TI Coherent topological transport on the surface of Bi2Se3 SO NATURE COMMUNICATIONS LA English DT Article ID SINGLE DIRAC CONE; WEAK ANTILOCALIZATION; INSULATORS; GRAPHENE; FERMIONS; BI2TE3 AB The two-dimensional surface of the three-dimensional topological insulator is in the symplectic universality class and should exhibit perfect weak antilocalization reflected in positive weak-field magneto-resistance. Previous studies in topological insulator thin films suffer from high level of bulk n-type doping making quantitative analysis of weak antilocalization difficult. Here we measure the magneto-resistance of bulk-insulating Bi2Se3 thin films as a function of film thickness and gate-tuned carrier density. For thick samples, the magnitude of weak antilocalization indicates two decoupled (top and bottom) symplectic surfaces. On reducing thickness, we observe first a crossover to a single symplectic channel, indicating coherent coupling of top and bottom surfaces via interlayer tunnelling, and second, a complete suppression of weak antilocalization. The first crossover is governed by the ratio of phase coherence time to the inter-surface tunnelling time, and the second crossover occurs when the hybridization gap becomes comparable to the disorder strength. C1 [Kim, Dohun; Syers, Paul; Paglione, Johnpierre; Fuhrer, Michael S.] Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. [Butch, Nicholas P.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Fuhrer, Michael S.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. RP Fuhrer, MS (reprint author), Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. EM michael.fuhrer@monash.edu RI Fuhrer, Michael/E-7634-2010; OI Fuhrer, Michael/0000-0001-6183-2773; Kim, Dohun/0000-0001-9687-2089 FU NSF [DMR-1105224]; NSF MRSEC [DMR-0520471]; DARPA-MTO award [N66001-09-c-2067]; Centre for Nanophysics and Advanced Materials; ARC Laureate Fellowship FX This work was supported by NSF grant number DMR-1105224. Preparation of Bi2Se3 was supported by NSF MRSEC (DMR-0520471) and DARPA-MTO award (N66001-09-c-2067). N.P.B. was partially supported by the Centre for Nanophysics and Advanced Materials. M. S. F. acknowledges support from an ARC Laureate Fellowship. D. K. acknowledges useful conversations with Sergey S. Pershoguba. NR 33 TC 40 Z9 40 U1 9 U2 100 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUN PY 2013 VL 4 AR 2040 DI 10.1038/ncomms3040 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 207TI UT WOS:000323626400014 PM 23800708 ER PT J AU Kimura, K Nakatsuji, S Wen, JJ Broholm, C Stone, MB Nishibori, E Sawa, H AF Kimura, K. Nakatsuji, S. Wen, J-J. Broholm, C. Stone, M. B. Nishibori, E. Sawa, H. TI Quantum fluctuations in spin-ice-like Pr2Zr2O7 SO NATURE COMMUNICATIONS LA English DT Article ID MAGNETIC MONOPOLES; FERROMAGNET; ENTROPY AB Spin ice is a magnetic analog of H2O ice that harbors dense static disorder. Dipolar interactions between classical spins yield a frozen frustrated state with residual configurational Pauling entropy and emergent magnetic monopolar quasiparticles. Introducing quantum fluctuations is of great interest as this could melt spin ice and allow coherent propagation of monopoles. Here, we report experimental evidence for quantum dynamics of magnetic monopolar quasiparticles in a new class of spin ice based on exchange interactions, Pr2Zr2O7. Narrow pinch point features in otherwise diffuse elastic neutron scattering reflects adherence to a divergence-free constraint for disordered spins on long time scales. Magnetic susceptibility and specific heat data correspondingly show exponentially activated behaviors. In sharp contrast to conventional ice, however, > 90% of the neutron scattering is inelastic and devoid of pinch points furnishing evidence for magnetic monopolar quantum fluctuations. C1 [Kimura, K.; Nakatsuji, S.] Univ Tokyo, ISSP, Kashiwa, Chiba 2778581, Japan. [Nakatsuji, S.] Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi, Saitama 3320012, Japan. [Wen, J-J.; Broholm, C.] Johns Hopkins Univ, Inst Quantum Matter, Baltimore, MD 21218 USA. [Wen, J-J.; Broholm, C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Broholm, C.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Broholm, C.; Stone, M. B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Nishibori, E.; Sawa, H.] Nagoya Univ, Grad Sch Engn, Dept Appl Phys, Nagoya, Aichi 4648603, Japan. RP Nakatsuji, S (reprint author), Univ Tokyo, ISSP, Kashiwa, Chiba 2778581, Japan. EM satoru@issp.u-tokyo.ac.jp RI Broholm, Collin/E-8228-2011; Stone, Matthew/G-3275-2011; Wen, Jiajia/C-5370-2013; BL18, ARCS/A-3000-2012 OI Broholm, Collin/0000-0002-1569-9892; Stone, Matthew/0000-0001-7884-9715; Wen, Jiajia/0000-0002-1651-3578; FU JSPS [21684019, 23740259, 19052003]; MEXT, Japan; Global COE Program 'the Physical Sciences Frontier', MEXT, Japan; PRESTO of JST; Toray Science and Technology Grant; US-Japan Cooperative Program, ISSP; US DoE, office of Basic Energy Sciences, Division of Material Sciences and Engineering [DE-FG02-08ER46544]; NSF [DMR-0944772]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX We thank Y. Karaki, Y. Shimura, T. Sakakibara, K. Kuga, M. Takigawa, T. M. McQueen, S. Koohpayeh, K. Matsuhira, Y. Nambu, A. A. Nugroho, Y. Ohta, S. Onoda, R. Satake, O. Tchernyshyov and Y. Wan for useful discussions. This work is partially supported by Grant-in-Aid for Scientific Research (Nos. 21684019 and 23740259) from JSPS, by Grant-in-Aid for Scientific Research on Priority Areas (No. 19052003) and Grant-in-Aid for JSPS Fellows from MEXT, Japan, by Global COE Program 'the Physical Sciences Frontier', MEXT, Japan, by PRESTO of JST, by a Toray Science and Technology Grant and by US-Japan Cooperative Program, ISSP. Work at IQM was supported by the US DoE, office of Basic Energy Sciences, Division of Material Sciences and Engineering under DE-FG02-08ER46544. This work utilized facilities supported in part by the NSF under DMR-0944772. Research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Part of this work was conducted while CB was a JSPS fellow at ISSP. The use of the Materials Design and Characterization Laboratory at ISSP is gratefully acknowledged. NR 36 TC 49 Z9 49 U1 6 U2 77 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUN PY 2013 VL 4 AR 1934 DI 10.1038/ncomms2914 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 207SM UT WOS:000323624100001 PM 23770751 ER PT J AU Ren, Y Ma, Z Morris, RE Liu, Z Jiao, F Dai, S Bruce, PG AF Ren, Yu Ma, Zhen Morris, Russell E. Liu, Zheng Jiao, Feng Dai, Sheng Bruce, Peter G. TI A solid with a hierarchical tetramodal micro-meso-macro pore size distribution SO NATURE COMMUNICATIONS LA English DT Article ID RECHARGEABLE LITHIUM BATTERIES; ORDERED MESOPOROUS MATERIALS; MOLECULAR-SIEVE MATERIALS; ENERGY-STORAGE; METAL-OXIDES; FACILE SYNTHESIS; SILICA; CARBON; ADSORPTION; N2O AB Porous solids have an important role in addressing some of the major energy-related problems facing society. Here we describe a porous solid, alpha-MnO2, with a hierarchical tetramodal pore size distribution spanning the micro-, meso-and macro pore range, centred at 0.48, 4.0, 18 and 70 nm. The hierarchical tetramodal structure is generated by the presence of potassium ions in the precursor solution within the channels of the porous silica template; the size of the potassium ion templates the microporosity of alpha-MnO2, whereas their reactivity with silica leads to larger mesopores and macroporosity, without destroying the mesostructure of the template. The hierarchical tetramodal pore size distribution influences the properties of alpha-MnO2 as a cathode in lithium batteries and as a catalyst, changing the behaviour, compared with its counterparts with only micropores or bimodal micro/mesopores. The approach has been extended to the preparation of LiMn2O4 with a hierarchical pore structure. C1 [Ren, Yu; Morris, Russell E.; Liu, Zheng; Bruce, Peter G.] Univ St Andrews, Sch Chem, EaStCHEM, St Andrews KY16 9ST, Fife, Scotland. [Ma, Zhen] Fudan Univ, Dept Environm Sci & Engn, Shanghai Key Lab Atmospher Particle Pollut & Prev, Shanghai 200433, Peoples R China. [Ma, Zhen; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Jiao, Feng] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA. RP Bruce, PG (reprint author), Univ St Andrews, Sch Chem, EaStCHEM, St Andrews KY16 9ST, Fife, Scotland. EM p.g.bruce@st-andrews.ac.uk RI Ren, Yu/F-7262-2010; Ma, Zhen/F-1348-2010; Morris, Russell/G-4285-2010; Dai, Sheng/K-8411-2015; OI Ren, Yu/0000-0001-8572-5489; Ma, Zhen/0000-0002-2391-4943; Morris, Russell/0000-0001-7809-0315; Dai, Sheng/0000-0002-8046-3931; Jiao, Feng/0000-0002-3335-3203 FU Russell Trust; National Natural Science Foundation of China [21007011, 21177028]; PhD programmes Foundation of the Ministry of Education in China [20100071120012]; University of Delaware; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy; EPSRC, including SUPERGEN; programme grant 'Nanoionics' FX Y.R. is indebted to the Russell Trust for a travel grant. Z.M. is grateful for the financial support by the National Natural Science Foundation of China (grant numbers 21007011 and 21177028) and the PhD programmes Foundation of the Ministry of Education in China (grant number 20100071120012). F.J. would like to acknowledge the startup fund from the University of Delaware. S.D. is sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy. P.G.B. is grateful to the EPSRC, including SUPERGEN and the programme grant 'Nanoionics' for financial support. NR 57 TC 31 Z9 31 U1 16 U2 233 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUN PY 2013 VL 4 AR 2015 DI 10.1038/ncomms3015 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 207SX UT WOS:000323625200012 PM 23764887 ER PT J AU Shin, H Qiu, WJ Jarecki, R Cox, JA Olsson, RH Starbuck, A Wang, Z Rakich, PT AF Shin, Heedeuk Qiu, Wenjun Jarecki, Robert Cox, Jonathan A. Olsson, Roy H., III Starbuck, Andrew Wang, Zheng Rakich, Peter T. TI Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides SO NATURE COMMUNICATIONS LA English DT Article ID ELECTRONICALLY CONTROLLED BANDWIDTH; CRYSTAL OPTOMECHANICAL CAVITY; OPTICAL FORCES; SLOW-LIGHT; RADIATION PRESSURE; ACOUSTIC PHONONS; FIBER LASER; GAIN; CHIP; GENERATION AB Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic-phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized-with over 1,000 times larger nonlinearity than reported in previous systems-yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip. C1 [Shin, Heedeuk; Jarecki, Robert; Cox, Jonathan A.; Olsson, Roy H., III; Starbuck, Andrew] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Qiu, Wenjun] MIT, Dept Phys, Cambridge, MA 02139 USA. [Wang, Zheng] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78758 USA. [Rakich, Peter T.] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. RP Rakich, PT (reprint author), Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. EM peter.rakich@yale.edu RI Wang, Zheng/B-9804-2009 FU US Department of Energy's NNSA [DE-AC04-94AL85000]; DDRE under Air Force [FA8721-05-C-000]; MesoDynamic Architectures programme at the DARPA; Sandia's Laboratory Directed Research and Development programme FX Sandia Laboratory is operated by Sandia Co., a Lockheed Martin Company, for the US Department of Energy's NNSA under contract number DE-AC04-94AL85000. This work was supported by the DDRE under Air Force contract number FA8721-05-C-000, the MesoDynamic Architectures programme at the DARPA under the direction of Dr Jeffrey L. Rogers, and Sandia's Laboratory Directed Research and Development programme under Dr Wahid Hermina. We thank Marin Soljacic, Ryan M. Camacho and Ihab El-Kady for helpful technical discussions involving phononic systems, optomechanics and non-linear interactions. We thank Jack Harris, Jack Sankey and Benjamin Zwickl for helpful discussions concerning thermoelastic dissipation in silicon nitride membranes. We are grateful to Douglas Trotter for guidance through fabrication process development and Whitney Purvis Rakich for careful reading and critique of this manuscript. NR 60 TC 89 Z9 89 U1 8 U2 75 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUN PY 2013 VL 4 AR 1944 DI 10.1038/ncomms2943 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 207SM UT WOS:000323624100011 PM 23739586 ER PT J AU Wang, HJ Shin, CS Avalos, CE Seltzer, SJ Budker, D Pines, A Bajaj, VS AF Wang, Hai-Jing Shin, Chang S. Avalos, Claudia E. Seltzer, Scott J. Budker, Dmitry Pines, Alexander Bajaj, Vikram S. TI Sensitive magnetic control of ensemble nuclear spin hyperpolarization in diamond SO NATURE COMMUNICATIONS LA English DT Article ID N-V DEFECTS; PARAMAGNETIC-RESONANCE; ROOM-TEMPERATURE; GALLIUM-ARSENIDE; STATE NMR; POLARIZATION; MAGNETOMETRY; SPINTRONICS AB Dynamic nuclear polarization, which transfers the spin polarization of electrons to nuclei, is routinely applied to enhance the sensitivity of nuclear magnetic resonance. This method is particularly useful when spin hyperpolarization can be produced and controlled optically or electrically. Here we show complete polarization of nuclei located near optically polarized nitrogen-vacancy centres in diamond. Close to the ground-state level anti-crossing condition of the nitrogen-vacancy electron spins, C-13 nuclei in the first shell are polarized in a pattern that depends sensitively upon the magnetic field. Based on the anisotropy of the hyperfine coupling and of the optical polarization mechanism, we predict and observe a reversal of the nuclear spin polarization with only a few millitesla change in the magnetic field. This method of magnetic control of high nuclear polarization at room temperature can be applied in sensitivity enhanced nuclear magnetic resonance of bulk nuclei, nuclear-based spintronics, and quantum computation in diamond. C1 [Wang, Hai-Jing; Shin, Chang S.; Avalos, Claudia E.; Seltzer, Scott J.; Pines, Alexander; Bajaj, Vikram S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wang, Hai-Jing; Shin, Chang S.; Avalos, Claudia E.; Seltzer, Scott J.; Pines, Alexander; Bajaj, Vikram S.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Wang, Hai-Jing; Shin, Chang S.; Avalos, Claudia E.; Seltzer, Scott J.; Pines, Alexander; Bajaj, Vikram S.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Budker, Dmitry] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Budker, Dmitry] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Bajaj, VS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM vikbajaj@gmail.com RI Budker, Dmitry/F-7580-2016; Wang, Hai-Jing/C-2531-2009 OI Budker, Dmitry/0000-0002-7356-4814; Wang, Hai-Jing/0000-0002-9863-0144 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]; IMOD; AFOSR/DARPA QuSAR program FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. D.B. acknowledges salary support from IMOD and the AFOSR/DARPA QuSAR program. We thank Professor Jeffrey Reimer for his helpful advice about our manuscript, and an anonymous reviewer for detailed comments about our analysis of these results. NR 53 TC 21 Z9 21 U1 5 U2 41 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUN PY 2013 VL 4 AR 1940 DI 10.1038/ncomms2930 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 207SM UT WOS:000323624100007 PM 23736952 ER PT J AU Wang, HL Zepeda-Ruiz, LA Gilmer, GH Upmanyu, M AF Wang, Hailong Zepeda-Ruiz, Luis A. Gilmer, George H. Upmanyu, Moneesh TI Atomistics of vapour-liquid-solid nanowire growth SO NATURE COMMUNICATIONS LA English DT Article ID SILICON NANOWIRES; SEMICONDUCTOR NANOWIRES; SURFACE; ENERGY; COEFFICIENT; MECHANISM; CRYSTALS; ALLOYS AB Vapour-liquid-solid route and its variants are routinely used for scalable synthesis of semiconducting nanowires, yet the fundamental growth processes remain unknown. Here we employ atomic-scale computations based on model potentials to study the stability and growth of gold-catalysed silicon nanowires. Equilibrium studies uncover segregation at the solid-like surface of the catalyst particle, a liquid AuSi droplet, and a silicon-rich droplet-nanowire interface enveloped by heterogeneous truncating facets. Supersaturation of the droplets leads to rapid one-dimensional growth on the truncating facets and much slower nucleation-controlled two-dimensional growth on the main facet. Surface diffusion is suppressed and the excess Si flux occurs through the droplet bulk which, together with the Si-rich interface and contact line, lowers the nucleation barrier on the main facet. The ensuing step flow is modified by Au diffusion away from the step edges. Our study highlights key interfacial characteristics for morphological and compositional control of semiconducting nanowire arrays. C1 [Wang, Hailong; Upmanyu, Moneesh] Northeastern Univ, Grp Simulat & Theory Atom Scale Mat Phenomena StA, Dept Mech & Ind Engn, Boston, MA 02115 USA. [Wang, Hailong] Brown Univ, Sch Engn, Providence, RI 02912 USA. [Zepeda-Ruiz, Luis A.; Gilmer, George H.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Gilmer, George H.] Colorado Sch Mines, Div Engn, Golden, CO 80401 USA. [Upmanyu, Moneesh] Northeastern Univ, Dept Bioengn, Boston, MA 02115 USA. RP Upmanyu, M (reprint author), Northeastern Univ, Grp Simulat & Theory Atom Scale Mat Phenomena StA, Dept Mech & Ind Engn, Boston, MA 02115 USA. EM mupmanyu@neu.edu RI Wang, Hailong/C-2330-2008 FU National Science Foundation DMR CMMT Program [1106214]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank A. Dongare and L. Zheiglei for providing us with an early version of the AEAM interatomic potential, and Alain Karma and Albert Davydov for helpful discussions. The computations were performed on stAMP supercomputing resources at Northeastern University. The study is supported by the National Science Foundation DMR CMMT Program (1106214). Part of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (L.A.Z.-R. and G.H.G.). NR 56 TC 36 Z9 36 U1 5 U2 109 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUN PY 2013 VL 4 AR 1956 DI 10.1038/ncomms2956 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 207SM UT WOS:000323624100024 PM 23752586 ER PT J AU Schoberth, HG Pester, CW Ruppe, M Urban, VS Boker, A AF Schoberth, Heiko G. Pester, Christian W. Ruppe, Markus Urban, Volker S. Boeker, Alexander TI Orientation-Dependent Order-Disorder Transition of Block Copolymer Lamellae in Electric Fields SO ACS MACRO LETTERS LA English DT Article ID MICROPHASE SEPARATION; DIBLOCK COPOLYMERS; MICROSTRUCTURE; TEMPERATURE; ALIGNMENT; INTERFACE; POLYMERS; DILUTION; FLUIDS AB Electric fields have been shown to stabilize the disordered phase of near-critical block copolymer solutions. Here, we use in situ synchrotron small-angle X-ray scattering to examine how the initial orientation of lamellar domains with respect to the external field (phi) affects the shift in the order-disorder transition temperature (T-ODT) of lyotropic solutions of poly(styrene-b-isoprene) in toluene. We find a downward shift of the transition temperature, which scales with lamellar orientation as Delta T-ODT similar to cos(2) phi, in accordance with theory. C1 [Schoberth, Heiko G.; Pester, Christian W.; Boeker, Alexander] Rhein Westfal TH Aachen, DWI RWTH Aachen eV, Lehrstuhl Makromol Mat & Oberflachen, D-52056 Aachen, Germany. [Boeker, Alexander] Rhein Westfal TH Aachen, JARA FIT, D-52056 Aachen, Germany. [Ruppe, Markus] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Urban, Volker S.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. RP Boker, A (reprint author), Rhein Westfal TH Aachen, DWI RWTH Aachen eV, Lehrstuhl Makromol Mat & Oberflachen, D-52056 Aachen, Germany. EM boeker@dwi.rwth-aachen.de RI Boker, Alexander/C-2055-2009; Urban, Volker/N-5361-2015 OI Boker, Alexander/0000-0002-5760-6631; Urban, Volker/0000-0002-7962-3408 FU European Union; German Science Foundation (DFG) [BO 2475/5-1]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX H.G.S., C.W.P., and A.B. thank the European Union and the German Science Foundation (DFG, BO 2475/5-1) for financial support in the framework of the ERA-NanoSci+ project MEMORY. M.R. and V.S.U. were supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. The authors thank P. Boesecke, T. Narayanan, M. Sztucki, and E. di Cola for their help at the ESRF and F. Fischer, H. Zettl, and H. Krejtschi and his team for assistance with building the capacitors. We are grateful to the ESRF for provision of synchrotron beam time and thank K. A. Schindler, K. Schmidt, S. Huttner, C. Liedel, and A. Mihut for assistance during the measurements. NR 30 TC 9 Z9 9 U1 1 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD JUN PY 2013 VL 2 IS 6 BP 469 EP 473 DI 10.1021/mz400013u PG 5 WC Polymer Science SC Polymer Science GA 204JZ UT WOS:000323362900003 ER PT J AU Wang, Z Rutqvist, J Dai, Y AF Wang, Zhen Rutqvist, Jonny Dai, Ying TI A Multi-continuum Method for Studying the Effect of Inactive Fractures on Solute Transport in 2-D Discrete Fracture Network SO CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES LA English DT Article DE Multi-continuum model; MINC method; Inactive fractures; 2-D discrete fracture network; solute transport ID POROUS-MEDIA; ROCK MASSES; NUMERICAL SIMULATIONS; PERMEABILITY TENSOR; MATRIX DIFFUSION; FLOW; BEHAVIOR; TESTS; MODEL AB Fractures in a discrete fracture network can be divided into two parts: Active fracture's, which form a connected fracture network and dominate fluid flow and solute transport; and inactive fractures, which are dead-end parts of the fractures (isolated fractures will be incorporated into rock matrix) and do not contribute significantly to the fluid flow, but maybe important for the solute transport, especially for rock matrix diffusion. We present a multi-continuum method (including active fracture continuum, inactive fracture continuum and matrix continuum), which is based on the "multiple interacting continua" method, to describe fluid flow and solute transport in fractured media, including interactions of (1) active fractures with inactive fractures, (2) active fractures with matrix and (3) inactive fractures with matrix. A 2-D discrete fracture network is transformed into a coarse-scale grid-based equivalent continuum model, and each coarse-scale block is discretized into overlying sub-blocks including active fracture continuum, inactive fracture continuum and nested matrix continua with equivalent properties based on local fracture geometry information. The permeability tensor for the sub-block associated with active fracture continuum is determined from local flow simulations using the underlying discrete fracture network. The permeability for inactive fracture continuum and matrix continuum is assigned with very small value as they do not significantly contribute to the fluid flow. With this upscaling method, we established a heterogeneous, anisotropic permeability tensor field in the study domain. The above methodology was applied to a 2D BMT (benchmark test) of the international cooperative project DECOVALEX 2011. This benchmark test consists of a 20 x 20 m model domain including a 2-D fracture-network of 7797 individual fractures with apertures of each fracture correlated to their length. The simulation results show that the inactive fractures will enhance rock matrix diffusion, which is consistent with observations at field experiments as reported in the literatures, and thus play an important role in solute transport in fractured media. C1 [Wang, Zhen; Dai, Ying] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China. [Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Wang, Z (reprint author), Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China. RI Rutqvist, Jonny/F-4957-2015 OI Rutqvist, Jonny/0000-0002-7949-9785 FU National Basic Research Program of China (973 Program) [2011CB013800]; U.S. Department of Energy [DE-AC02-05CH11231] FX Financial support from the National Basic Research Program of China (973 Program: 2011CB013800) and by the U.S. Department of Energy under contract No. DE-AC02-05CH11231 is greatly appreciated. NR 34 TC 0 Z9 0 U1 0 U2 17 PU TECH SCIENCE PRESS PI NORCROSS PA 6825 JIMMY CARTER BLVD, STE 1850, NORCROSS, GA 30071 USA SN 1526-1492 J9 CMES-COMP MODEL ENG JI CMES-Comp. Model. Eng. Sci. PD JUN PY 2013 VL 92 IS 6 BP 539 EP 556 PG 18 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 205RM UT WOS:000323462400001 ER PT J AU Fernandes, LL Lee, ES Ward, G AF Fernandes, L. L. Lee, E. S. Ward, G. TI Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort SO ENERGY AND BUILDINGS LA English DT Article DE Building energy-efficiency; Daylighting; Control optimization; Electrochromic windows ID VIEW; SATISFACTION; PERFORMANCE; VALIDATION; THERAPY; OFFICE; BLINDS; MODEL AB A simulation study was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled to satisfy key visual comfort parameters. Using the Radiance lighting simulation software, interior illuminance and luminance levels were computed for a south-facing private office illuminated by a window split into two independently-controlled EC panes. The transmittance of these was optimized hourly for a work plane illuminance target while meeting visual comfort constraints, using a least-squares algorithm with linear inequality constraints. Blinds were successively deployed until visual comfort criteria were satisfied. The energy performance of electrochromics proved to be highly dependent on how blinds were controlled. With hourly blind position adjustments, electrochromics showed significantly higher (62% and 53%, respectively without and with overhang) lighting energy consumption than clear glass. With a control algorithm designed to better approximate realistic manual control by an occupant, electrochromics achieved significant savings (48% and 37%, respectively without and with overhang). In all cases, energy consumption decreased when the workplace illuminance target was increased. In addition, the fraction of time during which the occupant had an unobstructed view of the outside was significantly greater with electrochromics: 10 months out of the year vs. a handful of days for the reference case. (c) 2013 Elsevier B.V. All rights reserved. C1 [Fernandes, L. L.; Lee, E. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Bldg Technol & Urban Syst Dept, Berkeley, CA 94720 USA. [Ward, G.] Anyhere Software, Albany, CA 94706 USA. RP Fernandes, LL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Bldg Technol & Urban Syst Dept, Mailstop 90-3111,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM llfernandes@lbl.gov FU Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U.S. Department of Energy [DE-AC02-05CH11231]; California Energy Commission through its Public Interest Energy Research (PIER) Program on behalf of the citizens of California FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231 and by the California Energy Commission through its Public Interest Energy Research (PIER) Program on behalf of the citizens of California. NR 33 TC 20 Z9 20 U1 0 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 J9 ENERG BUILDINGS JI Energy Build. PD JUN PY 2013 VL 61 BP 8 EP 20 DI 10.1016/j.enbuild.2012.10.057 PG 13 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA 165LN UT WOS:000320485500002 ER PT J AU Noris, F Delp, WW Vermeer, K Adamkiewicz, G Singer, BC Fisk, WJ AF Noris, Federico Delp, William W. Vermeer, Kimberly Adamkiewicz, Gary Singer, Brett C. Fisk, William J. TI Protocol for maximizing energy savings and indoor environmental quality improvements when retrofitting apartments SO ENERGY AND BUILDINGS LA English DT Article DE Apartments; Buildings; Costs; Energy; Indoor environmental quality; Protocol; Selection; Retrofits ID EUROPEAN DIAGNOSIS; PERFORMANCE AB The current focus on building energy retrofit provides an opportunity to simultaneously improve indoor environmental quality (IEQ). Toward this end, we developed a protocol for selecting packages of retrofits that both save energy and improve IEQ in apartments. The protocol specifies the methodology for selecting retrofits from a candidate list while addressing expected energy savings, IEQ impacts, and costs in an integrated manner. Interviews, inspections and measurements are specified to collect the needed input information. The protocol was applied to 17 apartments in three buildings in two different climates within California. Diagnostic measurements and surveys conducted before and after retrofit implementation indicate enhanced apartment performance. (c) 2013 Elsevier B.V. All rights reserved. C1 [Noris, Federico; Delp, William W.; Singer, Brett C.; Fisk, William J.] Lawrence Berkeley Natl Lab, Indoor Environm Grp, Berkeley, CA USA. [Vermeer, Kimberly] Urban Habitat Initiat Inc, Boston, MA USA. [Adamkiewicz, Gary] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA. RP Noris, F (reprint author), Lawrence Berkeley Natl Lab, Indoor Environm Grp, Berkeley, CA USA. EM federico.noris@eurac.edu FU California Energy Commission; Public Interest Energy Research Program; Energy Related Environmental Research Program [500-09-022]; Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy [DE-AC02-05CH11231] FX Funding was provided by the California Energy Commission, Public Interest Energy Research Program, Energy Related Environmental Research Program, through contract 500-09-022 and by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy under contract DE-AC02-05CH11231. The authors thank: Rick Diamond and Iain Walker for technical advice; Jim Fitzgerald and Terry Brennan for input on retrofit specifications and costs; Marla Mueller and Chris Early for Program Management; the Technical Advisory Committee for input and assistance in apartment recruitment; tenants and building owners and managers; and Chris Stratton, Iain Walker, and Rick Diamond for reviewing a draft report. NR 27 TC 9 Z9 9 U1 3 U2 24 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 J9 ENERG BUILDINGS JI Energy Build. PD JUN PY 2013 VL 61 BP 378 EP 386 DI 10.1016/j.enbuild.2013.02.046 PG 9 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA 165LN UT WOS:000320485500045 ER PT J AU Cao, R Thapa, R Kim, H Xu, X Kim, MG Li, Q Park, N Liu, ML Cho, J AF Cao, Ruiguo Thapa, Ranjit Kim, Hyejung Xu, Xiaodong Kim, Min Gyu Li, Qing Park, Noejung Liu, Meilin Cho, Jaephil TI Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst SO NATURE COMMUNICATIONS LA English DT Article ID METAL-AIR BATTERIES; FE-BASED CATALYSTS; PEM FUEL-CELLS; ACTIVE-SITES; ELECTROCATALYSTS; ELECTROREDUCTION; DIOXYGEN; SPECTROSCOPY; PORPHYRINS; CHALLENGES AB Electrocatalysts for oxygen reduction are a critical component that may dramatically enhance the performance of fuel cells and metal-air batteries, which may provide the power for future electric vehicles. Here we report a novel bio-inspired composite electrocatalyst, iron phthalocyanine with an axial ligand anchored on single-walled carbon nanotubes, demonstrating higher electrocatalytic activity for oxygen reduction than the state-of-the-art Pt/C catalyst as well as exceptional durability during cycling in alkaline media. Theoretical calculations suggest that the rehybridization of Fe 3d orbitals with the ligand orbitals coordinated from the axial direction results in a significant change in electronic and geometric structure, which greatly increases the rate of oxygen reduction reaction. Our results demonstrate a new strategy to rationally design inexpensive and durable electrochemical oxygen reduction catalysts for metal-air batteries and fuel cells. C1 [Cao, Ruiguo; Thapa, Ranjit; Kim, Hyejung; Xu, Xiaodong; Park, Noejung; Cho, Jaephil] UNIST, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea. [Kim, Min Gyu] PAL, Beamline Res Div, Pohang 790784, South Korea. [Li, Qing] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Liu, Meilin] Georgia Inst Technol, Ctr Innovat Fuel Cell & Battery Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. RP Cho, J (reprint author), UNIST, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea. EM jpcho@unist.ac.kr RI Kim, Min-Gyu/D-8949-2013; Cho, Jaephil/E-4265-2010; Li, Qing/G-4502-2011; Park, Noejung/G-2017-2011; Liu, Meilin/E-5782-2010; Cao, Ruiguo/O-7354-2016 OI Kim, Min-Gyu/0000-0002-2366-6898; Li, Qing/0000-0003-4807-030X; Liu, Meilin/0000-0002-6188-2372; FU Converging Research Centre Program through the MEST [2012K001251]; Ministry of Science, ICT and Future Planning (MSIP) under the C-ITRC(Convergence Information Technology Research Centre) [NIPA-2013-H0301-13-1009] FX This research was supported by Converging Research Centre Program through the MEST (2012K001251). Also, the Ministry of Science, ICT and Future Planning (MSIP) under the C-ITRC(Convergence Information Technology Research Centre) support program (NIPA-2013-H0301-13-1009) supervised by the NIPA(National IT Industry Promotion Agency is acknowledged. NR 37 TC 140 Z9 141 U1 32 U2 248 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUN PY 2013 VL 4 AR 2076 DI 10.1038/ncomms3076 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 208HW UT WOS:000323669700001 PM 23797710 ER PT J AU Fazio, S Fiore, R Lavorini, A Jenkovszky, L Salii, A AF Fazio, S. Fiore, R. Lavorini, A. Jenkovszky, L. Salii, A. TI REGGEOMETRY OF DEEPLY VIRTUAL COMPTON SCATTERING AND EXCLUSIVE VECTOR MESON PRODUCTION AT HERA SO ACTA PHYSICA POLONICA B LA English DT Article ID ELECTROPRODUCTION AB A Reggeometric (Regge+Geometry) model, based on the observed proportionality between the forward slope of the differential cross section and the interaction radius, the latter depending on virtuality Q(2) of the incoming virtual photon and on the mass M-2 of the produced particle, is constructed. The objective of this study is the dependence of the Regge-pole amplitude on the virtuality Q(2) and masses of the external particles, which remains an open problem for the theory. The present analysis is based on the HERA data on Deeply Virtual Compton Scattering (DVCS) and exclusive diffractive Vector Meson Production (VMP). We treat each class of reactions separately, anticipating a further study that will include both a soft and a hard component of the unique Pomeron. C1 [Fazio, S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Fiore, R.; Lavorini, A.] Univ Calabria, Dipartimento Fis, Ist Nazl Fis Nucl, Grp Collegato Cosenza, I-87036 Cosenza, Italy. [Jenkovszky, L.; Salii, A.] Natl Acad Sci Ukraine, Bogolyubov Inst Theoret Phys, UA-03680 Kiev, Ukraine. RP Fazio, S (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM jenk@bitp.kiev.ua; saliy.andriy@gmail.com RI Fazio, Salvatore /G-5156-2010 FU Department of Physics of the University of Calabria; Istituto Nazionale di Fisica Nucleare - Gruppo Collegato di Cosenza; Project "Matter Under Extreme Conditions" of the Ukrainian National Academy of Sciences FX L.J. thanks the Department of Physics of the University of Calabria and the Istituto Nazionale di Fisica Nucleare - Gruppo Collegato di Cosenza, where part of this work was done, for their hospitality and support. He was supported also by the Project "Matter Under Extreme Conditions" of the Ukrainian National Academy of Sciences. NR 16 TC 3 Z9 4 U1 0 U2 2 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD JUN PY 2013 VL 44 IS 6 BP 1333 EP 1353 DI 10.5506/APhysPolB.44.1333 PG 21 WC Physics, Multidisciplinary SC Physics GA 197NZ UT WOS:000322859200007 ER PT J AU Stein, ML Chen, J Anitescu, M AF Stein, Michael L. Chen, Jie Anitescu, Mihai TI STOCHASTIC APPROXIMATION OF SCORE FUNCTIONS FOR GAUSSIAN PROCESSES SO ANNALS OF APPLIED STATISTICS LA English DT Article DE Gaussian process; unbiased estimating equations; Hutchinson trace estimators; maximum likelihood; iterative methods; preconditioning ID SPATIAL DATA SETS; FIXED-DOMAIN ASYMPTOTICS; PARAMETER-ESTIMATION; LIKELIHOOD; ALGORITHM; DATASETS; MATRIX; MODELS AB We discuss the statistical properties of a recently introduced unbiased stochastic approximation to the score equations for maximum likelihood calculation for Gaussian processes. Under certain conditions, including bounded condition number of the covariance matrix, the approach achieves O(n) storage and nearly O(n) computational effort per optimization step, where n is the number of data sites. Here, we prove that if the condition number of the covariance matrix is bounded, then the approximate score equations are nearly optimal in a well-defined sense. Therefore, not only is the approximation efficient to compute, but it also has comparable statistical properties to the exact maximum likelihood estimates. We discuss a modification of the stochastic approximation in which design elements of the stochastic terms mimic patterns from a 2(n) factorial design. We prove these designs are always at least as good as the unstructured design, and we demonstrate through simulation that they can produce a substantial improvement over random designs. Our findings are validated by numerical experiments on simulated data sets of up to 1 million observations. We apply the approach to fit a space-time model to over 80,000 observations of total column ozone contained in the latitude band 40 degrees-50 degrees N during April 2012. C1 [Stein, Michael L.] Univ Chicago, Dept Stat, Chicago, IL 60637 USA. [Chen, Jie; Anitescu, Mihai] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Stein, ML (reprint author), Univ Chicago, Dept Stat, Chicago, IL 60637 USA. EM stein@galton.uchicago.edu; jiechen@mcs.anl.gov; anitescu@mcs.anl.gov FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-06CH11357, DE-SC0002557] FX Government License. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U. S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.; Supported by the U.S. Department of Energy Grant DE-SC0002557.; Supported by the U.S. Department of Energy through Contract DE-AC02-06CH11357. NR 43 TC 9 Z9 10 U1 1 U2 10 PU INST MATHEMATICAL STATISTICS PI CLEVELAND PA 3163 SOMERSET DR, CLEVELAND, OH 44122 USA SN 1932-6157 J9 ANN APPL STAT JI Ann. Appl. Stat. PD JUN PY 2013 VL 7 IS 2 BP 1162 EP 1191 DI 10.1214/13-AOAS627 PG 30 WC Statistics & Probability SC Mathematics GA 197DO UT WOS:000322829800023 ER PT J AU Aranson, IS AF Aranson, Igor S. TI Collective behavior in out-of-equilibrium colloidal suspensions SO COMPTES RENDUS PHYSIQUE LA English DT Article DE Colloids; Self-assembly; Collective behavior ID SOFT CONDENSED MATTER; PHASE-SEPARATION; PARTICLES; CRYSTALS; BACTERIA; LIGHT; ELECTROPHORESIS; DISPERSIONS; LOCOMOTION; INTERFACE AB Colloidal suspensions, heterogeneous fluids containing solid microscopic particles, play an important role in our everyday life, from food and pharmaceutical industries to medicine and nanotechnology. Colloidal suspensions can be divided in two major classes: equilibrium, and active, i.e. maintained out of thermodynamic equilibrium by external electric or magnetic fields, light, chemical reactions, or hydrodynamic shear flow. While the properties of equilibrium colloidal suspensions are fairly well understood, out-of-equilibrium colloids pose a formidable challenge and the research is in its early exploratory stage. The possibility of dynamic self-assembly, a natural tendency of simple building blocks to organize into complex functional architectures, is one of the most remarkable properties of out-of-equilibrium colloids. Examples range from tunable, self-healing colloidal crystals and membranes to self-assembled microswimmers and robots. In contrast to their equilibrium counterparts, out-of-equilibrium colloidal suspensions may exhibit novel material properties, e.g. reduced viscosity, enhanced self-diffusivity, etc. This work reviews recent developments in the field of self-assembly and collective behavior of out-of-equilibrium colloids, with the focus on the fundamental physical mechanisms. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 [Aranson, Igor S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Aranson, Igor S.] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM aronson@anl.gov RI Aranson, Igor/I-4060-2013 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DEAC02-06CH11357] FX The work of I.S.A. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Contract DEAC02-06CH11357. NR 102 TC 18 Z9 18 U1 6 U2 79 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0705 J9 CR PHYS JI C. R. Phys. PD JUN-JUL PY 2013 VL 14 IS 6 BP 518 EP 527 DI 10.1016/j.crhy.2013.05.002 PG 10 WC Astronomy & Astrophysics; Physics, Multidisciplinary SC Astronomy & Astrophysics; Physics GA 201KM UT WOS:000323140500007 ER PT J AU Niyogi, KK Truong, TB AF Niyogi, Krishna K. Truong, Thuy B. TI Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis SO CURRENT OPINION IN PLANT BIOLOGY LA English DT Review ID ORANGE CAROTENOID PROTEIN; PHOTOPROTECTIVE ENERGY-DISSIPATION; SYNECHOCYSTIS PCC 6803; CHLAMYDOMONAS-REINHARDTII; PHYSCOMITRELLA-PATENS; THERMAL DISSIPATION; MOLECULAR SWITCH; BINDING-PROTEIN; PSBS PROTEIN; IN-VITRO AB All photosynthetic organisms need to regulate light harvesting for photoprotection. Three types of flexible non-photochemical quenching (NPQ) mechanisms have been characterized in oxygenic photosynthetic cyanobacteria, algae, and plants: OCP-, LHCSR-, and PSBS-dependent NPQ. OCP-dependent NPQ likely evolved first, to quench excess excitation in the phycobilisome (PB) antenna of cyanobacteria. During evolution of eukaryotic algae, PBs were lost in the green and secondary red plastid lineages, while three-helix light-harvesting complex (LHC) antenna proteins diversified, including LHCSR proteins that function in dissipating excess energy rather than light harvesting. PSBS, an independently evolved member of the LHC protein superfamily, seems to have appeared exclusively in the green lineage, acquired a function as a pH sensor that turns on NPQ, and eventually replaced LHCSR in vascular plants. C1 [Niyogi, Krishna K.; Truong, Thuy B.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Niyogi, Krishna K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Niyogi, KK (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. EM niyogi@berkeley.edu FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, FWP [449B]; Howard Hughes Medical Institute; Gordon and Betty Moore Foundation [GBMF3070] FX We thank Patrick Shih, Alizee Malnoe, and Erika Erickson for comments on the manuscript. Our work on non-photochemical quenching is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, FWP number 449B and by the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation (through Grant GBMF3070) to K.K.N. We apologize to colleagues whose relevant work we were not able to cite and/or discuss extensively because of space constraints. NR 56 TC 107 Z9 114 U1 10 U2 136 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1369-5266 J9 CURR OPIN PLANT BIOL JI Curr. Opin. Plant Biol. PD JUN PY 2013 VL 16 IS 3 BP 307 EP 314 DI 10.1016/j.pbi.2013.03.011 PG 8 WC Plant Sciences SC Plant Sciences GA 171AQ UT WOS:000320897400007 PM 23583332 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akesson, TPA Akimoto, G Akimov, AV Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV dos Santos, SPA Amorim, A Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Argyropoulos, S Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Artamonov, A Artoni, G Arutinov, D Asai, S Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Atkinson, M Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Balek, P Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bittner, B Black, CW Black, KM Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blocki, J Blondel, A Bum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozovic-Jeisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantri, R Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Courneyea, L Cowan, G Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'razio, A De Sousaa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallaire, F Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Dassoulas, JA Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundisi, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lorenzi, F de Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dressnandt, N Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Duguid, L Dunford, M Yildiz, HD Duxfleld, R Dwuznik, M Duren, M Ebenstein, WL Ebke, J Eckweiler, S Edmonds, K Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flech, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilchriese, M Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Gjelsten, BK Gladilin, LK Glasman, C Gatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bod, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohsjean, A Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Guicheney, C Guido, E Guindon, S Gul, U Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Hajduk, Z Hakobyan, H Hall, D Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM van Huysduynen, LH Horner, S Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Iliadis, D Ilic, N Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Plante, IJL Jeng, GY Jennens, D Jenni, P Loevschall-Jensen, AE Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karagounis, M Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Keller, JS Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomicha, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Krejci, F Kretzschmar, J Kreutzfeldt, K Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, MK Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Leister, AG Leited, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, JB Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lukas, W Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundberg, O Lundquist, J Lungwitz, M Lynn, D Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguensa, JM Macina, D Mackeprang, R Madaras, RJ Maddocks, HJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchika, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, H Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsunaga, H Matsushita, T Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mayne, A Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meronia, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Moles-Valls, R Molfetas, A Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Muller, TA Mueller, T Muenstermann, D Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomucenoa, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pizio, C Pleier, MA Plotnikova, E Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Puldon, D Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Raas, M Radeka, V Radescu, V Radloff, P Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rao, K Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrania, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Castillo, IS Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarrazin, B Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schafer, U Schaelicke, A Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sood, A Sopko, V Sopko, B Sosebee, M Soualah, R Soueid, P Soukharev, A Spagnolo, S Spano, F Spighio, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Sykora, I Sykora, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Urquijo, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valentinetti, S Valero, A Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van Der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, R Wang, SM Wang, T Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Williams, S Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yasu, Y Yatsenko, E Ye, J Ye, S Yen, AL Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJ Youssef, S Yu, D Yu, DR Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zenin, O Zenis, T Zinonos, Z Zerwas, D della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zibell, A Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Nedden, MZ Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amor dos Santos, S. P. Amorim, A. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Argyropoulos, S. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Atkinson, M. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Balek, P. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bittner, B. Black, C. W. Black, K. M. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blondel, A. Bum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jeisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantri, R. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Courneyea, L. Cowan, G. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'razio, A. Da Cunha Sargedas De Sousaa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallaire, F. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundisi, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. de Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dressnandt, N. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Duguid, L. Dunford, M. Yildiz, H. Duran Duxfleld, R. Dwuznik, M. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edmonds, K. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flech, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilchriese, M. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Gatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bod, I. Grafstroem, P. Grahn, K-J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohsjean, A. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Guicheney, C. Guido, E. Guindon, S. Gul, U. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Hajduk, Z. Hakobyan, H. Hall, D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Horner, S. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Plante, I. Jen-La Jeng, G. -Y. Jennens, D. Jenni, P. Loevschall-Jensen, A. E. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Juste Rozas, A. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karagounis, M. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomicha, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Krejci, F. Kretzschmar, J. Kreutzfeldt, K. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, M. K. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Leister, A. G. Leited, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lukas, W. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundberg, O. Lundquist, J. Lungwitz, M. Lynn, D. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguensa, J. Macina, D. Mackeprang, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchika, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martin-Haugh, S. Martinez, H. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsunaga, H. Matsushita, T. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mayne, A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meronia, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Moles-Valls, R. Molfetas, A. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomucenoa, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Olivares Pino, S. A. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Pedraza Lopez, S. Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pizio, C. Pleier, M. -A. Plotnikova, E. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Puldon, D. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Raas, M. Radeka, V. Radescu, V. Radloff, P. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rao, K. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrania, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarrazin, B. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, U. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. Spagnolo, S. Spano, F. Spighio, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Sykora, I. Sykora, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valentinetti, S. Valero, A. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Williams, S. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yasu, Y. Yatsenko, E. Ye, J. Ye, S. Yen, A. L. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. Youssef, S. Yu, D. Yu, D. R. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zenin, O. Zenis, T. Zinonos, Z. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Nedden, M. zur Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for third generation scalar leptoquarks in pp collisions at root s=7 TeV with the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering AB A search for pair-produced third generation scalar leptoquarks is presented, using proton-proton collisions at root s = 7 TeV at the LHC. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 4.7 fb(-1). Each leptoquark is assumed to decay to a tau lepton and a b-quark with a branching fraction equal to 100%. No statistically significant excess above the Standard Model expectation is observed. Third generation leptoquarks are therefore excluded at 95% confidence level for masses less than 534 GeV. C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Edson, W.; Ernst, J.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Bahinipati, S.; Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Huseynov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jeisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Mader, W. F.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Nikiforov, A.; Schulz, H.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Grafstroem, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighio, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, INFN Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Abajyan, T.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Gatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Sarrazin, B.; Schaepe, S.; Schmieden, K.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchika, C.; Marroquim, F.; Nepomucenoa, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leited, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Subramaniam, R.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Gillberg, D.; Koffas, T.; Lacey, J.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froidevaux, D.; Gabaldon, C.; Garelli, N.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hahn, F.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Sfyrla, A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Plante, I. Jen-La; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Olivares Pino, S. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Wang, J.; Xu, D.; Yao, L.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Meng, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Dodd, J.; Grau, N.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Spousta, M.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Loevschall-Jensen, A. E.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, INFN Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bod, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Hamburg, Germany. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.; Wu, X.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] INFN Lab Nazl Frascati, Frascati, Italy. [Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flech, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Univ Genoa, INFN Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Hamer, M.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Geweniger, C.; Hanke, P.; Henke, M.; Khomicha, A.; Kluge, E. -E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Karnevskiy, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Lukas, W.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Mandrysch, R.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; de Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, INFN Sez Lecce, Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pilkington, A. D.; Robinson, J. E. M.; Snow, S. W.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Klemetti, M.; Mantifel, R.; Mc Donald, J.; Pater, J. R.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, J. B.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Yang, H.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meronia, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Univ Milan, INFN Sez Milano, Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Banerjee, P.; Bouchami, J.; Dallaire, F.; Davies, M.; Giunta, M.; Leroy, C.; Martin, J. P.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mann, A.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Ince, T.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundisi, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Univ Naples Federico II, INFN Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] Univ Illinois, Dept Phys, De Kalb, IL USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. S.; Bogdanchikov, A.; Kazanin, V. F.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Andari, N.; Auge, E.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Andari, N.; Auge, E.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Korn, A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Univ Pavia, INFN Sez Pavia, I-27100 Pavia, Italy. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Dressnandt, N.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, INFN Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amor dos Santos, S. P.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousaa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguensa, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Torregrosa, E. Fullana; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'razio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrania, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, INFN Sez Roma 1, I-00185 Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'razio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Messina, A.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.] Univ Roma Tre, INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Fac Sci Ain Chock, Reseau Univ Phys Hautes Energies, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Ramos, J. A. Manjarres; Mansoulie, B.; Martinez, H.; Meyer, J-P.; Mijovic, L.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.; Xu, C.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfleld, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tsionou, D.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Assamagan, K.; Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Carrillo-Montoya, G. D.; Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Jeng, G. -Y.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Di Mattia, A.; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Krieger, P.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Farrell, S.; Eschrich, I. Gough; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Rao, K.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soualah, R.] INFN Grp Collegato Udine, Trieste, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Castillo, L. R. Flores; Gutzwiller, O.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, K.; Becks, K. H.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Sherman, D.; Tipton, P.; Wall, R.; Walsh, B.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Apolle, R.; Davies, E.; Mattravers, C.; Nash, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Maximov, D. A.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Hernandez, A. M. Castaneda] UASLP, Dept Phys, San Luis Potosi, Mexico. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Do Valle Wemans, A.] Univ Nova Lisboa, Dep Fis, Fac Ciencias & Tecnol, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; O'Shea, Val/G-1279-2010; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Olshevskiy, Alexander/I-1580-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Nemecek, Stanislav/G-5931-2014; Kepka, Oldrich/G-6375-2014; Lokajicek, Milos/G-7800-2014; Jakoubek, Tomas/G-8644-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Kuday, Sinan/C-8528-2014; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Moorhead, Gareth/B-6634-2009; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Wemans, Andre/A-6738-2012; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Shabalina, Elizaveta/M-2227-2013; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; De, Kaushik/N-1953-2013; Snesarev, Andrey/H-5090-2013; Warburton, Andreas/N-8028-2013; Sukharev, Andrey/A-6470-2014; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Fabbri, Laura/H-3442-2012; Villa, Mauro/C-9883-2009; Nozka, Libor/G-5550-2014; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Moraes, Arthur/F-6478-2010; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Ferrando, James/A-9192-2012; Brooks, William/C-8636-2013; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Marti-Garcia, Salvador/F-3085-2011 OI Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Smestad, Lillian/0000-0002-0244-8736; Giordani, Mario/0000-0002-0792-6039; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; O'Shea, Val/0000-0001-7183-1205; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Moorhead, Gareth/0000-0002-9299-9549; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Prokoshin, Fedor/0000-0001-6389-5399; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; De, Kaushik/0000-0002-5647-4489; Warburton, Andreas/0000-0002-2298-7315; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Villa, Mauro/0000-0002-9181-8048; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Moraes, Arthur/0000-0002-5157-5686; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Ferrando, James/0000-0002-1007-7816; Brooks, William/0000-0001-6161-3570; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern, Switzerland; Cantons of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 57 TC 9 Z9 9 U1 6 U2 126 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2013 IS 6 AR 033 DI 10.1007/JHEP06(2013)033 PG 40 WC Physics, Particles & Fields SC Physics GA 177NC UT WOS:000321380800033 ER PT J AU Blaschke, DN Grosse, H Wallet, JC AF Blaschke, Daniel N. Grosse, Harald Wallet, Jean-Christophe TI Slavnov-Taylor identities, non-commutative gauge theories and infrared divergences SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Non-Commutative Geometry; Gauge Symmetry; Renormalization Regularization and Renormalons; BRST Symmetry ID BETA-FUNCTION; PHI(4)(4) THEORY; BRST SYMMETRY; FIELD-THEORY; INVARIANCE; VACUUM; SPACE; MODEL; RENORMALIZABILITY; DUALITY AB In this work we clarify some properties of the or ene-loop IR divergences In nonAbelian gauge field theories on non-commutative non-dimensional Moyal space. Additionally, we derive the tree-level Slavnov-Taylor identities relating the two, three and four point functions, and verify their consistency with the divergent one-loop level results. We also discuss the special case of two dimensions. C1 [Blaschke, Daniel N.] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. [Grosse, Harald] Univ Vienna, Fac Phys, A-1090 Vienna, Austria. [Wallet, Jean-Christophe] CNRS, Phys Theor Lab, F-91405 Orsay, France. [Wallet, Jean-Christophe] Univ Paris 11, F-91405 Orsay, France. RP Blaschke, DN (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. EM dblaschke@lanl.gov; harald.grosse@univie.ac.at; jean-christophe.wallet@th.u-psud.fr OI Wallet, Jean-Christophe/0000-0001-6947-9396 FU APART fellowship of the Austrian Academy of Sciences; theory division of LANL FX Discussions with H. Steinacker, P. Vitale and NI. Wohlgenannt at early stages of this work are gratefully acknowledged. D.N. Blaschke is a recipient of an APART fellowship of the Austrian Academy of Sciences, and is also grateful for the hospitality of the theory division of LANL and its partial financial support. NR 60 TC 7 Z9 7 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2013 IS 6 AR 038 DI 10.1007/JHEP06(2013)038 PG 23 WC Physics, Particles & Fields SC Physics GA 177NC UT WOS:000321380800038 ER PT J AU Bonito, G Gryganskyi, A Hameed, K Schadt, C Pelletier, D Schaefer, A Tuskan, G Labbe, J Martin, F Doktycz, M LaButti, K Ohm, R Grigoriev, I Vilglays, R AF Bonito, G. Gryganskyi, A. Hameed, K. Schadt, C. Pelletier, D. Schaefer, A. Tuskan, G. Labbe, J. Martin, F. Doktycz, M. LaButti, K. Ohm, R. Grigoriev, I. Vilglays, R. TI Co-evolution of Mortierella elongata and its endosymbiotic bacterium SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT APS-MSA Joint Meeting CY AUG 10-14, 2013 CL Austin, TX SP APS, MSA C1 [Bonito, G.; Gryganskyi, A.; Hameed, K.; Vilglays, R.] Duke Univ, Durham, NC USA. [Schadt, C.; Pelletier, D.; Tuskan, G.; Labbe, J.; Doktycz, M.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Schaefer, A.] Univ Washington, Seattle, WA 98195 USA. [Martin, F.] INRA, Nancy, France. [LaButti, K.] Dept Energy LBL, Berkeley, CA USA. [Ohm, R.; Grigoriev, I.] Joint Genome Inst, Walnut Creek, CA USA. RI Schadt, Christopher/B-7143-2008; Doktycz, Mitchel/A-7499-2011; Tuskan, Gerald/A-6225-2011 OI Schadt, Christopher/0000-0001-8759-2448; Doktycz, Mitchel/0000-0003-4856-8343; Tuskan, Gerald/0000-0003-0106-1289 NR 0 TC 0 Z9 0 U1 1 U2 17 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2013 VL 103 IS 6 SU 2 BP 18 EP 19 PG 2 WC Plant Sciences SC Plant Sciences GA 196TM UT WOS:000322799500099 ER PT J AU Grigoriev, IV AF Grigoriev, I. V. TI One genome, two genomes, one thousand genomes SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT APS-MSA Joint Meeting CY AUG 10-14, 2013 CL Austin, TX SP APS, MSA C1 [Grigoriev, I. V.] US DOE Joint Genome Inst, Walnut Creek, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 4 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2013 VL 103 IS 6 SU 2 BP 52 EP 53 PG 2 WC Plant Sciences SC Plant Sciences GA 196TM UT WOS:000322799500288 ER PT J AU Hutchinson, MI Sauer, K Herrera, J Porras-Alfaro, A Sandona, K Tobias, T Powell, AJ Natvig, DO AF Hutchinson, M. I. Sauer, K. Herrera, J. Porras-Alfaro, A. Sandona, K. Tobias, T. Powell, A. J. Natvig, D. O. TI Thermophilic fungi across diverse latitudes and elevations in the western United States SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT APS-MSA Joint Meeting CY AUG 10-14, 2013 CL Austin, TX SP APS, MSA C1 [Hutchinson, M. I.; Sauer, K.; Natvig, D. O.] Univ New Mexico, Albuquerque, NM 87131 USA. [Herrera, J.] Truman State Univ, Kirksville, MO USA. [Porras-Alfaro, A.; Sandona, K.; Tobias, T.] Western Illinois Univ, Macomb, IL 61455 USA. [Powell, A. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2013 VL 103 IS 6 SU 2 BP 64 EP 64 PG 1 WC Plant Sciences SC Plant Sciences GA 196TM UT WOS:000322799500350 ER PT J AU Kuo, A Kohler, A Grigoriev, I Martin, F AF Kuo, A. Kohler, A. Grigoriev, I. Martin, F. TI Large-scale genomic and transcriptomic analysis of mycorrhizal fungi SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT APS-MSA Joint Meeting CY AUG 10-14, 2013 CL Austin, TX SP APS, MSA C1 [Kuo, A.; Grigoriev, I.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Kohler, A.; Martin, F.] INRA, Nancy, France. NR 0 TC 0 Z9 0 U1 1 U2 5 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2013 VL 103 IS 6 SU 2 BP 75 EP 75 PG 1 WC Plant Sciences SC Plant Sciences GA 196TM UT WOS:000322799500415 ER PT J AU Nagy, LG Floudas, D Riley, R Grigoriev, IV Hibbett, D AF Nagy, L. G. Floudas, D. Riley, R. Grigoriev, I. V. Hibbett, D. TI A critical look at comparative genomic approaches: What and how we can learn from a 1000 fungal genomes SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT APS-MSA Joint Meeting CY AUG 10-14, 2013 CL Austin, TX SP APS, MSA C1 [Nagy, L. G.] Clark Univ, Worcester, MA 01610 USA. [Floudas, D.; Hibbett, D.] Clark Univ, Dept Biol, Worcester, MA 01610 USA. [Riley, R.; Grigoriev, I. V.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. NR 0 TC 0 Z9 0 U1 1 U2 4 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2013 VL 103 IS 6 SU 2 BP 101 EP 102 PG 2 WC Plant Sciences SC Plant Sciences GA 196TM UT WOS:000322799500560 ER PT J AU Ohm, R Goodwin, S Grigoriev, I AF Ohm, R. Goodwin, S. Grigoriev, I. CA Dothideomycetes Consortium TI Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT APS-MSA Joint Meeting CY AUG 10-14, 2013 CL Austin, TX SP APS, MSA C1 [Ohm, R.; Grigoriev, I.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Goodwin, S.] Purdue Univ, USDA, ARS, W Lafayette, IN 47907 USA. NR 0 TC 2 Z9 2 U1 3 U2 14 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2013 VL 103 IS 6 SU 2 BP 106 EP 106 PG 1 WC Plant Sciences SC Plant Sciences GA 196TM UT WOS:000322799500583 ER PT J AU Porras-Alfaro, A Tobias, T Sandona, KP Liu, KL Xie, G Kuske, C AF Porras-Alfaro, A. Tobias, T. Sandona, K. P. Liu, K. L. Xie, G. Kuske, C. TI Characterization of LSU and ITS rDNA for automated fungal classification SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT Joint Meeting of the American-Phytopathological-Society (APS) and the Mycological-Society-of-America (MSA) CY AUG 10-14, 2013 CL Austin, TX SP Amer Phytopathol Soc (APS), Mycol Soc Amer (MSA) C1 [Porras-Alfaro, A.; Tobias, T.; Sandona, K. P.] Western Illinois Univ, Macomb, IL 61455 USA. [Liu, K. L.] Natl Cheng Kung Univ, Tainan 70101, Taiwan. [Xie, G.; Kuske, C.] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2013 VL 103 IS 6 SU 2 BP 115 EP 115 PG 1 WC Plant Sciences SC Plant Sciences GA 196TM UT WOS:000322799500633 ER PT J AU Powell, AJ Hutchinson, MI Natvig, DO Redfern, J Collins, SL Herrera, J Porras-Alfaro, A AF Powell, A. J. Hutchinson, M. I. Natvig, D. O. Redfern, J. Collins, S. L. Herrera, J. Porras-Alfaro, A. TI Structure and function of the blue grama grass rhizosphere microbiome under global environmental change scenarios in an American aridland ecosystem SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT APS-MSA Joint Meeting CY AUG 10-14, 2013 CL Austin, TX SP APS, MSA C1 [Powell, A. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hutchinson, M. I.; Natvig, D. O.; Redfern, J.; Collins, S. L.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Herrera, J.] Truman State Univ, Dept Biol, Kirksville, MO USA. [Porras-Alfaro, A.] Western Illinois Univ, Dept Biol Sci, Macomb, IL 61455 USA. OI Collins, Scott/0000-0002-0193-2892 NR 0 TC 0 Z9 0 U1 0 U2 13 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2013 VL 103 IS 6 SU 2 BP 115 EP 115 PG 1 WC Plant Sciences SC Plant Sciences GA 196TM UT WOS:000322799500635 ER PT J AU Riley, R Salamov, A Blanchette, R Hibbett, D Grigoriev, I AF Riley, R. Salamov, A. Blanchette, R. Hibbett, D. Grigoriev, I. CA Basidiomycota Consortium TI Comparative analysis of 35 basidiomycete genomes SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT APS-MSA Joint Meeting CY AUG 10-14, 2013 CL Austin, TX SP APS, MSA C1 [Riley, R.; Salamov, A.; Grigoriev, I.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Blanchette, R.] Univ Minnesota, St Paul, MN 55108 USA. [Hibbett, D.] Clark Univ, Worcester, MA 01610 USA. NR 0 TC 0 Z9 0 U1 0 U2 4 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2013 VL 103 IS 6 SU 2 BP 121 EP 121 PG 1 WC Plant Sciences SC Plant Sciences GA 196TM UT WOS:000322799500665 ER PT J AU Spatafora, J Stajich, J Grigoriev, I AF Spatafora, J. Stajich, J. Grigoriev, I. TI 1000 Fungal Genomes project SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT APS-MSA Joint Meeting CY AUG 10-14, 2013 CL Austin, TX SP APS, MSA C1 [Spatafora, J.] Oregon State Univ, Corvallis, OR 97331 USA. [Stajich, J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Grigoriev, I.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. RI Stajich, Jason/C-7297-2008 OI Stajich, Jason/0000-0002-7591-0020 NR 0 TC 4 Z9 4 U1 0 U2 12 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2013 VL 103 IS 6 SU 2 BP 137 EP 137 PG 1 WC Plant Sciences SC Plant Sciences GA 196TM UT WOS:000322799500757 ER PT J AU Toome, M Riley, RW James, TY Lazarus, KL Henrissat, B Robin, OA Grigoriev, IV Spatafora, JW Aime, MC AF Toome, M. Riley, R. W. James, T. Y. Lazarus, K. L. Henrissat, B. Robin, O. A. Grigoriev, I. V. Spatafora, J. W. Aime, M. C. TI The genome of the fern pathogen Mixia osmundae reveals hints about its cryptic biology SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT Joint Meeting of the American-Phytopathological-Society (APS) and the Mycological-Society-of-America (MSA) CY AUG 10-14, 2013 CL Austin, TX SP Amer Phytopathol Soc (APS), Mycol Soc Amer (MSA) C1 [Toome, M.; Aime, M. C.] Purdue Univ, W Lafayette, IN 47907 USA. [Riley, R. W.; Robin, O. A.; Grigoriev, I. V.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [James, T. Y.; Lazarus, K. L.] Univ Michigan, Ann Arbor, MI USA. [Henrissat, B.] CNRS, Marseille, France. [Henrissat, B.] Aix Marseille Univ, Marseille, France. [Spatafora, J. W.] Oregon State Univ, Corvallis, OR 97331 USA. RI Henrissat, Bernard/J-2475-2012 NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2013 VL 103 IS 6 SU 2 BP 146 EP 146 PG 1 WC Plant Sciences SC Plant Sciences GA 196TM UT WOS:000322799500806 ER PT J AU Nagy, LG Floudas, D Riley, R Barry, K Grigoriev, IV Hibbett, DS AF Nagy, L. G. Floudas, D. Riley, R. Barry, K. Grigoriev, I. V. Hibbett, D. S. TI Diversification of wood decay systems in early evolution of Agaricomycotina SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT APS-MSA Joint Meeting CY AUG 10-14, 2013 CL Austin, TX SP APS, MSA C1 [Nagy, L. G.; Floudas, D.; Hibbett, D. S.] Clark Univ, Dept Biol, Worcester, MA 01610 USA. [Riley, R.; Barry, K.; Grigoriev, I. V.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2013 VL 103 IS 6 SU 2 BP 181 EP 181 PG 1 WC Plant Sciences SC Plant Sciences GA 196TM UT WOS:000322799501059 ER PT J AU Jumpponen, A Zeglin, L David, M Prestat, E Brown, S Dvornik, J Lothamer, K Hettich, R Jansson, J Rice, CW Tringe, S Myrold, D AF Jumpponen, A. Zeglin, L. David, M. Prestat, E. Brown, S. Dvornik, J. Lothamer, K. Hettich, R. Jansson, J. Rice, C. W. Tringe, S. Myrold, D. TI Fungal community responses to discrete precipitation pulses under altered rainfall intervals SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT APS-MSA Joint Meeting CY AUG 10-14, 2013 CL Austin, TX SP APS, MSA C1 [Jumpponen, A.; Brown, S.; Lothamer, K.; Rice, C. W.] Kansas State Univ, Manhattan, KS 66506 USA. [Zeglin, L.; Myrold, D.] Oregon State Univ, Corvallis, OR 97331 USA. [David, M.; Prestat, E.; Dvornik, J.; Jansson, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hettich, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Tringe, S.] Joint Genome Inst, Berkeley, CA USA. RI Myrold, David/E-1813-2011; Hettich, Robert/N-1458-2016 OI Myrold, David/0000-0001-6418-226X; Hettich, Robert/0000-0001-7708-786X NR 0 TC 0 Z9 0 U1 1 U2 18 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2013 VL 103 IS 6 SU 2 BP 182 EP 183 PG 2 WC Plant Sciences SC Plant Sciences GA 196TM UT WOS:000322799501068 ER PT J AU Weiss, K Iuricich, F Fellegara, R De Floriani, L AF Weiss, Kenneth Iuricich, Federico Fellegara, Riccardo De Floriani, Leila TI A primal/dual representation for discrete Morse complexes on tetrahedral meshes SO COMPUTER GRAPHICS FORUM LA English DT Article ID SMALE COMPLEXES; VISUALIZATION; COMPUTATION AB We consider the problem of computing discrete Morse and Morse-Smale complexes on an unstructured tetrahedral mesh discretizing the domain of a 3D scalar field. We use a duality argument to define the cells of the descending Morse complex in terms of the supplied (primal) tetrahedral mesh and those of the ascending complex in terms of its dual mesh. The Morse-Smale complex is then described combinatorially as collections of cells from the intersection of the primal and dual meshes. We introduce a simple compact encoding for discrete vector fields attached to the mesh tetrahedra that is suitable for combination with any topological data structure encoding just the vertices and tetrahedra of the mesh. We demonstrate the effectiveness and scalability of our approach over large unstructured tetrahedral meshes by developing algorithms for computing the discrete gradient field and for extracting the cells of the Morse and Morse-Smale complexes. We compare implementations of our approach on an adjacency-based topological data structure and on the PR-star octree, a compact spatio-topological data structure. C1 [Weiss, Kenneth] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Iuricich, Federico; Fellegara, Riccardo; De Floriani, Leila] Univ Genoa, Dept Comp Sci, Genoa, Italy. RP Weiss, K (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. OI Weiss, Kenneth/0000-0001-6649-8022 FU Italian Ministry of Education and Research under the PRIN program; National Science Foundation [IIS-1116747]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344 (LLNL-JRNL-608773)] FX We thank the reviewers for their many helpful comments and suggestions. This work has been partially supported by the Italian Ministry of Education and Research under the PRIN 2009 program, and by the National Science Foundation under grant number IIS-1116747. It has also been performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-608773). NR 29 TC 5 Z9 5 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0167-7055 EI 1467-8659 J9 COMPUT GRAPH FORUM JI Comput. Graph. Forum PD JUN PY 2013 VL 32 IS 3 BP 361 EP 370 DI 10.1111/cgf.12123 PN 3 PG 10 WC Computer Science, Software Engineering SC Computer Science GA 191UH UT WOS:000322437600012 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akesson, TPA Akimote, G Akimov, AV Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Dos Santos, SPA Amorimi, A Amoroso, S Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angelidakis, S Anger, P Angeramis, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Argyropoulos, S Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Artamonov, A Artoni, G Arutinovi, D Asai, S Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astbury, A Atkinson, M Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Balek, P Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battaglia, A Battitin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Berniuss, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bittner, B Black, CW Black, JE Black, KM Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blocki, J Blum, W Blumenschein, U Boekbink, GJ Bobbink, GJ Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortfeldt, J Bortolotto, V Boss, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruchi, M Bryngemark, L Buanes, T Buat, Q Bucci, E Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Bueschers, V Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Canteros, J Cantrill, R Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Caballeri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chicfari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christovs, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Cifici, R Cinca, D Cindro, V Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clementi, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Courneyea, L Cowan, G Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallaire, F Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Dassoulas, JA Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenauxs, B Dedovich, DV Degenhardt, J Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobbs, M Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dressnandt, N Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, E Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Duguid, L Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dueren, M Ebenstein, WL Ebke, J Eckweiler, S Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Fitzgerald, EA Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Martin, TF Formica, A Fortis, A Fortin, D Fournier, D Fowler, AJ Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadatsch, S Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, G Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazism, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilchriese, M Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Goepfert, T Goeringer, C Goessling, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohsjean, A Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Hajduk, Z Hakobyan, H Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamiltonms, A Hamilton, S Hat, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Harenberg, T Harkusha, S Harpers, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderon, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM van Huysduynen, LH Horner, S Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Iliadis, D Ilic, N Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Jen-La Plante, I Jeng, GY Jennens, D Jenni, P Loevschall-Jensen, AE Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karagounis, M Karakostas, K Karnevskiys, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Keller, JS Kenyon, M Keoshkerian, H Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarkim, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsous, I Koll, J Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kravchenkos, A Kreiss, S Krejci, F Kretzschmar, J Kreutzfeldt, K Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, MK Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, D Liu, JB Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merinos, JL Lloyds, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginovi, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Lostya, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lukas, W Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundberg, O Lundquist, J Lungwitz, M Lynn, D Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Maddocks, HJ Mader, WF Madsen, AK Macno, M Macno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mamuzici, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, H Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsunaga, H Matsushita, T Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Donald, J Mc Kee, SP McCarn, A Mccarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mc Laughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyers, C Meyers, C Meyer, JP Meyer, J Meyer, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindurs, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Moles-Valls, R Molfetas, A Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Muller, TA Mueller, T Muenstermann, D Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P New-Comer, FM Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novakova, J Nozaki, M Nozka, L Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefal, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Etan, MTP Reale, VP Perilli, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Picciaini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pizio, C Pleier, MA Plotnikova, E Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Poll, J Polychronakoss, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Puldon, D Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Raas, M Radeka, V Radescu, V Radloff, P Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rao, K Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Ritsch, E Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, MS Ruhr, E Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Castillo, IS Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarrazin, B Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schafer, U Schaelicke, A Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavia, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijackii, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simaki, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Silwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sood, A Sopko, V Sopko, B Sosebees, M Soueid, R Soueid, P Soukharev, A South, D Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Stroehmer, R Strom, DM Strong, JA Stroynowski, R Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, H Subramaniam, R Succurro, A Sugayan, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Sykora, I Sykora, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Tenon, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Vacavant, L Vacek, V Vachon, B Vahsen, S Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van Der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vague, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, R Wang, SM Wang, T Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Williams, S Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yasu, Y Yatsenko, E Ye, J Ye, S Yen, AL Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJ Youssef, S Yu, D Yu, DR Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zenin, O Zenis, T Zinonos, Z Zerwas, D della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zibell, A Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Nedden, MZ Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akesson, T. P. A. Akimote, G. Akimov, A. V. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amor Dos Santos, S. P. Amorimi, A. Amoroso, S. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angelidakis, S. Anger, P. Angeramis, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Argyropoulos, S. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Artamonov, A. Artoni, G. Arutinovi, D. Asai, S. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astbury, A. Atkinson, M. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battitin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Berniuss, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bittner, B. Black, C. W. Black, J. E. Black, K. M. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blum, W. Blumenschein, U. Boekbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Boss, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruchi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, E. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Bueschers, V. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Canteros, J. Cantrill, R. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Caballeri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chicfari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christovs, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Cifici, R. Cinca, D. Cindro, V. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clementi, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Courneyea, L. Cowan, G. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Sargedas De Sousa, M. J. Da Cunha Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallaire, F. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenauxs, B. Dedovich, D. V. Degenhardt, J. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dressnandt, N. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, E. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Duguid, L. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Martin, T. Fonseca Formica, A. Fortis, A. Fortin, D. Fournier, D. Fowler, A. J. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadatsch, S. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, G. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazism, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilchriese, M. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohsjean, A. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Hajduk, Z. Hakobyan, H. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamiltonms, A. Hamilton, S. Hat, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Harenberg, T. Harkusha, S. Harpers, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderon, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Horner, S. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jen-La Plante, I. Jeng, G. -Y. Jennens, D. Jenni, P. Loevschall-Jensen, A. E. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Juste Rozas, A. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karagounis, M. Karakostas, K. Karnevskiys, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kenyon, M. Keoshkerian, H. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarkim, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsous, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenkos, A. Kreiss, S. Krejci, F. Kretzschmar, J. Kreutzfeldt, K. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, M. K. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, D. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merinos, J. Llorente Lloyds, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginovi, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lo Sterzo, F. Lostya, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lukas, W. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundberg, O. Lundquist, J. Lungwitz, M. Lynn, D. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Madsen, A. K. Macno, M. Macno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mamuzici, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martin-Haugh, S. Martinez, H. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsunaga, H. Matsushita, T. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. Mccarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mc Laughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyers, C. Meyers, C. Meyer, J-P. Meyer, J. Meyer, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindurs, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Moles-Valls, R. Molfetas, A. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. New-Comer, F. M. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novakova, J. Nozaki, M. Nozka, L. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefal, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pedraza Lopez, S. Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Perez Garcia-Etan, M. T. Reale, V. Perez Perilli, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Picciaini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pizio, C. Pleier, M. -A. Plotnikova, E. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Poll, J. Polychronakoss, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Puldon, D. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Raas, M. Radeka, V. Radescu, V. Radloff, P. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rao, K. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Ritsch, E. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, E. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarrazin, B. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, U. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavia, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijackii, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simaki, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Silwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebees, M. Soueid, R. Soueid, P. Soukharev, A. South, D. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, Hs. Subramaniam, R. Succurro, A. Sugayan, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Sykora, I. Sykora, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Tenon, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vague, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Williams, S. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yasu, Y. Yatsenko, E. Ye, J. Ye, S. Yen, A. L. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. Youssef, S. Yu, D. Yu, D. R. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zenin, O. Zenis, T. Zinonos, Z. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Nedden, M. zur Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for a light charged Higgs boson in the decay channel H+ -> c(s)over-bar in t(t)over-bar events using pp collisions at root s=7 TeV with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID MODELS; PHENOMENOLOGY; ENERGIES; MSSM; MASS; LHC; LEP AB A search for a charged Higgs boson (H+) in t (t) over bar decays is presented, where one of the top quarks decays via t -> H(+)b, followed by H+ -> two jets (c (s) over bar). The other top quark decays to Wb, where the W boson then decays into a lepton (e/mu) and a neutrino. The data were recorded in pp collisions at root s = 7 TeV by the ATLAS detector at the LHC in 2011, and correspond to an integrated luminosity of 4.7 fb(-1). With no observation of a signal, 95 % confidence level (CL) upper limits are set on the decay branching ratio of top quarks to charged Higgs bosons varying between 5 % and 1 % for H+ masses between 90 GeV and 150 GeV, assuming B(H+ -> c (s) over bar) = 100 %. C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Edson, W.; Ernst, J.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Subramania, Hs.; Vague, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Cifici, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Macno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Macno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, E.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebees, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Dris, M.; Gazism, E. N.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Huseynov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Abdallah, J.; Anisenkov, A.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Roda, C.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Roda, C.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Roda, C.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijackii, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzici, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Anisenkov, A.; Annovi, A.; Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hesketh, G. G.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hesketh, G. G.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Nikiforov, A.; Schulz, H.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Anisenkov, A.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Anisenkov, A.; Annovi, A.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Aloisio, A.; Anisenkov, A.; Annovi, A.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hervas, L.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mc Laughlan, T.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, School Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Phys Engn, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruchi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Grafstroem, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Picciaini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Picciaini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Abajyan, T.; Arutinovi, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hertenberger, R.; Hillert, S.; Huegging, F.; Janssen, J.; Karagounis, M.; Khoriauli, G.; Koevesarkim, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Sarrazin, B.; Schaepe, S.; Schmieden, K.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora (UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Berniuss, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Kravchenkos, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Macno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakoss, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Subramaniam, R.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; French, S. T.; Frost, J. A.; Herrberg, R.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Asner, D.; Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Banfi, D.; Battitin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froidevaux, D.; Gabaldon, C.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Gillberg, D.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hahn, F.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Jen-La Plante, I.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyers, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cottin, G.; Diaz, M. A.; Pino, S. A. Olivares] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Wang, J.; Xu, D.; Yao, L.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Hat, L.; Jiang, Y.; Li, B.; Li, S.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Wu, Y.; Xu, C.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Meng, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Chen, S.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angeramis, A.; Bain, T.; Brooijmans, G.; Hernandez, A. M. Castaneda; Chen, Y.; Dodd, J.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Loevschall-Jensen, A. E.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundberg, O.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindurs, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Herten, G.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Hamburg, Germany. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Herten, G.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 04, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Korn, A.; Martin, V. J.; O'Brien, B. J.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] INFN Lab Nazl Frascati, Frascati, Italy. [Aad, G.; Ahles, F.; Amoroso, S.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christovs, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Hartert, J.; Horner, S.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefal, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Bucci, E.; Clark, A.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavia, C.] INFN Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavia, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, High Energy Phys Inst, GE-380086 Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Hamer, M.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenauxs, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenauxs, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenauxs, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Karnevskiys, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Halladjian, G.; Limper, M.; Mallik, U.; Mandrysch, R.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, E.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderon, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyds, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Snidero, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Caballeri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Caballeri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Caballeri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fys Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Canteros, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Merinos, J. Llorente; Tenon, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Arnaez, O.; Blum, W.; Bueschers, V.; Caputo, R.; Eckweiler, S.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lundquist, J.; Lungwitz, M.; Masetti, L.; Meyers, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Fortis, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Snow, S. W.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Klemetti, M.; Mantifel, R.; Mc Donald, J.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Rozanov, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harpers, D.; Levin, D.; Li, X.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Hauser, R.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsous, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perilli, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] INFN Sez Milano, Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perilli, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Banerjee, P.; Bouchami, J.; Dallaire, F.; Davies, M.; Giunta, M.; Leroy, C.; Martin, J. P.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Legger, F.; Lorenz, J.; Mann, A.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Ince, T.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chicfari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] INFN Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chicfari, G.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; Dao, V.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Boss, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Igonkina, O.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Boss, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Igonkina, O.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. S.; Bogdanchikov, A.; Kazanin, V. F.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Beddall, A.; Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Andari, N.; Auge, E.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Andari, N.; Auge, E.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Zerwas, D.; Zhang, Z.] CNRS, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugayan, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Dressnandt, N.; Fratina, S.; Heim, S.; Hessey, N. P.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; New-Comer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] INFN Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorimi, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Sargedas De Sousa, M. J. Da Cunha; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, G.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Holy, T.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simaki, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Torregrosa, E. Fullana; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Inst Particle Phys, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma I, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Messina, A.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.] INFN Sez Roma Tre, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.] Univ Mohammed VAgdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Ramos, J. A. Manjarres; Mansoulie, B.; Martinez, H.; Meyer, J-P.; Mijovic, L.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.; Xu, C.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tsionou, D.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Assamagan, K.; Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, T. M.; Carrillo-Montoya, G. D.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clementi, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Milstead, D. A.; Moa, T.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clementi, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Milstead, D. A.; Moa, T.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; Mccarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; Mccarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Harpaz, S. Behar; Di Mattia, A.; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Bachas, K.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimote, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimote, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Krieger, P.; Orr, R. S.; Polifka, R.; Rezvani, R.; Rosenbaum, G. A.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Lostya, M. J.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Silwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Farrell, S.; Eschrich, I. Gough; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Rao, K.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soueid, R.] INFN Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soueid, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A. K.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Etan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Etan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Etan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Etan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Etan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Fedorko, W.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Castillo, L. R. Flores; Gutzwiller, O.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, K.; Becks, K. H.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fleischmann, S.; Flick, T.; Gerlach, P.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginovi, A.; Sherman, D.; Tipton, P.; Wall, R.; Walsh, B.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Rahal, G.] Ctr Calcul Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Acharya, B. S.; Purohit, M.; Ruan, X.; Spousta, M.; Yacoob, S.] Kings Coll London, Dept Phys, London, England. [Amorimi, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorimi, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Maximov, D. A.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Hernandez, A. M. Castaneda] UASLP, Dept Phys, San Luis Potosi, Mexico. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Wemans, A. Do Valle] Univ Nova Lisboa, Dep Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, CEFITEC Fac Ciencias Tecnol, Caparica, Portugal. [Dobson, E.] UCL, Dept Phys & Astron, London, England. [Hamiltonms, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Nozka, Libor/G-5550-2014; Kepka, Oldrich/G-6375-2014; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Jakoubek, Tomas/G-8644-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Kuday, Sinan/C-8528-2014; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Marti-Garcia, Salvador/F-3085-2011; Shabalina, Elizaveta/M-2227-2013; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; De, Kaushik/N-1953-2013; Snesarev, Andrey/H-5090-2013; Warburton, Andreas/N-8028-2013; Sukharev, Andrey/A-6470-2014; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Fabbri, Laura/H-3442-2012; Villa, Mauro/C-9883-2009; Tudorache, Valentina/D-2743-2012; Conde Muino, Patricia/F-7696-2011; Andreazza, Attilio/E-5642-2011; Boyko, Igor/J-3659-2013; Moraes, Arthur/F-6478-2010; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Ferrando, James/A-9192-2012; Brooks, William/C-8636-2013; Tudorache, Alexandra/L-3557-2013; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Olshevskiy, Alexander/I-1580-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Moorhead, Gareth/B-6634-2009; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Wemans, Andre/A-6738-2012; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016 OI Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; De, Kaushik/0000-0002-5647-4489; Warburton, Andreas/0000-0002-2298-7315; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Villa, Mauro/0000-0002-9181-8048; Conde Muino, Patricia/0000-0002-9187-7478; Andreazza, Attilio/0000-0001-5161-5759; Boyko, Igor/0000-0002-3355-4662; Moraes, Arthur/0000-0002-5157-5686; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Ferrando, James/0000-0002-1007-7816; Brooks, William/0000-0001-6161-3570; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Prokoshin, Fedor/0000-0001-6389-5399; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Moorhead, Gareth/0000-0002-9299-9549; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF, Denmark; DNSRC Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM; Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 68 TC 21 Z9 21 U1 9 U2 128 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUN PY 2013 VL 73 IS 6 AR 2465 DI 10.1140/epjc/s10052-013-2465-z PG 20 WC Physics, Particles & Fields SC Physics GA 183ZH UT WOS:000321855400020 ER PT J AU Abelev, B Adam, J Adamova, D Adare, AM Aggarwal, MM Rinella, GA Agocs, AG Agostinelli, A Salazar, SA Ahammed, Z Masoodi, AA Ahmad, N Ahn, SA Ahn, SU Akindinov, A Aleksandrov, D Alessandro, B Molina, RA Alici, A Alkin, A Avina, EA Alme, J Alt, T Altini, V Altinpinar, S Altsybeev, I Andrei, C Andronic, A Anguelov, V Anielski, J Anson, C Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arbor, N Arcelli, S Arend, A Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Asryan, A Augustinus, A Averbeck, R Awes, TC Aysto, J Azmi, MD Bach, M Badala, A Baek, YW Bailhaches, R Bala, R Ferroli, RB Baldisseri, A Baldit, A Pedrosa, FBD Ban, J Baral, RC Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Basu, S Bathen, B Batigne, G Batyunya, B Baumann, C Bearden, IG Beck, H Behera, NK Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bergognon, AAE Berzano, D Betev, L Bhasin, A Bhati, AK Bhom, J Bianchi, N Bianchi, L Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Bjelogrlic, S Blanco, F Blanco, F Blau, D Blume, C Boccioli, M Bock, N Bottger, S Bogdanov, A Boggild, H Bogolyubsky, M Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Bose, S Bossu, F Botje, M Botta, E Boyer, B Braidot, E Braun-Munzinger, P Bregant, M Breitner, T Browning, TA Broz, M Brun, R Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Busch, O Buthelezi, Z Orduna, DC Caffarri, D Cai, X Caines, H Villar, EC Camerini, P Roman, VC Romeo, GC Carena, F Carena, W Carlin, N Carminati, F Diaz, AC Castellanos, JC Hernandez, JFC Casula, EAR Catanescu, V Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Chawla, I Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Coccetti, F Colamaria, F Colella, D Balbastre, GC del Valle, ZC Constantin, P Contin, G Contreras, JG Cormier, TM Morales, YC Cortese, P Maldonado, IC Cosentino, MR Costa, F Cotallo, ME Crescio, E Crochet, P Alaniz, EC Cuautle, E Cunqueiro, L Dainese, A Dalsgaard, HH Danu, A Das, D Das, K Das, I Dash, S Dash, A De, S de Barros, GOV De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D Delagrange, H Deloff, A Demanov, V De Marco, N Denes, E De Pasquale, S Deppman, A Erasmo, GD de Rooij, R Corchero, MAD Di Bari, D Dietel, T Di Giglio, C Di Liberto, S Di Mauro, A Di Nezza, P Divia, R Djuvsland, O Dobrin, A Dobrowolski, T Dominguez, I Donigus, B Dordic, O Driga, O Dubey, AK Dubla, A Ducroux, L Dupieux, P Majumdar, MRD Majumdar, AKD Elia, D Emschermann, D Engel, H Erazmus, B Erdal, HA Espagnon, B Estienne, M Esumi, S Evans, D Eyyubova, G Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fearick, R Fedunov, A Fehlker, D Feldkamp, L Felea, D Fenton-Olsen, B Feofilov, G Tellez, AF Ferretti, A Ferretti, R Festanti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Girard, MF Gaardhoje, JJ Gagliardi, M Gago, A Gallio, M Gangadharan, DR Ganoti, P Garabatos, C Garcia-Solis, E Garishvili, I Gerhard, J Germain, M Geuna, C Gheata, M Gheata, A Ghidini, B Ghosh, P Gianotti, P Girard, MR Giubellino, P Gladysz-Dziadus, E Glassel, P Gomez, R Ferreiro, EG Gonzalez-Trueba, LH Gonzalez-Zamora, P Gorbunov, S Goswami, A Gotovac, S Grabski, V Graczykowski, LK Grajcarek, R Grelli, A Grigoras, C Grigoras, A Grigoriev, V Grigoryan, S Grigoryan, A Grinyov, B Grion, N Gros, P Grosse-Oetringhauss, JF Grossiord, JY Grosso, R Guber, F Guernane, R Gutierrez, CG Guerzoni, B Guilbaud, M Gulbrandsen, K Gunji, T Gupta, A Gupta, R Gutbrod, H Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Han, BH Hanratty, LD Hansen, A Harmanova-Tothova, Z Harris, JW Hartig, M Hasegan, D Hatzifotiadou, D Hayrapetyan, A Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Herrmann, N Hess, BA Hetland, KF Hicks, B Hille, PT Hippolyte, B Horaguchi, T Hori, Y Hristov, P Hrivnacova, I Huang, M Humanic, TJ Hwang, DS Ichou, R Ilkaev, R Ilkiv, I Inaba, M Incani, E Innocenti, PG Innocenti, GM Ippolitov, M Irfan, M Ivan, C Ivanov, A Ivanov, M Ivanov, V Ivanytskyi, O Jacholkowski, A Jacobs, PM Jang, HJ Janik, R Janik, MA Jayarathna, PHSY Jena, S Jha, DM Bustamante, RTJ Jirden, L Jones, PG Jung, H Jusko, A Kaidalov, AB Kakoyan, V Kalcher, S Kalinak, P Kalliokoski, T Kalweit, A Kang, JH Kaplin, V Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kazantsev, A Kebschull, U Keidel, R Khan, P Khan, SA Khan, MM Khanzadeev, A Kharlov, Y Kileng, B Kim, S Kim, B Kim, T Kim, DJ Kim, DW Kim, JH Kim, JS Kim, M Kim, M Kirsch, S Kisel, I Kiselev, S Kisiel, A Klay, JL Klein, J Klein-Bosing, C Kliemant, M Kluge, A Knichel, ML Knospe, AG Koch, K Kohler, MK Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Konevskikh, A Korneev, A Kour, R Kowalski, M Kox, S Meethaleveede, GK Kral, J Kralik, I Kramer, F Kraus, I Krawutschke, T Krelina, M Kretz, M Krivda, M Krizek, F Krus, M Kryshen, E Krzewicki, M Kucheriaev, Y Kugathasan, T Kuhn, C Kuijer, PG Kulakov, I Kumar, J Kurashvili, P Kurepin, AB Kurepin, A Kuryakin, A Kushpil, V Kushpil, S Kvaerno, H Kweon, MJ Kwon, Y de Guevara, PL Lakomov, I Langoy, R La Pointe, SL Lara, C Lardeux, A La Rocca, P Lea, R Le Bornec, Y Lechman, M Lee, SC Lee, GR Lee, KS Lefevre, F Lehnert, J Lenhardt, M Lenti, V Leon, H Leoncino, M Monzon, IL Vargas, HL Levai, P Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Liu, L Loggins, VR Loginov, V Lohn, S Lohner, D Loizides, C Loo, KK Lopez, X Torres, EL Lovhoiden, G Lu, XG Luettig, P Lunardon, M Luo, J Luparello, G Luquin, L Luzzi, C Ma, K Ma, R Madagodahettige-Don, DM Maevskaya, A Mager, M Mahapatra, DP Maire, A Malaev, M Cervantes, IM Malinina, L Mal'Kevich, MVD Malzacher, P Mamonov, A Mangotra, L Manko, V Manso, F Manzari, V Mao, Y Marchisone, M Mares, J Margagliotti, GV Margotti, A Marin, A Tobon, CAM Markert, C Marquard, M Martashvili, I Martinengo, P Martinez, MI Davalos, AM Garcia, GM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Matthews, ZL Matyja, A Mayer, C Mazer, J Mazzoni, MA Meddi, F Menchaca-Rocha, A Perez, JM Meres, M Miake, Y Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitu, C Mlynarz, J Mohanty, B Molnar, L Zetina, LM Monteno, M Montes, E Moon, T Morando, M De Godoy, DAM Moretto, S Morsch, A Muccifora, V Mudnic, E Muhuri, S Mukherjee, M Muller, H Munhoz, MG Musa, L Musso, A Nandi, BK Nania, R Nappi, E Nattrass, C Naumov, NP Navin, S Nayak, TK Nazarenko, S Nazarov, G Nedosekin, A Nicassio, M Niculescu, M Nielsen, BS Niida, T Nikolaev, S Nikolic, V Nikulin, S Nikulin, V Nilsen, BS Nilsson, MS Noferini, F Nomokonov, P Nooren, G Novitzky, N Nyanin, A Nyatha, A Nygaard, C Nystrand, J Ochirov, A Oeschler, H Oh, S Oh, SK Oleniacz, J Oppedisano, C Velasquez, AO Ortona, G Oskarsson, A Ostrowski, P Otwinowski, J Oyama, K Ozawa, K Pachmayer, Y Pachr, M Padilla, F Pagano, P Palc, G Painke, F Pajares, C Pal, SK Palaha, A Palmeri, A Papikyan, V Pappalardo, GS Park, WJ Passfeld, A Pastircak, B Patalakha, DI Paticchio, V Pavlinov, A Pawlak, T Peitzmann, T Da Costa, HP De Oliveira, EP Peresunko, D Lara, CEP Lezama, EP Perini, D Perrino, D Peryt, W Pesci, A Peskov, V Pestov, Y Petracek, V Petran, M Petris, M Petrov, P Petrovici, M Petta, C Piano, S Piccotti, A Pikna, M Pillot, P Pinazza, O Pinsky, L Pitz, N Piyarathna, DB Planinic, M Ploskon, M Pluta, J Pocheptsov, T Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polak, K Polichtchouk, B Pop, A Porteboeuf-Houssais, S Pospisil, V Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puchagin, S Puddu, G Pulvirenti, A Punin, V Putis, M Putschke, J Quercigh, E Qvigstad, H Rachevski, A Rademakers, A Raiha, TS Rak, J Rakotozafindrabe, A Ramello, L Reyes, AR Raniwala, S Raniwala, R Rasanen, SS Rascanu, BT Rathee, D Read, KF Real, JS Redlich, K Reichelt, P Reicher, M Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Riccati, L Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Rabacal, BRF Cahuantzi, MR Manso, AR Roed, K Rohr, D Rohrich, D Romita, R Ronchetti, F Rosnet, P Rossegger, S Rossi, A Roy, P Roy, C Montero, AJR Rui, R Russo, R Ryabinkin, E Rybicki, A Sadovsky, S Safarik, K Sahoo, R Sahu, PK Saini, J Sakaguchi, H Sakai, S Sakata, D Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Sandor, L Sandoval, A Sano, M Sano, S Santo, R Santoro, R Sarkamo, J Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schreiner, S Schuchmann, S Schukraft, J Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Segato, G Selyuzhenkov, I Senyukov, S Seo, J Serci, S Serradilla, E Sevcenco, A Shabetai, A Shabratova, G Shahoyan, R Sharma, N Sharma, S Rohni, S Shigaki, K Shimomura, M Shtejer, K Sibiriak, Y Siciliano, M Sicking, E Siddhanta, S Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Smakal, R Smirnov, N Snellings, RJM Sogaard, C Soltz, R Son, H Song, M Song, J Soos, C Soramel, F Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stan, I Stefanek, G Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Stolpovskiy, M Strabykin, K Strmen, P Suaide, AAP Vasquez, MAS Sugitate, T Suire, C Sukhorukov, M Sultanov, R Sumbera, M Susa, T Symons, TJM de Toledo, AS Szarka, I Szczepankiewicz, A Szostak, A Szymanski, M Takahashi, J Takaki, JDT Tauro, A Munoz, GT Telesca, A Terrevoli, C Thader, J Thomas, D Tieulent, R Timmins, AR Tlusty, D Toia, A Torii, H Toscano, L Trubnikov, V Truesdale, D Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ulery, J Ullaland, K Ulrich, J Uras, A Urban, J Urciuoli, GM Usai, GL Vajzer, M Vala, M Palomo, LV Vallero, S Vyvre, PV van Leeuwen, M Vannucci, L Vargas, A Varma, R Vasileiou, M Vasiliev, A Vechernin, V Veldhoen, M Venaruzzo, M Vercellin, E Vergara, S Vernet, R Verweij, M Vickovic, L Viesti, G Vikhlyantsev, O Vilakazi, Z Baillie, OV Vinogradov, Y Vinogradov, A Vinogradov, L Virgili, T Viyogi, YP Vodopyanov, A Voloshin, S Voloshin, K Volpe, G von Haller, B Vranic, D Ovrebekk, G Vrlakova, J Vulpescu, B Vyushin, A Wagner, V Wagner, B Wan, R Wang, M Wang, D Wang, Y Wang, Y Watanabe, K Weber, M Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, A Wilk, G Williams, MCS Windelband, B Karampatsos, LX Yaldo, CG Yamaguchi, Y Yang, H Yang, S Yasnopolskiy, S Yi, J Yin, Z Yoo, IK Yoon, J Yu, W Yuan, X Yushmanov, I Zaccolo, V Zach, C Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zelnicek, P Zgura, IS Zhalov, M Zhang, X Zhang, H Zhou, D Zhou, Y Zhou, F Zhu, J Zhu, J Zhu, X Zichichi, A Zimmermann, A Zinovjev, G Zoccarato, Y Zynovyev, M Zyzak, M AF Abelev, B. Adam, J. Adamova, D. Adare, A. M. Aggarwal, M. M. Rinella, G. Aglieri Agocs, A. G. Agostinelli, A. Aguilar Salazar, S. Ahammed, Z. Masoodi, A. Ahmad Ahmad, N. Ahn, S. A. Ahn, S. U. Akindinov, A. Aleksandrov, D. Alessandro, B. Alfaro Molina, R. Alici, A. Alkin, A. Almaraz Avina, E. Alme, J. Alt, T. Altini, V. Altinpinar, S. Altsybeev, I. Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anson, C. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arbor, N. Arcelli, S. Arend, A. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Asryan, A. Augustinus, A. Averbeck, R. Awes, T. C. Aysto, J. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bailhaches, R. Bala, R. Ferroli, R. Baldini Baldisseri, A. Baldit, A. Pedrosa, F. Baltasar Dos Santos Ban, J. Baral, R. C. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Batyunya, B. Baumann, C. Bearden, I. G. Beck, H. Behera, N. K. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bergognon, A. A. E. Berzano, D. Betev, L. Bhasin, A. Bhati, A. K. Bhom, J. Bianchi, N. Bianchi, L. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Bjelogrlic, S. Blanco, F. Blanco, F. Blau, D. Blume, C. Boccioli, M. Bock, N. Boettger, S. Bogdanov, A. Boggild, H. Bogolyubsky, M. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Bose, S. Bossu, F. Botje, M. Botta, E. Boyer, B. Braidot, E. Braun-Munzinger, P. Bregant, M. Breitner, T. Browning, T. A. Broz, M. Brun, R. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Busch, O. Buthelezi, Z. Orduna, D. Caballero Caffarri, D. Cai, X. Caines, H. Calvo Villar, E. Camerini, P. Canoa Roman, V. Romeo, G. Cara Carena, F. Carena, W. Carlin Filho, N. Carminati, F. Diaz, A. Casanova Castellanos, J. Castillo Hernandez, J. F. Castillo Casula, E. A. R. Catanescu, V. Cavicchioli, C. Ceballos Sanchez, C. Cepila, J. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chawla, I. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Coccetti, F. Colamaria, F. Colella, D. Balbastre, G. Conesa del Valle, Z. Conesa Constantin, P. Contin, G. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortese, P. Cortes Maldonado, I. Cosentino, M. R. Costa, F. Cotallo, M. E. Crescio, E. Crochet, P. Cruz Alaniz, E. Cuautle, E. Cunqueiro, L. Dainese, A. Dalsgaard, H. H. Danu, A. Das, D. Das, K. Das, I. Dash, S. Dash, A. De, S. de Barros, G. O. V. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. Delagrange, H. Deloff, A. Demanov, V. De Marco, N. Denes, E. De Pasquale, S. Deppman, A. Erasmo, G. D. de Rooij, R. Diaz Corchero, M. A. Di Bari, D. Dietel, T. Di Giglio, C. Di Liberto, S. Di Mauro, A. Di Nezza, P. Divia, R. Djuvsland, O. Dobrin, A. Dobrowolski, T. Dominguez, I. Doenigus, B. Dordic, O. Driga, O. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Majumdar, M. R. Dutta Majumdar, A. K. Dutta Elia, D. Emschermann, D. Engel, H. Erazmus, B. Erdal, H. A. Espagnon, B. Estienne, M. Esumi, S. Evans, D. Eyyubova, G. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fearick, R. Fedunov, A. Fehlker, D. Feldkamp, L. Felea, D. Fenton-Olsen, B. Feofilov, G. Fernandez Tellez, A. Ferretti, A. Ferretti, R. Festanti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. Gallio, M. Gangadharan, D. R. Ganoti, P. Garabatos, C. Garcia-Solis, E. Garishvili, I. Gerhard, J. Germain, M. Geuna, C. Gheata, M. Gheata, A. Ghidini, B. Ghosh, P. Gianotti, P. Girard, M. R. Giubellino, P. Gladysz-Dziadus, E. Glaessel, P. Gomez, R. Ferreiro, E. G. Gonzalez-Trueba, L. H. Gonzalez-Zamora, P. Gorbunov, S. Goswami, A. Gotovac, S. Grabski, V. Graczykowski, L. K. Grajcarek, R. Grelli, A. Grigoras, C. Grigoras, A. Grigoriev, V. Grigoryan, S. Grigoryan, A. Grinyov, B. Grion, N. Gros, P. Grosse-Oetringhauss, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerra Gutierrez, C. Guerzoni, B. Guilbaud, M. Gulbrandsen, K. Gunji, T. Gupta, A. Gupta, R. Gutbrod, H. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Han, B. H. Hanratty, L. D. Hansen, A. Harmanova-Tothova, Z. Harris, J. W. Hartig, M. Hasegan, D. Hatzifotiadou, D. Hayrapetyan, A. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Herrera Corral, G. Herrmann, N. Hess, B. A. Hetland, K. F. Hicks, B. Hille, P. T. Hippolyte, B. Horaguchi, T. Hori, Y. Hristov, P. Hrivnacova, I. Huang, M. Humanic, T. J. Hwang, D. S. Ichou, R. Ilkaev, R. Ilkiv, I. Inaba, M. Incani, E. Innocenti, P. G. Innocenti, G. M. Ippolitov, M. Irfan, M. Ivan, C. Ivanov, A. Ivanov, M. Ivanov, V. Ivanytskyi, O. Jacholkowski, A. Jacobs, P. M. Jang, H. J. Janik, R. Janik, M. A. Jayarathna, P. H. S. Y. Jena, S. Jha, D. M. Jimenez Bustamante, R. T. Jirden, L. Jones, P. G. Jung, H. Jusko, A. Kaidalov, A. B. Kakoyan, V. Kalcher, S. Kalinak, P. Kalliokoski, T. Kalweit, A. Kang, J. H. Kaplin, V. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kazantsev, A. Kebschull, U. Keidel, R. Khan, P. Khan, S. A. Khan, M. M. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, S. Kim, B. Kim, T. Kim, D. J. Kim, D. W. Kim, J. H. Kim, J. S. Kim, M. Kim, M. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Klay, J. L. Klein, J. Klein-Boesing, C. Kliemant, M. Kluge, A. Knichel, M. L. Knospe, A. G. Koch, K. Koehler, M. K. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskikh, A. Korneev, A. Kour, R. Kowalski, M. Kox, S. Meethaleveede, G. Koyithatta Kral, J. Kralik, I. Kramer, F. Kraus, I. Krawutschke, T. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Krus, M. Kryshen, E. Krzewicki, M. Kucheriaev, Y. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kulakov, I. Kumar, J. Kurashvili, P. Kurepin, A. B. Kurepin, A. Kuryakin, A. Kushpil, V. Kushpil, S. Kvaerno, H. Kweon, M. J. Kwon, Y. Ladron de Guevara, P. Lakomov, I. Langoy, R. La Pointe, S. L. Lara, C. Lardeux, A. La Rocca, P. Lea, R. Le Bornec, Y. Lechman, M. Lee, S. C. Lee, G. R. Lee, K. S. Lefevre, F. Lehnert, J. Lenhardt, M. Lenti, V. Leon, H. Leoncino, M. Leon Monzon, I. Vargas, H. Leon Levai, P. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Liu, L. Loggins, V. R. Loginov, V. Lohn, S. Lohner, D. Loizides, C. Loo, K. K. Lopez, X. Lopez Torres, E. Lovhoiden, G. Lu, X. -G. Luettig, P. Lunardon, M. Luo, J. Luparello, G. Luquin, L. Luzzi, C. Ma, K. Ma, R. Madagodahettige-Don, D. M. Maevskaya, A. Mager, M. Mahapatra, D. P. Maire, A. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, M. V. D. Malzacher, P. Mamonov, A. Mangotra, L. Manko, V. Manso, F. Manzari, V. Mao, Y. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Tobon, C. A. Marin Markert, C. Marquard, M. Martashvili, I. Martinengo, P. Martinez, M. I. Martinez Davalos, A. Garcia, G. Martinez Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Matthews, Z. L. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Perez, J. Mercado Meres, M. Miake, Y. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitu, C. Mlynarz, J. Mohanty, B. Molnar, L. Montano Zetina, L. Monteno, M. Montes, E. Moon, T. Morando, M. Moreira De Godoy, D. A. Moretto, S. Morsch, A. Muccifora, V. Mudnic, E. Muhuri, S. Mukherjee, M. Mueller, H. Munhoz, M. G. Musa, L. Musso, A. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Naumov, N. P. Navin, S. Nayak, T. K. Nazarenko, S. Nazarov, G. Nedosekin, A. Nicassio, M. Niculescu, M. Nielsen, B. S. Niida, T. Nikolaev, S. Nikolic, V. Nikulin, S. Nikulin, V. Nilsen, B. S. Nilsson, M. S. Noferini, F. Nomokonov, P. Nooren, G. Novitzky, N. Nyanin, A. Nyatha, A. Nygaard, C. Nystrand, J. Ochirov, A. Oeschler, H. Oh, S. Oh, S. K. Oleniacz, J. Oppedisano, C. Ortiz Velasquez, A. Ortona, G. Oskarsson, A. Ostrowski, P. Otwinowski, J. Oyama, K. Ozawa, K. Pachmayer, Y. Pachr, M. Padilla, F. Pagano, P. Palc, G. Painke, F. Pajares, C. Pal, S. K. Palaha, A. Palmeri, A. Papikyan, V. Pappalardo, G. S. Park, W. J. Passfeld, A. Pastircak, B. Patalakha, D. I. Paticchio, V. Pavlinov, A. Pawlak, T. Peitzmann, T. Da Costa, H. Pereira Pereira De Oliveira Filho, E. Peresunko, D. Lara, C. E. Perez Perez Lezama, E. Perini, D. Perrino, D. Peryt, W. Pesci, A. Peskov, V. Pestov, Y. Petracek, V. Petran, M. Petris, M. Petrov, P. Petrovici, M. Petta, C. Piano, S. Piccotti, A. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Pitz, N. Piyarathna, D. B. Planinic, M. Ploskon, M. Pluta, J. Pocheptsov, T. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polak, K. Polichtchouk, B. Pop, A. Porteboeuf-Houssais, S. Pospisil, V. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puchagin, S. Puddu, G. Pulvirenti, A. Punin, V. Putis, M. Putschke, J. Quercigh, E. Qvigstad, H. Rachevski, A. Rademakers, A. Raiha, T. S. Rak, J. Rakotozafindrabe, A. Ramello, L. Ramirez Reyes, A. Raniwala, S. Raniwala, R. Rasanen, S. S. Rascanu, B. T. Rathee, D. Read, K. F. Real, J. S. Redlich, K. Reichelt, P. Reicher, M. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Riccati, L. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rabacal, B. Rodrigues Fernandes Rodriguez Cahuantzi, M. Manso, A. Rodriguez Roed, K. Rohr, D. Roehrich, D. Romita, R. Ronchetti, F. Rosnet, P. Rossegger, S. Rossi, A. Roy, P. Roy, C. Rubio Montero, A. J. Rui, R. Russo, R. Ryabinkin, E. Rybicki, A. Sadovsky, S. Safarik, K. Sahoo, R. Sahu, P. K. Saini, J. Sakaguchi, H. Sakai, S. Sakata, D. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Sandor, L. Sandoval, A. Sano, M. Sano, S. Santo, R. Santoro, R. Sarkamo, J. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schreiner, S. Schuchmann, S. Schukraft, J. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Segato, G. Selyuzhenkov, I. Senyukov, S. Seo, J. Serci, S. Serradilla, E. Sevcenco, A. Shabetai, A. Shabratova, G. Shahoyan, R. Sharma, N. Sharma, S. Rohni, S. Shigaki, K. Shimomura, M. Shtejer, K. Sibiriak, Y. Siciliano, M. Sicking, E. Siddhanta, S. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Smakal, R. Smirnov, N. Snellings, R. J. M. Sogaard, C. Soltz, R. Son, H. Song, M. Song, J. Soos, C. Soramel, F. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stan, I. Stefanek, G. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Stolpovskiy, M. Strabykin, K. Strmen, P. Suaide, A. A. P. Vasquez, M. A. Subieta Sugitate, T. Suire, C. Sukhorukov, M. Sultanov, R. Sumbera, M. Susa, T. Symons, T. J. M. Szanto de Toledo, A. Szarka, I. Szczepankiewicz, A. Szostak, A. Szymanski, M. Takahashi, J. Takaki, J. D. Tapia Tauro, A. Tejeda Munoz, G. Telesca, A. Terrevoli, C. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Tlusty, D. Toia, A. Torii, H. Toscano, L. Trubnikov, V. Truesdale, D. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ulery, J. Ullaland, K. Ulrich, J. Uras, A. Urban, J. Urciuoli, G. M. Usai, G. L. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Vyvre, P. Vande van Leeuwen, M. Vannucci, L. Vargas, A. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Veldhoen, M. Venaruzzo, M. Vercellin, E. Vergara, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Vikhlyantsev, O. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, Y. Vinogradov, A. Vinogradov, L. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voloshin, S. Voloshin, K. Volpe, G. von Haller, B. Vranic, D. Ovrebekk, G. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, V. Wagner, B. Wan, R. Wang, M. Wang, D. Wang, Y. Wang, Y. Watanabe, K. Weber, M. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, A. Wilk, G. Williams, M. C. S. Windelband, B. Karampatsos, L. Xaplanteris Yaldo, C. G. Yamaguchi, Y. Yang, H. Yang, S. Yasnopolskiy, S. Yi, J. Yin, Z. Yoo, I. -K. Yoon, J. Yu, W. Yuan, X. Yushmanov, I. Zaccolo, V. Zach, C. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zelnicek, P. Zgura, I. S. Zhalov, M. Zhang, X. Zhang, H. Zhou, D. Zhou, Y. Zhou, F. Zhu, J. Zhu, J. Zhu, X. Zichichi, A. Zimmermann, A. Zinovjev, G. Zoccarato, Y. Zynovyev, M. Zyzak, M. CA ALICE Collaboration TI Measurement of inelastic, single- and double-diffraction cross sections in proton-proton collisions at the LHC with ALICE SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID CERN SPS COLLIDER; ELASTIC-SCATTERING; (P)OVER-BAR-P COLLISIONS; ANTIPROTON-PROTON; ROOT-S=7 TEV; ISR ENERGIES; DISSOCIATION; SOFT; PHYSICS; MODEL AB Measurements of cross sections of inelastic and diffractive processes in proton-proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass M-X < 200 GeV/c(2)) sigma(SD)/sigma(INEL) = 0.21 +/- 0.03, 0.20(-0.08)(+0.07,) and 0.20(-0.07)(+0.04), respectively at centre-of-mass energies root s = 0.9, 2.76, and 7 TeV; for double diffraction (for a pseudorapidity gap Delta eta > 3) sigma(DD)/sigma(INEL) = 0.11 +/- 0.03, 0.12 +/- 0.05, and 0.12(-0.04)(+0.05), respectively at root s = 0.9, 2.76, and 7 TeV. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: sigma(INEL) = 62.8(-4.0)(+2.4)(model) +/- 1.2(lumi) mb at root s = 2.76 TeV and 73.2(-4.6)(+2.0)(model) +/- 2.6(lumi) mb at root s = 7 TeV. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared to previous measurements at proton-antiproton and proton-proton colliders at lower energies, to measurements by other experiments at the LHC, and to theoretical models. C1 [ALICE Collaboration] CERN, CH-1211 Geneva 23, Switzerland. [Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.] Univ Autonoma Puebla, Puebla 72570, Mexico. [Alkin, A.; Grinyov, B.; Ivanytskyi, O.; Martynov, Y.; Trubnikov, V.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Cai, X.; Luo, J.; Ma, K.; Mao, Y.; Wan, R.; Wang, M.; Wang, D.; Wang, Y.; Yin, Z.; Yuan, X.; Zhang, X.; Zhang, H.; Zhou, D.; Zhou, F.; Zhu, J.; Zhu, J.; Zhu, X.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Ceballos Sanchez, C.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Blanco, F.; Cotallo, M. E.; Diaz Corchero, M. A.; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Canoa Roman, V.; Contreras, J. G.; Crescio, E.; Gomez, R.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest & Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico. [Canoa Roman, V.; Contreras, J. G.; Crescio, E.; Gomez, R.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest & Estudios Avanzados CINVESTAV, Merida, Mexico. [Alici, A.; Ferroli, R. Baldini; Cifarelli, L.; Coccetti, F.; De Caro, A.; Noferini, F.; Preghenella, R.; Santoro, R.; Zichichi, A.] Ctr Fermi Ctr Studi & Ric, Rome, Italy. [Alici, A.; Ferroli, R. Baldini; Cifarelli, L.; Coccetti, F.; De Caro, A.; Noferini, F.; Preghenella, R.; Santoro, R.; Zichichi, A.] Museo Stor Fis Enrico Fermi, Rome, Italy. [Garcia-Solis, E.] Chicago State Univ, Chicago, IL USA. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Geuna, C.; Da Costa, H. Pereira; Rakotozafindrabe, A.; Yang, H.] IRFU, Commissariat Energie Atom, Saclay, France. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Masoodi, A. Ahmad; Ahmad, N.; Azmi, M. D.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Altinpinar, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Langoy, R.; Lien, J.; Liu, L.; Roed, K.; Roehrich, D.; Skjerdal, K.; Szostak, A.; Ullaland, K.; Ovrebekk, G.; Wagner, B.; Yang, S.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Anson, C.; Bock, N.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.; Truesdale, D.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Han, B. H.; Hwang, D. S.; Kim, S.; Kim, J. H.; Son, H.] Sejong Univ, Dept Phys, Seoul, South Korea. [Dordic, O.; Eyyubova, G.; Kvaerno, H.; Lindal, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Qvigstad, H.; Richter, M.; Skaali, T. B.; Tveter, T. S.; Wikne, J.] Univ Oslo, Dept Phys, Oslo, Norway. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Agostinelli, A.; Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Romeo, G. Cara; Cifarelli, L.; Cindolo, F.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Camerini, P.; Contin, G.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Camerini, P.; Contin, G.; Fragiacomo, E.; Grion, N.; Lea, R.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Beole, S.; Bianchi, L.; Bossu, F.; Botta, E.; Bruna, E.; Bufalino, S.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Marchisone, M.; Masera, M.; Milano, L.; Ortona, G.; Padilla, F.; Poghosyan, M. G.; Russo, R.; Siciliano, M.; Vasquez, M. A. Subieta; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Alessandro, B.; Arnaldi, R.; Bala, R.; Beole, S.; Berzano, D.; Bianchi, L.; Bossu, F.; Botta, E.; Bruna, E.; Bufalino, S.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Leoncino, M.; Marchisone, M.; Masera, M.; Milano, L.; Monteno, M.; Musso, A.; Oppedisano, C.; Ortona, G.; Padilla, F.; Piccotti, A.; Poghosyan, M. G.; Prino, F.; Riccati, L.; Russo, R.; Scomparin, E.; Siciliano, M.; Vasquez, M. A. Subieta; Toscano, L.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Casula, E. A. R.; De Falco, A.; Incani, E.; Puddu, G.; Serci, S.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Cicalo, C.; De Falco, A.; Incani, E.; Masoni, A.; Puddu, G.; Serci, S.; Siddhanta, S.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Di Liberto, S.; Mazzoni, M. A.; Meddi, F.; Urciuoli, G. M.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Barbera, R.; Jacholkowski, A.; La Rocca, P.; Petta, C.; Pulvirenti, A.; Riggi, F.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Agostinelli, A.; Badala, A.; Barbera, R.; Jacholkowski, A.; La Rocca, P.; Palmeri, A.; Pappalardo, G. S.; Petta, C.; Pulvirenti, A.; Riggi, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Bianchin, C.; Caffarri, D.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Segato, G.; Soramel, F.; Toia, A.; Viesti, G.] Univ Padua, Dipartimento Fis, Padua, Italy. [Antinori, F.; Bianchin, C.; Caffarri, D.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Segato, G.; Soramel, F.; Toia, A.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Ist Nazl Fis Nucl, Grp Collegato, Salerno, Italy. [Cortese, P.; Ferretti, R.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ferretti, R.; Ramello, L.; Sitta, M.] Ist Nazl Fis Nucl, Grp Collegato, Alessandria, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Nicassio, M.; Perrino, D.; Terrevoli, C.; Volpe, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; de Cataldo, G.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Elia, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Lenti, V.; Manzari, V.; Mastroserio, A.; Nappi, E.; Nicassio, M.; Paticchio, V.; Perrino, D.; Santoro, R.; Terrevoli, C.; Volpe, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Dobrin, A.; Gros, P.; Ortiz Velasquez, A.; Oskarsson, A.; Richert, T.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Betev, L.; Boccioli, M.; Brun, R.; Carena, F.; Carena, W.; Carminati, F.; Cavicchioli, C.; Chapeland, S.; Cheshkov, C.; Barroso, V. Chibante; Chochula, P.; Cifarelli, L.; del Valle, Z. Conesa; Costa, F.; Di Mauro, A.; Divia, R.; Erazmus, B.; Floris, M.; Francescon, A.; Fuchs, U.; Gheata, M.; Gheata, A.; Giubellino, P.; Grigoras, C.; Grigoras, A.; Grosse-Oetringhauss, J. F.; Grosso, R.; Hayrapetyan, A.; Hristov, P.; Innocenti, P. G.; Jirden, L.; Kalweit, A.; Uysal, A. Karasu; Kluge, A.; Kugathasan, T.; Lechman, M.; Lippmann, C.; Lohn, S.; Luzzi, C.; Mager, M.; Tobon, C. A. Marin; Martinengo, P.; Miskowiec, D.; Molnar, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Oeschler, H.; Perini, D.; Peskov, V.; Pinazza, O.; Poghosyan, M. G.; Quercigh, E.; Rademakers, A.; Revol, J. -P.; Riedler, P.; Riegler, W.; Rabacal, B. Rodrigues Fernandes; Rossegger, S.; Rossi, A.; Safarik, K.; Santoro, R.; Schreiner, S.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Sicking, E.; Simonetti, G.; Soos, C.; Szczepankiewicz, A.; Tauro, A.; Telesca, A.; Vyvre, P. Vande; Volpe, G.; von Haller, B.; Wessels, J. P.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Krawutschke, T.] Fachhsch Koln, Cologne, Germany. [Alme, J.; Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Broz, M.; Janik, R.; Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Cepila, J.; Krelina, M.; Krus, M.; Pachr, M.; Petracek, V.; Petran, M.; Pospisil, V.; Smakal, R.; Tlusty, D.; Vajzer, M.; Wagner, V.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bombara, M.; Harmanova-Tothova, Z.; Putis, M.; Urban, J.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Alt, T.; Bach, M.; de Cuveland, J.; Gerhard, J.; Gorbunov, S.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Lindenstruth, V.; Painke, F.; Rettig, F.; Rohr, D.; Toia, A.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Ahn, S. U.; Baek, Y. W.; Jung, H.; Kim, D. W.; Kim, J. S.; Kim, M.; Lee, S. C.; Lee, K. S.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] Helsinki Inst Phys HIP, Jyvaskyla, Finland. [Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] Univ Jyvaskyla, Jyvaskyla, Finland. [Sakaguchi, H.; Shigaki, K.; Sugitate, T.] Hiroshima Univ, Hiroshima, Japan. [Behera, N. K.; Dash, S.; Jena, S.; Meethaleveede, G. Koyithatta; Kumar, J.; Nandi, B. K.; Nyatha, A.; Varma, R.] Indian Inst Technol Bombay IIT, Bombay, Maharashtra, India. [Sahoo, R.] Indian Inst Technol Indore IIT, Indore, Madhya Pradesh, India. [Boyer, B.; Das, I.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Lakomov, I.; Le Bornec, Y.; Suire, C.; Takaki, J. D. Tapia; Palomo, L. Valencia] Univ Paris 11, CNRS, Inst Phys Nucl Orsay IPNO, IN2P3, F-91405 Orsay, France. [Bogolyubsky, M.; Kharlov, Y.; Patalakha, D. I.; Polichtchouk, B.; Sadovsky, S.; Stolpovskiy, M.] Inst High Energy Phys, Protvino, Russia. [Finogeev, D.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A. B.; Kurepin, A.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Bjelogrlic, S.; Chojnacki, M.; de Rooij, R.; Dubla, A.; Grelli, A.; La Pointe, S. L.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Snellings, R. J. M.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Zhou, Y.] Univ Utrecht, Nikhef, Natl Inst Subatom Phys, Utrecht, Netherlands. [Bjelogrlic, S.; Chojnacki, M.; de Rooij, R.; Dubla, A.; Grelli, A.; La Pointe, S. L.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Snellings, R. J. M.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Zhou, Y.] Univ Utrecht, Inst Subatom Phys, Utrecht, Netherlands. [Akindinov, A.; Kaidalov, A. B.; Kiselev, S.; Mal'Kevich, M. V. D.; Nedosekin, A.; Sultanov, R.; Voloshin, K.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Ban, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Pastircak, B.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Baral, R. C.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Mares, J.; Polak, K.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Hasegan, D.; Mitu, C.; Niculescu, M.; Sevcenco, A.; Stan, I.; Stan, I.; Zgura, I. S.] Inst Space Sci ISS, Bucharest, Romania. [Boettger, S.; Breitner, T.; Engel, H.; Kebschull, U.; Lara, C.; Ulrich, J.; Zelnicek, P.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaeuser, H.; Arend, A.; Arslandok, M.; Bailhaches, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Buesching, H.; Hartig, M.; Heckel, S. T.; Kliemant, M.; Kramer, F.; Kulakov, I.; Lehnert, J.; Vargas, H. Leon; Luettig, P.; Marquard, M.; Pitz, N.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Schuchmann, S.; Ulery, J.; Yu, W.; Zyzak, M.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Kalweit, A.; Mager, M.; Oeschler, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Anielski, J.; Bathen, B.; Dietel, T.; Emschermann, D.; Feldkamp, L.; Heide, M.; Klein-Boesing, C.; Passfeld, A.; Santo, R.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Wilk, A.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Cuautle, E.; Dominguez, I.; Jimenez Bustamante, R. T.; Ladron de Guevara, P.; Maldonado Cervantes, I.; Ortiz Velasquez, A.; Palc, G.; Perez Lezama, E.; Peskov, V.; Simatovic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Aguilar Salazar, S.; Alfaro Molina, R.; Almaraz Avina, E.; Belmont-Moreno, E.; Cruz Alaniz, E.; Gonzalez-Trueba, L. H.; Grabski, V.; Leon, H.; Martinez Davalos, A.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Redlich, K.] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Roy, C.; Castro, X. Sanchez; Senyukov, S.] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien IPHC, CNRS, IN2P3, Strasbourg, France. [Batyunya, B.; Fedunov, A.; Grigoryan, S.; Malinina, L.; Nomokonov, P.; Pocheptsov, T.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res, Dubna, Russia. [Agocs, A. G.; Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Levai, P.; Molnar, L.; Pochybova, S.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Ulrich, J.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Ahn, S. A.; Jang, H. J.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Baek, Y. W.; Baldit, A.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P.; Ichou, R.; Lopez, X.; Manso, F.; Marchisone, M.; Porteboeuf-Houssais, S.; Rosnet, P.; Vulpescu, B.; Zhang, X.] Univ Blaise Pascal, Clermont Univ, Lab Phys Corpusculaire LPC, CNRS,IN2P3, Clermont Ferrand, France. [Arbor, N.; Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.] Univ Grenoble 1, CNRS, Lab Phys Subatom & Cosmol LPSC, IN2P3,Inst Polytech Grenoble, Grenoble, France. [Bianchi, N.; Diaz, A. Casanova; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ricci, R. A.; Vannucci, L.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Braidot, E.; Cosentino, M. R.; Fenton-Olsen, B.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Sakai, S.; Symons, T. J. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abelev, B.; Garishvili, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Christensen, C. H.; Dalsgaard, H. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Nygaard, C.; Sogaard, C.; Zaccolo, V.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Botje, M.; Christakoglou, P.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Adamova, D.; Bielcikova, J.; Kushpil, V.; Kushpil, S.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Adamova, D.; Bielcikova, J.; Kushpil, V.; Kushpil, S.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Nucl Phys, Prague, Czech Republic. [Awes, T. C.; Ganoti, P.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Nilsen, B. S.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Chawla, I.; Rathee, D.; Sharma, N.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Azmi, M. D.; Bossu, F.; Buthelezi, Z.; Cleymans, J.; Fearick, R.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Univ Cape Town, Dept Phys, iThemba LABS, ZA-7925 Cape Town, South Africa. [Bhasin, A.; Gupta, A.; Gupta, R.; Mangotra, L.; Potukuchi, B.; Sambyal, S.; Sharma, S.; Rohni, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Goswami, A.; Mishra, A. N.; Raniwala, S.; Raniwala, R.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Anguelov, V.; Busch, O.; Constantin, P.; Glaessel, P.; Grajcarek, R.; Herrmann, N.; Klein, J.; Koch, K.; Krawutschke, T.; Kweon, M. J.; Lohner, D.; Lu, X. -G.; Maire, A.; Perez, J. Mercado; Oyama, K.; Pachmayer, Y.; Reygers, K.; Schicker, R.; Schweda, K.; Stachel, J.; Stiller, J. H.; Vallero, S.; Wang, Y.; Windelband, B.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Chung, S. U.; Seo, J.; Song, J.; Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Kraus, I.; Krzewicki, M.; Lenhardt, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Masciocchi, S.; Miskowiec, D.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Kraus, I.; Krzewicki, M.; Lenhardt, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Masciocchi, S.; Miskowiec, D.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anticic, T.; Nikolic, V.; Planinic, M.; Simatovic, G.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Demanov, V.; Filchagin, S.; Ilkaev, R.; Korneev, A.; Kuryakin, A.; Mamonov, A.; Naumov, N. P.; Nazarenko, S.; Nazarov, G.; Puchagin, S.; Punin, V.; Strabykin, K.; Sukhorukov, M.; Tumkin, A.; Vikhlyantsev, O.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Bose, S.; Chattopadhyay, S.; Das, D.; Das, K.; Majumdar, A. K. Dutta; Khan, P.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Kour, R.; Krivda, M.; Lee, G. R.; Lietava, R.; Matthews, Z. L.; Navin, S.; Palaha, A.; Petrov, P.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Calvo Villar, E.; Gago, A.; Guerra Gutierrez, C.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Aphecetche, L.; Batigne, G.; Bergognon, A. A. E.; Bregant, M.; Delagrange, H.; Driga, O.; Erazmus, B.; Estienne, M.; Germain, M.; Lardeux, A.; Lefevre, F.; Luquin, L.; Garcia, G. Martinez; Mas, A.; Massacrier, L.; Matyja, A.; Pillot, P.; Schutz, Y.; Shabetai, A.; Stocco, D.] Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS,IN2P3, Nantes, France. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Kowalski, M.; Matyja, A.; Mayer, C.; Rybicki, A.; Sputowska, I.; Szczepankiewicz, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Knospe, A. G.; Markert, C.; Karampatsos, L. Xaplanteris] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Gomez, R.; Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Carlin Filho, N.; de Barros, G. O. V.; Deppman, A.; Figueredo, M. A. S.; Moreira De Godoy, D. A.; Munhoz, M. G.; Pereira De Oliveira Filho, E.; Suaide, A. A. P.; Szanto de Toledo, A.] Univ Sao Paulo, BR-09500900 Sao Paulo, Brazil. [Chinellato, D. D.; Dash, A.; Takahashi, J.] Univ Estadual Campinas UNICAMP, Campinas, Brazil. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Guilbaud, M.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Bellwied, R.; Blanco, F.; Jayarathna, P. H. S. Y.; Madagodahettige-Don, D. M.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.; Weber, M.] Univ Houston, Houston, TX USA. Univ Technol, Vienna, Austria. Austrian Acad Sci, A-1010 Vienna, Austria. [Martashvili, I.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.] Univ Tennessee, Knoxville, TN USA. [Gunji, T.; Hamagaki, H.; Hori, Y.; Ozawa, K.; Sano, S.; Torii, H.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Chujo, T.; Esumi, S.; Horaguchi, T.; Inaba, M.; Miake, Y.; Niida, T.; Sakata, D.; Sano, M.; Shimomura, M.; Watanabe, K.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Hess, B. A.; Nystrand, J.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Ahammed, Z.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; De, S.; Dubey, A. K.; Majumdar, M. R. Dutta; Ghosh, P.; Khan, S. A.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Saini, J.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Altsybeev, I.; Asryan, A.; Feofilov, G.; Ivanov, A.; Kolojvari, A.; Kondratiev, V.; Ochirov, A.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Girard, M. R.; Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Ostrowski, P.; Pawlak, T.; Peryt, W.; Pluta, J.; Szymanski, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Borissov, A.; Cormier, T. M.; Dobrin, A.; Jha, D. M.; Loggins, V. R.; Mlynarz, J.; Pavlinov, A.; Prasad, S. K.; Pruneau, C. A.; Putschke, J.; Voloshin, S.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Adare, A. M.; Aronsson, T.; Orduna, D. Caballero; Caines, H.; Harris, J. W.; Hicks, B.; Hille, P. T.; Ma, R.; Oh, S.; Putschke, J.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Grigoryan, A.; Hayrapetyan, A.; Kakoyan, V.; Papikyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Uysal, A. Karasu] Yildiz Tech Univ, Istanbul, Turkey. [Chang, B.; Kang, J. H.; Kim, B.; Kim, T.; Kim, M.; Kwon, Y.; Moon, T.; Song, M.; Yoon, J.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] Fachhsch Worms, Zentrum Technol Transfer & Telekommunikat ZTT, Worms, Germany. [Malinina, L.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Milosevic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. RP Abelev, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Rui, Rinaldo/L-1926-2015; Nielsen, Borge S/C-3719-2015; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; Deppman, Airton/J-5787-2014; Martynov, Yevgen/L-3009-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Ferretti, Alessandro/F-4856-2013; Martinez Hernandez, Mario Ivan/F-4083-2010; Fernandez Tellez, Arturo/E-9700-2017; Vickovic, Linda/F-3517-2017; Altsybeev, Igor/K-6687-2013; Vinogradov, Leonid/K-3047-2013; Janik, Malgorzata/O-7520-2015; Graczykowski, Lukasz/O-7522-2015; Christensen, Christian/D-6461-2012; De Pasquale, Salvatore/B-9165-2008; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Cosentino, Mauro/L-2418-2014; Bearden, Ian/M-4504-2014; Sumbera, Michal/O-7497-2014; Peitzmann, Thomas/K-2206-2012; Kharlov, Yuri/D-2700-2015; Mitu, Ciprian/E-6733-2011; Usai, Gianluca/E-9604-2015; Salgado, Carlos A./G-2168-2015; Bruna, Elena/C-4939-2014; Karasu Uysal, Ayben/K-3981-2015; HAMAGAKI, HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Chinellato, David/D-3092-2012; feofilov, grigory/A-2549-2013; Castillo Castellanos, Javier/G-8915-2013; Vechernin, Vladimir/J-5832-2013; Zarochentsev, Andrey/J-6253-2013; Sevcenco, Adrian/C-1832-2012; Kondratiev, Valery/J-8574-2013; Bregant, Marco/I-7663-2012; Barnafoldi, Gergely Gabor/L-3486-2013; Felea, Daniel/C-1885-2012; Christensen, Christian Holm/A-4901-2010; Levai, Peter/A-1544-2014; Takahashi, Jun/B-2946-2012; Guber, Fedor/I-4271-2013; Martinez Davalos, Arnulfo/F-3498-2013; Wagner, Vladimir/G-5650-2014; Vajzer, Michal/G-8469-2014; Krizek, Filip/G-8967-2014; Bielcikova, Jana/G-9342-2014; Adamova, Dagmar/G-9789-2014; Barnby, Lee/G-2135-2010; Blau, Dmitry/H-4523-2012; Yang, Hongyan/J-9826-2014; OI Bhasin, Anju/0000-0002-3687-8179; SANTORO, ROMUALDO/0000-0002-4360-4600; Scarlassara, Fernando/0000-0002-4663-8216; Turrisi, Rosario/0000-0002-5272-337X; Christiansen, Peter/0000-0001-7066-3473; Coccetti, Fabrizio/0000-0001-7041-3394; Mohanty, Bedangadas/0000-0001-9610-2914; Gago Medina, Alberto Martin/0000-0002-0019-9692; Riggi, Francesco/0000-0002-0030-8377; Dainese, Andrea/0000-0002-2166-1874; Paticchio, Vincenzo/0000-0002-2916-1671; Monteno, Marco/0000-0002-3521-6333; Floris, Michele/0000-0003-0635-788X; Scomparin, Enrico/0000-0001-9015-9610; Rui, Rinaldo/0000-0002-6993-0332; Virgili, Tiziano/0000-0003-0471-7052; Guerzoni, Barbara/0000-0003-3187-7051; Nielsen, Borge S/0000-0002-0091-1934; Read, Kenneth/0000-0002-3358-7667; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; Deppman, Airton/0000-0001-9179-6363; Martynov, Yevgen/0000-0003-0753-2205; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Ferretti, Alessandro/0000-0001-9084-5784; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Fernandez Tellez, Arturo/0000-0003-0152-4220; Vickovic, Linda/0000-0002-9820-7960; Altsybeev, Igor/0000-0002-8079-7026; Vinogradov, Leonid/0000-0001-9247-6230; Janik, Malgorzata/0000-0002-3356-3438; Christensen, Christian/0000-0002-1850-0121; De Pasquale, Salvatore/0000-0001-9236-0748; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Cosentino, Mauro/0000-0002-7880-8611; Bearden, Ian/0000-0003-2784-3094; Sumbera, Michal/0000-0002-0639-7323; Peitzmann, Thomas/0000-0002-7116-899X; Usai, Gianluca/0000-0002-8659-8378; Salgado, Carlos A./0000-0003-4586-2758; Bruna, Elena/0000-0001-5427-1461; Karasu Uysal, Ayben/0000-0001-6297-2532; Pshenichnov, Igor/0000-0003-1752-4524; Chinellato, David/0000-0002-9982-9577; feofilov, grigory/0000-0003-3700-8623; Castillo Castellanos, Javier/0000-0002-5187-2779; Vechernin, Vladimir/0000-0003-1458-8055; Zarochentsev, Andrey/0000-0002-3502-8084; Sevcenco, Adrian/0000-0002-4151-1056; Kondratiev, Valery/0000-0002-0031-0741; Felea, Daniel/0000-0002-3734-9439; Christensen, Christian Holm/0000-0002-1850-0121; Takahashi, Jun/0000-0002-4091-1779; Guber, Fedor/0000-0001-8790-3218; Martinez Davalos, Arnulfo/0000-0002-9481-9548; Barnby, Lee/0000-0001-7357-9904; Masera, Massimo/0000-0003-1880-5467; Gaardhoje, Jens-Jorgen/0000-0001-6122-4698; Fernandez Tellez, Arturo/0000-0001-5092-9748; Zhou, You/0000-0002-7868-6706; Beole', Stefania/0000-0003-4673-8038; Fiore, Enrichetta Maria/0000-0002-3548-2690; Di Bari, Domenico/0000-0002-5559-8906; ORTONA, Giacomo/0000-0001-8411-2971; van Leeuwen, Marco/0000-0002-5222-4888 FU Calouste Gulbenkian Foundation from Lisbon; Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community; Helsinki Institute of Physics; Academy of Finland; French CNRS [IN2P3]; Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German BMBF; Helmholtz Association; General Secretariat for Research and Technology; Ministry of Development, Greece; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT; DGAPA, Mexico; ALFA-EC; HELEN Program (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research-NASR (Autoritatea Nationala a pentru Cercetare, Stiintifica-ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation; International Science and Technology Center, Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; CERN-INTAS; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT; EELA; Ministerio de Educacion y Ciencia of Spain; Xunta de Galicia (Conselleria de Educacion); CEA-DEN; Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio FX The ALICE collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. We are also grateful to R. Ciesielski, E. Gotsman, K. Goulianos, V. Khoze, G. Levin, S. Ostapchenko and M. Ryskin for providing us the numerical predictions of their models [6-17]. The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, Mexico, ALFA-EC and the HELEN Program (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research-NASR (Autoritatea Nationala a pentru Cercetare, Stiintifica-ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and CERN-INTAS; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Educacion y Ciencia of Spain, Xunta de Galicia (Conselleria de Educacion), CEA-DEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 63 TC 66 Z9 66 U1 1 U2 78 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUN PY 2013 VL 73 IS 6 AR 2456 DI 10.1140/epjc/s10052-013-2456-0 PG 20 WC Physics, Particles & Fields SC Physics GA 183ZH UT WOS:000321855400012 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Kalogeropoulos, A Keaveney, J Maes, M Olbrechts, A Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Reis, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Dildick, S Garcia, G Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Castello, R Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Selvaggi, M Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DJ Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Jorge, LS Sznajder, A Manganote, EJT Pereira, AV Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Montoya, CAC Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Mekterovic, D Morovic, S Tikvica, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Kame, AE Mahmoud, MA Mahrous, A Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Korpela, A Tuuva, T Besancon, M Choudhury, S Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Goetzmann, C Juillot, P Le Bihan, AC Van Hove, P Beauceron, S Beaupere, N Bondu, O Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Tschudi, Y Vander Donckt, M Verdier, P Viret, S Tsamalaidze, Z Autermann, C Beranek, S Calpas, B Edelhoff, M Feld, L Heracleous, N Hindrichs, O Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Costanza, F Dammann, D Pardos, CD Dorland, T Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Kramer, M Krucker, D Kuznetsova, E Lange, W Leonard, J Lipka, K Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Olzem, J Perrey, H Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Riedl, C Ron, E Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Walsh, R Wissing, C Blobel, V Enderle, H Erfle, J Gebbert, U Gorner, M Gosselink, M Haller, J Heine, K Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Vanelderen, L Barth, C Baus, C Berger, J Boser, C Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hackstein, C Hartmann, F Hauth, T Heinrich, M Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Kornmayer, A Pardo, PL Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Ott, J Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Radics, B Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Mittal, M Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Saxena, P Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Chatterjee, RM Ganguly, S Guchait, M Gurtu, A Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bellato, M Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Fantinel, S Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Nespolo, M Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Gabusi, M Ratti, SP Riccardi, C Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Azzurri, P Bagliesi, G Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Grassi, M Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Casasso, S Costa, M De Remigis, P Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Penzo, A Schizzi, A Zanetti, A Kim, TY Nam, SK Chang, S Kim, DH Kim, GN Kim, JE Kong, DJ Oh, YD Park, H Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Grigelionis, I Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Seixas, J Varela, J Vischia, P Bunin, P Golutvin, I Gorbunov, I Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Malakhov, A Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Shulha, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bendavid, J Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC Colafranceschi, S d'Enterria, D Dabrowski, A De Roeck, A De Visscher, S Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Hartl, C Hegner, B Hinzmann, A Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Krajczar, K Lecoq, P Lee, YJ Lourenco, C Magini, N Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mulders, M Musella, P Nesvold, E Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Stoye, M Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Bachmair, F Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Lecomte, P Lustermann, W Marini, AC del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Amsler, C Chiochia, V Favaro, C Rikova, MI Kilminster, B Mejias, BM Otiougova, P Robmann, P Snoek, H Taroni, S Tupputi, S Verzetti, M Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Rohlf, J Sperka, D St John, J Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Nelson, R Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Yohay, R Andreev, V Cline, D Cousins, R Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Traczyk, P Valuev, V Weber, M Babb, J Clare, R Dinardo, ME Ellison, J Gary, JW Giordano, F Hanson, G Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P George, C Golf, F Incandela, J Justus, C Kalavase, P Kovalskyi, D Krutelyov, V Lowette, S Villalba, RM Mccoll, N Pavlunin, V Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Yang, Y Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Gutsche, O Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Klima, B Kunori, S Kwan, S Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, E Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovie, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Lacroix, F O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Ogul, H Onel, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Hu, G Maksimovic, P Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Peterman, A Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Bauer, G Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Kim, Y Klute, M Levin, A Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Suarez, RG Keller, J Kravchenko, I Lazo-Flores, J Malik, S Snow, GR Dolen, J Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Wan, Z Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Antonelli, L Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Williams, G Winer, BL Wolfe, H Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Koybasi, O Kress, M Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Walker, M Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dragoiu, C Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Anderson, M Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Loveless, R Mohapatra, A Mozer, MU Ojalvo, I Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Kalogeropoulos, A. Keaveney, J. Maes, M. Olbrechts, A. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Reis, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Dildick, S. Garcia, G. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Castello, R. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Selvaggi, M. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Soares Jorge, L. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, S. S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Carrillo Montoya, C. A. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Tikvica, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Kame, A. Ellithi Mahmoud, M. A. Mahrous, A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Korpela, A. Tuuva, T. Besancon, M. Choudhury, S. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Juillot, P. Le Bihan, A. -C. Van Hove, P. Beauceron, S. Beaupere, N. Bondu, O. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Tschudi, Y. Vander Donckt, M. Verdier, P. Viret, S. Tsamalaidze, Z. Autermann, C. Beranek, S. Calpas, B. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Costanza, F. Dammann, D. Pardos, C. Diez Dorland, T. Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Leonard, J. Lipka, K. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Walsh, R. Wissing, C. Blobel, V. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Gosselink, M. Haller, J. Heine, K. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hackstein, C. Hartmann, F. Hauth, T. Heinrich, M. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Kornmayer, A. Pardo, P. Lobelle Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Radics, B. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Mittal, M. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Saxena, P. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Chatterjee, R. M. Ganguly, S. Guchait, M. Gurtu, A. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellato, M. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Fantinel, S. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Nespolo, M. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Azzurri, P. Bagliesi, G. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Grassi, M. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Casasso, S. Costa, M. De Remigis, P. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Zanetti, A. Kim, T. Y. Nam, S. K. Chang, S. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Oh, Y. D. Park, H. Son, D. C. Kim, J. Y. Kim, Z. J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Grigelionis, I. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Seixas, J. Varela, J. Vischia, P. Bunin, P. Golutvin, I. Gorbunov, I. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Malakhov, A. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Shulha, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Navarro De Martino, E. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bendavid, J. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Colafranceschi, S. d'Enterria, D. Dabrowski, A. De Roeck, A. De Visscher, S. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Hartl, C. Hegner, B. Hinzmann, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Krajczar, K. Lecoq, P. Lee, Y. -J. Lourenco, C. Magini, N. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mulders, M. Musella, P. Nesvold, E. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Stoye, M. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Amsler, C. Chiochia, V. Favaro, C. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Taroni, S. Tupputi, S. Verzetti, M. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Bahtiyar, H. Barlas, E. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. St. John, J. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Nelson, R. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Yohay, R. Andreev, V. Cline, D. Cousins, R. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Dinardo, M. E. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Kalavase, P. Kovalskyi, D. Krutelyov, V. Lowette, S. Villalba, R. Magana Mccoll, N. Pavlunin, V. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Yang, Y. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gutsche, O. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kunori, S. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovie, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Lacroix, F. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Griffiths, S. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Ogul, H. Onel, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Hu, G. Maksimovic, P. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Peterman, A. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Bauer, G. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Kim, Y. Klute, M. Levin, A. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Suarez, R. Gonzalez Keller, J. Kravchenko, I. Lazo-Flores, J. Malik, S. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Wan, Z. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Antonelli, L. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Williams, G. Winer, B. L. Wolfe, H. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Koybasi, O. Kress, M. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Walker, M. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dragoiu, C. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Anderson, M. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Loveless, R. Mohapatra, A. Mozer, M. U. Ojalvo, I. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Search for a standard-model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID WEAK INTERACTIONS; PARTON DISTRIBUTIONS; BROKEN SYMMETRIES; HADRON COLLIDERS; GAUGE-THEORIES; PP COLLISIONS; HIGH-ENERGIES; PARTICLES; PHYSICS; CMS AB A search for a standard-model-like Higgs boson in the H -> WW and H -> ZZ decay channels is reported, for Higgs boson masses in the range 145 < m(H) < 1000 GeV. The search is based upon proton-proton collision data samples corresponding to an integrated luminosity of up to 5.1 fb(-1) at root s = 7 TeV and up to 5.3 fb(-1) at root s = 8 TeV, recorded by the CMS experiment at the LHC. The combined upper limits at 95 % confidence level on products of the cross section and branching fractions exclude a standard-model-like Higgs boson in the range 145 < m(H) < 710 GeV, thus extending the mass region excluded by CMS from 127-600 GeV up to 710 GeV. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [CMS Collaboration] CERN, Geneva, Switzerland. [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Marinho, F.; Novaes, S. F.; Padula, S. S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Wang, J.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kame, A. Ellithi; Mahmoud, M. A.; Mahrous, A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM, IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Vander Donckt, M.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, Inst Phys Nucl Lyon, IN2P3, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Inst Phys 3 A, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Inst Phys 3 B, Aachen, Germany. [Attikis, A.; Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Gosselink, M.; Haller, J.; Heine, K.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.] NCSR Demokritos, Inst Nucl & Particle Phys INPP, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Radics, B.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Banerjee, S.; Guchait, M.; Dugad, S.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Mohammadi, A.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Dogangun, O.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellato, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Fantinel, S.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Nespolo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trent, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Rovelli, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Fanelli, C.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; De Remigis, P.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Casasso, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Oh, Y. D.; Park, H.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Z. J.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Grigelionis, I.; Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Bunin, P.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovie, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovie, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Genchev, V.; Iaydjiev, P.; Chierici, R.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Sharma, A.; Abdulsalam, A.; Mohanty, A. K.; Calabria, C.; De Filippis, N.; Meneghelli, M.; Di Matteo, L.; Gennai, S.; Lucchini, M. T.; Bacchetta, N.; D'Agnolo, R. T.; Fiori, F.; Grassi, M.; Meridiani, P.; Mariotti, C.; Musich, M.; Cossutti, F.; Marone, M.; Seixas, J.; Chamizo Llatas, M.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Colafranceschi, S.; d'Enterria, D.; Dabrowski, A.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y. -J.; Lourenco, C.; Magini, N.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Taroni, S.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Gunaydin, Y. O.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Worm, S. D.; Newbold, D. M.; Basso, L.; Bell, K. W.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; St. John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovie, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] Univ Illinois Chicago UIC, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Kim, Y.; Klute, M.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Suarez, R. Gonzalez; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.] Northwestern Univ, Evanston, IL USA. [Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Williams, G.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Li, W.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kame, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Mahrous, A.] Helwan Univ, Cairo, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Bluj, M.] Natl Ctr Nucl Res, Otwock, Poland. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Bergholz, M.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Arfaei, H.; Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Fantinel, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Bahtiyar, H.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, Kahramanmaras, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Sguazzoni, Giacomo/J-4620-2015; Popov, Andrey/E-1052-2012; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Lazzizzera, Ignazio/E-9678-2015; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Yazgan, Efe/C-4521-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Dahms, Torsten/A-8453-2015; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Raidal, Martti/F-4436-2012; Bernardes, Cesar Augusto/D-2408-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Azarkin, Maxim/N-2578-2015; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Mundim, Luiz/A-1291-2012; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; VARDARLI, Fuat Ilkehan/B-6360-2013; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Dogangun, Oktay/L-9252-2013; Wolszczak, Weronika/N-3113-2013; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Janssen, Xavier/E-1915-2013; Novaes, Sergio/D-3532-2012; Bartalini, Paolo/E-2512-2014; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Ligabue, Franco/F-3432-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Montanari, Alessandro/J-2420-2012; Manganote, Edmilson/K-8251-2013; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Dudko, Lev/D-7127-2012; Tinoco Mendes, Andre David/D-4314-2011; Ivanov, Andrew/A-7982-2013; Lokhtin, Igor/D-7004-2012; Petrushanko, Sergey/D-6880-2012; Hill, Christopher/B-5371-2012; Liu, Sheng/K-2815-2013; Zhukov, Valery/K-3615-2013; Venturi, Andrea/J-1877-2012; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; OI Heath, Helen/0000-0001-6576-9740; Grassi, Marco/0000-0003-2422-6736; Giubilato, Piero/0000-0003-4358-5355; Tabarelli de Fatis, Tommaso/0000-0001-6262-4685; Ulrich, Ralf/0000-0002-2535-402X; Bloom, Kenneth/0000-0002-4272-8900; Lenzi, Piergiulio/0000-0002-6927-8807; Lucchini, Marco Toliman/0000-0002-7497-7450; Gutsche, Oliver/0000-0002-8015-9622; Abbiendi, Giovanni/0000-0003-4499-7562; Gonzi, Sandro/0000-0003-4754-645X; HSIUNG, YEE/0000-0003-4801-1238; Levchenko, Petr/0000-0003-4913-0538; Vidal Marono, Miguel/0000-0002-2590-5987; Faccioli, Pietro/0000-0003-1849-6692; Tuominen, Eija/0000-0002-7073-7767; Goldstein, Joel/0000-0003-1591-6014; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Staiano, Amedeo/0000-0003-1803-624X; Ciulli, Vitaliano/0000-0003-1947-3396; Tonelli, Guido Emilio/0000-0003-2606-9156; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Sguazzoni, Giacomo/0000-0002-0791-3350; WANG, MIN-ZU/0000-0002-0979-8341; Popov, Andrey/0000-0002-1207-0984; Casarsa, Massimo/0000-0002-1353-8964; Diemoz, Marcella/0000-0002-3810-8530; Landsberg, Greg/0000-0002-4184-9380; Rizzi, Andrea/0000-0002-4543-2718; Tricomi, Alessia Rita/0000-0002-5071-5501; Blekman, Freya/0000-0002-7366-7098; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Costa, Salvatore/0000-0001-9919-0569; Kasemann, Matthias/0000-0002-0429-2448; Tosi, Nicolo/0000-0002-0474-0247; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Malik, Sudhir/0000-0002-6356-2655; Gershtein, Yuri/0000-0002-4871-5449; Demaria, Natale/0000-0003-0743-9465; Lazzizzera, Ignazio/0000-0001-5092-7531; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Yazgan, Efe/0000-0001-5732-7950; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Toback, David/0000-0003-3457-4144; Margaroli, Fabrizio/0000-0002-3869-0153; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Mundim, Luiz/0000-0001-9964-7805; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Dogangun, Oktay/0000-0002-1255-2211; de Jesus Damiao, Dilson/0000-0002-3769-1680; Novaes, Sergio/0000-0003-0471-8549; Ligabue, Franco/0000-0002-1549-7107; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Montanari, Alessandro/0000-0003-2748-6373; Wimpenny, Stephen/0000-0003-0505-4908; Dudko, Lev/0000-0002-4462-3192; Tinoco Mendes, Andre David/0000-0001-5854-7699; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Sogut, Kenan/0000-0002-9682-2855; Raval, Amita/0000-0003-0164-4337; Torassa, Ezio/0000-0003-2321-0599; Verdier, Patrice/0000-0003-3090-2948; CHANG, PAO-TI/0000-0003-4064-388X; Reis, Thomas/0000-0003-3703-6624; Luukka, Panja/0000-0003-2340-4641 FU BMWF (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq, (Brazil); CAPES, (Brazil); FAPERJ, (Brazil); FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, (China); MoST, (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, (Estonia); ERDF (Estonia); Academy of Finland, (Finland); MEC, (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF, (Germany); DFG, (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Republic of Korea); WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, (Mexico); CONACYT, (Mexico); SEP, (Mexico); UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MON, (Russia); RosAtom, (Russia); RAS (Russia); RFBR (Russia); MSTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, (Thailand); IPST (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science; European Union, Regional Development Fund; [SF0690030s09] FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund. NR 104 TC 30 Z9 31 U1 6 U2 111 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUN PY 2013 VL 73 IS 6 AR 2469 DI 10.1140/epjc/s10052-013-2469-8 PG 27 WC Physics, Particles & Fields SC Physics GA 183ZH UT WOS:000321855400023 ER PT J AU Liu, L Commean, PK Hildebolt, C Sinacore, D Prior, F Carson, JP Kakadiaris, I Ju, T AF Liu, Lu Commean, Paul K. Hildebolt, Charles Sinacore, Dave Prior, Fred Carson, James P. Kakadiaris, Ioannis Ju, Tao TI Automated, Foot-Bone Registration Using Subdivision-Embedded Atlases for Spatial Mapping of Bone Mineral Density SO JOURNAL OF DIGITAL IMAGING LA English DT Article DE Bone mineral density; Registration; Atlas; Subdivision ID QUANTITATIVE COMPUTED-TOMOGRAPHY; IMAGE REGISTRATION; VOLUMES; MESHES; TARSAL AB We present an atlas-based registration method for bones segmented from quantitative computed tomography (QCT) scans, with the goal of mapping their interior bone mineral densities (BMDs) volumetrically. We introduce a new type of deformable atlas, called subdivision-embedded atlas, which consists of a control grid represented as a tetrahedral subdivision mesh and a template bone surface embedded within the grid. Compared to a typical lattice-based deformation grid, the subdivision control grid possesses a relatively small degree of freedom tailored to the shape of the bone, which allows efficient fitting onto subjects. Compared with previous subdivision atlases, the novelty of our atlas lies in the addition of the embedded template surface, which further increases the accuracy of the fitting. Using this new atlas representation, we developed an efficient and fully automated pipeline for registering atlases of 12 tarsal and metatarsal bones to a segmented QCT scan of a human foot. Our evaluation shows that the mapping of BMD enabled by the registration is consistent for bones in repeated scans, and the regional BMD automatically computed from the mapping is not significantly different from expert annotations. The results suggest that our improved subdivision-based registration method is a reliable, efficient way to replace manual labor for measuring regional BMD in foot bones in QCT scans. C1 [Liu, Lu; Ju, Tao] Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63130 USA. [Commean, Paul K.; Hildebolt, Charles; Sinacore, Dave; Prior, Fred] Washington Univ, Sch Med, St Louis, MO 63130 USA. [Carson, James P.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kakadiaris, Ioannis] Univ Houston, Dept Comp Sci, Houston, TX 77204 USA. RP Ju, T (reprint author), Washington Univ, Dept Comp Sci & Engn, 1 Brookings Dr,Campus Box 1045, St Louis, MO 63130 USA. EM taoju@cse.wustl.edu OI Kakadiaris, Ioannis/0000-0002-0591-1079 FU NIH [R21DK79457, R21NS058553]; NSF [DBI-0743691, CCF-0702662] FX This work is supported in part by NIH grants (R21DK79457 and R21NS058553) and NSF grants (DBI-0743691 and CCF-0702662). NR 33 TC 3 Z9 3 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0897-1889 J9 J DIGIT IMAGING JI J. Digit. Imaging PD JUN PY 2013 VL 26 IS 3 BP 554 EP 562 DI 10.1007/s10278-012-9524-0 PG 9 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 191TA UT WOS:000322434300022 PM 23090209 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Ochoa, MI Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguiar-Saavedra, JA Agustoni, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akesson, TPA Akimoto, G Akimov, AV Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amoroso, S Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Argyropoulos, S Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Artamonov, A Artoni, G Arutinov, D Asai, S Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astbury, A Atkinson, M Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Avolio, G Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bittner, B Black, CW Black, JE Black, KM Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blocki, J Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buescher, V Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Courneyea, L Cowan, G Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallaire, F Dallapiccola, C Dam, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Dassoulas, JA Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P La Taille, C De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dressnandt, N Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duehrssen, M Duerdoth, IP Duflot, L Dufour, MA Duguid, L Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dueren, M Ebenstein, WL Ebke, J Eckweiler, S Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Fitzgerald, EA Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadatsch, S Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Goepfert, T Goeringer, C Goessling, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohsjean, A Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hajduk, Z Hakobyan, H Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM van Huysduynen, LH Horner, S Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Jen-La Plante, I Jeng, GY Jennens, D Jenni, P Loevschall-Jensen, AE Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karagounis, M Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Keller, JS Kenyon, M Keoshkerian, H Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koeneke, K Konig, AC Koenig, S Koepke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopp, AK Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Krejci, F Kretzschmar, J Kreutzfeldt, K Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, MK Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, D Liu, JB Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Lukas, W Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundberg, O Lundquist, J Lungwitz, M Lynn, D Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madar, R Madaras, RJ Maddocks, HJ Mader, WF Madsen, AK Maeno, M Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade , LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, H Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsunaga, H Matsushita, T Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Milutinovic-Dumbelovic, G Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Moles-Valls, R Molfetas, A Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Muller, TA Mueller, T Muenstermann, D Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Nguyen, DH Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novakova, J Nozaki, M Nozka, L Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poblaguev, A Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Puldon, D Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Raas, M Radeka, V Radescu, V Radloff, P Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rangel-Smith, C Rao, K Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinsch, A Reisinger, I Relich, M Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rieck, P Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Ritsch, E Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarrazin, B Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schafer, U Schaelicke, A Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sood, A Sopko, V Sopko, B Sosebee, M Soualah, R Soueid, P Soukharev, A South, D Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Stroehmer, R Strom, DM Strong, JA Stroynowski, R Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, H Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Vacavant, L Vacek, V Vachon, B Vahsen, S Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, R Wang, SM Wang, T Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelrn, I Wilkens, HG Will, JZ Williams, E Williams, HH Williams, S Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yasu, Y Yatsenko, E Ye, J Ye, S Yen, AL Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJ Youssef, S Yu, D Yu, DR Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zenin, O Zenis, T Zinonos, Z Zerwas, D della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zibell, A Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Ochoa, M. I. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguiar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Argyropoulos, S. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astbury, A. Atkinson, M. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, P. Banerjee, Sw Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bittner, B. Black, C. W. Black, J. E. Black, K. M. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Courneyea, L. Cowan, G. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallaire, F. Dallapiccola, C. Dam, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dressnandt, N. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Duguid, L. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadatsch, S. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph Grishkevich, Y. V. Grivaz, J. -F. Grohsjean, A. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hajduk, Z. Hakobyan, H. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Horner, S. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jen-La Plante, I. Jeng, G. -Y. Jennens, D. Jenni, P. Loevschall-Jensen, A. E. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Juste Rozas, A. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karagounis, M. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kenyon, M. Keoshkerian, H. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Krejci, F. Kretzschmar, J. Kreutzfeldt, K. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, M. K. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, D. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Lukas, W. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundberg, O. Lundquist, J. Lungwitz, M. Lynn, D. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madar, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Madsen, A. K. Maeno, M. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, H. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsunaga, H. Matsushita, T. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Milutinovic-Dumbelovic, G. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Moles-Valls, R. Molfetas, A. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Nguyen, D. H. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novakova, J. Nozaki, M. Nozka, L. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedraza Lopez, S. Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pizio, C. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poblaguev, A. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Puldon, D. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Raas, M. Radeka, V. Radescu, V. Radloff, P. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinsch, A. Reisinger, I. Relich, M. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rieck, P. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Ritsch, E. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarrazin, B. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, U. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph Schwartzman, A. Schwegler, Ph Schwemling, Ph Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. South, D. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, Hs Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelrn, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Williams, S. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yasu, Y. Yatsenko, E. Ye, J. Ye, S. Yen, A. L. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. Youssef, S. Yu, D. Yu, D. R. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zenin, O. Zenis, T. Zinonos, Z. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the cross-section for W boson production in association with b-jets in pp collisions at root s=7 TeV with the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID MODEL HIGGS-BOSON; PARTON DISTRIBUTIONS; SEARCH; PAIR; LHC AB This paper reports a measurement of the W+b-jets (W+b+X and W+b (b) over bar +X) production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. These results are based on data corresponding to an integrated luminosity of 4.6 fb(-1), collected with the ATLAS detector. Cross-sections are presented as a function of jet multiplicity and of the transverse momentum of the leading b-jet for both the muon and electron decay modes of the W boson. The W+b-jets cross-section, corrected for all known detector effects, is quoted in a limited kinematic range. Combining the muon and electron channels, the fiducial cross-section for W+b-jets is measured to be 7.1 +/- 0.5 (stat) +/- 1.4 (syst) pb, consistent with the next-to-leading order QCD prediction, corrected for non-perturbative and double-parton interactions (DPI) contributions, of 4.70 +/- 0.09 (stat) (+0.60)(-0.49) (scale) +/- 0.06 (PDF) +/- 0.16 (non-pert) (+0.52)(-0.38) (DPI) pb. C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Edson, W.; Ernst, J.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Subramania, Hs; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] IN2P3, CNRS, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Huseynov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Milutinovic-Dumbelovic, G.; Popovic, D. S.; Sijacki, Dj; Simic, Lj] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Nikiforov, A.; Rieck, P.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Grafstroem, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Abajyan, T.; Arutinov, D.; Backhaus, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Sarrazin, B.; Schaepe, S.; Schmieden, K.; Schultens, M. J.; Schwindt, T.; Seliverstov, D. M.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Kravchenko, A.; Kupco, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Subramaniam, R.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Asner, D.; Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froidevaux, D.; Gabaldon, C.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Gillberg, D.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Jen-La Plante, I.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cottin, G.; Diaz, M. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Wang, J.; Xu, D.; Yao, L.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, B.; Li, S.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Wu, Y.; Xu, C.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Meng, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Valery, L.; Vazeille, F.] IN2P3, CNRS, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Dodd, J.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Spousta, M.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Loevschall-Jensen, A. E.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Namasivayam, H.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Hamburg, Germany. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Korn, A.; Martin, V. J.; O'Brien, B. J.; Pino, S. A. Olivares; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Amoroso, S.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Madar, R.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Bucci, F.; Clark, A.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Hamer, M.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] IN2P3, CNRS, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Karnevskiy, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Halladjian, G.; Limper, M.; Mallik, U.; Mandrysch, R.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Snidero, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Vazquez, J. G. Panduro; Pastore, Fr; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Ochoa, M. I.; Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] IN2P3, CNRS, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fys Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Snow, S. W.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Demirkoz, B.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Demirkoz, B.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] IN2P3, CNRS, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Klemetti, M.; Mantifel, R.; Mc Donald, J.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Hauser, R.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Banerjee, P.; Bouchami, J.; Dallaire, F.; Davies, M.; Gauthier, L.; Giunta, M.; Leroy, C.; Martin, J. P.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu; Smirnov, Y.; Soldatov, E. Yu; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Ince, T.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; Dao, V.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. S.; Bogdanchikov, A.; Kazanin, V. F.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Andari, N.; Auge, E.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Andari, N.; Auge, E.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Zerwas, D.; Zhang, Z.] IN2P3, CNRS, Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Dressnandt, N.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguiar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguiar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguiar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Holy, T.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Torregrosa, E. Fullana; Kodys, P.; Leitner, R.; Novakova, J.; Pleskot, V.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelrn, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Messina, A.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Reseau Univ Phys Hautes Energies Univ Hassan II, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Ramos, J. A. Manjarres; Mansoulie, B.; Martinez, H.; Meyer, J-P.; Mijovic, L.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph; Schwindling, J.; Simard, O.; Vranjes, N.; Xiao, M.; Xu, C.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Damiani, D. S.; Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tsionou, D.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Assamagan, K.; Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, T. M.; Carrillo-Montoya, G. D.; Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Plucinski, P.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Plucinski, P.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Di Mattia, A.; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Ginzburg, J.; Gueta, O.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Krieger, P.; Orr, R. S.; Polifka, R.; Rezvani, R.; Rosenbaum, G. A.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Farrell, S.; Eschrich, I. Gough; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A. K.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Fedorko, W.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Castillo, L. R. Flores; Gutzwiller, O.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, K.; Becks, K. H.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fleischmann, S.; Flick, T.; Gerlach, P.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Sherman, D.; Tipton, P.; Wall, R.; Walsh, B.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Maximov, D. A.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Toronto, ON, Canada. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Do Valle Wemans, A.] Univ Nova Lisboa, Dep Fis, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Conde Muino, Patricia/F-7696-2011; Andreazza, Attilio/E-5642-2011; Boyko, Igor/J-3659-2013; Moraes, Arthur/F-6478-2010; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Ferrando, James/A-9192-2012; Brooks, William/C-8636-2013; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Olshevskiy, Alexander/I-1580-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Gerbaudo, Davide/J-4536-2012; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Moorhead, Gareth/B-6634-2009; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Wemans, Andre/A-6738-2012; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Kepka, Oldrich/G-6375-2014; Lokajicek, Milos/G-7800-2014; Jakoubek, Tomas/G-8644-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Kuday, Sinan/C-8528-2014; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Marti-Garcia, Salvador/F-3085-2011; Shabalina, Elizaveta/M-2227-2013; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; De, Kaushik/N-1953-2013; Snesarev, Andrey/H-5090-2013; Warburton, Andreas/N-8028-2013; Sukharev, Andrey/A-6470-2014; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Fabbri, Laura/H-3442-2012; Villa, Mauro/C-9883-2009 OI Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Smestad, Lillian/0000-0002-0244-8736; Giordani, Mario/0000-0002-0792-6039; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Conde Muino, Patricia/0000-0002-9187-7478; Andreazza, Attilio/0000-0001-5161-5759; Boyko, Igor/0000-0002-3355-4662; Moraes, Arthur/0000-0002-5157-5686; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Ferrando, James/0000-0002-1007-7816; Brooks, William/0000-0001-6161-3570; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Gerbaudo, Davide/0000-0002-4463-0878; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Prokoshin, Fedor/0000-0001-6389-5399; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Moorhead, Gareth/0000-0002-9299-9549; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; De, Kaushik/0000-0002-5647-4489; Warburton, Andreas/0000-0002-2298-7315; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Villa, Mauro/0000-0002-9181-8048 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 65 TC 5 Z9 5 U1 5 U2 121 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2013 IS 6 AR 084 DI 10.1007/JHEP06(2013)084 PG 45 WC Physics, Particles & Fields SC Physics GA 177NL UT WOS:000321381800030 ER PT J AU Bardakci, K AF Bardakci, Korkut TI Scalar field theories on the world sheet: cutoff independent treatment SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Solitons Monopoles and Instantons; Nonperturbative Effects; 1/N Expansion ID DUAL AMPLITUDES AB Following earlier work on the same topic, we consider once more scalar field theories OH the world sheet parametrized by the light cone coordinates. For most of the way, we use the same approach as in the previous work, but there is an important new development. To avoid the light cone singularity at p(+) = 0, one world sheet coordinate had to be discretized, introducing a cutoff into the model. In the earlier work, this cutoff could not be removed, making the model unreliable. In the present article, we show that, by a careful choice of the mass counter term, both the infrared singularity at p 0 and the ultraviolet mass divergences can be simultaneously eliminated. We therefore finally have a cutoff independent model on a continuously parametrized world sheet. We study this model in the mean field approximation, and as before, we find solitonic solutions. Quantizing the solitonic collective coordinates gives rise to a string like model. However, in contrast to the standard string model, the trajectories here are not in general linear but curved. C1 [Bardakci, Korkut] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bardakci, Korkut] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Bardakci, K (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM kbardakci@lbl.gov FU Office of Science, Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 16 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2013 IS 6 AR 066 DI 10.1007/JHEP06(2013)066 PG 22 WC Physics, Particles & Fields SC Physics GA 177NL UT WOS:000321381800012 ER PT J AU Boughezal, R Caola, F Melnikov, K Petriello, F Schulze, M AF Boughezal, Radja Caola, Fabrizio Melnikov, Kirill Petriello, Frank Schulze, Markus TI Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Jets; NLO Computations ID HADRON-HADRON COLLISIONS; DOUBLE-REAL RADIATION; SOFT GLUON RADIATION; O(ALPHA(2)(S)) CORRECTIONS; TRANSVERSE-MOMENTUM; MASS SINGULARITIES; CROSS-SECTIONS; NLO QCD; SCATTERING; LHC AB We report on a calculation of the cross-section for Higgs boson production in gluon fusion in association with a hadronic jet at next-to-next-to-leading order (NNLO) in perturbative QCD. The computational technique is discussed in detail. We show explicitly how to employ known soft and collinear limits of scattering amplitudes to construct subtraction terms for NNLO computations. Cancellation of singularities is demonstrated numerically for the collinearly-subtracted gg -> H + j cross-section through NNLO and the finite sigma(gg) -> H-j cross-section is computed through O(alpha(5)(s)) as a function of the center-of-mass collision energy. We present numerical results for the gluon-fusion contribution to Higgs production in association with a jet at the LHC. The NNLO QCD corrections significantly reduce the residual scale dependence of the cross-section. The computational method that we describe in this paper is applicable to the calculation of NNLO QCD corrections to any other 2 -> 2 process at a hadron collider without modification. C1 [Boughezal, Radja; Petriello, Frank; Schulze, Markus] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Caola, Fabrizio; Melnikov, Kirill] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Petriello, Frank] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Boughezal, R (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM rboughezal@anl.gov; caola@pha.jhu.edu; melnikov@pha.jhu.edu; f-petriello@northwestern.edu; markus.schulze@anl.gov OI Caola, Fabrizio/0000-0003-4739-9285 FU US NSF [PHY-0855365, PHY-1214000]; U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357, DE-FG02-95ER40896, DE-FG02-08ER4153]; Johns Hopkins University; Karlsruhe Institute of Technology FX We thank T. Gehrmann for clarifying to us some results in ref. [93]. This research is partially supported by the US NSF under grants PHY-0855365 and PHY-1214000, by the U.S. Department of Energy, Division of High Energy Physics, under contract DE-AC02-06CH11357 and the grants DE-FG02-95ER40896 and DE-FG02-08ER4153, and by start-up funds provided by Johns Hopkins University. The research of K.M. is partially supported by Karlsruhe Institute of Technology through a grant provided by its Distinguished Researcher Fellowship program. Calculations reported in this paper were performed on the Homewood High Performance Cluster of Johns Hopkins University or on computing resources provided by Argonne National Laboratory. NR 111 TC 53 Z9 53 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2013 IS 6 AR 072 DI 10.1007/JHEP06(2013)072 PG 49 WC Physics, Particles & Fields SC Physics GA 177NL UT WOS:000321381800018 ER PT J AU Shi, SZ Liao, JF AF Shi, Shuzhe Liao, Jinfeng TI Conserved charge fluctuations and susceptibilities in strongly interacting matter SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Quark-Gluon Plasma; Holography and quark-gluon plasmas; Lattice QCD ID QUARK-GLUON PLASMA; PHASE-DIAGRAM; NUMBER SUSCEPTIBILITIES; QUANTUM CHROMODYNAMICS; CRITICAL-POINT; QCD; MODEL; PHYSICS; TRANSITION; BARYONS AB We study the conserved charge fluctuations, as quantified by the corresponding susceptibilities, in strongly interacting matter as motived by the quark-gluon plasma. Using the gauge-gravity correspondence approach, we study the patterns of conserved charge fluctuations in two types of holographic models for QCD, the D4/D8 and the D3/D7 models. We compute and compare the quark number susceptibilities in both models and find an interesting common feature of the two: at very strong coupling higher order susceptibilities are suppressed and the conserved charge fluctuations become purely Guassian. In light of the state-of-the-art lattice QCD results we also discuss what we can learn from these susceptibilities about the underlying degrees of freedom in the 1 similar to 2T(c) quark-gluon plasma and examine the viability of different ideas such as holography, quasi-particles, as well as bound states. From analyzes of second order susceptibilities we conclude that the bound states exist and are important in the 1 similar to 2T(c), region. We further construct and make predictions for several ratios of fourth-order susceptibilities that can sensitively reveal such bound states. C1 [Shi, Shuzhe] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Shi, Shuzhe; Liao, Jinfeng] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. [Shi, Shuzhe; Liao, Jinfeng] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA. [Liao, Jinfeng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Shi, SZ (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM shisz12@mails.tsinghua.edu.cn; liaoji@indiana.edu FU RIKEN BNL Research Center; NSFC [10975084, 11079024]; RFDP [20100002110080]; MOST [2013CB922000] FX The authors thank V. Koch, M a Mukherjee, K. Rajagopal, V. Skokov, M. Stephanov, and H. Yee for discussions and communications. JL is grateful to the RIKEN BNL Research Center for partial support. SS acknowledges support from the NSFC (Grant Nos. 10975084 and 11079024), RFDP (Grant No. 20100002110080) and MOST (Grant No. 2013CB922000). NR 87 TC 4 Z9 4 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2013 IS 6 AR 104 DI 10.1007/JHEP06(2013)104 PG 26 WC Physics, Particles & Fields SC Physics GA 177NL UT WOS:000321381800050 ER PT J AU Storlie, CB Michalak, SE Quinn, HM DuBois, AJ Wender, SA DuBois, DH AF Storlie, Curtis B. Michalak, Sarah E. Quinn, Heather M. DuBois, Andrew J. Wender, Steven A. DuBois, David H. TI A Bayesian Reliability Analysis of Neutron-induced Errors in High Performance Computing Hardware SO JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION LA English DT Article DE Accelerated testing; Cox proportional hazards; Gaussian process; Mixed effects; Neutron beam; Silent data corruption; Stochastic search variable selection ID PROPORTIONAL HAZARDS MODEL; INTERVAL-CENSORED DATA; FAILURE TIME DATA; VARIABLE SELECTION; REGRESSION-ANALYSIS; SURVIVAL-DATA; SOFT ERRORS; COSMIC-RAYS; LASSO; SUPERCOMPUTER AB A soft error is an undesired change in an electronic device's state, for example, a bit flip in computer memory, that does not permanently affect its functionality. In microprocessor systems, neutron-induced soft errors can cause crashes and silent data corruption (SDC). SDC occurs when a soft error produces a computational result that is incorrect, without the system issuing a warning or error message. Hence, neutron-induced soft errors are a major concern for high performance computing platforms that perform scientific computation. Through accelerated neutron beam testing of hardware in its field configuration, the frequencies of failures (crashes) and of SDCs in hardware from the Roadrunner platform, the first Petaflop supercomputer, are estimated. The impact of key factors on field performance is investigated and estimates of field reliability are provided. Finally, a novel statistical approach for the analysis of interval-censored survival data with mixed effects and uncertainty in the interval endpoints, key features of the experimental data, is presented. Supplementary materials for this article are available online. C1 [Storlie, Curtis B.; Michalak, Sarah E.; Quinn, Heather M.; DuBois, Andrew J.; Wender, Steven A.; DuBois, David H.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. [Storlie, Curtis B.; Michalak, Sarah E.; Quinn, Heather M.; DuBois, Andrew J.; Wender, Steven A.; DuBois, David H.] Los Alamos Natl Lab, Syst Integrat Grp, Los Alamos, NM 87545 USA. RP Storlie, CB (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM storlie@lanl.gov; michalak@lanl.gov; hquinn@lanl.gov; ajd@lanl.gov; wender@lanl.gov; dhd@lanl.gov OI Wender, Stephen/0000-0002-2446-5115 FU Los Alamos National Security, LLC (LANS); Los Alamos National Laboratory [DE-AC52-06NA25396]; U.S. Department of Energy FX This work was funded by Los Alamos National Security, LLC (LANS), operator of the Los Alamos National Laboratory Under Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. This article is published under LA-UR 11-04750. NR 46 TC 0 Z9 0 U1 1 U2 7 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0162-1459 J9 J AM STAT ASSOC JI J. Am. Stat. Assoc. PD JUN PY 2013 VL 108 IS 502 BP 429 EP 440 DI 10.1080/01621459.2013.770694 PG 12 WC Statistics & Probability SC Mathematics GA 182FS UT WOS:000321727700006 ER PT J AU Malama, B Kuhlman, KL James, SC AF Malama, Bwalya Kuhlman, Kristopher L. James, Scott C. TI Core-scale solute transport model selection using Monte Carlo analysis SO WATER RESOURCES RESEARCH LA English DT Article DE multirate mass transfer; model selection; model structural error; predictive analysis; solute transport ID MASS-TRANSFER PROCESSES; 2-SITE 2-REGION MODELS; TRACER TESTS; HETEROGENEITY; DEGRADATION; MEDIA; FLOW AB Model applicability to core-scale solute transport is evaluated using breakthrough data from column experiments conducted with conservative tracers tritium (H-3) and sodium-22 (Na-22), and the retarding solute uranium-232 (U-232). The three models considered are single-porosity, double-porosity with single-rate mobile-immobile mass-exchange, and the multirate model, which is a deterministic model that admits the statistics of a random mobile-immobile mass-exchange rate coefficient. The experiments were conducted on intact Culebra Dolomite core samples. Previously, data were analyzed using single-porosity and double-porosity models although the Culebra Dolomite is known to possess multiple types and scales of porosity, and to exhibit multirate mobile-immobile-domain mass transfer characteristics at field scale. The data are reanalyzed here and null-space Monte Carlo analysis is used to facilitate objective model selection. Prediction (or residual) bias is adopted as a measure of the model structural error. The analysis clearly shows singleporosity and double-porosity models are structurally deficient, yielding late-time residual bias that grows with time. On the other hand, the multirate model yields unbiased predictions consistent with the late-time -5/2 slope diagnostic of multirate mass transfer. The analysis indicates the multirate model is better suited to describing core-scale solute breakthrough in the Culebra Dolomite than the other two models. C1 [Malama, Bwalya] Sandia Natl Labs, Performance Assessment Dept, Carlsbad, NM 88220 USA. [Kuhlman, Kristopher L.] Sandia Natl Labs, Repository Performance Dept, Carlsbad, NM 88220 USA. RP Malama, B (reprint author), Sandia Natl Labs, Performance Assessment Dept, 4100 Natl Pk Highway, Carlsbad, NM 88220 USA. EM bnmalam@sandia.gov OI Kuhlman, Kristopher/0000-0003-3397-3653; James, Scott/0000-0001-7955-0491 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; WIPP programs FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administrated by the Office of Environmental Management (EM) of the U.S. Department of Energy. NR 35 TC 2 Z9 2 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN PY 2013 VL 49 IS 6 BP 3133 EP 3147 DI 10.1002/wrcr.20273 PG 15 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 189BF UT WOS:000322241300005 ER PT J AU Li, C Singh, VP Mishra, AK AF Li, Chao Singh, Vijay P. Mishra, Ashok K. TI Monthly river flow simulation with a joint conditional density estimation network SO WATER RESOURCES RESEARCH LA English DT Article DE river flow synthesizing; river flow downscaling; Colorado River basin ID RAINFALL PROBABILISTIC FORECASTS; WATER-SUPPLY MANAGEMENT; LOW-FREQUENCY VARIABILITY; RELEVANCE VECTOR MACHINE; PREDICTOR IDENTIFICATION; NONPARAMETRIC APPROACH; STREAMFLOW SIMULATION; DAILY PRECIPITATION; NEURAL-NETWORKS; MODELS AB River flow synthesizing and downscaling are required for the analysis of risks associated with water resources management plans and for regional impact studies of climate change. This paper presents a probabilistic model that synthesizes and downscales monthly river flow by estimating the joint distribution of flows of two adjacent months conditional on covariates. The covariates may consist of lagged and aggregated flow variables (synthesizing), exogenous climatic variables (downscaling), or combinations of these two types. The joint distribution is constructed by connecting two marginal distributions in terms of copulas. The relationship between covariates and distribution parameters is approximated by an artificial neural network, which is calibrated using the principle of maximum likelihood. Outputs of the neural network yield parameters of the joint distribution. From the estimated joint distribution, a conditional distribution of river flow of current month given the estimation of the previous month can be derived. Depending on the different types of covariate information, this conditional distribution may serve as the "engine" for synthesizing or downscaling river flow sequences. The idea of the proposed model is illustrated using three case studies. The first case deals with synthetic data and shows that the model is capable of fitting a nonstationary joint distribution. Second, the model is utilized to synthesize monthly river flow at four sample stations on the main stream of the Colorado River. Results reveal that the model reproduces essential evaluation statistics fairly well. Third, a simple illustrative example for river flow downscaling is presented. Analysis indicates that the model can be a viable option to downscale monthly river flow as well. C1 [Li, Chao; Singh, Vijay P.] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA. [Singh, Vijay P.] Texas A&M Univ, Dept Civil & Environm Engn, College Stn, TX 77843 USA. [Mishra, Ashok K.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, C (reprint author), Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA. EM lichsunny@gmail.com FU U.S. Geological Survey (USGS) [2009TX334G]; TWRI through the project "Hydrological Drought Characterization for Texas Under Climate Change, With Implications for Water Resources Planning and Management" FX This work was financially supported in part by the U.S. Geological Survey (USGS, project 2009TX334G) and TWRI through the project "Hydrological Drought Characterization for Texas Under Climate Change, With Implications for Water Resources Planning and Management." NR 44 TC 5 Z9 5 U1 4 U2 38 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN PY 2013 VL 49 IS 6 BP 3229 EP 3242 DI 10.1002/wrcr.20146 PG 14 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 189BF UT WOS:000322241300011 ER PT J AU Over, MW Yang, YR Chen, XY Rubin, Y AF Over, Matthew William Yang, Yarong Chen, Xingyuan Rubin, Yoram TI A strategy for improved computational efficiency of the method of anchored distributions SO WATER RESOURCES RESEARCH LA English DT Article DE approximation; Bayesian; clustering; inversion modeling; computational efficiency ID INCORPORATING PRIOR INFORMATION; UNCERTAINTY ANALYSIS; INVERSE PROBLEM; HETEROGENEOUS AQUIFERS; TEMPORAL MOMENTS; PILOT POINTS; MODEL; TRANSPORT; SENSITIVITY; TRANSIENT AB This paper proposes a strategy for improving the computational efficiency of model inversion using the method of anchored distributions (MAD) by "bundling" similar model parametrizations in the likelihood function. Inferring the likelihood function typically requires a large number of forward model (FM) simulations for each possible model parametrization; as a result, the process is quite expensive. To ease this prohibitive cost, we present an approximation for the likelihood function called bundling that relaxes the requirement for high quantities of FM simulations. This approximation redefines the conditional statement of the likelihood function as the probability of a set of similar model parametrizations "bundle" replicating field measurements, which we show is neither a model reduction nor a sampling approach to improving the computational efficiency of model inversion. To evaluate the effectiveness of these modifications, we compare the quality of predictions and computational cost of bundling relative to a baseline MAD inversion of 3-D flow and transport model parameters. Additionally, to aid understanding of the implementation we provide a tutorial for bundling in the form of a sample data set and script for the R statistical computing language. For our synthetic experiment, bundling achieved a 35% reduction in overall computational cost and had a limited negative impact on predicted probability distributions of the model parameters. Strategies for minimizing error in the bundling approximation, for enforcing similarity among the sets of model parametrizations, and for identifying convergence of the likelihood function are also presented. C1 [Over, Matthew William; Yang, Yarong; Rubin, Yoram] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Chen, Xingyuan] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Rubin, Y (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 627 Davis Hall, Berkeley, CA 94720 USA. EM rubin@ce.berkeley.edu FU U. S. Department of Energy Office of Biological and Environmental Research, Subsurface Biogeochemical Research Program (SBR) through DOE-ERSP grant as part of the Hanford 300 Area Integrated Field Research Challenge Project [DE-FG02-06ER06-16]; Office of Science of the U. S. Department of Energy [DE-AC02-05CH11231] FX This study has been funded by the U. S. Department of Energy Office of Biological and Environmental Research, Subsurface Biogeochemical Research Program (SBR) through DOE-ERSP grant DE-FG02-06ER06-16 as part of the Hanford 300 Area Integrated Field Research Challenge Project. This research used resources of the National Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under contract DE-AC02-05CH11231. NR 32 TC 3 Z9 3 U1 3 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN PY 2013 VL 49 IS 6 BP 3257 EP 3275 DI 10.1002/wrcr.20182 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 189BF UT WOS:000322241300013 ER PT J AU Desilets, D Zreda, M AF Desilets, Darin Zreda, Marek TI Footprint diameter for a cosmic-ray soil moisture probe: Theory and Monte Carlo simulations SO WATER RESOURCES RESEARCH LA English DT Article DE cosmic-ray probe; soil moisture; COSMOS; footprint; neutron; MCNP AB We used a combination of diffusion theory and neutron transport simulations to estimate the lateral footprint for a cosmic-ray soil moisture probe. The footprint is radial and can be described by an exponential function. Our theory assumes, and our simulations confirm that the corresponding exponential folding length is closely related to the moderation length in air, which in this work is defined as the average net displacement experienced by neutrons while traveling from the point of emission from soil to the point of detection in air. These simulations indicate that the effective moderation length is 150 m in dry air at sea level, and that this value is fairly constant over a wide range of detection energies-from 10(0) to 10(5) eV. If we define the lateral footprint as the area encompassing two e-fold distances, i.e., the area from which 86% of the recorded neutrons originate, then the footprint diameter is nearly 600 m in dry air. Both theory and simulations indicate that the footprint is inversely proportional to air density and linearly proportional to the height of the sensor above the ground for heights up to 125 m. Furthermore, our simulations indicate that the dependence on soil moisture is small, but the dependence on atmospheric humidity is significant, with a decrease in the footprint diameter of 40 m for every 0.01 kg kg(-1) increase in specific humidity. The good agreement between our theory and transport simulations suggests that the lateral footprint is determined mainly by the properties of air. C1 [Desilets, Darin] Sandia Natl Labs, Dept Geophys & Atmospher Sci, Albuquerque, NM 87185 USA. [Zreda, Marek] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. RP Desilets, D (reprint author), Sandia Natl Labs, Dept Geophys & Atmospher Sci, POB 5800,MS 0706, Albuquerque, NM 87185 USA. EM ddesile@sandia.gov FU Sandia National Laboratories; US National Science Foundation [EAR-0001191, EAR-0126209, EAR-0126241, EAR-0345440, EAR-0636110, ATM-0838491]; Army Research Office [43857-EV]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We wish to thank John Selker, Heye Bogena and two anonymous reviewers for their many helpful comments. This work was supported by a Harry S. Truman Fellowship to D.D. at Sandia National Laboratories, and by US National Science Foundation (grants EAR-0001191, EAR-0126209, EAR-0126241, EAR-0345440, and EAR-0636110) and the Army Research Office (grant 43857-EV) to M.Z. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The COSMOS project is funded by the Atmospheric Science, Hydrology, and Ecology Programs of the US National Science Foundation (grant ATM-0838491). NR 11 TC 42 Z9 43 U1 3 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN PY 2013 VL 49 IS 6 BP 3566 EP 3575 DI 10.1002/wrcr.20187 PG 10 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 189BF UT WOS:000322241300033 ER PT J AU Jackson, TR Haggerty, R Apte, SV O'Connor, BL AF Jackson, Tracie R. Haggerty, Roy Apte, Sourabh V. O'Connor, Ben L. TI A mean residence time relationship for lateral cavities in gravel-bed rivers and streams: Incorporating streambed roughness and cavity shape SO WATER RESOURCES RESEARCH LA English DT Article DE mean residence time; entrainment coefficient; lateral cavity; streambed roughness; cavity shape; transient storage ID TRANSIENT STORAGE; GROYNE FIELDS; RECTANGULAR CAVITY; EXCHANGE PROCESSES; DEAD ZONE; FLOW; RETENTION; GROUNDWATER; TRANSPORT; CHANNEL AB Accurate estimates of mass-exchange parameters in transient storage zones are needed to better understand and quantify solute transport and dispersion in riverine systems. Currently, the predictive mean residence time relies on an empirical entrainment coefficient with a range in variance due to the absence of hydraulic and geomorphic quantities driving mass exchange. Two empirically derived relationships are presented for the mean residence time of lateral cavities-a prevalent and widely recognized type of transient storage-in gravel-bed rivers and streams that incorporates hydraulic and geomorphic parameters. The relationships are applicable for gravel-bed rivers and streams with a range of cavity width to length (W/L) aspect ratios (0.2-0.75), shape, and Reynolds numbers (Re, ranging from 1.0 x 10(4) to 1.0 x 10(7)). The relationships equate normalized mean residence time to nondimensional quantities: Froude number, Re, W/L, depth ratio (ratio of cavity to shear layer depth), roughness factor (ratio of shear to channel velocity), and shape factor (representing degree of cavity equidimensionality). One relationship excludes bed roughness (equation (13)) and the other includes bed roughness (equation (14)). The empirically derived relationships have been verified for conservative tracers (R-2 of 0.83) within a range of flow and geometry conditions. Topics warranting future research are testing the empirical relationship that includes the roughness factor using parameters measured in the vicinity of the cavity to reduce the variance in the correlation, and further development of the relationship for nonconservative transport. C1 [Jackson, Tracie R.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Water Resources Engn Program, Corvallis, OR 97331 USA. [Haggerty, Roy] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Inst Water & Watersheds, Corvallis, OR 97331 USA. [Apte, Sourabh V.] Oregon State Univ, Dept Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. [O'Connor, Ben L.] Argonne Natl Lab, Environm Sci Div, Argonne, IL 60439 USA. RP Jackson, TR (reprint author), Oregon State Univ, Coll Earth Ocean & Atmospher Sci, 104 CEOAS Admin Bldg, Corvallis, OR 97331 USA. EM jacksotr@engr.orst.edu RI Haggerty, Roy/A-5863-2009 FU National Science Foundation [EAR 09-43570]; U.S. Department of Energy [DE-AC02-06CH1711357] FX This work was supported by the National Science Foundation, EAR 09-43570. B. O'Connor's contribution to this study was supported by the U.S. Department of Energy under contract DE-AC02-06CH1711357. The authors thank all the reviewers for their exceptional reviews and suggestions, which have improved the outcome of this manuscript. They personally thank Daniele Tonina for providing helpful suggestions in the implementation of the dimensional analysis. NR 69 TC 10 Z9 10 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN PY 2013 VL 49 IS 6 BP 3642 EP 3650 DI 10.1002/wrcr.20272 PG 9 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 189BF UT WOS:000322241300039 ER PT J AU Lifflander, J Krishnamoorthy, S Kale, LV AF Lifflander, Jonathan Krishnamoorthy, Sriram Kale, Laxmikant V. TI Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers SO ACM SIGPLAN NOTICES LA English DT Article; Proceedings Paper CT 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI) CY JUN 16-19, 2013 CL Seattle, WA SP ACM SIGPLAN DE work-stealing schedulers; tracing; async-finish parallelism AB Work stealing is a popular approach to scheduling task-parallel programs. The flexibility inherent in work stealing when dealing with load imbalance results in seemingly irregular computation structures, complicating the study of its runtime behavior. In this paper, we present an approach to efficiently trace async-finish parallel programs scheduled using work stealing. We identify key properties that allow us to trace the execution of tasks with low time and space overheads. We also study the usefulness of the proposed schemes in supporting algorithms for data-race detection and retentive stealing presented in the literature. We demonstrate that the perturbation due to tracing is within the variation in the execution time with 99% confidence and the traces are concise, amounting to a few tens of kilobytes per thread in most cases. We also demonstrate that the traces enable significant reductions in the cost of detecting data races and result in low, stable space overheads in supporting retentive stealing for async-finish programs. C1 [Lifflander, Jonathan; Kale, Laxmikant V.] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. [Krishnamoorthy, Sriram] Pacific NW Natl Lab, Div Math & Comp Sci, Richland, WA 99352 USA. RP Lifflander, J (reprint author), Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. EM jliffl2@illinois.edu; sriram@pnnl.gov; kale@illinois.edu NR 18 TC 0 Z9 0 U1 0 U2 12 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-1340 J9 ACM SIGPLAN NOTICES JI ACM Sigplan Not. PD JUN PY 2013 VL 48 IS 6 SI SI BP 507 EP 518 PG 12 WC Computer Science, Software Engineering SC Computer Science GA 184CX UT WOS:000321865400047 ER PT J AU Panorgias, A Zawadzki, RJ Capps, AG Hunter, AA Morse, LS Werner, JS AF Panorgias, Athanasios Zawadzki, Robert J. Capps, Arlie G. Hunter, Allan A. Morse, Lawrence S. Werner, John S. TI Multimodal Assessment of Microscopic Morphology and Retinal Function in Patients With Geographic Atrophy SO INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE LA English DT Article DE geographic atrophy; adaptive-optics OCT; multifocal ERG; scotopic mfERG; microperimetry ID OPTICAL COHERENCE TOMOGRAPHY; AGE-RELATED MACULOPATHY; MEDIATED MULTIFOCAL ELECTRORETINOGRAM; SCANNING LASER OPHTHALMOSCOPE; MACULAR DEGENERATION; FUNDUS AUTOFLUORESCENCE; PIGMENT EPITHELIUM; CHOROIDAL NEOVASCULARIZATION; HIGH-RESOLUTION; A-WAVE AB PURPOSE. To correlate retinal function and visual sensitivity with retinal morphology revealed by ultrahigh-resolution imaging with adaptive optics-optical coherence tomography (AO-OCT), on patients with geographic atrophy. METHODS. Five eyes from five subjects were tested (four with geographic atrophy [66.3 +/- 6.4 years, mean +/- 1 SD] and one normal [61 years]). Photopic and scotopic multifocal electroretinograms (mfERGs) were recorded. Visual fields were assessed with microperimetry (mP) combined with a scanning laser ophthalmoscope for high-resolution confocal retinal fundus imaging. The eye tracker of the microperimeter identified the preferred retinal locus that was then used as a reference for precise targeting of areas for advanced retinal imaging. Images were obtained with purpose-built, in-house, ultrahigh resolution AO-OCT. Fundus autofluorescence (FAF) and color fundus (CF) photographs were also acquired. RESULTS. The AO-OCT imaging provided detailed cross-sectional structural representation of the retina. Up to 12 retinal layers were identified in the normal subject while many severe retinal abnormalities (i.e., calcified drusen, drusenoid pigment epithelium detachment, outer retinal tubulation) were identified in the retinae of the GA patients. The functional tests showed preservation of sensitivities, although somewhat compromised, at the border of the GA. CONCLUSIONS. The images provided here advance our knowledge of the morphology of retinal layers in GA patients. While there was a strong correlation between altered retinal structure and reduction in visual function, there were a number of examples in which the photoreceptor inner/outer segment (IS/OS) junctions lost reflectivity at the margins of GA, while visual function was still demonstrated. This was shown to be due to changes in photoreceptor orientation near the GA border. C1 [Panorgias, Athanasios; Zawadzki, Robert J.; Capps, Arlie G.; Hunter, Allan A.; Morse, Lawrence S.; Werner, John S.] Univ Calif Davis, Dept Ophthalmol & Vis Sci, Davis, CA 95817 USA. [Zawadzki, Robert J.] Univ Calif Davis, Dept Cell Biol & Human Anat, Davis, CA 95817 USA. [Capps, Arlie G.] Univ Calif Davis, Dept Comp Sci, Inst Data Anal & Visualizat, Davis, CA 95817 USA. [Capps, Arlie G.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Werner, John S.] Univ Calif Davis, Dept Neurobiol Physiol & Behav, Davis, CA 95817 USA. RP Panorgias, A (reprint author), Univ Calif Davis, Sch Med, Dept Ophthalmol & Vis Sci, 4860 Y St,Suite 2400, Davis, CA 95817 USA. EM apanorgias@ucdavis.edu RI Zawadzki, Robert/E-7534-2011; OI Zawadzki, Robert/0000-0002-9574-156X; Panorgias, Athanasios/0000-0002-5024-835X; Morse, Lawrence/0000-0002-1758-2348 FU National Institute on Aging [AG 04058]; National Eye Institute [EY 014743]; Research to Prevent Blindness; Lawrence Scholar Program (LSP) at Lawrence Livermore National Laboratory; US Department of Energy [DE-AC52-07NA27344] FX Supported by Grant AG 04058 from the National Institute on Aging (JSW); EY 014743 from the National Eye Institute (JSW) and Research to Prevent Blindness. AGC is supported by the Lawrence Scholar Program (LSP) at Lawrence Livermore National Laboratory and this work was performed in part under the auspices of the US Department of Energy under Contract DE-AC52-07NA27344. NR 71 TC 23 Z9 24 U1 0 U2 9 PU ASSOC RESEARCH VISION OPHTHALMOLOGY INC PI ROCKVILLE PA 12300 TWINBROOK PARKWAY, ROCKVILLE, MD 20852-1606 USA SN 0146-0404 J9 INVEST OPHTH VIS SCI JI Invest. Ophthalmol. Vis. Sci. PD JUN PY 2013 VL 54 IS 6 BP 4372 EP 4384 DI 10.1167/iovs.12-11525 PG 13 WC Ophthalmology SC Ophthalmology GA 173YW UT WOS:000321120700072 PM 23696601 ER PT J AU Rapetti, D Blake, C Allen, SW Mantz, A Parkinson, D Beutler, F AF Rapetti, David Blake, Chris Allen, Steven W. Mantz, Adam Parkinson, David Beutler, Florian TI A combined measurement of cosmic growth and expansion from clusters of galaxies, the CMB and galaxy clustering SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmological parameters; cosmology: observations; dark energy; large-scale structure of Universe; X-rays: galaxies: clusters ID DARK ENERGY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; MICROWAVE BACKGROUND ANISOTROPIES; BARYON ACOUSTIC-OSCILLATIONS; PROBE WMAP OBSERVATIONS; OBSERVATIONS COSMOLOGICAL INTERPRETATION; REDSHIFT-SPACE DISTORTIONS; DIGITAL SKY SURVEY; GENERAL-RELATIVITY; DATA RELEASE AB Combining galaxy cluster data from the ROSAT All-Sky Survey and the Chandra X-ray Observatory, cosmic microwave background (CMB) data from the Wilkinson Microwave Anisotropy Probe, and galaxy clustering data from the WiggleZ Dark Energy Survey, the 6-degree Field Galaxy Survey and the Sloan Digital Sky Survey III, we test for consistency the cosmic growth of structure predicted by General Relativity (GR) and the cosmic expansion history predicted by the cosmological constant plus cold dark matter paradigm (Lambda CDM). The combination of these three independent, well-studied measurements of the evolution of the mean energy density and its fluctuations is able to break strong degeneracies between model parameters. We model the key properties of cosmic growth with the normalization of the matter power spectrum, sigma(8), and the cosmic growth index, gamma, and those of cosmic expansion with the mean matter density, Omega(m), the Hubble constant, H-0, and a kinematical parameter equivalent to that for the dark energy equation of state, w. For a spatially flat geometry, w = -1, and allowing for systematic uncertainties, we obtain sigma(8) = 0.785 +/- 0.019 and. = 0.570(-0.063)(+0.064) (at the 68.3 per cent confidence level). Allowing both w and gamma to vary we find w = -0.950(-0.070)(+0.069) and gamma = 0.533 +/- 0.080. To further tighten the constraints on the expansion parameters, we also include supernova, Cepheid variable and baryon acoustic oscillation data. For w = -1, we have gamma = 0.616 +/- 0.061. For our most general model with a free w, we measure Omega m = 0.278(-0.011)(+0.012), H0 = 70.0 +/- 1.3 km s(-1) Mpc(-1) and w = -0.987(-0.053)(+0.054) for the expansion parameters, and sigma(8) = 0.789 +/- 0.019 and gamma = 0.604 +/- 0.078 for the growth parameters. These results are in excellent agreement with GR+Lambda CDM (gamma similar or equal to 0.55; w = -1) and represent the tightest and most robust simultaneous constraint on cosmic growth and expansion to date. C1 [Rapetti, David] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Blake, Chris] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Allen, Steven W.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Allen, Steven W.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Mantz, Adam] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Parkinson, David] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Beutler, Florian] Univ Western Australia, Int Ctr Radio Astron Res, Perth, WA 6009, Australia. [Beutler, Florian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Rapetti, D (reprint author), Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. EM drapetti@dark-cosmology.dk RI Rapetti, David/E-6032-2015; Parkinson, David/E-1183-2013; OI Rapetti, David/0000-0003-2196-6675; Parkinson, David/0000-0002-7464-2351; Beutler, Florian/0000-0003-0467-5438 FU Danish National Research Foundation; DARK Fellowship programme; Australian Research Council; NSF [AST-0838187]; Australian Government through the International Postgraduate Research Scholarship (IPRS); National Aeronautics and Space Administration (NASA) [TM1-12010X]; NASA [NAS8-03060]; US Department of Energy [DE-AC02-76SF00515] FX We thank the anonymous referee for useful comments and G. Morris for technical support. The computational analysis was carried out using the KIPAC XOC, orange and pinto clusters at SLAC. The Dark Cosmology Centre (DARK) is funded by the Danish National Research Foundation. DR acknowledges support from the DARK Fellowship programme. CB acknowledges the support of the Australian Research Council through the award of a Future Fellowship. AM acknowledges support from grant NSF AST-0838187. FB acknowledges support from the Australian Government through the International Postgraduate Research Scholarship (IPRS). We acknowledge support from the National Aeronautics and Space Administration (NASA) through Chandra Award Number TM1-12010X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. This work was supported in part by the US Department of Energy under contract number DE-AC02-76SF00515. We also thank DARK and the Niels Bohr International Academy for hospitality during the 2011 Summer workshop in which this work was initiated. NR 94 TC 21 Z9 21 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2013 VL 432 IS 2 BP 973 EP 985 DI 10.1093/mnras/stt514 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 156OP UT WOS:000319832300010 ER PT J AU LaMassa, SM Urry, CM Glikman, E Cappelluti, N Civano, F Comastri, A Treister, E Arifin Bohringer, H Cardamone, C Chon, GY Kephart, M Murray, SS Richards, G Ross, NP Rozner, JS Schawinski, K AF LaMassa, Stephanie M. Urry, C. Megan Glikman, Eilat Cappelluti, Nico Civano, Francesca Comastri, Andrea Treister, Ezequiel Arifin Boehringer, Hans Cardamone, Carie Chon, Gayoung Kephart, Miranda Murray, Stephen S. Richards, Gordon Ross, Nicholas P. Rozner, Joshua S. Schawinski, Kevin TI Finding rare AGN: X-ray number counts of Chandra sources in Stripe 82 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; galaxies: active; quasars: general; X-rays: galaxies; X-rays: general ID DIGITAL-SKY-SURVEY; ACTIVE GALACTIC NUCLEI; POINT-SOURCE CATALOG; WIDE-FIELD SURVEY; QUASAR LUMINOSITY FUNCTION; YALE-CHILE MUSYC; MULTIWAVELENGTH PROJECT; COSMOS FIELD; DATA RELEASE; SURVEY DESIGN AB We present the first results of a wide-area X-ray survey within the Sloan Digital Sky Survey Stripe 82, a 300 deg(2) region of the sky with a substantial investment in multiwavelength coverage. We analysed archival Chandra observations that cover 6.2 deg(2) within Stripe 82 ('Stripe 82 ACX'), reaching 4.5 Sigma flux limits of 1.2 x 10(-15), 5.4 x 10(-15) and 2.9 x 10(-15) erg s(-1) cm(-2) in the soft (0.5-2 keV), hard (2-7 keV) and full (0.5-7 keV) bands, to find 480, 137 and 705 X-ray sources, respectively. 214 sources are detected only in the full band and 4 sources are detected solely in the soft band. Utilizing data products from the Chandra Source Catalog, we construct independent log N-log S relationships, detailing the number density of X-ray sources as a function of flux. The soft and full bands show general agreement with previous Chandra surveys; the hard band number counts agree among Stripe 82 ACX, XBootes and XDEEP2, but all three are somewhat systematically lower than the counts derived from Chandra Multiwavelength Project. We compare the luminosity distribution of Stripe 82 ACX with the smaller, deeper Chandra Deep Field-South, Extended Chandra Deep Field-South and Chandra-COSMOS surveys to illustrate the benefit of wide-area surveys in locating high-luminosity and/or high-redshift active galactic nuclei (AGN). Finally, we compare the identified AGN with predictions from population synthesis models, noting that prior to any spectroscopic follow-up campaign, we have already located roughly half the high-luminosity quasars at high redshift expected to lie within the survey area. However, our data also suggest that refinements to population synthesis models will be required. C1 [LaMassa, Stephanie M.; Urry, C. Megan; Glikman, Eilat; Kephart, Miranda; Rozner, Joshua S.] Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Cappelluti, Nico; Comastri, Andrea] Osservatorio Astron Bologna, INAF, I-40127 Bologna, Italy. [Cappelluti, Nico] Univ Maryland, Baltimore Coll, Ctr Space Sci & Technol, Dept Phys, Baltimore, MD 21250 USA. [Civano, Francesca; Murray, Stephen S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Civano, Francesca] Dartmouth Coll, Dept Phys & Astron, Wilder Lab, Hanover, NH 03755 USA. [Treister, Ezequiel] Univ Concepcion, Concepcion, Chile. [Arifin] Natl Univ Singapore, Singapore 119077, Singapore. [Boehringer, Hans; Chon, Gayoung] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Cardamone, Carie] Brown Univ, Harriet W Sheridan Ctr Teaching & Learning, Providence, RI 02912 USA. [Murray, Stephen S.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Richards, Gordon] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Ross, Nicholas P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schawinski, Kevin] ETH, Dept Phys, Inst Astron, CH-8093 Zurich, Switzerland. RP LaMassa, SM (reprint author), Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, POB 208120, New Haven, CT 06520 USA. EM stephanie.lamassa@yale.edu RI Urry, Claudia/G-7381-2011; Comastri, Andrea/O-9543-2015; OI Urry, Claudia/0000-0002-0745-9792; Comastri, Andrea/0000-0003-3451-9970; Cappelluti, Nico/0000-0002-1697-186X; Schawinski, Kevin/0000-0001-5464-0888 FU Swiss National Science Foundation [PP00P2\_138979/1] FX We thank the referee for insightful critiques and comments that improved this manuscript. This research has made use of data obtained from the Chandra Source Catalog, provided by the Chandra X-ray Center (CXC) as part of the Chandra Data Archive. We also thank Frank Primini and Nina Bonaventura for answering many CSC-related questions. We thank Bret Lehmer and Andy Goulding for thoughtful discussions. We also thank Bret Lehmer, Andy Goulding and Minsun Kim for access to their logN-logS data. KS gratefully acknowledges support from Swiss National Science Foundation Grant PP00P2\_138979/1. NR 47 TC 10 Z9 10 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2013 VL 432 IS 2 BP 1351 EP 1360 DI 10.1093/mnras/stt553 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 156OP UT WOS:000319832300039 ER PT J AU Mandelbaum, R Slosar, A Baldauf, T Seljak, U Hirata, CM Nakajima, R Reyes, R Smith, RE AF Mandelbaum, Rachel Slosar, Anze Baldauf, Tobias Seljak, Uros Hirata, Christopher M. Nakajima, Reiko Reyes, Reinabelle Smith, Robert E. TI Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; cosmological parameters; cosmology: observations; large-scale structure of Universe ID DIGITAL SKY SURVEY; LARGE-SCALE STRUCTURE; MATTER POWER SPECTRUM; BARYON ACOUSTIC-OSCILLATIONS; SPECTROSCOPIC TARGET SELECTION; PROBE WMAP OBSERVATIONS; HALO OCCUPATION DISTRIBUTION; LUMINOUS RED GALAXIES; DATA RELEASE; DARK-MATTER AB Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h(-1) Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg(2), containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both Sigma(8) and (m) (and marginalize over non-linear galaxy bias) in a flat Lambda cold dark matter model, the best-constrained quantity is Sigma(8)((m)/0.25)(0.57) = 0.80 +/- 0.05 (1 Sigma, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed n(s) = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on Sigma(8), (m), H-0, w(de) and Sigma m(nu) become 30-80 per cent tighter than with CMB data alone, since our data break several parameter degeneracies. C1 [Mandelbaum, Rachel] Princeton Univ, Peyton Hall Observ, Princeton, NJ 08544 USA. [Mandelbaum, Rachel] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Slosar, Anze] Brookhaven Natl Lab, Upton, NY 11375 USA. [Baldauf, Tobias; Seljak, Uros; Smith, Robert E.] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Seljak, Uros] Univ Calif Berkeley, Dept Phys, Space Sci Lab, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Seljak, Uros] Ewha Womans Univ, Inst Early Universe, Seoul 120750, South Korea. [Hirata, Christopher M.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Nakajima, Reiko; Smith, Robert E.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Reyes, Reinabelle] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reyes, Reinabelle] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Mandelbaum, R (reprint author), Princeton Univ, Peyton Hall Observ, Peyton Hall, Princeton, NJ 08544 USA. EM rmandelb@andrew.cmu.edu RI Mandelbaum, Rachel/N-8955-2014 OI Mandelbaum, Rachel/0000-0003-2271-1527 FU National Science Foundation; Alfred P. Sloan Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; The University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, and the Max Planck Society and the Higher Education Funding Council for England. The SDSS website is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, The University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington. NR 122 TC 88 Z9 88 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2013 VL 432 IS 2 BP 1544 EP 1575 DI 10.1093/mnras/stt572 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 156OP UT WOS:000319832300054 ER PT J AU Chen, HC Chen, SS Wang, WC Lee, CY Guo, JH Lin, IN Chang, CL AF Chen, Huang-Chin Chen, Shih-Show Wang, Wei-Cheng Lee, Chi-Young Guo, Jinghua Lin, I-Nan Chang, Ching-Lin TI The potential application of ultra-nanocrystalline diamond films for heavy ion irradiation detection SO AIP ADVANCES LA English DT Article ID X-RAY-ABSORPTION; RADIATION DETECTION DEVICES; CHEMICAL-VAPOR-DEPOSITION; CVD DIAMOND; POLYCRYSTALLINE DIAMOND; FIELD-EMISSION; CARBON-FILMS; ULTRANANOCRYSTALLINE DIAMOND; ELECTRON-EMISSION; NEAR-EDGE AB The potential of utilizing the ultra-nanocrystalline (UNCD) films for detecting the Au-ion irradiation was investigated. When the fluence for Au-ion irradiation is lower than the critical value (f(c) = 5.0 x 10(12) ions/cm(2)) the turn-on field for electron field emission (EFE) process of the UNCD films decreased systematically with the increase in fluence that is correlated with the increase in sp(2)-bonded phase (pi(*)-band in EELS) due to the Au-ion irradiation. The EFE properties changed irregularly, when the fluence for Au-ion irradiation exceeds this critical value. The transmission electron microscopic microstructural examinations, in conjunction with EELS spectroscopic studies, reveal that the structural change preferentially occurred in the diamond-to-Si interface for the samples experienced over critical fluence of Au-ion irradiation, viz. the crystalline SiC phase was induced in the interfacial region and the thickness of the interface decreased. These observations implied that the UNCD films could be used as irradiation detectors when the fluence for Au-ion irradiation does not exceed such a critical value. (C) 2013 Author(s). C1 [Chen, Huang-Chin; Chen, Shih-Show; Wang, Wei-Cheng; Lin, I-Nan; Chang, Ching-Lin] Tamkang Univ, Dept Phys, Tamsui 251, New Taipei, Taiwan. [Chen, Shih-Show] Taipei Coll Maritime Technol, Dept Informat Technol & Mobile Commun, Tamsui 251, New Taipei, Taiwan. [Chen, Huang-Chin; Lee, Chi-Young] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan. [Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Lin, IN (reprint author), Tamkang Univ, Dept Phys, Tamsui 251, New Taipei, Taiwan. EM inanlin@mail.tku.edu.tw; clchang@mail.tku.edu.tw FU National Science Council of Republic of China [NSC 101-2112-M-032-005, NSC 101-2112-M-032-002] FX We acknowledge Drs. Balakrishnan Sundaravel, Sankarakumar Amirthapandian, Christina Trautmann and the Materials Research Group of GSI, Darmstadt for their support during GeV irradiation at the XO beamline of the UNILAC. Financial support granted by the National Science Council of Republic of China through project Nos. NSC 101-2112-M-032-005 and NSC 101-2112-M-032-002 are gratefully acknowledged by the authors. NR 44 TC 2 Z9 2 U1 0 U2 32 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD JUN PY 2013 VL 3 IS 6 AR 062113 DI 10.1063/1.4811338 PG 20 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 174GY UT WOS:000321144300013 ER PT J AU Yoon, HP Lee, Y Bohn, CD Ko, SH Gianfrancesco, AG Steckel, JS Coe-Sullivan, S Talin, AA Zhitenev, NB AF Yoon, Heayoung P. Lee, Youngmin Bohn, Christopher D. Ko, Seung-Hyeon Gianfrancesco, Anthony G. Steckel, Jonathan S. Coe-Sullivan, Seth Talin, A. Alec Zhitenev, Nikolai B. TI High-resolution photocurrent microscopy using near-field cathodoluminescence of quantum dots SO AIP ADVANCES LA English DT Article ID SCANNING-ELECTRON-MICROSCOPY; GRAIN-BOUNDARIES; BEAM EXCITATION; SOLAR-CELLS; EFFICIENCY; SEMICONDUCTORS; PBSE AB We report a fast, versatile photocurrent imaging technique to visualize the local photo response of solar energy devices and optoelectronics using near-field cathodoluminescence (CL) from a homogeneous quantum dot layer. This approach is quantitatively compared with direct measurements of high-resolution Electron Beam Induced Current (EBIC) using a thin film solar cell (n-CdS / p-CdTe). Qualitatively, the observed image contrast is similar, showing strong enhancement of the carrier collection efficiency at the p-n junction and near the grain boundaries. The spatial resolution of the new technique, termed Q-EBIC (EBIC using quantum dots), is determined by the absorption depth of photons. The results demonstrate a new method for high-resolution, sub-wavelength photocurrent imaging measurement relevant for a wide range of applications. (C) 2013 Author(s). C1 [Yoon, Heayoung P.; Lee, Youngmin; Bohn, Christopher D.; Ko, Seung-Hyeon; Gianfrancesco, Anthony G.; Talin, A. Alec; Zhitenev, Nikolai B.] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Yoon, Heayoung P.; Ko, Seung-Hyeon] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA. [Gianfrancesco, Anthony G.] Worcester Polytech Inst, Dept Phys, Worcester, MA 01602 USA. [Steckel, Jonathan S.; Coe-Sullivan, Seth] QD Vis Inc, Lexington, MA 02421 USA. [Talin, A. Alec] Sandia Natl Labs, Livermore, CA 94550 USA. RP Yoon, HP (reprint author), NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. EM heayoung.yoon@nist.gov; nikolai.zhitenev@nist.gov RI Zhitenev, Nikolai/N-1780-2014 FU University of Maryland; National Institute of Standards; Technology Center for Nanoscale Science and Technology through the University of Maryland [70NANB10H193]; National Institute of Standards and Technology; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Glenn Holland, Alan Band, David Rutter, Steve Blankenship, and Joshua Schumacher for helping on sample preparation and instrumentation. We also thank A. Boosalis and N. Nguyen for ellipsometery analysis, and J. Alexander Liddle, Veronika Szalai, Keana Scott, and Paul Haney for valuable discussions. H. P. Yoon and S. Ko acknowledge support under the Cooperative Research Agreement between the University of Maryland and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, award 70NANB10H193, through the University of Maryland. This research was performed while Y. Lee and C. D. Bohn held a National Research Council Research Associateship Award at the National Institute of Standards and Technology. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 31 TC 5 Z9 5 U1 3 U2 47 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD JUN PY 2013 VL 3 IS 6 AR 062112 DI 10.1063/1.4811275 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 174GY UT WOS:000321144300012 ER PT J AU Borak, B Ort, DR Burbaum, JJ AF Borak, Brian Ort, Donald R. Burbaum, Jonathan J. TI Energy and carbon accounting to compare bioenergy crops SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID SOLAR-RADIATION; PHOTOSYNTHESIS; EFFICIENCY; PLANTS; YIELD; C-3; OPPORTUNITIES; PRODUCTIVITY; CHALLENGES; EVOLUTION AB To compare the utility of current and future biofuels and biofuel feedstocks in an objective manner can be extremely challenging. This challenge exists because agricultural data are inherently variable, experimental techniques are crop-dependent, and the literatures usually report relative, rather than absolute, values. Here, we discuss the 'PETRO approach', a systematic approach to evaluate new crops. This approach accounts for not only the capture of solar energy but also the capture of atmospheric carbon (as CO2) to generate a final carbon-based liquid fuel product. The energy yield, per unit area, of biofuel crops grown in different climate zones can thus be benchmarked and quantitatively compared in terms of both carbon gain and solar energy conversion efficiency. C1 [Borak, Brian] Booz Allen Hamilton, Washington, DC 20024 USA. [Ort, Donald R.] USDA ARS, Global Change & Photosynth Res Unit, Urbana, IL 61801 USA. [Ort, Donald R.] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA. [Ort, Donald R.] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA. [Burbaum, Jonathan J.] US DOE, Adv Res Projects Agcy Energy, Washington, DC 20585 USA. RP Burbaum, JJ (reprint author), US DOE, Adv Res Projects Agcy Energy, Washington, DC 20585 USA. EM jonathan.burbaum@hq.doe.gov NR 34 TC 7 Z9 7 U1 1 U2 34 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD JUN PY 2013 VL 24 IS 3 BP 369 EP 375 DI 10.1016/j.copbio.2013.02.018 PG 7 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 170DG UT WOS:000320829500002 PM 23518005 ER PT J AU Williams, KH Bargar, JR Lloyd, JR Lovley, DR AF Williams, Kenneth H. Bargar, John R. Lloyd, Jonathan R. Lovley, Derek R. TI Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID IN-SITU BIOREMEDIATION; SULFATE-REDUCING BACTERIA; GEOBACTER-SULFURREDUCENS; U(VI) REDUCTION; MICROBIAL COMMUNITIES; BIOGENIC URANINITE; MOLECULAR ANALYSIS; ELECTRON-EXCHANGE; AQUIFER; BIOREDUCTION AB Adding organic electron donors to stimulate microbial reduction of highly soluble U(VI) to less soluble U(IV) is a promising strategy for immobilizing uranium in contaminated subsurface environments. Studies suggest that diagnosing the in situ physiological status of the subsurface community during uranium bioremediation with environmental transcriptomic and proteomic techniques can identify factors potentially limiting U(VI) reduction activity. Models which couple genome-scale in silico representations of the metabolism of key microbial populations with geochemical and hydrological models may be able to predict the outcome of bioremediation strategies and aid in the development of new approaches. Concerns remain about the long-term stability of sequestered U(IV) minerals and the release of co-contaminants associated with Fe(III) oxides, which might be overcome through targeted delivery of electrons to select microorganisms using in situ electrodes. C1 [Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Bargar, John R.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Lloyd, Jonathan R.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. [Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. RP Williams, KH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM khwilliams@lbl.gov RI Williams, Kenneth/O-5181-2014 OI Williams, Kenneth/0000-0002-3568-1155 FU Integrated Field Research Challenge Site at Rifle, Colorado; Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area; U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research (BER) [DE-AC02-05CH11231]; DOE work package [10094]; DOE [DE-SC0004114, DE-SC0004080, DE-SC0006790]; Royal Society; U.K. Natural Environment Research Council (NERC) FX We gratefully acknowledge Dr. Thanos Rizoulis (University of Manchester) for preparing the phylogenetic tree presented in Figure 2. KHW acknowledges support of the Integrated Field Research Challenge Site at Rifle, Colorado and the Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area. The U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research (BER) funded the work under contracts DE-AC02-05CH11231 (KHW: Lawrence Berkeley National Laboratory; operated by the University of California), DOE work package 10094 (JRB: Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and DOE Office of Basic Energy Sciences User Facility operated by Stanford University), and DOE grants DE-SC0004114, DE-SC0004080, and DE-SC0006790 (DRL: University of Massachusetts). JRL acknowledges the support of the Royal Society and the U.K. Natural Environment Research Council (NERC). NR 85 TC 30 Z9 33 U1 11 U2 135 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD JUN PY 2013 VL 24 IS 3 BP 489 EP 497 DI 10.1016/j.copbio.2012.10.008 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 170DG UT WOS:000320829500018 PM 23159488 ER PT J AU Hazen, TC Rocha, AM Techtmann, SM AF Hazen, Terry C. Rocha, Andrea M. Techtmann, Stephen M. TI Advances in monitoring environmental microbes SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID SEA OIL PLUME; DNA EXTRACTION; DEEP-SEA; EMULSION PCR; RAPID METHOD; SEDIMENTS; RNA; AMPLIFICATION; COMMUNITY; SOIL AB Culture-independent approaches, such as next-generation sequencing and microarray-based tools, provide insight into the identity and functional diversity of microbial communities. Although these approaches are potentially powerful tools in understanding microbial structure and function, there are a number of limitations that may bias conclusions. In order to mitigate these biases, an understanding of potential biases within each stage of the experimental process is necessary. This review focuses on the biases associated with sample collection, nucleic acid extraction, processing, sequencing analyses, and Chip technologies used in microbial ecology studies. C1 [Hazen, Terry C.; Rocha, Andrea M.; Techtmann, Stephen M.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Hazen, Terry C.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Hazen, Terry C.] Univ Tennessee, Dept Earth & Planetarty Sci, Knoxville, TN 37996 USA. [Hazen, Terry C.; Rocha, Andrea M.; Techtmann, Stephen M.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. [Hazen, Terry C.; Rocha, Andrea M.; Techtmann, Stephen M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Hazen, TC (reprint author), Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. EM tchazen@utk.edu RI Hazen, Terry/C-1076-2012 OI Hazen, Terry/0000-0002-2536-9993 NR 49 TC 26 Z9 27 U1 6 U2 125 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD JUN PY 2013 VL 24 IS 3 BP 526 EP 533 DI 10.1016/j.copbio.2012.10.020 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 170DG UT WOS:000320829500022 PM 23183250 ER PT J AU Rothamer, DA Donohue, TJ AF Rothamer, David A. Donohue, Timothy J. TI Chemistry and combustion of fit-for-purpose biofuels SO CURRENT OPINION IN CHEMICAL BIOLOGY LA English DT Review ID SURROGATE MIXTURES; OXIDATION; IGNITION; FUELS; JET AB From the inception of internal combustion engines, biologically derived fuels (biofuels) have played a role. Nicolaus Otto ran a predecessor to today's spark-ignition engine with an ethanol fuel blend in 1860. At the 1900 Paris world's fair, Rudolf Diesel ran his engine on peanut oil. Over 100 years of petroleum production has led to consistency and reliability of engines that demand standardized fuels. New biofuels can displace petroleum-based fuels and produce positive impacts on the environment, the economy, and the use of local energy sources. This review discusses the combustion, performance and other requirements of biofuels that will impact their near-term and long-term ability to replace petroleum fuels in transportation applications. C1 [Rothamer, David A.] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA. [Donohue, Timothy J.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Rothamer, David A.; Donohue, Timothy J.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Donohue, TJ (reprint author), Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. EM tdonohue@bact.wisc.edu OI Rothamer, David/0000-0002-5159-7842; Donohue, Timothy/0000-0001-8738-2467 FU Department of Energy, Office of Science, Biological and Environmental Research Great Lakes Bioenergy Research Center [DE-FC02-07ER64494] FX This work was funded partly by the Department of Energy, Office of Science, Biological and Environmental Research Great Lakes Bioenergy Research Center (DE-FC02-07ER64494). NR 48 TC 1 Z9 1 U1 4 U2 28 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1367-5931 J9 CURR OPIN CHEM BIOL JI Curr. Opin. Chem. Biol. PD JUN PY 2013 VL 17 IS 3 BP 522 EP 528 DI 10.1016/j.cbpa.2013.03.039 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 173PW UT WOS:000321092400029 PM 23664492 ER PT J AU Hart, DJ Waldo, GS AF Hart, Darren J. Waldo, Geoffrey S. TI Library methods for structural biology of challenging proteins and their complexes SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Article ID GREEN FLUORESCENT PROTEIN; READING FRAME SELECTION; DIRECTED EVOLUTION; ESCHERICHIA-COLI; SOLUBLE EXPRESSION; MEMBRANE-PROTEINS; BACILLUS-SUBTILIS; BINDING DOMAIN; GENE SYNTHESIS; PHAGE DISPLAY AB Genetic engineering of constructs to improve solubility or stability is a common approach, but it is often unclear how to obtain improvements. When the domain composition of a target is poorly understood, or if there are insufficient structure data to guide sited directed mutagenesis, long iterative phases of subcloning or mutation and expression often prove unsuccessful despite much effort. Random library approaches can offer a solution to this problem and involve construction of large libraries of construct variants that are analysed via screens or selections for the desired phenotype. Huge improvements in construct behaviour can be achieved rapidly with no requirement for prior knowledge of the target. Here we review the development of these experimental strategies and recent successes. C1 [Hart, Darren J.] UJF, EMBL, CNRS, Grenoble Outstn, Grenoble, France. [Hart, Darren J.] UJF, EMBL, CNRS, Unit Virus Host Cell Interact,UMI3265, Grenoble, France. [Waldo, Geoffrey S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Hart, DJ (reprint author), UJF, EMBL, CNRS, Grenoble Outstn, Grenoble, France. EM hart@embl.fr OI Hart, Darren/0000-0002-3502-2002 FU EU FP7 [227764, 283570]; NIH [GM98177-01A1]; Los Alamos National Laboratory DOE/LDRD program FX DJH acknowledges EU FP7 contracts P-CUBE (227764) and BioStruct-X (283570) for financial support of library methods research. GSW wishes to thank NIH GM98177-01A1 and the Los Alamos National Laboratory DOE/LDRD program for support. NR 67 TC 7 Z9 7 U1 1 U2 25 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD JUN PY 2013 VL 23 IS 3 BP 403 EP 408 DI 10.1016/j.sbi.2013.03.004 PG 6 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 177XI UT WOS:000321408300011 PM 23602357 ER PT J AU Alagoz, E Anelli, G Antchev, G Avati, V Bassetti, V Berardi, V Boccone, V Bozzo, M Brucken, E Buzzo, A Catanesi, MG Cuneo, S Da Via, C Deile, M Dinapoli, R Eggert, K Eremin, V Ferro, F Hasi, J Haug, F Heino, J Jarron, P Kalliopuska, J Kaspar, J Kenney, C Kok, A Kundrat, V Kurvinen, K Lauhakangas, R Lippmaa, E Lokajicek, M Luntama, T Macina, D Macri, M Minutoli, S Mirabito, L Niewiadomski, H Noschis, E Oljemark, F Orava, R Oriunno, M Osterberg, K Parker, S Perrot, AL Radermacher, E Radicioni, E Ruggiero, G Saarikko, H Santroni, A Sette, G Siegrist, P Smotlacha, J Snoeys, W Taylor, C Watts, S Whitmore, J AF Alagoz, E. Anelli, G. Antchev, G. Avati, V. Bassetti, V. Berardi, V. Boccone, V. Bozzo, M. Brucken, E. Buzzo, A. Catanesi, M. G. Cuneo, S. Da Via, C. Deile, M. Dinapoli, R. Eggert, K. Eremin, V. Ferro, F. Hasi, J. Haug, F. Heino, J. Jarron, P. Kalliopuska, J. Kaspar, J. Kenney, C. Kok, A. Kundrat, V. Kurvinen, K. Lauhakangas, R. Lippmaa, E. Lokajicek, M. Luntama, T. Macina, D. Macri, M. Minutoli, S. Mirabito, L. Niewiadomski, H. Noschis, E. Oljemark, F. Orava, R. Oriunno, M. Osterberg, K. Parker, S. Perrot, A. -L. Radermacher, E. Radicioni, E. Ruggiero, G. Saarikko, H. Santroni, A. Sette, G. Siegrist, P. Smotlacha, J. Snoeys, W. Taylor, C. Watts, S. Whitmore, J. CA TOTEM Collaboration TI Performance of almost edgeless silicon detectors in CTS and 3D-planar technologies SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Particle tracking detectors (Solid-state detectors); Particle tracking detectors ID SENSORS; 3D AB The physics programme of the TOTEM experiment requires the detection of very forward protons scattered by only a few microradians out of the LHC beams. For this purpose, stacks of planar Silicon detectors have been mounted in moveable near-beam telescopes (Roman Pots) located along the beamline on both sides of the interaction point. In order to maximise the proton acceptance close to the beams, the dead space at the detector edge had to be minimised. During the detector prototyping phase, different sensor technologies and designs have been explored. A reduction of the dead space to less than 50 mu m m has been accomplished with two novel silicon detector technologies: one with the Current Terminating Structure (CTS) design and one based on the 3D edge manufacturing. This paper describes performance studies on prototypes of these detectors, carried out in 2004 in a fixed-target muon beam at CERN's SPS accelerator. In particular, the efficiency and accuracy in the vicinity of the beam-facing edges are discussed. C1 [Alagoz, E.; Anelli, G.; Antchev, G.; Avati, V.; Deile, M.; Dinapoli, R.; Eggert, K.; Haug, F.; Jarron, P.; Kaspar, J.; Macina, D.; Mirabito, L.; Niewiadomski, H.; Noschis, E.; Oriunno, M.; Perrot, A. -L.; Radermacher, E.; Ruggiero, G.; Siegrist, P.; Snoeys, W.] CERN, CH-1211 Geneva 23, Switzerland. [Bassetti, V.; Boccone, V.; Bozzo, M.; Buzzo, A.; Cuneo, S.; Ferro, F.; Macri, M.; Minutoli, S.; Santroni, A.; Sette, G.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Bassetti, V.; Boccone, V.; Bozzo, M.; Buzzo, A.; Cuneo, S.; Ferro, F.; Macri, M.; Minutoli, S.; Santroni, A.; Sette, G.] Univ Genoa, I-16146 Genoa, Italy. [Berardi, V.; Catanesi, M. G.; Radicioni, E.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Berardi, V.; Catanesi, M. G.; Radicioni, E.] Politecn Bari, I-70126 Bari, Italy. [Brucken, E.; Kalliopuska, J.; Kurvinen, K.; Lauhakangas, R.; Luntama, T.; Oljemark, F.; Saarikko, H.] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Brucken, E.; Kalliopuska, J.; Kurvinen, K.; Lauhakangas, R.; Luntama, T.; Oljemark, F.; Saarikko, H.] Univ Helsinki, Dept Phys Sci, FIN-00014 Helsinki, Finland. [Da Via, C.; Kok, A.; Watts, S.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Eremin, V.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Kaspar, J.; Kundrat, V.; Lokajicek, M.; Smotlacha, J.] Inst Phys ASCR, Prague 18221, Czech Republic. [Kenney, C.] Stanford Nanofabricat Facil, Mol Biol Consortium, Palo Alto, CA 94303 USA. [Parker, S.] Univ Hawaii, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Taylor, C.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Whitmore, J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Lippmaa, E.] NICPB, Tallinn, Estonia. RP Catanesi, MG (reprint author), Ist Nazl Fis Nucl, Sez Bari, Via Orabona 4, I-70126 Bari, Italy. EM gabriella.catanesi@cern.ch RI Dinapoli, Roberto/E-6194-2010; Kundrat, Vojtech/H-1385-2014; Lokajicek, Milos /H-1383-2014; Kaspar, Jan/H-2598-2014; Snoeys, Walter/K-8259-2015; OI Kaspar, Jan/0000-0001-5639-2267; Snoeys, Walter/0000-0003-3541-9066; Osterberg, Kenneth/0000-0003-4807-0414; Brucken, Jens Erik/0000-0001-6066-8756 NR 21 TC 1 Z9 1 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUN PY 2013 VL 8 AR P06009 DI 10.1088/1748-0221/8/06/P06009 PG 18 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 180VR UT WOS:000321627400020 ER PT J AU Menasce, D Moroni, L Ngadiuba, J Uplegger, L Alagoz, E Andresen, J Arndt, K Bolla, G Bortoletto, D Brom, JM Brosius, R Bubna, M Chramowicz, J Cumalat, J Dinardo, M Dini, P Jensen, F Krzywda, A Kumar, A Kwan, S Lei, CM Obertino, M Osipenkov, I Perera, L Prosser, A Rivera, R Solano, A Tan, P Tentindo, S Terzo, S Tran, N Wagner, SR AF Menasce, D. Moroni, L. Ngadiuba, J. Uplegger, L. Alagoz, E. Andresen, J. Arndt, K. Bolla, G. Bortoletto, D. Brom, J. M. Brosius, R. Bubna, M. Chramowicz, J. Cumalat, J. Dinardo, M. Dini, P. Jensen, F. Krzywda, A. Kumar, A. Kwan, S. Lei, C. M. Obertino, M. Osipenkov, I. Perera, L. Prosser, A. Rivera, R. Solano, A. Tan, P. Tentindo, S. Terzo, S. Tran, N. Wagner, S. R. TI Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Solid state detectors; Diamond Detectors; Radiation-hard detectors; Particle tracking detectors (Solid-state detectors) AB We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, epsilon = 0.99860 +/- 0.00006, and the position-resolution for shared hits was about 6 mu m. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke(-)), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector. C1 [Menasce, D.; Moroni, L.; Ngadiuba, J.; Dinardo, M.; Dini, P.; Terzo, S.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Menasce, D.; Moroni, L.; Ngadiuba, J.; Dinardo, M.; Dini, P.; Terzo, S.] Univ Milano Bicocca, I-20126 Milan, Italy. [Uplegger, L.; Andresen, J.; Chramowicz, J.; Kwan, S.; Lei, C. M.; Prosser, A.; Rivera, R.; Tan, P.; Tran, N.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Alagoz, E.; Arndt, K.; Bolla, G.; Bortoletto, D.; Bubna, M.; Krzywda, A.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Brom, J. M.] Inst Pluridisciplinaire Hubert Curien, Strasbourg IPHC, F-67037 Strasbourg, France. [Brosius, R.; Kumar, A.] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. [Cumalat, J.; Jensen, F.; Wagner, S. R.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Obertino, M.; Solano, A.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Osipenkov, I.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Perera, L.] Univ Mississippi, Dept Phys & Astron, University, MS 38677 USA. Florida State Univ, Tallahassee, FL 32306 USA. RP Moroni, L (reprint author), Ist Nazl Fis Nucl, Sez Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy. EM Luigi.Moroni@mib.infn.it RI Menasce, Dario Livio/A-2168-2016; OI Menasce, Dario Livio/0000-0002-9918-1686; Arndt, Kirk/0000-0002-6826-8340; Terzo, Stefano/0000-0003-3388-3906 FU U.S. Department of Energy; Italian Istituto Nazionale di Fisica Nucleare and Ministero della Ricerca Scientifica e Tecnologica FX We wish to thank the Fermilab Test Beam Facility personnel, and in particular Aria Soha, for the continuous support they provided us. In addition we would like to thank Bert Harrop (Princeton University) and Robert Stone (Rutgers University) for the assembly, especially pixellation and bump-bonding, of the detectors used in this study. This research was supported in part by the U.S. Department of Energy and the Italian Istituto Nazionale di Fisica Nucleare and Ministero della Ricerca Scientifica e Tecnologica. NR 8 TC 1 Z9 1 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUN PY 2013 VL 8 AR P06006 DI 10.1088/1748-0221/8/06/P06006 PG 16 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 180VR UT WOS:000321627400017 ER PT J AU Yoon, PS Siddons, DP AF Yoon, P. S. Siddons, D. P. TI A photometric approach to parametric modelling for optimising multisegmented photodetector rings SO JOURNAL OF INSTRUMENTATION LA English DT Article DE X-ray detectors; Simulation methods and programs; Instrument optimisation; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc) AB An analytical (theoretical) method for parametric modelling to optimise fluorescent-type x-ray photodetectors has been developed. The primary purpose of this method is to maximise detector's photon-detection efficiency, thereby enhancing its spatial sensitivity. On the basis of the definition of the solid angle, its sensor-target subsystem was fully parametrised in three dimensions. And afterwards real-valued analytical functions of detector's solid angle were derived, leading to a series of further calculations. As a result of this parametric modelling, a miniaturised ultrasensitive photodetector system was designed with its peak total solid angle as large as 0.70 (steradian) at a practical optimum working distance of 3.0 (mm). Subsequent difference-over-sum calculations yield an enhancement in spatial resolution by a factor of four within its linear band. With the application of this optimisation algorithm embedded in this analytical model, one round of prototyping is sufficient to reach its desired spatial sensitivity, resulting in a drastic reduction of prototyping time and cost. Accordingly, this analytical model with full parametrisation has proved itself to be an indispensable and versatile design tool to utilise in a design phase of such position-sensitive photodetectors. It is therefore envisioned that this photometric approach to modelling photodetectors can be augmented for designing different types of optical instruments in a wide range of scientific disciplines. C1 [Yoon, P. S.; Siddons, D. P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Yoon, PS (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM phil.s.yoon@hotmail.com FU U.S. Department of Energy by Brookhaven National Laboratory (BNL) [DE-AC02-98CH10886] FX This work was performed under the auspice of the U.S. Department of Energy by Brookhaven National Laboratory (BNL) under contract number DE-AC02-98CH10886. Acknowledgment is made to the directorship of the experimental facilities division of the National Synchrotron Light Source-II facility of BNL. NR 5 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUN PY 2013 VL 8 AR P06005 DI 10.1088/1748-0221/8/06/P06005 PG 14 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 180VR UT WOS:000321627400016 ER PT J AU Yu, JM Thornalley, DJR Rae, JWB McCave, NI AF Yu, Jimin Thornalley, David J. R. Rae, James W. B. McCave, Nick I. TI Calibration and application of B/Ca, Cd/Ca, and delta B-11 in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation SO PALEOCEANOGRAPHY LA English DT Article DE Neogloboquadrina pachyderma (s); B; Ca; Cd; Ca; d11B; subsurface pH and pCO2 and nutrients ID BORON ISOTOPIC COMPOSITION; ATMOSPHERIC CARBON-DIOXIDE; OXYGEN-ISOTOPE; EQUATORIAL PACIFIC; OCEAN CIRCULATION; GLACIAL MAXIMUM; STABLE-ISOTOPE; SOUTHERN-OCEAN; SEAWATER; SEA AB The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and B-11 ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO(2) changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater B(OH)(4)(-)/HCO3- with a roughly constant partition coefficient of 1.48 +/- 0.15x10(-3) (2 sigma), and B-11 in this species is offset below B-11 of the borate in seawater by 3.38 +/- 0.71 parts per thousand (2 sigma). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant K-D of 1.48x10(-3) to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO(2) at the habitat depth of N. pachyderma (s) (similar to 50 m) generally followed the atmospheric CO2 trend but with negative offsets of similar to 10-50 ppmv during 19-10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution B-11 measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO(2) variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO(2) (at 0 m water depth) is always lower than at deeper depths and if the application of a constant K-D is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation. C1 [Yu, Jimin] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia. [Yu, Jimin] Lawrence Livermore Natl Lab, Livermore, CA USA. [Thornalley, David J. R.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Rae, James W. B.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Rae, James W. B.] Univ Bristol, Dept Earth Sci, Bristol Isotope Grp, Bristol, Avon, England. [McCave, Nick I.] Univ Cambridge, Dept Earth Sci, Godwin Lab Palaeoclimate Res, Cambridge CB2 3EQ, England. RP Yu, JM (reprint author), Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia. EM jimin.yu@anu.edu.au RI Yu, Jimin/I-7770-2012; McCave, Nick/G-7323-2016 OI Yu, Jimin/0000-0002-3896-1777; McCave, Nick/0000-0002-4702-5489 FU Lamont-Doherty Postdoctoral Fellowship; Lawrence Livermore Fellowship; Australian National University; NERC RAPID grant [NER/T/S/2002/00436]; NERC PhD studentship; RAPID Climate Change programme of NERC (UK) FX We thank T. Takahashi, R. Ryderson, H. Elderfield, and F. He for very helpful discussions, O. Hyams-Kaphzan, Z. Jin, M. Greaves, and Chris Coath for excellent lab assistance, and T. Dokken for providing three core-tops from the Norwegian Sea. We also thank constructive comments from two anonymous reviewers. This research is funded by Lamont-Doherty Postdoctoral Fellowship, Lawrence Livermore Fellowship and the Australian National University (J.Y.), by NERC RAPID grant NER/T/S/2002/00436 (N. M. and D. T.), and by a NERC PhD studentship (J.R.). The cores examined in this study were obtained during cruise CD-159 of RRS Charles Darwin funded by the RAPID Climate Change programme of NERC (UK). NR 77 TC 15 Z9 16 U1 7 U2 52 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0883-8305 EI 1944-9186 J9 PALEOCEANOGRAPHY JI Paleoceanography PD JUN PY 2013 VL 28 IS 2 BP 237 EP 252 DI 10.1002/palo.20024 PG 16 WC Geosciences, Multidisciplinary; Oceanography; Paleontology SC Geology; Oceanography; Paleontology GA 186AP UT WOS:000322013900003 ER PT J AU Riggio, V Pesce, LL Morreale, S Portolano, B AF Riggio, Valentina Pesce, Lorenzo L. Morreale, Salvatore Portolano, Baldassare TI Receiver-operating characteristic curves for somatic cell scores and California mastitis test in Valle del Be lice dairy sheep SO VETERINARY JOURNAL LA English DT Article DE Intramammary infection; Receiver-operating characteristic curve; Sheep; Somatic cell count ID SUBCLINICAL MASTITIS; INTRAMAMMARY INFECTIONS; MILK-COMPOSITION; ROC ANALYSIS; COUNT; EWES; AREAS; UDDER; COWS AB Using receiver-operating characteristic (ROC) curve methodology this study was designed to assess the diagnostic effectiveness of somatic cell count (SCC) and the California mastitis test (CMT) in Valle del Belice sheep, and to propose and evaluate threshold values for those tests that would optimally discriminate between healthy and infected udders. Milk samples (n = 1357) were collected from 684 sheep in four flocks. The prevalence of infection, as determined by positive bacterial culture was 0.36, 87.7% of which were minor and 12.3% major pathogens. Of the culture negative samples, 83.7% had an SCC < 500,000/mL and 97.4% had <1,000,000 cells/mL. When the associations between SC score (SCS) and whole sample status (culture negative vs. infected), minor pathogen status (culture negative vs. infected with minor pathogens), major pathogen status (culture negative vs. infected with major pathogens), and CMT results were evaluated, the estimated area under the ROC curve was greater for glands infected with major compared to minor pathogens (0.88 vs. 0.73), whereas the area under the curve considering all pathogens was similar to the one for minor pathogens (0.75). The estimated optimal thresholds were 3.00 (CMT), 2.81 (SCS for the whole sample), 2.81 (SCS for minor pathogens), and 3.33 (SCS for major pathogens). These correctly classified, respectively, 69.0%, 73.5%, 72.6% and 91.0% of infected udders in the samples. The CMT appeared only to discriminate udders infected with major pathogens. In this population, SCS appeared to be the best indirect test of the bacteriological status of the udder. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Riggio, Valentina; Morreale, Salvatore; Portolano, Baldassare] Univ Palermo, DEMETRA Dept, I-90128 Palermo, Italy. [Riggio, Valentina] Wageningen Univ, Anim Breeding & Genom Ctr, NL-6700 AH Wageningen, Netherlands. [Pesce, Lorenzo L.] Univ Chicago, Dept Computat Neurosci, Chicago, IL 60637 USA. [Pesce, Lorenzo L.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Pesce, Lorenzo L.] Argonne Natl Lab, Chicago, IL 60637 USA. [Morreale, Salvatore] Univ Palermo, DEMETRA Dept, Consorzio Reg Ric Bioevoluz Sicilia, I-90128 Palermo, Italy. RP Riggio, V (reprint author), Univ Edinburgh, Roslin Inst, Easter Bush EH25 9RG, Midlothian, Scotland. EM valentina.riggio@unipa.it OI Pesce, Lorenzo/0000-0002-8015-4653; Portolano, Baldassare/0000-0003-0792-9405 FU Ministero dell'Istruzione, dell'Universita e della Ricerca [2007898KYN] FX The authors would like to acknowledge the Istituto Zooprofilattico Sperimentale per la Sicilia A. Mirri for performing bacteriological and CMT score analyses. The Ministero dell'Istruzione, dell'Universita e della Ricerca (Project 2007898KYN, PRIN 2007) is also acknowledged for financial support for this research. NR 34 TC 4 Z9 4 U1 0 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1090-0233 J9 VET J JI Vet. J. PD JUN PY 2013 VL 196 IS 3 BP 528 EP 532 DI 10.1016/j.tvjl.2012.11.010 PG 5 WC Veterinary Sciences SC Veterinary Sciences GA 182EO UT WOS:000321724700046 PM 23317658 ER PT J AU Chlachidze, G Ambrosio, G Andreev, N Anerella, M Barzi, E Bossert, R Caspi, S Cheng, D Dietderich, D Felice, H Ferracin, P Ghosh, A Godeke, A Hafalia, AR Kashikhin, VV Lamm, M Marchevsky, M Nobrega, A Novitski, I Orris, D Sabbi, GL Schmalzle, J Wanderer, P Zlobin, AV AF Chlachidze, G. Ambrosio, G. Andreev, N. Anerella, M. Barzi, E. Bossert, R. Caspi, S. Cheng, D. Dietderich, D. Felice, H. Ferracin, P. Ghosh, A. Godeke, A. Hafalia, A. R. Kashikhin, V. V. Lamm, M. Marchevsky, M. Nobrega, A. Novitski, I. Orris, D. Sabbi, G. L. Schmalzle, J. Wanderer, P. Zlobin, A. V. TI Test of Optimized 120-mm LARP Nb3Sn Quadrupole Coil Using Magnetic Mirror Structure SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE High-luminosity upgrade of Large Hadron Collider (HiLumi-LHC); LHC accelerator research program (LARP); magnetic mirror; Nb3Sn quadrupole magnet; quench performance AB The U. S. Large Hadron Collider accelerator research program is developing a new generation of large-aperture high-field quadrupoles based on Nb3Sn conductor for the high-luminosity upgrade of the Large Hadron Collider. Tests of the first series of 120-mm-aperture high-gradient quadrupole (HQ) coils revealed the necessity for further optimization of the coil design and fabrication process. Modifications in coil design were gradually implemented in two HQ coils previously tested at Fermi National Accelerator Laboratory using a magnetic mirror structure (HQM01 and HQM02). This paper describes the construction and test of an HQ mirrormodel with a coil of optimized design and with an interlayer resistive core in the conductor. The cable for this coil was made of a smaller diameter strand, providing more room for coil expansion during reaction. The 0.8-mm strand, used in all previous HQ coils, was replaced with a 0.778-mm Nb3Sn strand of RRP 108/127 subelement design. The coil was instrumented with voltage taps, heaters, and strain gauges tomonitor mechanical and thermal properties and quench performance of the coil. C1 [Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Kashikhin, V. V.; Lamm, M.; Nobrega, A.; Novitski, I.; Orris, D.; Zlobin, A. V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Anerella, M.; Ghosh, A.; Schmalzle, J.; Wanderer, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Caspi, S.; Cheng, D.; Dietderich, D.; Felice, H.; Godeke, A.; Hafalia, A. R.; Marchevsky, M.; Sabbi, G. L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ferracin, P.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. RP Chlachidze, G (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM guram@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; U.S. Department of Energy; U.S. Department of Energy through the U.S. LHC Accelerator Research Program (LARP) FX This work supported in part by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. Department of Energy and the U.S. Department of Energy through the U.S. LHC Accelerator Research Program (LARP). NR 13 TC 5 Z9 5 U1 2 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4001605 DI 10.1109/TASC.2013.2242955 PN 2 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100023 ER PT J AU Sun, J Zuckermann, RN AF Sun, Jing Zuckermann, Ronald N. TI Peptoid Polymers: A Highly Designable Bioinspired Material SO ACS NANO LA English DT Review DE polypeptoids; solid-phase synthesis; sequence-specific polymers; protein-mimetic materials ID SOLID-PHASE SYNTHESIS; N-SUBSTITUTED GLYCINES; CATALYZED CARBONYLATIVE POLYMERIZATION; MEDIATED ZWITTERIONIC POLYMERIZATION; SEQUENCE-SPECIFIC POLYPEPTOIDS; POSITIONAL SCANNING LIBRARY; ALIPHATIC SIDE-CHAINS; SURFACTANT PROTEIN-B; COMBINATORIAL LIBRARY; SECONDARY STRUCTURE AB Bioinspired polymeric materials are attracting increasing attention due to significant advantages over their natural counterparts: the ability to precisely tune their structures over a broad range of chemical and physical properties, increased stability, and improved processability. Polypeptoids, a promising class of bioinspired polymer based on a N-substituted glycine backbone, have a number of unique properties that bridge the material gap between proteins and bulk polymers. Peptoids combine the sequence specificity of biopolymers with the simpler intra/intermolecular interactions and robustness of traditional synthetic polymers. They are highly designable because hundreds of chemically diverse side chains can be introduced from simple building blocks. Peptoid polymers can be prepared by two distinct synthetic techniques offering access to two material subclasses: (1) automated solid-phase synthesis which enables precision sequence control and near absolute monodispersity up to chain lengths of similar to 50 monomers, and (2) a classical polymerization approach which allows access to higher molecular weights and larger-scale yields, but with less control over length and sequence. This combination of facile synthetic approaches makes polypeptoids a highly tunable, rapid polymer prototyping platform to investigate new materials that are intermediate between proteins and bulk polymers, in both their structure and their properties. In this paper, we review the methods to synthesize peptoid polymers and their applications in biomedicine and nanoscience, as both sequence-specific materials and as bulk polymers. C1 [Sun, Jing; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Zuckermann, RN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov RI Zuckermann, Ronald/A-7606-2014; Foundry, Molecular/G-9968-2014 OI Zuckermann, Ronald/0000-0002-3055-8860; FU Soft Matter Electron Microscopy Program; Office of Science, Office of Basic Energy Science, U.S. Department of Energy [DE-AC02-05CH11231]; Defense Threat Reduction Agency FX Funding for this work was provided by the Soft Matter Electron Microscopy Program, supported by the Office of Science, Office of Basic Energy Science, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231, and the Defense Threat Reduction Agency. The work was carried out at the Molecular Foundry at Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Science, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 186 TC 92 Z9 93 U1 15 U2 221 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUN PY 2013 VL 7 IS 6 BP 4715 EP 4732 DI 10.1021/nn4015714 PG 18 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 173QK UT WOS:000321093800005 PM 23721608 ER PT J AU Shin, SH Comolli, LR Tscheliessnig, R Wang, C Nam, KT Hexemer, A Siegerist, CE De Yoreo, JJ Bertozzi, CR AF Shin, Seong-Ho Comolli, Luis R. Tscheliessnig, Rupert Wang, Cheng Ki Tae Nam Hexemer, Alexander Siegerist, Cristina E. De Yoreo, James J. Bertozzi, Carolyn R. TI Self-Assembly of "S-Bilayers", a Step Toward Expanding the Dimensionality of S-Layer Assemblies SO ACS NANO LA English DT Article DE cryo-electron microscopy; cryo-electron tomography; S-layers; collective nanostructures; broken symmetry ID BACILLUS-SPHAERICUS CCM-2177; CELL-WALL POLYMER; CAULOBACTER-CRESCENTUS; BUILDING-BLOCKS; PROTEIN CAGES; SURFACE; ARRAYS; SBPA; RECONSTRUCTION; FABRICATION AB Protein-based assemblies with ordered nanometer-scale features in three dimensions are of interest as functional nanomaterials but are difficult to generate. Here we report that a truncated S-layer protein assembles into stable bilayers, which we characterized using cryogenic-electron microscopy, tomography, and X-ray spectroscopy. We find that emergence of this supermolecular architecture is the outcome of hierarchical processes; the proteins condense in solution to form 2-D crystals, which then stack parallel to one another to create isotropic bilayered assemblies. Within this bilayered structure, registry between lattices in two layers was disclosed, whereas the intrinsic symmetry in each layer was altered. Comparison of these data to images of wild-type SbpA layers on intact cells gave insight into the interactions responsible for bilayer formation. These results establish a platform for engineering S-layer assemblies with 3-D architecture. C1 [Shin, Seong-Ho; Ki Tae Nam; De Yoreo, James J.; Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Tscheliessnig, Rupert] Univ Calif Berkeley, Dept Chem & Biomol Engn, Austrian Ctr Ind Biotechnol, Berkeley, CA 94720 USA. [Shin, Seong-Ho; Ki Tae Nam; De Yoreo, James J.; Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Comolli, Luis R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Wang, Cheng; Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Shin, Seong-Ho; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Comolli, LR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM lrcomolli@lbl.gov; crb@berkeley.edu RI Wang, Cheng/A-9815-2014; Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Virginia Altoe for TEM of the stained sample, and Eric Schaible for helping the beamline experiment. This work was performed at Lawrence Berkeley National Laboratory, with support from the Office of Science, Office of Basic Energy Sciences, Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 38 TC 8 Z9 8 U1 5 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUN PY 2013 VL 7 IS 6 BP 4946 EP 4953 DI 10.1021/nn400263j PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 173QK UT WOS:000321093800027 PM 23705800 ER PT J AU He, K Khorasani, FB Retterer, ST Thomas, DK Conrad, JC Krishnamoorti, R AF He, Kai Khorasani, Firoozeh Babaye Retterer, Scott T. Thomas, Darrell K. Conrad, Jacinta C. Krishnamoorti, Ramanan TI Diffusive Dynamics of Nanoparticles in Arrays of Nanoposts SO ACS NANO LA English DT Article DE diffusion; porous media; non-Gaussian dynamics; nanoparticles ID POROUS-MEDIA; TRACER DIFFUSION; ACTIN NETWORKS; TRANSPORT; SCATTERING; MOTION; BRAIN AB The diffusive dynamics of dilute dispersions of nanoparticles of diameter 200-400 nm were studied in microfabricated arrays of nanoposts using differential dynamic microscopy and single particle tracking. Posts of diameter 500 nm and height 10 mu m were spaced by 1.2-10 mu m on a square lattice. As the spacing between posts was decreased, the dynamics of the nanoparticles slowed. Moreover, the dynamics at all length scales were best represented by a stretched exponential rather than a simple exponential. Both the relative diffusivity and the stretching exponent decreased linearly with increased confinement and, equivalently, with decreased void volume. The slowing of the overall diffusive dynamics and the broadening distribution of nanoparticle displacements with increased confinement are consistent with the onset of dynamic heterogeneity and the approach to vitrification. C1 [He, Kai; Khorasani, Firoozeh Babaye; Conrad, Jacinta C.; Krishnamoorti, Ramanan] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA. [Retterer, Scott T.; Thomas, Darrell K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37934 USA. [Retterer, Scott T.] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37934 USA. RP Krishnamoorti, R (reprint author), Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA. EM jcconrad@uh.edu; ramanan@uh.edu RI Krishnamoorti, Ramanan/F-7914-2011; Retterer, Scott/A-5256-2011; Conrad, Jacinta/D-6432-2013; OI Krishnamoorti, Ramanan/0000-0001-5831-502X; Retterer, Scott/0000-0001-8534-1979; Conrad, Jacinta/0000-0001-6084-4772; Babayekhorasani, Firoozeh/0000-0002-5115-4179 FU King Abdullah University of Science and Technology (KAUST) [KUS-C1-018-02]; Gulf of Mexico Research Initiative (Consortium for Ocean Leadership) [SA 12-05/GoMRI-002]; American Chemical Society [52537-DNI7]; National Science Foundation [DMR-1151133]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory FX This publication is based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). R.K. and K.H. acknowledge the partial support of the Gulf of Mexico Research Initiative (Consortium for Ocean Leadership Grant SA 12-05/GoMRI-002). J.C.C. is supported by the American Chemical Society Petroleum Research Fund (52537-DNI7) and the National Science Foundation (DMR-1151133). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 42 TC 26 Z9 26 U1 2 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUN PY 2013 VL 7 IS 6 BP 5122 EP 5130 DI 10.1021/nn4007303 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 173QK UT WOS:000321093800046 PM 23672180 ER PT J AU Singh, G Batra, S Zhang, R Yuan, HY Yager, KG Cakmak, M Berry, B Karim, A AF Singh, Gurpreet Batra, Saurabh Zhang, Ren Yuan, Hongyi Yager, Kevin G. Cakmak, Miko Berry, Brian Karim, Alamgir TI Large-Scale Roll-to-Roll Fabrication of Vertically Oriented Block Copolymer Thin Films SO ACS NANO LA English DT Article DE directed self assembly; block copolymer; roll to roll; zone annealing ID DIBLOCK COPOLYMERS; TRANSITION-TEMPERATURE; BOTTOM-UP; LITHOGRAPHY; ORIENTATION; NANOSTRUCTURES; ORDER; PDMS; POLYSTYRENE; TEMPLATES AB Large-scale roll-to-roll (R2R) fabrication of vertically oriented nanostructures via directed self-assembly of cylindrical block copolymer (c-BCP) thin films is reported. Nearly 100% vertical orientation of cylinders in sub-100 nm c-BCP films under optimized processing via a dynamic sharp temperature gradient field termed Cold Zone Annealing-Sharp or 'CZA-S' is achieved, with successful scale-upon a prototype custom-built 70 ft x 1 ft R2R platform moving at 25 mu m/s, with 9 consecutive CZA units. Static thermal annealing of identical films in a conventional vacuum oven fails to produce comparable results. As a potential for applications, we fabricate high-density silicon oxide nanodot arrays from the CZA-S annealed BCP thin film template. C1 [Singh, Gurpreet; Batra, Saurabh; Zhang, Ren; Yuan, Hongyi; Cakmak, Miko; Karim, Alamgir] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. [Yager, Kevin G.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Berry, Brian] Univ Arkansas, Dept Chem, Little Rock, AR 72204 USA. RP Karim, A (reprint author), Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. EM alamgir@uakron.edu RI Yager, Kevin/F-9804-2011 OI Yager, Kevin/0000-0001-7745-2513 FU National Science Foundation (NSF), Division of Materials Research (DMR), Collaborative Grant NSF [DMR-1006421]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Third Frontier Program of State of Ohio FX G.S. and A.K. would like to thank Prof. Bryan Vogt, Dr. Diya Bandhyopadhyay and Van Luo for fruitful discussions. This CZA-S research work was entirely supported by the National Science Foundation (NSF), Division of Materials Research (DMR), Collaborative Grant NSF DMR-1006421. Supporting GISAXS was carried out at the National Synchrotron Light Source, and the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The Third Frontier Program of State of Ohio provided the funding for the R2R manufacturing line. NR 55 TC 27 Z9 27 U1 2 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUN PY 2013 VL 7 IS 6 BP 5291 EP 5299 DI 10.1021/nn401094s PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 173QK UT WOS:000321093800065 PM 23647480 ER PT J AU Gupta, G Lyer, S Leasure, K Virdone, N Dattelbaum, AM Atanassov, PB Lopez, GP AF Gupta, Gautam Lyer, Srinivas Leasure, Kara Virdone, Nicole Dattelbaum, Andrew M. Atanassov, Plamen B. Lopez, Gabriel P. TI Stable and Fluid Multilayer Phospholipid-Silica Thin Films: Mimicking Active Multi-lamellar Biological Assemblies SO ACS NANO LA English DT Article DE myelin; multilamellar; hybrid phospholipld silica assemblies; fluid membranes; air-stable lipid assemblies ID MESOPOROUS MOLECULAR-SIEVES; SUPPORTED LIPID-BILAYERS; VAPOR-PHASE; MEMBRANES; SURFACTANT; REFLECTIVITY; SCATTERING; LIPOSOMES; PROTEINS AB Phospholipid-based nanomaterials are of interest in several applications including drug delivery, sensing, energy harvesting, and as model systems in basic research. However, a general challenge in creating functional hybrid biomaterials from phospholipid assemblies is their fragility, instability in air, Insolubility in water, and the difficulty of integrating them into useful composites that retain or enhance the properties of interest, therefore limiting there use In integrated devices. We document the synthesis and characterization of highly ordered and stable phospholipid silica thin films that resemble multilamellar architectures present In nature such as the myelin sheath. We have used a near room temperature chemical vapor deposition method to synthesize these robust functional materials. Highly ordered lipid films are exposed to vapors of silica precursor resulting in the formation of nanostructured hybrid assemblies. This process Is simple, scalable, and offers advantages such as exclusion of ethanol and no (or minimal) need for exposure to mineral acids, which are generally required in conventional sol gel synthesis strategies. The structure of the phospholipid silica assemblies can be tuned to either lamellar or hexagonal organization depending on the synthesis conditions. The phospholipid silica films exhibit long-term structural stability in air as well as when placed in aqueous solutions and maintain their fluidity under aqueous or humid conditions. This platform provides a model for robust implementation of phospholipid multilayers and a means toward future applications of functional phospholipid supramolecular assemblies in device integration. C1 [Gupta, Gautam; Atanassov, Plamen B.; Lopez, Gabriel P.] Univ New Mexico, Dept Chem & Nucl Engn, Ctr Biomed Engn, Albuquerque, NM 87131 USA. [Gupta, Gautam; Dattelbaum, Andrew M.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS K771, Los Alamos, NM 87545 USA. [Lyer, Srinivas; Leasure, Kara] Los Alamos Natl Lab, Bioenergy & Biome Sci Grp, MS M888, Los Alamos, NM 87545 USA. [Virdone, Nicole; Lopez, Gabriel P.] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. [Virdone, Nicole; Lopez, Gabriel P.] Duke Univ, NSF Res Triangle Mat Res Sci & Engn Ctr, Dept Biomed Engn, Durham, NC 27708 USA. RP Lopez, GP (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, Ctr Biomed Engn, Albuquerque, NM 87131 USA. EM gabriel.lopez@duke.edu FU National Science Foundation through the Research Triangle MRSEC [DMR-1121107]; Army Research Office [W911NF-06-1-0333]; Center for Integrated Nanotechnologies (CINT); LANL; Department of Energy through the LANL/LDRD Program FX We gratefully acknowledge funding provided for this work by the National Science Foundation through the Research Triangle MRSEC (DMR-1121107), the Army Research Office (W911NF-06-1-0333), Center for Integrated Nanotechnologies (CINT), LANL and the Department of Energy through the LANL/LDRD Program. We are grateful to Dr. A. Keilbach, Anton Paar, for performance of GISAXS measurements. NR 35 TC 6 Z9 6 U1 5 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUN PY 2013 VL 7 IS 6 BP 5300 EP 5307 DI 10.1021/nn401123p PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 173QK UT WOS:000321093800066 PM 23706112 ER PT J AU Chan, WF Chen, HY Surapathi, A Taylor, MG Shao, XH Marand, E Johnson, JK AF Chan, Wai-Fong Chen, Hang-yan Surapathi, Anil Taylor, Michael G. Shao, Xiaohong Marand, Eva Johnson, J. Karl TI Zwitterion Functionalized Carbon Nanotube/Polyamide Nanocomposite Membranes for Water Desalination SO ACS NANO LA English DT Article DE ion rejection; reverse osmosis; molecular simulation; functionalized nanotubes ID NANOTUBE MEMBRANES; NANOFILTRATION MEMBRANES; MOLECULAR-DYNAMICS; MASS-TRANSPORT; ION SELECTIVITY; GAS-TRANSPORT; SIMULATIONS; FABRICATION; PORES; PH AB We have shown from both simulations and experiments that zwitterion functionalized carbon nanotubes (CNTs) can be used to construct highly efficient desalination membranes. Our simulations predicted that zwitterion functional groups at the ends of CNTs allow a high flux of water, while rejecting essentially all ions. We have synthesized zwitterion functionalized CNT/polyamide nanocomposite membranes with varying loadings of CNTs and assessed these membranes for water desalination. The CNTs within the polyamide layer were partially aligned through a high-vacuum filtration step during membrane synthesis. Addition of zwitterion functionalized CNTs into a polyamide membrane Increased both the flux of water and the salt rejection ratio. The flux of water was found to increase by more than a factor of 4, from 6.8 to 28.7 GFD (gallons per square foot per day), as the fraction of CNTs was increased from 0 to 20 wt %. Importantly, the ion rejection ratio increased slightly from 97.6% to 98.6%. Thus, the nanotubes imparted an additional transport mechanism to the polyamide membrane, having higher flow rate and the same or slightly better selectivity. Simulations show that when two zwitterions are attached to each end of CNTs having diameters of about 15 angstrom, the ion rejection ratio is essentially 100%. In contrast, the rejection ratio for nonfunctionalized CNTs is about 0%, and roughly 20% for CNTs having five carboxylic acid groups per end. The increase in ion rejection for the zwitterion functionalized CNTs is due to a combination of steric hindrance from the functional groups partially blocking the tube ends and electrostatic repulsion between functional groups and ions, with steric effects dominating. Theoretical predictions indicate that an ideal CNT/polymer membrane having a loading of 20 wt % CNTs would have a maximum flux of about 20000 GFD at the conditions of our experiments. C1 [Chan, Wai-Fong; Surapathi, Anil; Marand, Eva] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA. [Chen, Hang-yan; Taylor, Michael G.; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15213 USA. [Shao, Xiaohong] Beijing Univ Chem Technol, Coll Sci, Beijing 100029, Peoples R China. [Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Marand, E (reprint author), Virginia Polytech Inst & State Univ, Dept Chem Engn, 138 Randolph Hall, Blacksburg, VA 24061 USA. EM emarand@vt.edu; karlj@pitt.edu RI Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 FU NSF-CBET [0755937]; US Bureau of Reclamation [R10AP81214]; NSF REU site grant [EEC-1005048] FX This work was supported by grants from NSF-CBET 0755937 and from the US Bureau of Reclamation R10AP81214. M.G.T. was supported through an NSF REU site grant, EEC-1005048. We thank the Center for Simulation and Modeling for computer time. We thank De-LI Chen and Bo Zhang for helpful discussions. NR 64 TC 76 Z9 80 U1 25 U2 233 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUN PY 2013 VL 7 IS 6 BP 5308 EP 5319 DI 10.1021/nn4011494 PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 173QK UT WOS:000321093800067 PM 23705642 ER PT J AU Vial, S Nykypanchuk, D Yager, KG Tkachenko, AV Gang, O AF Vial, Stephanie Nykypanchuk, Dmytro Yager, Kevin G. Tkachenko, Alexei V. Gang, Oleg TI Linear Mesostructures in DNA-Nanorod Self-Assembly SO ACS NANO LA English DT Article DE nanorods; DNA; self-assembly; assembly kinetics; mesostructure; symmetry breaking; one-dimensional structure ID GOLD NANORODS; NANOPARTICLE SUPERLATTICES; CRYSTALLIZATION AB The assembly of molecules and nanoscale objects into one-dimensional (1D) structures, such as fibers, tubules, and ribbons, typically results from anisotropic interactions of the constituents. Conversely, we found that a 10 structure can emerge via a very different mechanism, viz, the spontaneous symmetry breaking of underlying interparticle interactions during structure formation. For systems containing DNA-decorated nanoscale rods, this mechanism, driven by flexible DNA chains, results in the formation of 1D ladderlike mesoscale ribbons with a side-by-side rod arrangement. Detailed structural studies using electron microscopy and in situ small-angle X-ray scattering (SAXS), as well as analysis of assembly kinetics, reveal the role of collective DNA interactions in the formation of the linear structures. Moreover, the reversibility of DNA binding facilitates the development of hierarchical assemblies with time. We also observed similar linear structures of alternating rods and spheres, which implies that the discovered mechanism is generic for nanoscale objects interacting via flexible multiple linkers. C1 [Vial, Stephanie; Nykypanchuk, Dmytro; Yager, Kevin G.; Tkachenko, Alexei V.; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Vial, Stephanie] Int Iberian Nanotechnol Lab, Braga, Portugal. RP Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ogang@bnl.gov RI Tkachenko, Alexei/I-9040-2012; Yager, Kevin/F-9804-2011; INL, Citations/K-3436-2015; OI Tkachenko, Alexei/0000-0003-1291-243X; Yager, Kevin/0000-0001-7745-2513; INL, Citations/0000-0002-3745-5100; Vial, Stephanie/0000-0002-8714-0713 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; International Iberian Nanotechnology Laboratory (INL) in Braga, Portugal FX Research was carried Out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. O.G. acknowledges support by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. S.V. acknowledges financial support from International Iberian Nanotechnology Laboratory (INL) in Braga, Portugal. NR 24 TC 35 Z9 35 U1 4 U2 109 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUN PY 2013 VL 7 IS 6 BP 5437 EP 5445 DI 10.1021/nn401413b PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 173QK UT WOS:000321093800081 PM 23651346 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bikmaev, I Bohringer, H Bonaldi, A Bond, JR Borrill, J Bouchet, FR Bourdin, H Brown, ML Brown, SD Burenin, R Burigana, C Cabella, P Cardoso, JF Carvalho, P Catalano, A Cayon, L Chiang, LY Chon, G Christensen, PR Churazov, E Clements, DL Colafrancesco, S Colombo, LPL Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Democles, J Desert, FX Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Frommert, M Galeotta, S Ganga, K Genova-Santos, RT Giard, M Gilfanov, M Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Henrot-Versille, S Hernandez-Monteagudo, C Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, TR Jagemann, T Jones, WC Juvela, M Keihanen, E Khamitov, I Kneissl, R Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leonardi, R Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Marleau, F Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P Mei, S Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Munshi, D Murphy, JA Naselsky, P Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paoletti, D Perdereau, O Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Roman, M Rosset, C Rossetti, M Rubino-Martin, JA Rudnick, L Rusholme, B Sandri, M Savini, G Schaefer, BM Scott, D Smoot, GF Stivoli, F Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tuovinen, J Turler, M Umana, G Valenziano, L Van Tent, B Varis, J Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Welikala, N White, SDM Yvon, D Zacchei, A Zaroubi, S Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bikmaev, I. Boehringer, H. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Bourdin, H. Brown, M. L. Brown, S. D. Burenin, R. Burigana, C. Cabella, P. Cardoso, J. -F. Carvalho, P. Catalano, A. Cayon, L. Chiang, L. -Y Chon, G. Christensen, P. R. Churazov, E. Clements, D. L. Colafrancesco, S. Colombo, L. P. L. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Democles, J. Desert, F. -X. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Frommert, M. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gilfanov, M. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Henrot-Versille, S. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, T. R. Jagemann, T. Jones, W. C. Juvela, M. Keihanen, E. Khamitov, I. Kneissl, R. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leonardi, R. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Marleau, F. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. Mei, S. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Munshi, D. Murphy, J. A. Naselsky, P. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paoletti, D. Perdereau, O. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Roman, M. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rudnick, L. Rusholme, B. Sandri, M. Savini, G. Schaefer, B. M. Scott, D. Smoot, G. F. Stivoli, F. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tuovinen, J. Tuerler, M. Umana, G. Valenziano, L. Van Tent, B. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Welikala, N. White, S. D. M. Yvon, D. Zacchei, A. Zaroubi, S. Zonca, A. CA Planck Collaboration TI Planck intermediate results X. Physics of the hot gas in the Coma cluster SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: individual: Coma cluster; galaxies: clusters: intracluster medium; X-rays: galaxies: clusters; cosmology: observations; galaxies: clusters: general; cosmic background radiation ID LARGE-SCALE STRUCTURE; PRE-LAUNCH STATUS; SIMULATED GALAXY CLUSTERS; ALL-SKY SURVEY; SUNYAEV-ZELDOVICH; RADIO HALOS; XMM-NEWTON; SHOCK-WAVES; MAGNETIC-FIELD; TEMPERATURE STRUCTURE AB We present an analysis of Planck satellite data on the Coma cluster observed via the Sunyaev-Zeldovich effect. Thanks to its great sensitivity, Planck is able, for the first time, to detect SZ emission up to r approximate to 3 x R-500. We test previously proposed spherically symmetric models for the pressure distribution in clusters against the azimuthally averaged data. In particular, we find that the Arnaud et al. (2010, A&A, 517, A92) "universal" pressure profile does not fit Coma, and that their pressure profile for merging systems provides a reasonable fit to the data only at r < R-500; by r = 2 x R-500 it underestimates the observed y profile by a factor of similar or equal to 2. This may indicate that at these larger radii either: i) the cluster SZ emission is contaminated by unresolved SZ sources along the line of sight; or ii) the pressure profile of Coma is higher at r > R-500 than the mean pressure profile predicted by the simulations used to constrain the models. The Planck image shows significant local steepening of the y profile in two regions about half a degree to the west and to the south-east of the cluster centre. These features are consistent with the presence of shock fronts at these radii, and indeed the western feature was previously noticed in the ROSAT PSPC mosaic as well as in the radio. Using Planck y profiles extracted from corresponding sectors we find pressure jumps of 4.9(-0.2)(+0.4) and 5.0(-0.1)(+1.3) in the west and south-east, respectively. Assuming Rankine-Hugoniot pressure jump conditions, we deduce that the shock waves should propagate with Mach number M-w = 2.03(-0.04)(+0.09) and M-se = 2.05(-0.02)(+0.25) in the west and south-east, respectively. Finally, we find that the y and radio-synchrotron signals are quasi-linearly correlated on Mpc scales, with small intrinsic scatter. This implies either that the energy density of cosmic-ray electrons is relatively constant throughout the cluster, or that the magnetic fields fall off much more slowly with radius than previously thought. C1 [Bartlett, J. G.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Le Jeune, M.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Irfu, F-75205 Paris 13, France. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Russia. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Carvalho, P.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Kneissl, R.] ALMA Santiago Cent Offices, Atacama Large Millimeter Submillimeter Array, Santiago 7630355, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, DTU Space, Natl Space Inst, DK-2800 Lyngby, Denmark. [Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Brown, S. D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Burigana, C.; Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago 19001, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] Planck Sci Off, ESAC, European Space Agcy, Madrid, Spain. [Tauber, J. A.] Estec, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands. [Mei, S.] Observ Paris, Sect Meudon, GEPI, F-92195 Meudon, France. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [de Zotti, G.] Osserv Astrofis Catania, INAF, I-35131 Padua, Italy. [Colafrancesco, S.; Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Massardi, M.] CNR, Ist Radioastron, INAF, I-40126 Bologna, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble 1, IPAG, CNRS INSU, UMR 5274, F-38041 Grenoble, France. [Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Clements, D. L.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, Inst Neel, CNRS, F-38041 Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Balbi, A.; Benoit, A.; Bonaldi, A.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] Univ Paris 11, Inst Astrophys Spatiale, CNRS UMR 8617, Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Brown, M. L.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Zaroubi, S.] Univ Groningen, Kapteyn Astron Inst, NL-9747 AD Groningen, Netherlands. [Ashdown, M.; Harrison, D.; Lasenby, A.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Democles, J.; Piffaretti, R.; Pratt, G. W.] Univ Paris Diderot, CNRS, Lab AIM, IRFU Serv Astrophys,CEA,DSM,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Hurier, G.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Churazov, E.; Dolag, K.; Doerl, U.; Ensslin, T. A.; Gilfanov, M.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Rudnick, L.] Univ Minnesota, Sch Phys & Astron, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Co Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Burenin, R.] Space Res Inst IKI, Moscow, Russia. [Churazov, E.; Gilfanov, M.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Khamitov, I.] Akdeniz Univ Campus, TUBITAK Natl Observ, TR-07058 Antalya, Turkey. [Benabed, K.; Bouchet, F. R.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UPMC, UMR7095, F-75014 Paris, France. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Mei, S.] Univ Paris 07, F-75205 Paris 13, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, IRAP, UPS OMP, F-31028 Toulouse 4, France. [Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Mazzotta, P (reprint author), Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. EM mazzotta@roma2.infn.it RI Martinez-Gonzalez, Enrique/E-9534-2015; Churazov, Eugene/A-7783-2013; Gonzalez-Nuevo, Joaquin/I-3562-2014; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Remazeilles, Mathieu/N-1793-2015; Gruppuso, Alessandro/N-5592-2015; Novikov, Dmitry/P-1807-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Mazzotta, Pasquale/B-1225-2016; OI Pierpaoli, Elena/0000-0002-7957-8993; De Zotti, Gianfranco/0000-0003-2868-2595; TERENZI, LUCA/0000-0001-9915-6379; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Barreiro, Rita Belen/0000-0002-6139-4272; Galeotta, Samuele/0000-0002-3748-5115; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Masi, Silvia/0000-0001-5105-1439 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); U.S. NSF [09-08668] FX A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck_Collaboration. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). Partial support for this work for L. Rudnick comes from U.S. NSF Grant 09-08668 to the University of Minnesota. We would also like to acknowledge useful conversations with G. Brunetti. NR 94 TC 23 Z9 23 U1 1 U2 32 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2013 VL 554 AR A140 DI 10.1051/0004-6361/201220247 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 164XA UT WOS:000320444200138 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bonaldi, A Bond, JR Borrill, J Bouchet, FR Burigana, C Cabella, P Cardoso, JF Catalano, A Cayon, L Chary, RR Chiang, LY Christensen, PR Clements, DL Colombo, LPL Coulais, A Crill, BP Cuttaia, F Danese, L D'Arcangelo, O Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dobler, G Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Franceschi, E Galeotta, S Ganga, K Giard, M Giardino, G Gonzaalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Hansen, FK Harrison, D Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Hildebrandt, SR Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Jaffe, TR Jagemann, T Jewell, J Jones, WC Juvela, M Keihacn, E Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Leach, S Leonardi, R Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Mitra, S Moneti, A Montier, L Morgante, G Munshi, D Murphy, JA Naselsky, P Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Osborne, S Pajot, F Paladini, R Paoletti, D Partridge, B Pearson, TJ Perdereau, O Perrotta, F Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Schaefer, BM Scott, D Smoot, GF Spencer, L Stivoli, F Sudiwala, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Turler, M Umana, G Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD White, M Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Cabella, P. Cardoso, J. -F. Catalano, A. Cayon, L. Chary, R. -R. Chiang, L. -Y. Christensen, P. R. Clements, D. L. Colombo, L. P. L. Coulais, A. Crill, B. P. Cuttaia, F. Danese, L. D'Arcangelo, O. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dobler, G. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Jaffe, T. R. Jagemann, T. Jewell, J. Jones, W. C. Juvela, M. Keihaecn, E. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leach, S. Leonardi, R. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Mitra, S. Moneti, A. Montier, L. Morgante, G. Munshi, D. Murphy, J. A. Naselsky, P. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Osborne, S. Pajot, F. Paladini, R. Paoletti, D. Partridge, B. Pearson, T. J. Perdereau, O. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Schaefer, B. M. Scott, D. Smoot, G. F. Spencer, L. Stivoli, F. Sudiwala, R. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tuerler, M. Umana, G. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results IX. Detection of the Galactic haze with Planck SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Galaxy: nucleus; ISM: structure; ISM: bubbles; radio continuum: ISM ID MICROWAVE-ANISOTROPY-PROBE; PRE-LAUNCH STATUS; BAYESIAN COMPONENT SEPARATION; INTERSTELLAR-MEDIUM EMISSION; POWER SPECTRUM ESTIMATION; SPINNING DUST GRAINS; WMAP OBSERVATIONS; FOREGROUND EMISSION; TEMPERATURE DATA; NORTHERN SKY AB Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterise the emission from the Galactic "haze" at microwave wavelengths. The haze is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre, and extends to vertical bar b vertical bar similar to 35-50 degrees in Galactic latitude and vertical bar l vertical bar similar to 15-20 degrees in longitude. By combining the Planck data with observations from the Wilkinson Microwave Anisotropy Probe, we were able to determine the spectrum of this emission to high accuracy, unhindered by the strong systematic biases present in previous analyses. The derived spectrum is consistent with power-law emission with a spectral index of -2.56 +/- 0.05, thus excluding free-free emission as the source and instead favouring hard-spectrum synchrotron radiation from an electron population with a spectrum (number density per energy) dN/dE proportional to E-2.1. At Galactic latitudes vertical bar b vertical bar < 30 degrees, the microwave haze morphology is consistent with that of the Fermi gamma-ray "haze" or "bubbles", while at b similar to -50 degrees we have identified an edge in the microwave haze that is spatially coincident with the edge in the gamma-ray bubbles. Taken together, this indicates that we have a multi-wavelength view of a distinct component of our Galaxy. Given both the very hard spectrum and the extended nature of the emission, it is highly unlikely that the haze electrons result from supernova shocks in the Galactic disk. Instead, a new astrophysical mechanism for cosmic-ray acceleration in the inner Galaxy is implied. C1 [Bartlett, J. G.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, Sorbonne Paris Cite, APC, CNRS IN2P3,CEA Irfu,Observ Paris, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ Metsahovi Radio Observ, Kylmala 02540, Finland. [Kunz, M.] African Inst Math Sci, Cape Town, South Africa. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bond, J. R.; Martin, P. G.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.] CALTECH, Pasadena, CA 91125 USA. [Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Rebolo, R.] CSIC, Madrid, Spain. [Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter,Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Juvela, M.; Keihaecn, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.; Mendes, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Balbi, A.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain. [Dupac, X.; Jagemann, T.; Leonardi, R.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] INAF Osserv Astrofis Catania, Catania, Italy. INAF Osserv Astron Padova, Padua, Italy. [Polenta, G.] INAF Osserv Astron Roma, Monte Porzio Catone, Italy. [de Zotti, G.; Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] INAF Osserv Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma La Sapienza, Sez Roma 1, INFN, I-00185 Rome, Italy. [Stivoli, F.] Univ Paris 11, Lab Rech Informat, INRIA, F-91405 Orsay, France. [Ponthieu, N.] Univ Grenoble 1, CNRS INSU, UMR 5274, IPAG, F-38041 Grenoble, France. [Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Mitra, S.] Pune Univ Campus, IUCAA, Pune 411007, Maharashtra, India. [Clements, D. L.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Pajot, F.; Ponthieu, N.; Puget, J. -L.] Univ Paris 11, UMR 8617, CNRS, Inst Astrophys Spatiale, Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Gratton, S.; Harrison, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Santander, Spain. [D'Arcangelo, O.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Bonaldi, A.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Gratton, S.; Harrison, D.; Lasenby, A.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Dobler, G.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CEA DSM, Lab AIM,IRFU Serv Astrophys,CNRS, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS IN2P3, Lab Phys Subatom & Cosmol, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, CNRS, F-91405 Orsay, France. [Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Co Kildare, Ireland. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Pasadena, CA 36717 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Benabed, K.; Bouchet, F. R.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Banday, A. J.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Gorski, KM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM krzysztof.m.gorski@jpl.nasa.gov RI Novikov, Dmitry/P-1807-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Mazzotta, Pasquale/B-1225-2016; Lopez-Caniego, Marcos/M-4695-2013; Pearson, Timothy/N-2376-2015; Bouchet, Francois/B-5202-2014; Gruppuso, Alessandro/N-5592-2015; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015 OI Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Finelli, Fabio/0000-0002-6694-3269; Lopez-Caniego, Marcos/0000-0003-1016-9283; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Pierpaoli, Elena/0000-0002-7957-8993; De Zotti, Gianfranco/0000-0003-2868-2595; Matarrese, Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115; WANDELT, Benjamin/0000-0002-5854-8269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); National Aeronautics and Space Administration; Harvey L. Karp Discovery Award FX The development of Planck has been supported by ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.rssd.esa.int/Planck. Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. G. Dobler has been supported by the Harvey L. Karp Discovery Award. Some of the results in this paper have been derived using the HEALPix (Gorski et al. 2005) package. NR 69 TC 30 Z9 30 U1 1 U2 24 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2013 VL 554 AR A139 DI 10.1051/0004-6361/201220271 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 164XA UT WOS:000320444200137 ER PT J AU Govoni, F Murgia, M Xu, H Li, H Norman, ML Feretti, L Giovannini, G Vacca, V AF Govoni, F. Murgia, M. Xu, H. Li, H. Norman, M. L. Feretti, L. Giovannini, G. Vacca, V. TI Polarization of cluster radio halos with upcoming radio interferometers SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: general; magnetic fields; large-scale structure of Universe ID ROTATION MEASURE SYNTHESIS; ACTIVE GALACTIC NUCLEI; FIELD POWER SPECTRUM; MAGNETIC-FIELDS; GALAXY CLUSTERS; FARADAY-ROTATION; COMA CLUSTER; EMISSION; SIMULATIONS; EVOLUTION AB Context. Synchrotron radio halos at the center of merging galaxy clusters provide the most spectacular and direct evidence of the presence of relativistic particles and magnetic fields associated with the intracluster medium. The study of polarized emission from radio halos has been shown to be extremely important to constrain the properties of intracluster magnetic fields. However, detecting this polarized signal is a very hard task with the current radio facilities. Aims. We investigate whether future radio observatories, such as the Square Kilometer Array (SKA), its precursors and its pathfinders, will be able to detect the polarized emission of radio halos in galaxy clusters. Methods. On the basis of cosmological magnetohydrodynamical simulations with initial magnetic fields injected by active galactic nuclei, we predict the expected radio halo polarized signal at 1.4 GHz. We compare these expectations with the limits of current radio facilities and explore the potential of the upcoming radio interferometers to investigate intracluster magnetic fields through the detection of polarized emission from radio halos. Results. The resolution and sensitivity values that are expected to be obtained in future sky surveys performed at 1.4 GHz using the SKA precursors and pathfinders (like APERTIF and ASKAP) are very promising for the detection of the polarized emission of the most powerful (L-1.4 (GHz) > 10(25) Watt/Hz) radio halos. Furthermore, the JVLA have the potential to already detect polarized emission from strong radio halos, at a relatively low resolution. However, the possibility of detecting the polarized signal in fainter radio halos (L-1.4 (GHz) similar or equal to 10(24) Watt/Hz) at high resolution requires a sensitivity reachable only with SKA. C1 [Govoni, F.; Murgia, M.] INAF Osservatorio Astron Cagliari, I-09012 Capoterra, Ca, Italy. [Xu, H.; Norman, M. L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Xu, H.; Li, H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Feretti, L.; Giovannini, G.; Vacca, V.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Giovannini, G.; Vacca, V.] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy. RP Govoni, F (reprint author), INAF Osservatorio Astron Cagliari, Str 54, I-09012 Capoterra, Ca, Italy. EM fgovoni@ira.inaf.it RI Xu, Hao/B-8734-2014; OI Xu, Hao/0000-0003-4084-9925; Murgia, Matteo/0000-0002-4800-0806; Vacca, Valentina/0000-0003-1997-0771; Govoni, Federica/0000-0003-3644-3084; Giovannini, Gabriele/0000-0003-4916-6362; Feretti, Luigina/0000-0003-0312-6285 FU Promozione della Ricerca Scientifica e dell'innovazione Tecnologica in Sardegna; Progetti di ricerca fondamentale o di base annualita; LDRD program at LANL; IGPP program at LANL; DOE/Office of Fusion Energy Science through CMSO; NSF [AST-0708960, AST-0808184] FX The authors thank Joseph Lazio for useful discussions. This research was supported by PRIN-INAF2009 and by the project L.R. 7 Agosto 2007, N.7: "Promozione della Ricerca Scientifica e dell'innovazione Tecnologica in Sardegna", Progetti di ricerca fondamentale o di base annualita 2012. H.X. and H.L. were supported by the LDRD and IGPP programs at LANL and by the DOE/Office of Fusion Energy Science through CMSO. Computing resources for cluster simulations were supplied by LANL on Institutional Computing Resource. ENZO is developed at the Laboratory for Computational Astrophysics, UCSD, with partial support from NSF grants AST-0708960 and AST-0808184 to M.L.N. NR 50 TC 7 Z9 7 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2013 VL 554 AR A102 DI 10.1051/0004-6361/201321403 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 164XA UT WOS:000320444200101 ER PT J AU Grinberg, V Hell, N Pottschmidt, K Bock, M Nowak, MA Rodriguez, J Bodaghee, A Bel, MC Case, GL Hanke, M Kuhnel, M Markoff, SB Pooley, GG Rothschild, RE Tomsick, JA Wilson-Hodge, CA Wilms, J AF Grinberg, V. Hell, N. Pottschmidt, K. Boeck, M. Nowak, M. A. Rodriguez, J. Bodaghee, A. Bel, M. Cadolle Case, G. L. Hanke, M. Kuehnel, M. Markoff, S. B. Pooley, G. G. Rothschild, R. E. Tomsick, J. A. Wilson-Hodge, C. A. Wilms, J. TI Long term variability of Cygnus X-1 V. State definitions with all sky monitors SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE X-rays: binaries; stars: individual: Cygnus X-1; binaries: close ID RAY-TIMING-EXPLORER; GLAST BURST MONITOR; X-RAY; ORBITAL MODULATION; RADIO-EMISSION; HARD STATE; BINARIES; JET; EVOLUTION; SPECTROSCOPY AB We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate states, which strongly differ in their spectral shape and short-term timing behavior, is only possible when data in the soft X-rays (<5 keV) are available. A statistical analysis of the states confirms the different activity patterns of the source (e.g., month- to year-long hard-state periods or phases during which numerous transitions occur). It also shows that the hard and soft states are stable, with the probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85% in the hard state and larger than 75% in the soft state. Intermediate states are short lived, with a 50% probability that the source leaves the intermediate state within three days. Reliable detection of these potentially short-lived events is only possible with monitor data that have a time resolution better than 1 d. C1 [Grinberg, V.; Hell, N.; Hanke, M.; Kuehnel, M.; Wilms, J.] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, D-96049 Bamberg, Germany. [Hell, N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Pottschmidt, K.] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA. [Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Boeck, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Nowak, M. A.] MIT CXC, Cambridge, MA 02139 USA. [Rodriguez, J.] Univ Paris Diderot, Lab AIM, UMR 7158, IRFU SAp, F-91191 Gif Sur Yvette, France. [Bodaghee, A.; Tomsick, J. A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Bel, M. Cadolle] European Space Astron Ctr ESA ESAC, Madrid 28691, Spain. [Grinberg, V.; Case, G. L.] La Sierra Univ, Dept Phys, Riverside, CA 92515 USA. [Kuehnel, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1058 SJ Amsterdam, Netherlands. [Pooley, G. G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Rothschild, R. E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, San Diego, CA 92093 USA. [Wilson-Hodge, C. A.] NASA Marshall Space Flight Ctr, ZP 12, Huntsville, AL 35812 USA. RP Grinberg, V (reprint author), Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, Sternwartstr 7, D-96049 Bamberg, Germany. EM victoria.grinberg@fau.de RI Wilms, Joern/C-8116-2013; OI Wilms, Joern/0000-0003-2065-5410; Rodriguez, Jerome/0000-0002-4151-4468 FU Bundesministerium fur Wirtschaft und Technologie under Deutsches Zentrum fur Luft- und Raumfahrt Grant [50OR1007, 50OR1113]; European Commission through "Black Hole Universe" [ITN 215212]; LLNL [DE-AC52-07NA27344]; NASA; Faculty of the European Space Astronomy Centre (ESAC) FX This work has been partially funded by the Bundesministerium fur Wirtschaft und Technologie under Deutsches Zentrum fur Luft- und Raumfahrt Grants 50OR1007 and 50OR1113 and by the European Commission through ITN 215212 "Black Hole Universe". It was partially completed by LLNL under Contract DE-AC52-07NA27344, and is supported by NASA grants to LLNL and NASA/GSFC. This research has made use of the MAXI data provided by RIKEN, JAXA and the MAXI team. We thank John E. Davis for the development of the slxfig module used to prepare all figures in this work. V.G. thanks NASA's Goddard Space Flight Center for its hospitality during the time when the research presented here was done. V.G. and M.C.B. acknowledge support from the Faculty of the European Space Astronomy Centre (ESAC). NR 53 TC 18 Z9 18 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2013 VL 554 AR A88 DI 10.1051/0004-6361/201321128 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 164XA UT WOS:000320444200087 ER PT J AU Pereira, R Thomas, RC Aldering, G Antilogus, P Baltay, C Benitez-Herrera, S Bongard, S Buton, C Canto, A Cellier-Holzem, F Chen, J Childress, M Chotard, N Copin, Y Fakhouri, HK Fink, M Fouchez, D Gangler, E Guy, J Hillebrandt, W Hsiao, EY Kerschhaggl, M Kowalski, M Kromer, M Nordin, J Nugent, P Paech, K Pain, R Pecontal, E Perlmutter, S Rabinowitz, D Rigault, M Runge, K Saunders, C Smadja, G Tao, C Taubenberger, S Tilquin, A Wu, C AF Pereira, R. Thomas, R. C. Aldering, G. Antilogus, P. Baltay, C. Benitez-Herrera, S. Bongard, S. Buton, C. Canto, A. Cellier-Holzem, F. Chen, J. Childress, M. Chotard, N. Copin, Y. Fakhouri, H. K. Fink, M. Fouchez, D. Gangler, E. Guy, J. Hillebrandt, W. Hsiao, E. Y. Kerschhaggl, M. Kowalski, M. Kromer, M. Nordin, J. Nugent, P. Paech, K. Pain, R. Pecontal, E. Perlmutter, S. Rabinowitz, D. Rigault, M. Runge, K. Saunders, C. Smadja, G. Tao, C. Taubenberger, S. Tilquin, A. Wu, C. CA Nearby Supernova Factory TI Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE supernovae: individual: SN 2011fe ID INTEGRAL-FIELD SPECTROGRAPH; HUBBLE-SPACE-TELESCOPE; MAXIMUM-LIGHT ULTRAVIOLET; IA SUPERNOVAE; LEGACY SURVEY; DATA SET; ABSOLUTE MAGNITUDES; EQUIVALENT WIDTHS; OPTICAL-SPECTRA; K-CORRECTIONS AB We present 32 epochs of optical (3300-9700 angstrom) spectrophotometric observations of the nearby quintessential "normal" type Ia supernova (SN Ia) SN 2011fe in the galaxy M101, extending from -15 to +97 d with respect to B-band maximum, obtained by the Nearby Supernova Factory collaboration. SN 2011fe is the closest (mu = 29.04) and brightest (B-max = 9.94 mag) SN Ia observed since the advent of modern large scale programs for the intensive periodic followup of supernovae. Both synthetic light curve measurements and spectral feature analysis attest to the normality of SN 2011fe. There is very little evidence for reddening in its host galaxy. The homogeneous calibration, intensive time sampling, and high signal-to-noise ratio of the data set make it unique. Thus it is ideal for studying the physics of SN Ia explosions in detail, and for furthering the use of SNe Ia as standardizable candles for cosmology. Several such applications are shown, from the creation of a bolometric light curve and measurement of the Ni-56 mass, to the simulation of detection thresholds for unburned carbon, direct comparisons with other SNe Ia, and existing spectral templates. C1 [Pereira, R.; Copin, Y.; Gangler, E.; Rigault, M.; Smadja, G.] Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Thomas, R. C.; Nugent, P.] Lawrence Berkeley Natl Lab, Computat Res Div, Computat Cosmol Ctr, Berkeley, CA 94611 USA. [Aldering, G.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Nordin, J.; Perlmutter, S.; Runge, K.; Saunders, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Pain, R.; Wu, C.] Univ Paris 07, CNRS IN2P3, Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris 05, France. [Baltay, C.; Rabinowitz, D.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Benitez-Herrera, S.; Fink, M.; Hillebrandt, W.; Kromer, M.; Taubenberger, S.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Chen, J.; Chotard, N.; Tao, C.] Tsinghua Univ, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China. [Childress, M.; Fakhouri, H. K.; Perlmutter, S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chotard, N.; Wu, C.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Fouchez, D.; Tao, C.; Tilquin, A.] Aix Marseille Univ, CNRS IN2P3, Ctr Phys Particules Marseille, F-13288 Marseille 09, France. [Nordin, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Pecontal, E.] Univ Lyon 1, Ctr Rech Astron Lyon, F-69561 St Genis Laval, France. RP Pereira, R (reprint author), Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. EM rui.pereira@in2p3.fr RI Copin, Yannick/B-4928-2015; Perlmutter, Saul/I-3505-2015 OI Copin, Yannick/0000-0002-5317-7518; Perlmutter, Saul/0000-0002-4436-4661 FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; Gordon & Betty Moore Foundation; CNRS/IN2P3; CNRS/INSU; PNCG; DFG through TRR33 "The Dark Universe"; National Energy Research Scientific Computing Center; Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; Lyon Institute of Origins [ANR-10-LABX-66] FX We thank the following University of Hawaii astronomers, who graciously granted us interrupt time so that we could observe SN 2011fe during its earliest phases: Colin Aspin, Eric Gaidos, Andrew Mann, Marco Micheli, Timm Riesen, Sarah Sonnett, and David Tholen. The engineering and technical staff of the University of Hawaii 2.2 m telescope helped make this work possible. We recognize the significant cultural role of Mauna Kea within the indigenous Hawaiian community, and we appreciate the opportunity to conduct observations from this revered site. We thank Peter Brown and Ulisse Munari for providing early access to the full tables of Swift/UVOT and ANS measurements, Xiaofeng Wang for providing the HST spectra of SN 2005cf, and Dan Birchall for his assistance in collecting data with SNIFS. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231; by a grant from the Gordon & Betty Moore Foundation; in France by support from CNRS/IN2P3, CNRS/INSU, and PNCG; and in Germany by the DFG through TRR33 "The Dark Universe." Some results were obtained using resources and support from the National Energy Research Scientific Computing Center, supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Some results were obtained within the framework of the Lyon Institute of Origins under grant ANR-10-LABX-66. NR 114 TC 59 Z9 59 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2013 VL 554 AR A27 DI 10.1051/0004-6361/201221008 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 164XA UT WOS:000320444200027 ER PT J AU Pilleri, P Trevino-Morales, S Fuente, A Joblin, C Cernicharo, J Gerin, M Viti, S Berne, O Goicoechea, JR Pety, J Gonzalez-Garcia, M Montillaud, J Ossenkopf, V Kramer, C Garcia-Burillo, S Le Petit, F Le Bourlot, J AF Pilleri, P. Trevino-Morales, S. Fuente, A. Joblin, C. Cernicharo, J. Gerin, M. Viti, S. Berne, O. Goicoechea, J. R. Pety, J. Gonzalez-Garcia, M. Montillaud, J. Ossenkopf, V. Kramer, C. Garcia-Burillo, S. Le Petit, F. Le Bourlot, J. TI Spatial distribution of small hydrocarbons in the neighborhood of the ultra compact HII region Monoceros R2 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: abundances; ISM: individual objects: Monoceros R2; photon-dominated region (PDR); ISM: molecules; radio lines: ISM ID PHOTON-DOMINATED REGIONS; PHOTODISSOCIATION REGIONS; HERSCHEL OBSERVATIONS; COMPARATIVE CHEMISTRY; MOLECULAR CLOUDS; DIFFUSE CLOUDS; REACTIVE IONS; UV-RADIATION; TEMPERATURE; CORE AB Context. We study the chemistry of small hydrocarbons in the photon-dominated regions (PDRs) associated with the ultra-compact HII region (UCHII) Mon R2. Aims. Our goal is to determine the variations in the abundance of small hydrocarbons in a high-UV irradiated PDR and investigate the chemistry of these species. Methods. We present an observational study of the small hydrocarbons CH, CCH, and c-C3H2 in Mon R2 that combines spectral mapping data obtained with the IRAM-30 m telescope and the Herschel space observatory. We determine the column densities of these species, and compare their spatial distributions with that of polycyclic aromatic hydrocarbon (PAH), which trace the PDR. We compare the observational results with different chemical models to explore the relative importance of gas-phase, grain-surface, and time-dependent chemistry in these environments. Results. The emission of the small hydrocarbons show different spatial patterns. The CCH emission is extended, while CH and c-C3H2 are concentrated towards the more illuminated layers of the PDR. The ratio of the column densities of c-C3H2 and CCH shows spatial variations up to a factor of a few, increasing from N(c-C3H2)/N(CCH) approximate to 0.004 in the envelope to a maximum of approximate to 0.015-0.029 towards the 8 mu m emission peak. Comparing these results with other galactic PDRs, we find that the abundance of CCH is quite constant over a wide range of G(0), whereas the abundance of c-C3H2 is higher in low-UV PDRs, with the N(c-C3H2)/N(CCH) ratio ranging approximate to 0.008-0.08 from high to low UV PDRs. In Mon R2, the gas-phase steady-state chemistry can account relatively well for the abundances of CH and CCH in the most exposed layers of the PDR, but falls short by a factor of 10 of reproducing c-C3H2. In the low-density molecular envelope, time-dependent effects and grain surface chemistry play dominant roles in determining the hydrocarbon abundances. Conclusions. Our study shows that the small hydrocarbons CCH and c-C3H2 present a complex chemistry in which UV photons, grain-surface chemistry, and time dependent effects contribute to determining their abundances. Each of these effects may be dominant depending on the local physical conditions, and the superposition of different regions along the line of sight leads to the variety of measured abundances. C1 [Pilleri, P.; Cernicharo, J.; Goicoechea, J. R.] Ctr Astrobiol INTA CSIC, Torrejon De Ardoz 28850, Spain. [Pilleri, P.; Fuente, A.; Garcia-Burillo, S.] Observ Astron Nacl, Alcala De Henares 28803, Madrid, Spain. [Pilleri, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Trevino-Morales, S.; Gonzalez-Garcia, M.; Kramer, C.] IRAM, E-18012 Granada, Spain. [Joblin, C.; Berne, O.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Joblin, C.; Berne, O.] IRAP, CNRS, F-31028 Toulouse 4, France. [Gerin, M.] Observ Paris, LERMA, F-75014 Paris, France. [Viti, S.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Pety, J.] Inst Radioastron Millimetr, F-38406 St Martin Dheres, France. [Montillaud, J.] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland. [Ossenkopf, V.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Le Petit, F.; Le Bourlot, J.] Observ Paris, LUTH, F-92190 Meudon, France. [Le Petit, F.; Le Bourlot, J.] Univ Paris 07, F-92190 Meudon, France. RP Pilleri, P (reprint author), Ctr Astrobiol INTA CSIC, Ctra M-108,Km 4, Torrejon De Ardoz 28850, Spain. EM p.pilleri@oan.es RI Fuente, Asuncion/G-1468-2016; OI Fuente, Asuncion/0000-0001-6317-6343; PETY, Jerome/0000-0003-3061-6546; Garcia-Burillo, Santiago/0000-0003-0444-6897 FU Spanish MICINN [AYA2009-07304, CSD2009-00038]; CNES; Deutsche Forschungsgemeinschaft [SFB 956 C1]; Ramon y Cajal research contract from the MINECO; European Social Fund; INSU/CNRS (France); MPG (Germany); IGN (Spain) FX The authors thank the referee for the useful comments. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France, and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. This paper was partially supported by Spanish MICINN under project AYA2009-07304 and within the program CONSOLIDER INGENIO 2010, under grant Molecular Astrophysics: The Herschel and ALMA Era ASTROMOL (ref.: CSD2009-00038). French scientists are supported by the CNES for the Herschel results. Part of this work was supported by the Deutsche Forschungsgemeinschaft, project number SFB 956 C1. J.R.G. is supported by a Ramon y Cajal research contract from the MINECO and cofinanced by the European Social Fund.; Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). NR 47 TC 14 Z9 14 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2013 VL 554 AR A87 DI 10.1051/0004-6361/201220795 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 164XA UT WOS:000320444200086 ER PT J AU Hooper, D Kelso, C Queiroz, FS AF Hooper, Dan Kelso, Chris Queiroz, Farinaldo S. TI Stringent constraints on the dark matter annihilation cross section from the region of the Galactic Center SO ASTROPARTICLE PHYSICS LA English DT Article DE Gamma-rays ID ENERGY GAMMA-RAYS; MILKY-WAY; DWARF GALAXIES; HALOS; TELESCOPE; SUBHALOES; CONTRACTION; SATELLITES; EMISSION; OUTFLOWS AB For any realistic halo profile, the Galactic Center is predicted to be the brightest source of gamma-rays from dark matter annihilations. Due in large part to uncertainties associated with the dark matter distribution and astrophysical backgrounds, however, the most commonly applied constraints on the dark matter annihilation cross section have been derived from other regions, such as dwarf spheroidal galaxies. In this article, we study Fermi Gamma-Ray Space Telescope data from the direction of the inner Galaxy and derive stringent upper limits on the dark matter's annihilation cross section. Even for the very conservative case of a dark matter distribution with a significant (similar to kpc) constant-density core, normalized to the minimum density needed to accommodate rotation curve and microlensing measurements, we find that the Galactic Center constraint is approximately as stringent as those derived from dwarf galaxies (which were derived under the assumption of an NFW distribution). For NFW or Einasto profiles (again, normalized to the minimum allowed density), the Galactic Center constraints are typically stronger than those from dwarfs. (C) 2013 Elsevier B.V. All rights reserved. C1 [Hooper, Dan; Kelso, Chris; Queiroz, Farinaldo S.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Kelso, Chris] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Queiroz, Farinaldo S.] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM dhooper@fnal.gov FU US Department of Energy; Fermilab Fellowship in Theoretical Physics; Coordenacao de Aperfeisoamento de Pessoal de Nivel Superior (CAPES); National Science Foundation [PHY-1066293] FX We would like to thank Tim Linden, Mariangela Lisanti, and Keith Bechtol for insightful comments as well as Gianfranco Bertone, Miguel Pato, Fabio Iocco and Philippe Jetzer for providing the contours used in our Fig. 2. DH is supported by the US Department of Energy. CK is supported by a Fermilab Fellowship in Theoretical Physics. FSQ is supported by Coordenacao de Aperfeisoamento de Pessoal de Nivel Superior (CAPES). This work was supported in part by the National Science Foundation under Grant No. PHY-1066293. We thank the Aspen Center for Physics for their hospitality. NR 73 TC 89 Z9 89 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD JUN PY 2013 VL 46 BP 55 EP 70 DI 10.1016/j.astropartphys.2013.04.007 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 178VQ UT WOS:000321475900008 ER PT J AU Nafus, MG Tuberville, TD Buhlmann, KA Todd, BD AF Nafus, Melia G. Tuberville, Tracey D. Buhlmann, Kurt A. Todd, Brian D. TI Relative abundance and demographic structure of Agassiz's desert tortoise (Gopherus agassizii) along roads of varying size and traffic volume SO BIOLOGICAL CONSERVATION LA English DT Article DE Gopherus agassizii; Long-lived species; Reptile; Road; Tortoise; Traffic volume ID TURTLES CHELYDRA-SERPENTINA; LONG-LIVED ORGANISMS; MOJAVE DESERT; HABITAT QUALITY; SOUTHERN NEVADA; UNITED-STATES; CLUTCH SIZE; BODY-SIZE; POPULATION; CONSERVATION AB Roads are recognized as important contributors to wildlife population declines and are thought to pose greatest risk to vagile species with large home ranges and long generation times. We examined variation in the relative abundance and demographic,structure of Agassiz's desert tortoise (Gopherus agassizii) near roads that varied in traffic volume. We found that the abundance of tortoise sign (scat, tracks, pallets, burrows, and live and dead individuals) varied with traffic volume and distance from the road depending on traffic volume. The relative abundance of tortoise sign was greatest along roads with low traffic volume (<1 vehicle/day) compared to roads with intermediate (30-60 vehicles/day) and high (320-1100 vehicles/day) traffic volumes. Additionally, tortoise sign had lower relative abundances at least 200 m from roads with the highest traffic volumes. We found that the frequency of live tortoise encounters decreased with increasing traffic volumes. Tortoise size also correlated significantly with traffic volume, such that tortoises near the highest traffic volume road were smallest. Finally, along the highest traffic road we found greater proportions of juvenile tortoises than along either of the other traffic volume roads. Our results indicate that roads may decrease tortoise populations via several possible mechanisms, including cumulative mortality from vehicle collisions and reduced population growth rates from the loss of larger reproductive animals. Here, we provide evidence that a reptile with a slow life history is susceptible to road presence and that the effect increases with traffic volume.(C) 2013 Elsevier Ltd. All rights reserved. C1 [Nafus, Melia G.; Todd, Brian D.] Univ Calif Davis, Dept Wildlife Fish & Conservat Biol, Davis, CA 95616 USA. [Tuberville, Tracey D.; Buhlmann, Kurt A.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Nafus, MG (reprint author), Univ Calif Davis, Dept Wildlife Fish & Conservat Biol, Davis, CA 95616 USA. EM mgnafus@ucdavis.edu; tubervil@uga.edu; buhlmann@uga.edu; btodd@ucdavis.edu OI Nafus, Melia/0000-0002-7325-3055 FU National Science Foundation [DGE-1148897]; Community Foundation Desert Legacy Grant; California Energy Commission [500-10-020]; Department of Energy [DE-FC09-07SR22506] FX We thank E.A. Eskew and two anonymous reviewers for their invaluable contributions and recommendations of improvement to this manuscript. We thank D. Hughson, the Mojave National Preserve, and the Piedmont South Atlantic Coast Cooperative Ecosystem Studies Unit for assistance with this project. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1148897. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. We also thank the Community Foundation Desert Legacy Grant for funding support. This report was also prepared as a result of work sponsored in part by the California Energy Commission under agreement 500-10-020 to UC Davis. It does not necessarily represent the views of the Energy Commission, its employees, or the State of California. The Energy Commission, the State of California, its employees, contractors, and subcontractors make no warranty, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the use of this information will not infringe upon privately owned rights. Manuscript preparation by T.D. Tuberville and K.A. Buhlmann was partially supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 56 TC 9 Z9 9 U1 4 U2 64 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0006-3207 EI 1873-2917 J9 BIOL CONSERV JI Biol. Conserv. PD JUN PY 2013 VL 162 BP 100 EP 106 DI 10.1016/j.biocon.2013.04.009 PG 7 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 174OT UT WOS:000321166000012 ER PT J AU Buchko, GW Jain, A Reback, ML Shaw, WJ AF Buchko, Garry W. Jain, Avijita Reback, Matthew L. Shaw, Wendy J. TI Structural characterization of the model amphipathic peptide Ac-LKKLLKLLKKLLKL-NH2 in aqueous solution and with 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoroisopropanol SO CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE LA English DT Article DE biomaterials; amphipathic peptide; NMR spectroscopy; circular dichroism spectroscopy; fluorinated alcohols ID PROTEIN SECONDARY STRUCTURE; BETA-LACTOGLOBULIN; MOLECULAR-DYNAMICS; CIRCULAR-DICHROISM; NMR; TRIFLUOROETHANOL; HELIX; CD; HEXAFLUOROISOPROPANOL; CONFORMATION AB Short-chain amphipathic peptides are promising components in the new generation of engineered biomaterials. The model 14-residue leucine-lysine peptide Ac-LKKLLKLLKKLLKL-NH2 (LK alpha) is one such amphipathic peptide. In dilute aqueous solution (<0.05 mmol/L), it was previously proposed, using CD spectroscopic data, that LK alpha existed in a cooperative monomeric (unstructured) - tetrameric (alpha-helical) equilibrium that shifted towards the tetramer at high NaCl and peptide concentrations. Here, at similar peptide concentrations, CD spectroscopy shows that LK alpha readily adopts alpha-helical structure in the presence of 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) with maximal helical character in 20% TFE and similar to 10% HFIP (v/v). The helical character in fluorinated alcohols suggested by the CD data at low peptide concentrations (0.06 mmol/L) is corroborated at high peptide concentrations (1.5 mmol/L) by NMR NOE data that also show that 1.5 mmol/L LK alpha is helical in 100% water. Size exclusion chromatography and estimations of rotational correlation times (tau(c)) showed that the self-assembled LK alpha complexes contained three to five peptides. Removing the N-terminal acetyl group prevents LK alpha from forming helices and self-associating at high NaCl and peptide concentrations. This more detailed characterization of the structural and physical properties of LK alpha over a greater range of peptide concentrations and in the presence of fluorinated alcohols will assist the design of biomaterials containing amphipathic peptides and guide the ability to control self-assembly. C1 [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Jain, Avijita; Reback, Matthew L.; Shaw, Wendy J.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Buchko, GW (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM garry.buchko@pnnl.gov; wendy.shaw@pnnl.gov RI Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 FU Office of Science Early Career Research Program through the Office of Basic Energy Sciences; US Department of Energy's Office of Biological and Environmental Research program at the Pacific Northwest National Laboratory FX This work was funded by the Office of Science Early Career Research Program through the Office of Basic Energy Sciences. Part of the research was performed at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research program located at the Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle. NR 36 TC 4 Z9 4 U1 0 U2 18 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA SN 0008-4042 J9 CAN J CHEM JI Can. J. Chem.-Rev. Can. Chim. PD JUN PY 2013 VL 91 IS 6 BP 406 EP 413 DI 10.1139/cjc-2012-0429 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 178GW UT WOS:000321435000007 ER PT J AU Su, YS Fu, YZ Guo, BK Dai, S Manthiram, A AF Su, Yu-Sheng Fu, Yongzhu Guo, Bingkun Dai, Sheng Manthiram, Arumugam TI Fast, Reversible Lithium Storage with a Sulfur/Long-Chain-Polysulfide Redox Couple SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE carbon interlayer configuration; cyclic voltammetry; energy storage; lithium-sulfur batteries; polysulfides; porous carbon materials; sulfur ID ION BATTERIES; CATHODE; PERFORMANCE; INTERLAYER; NANOTUBES; DISCHARGE; CHARGE AB The cathodic reactions in Li-S batteries can be divided into two steps. Firstly, elemental sulfur is transformed into long-chain polysulfides (S8Li2S4), which are highly soluble in the electrolyte. Next, long-chain polysulfides undergo nucleation reaction and convert into solid-state Li2S2 and Li2S (Li2S4Li2S) by slow processes. As a result, the second-step of the electrochemical reaction hinders the high-rate application of Li-S batteries. In this report, the kinetics of the sulfur/long-chain-polysulfide redox couple (theoretical capacity=419mAhg-1) are experimentally demonstrated to be very fast in the Li-S system. A Li-S cell with a blended carbon interlayer retains excellent cycle stability and possesses a high percentage of active material utilization over 250cycles at high C rates. The meso-/micropores in the interlayer are responsible for accommodating the shuttling polysulfides and offering sufficient electrolyte accessibility. Therefore, utilizing the sulfur/long-chain polysulfide redox couple with an efficient interlayer configuration in Li-S batteries may be a promising choice for high-power applications. C1 [Su, Yu-Sheng; Fu, Yongzhu; Manthiram, Arumugam] Univ Texas Austin, Mat Sci & Engn Program, Texas Mat Inst, Austin, TX 78712 USA. [Guo, Bingkun; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Manthiram, A (reprint author), Univ Texas Austin, Mat Sci & Engn Program, Texas Mat Inst, Austin, TX 78712 USA. EM manth@austin.utexas.edu RI Guo, Bingkun/J-5774-2014; Fu, Yongzhu/G-4026-2015; Dai, Sheng/K-8411-2015 OI Fu, Yongzhu/0000-0003-3746-9884; Dai, Sheng/0000-0002-8046-3931 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0005397] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award number DE-SC0005397. The authors thank Thomas Cochell for his assistance with the XPS measurements. NR 29 TC 32 Z9 32 U1 7 U2 163 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD JUN PY 2013 VL 19 IS 26 BP 8621 EP 8626 DI 10.1002/chem.201300886 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 164EA UT WOS:000320390500032 PM 23670897 ER PT J AU Zheng, D Wang, Q Lee, HS Yang, XQ Qu, DY AF Zheng, Dong Wang, Qiang Lee, Hung-Sui Yang, Xiao-Qing Qu, Deyang TI Catalytic Disproportionation of the Superoxide Intermediate from Electrochemical O2 Reduction in Nonaqueous Electrolytes SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE catalytic disproportionation; Lewis acids; Lewis bases; lithium; reduction ID LITHIUM-ION BATTERIES; ANION RECEPTORS; AIR BATTERIES; LI2O2; ADDITIVES; OXYGEN AB Tris(pentafluorophenyl)borane (TPFPB) was found to be an efficient catalyst for rapid superoxide (O2-) disproportionation. The kinetics for the catalytic disproportionation reaction is much faster than the reaction between O2- and propylene carbonate. Therefore, the negative impact of the reaction between the electrolyte and O2- produced by the O2 reduction is minimized. The cathodic current for O2 reduction can be doubled in the presence of TPFPB. The high reduction current resulted from the pseudo two-electron O2-reduction reaction due to the replenishment of O2 at the electrode surface. This discovery could lead to a new avenue for the development of high-capacity, high-rate, rechargeable Li-air batteries. C1 [Zheng, Dong; Wang, Qiang] Univ Massachusetts, Dept Chem, Boston, MA 02125 USA. [Lee, Hung-Sui; Yang, Xiao-Qing; Qu, Deyang] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Qu, DY (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM deyang.qu@umb.edu OI Zheng, Dong/0000-0002-5824-3270 FU Office of Vehicle Technologies of the U.S., Department of Energy [DEAC02-98CH10886] FX The authors are indebted to the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S., Department of Energy for financial support under Contract Number DEAC02-98CH10886. NR 16 TC 15 Z9 15 U1 1 U2 71 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD JUN PY 2013 VL 19 IS 26 BP 8679 EP 8683 DI 10.1002/chem.201204506 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 164EA UT WOS:000320390500040 PM 23650071 ER PT J AU Rog, O Dernburg, AF AF Rog, Ofer Dernburg, Abby F. TI Chromosome pairing and synapsis during Caenorhabditis elegans meiosis SO CURRENT OPINION IN CELL BIOLOGY LA English DT Article ID C-ELEGANS; SYNAPTONEMAL COMPLEX; MEIOTIC RECOMBINATION; NUCLEAR-ENVELOPE; CROSSOVER INTERFERENCE; HOMOLOG ALIGNMENT; CHIASMA FORMATION; FISSION YEAST; DNA-REPAIR; PROTEIN AB Meiosis is the specialized cell division cycle that produces haploid gametes to enable sexual reproduction. Reduction of chromosome number by half requires elaborate chromosome dynamics that occur in meiotic prophase to establish physical linkages between each pair of homologous chromosomes. Caenorhabditis elegans has emerged as an excellent model organism for molecular studies of meiosis, enabling investigators to combine the power of molecular genetics, cytology, and live analysis. Here we focus on recent studies that have shed light on how chromosomes find and identify their homologous partners, and the structural changes that accompany and mediate these interactions. C1 [Rog, Ofer; Dernburg, Abby F.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Rog, Ofer; Dernburg, Abby F.] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. [Dernburg, Abby F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Dept Genome Dynam, Berkeley, CA 94720 USA. [Dernburg, Abby F.] Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. RP Dernburg, AF (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM afdernburg@lbl.gov OI Dernburg, Abby/0000-0001-8037-1079 FU Howard Hughes Medical Institute; NIGMS NIH HHS [R01 GM065591] NR 72 TC 22 Z9 22 U1 3 U2 17 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0955-0674 J9 CURR OPIN CELL BIOL JI Curr. Opin. Cell Biol. PD JUN PY 2013 VL 25 IS 3 BP 349 EP 356 DI 10.1016/j.ceb.2013.03.003 PG 8 WC Cell Biology SC Cell Biology GA 177ZF UT WOS:000321413200011 PM 23578368 ER PT J AU Urge-Vorsatz, D Petrichenko, K Staniec, M Eom, J AF Urge-Vorsatz, Diana Petrichenko, Ksenia Staniec, Maja Eom, Jiyong TI Energy use in buildings in a long-term perspective SO CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY LA English DT Article ID URBAN HEAT-ISLAND; AIR-POLLUTION; HUMAN HEALTH; LIMITATIONS; MITIGATION; PAKISTAN; TRIAL; MOLDS AB Energy services in and related to buildings are responsible for approximately one-third of total global final energy demand and energy-related greenhouse gas emissions. They also contribute to the other key energy-related global sustainability challenges including lack of access to modern energy services, climate change, indoor and outdoor air pollution, related and additional health risks and energy dependence. The aim of this paper is to summarize the main sustainability challenges related to building thermal energy use and to identify the key strategies for how to address these challenges. The paper's basic premises and results are provided by and updated from the analysis conducted for the Global Energy Assessment: identification of strategies and key solutions; scenario assessment; and the comparison of the results with other models in the literature. The research has demonstrated that buildings can play a key role in solving sustainability challenges: close to one-third of 2005 building energy use can be eliminated by the proliferation of state-of-the-art construction and retrofit know-how in each world region, while maintaining wealth and amenity increases. In contrast, approximately 80% of this 2005 energy use will be locked in by the middle of the century if policies are not sufficiently ambitious in targeting regionally specific state-of-the-art performance levels. C1 [Urge-Vorsatz, Diana; Petrichenko, Ksenia] Cent European Univ, Ctr Climate Change & Sustainable Energy Policy 3C, H-1051 Budapest, Hungary. [Staniec, Maja] Univ Western Ontario, Dept Civil & Environm Engn, London, ON N6A 5B8, Canada. [Eom, Jiyong] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Urge-Vorsatz, D (reprint author), Cent European Univ, Ctr Climate Change & Sustainable Energy Policy 3C, Nador St 9, H-1051 Budapest, Hungary. EM vorsatzd@ceu.hu RI Eom, Jiyong/A-1161-2014; OI Urge-Vorsatz, Diana/0000-0003-2570-5341 NR 71 TC 7 Z9 7 U1 3 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1877-3435 J9 CURR OPIN ENV SUST JI Curr. Opin. Environ. Sustain. PD JUN PY 2013 VL 5 IS 2 BP 141 EP 151 DI 10.1016/j.cosust.2013.05.004 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA 179RX UT WOS:000321540100002 ER PT J AU Baldwin, RM Feik, CJ AF Baldwin, Robert M. Feik, Calvin J. TI Bio-oil Stabilization and Upgrading by Hot Gas Filtration SO ENERGY & FUELS LA English DT Article ID BIOMASS AB The objective of this research project was to test the hypothesis that separation of char with its associated mineral matter from pyrolysis vapors before condensation will lead to improved bio-oil quality and stability with respect to storage and transportation. The metric prescribed by the U.S. Department of Energy (DOE) to evaluate stability in this case was a 10-fold reduction in the rate of increase of viscosity as determined by an accelerated aging test. The primary unit operation that was investigated for this purpose was hot gas filtration. A custom-built heated candle filter system was fabricated by the Pall Corporation and furnished to the National Renewable Energy Laboratory (NREL) for this test campaign. This system consisted of a candle filter element in a containment vessel surrounded by heating elements on the external surface of the vessel. The filter element and housing were interfaced to NREL's existing 0.5 MTD pyrolysis process development unit (PDU). For these tests, the pyrolysis reactor of the PDU was operated in the entrained-flow mode. The hot gas filter (HGF) test stand was installed on a slipstream from the PDU, so that both hot gas filtered oil and bio-oil that was not hot gas filtered could be collected for purposes of comparison. Two filter elements from Pall Corporation were tested: (1) porous sintered stainless-steel (PSS) metal powder and (2) sintered ceramic powder. A sophisticated bio-oil condensation and collection system was designed and fabricated at NREL and interfaced to the slipstream filter unit. The test campaign on vapor-phase filtration of biomass-derived pyrolysis oil demonstrated that a bio-oil with substantially improved properties can be obtained by application of hot gas filtration. The ceramic filter element and test stand supplied by Pall Corporation and the vapor condensation and collection system designed and fabricated by NREL both demonstrated very good operability. Application of periodic blowback was shown to be effective in maintaining the filter element pressure drop within acceptable limits, and filter plugging was never experienced. A bio-oil with greatly reduced alkali and alkaline earth metals and very low solids content was produced. Bio-oil obtained by hot gas filtration with a PSS element had elevated iron content, suggesting that the material of construction is not suitable for this application. The PSS-filtered bio-oil also did not pass the viscosity metric of a 10-fold reduction in the rate of viscosity increase as determined by the accelerated aging test at 80 degrees C. Bio-oil obtained by hot gas filtration with a ceramic (Dia-Schumalith sintered ceramic powder) filter element was also low in alkali and alkaline earth metals and total solids and did not exhibit high iron content. The ceramic-filtered oil passed the viscosity metric, indicating that this oil should be much improved with respect to storage and transport stability. Total mass loss because of hot gas filtration was estimated to be in the range of 10-30% by weight. C1 [Baldwin, Robert M.; Feik, Calvin J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Baldwin, RM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM robert.baldwin@nrel.gov FU Department of Energy [DE-FG36-08GO18213] FX The material presented is based on work supported by the Department of Energy under Award Number DE-FG36-08GO18213. The project lead organization was UOP, A Honeywell Company; overall project coordination was carried out by Dr. Richard Marinangeli and Dr. Timothy Brandvold (UOP). The authors also acknowledge valuable contributions to the project from Katie Gaston, Kristin Smith, Jason Thibodeaux, Marc Pomeroy, Ray Hanson, and Dr. David Johnson (all at NREL) and Mark Johnson and Norm Cathcart from the Pall Corporation. The work of Professor Matt Liberatore and Michael Nolte, Colorado School of Mines, on the viscosity measurements is gratefully acknowledged. NR 15 TC 36 Z9 38 U1 2 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD JUN PY 2013 VL 27 IS 6 BP 3224 EP 3238 DI 10.1021/ef400177t PG 15 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 171FT UT WOS:000320911200039 ER PT J AU Hensley, JE Lovestead, TM Christensen, E Dutta, A Bruno, TJ McCormick, R AF Hensley, Jesse E. Lovestead, Tara M. Christensen, Earl Dutta, Abhijit Bruno, Thomas J. McCormick, Robert TI Compositional Analysis and Advanced Distillation Curve for Mixed Alcohols Produced via Syngas on a K-CoMoSx Catalyst SO ENERGY & FUELS LA English DT Article ID FUEL OXYGENATE ADDITIVES; ROCKET PROPELLANTS RP-1; SURROGATE MIXTURE-MODELS; BIOMASS-DERIVED SYNGAS; THERMOPHYSICAL PROPERTIES; DIESEL FUEL; BIODIESEL FUEL; JET-A; AVIATION; IMPROVEMENTS AB The distillation behavior of mixed alcohols was studied by use of the Advanced Distillation Curve (ADC) methodology. Crude mixed alcohols (oxygenates) were generated from syngas over a potassium-promoted cobalt-molybdenum-sulfide catalyst and assayed for major and minor products. Distillation (boiling) curves were generated for the crude mixed oxygenate products and composition channel data were collected. The crude mixed alcohols consisted primarily of methanol with significant quantities of ethanol, 1-propanol, 1-butanol, methyl acetate, and ethyl acetate. These six species constitute 93.7%-95.8% (mass/mass) of the total product. Ester, ether, and aldehyde impurities were identified, as well as thiols and organic sulfides. Considering just the alcohol products without impurities, these can be blended into gasoline at 8.5% (v/v) and meet the requirements of the Octamix waiver if an appropriate corrosion inhibitor were also included (the blend would contain 3.0%-3.4% methanol, >2.5% higher alcohols (v/v), and a total oxygen content of 3.7% (mass/mass)). Distillation targeted at 50% methanol removal increased the volume of product that could be blended to over 9% (v/v). Methanol, aldehydes, and dimethyl sulfide were the first to vaporize from the mixture, and all C4+ alcohols remained within the last 20% of the distilled volume. Other products, including ethanol, propanols, esters, and organic sulfur species distilled over a range of boiling temperatures. ADCs suggest the presence of one or more azeotropes in the distillate, consistent with a large number of known binary azeotropes between components found in the mixed oxygenate product. Enthalpies of combustion were calculated for multiple distilled fractions and ranged from 890 kJ mol(-1) in the first drop of distillate to 1150 kJ mol(-1) in the first drop collected after distilling 80% of the original liquid volume. This energy density is low, compared to 91-octane gasoline at 3700 and 4940 kJ mol(-1) in the first drop and at 80%, respectively. Comparisons of fractional distillation of the mixed oxygenate products showed directional agreement between experiment and simulation with Aspen Plus. This study provides useful insights into mixed oxygenate products derived from a sulfided catalyst, including considerations for process recycle, product constituents and their blending, and the applicability of distillation information from process simulators. C1 [Hensley, Jesse E.; Christensen, Earl; Dutta, Abhijit; McCormick, Robert] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Lovestead, Tara M.; Bruno, Thomas J.] NIST, Boulder, CO 80305 USA. RP Hensley, JE (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Jesse.Hensley@nrel.gov RI McCormick, Robert/B-7928-2011; Zhang, Baoquan/E-2287-2014 FU DOE Office of Biomass Programs [DE-AC36-08-GO28308] FX This work was supported through the DOE Office of Biomass Programs (under Contract No. DE-AC36-08-GO28308). We also thank Jason Thibodeaux (NREL) for assistance in collecting crude alcohol samples and Purmet Development, LLC for assistance in catalyst synthesis. NR 80 TC 2 Z9 2 U1 2 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JUN PY 2013 VL 27 IS 6 BP 3246 EP 3260 DI 10.1021/ef400252x PG 15 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 171FT UT WOS:000320911200041 ER PT J AU Fox, EB Visser, AE Bridges, NJ Amoroso, JW AF Fox, Elise B. Visser, Ann E. Bridges, Nicholas J. Amoroso, Jake W. TI Thermophysical Properties of Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat-Transfer Fluids SO ENERGY & FUELS LA English DT Article ID THERMAL-CONDUCTIVITY; CARBON-BLACK; RHEOLOGICAL PROPERTIES; NANOFLUIDS; STABILITY; SALTS; MECHANISMS; VISCOSITY AB An experimental investigation was completed on nanoparticle-enhanced ionic liquid (NEIL) heat-transfer fluids (HTFs) as an alternative to conventional organic-based HTFs. These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker-shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical-shaped nanomaterials. C1 [Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Amoroso, Jake W.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Fox, EB (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM elise.fox@srnl.doe.gov RI Fox, Elise/G-5438-2013 OI Fox, Elise/0000-0002-4527-5820 FU DOE-EERE Solar Energy Technology Program; U.S. Department of Energy [DEAC09-08SR22470] FX Funding for this work is gratefully acknowledged from the DOE-EERE Solar Energy Technology Program. Savannah River National Laboratory is operated by Savannah River Nuclear Solutions. This document was prepared in conjunction with work accomplished under Contract No. DEAC09-08SR22470 with the U.S. Department of Energy. NR 41 TC 17 Z9 17 U1 1 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD JUN PY 2013 VL 27 IS 6 BP 3385 EP 3393 DI 10.1021/ef4002617 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 171FT UT WOS:000320911200055 ER PT J AU Shaddix, CR Hecht, ES Houf, WG Westbrook, CK Tessier, L Schneider, F AF Shaddix, Christopher R. Hecht, Ethan S. Houf, William G. Westbrook, Charles K. Tessier, Lynn Schneider, Fred TI Evaluation of Light-Off Limits for a Novel Oxy-Combustion Process for Enhanced Oil Recovery (EOR) SO ENERGY & FUELS LA English DT Article ID IGNITION DELAY TIMES; HIGH-PRESSURES; KINETIC-MODEL; AUTOIGNITION; OXIDATION; INTERMEDIATE; TEMPERATURES; ADDITIVES; BIODIESEL; MIXTURES AB A pressurized oxy-fuel burner is being developed for the down-hole generation of hot CO2 and steam for direct injection into heavy oil deposits or depleted oil reservoirs. This approach offers efficiency benefits and reduced CO2 emissions in comparison to existing technologies that rely on steam generation at the surface. Furthermore, a burner-stabilized flame provides much better process control and generates an improved oil product relative to in situ combustion of the oil. A simple, low-temperature chemical ignition system for this process is desired, instead of using an electrical ignition system that would need to be retracted from the combustion chamber. In the work reported here, several approaches to low-temperature chemical ignition have been explored. First, the autoignition of different short-length alkanes in oxygen was measured at 11 bar, the relevant pressure for down-hole light-off. Comparison of the experimental results with computed autoignition delay, using the best-available chemical kinetic mechanisms, shows good agreement. To further reduce reactant preheating requirements, two commercial cetane enhancers, 2-ethyl-hexyl-nitrate (2-EHN) and di-tert-butyl-peroxide (DTBP), were mixed with n-pentane and n-hexane and found to lower the autoignition temperature from 350 to 240 degrees C. Newly developed chemical kinetic mechanisms for 2-EHN and DTBP yield ignition delay predictions that show good agreement with the experimental autoignition measurements. The modeling predicts an autoignition temperature as low as 205 degrees C for a 50-50 mixture of DTBP in n-pentane. C1 [Shaddix, Christopher R.; Hecht, Ethan S.; Houf, William G.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. [Westbrook, Charles K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Tessier, Lynn; Schneider, Fred] RII North Amer Inc, Calgary, AB T2P 3R5, Canada. RP Shaddix, CR (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. EM crshadd@sandia.gov FU Resource Innovations Incorporated North America (RII-NA); DOE's National Nuclear Security Administration [DE-AC04-94AL85000] FX Research funding was provided by Resource Innovations Incorporated North America (RII-NA). Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 33 TC 1 Z9 2 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD JUN PY 2013 VL 27 IS 6 BP 3438 EP 3445 DI 10.1021/ef400272f PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 171FT UT WOS:000320911200061 ER PT J AU Anisovich, AV Burkert, V Klempt, E Nikonov, VA Sarantsev, AV Thoma, U AF Anisovich, A. V. Burkert, V. Klempt, E. Nikonov, V. A. Sarantsev, A. V. Thoma, U. TI Helicity amplitudes for photoexcitation of nucleon resonances off neutrons SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID LINEARLY POLARIZED PHOTONS; RELATIVISTIC QUARK-MODEL; DIFFERENTIAL CROSS-SECTIONS; OPERATOR EXPANSION METHOD; STRANGE-BARYON SPECTRUM; PION-PHOTOPRODUCTION; 2ND RESONANCE; NEGATIVE PIONS; REACTION GAMMA; ENERGY REGION AB The helicity amplitudes A(n)(1/2) and A(n)(3/2) for the photoexcitation of nucleon resonances off neutrons are determined in a multichannel partial wave analysis. C1 [Anisovich, A. V.; Klempt, E.; Nikonov, V. A.; Sarantsev, A. V.; Thoma, U.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, Bonn, Germany. [Anisovich, A. V.; Nikonov, V. A.; Sarantsev, A. V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Burkert, V.] Jefferson Lab, Newport News, VA USA. RP Anisovich, AV (reprint author), Univ Bonn, Helmholtz Inst Strahlen & Kernphys, Bonn, Germany. EM klempt@hiskp.uni-bonn.de FU Deutsche Forschungsgemeinschaft (DFG) within the SFB/TR16; RFBR [13-02-00425]; US Department of Energy [DE-AC05-06 OR23177] FX We would like to thank the members of SFB/TR16 for continuous encouragement. We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) within the SFB/TR16 and from the RFBR grant 13-02-00425. V. Burkert acknowledges support from the US Department of Energy under contract DE-AC05-06 OR23177. NR 89 TC 14 Z9 14 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 J9 EUR PHYS J A JI Eur. Phys. J. A PD JUN PY 2013 VL 49 IS 6 AR 67 DI 10.1140/epja/i2013-13067-x PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 178FR UT WOS:000321431100002 ER PT J AU Mickel, PR James, CD AF Mickel, Patrick R. James, Conrad D. TI Multilayer memristive/memcapacitive devices with engineered conduction fronts SO EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS LA English DT Article ID RESISTIVE SWITCHING MEMORIES; MEMRISTOR; SYSTEMS; FILMS AB We present a novel multilayered architecture for memristive devices which provides an alternative to conventional conductive filament switching. In conventional resistive switching, conductive filaments form and extend stochastically under applied electrical bias, with longer filaments being subjected to magnified electric fields that amplify their growth rate, producing a spatially localized and highly non-uniform conduction front of filaments. This produces devices with large variations in resistive and capacitive properties that are difficult to tune. Here, we simulate a multilayered device structure with alternating ionic mobility that predicts the development of a quasi-uniform conduction front which amplifies memcapacitive properties of the device and reduces device-to-device variability. Furthermore, this novel structure is predicted to enable fine-tuned control of switching events, an important property for analog (multibit) memory and neuromorphic computing applications. C1 [Mickel, Patrick R.; James, Conrad D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Mickel, PR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM prmicke@sandia.gov FU Sandia's Laboratory Directed Research and Development program; United States Department of Energy [DE-AC04-94AL85000] FX This work was funded by Sandia's Laboratory Directed Research and Development program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. NR 30 TC 2 Z9 2 U1 1 U2 17 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1286-0042 EI 1286-0050 J9 EUR PHYS J-APPL PHYS JI Eur. Phys. J.-Appl. Phys PD JUN PY 2013 VL 62 IS 3 AR 30102 DI 10.1051/epjap/2013130059 PG 6 WC Physics, Applied SC Physics GA 180QZ UT WOS:000321611200003 ER PT J AU Chopdekar, RV Heidler, J Piamonteze, C Takamura, Y Scholl, A Rusponi, S Brune, H Heyderman, LJ Nolting, F AF Chopdekar, R. V. Heidler, J. Piamonteze, C. Takamura, Y. Scholl, A. Rusponi, S. Brune, H. Heyderman, L. J. Nolting, F. TI Strain-dependent magnetic configurations in manganite-titanate heterostructures probed with soft X-ray techniques SO EUROPEAN PHYSICAL JOURNAL B LA English DT Article ID THIN-FILMS; DICHROISM; BEAMLINE AB We present a detailed study on the strain-induced magnetic domain structure of a (La,Sr)MnO3 thin film epitaxially grown on a BaTiO3 substrate through the use of polarization-dependent X-ray photoemission electron microscopy and X-ray absorption spectroscopy. Angular-dependent measurements allow us to detect vector magnetization on a single-domain scale, and we relate the strain-induced changes in magnetic anisotropy of the ferromagnetic film to the ferroelectric domain structure of the underlying substrate using X-ray magnetic circular and linear dichroism spectro-microscopy. Comparisons to measurements on a nearly strain free film of (La,Sr)MnO3 grown on a (La,Sr)(Al,Ta)O-3 substrate illustrate that the BaTiO3 ferroelectric domain structure imprints specific domain sizes and wall orientations in the (La,Sr)MnO3/BaTiO3 artificial multiferroic heterostructure. Furthermore, a change of the BaTiO3 ferroelectric domain structure either with temperature or with applied electric field results in a corresponding change in the (La,Sr)MnO3 ferromagnetic domain structure, thus showing a possible route to obtain room-temperature electric field control of magnetic anisotropy at the nanoscale. C1 [Chopdekar, R. V.; Heidler, J.; Piamonteze, C.; Heyderman, L. J.; Nolting, F.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Takamura, Y.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Scholl, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Rusponi, S.; Brune, H.] Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland. RP Chopdekar, RV (reprint author), Paul Scherrer Inst, CH-5232 Villigen, Switzerland. EM Rajesh.Chopdekar@psi.ch RI Chopdekar, Rajesh/D-2067-2009; Scholl, Andreas/K-4876-2012; Heyderman, Laura/E-7959-2015; Piamonteze, Cinthia/E-9740-2016; Brune, Harald/E-7284-2017 OI Chopdekar, Rajesh/0000-0001-6727-6501; Brune, Harald/0000-0003-4459-3111 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; EU's 7th Framework Program IFOX [NMP3-LA-2010 246102] FX The authors would like to thank C.W. Schneider for the use of his X-ray diffractometer, and L. Le Guyader and M. Buzzi for assistance with image analysis software. Part of this work was performed at the Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was partially funded by EU's 7th Framework Program IFOX (NMP3-LA-2010 246102). NR 15 TC 2 Z9 2 U1 0 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6028 J9 EUR PHYS J B JI Eur. Phys. J. B PD JUN PY 2013 VL 86 IS 6 AR 241 DI 10.1140/epjb/e2013-30995-4 PG 7 WC Physics, Condensed Matter SC Physics GA 178KH UT WOS:000321446200001 ER PT J AU Heffner, M Riot, V Fabris, L AF Heffner, Mike Riot, Vincent Fabris, Lorenzo TI A Compact, Flexible, High Channel Count DAQ Built From Off-the-Shelf Components SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE ADC; electronics; FPGA; preamp; TPC ID TIME PROJECTION CHAMBER; DETECTOR AB Medium to large channel count detectors are usually faced with a few unattractive options for data acquisition (DAQ). Small to medium-sized TPC experiments, for example, are too small to justify the expense and development time of application specific integrated circuits (ASIC). Commercial rack mounted electronics are too bulky and expensive for large channel counts. The combination of commercial high-speed high-density FPGAs, ADCs, and small discrete components provides another option that scales to tens of thousands of channels and is only slightly larger than ASICs using off-the-shelf components. A working example of this alternative solution is presented. C1 [Heffner, Mike; Riot, Vincent] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fabris, Lorenzo] Oak Ridge Natl Lab, Oak Ridge, TN 37931 USA. RP Heffner, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM mheffner@llnl.gov; fabris1@ornl.gov RI Fabris, Lorenzo/E-4653-2013 OI Fabris, Lorenzo/0000-0001-5605-5615 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 9 TC 3 Z9 3 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2013 VL 60 IS 3 BP 2196 EP 2202 DI 10.1109/TNS.2013.2259846 PN 3 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 170MX UT WOS:000320857600008 ER PT J AU Ziock, KP Bradley, EC Cheriyadat, A Cunningham, M Fabris, L Fitzgerald, CL Goddard, JS Hornback, DE Kerekes, RA Karnowski, TP Marchant, WT Newby, J AF Ziock, K. P. Bradley, E. C. Cheriyadat, A. Cunningham, M. Fabris, L. Fitzgerald, C. L. Goddard, J. S. Hornback, D. E. Kerekes, R. A. Karnowski, T. P. Marchant, W. T. Newby, J. TI Performance of the Roadside Tracker Portal-Less Portal Monitor SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Coded-aperture imager; gamma-ray detectors; gamma-ray imagers; nuclear imaging; radiation portal monitor ID ARRAYS; IMAGER AB We have developed a proof-of-concept prototype, rapid-deployment, gamma-ray portal monitor that can uniquely link the radiation signatures and visible-light images of vehicles in the system's field of view from the side of a multilane roadway. The instrument uses both visible-light and gamma-ray imaging to accomplish this. Vehicles entering the field of view of the visible-light imaging system are identified and tracked by an automated target acquisition and tracking software engine. The vehicle locations provided by this code are reported to the gamma-ray imager which uses them to locate the vehicles in the gamma-ray images and to collect the vehicle-specific radiation signatures from those images. Using this technique the gamma-ray data is integrated over the entire residence time of the vehicle in the gamma-ray imager field of view. The complete instrument comprises similar to 1 - m(2)CsI(Na) detector area split between two units. The system has been designed to handle up to five-lanes of traffic at highway speeds, with one unit located on either side of the roadway. Because no equipment is required in the roadway, the instrument can be deployed without impacting the flow of traffic. The results of a test and evaluation campaign indicates that the system meets its design goal of detecting 37 MBq-class sources in any of five-lanes of traffic at up to 113 km/h. C1 [Ziock, K. P.; Bradley, E. C.; Cheriyadat, A.; Fabris, L.; Fitzgerald, C. L.; Goddard, J. S.; Hornback, D. E.; Kerekes, R. A.; Karnowski, T. P.; Newby, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Marchant, W. T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Ziock, KP (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM ziockk@ornl.gov RI Fabris, Lorenzo/E-4653-2013; OI Fabris, Lorenzo/0000-0001-5605-5615; Newby, Robert/0000-0003-3571-1067 FU Department of Homeland Security's Domestic Nuclear Detection Office FX This work was supported in part by the Department of Homeland Security's Domestic Nuclear Detection Office. NR 12 TC 2 Z9 2 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2013 VL 60 IS 3 BP 2237 EP 2246 DI 10.1109/TNS.2013.2262472 PN 3 PG 10 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 170MX UT WOS:000320857600013 ER PT J AU McCue, BM Blalock, BJ Britton, CL Potts, J Kemerling, J Isihara, K Leines, MT AF McCue, Benjamin M. Blalock, Benjamin J. Britton, Charles L. Potts, Jeff Kemerling, James Isihara, Kiyosi Leines, Matthew T. TI A Wide Temperature, Radiation Tolerant, CMOS-Compatible Precision Voltage Reference for Extreme Radiation Environment Instrumentation Systems SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Bandgap reference; CMOS; dynamic threshold MOSFET (DTMOS); radiation hardening by design (RHBD); total ionizing dose (TID) radiation ID BANDGAP REFERENCE; TECHNOLOGIES; DESIGN AB Many design techniques have been incorporated into modern CMOS design practices to improve radiation tolerance of integrated circuits. Annular-gate NMOS structures have been proven to be significantly more radiation tolerant than the standard, straight-gate variety. Many circuits can be designed using the annular-gate NMOS and the inherently radiation tolerant PMOS. Bandgap reference circuits, however, typically require p-n junction diodes. These p-n junction diodes are the dominating factor in radiation degradation in bandgap reference circuits. This paper proposes a different approach to bandgap reference design to alleviate the radiation susceptibility presented by the p-n junction diodes. C1 [McCue, Benjamin M.; Blalock, Benjamin J.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Britton, Charles L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Potts, Jeff; Kemerling, James; Isihara, Kiyosi] Triad Semicond Inc, Winston Salem, NC 27103 USA. [Leines, Matthew T.] United States Air Force, Albuquerque, NM 87048 USA. RP McCue, BM (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM bmccue@utk.edu; bblalock@utk.edu; brittoncl@ornl.gov FU Department of Defense FX This work was supported by the Department of Defense. NR 15 TC 2 Z9 2 U1 1 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2013 VL 60 IS 3 BP 2272 EP 2279 DI 10.1109/TNS.2013.2257850 PN 3 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 170MX UT WOS:000320857600017 ER PT J AU Plimley, B Chivers, D Coffer, A Vetter, K AF Plimley, Brian Chivers, Daniel Coffer, Amy Vetter, Kai TI Experimental Benchmark of Electron Trajectory Reconstruction Algorithm for Advanced Compton Imaging SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Charge coupled devices; Compton imaging; gamma-ray cameras; gamma-ray detectors; radiation imaging; semiconductor radiation detectors; silicon radiation detectors; solid state tracking detectors; tracking detectors ID CAMERA; DETECTORS; TELESCOPE AB Electron-tracking-based Compton imaging of gamma rays reduces the background level of the backprojected Compton image through the additional measurement of the initial momentum vector of the Compton electron. This reduction in image background has the potential for the detection of weaker sources in a complex background radiation field. Electron-tracking-based Compton imaging was demonstrated recently in solid-state detectors through the use of scientific Si charge-coupled devices (CCDs) with excellent position and energy resolution characteristics. In addition, the sensitivity of the electron track reconstruction algorithm has been evaluated extensively on the modeled detector response to Monte-Carlo electron tracks. We have now bench-marked the modeled algorithm sensitivity with our experimentally observed algorithm sensitivity, by measuring CCD electron tracks from a collimated 662 keV gamma-ray source in coincidence with a position-sensitive HPGe detector. For all coincident events the electron momentum vector deduced by the reconstruction algorithm is compared to the electron momentum vector calculated from the measured positions. This measured distribution of angular error of the algorithm agrees well with the angular error distribution calculated from our electron transport and detector models. C1 [Plimley, Brian; Coffer, Amy; Vetter, Kai] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Chivers, Daniel; Vetter, Kai] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Plimley, B (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM as.white.as.snow@gmail.com; dhchivers@lbl.gov; amycoffer@gmail.com; kvetter@berkeley.edu FU U.S. Department of Homeland Security [ECCS-1140069] FX This work was supported by the U.S. Department of Homeland Security under Contract #ECCS-1140069. NR 20 TC 3 Z9 3 U1 0 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2013 VL 60 IS 3 BP 2308 EP 2313 DI 10.1109/TNS.2013.2254498 PN 3 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 170MX UT WOS:000320857600021 ER PT J AU De Geronimo, G Fried, J Li, SR Metcalfe, J Nambiar, N Vernon, E Polychronakos, V AF De Geronimo, Gianluigi Fried, Jack Li, Shaorui Metcalfe, Jessica Nambiar, Neena Vernon, Emerson Polychronakos, Venetios TI VMM1-An ASIC for Micropattern Detectors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE ASIC; DDF; micropattern; sub-hysteresis; Time-over-Threshold (ToT) AB We present VMM1, the first prototype of a family of front-end ASICs designed for the ATLAS muon upgrade. The ASIC will operate with MICROMEGAS and TGC detectors, providing charge and timing measurements along with other features including sub-hysteresis discrimination, address of the first event in real time, and digital output per channel for Time-over-Threshold measurements. The shaper, designed via the concept of Delayed Dissipative Feedback (DDF), supports analog dynamic ranges in excess of 10 000. With a capacitance of 200 pF and a nominal peaking time of 25 ns, the ASIC offers resolution of charge and timing better than 1 fC and 1 ns, respectively, for input charges up to 2 pC. Designed in a commercial 130 nm technology it dissipates about 4.5 mW per channel. C1 [De Geronimo, Gianluigi; Fried, Jack; Li, Shaorui; Metcalfe, Jessica; Nambiar, Neena; Vernon, Emerson; Polychronakos, Venetios] Brookhaven Natl Lab, Upton, NY 11973 USA. RP De Geronimo, G (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM degeronimo@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH10886] FX Brookhaven National Laboratory is managed for the U.S. Department of Energy by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886. NR 14 TC 14 Z9 14 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2013 VL 60 IS 3 BP 2314 EP 2321 DI 10.1109/TNS.2013.2258683 PN 3 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 170MX UT WOS:000320857600022 ER PT J AU Cherepy, NJ Seeley, ZM Payne, SA Beck, PR Drury, OB O'Neal, SP Figueroa, KM Hunter, S Ahle, L Thelin, PA Stefanik, T Kindem, J AF Cherepy, N. J. Seeley, Z. M. Payne, S. A. Beck, P. R. Drury, O. B. O'Neal, S. P. Figueroa, K. Morales Hunter, S. Ahle, L. Thelin, P. A. Stefanik, T. Kindem, J. TI Development of Transparent Ceramic Ce-Doped Gadolinium Garnet Gamma Spectrometers SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Gamma-ray spectroscopy; garnets; scintillators ID SCINTILLATOR NON-PROPORTIONALITY; CRYSTAL-GROWTH; FACILITY AB Transparent polycrystalline ceramic scintillators based on the garnet structure and incorporating gadolinium for high stopping power are being developed for use in gamma spectrometers. Optimization of energy resolution for gamma spectroscopy involves refining the material composition for high stopping and high light yield, developing ceramics fabrication methodology for material homogeneity, as well as selecting the size and geometry of the scintillator to match the photodetector characteristics and readout electronics. We have demonstrated energy resolution of 4% at 662 keV for 0.05 cm GYGAG(Ce) ceramics with photodiode readout, and 4.9% resolution at 662 keV for 18 cm GYGAG(Ce) ceramics and PMT readout. Comparative gamma spectra acquired with GYGAG(Ce) and NaI(Tl) depict the higher resolution of GYGAG(Ce) for radioisotope identification applications. Light yield non-proportionality of garnets fabricated following different methods reveal that the fundamental shapes of the light yield dependence on energy are not intrinsic to the crystal structure, but may instead depend on trap state distributions. With exposure to 9 MeV Brehmsstrahlung radiation, we also find that GYGAG(Ce) ceramics exhibit excellent radiation hardness. C1 [Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Drury, O. B.; O'Neal, S. P.; Figueroa, K. Morales; Hunter, S.; Ahle, L.; Thelin, P. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Stefanik, T.] Nanocerox Inc, Ann Arbor, MI 48108 USA. [Kindem, J.] Digirad Inc, Poway, CA 92064 USA. RP Cherepy, NJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM cherepy1@llnl.gov RI Cherepy, Nerine/F-6176-2013 OI Cherepy, Nerine/0000-0001-8561-923X FU U.S. Department of Homeland Security, Domestic Nuclear Detection Office [IAA HSHQDC-09-x-00208/P00002]; U.S. DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work has been supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded IAA HSHQDC-09-x-00208/P00002. This support does not constitute an express or implied endorsement on the part of the Government. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 18 TC 13 Z9 13 U1 1 U2 37 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2013 VL 60 IS 3 BP 2330 EP 2335 DI 10.1109/TNS.2013.2261826 PN 3 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 170MX UT WOS:000320857600024 ER PT J AU Zhang, XD Cates, JW Hayward, JP Bertuccio, G Puglisi, D Hausladen, PA AF Zhang, Xiaodong Cates, Joshua W. Hayward, Jason P. Bertuccio, Giuseppe Puglisi, Donatella Hausladen, Paul A. TI Characterizing the Timing Performance of a Fast 4H-SiC Detector With an Am-241 Source SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Associated particle imaging; neutron radiography; semiconductor radiation detectors; silicon carbide; timing resolution ID MATERIALS IDENTIFICATION SYSTEM; ALPHA-PARTICLE DETECTOR; NEUTRON GENERATOR; RESOLUTION; SIMULATION AB An SPX4 4H-silicon carbide detector consisting of 4 x 4 pixels was developed and studied experimentally. Its pixel size is 400 x 400 mu m(2). A timing resolution of 117 +/- 11 ps full width at half-maximum (FWHM) has been measured for the detection of alphas. With such good timing performance and high granularity, the SiC pixel detector holds great promise as an associated alpha-particle detector for fast neutron imaging. C1 [Zhang, Xiaodong; Cates, Joshua W.; Hayward, Jason P.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Hayward, Jason P.; Hausladen, Paul A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bertuccio, Giuseppe; Puglisi, Donatella] Politecn Milan, I-22100 Como, Italy. [Bertuccio, Giuseppe; Puglisi, Donatella] INFN Sez Milano, Dept Elect Engn & Informat Sci, I-22100 Como, Italy. RP Zhang, XD (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM xzhang39@utk.edu RI PUGLISI, Donatella/P-5143-2015 OI PUGLISI, Donatella/0000-0003-0646-5266 FU US Department of Homeland Security [2010-DN-077-ARI044-02] FX This material is based upon work supported by the US Department of Homeland Security under Grant Award No. 2010-DN-077-ARI044-02. NR 26 TC 2 Z9 2 U1 0 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2013 VL 60 IS 3 BP 2352 EP 2356 DI 10.1109/TNS.2013.2260652 PN 3 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 170MX UT WOS:000320857600027 ER PT J AU Aznauryan, IG Bashir, A Braun, VM Brodsky, SJ Burkert, VD Chang, L Chen, C El-Bennich, B Cloet, IC Cole, PL Edwards, RG Fedotov, GV Giannini, MM Gothe, RW Gross, F Lin, HW Kroll, P Lee, TSH Melnitchouk, W Mokeev, VI Pena, MT Ramalho, G Roberts, CD Santopinto, E de Teramond, GF Tsushima, K Wilson, DJ AF Aznauryan, I. G. Bashir, A. Braun, V. M. Brodsky, S. J. Burkert, V. D. Chang, L. Chen, Ch El-Bennich, B. Cloet, I. C. Cole, P. L. Edwards, R. G. Fedotov, G. V. Giannini, M. M. Gothe, R. W. Gross, F. Lin, Huey-Wen Kroll, P. Lee, T. -S. H. Melnitchouk, W. Mokeev, V. I. Pena, M. T. Ramalho, G. Roberts, C. D. Santopinto, E. de Teramond, G. F. Tsushima, K. Wilson, D. J. TI STUDIES OF NUCLEON RESONANCE STRUCTURE IN EXCLUSIVE MESON ELECTROPRODUCTION SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Review DE Electromagnetic form-factors; baryon resonances; meson production; lattice QCD calculations; quark models; dispersion relations; nonperturbative QCD; confinement; dynamical chiral symmetry breaking; CLAS; Jefferson lab ID QUARK-HADRON DUALITY; TRANSITION FORM-FACTORS; LARGE-MOMENTUM-TRANSFER; PARTIAL-WAVE ANALYSIS; GENERALIZED PARTON DISTRIBUTIONS; SINGLE-PION PHOTOPRODUCTION; ELECTRON-PROTON SCATTERING; LARGE TRANSVERSE-MOMENTUM; CHIRAL-SYMMETRY BREAKING; CURRENT MATRIX-ELEMENTS AB Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q(2). This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q(2) = 12 GeV2. This high-Q(2) reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. C1 [Aznauryan, I. G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Aznauryan, I. G.; Burkert, V. D.; Edwards, R. G.; Gross, F.; Melnitchouk, W.; Mokeev, V. I.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Bashir, A.] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico. [Braun, V. M.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Brodsky, S. J.] Stanford Univ, Stanford Natl Accelerator Lab, Stanford, CA 94025 USA. [Brodsky, S. J.] Southern Denmark Univ, Origins CP3, Odense, Denmark. [Chang, L.; Chen, Ch; Cloet, I. C.; Lee, T. -S. H.; Roberts, C. D.; Wilson, D. J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chang, L.; Chen, Ch; Cloet, I. C.; Lee, T. -S. H.; Roberts, C. D.; Wilson, D. J.] Illinois Inst Technol, Dept Phys, Chicago, IL 60616 USA. [Chang, L.] Forschungszentrum Julich, D-52425 Julich, Germany. [Chen, Ch] Univ Sci & Technol China, Inst Theoret Phys, Hefei 230026, Peoples R China. [Chen, Ch] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. [El-Bennich, B.] Univ Cruzeiro Sul, BR-01506000 Sao Paulo, Brazil. [El-Bennich, B.] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil. [Cloet, I. C.; Tsushima, K.] Univ Adelaide, Sch Chem & Phys, CSSM, Adelaide, SA 5005, Australia. [Cloet, I. C.; Tsushima, K.] Univ Adelaide, Sch Chem & Phys, CoEPP, Adelaide, SA 5005, Australia. [Cole, P. L.] Idaho State Univ, Dept Phys, Pocatello, ID 83209 USA. [Fedotov, G. V.; Gothe, R. W.] Univ S Carolina, Columbia, SC 29208 USA. [Fedotov, G. V.; Mokeev, V. I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119899, Russia. [Giannini, M. M.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Giannini, M. M.; Santopinto, E.] Ist Nazl Fis Nucl, Sez Genova, Milan, Italy. [Gross, F.] Coll William & Mary, Williamsburg, VA 23187 USA. [Lin, Huey-Wen] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Kroll, P.] Univ Wuppertal, Fachbereich Phys, D-42097 Wuppertal, Germany. [Pena, M. T.; Ramalho, G.] Univ Tecn Lisboa, CFTP, IST, UTL, P-1100 Lisbon, Portugal. [Pena, M. T.] Univ Tecn Lisboa, Dept Fis, IST, UTL, P-1100 Lisbon, Portugal. [de Teramond, G. F.] Univ Costa Rica, San Jose, Costa Rica. [Ramalho, G.; Tsushima, K.] Univ Fed Rio Grande do Norte, Int Inst Phys, BR-59078400 Natal, RN, Brazil. [Wilson, D. J.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Gothe, RW (reprint author), Univ S Carolina, Columbia, SC 29208 USA. EM rwgothe@gmail.com RI Pena, Teresa/M-4683-2013; Chen, Chen/H-2756-2015; OI Pena, Teresa/0000-0002-3529-2408; Wilson, David/0000-0003-2364-1161; Ramalho, Gilberto/0000-0002-9930-659X FU U.S. National Science Foundation [NSF-PHY-0856010, NSF-PHY-0903991, NSF-PHY-1206082]; U.S. Department of Energy, Office of Nuclear Physics Division [DE-AC02-76SF00515, DE-AC02-06CH11357, DE-AC05-06OR23177]; European Union [283286]; Fundacao para a Ciencia e a Tecnologia [SFRH/BPD/26886/2006, PTDC/FIS/113940/2009]; Programa de Cooperacion Bilateral Mexico-Estados Unidos CONACyT Project [46614-F]; Coordinacion de la Investigacion Cientifica (CIC) Project [4.10]; Forschungszentrum Julich GmbH; University of Adelaide; Australian Research Council [FL0992247]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [2009/51296-1, 2010/05772-3]; National Energy Research Scientific Computing Center; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank B. Julia-Diaz, H. Kamano, A. Matsuyama, S. X. Nakamura, T. Sato, and N. Suzuki for their collaborations at EBAC, and would also like to thank M. Pennington and A. W. Thomas for their strong support and many constructive discussions. We also acknowledge valuable discussions with S.-X. Qin, H. L. L. Roberts and P. C. Tandy, and thank the University of South Carolina for their support of the most recent EmNN* 2012 Workshop. This work is supported by the U.S. National Science Foundation udner Grants NSF-PHY-0856010, NSF-PHY-0903991, and NSF-PHY-1206082, and U.S. Department of Energy, Office of Nuclear Physics Division, under Contract No. DE-AC02-76SF00515, DE-AC02-06CH11357 and DE-AC05-06OR23177 under which Jefferson Science Associates operates the JLab, European Union under the HadronPhysics3 Grant No. 283286, Fundacao para a Ciencia e a Tecnologia under Grant No. SFRH/BPD/26886/2006 and PTDC/FIS/113940/2009, Programa de Cooperacion Bilateral Mexico-Estados Unidos CONACyT Project 46614-F, Coordinacion de la Investigacion Cientifica (CIC) Project No. 4.10, Forschungszentrum Julich GmbH, the University of Adelaide and the Australian Research Council through Grant No. FL0992247, and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, Grant No. 2009/51296-1 and 2010/05772-3. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, resources provided on "Fusion," a 320-node computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory, and resources of Barcelona Sucpercomputing Center (BSC/CNS). NR 375 TC 84 Z9 84 U1 1 U2 12 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD JUN PY 2013 VL 22 IS 6 AR 1330015 DI 10.1142/S0218301313300154 PG 119 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 177SM UT WOS:000321395700003 ER PT J AU Ni, PA More, RM Bieniosek, FM AF Ni, P. A. More, R. M. Bieniosek, F. M. TI Reliability of temperature determination from curve-fitting in multi-wavelength pyrometery SO LASER AND PARTICLE BEAMS LA English DT Article DE Heavy ion beam heating; Pyrometry; Temperature measurement; Warm dense matter ID WARM-DENSE-MATTER AB This paper examines the reliability of a widely used method for temperature determination by multi-wavelength pyrometry. In recent warm dense matter experiments with ion-beam heated metal foils, we found that the statistical quality of the fit to the measured data is not necessarily a measure of the accuracy of the inferred temperature. We found a specific example where a second-best fit leads to a more realistic temperature value. The physics issue is the wavelength-dependent emissivity of the hot surface. We discuss improvements of the multi-frequency pyrometry technique, which will give a more reliable determination of the temperature from emission data. C1 [Ni, P. A.; More, R. M.; Bieniosek, F. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ni, PA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM pani@lbl.gov FU U.S. Department of Energy by LBNL [DE-AC02-05CH11231] FX This work was performed under the auspices of the U.S. Department of Energy by LBNL under Contract No. DE-AC02-05CH11231. The authors would like to thank Steve Lidia for facilitating experiments at the NDCX-I. Finally, the authors sadly note the untimely passing of our friend, colleague, and co-author Frank Bieniosek. His clarity of scientific vision, his energy and enthusiasm, his guidance, and his companionship are much missed. NR 13 TC 0 Z9 0 U1 1 U2 6 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 J9 LASER PART BEAMS JI Laser Part. Beams PD JUN PY 2013 VL 31 IS 2 BP 333 EP 336 DI 10.1017/S0263034612001103 PG 4 WC Physics, Applied SC Physics GA 180GG UT WOS:000321581300019 ER PT J AU Maturova, K Nanayakkara, SU Luther, JM van de Lagemaat, J AF Maturova, Klara Nanayakkara, Sanjini U. Luther, Joseph M. van de Lagemaat, Jao TI Fast Current Blinking in Individual PbS and CdSe Quantum Dots SO NANO LETTERS LA English DT Article DE quantum dots; nanocrystals; intermittent current; conductive atomic force microscopy; tuning fork atomic force microscopy; lead sulfide ID SCANNING TUNNELING SPECTROSCOPY; ATOMIC-FORCE MICROSCOPY; TUNING-FORK; NANOCRYSTALS; FLUORESCENCE; INTERMITTENCY; NANORODS AB Fast current intermittency of the tunneling current through single semiconductor quantum dots was observed through time-resolved intermittent contact conductive atomic force microscopy in the dark and under illumination at room temperature. The current through a single dot switches on and off at time scales ranging from microseconds to seconds with power-law distributions for both the on and off times. On states are attributed to the resonant tunneling of charges from the electrically conductive AFM tip to the quantum dot, followed by transfer to the substrate, whereas off states are attributed to a Coulomb blockade effect in the quantum dots that shifts the energy levels out of resonance conditions due to the presence of the trapped charge, while at the same bias. The observation of current intermittency due to Coulomb blockade effects has important implications for the understanding of carrier transport through arrays of quantum dots. C1 [Maturova, Klara; Nanayakkara, Sanjini U.; Luther, Joseph M.; van de Lagemaat, Jao] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. RP van de Lagemaat, J (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. EM jao.vandelagemaat@nrel.gov RI van de Lagemaat, Jao/J-9431-2012 FU Solar Photochemistry Program of the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy; Center for Advanced Solar Photophysics, an Energy Frontier Research Center; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES); National Renewable Energy Laboratory (NREL) [DE-AC36-08GO28308] FX The microscopy parts of this work were funded (K.M. and J.v.d.L.) by the Solar Photochemistry Program of the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy. The particle synthesis and sample preparation (J.M.L. and S.U.N.) was funded through the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES). Funding was provided to the National Renewable Energy Laboratory (NREL) through contract DE-AC36-08GO28308. NR 46 TC 8 Z9 8 U1 1 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2338 EP 2345 DI 10.1021/nl3036096 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100004 PM 23472703 ER PT J AU Wegner, D Yamachika, R Zhang, XW Wang, YY Crommie, MF Lorente, N AF Wegner, Daniel Yamachika, Ryan Zhang, Xiaowei Wang, Yayu Crommie, Michael F. Lorente, Nicolas TI Adsorption Site Determination of a Molecular Monolayer via Inelastic Tunneling SO NANO LETTERS LA English DT Article DE Scanning tunneling microscopy; density functional theory; hybrid organometallic interfaces; adsorption site determination; inelastic electron tunneling spectroscopy; vibrational modes ID VIBRATIONAL SPECTROSCOPY; MICROSCOPY; SURFACE; TETRACYANOETHYLENE; SEMICONDUCTOR; DIFFRACTION; BENZENE; ATOMS; LEED AB We have combined scanning tunneling microscopy with inelastic electron tunneling spectroscopy (IETS) and density functional theory (DFT) to study a tetracyanoethylene monolayer on Ag(100). Images show that the molecules arrange in locally ordered patterns with three nonequivalent, but undeterminable, adsorption sites. While scanning tunneling spectroscopy only shows subtle variations of the local electronic structure at the three different positions, we find that vibrational modes are very sensitive to the local atomic environment. IETS detects sizable mode frequency shifts of the molecules located at the three topographically detected sites, which permits us to determine the molecular adsorption sites through identification with DFT calculations. C1 [Wegner, Daniel] Univ Munster, Inst Phys, D-48149 Munster, Germany. [Wegner, Daniel] Univ Munster, Ctr Nanotechnol CeNTech, D-48149 Munster, Germany. [Yamachika, Ryan; Zhang, Xiaowei; Wang, Yayu; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yamachika, Ryan; Zhang, Xiaowei; Wang, Yayu; Crommie, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lorente, Nicolas] CIN2 CSIC ICN, Ctr Invest Nanociencia & Nanotecnol, Bellaterra 08193, Spain. RP Wegner, D (reprint author), Univ Munster, Inst Phys, D-48149 Munster, Germany. EM daniel.wegner@uni-muenster.de RI Lorente, Nicolas/M-6125-2013; Wegner, Daniel/F-9700-2015 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Deutsche Forschungsgemeinschaft (DFG) [WE 4104/2-1]; ICT-FET Integrated Project AtMol; Alexander von Humboldt Foundation; North-Rhine Westphalian Academy of Sciences and Arts FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under contract no. DE-AC02-05CH11231 (STM instrumentation development and measurements) and by the Deutsche Forschungsgemeinschaft (DFG) project WE 4104/2-1 (numerical simulations and analysis). D.W. acknowledges support by the Alexander von Humboldt Foundation (data acquisition) and the North-Rhine Westphalian Academy of Sciences and Arts (data analysis). N.L. is supported by the ICT-FET Integrated Project AtMol (http://www.atmol.eu) (IETS simulation code development). NR 52 TC 8 Z9 8 U1 2 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2346 EP 2350 DI 10.1021/nl304081q PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100005 PM 23718205 ER PT J AU Lu, LY Xu, T Chen, W Lee, JM Luo, ZQ Jung, IH Park, HI Kim, SO Yu, LP AF Lu, Luyao Xu, Tao Chen, Wei Lee, Ju Min Luo, Zhiqiang Jung, In Hwan Park, Hyung Il Kim, Sang Ouk Yu, Luping TI The Role of N-Doped Multiwall Carbon Nanotubes in Achieving Highly Efficient Polymer Bulk Heterojunction Solar Cells SO NANO LETTERS LA English DT Article DE Organic photovoltaics; bulk heterojunction; carbon nanotube; X-ray scattering ID PHOTOVOLTAIC CELLS; PERFORMANCE; ENHANCEMENT; MORPHOLOGY; ADDITIVES; DEVICES; DESIGN; DONOR AB This paper reports an improved solar cell performance of 8.6% by incorporation of N-doped multiwall carbon nanotubes (N-MCNTs) into BHJ solar cells composed of PTB7 and PC71BM. It was demonstrated for the first time that incorporation of N-MCNTs leads to not only increased nanocrystallite sizes but also smaller phase-separated domain sizes of both PTB7 copolymers and PC71BM from X-ray scattering study. The results show that N-MCNTs could serve as both exciton dissociation centers and charge transfer channels. The enhanced charge dissociation probabilities and effective charge carrier lifetime in the active layer material offer evidence to support the conclusion that N-MCNTs facilitated charge separation and transport. C1 [Lu, Luyao; Xu, Tao; Luo, Zhiqiang; Jung, In Hwan; Yu, Luping] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Lu, Luyao; Xu, Tao; Luo, Zhiqiang; Jung, In Hwan; Yu, Luping] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Chen, Wei] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chen, Wei] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Lee, Ju Min; Park, Hyung Il; Kim, Sang Ouk] Korea Adv Inst Sci & Technol, Inst Basic Sci, Ctr Nanomat & Chem React, Taejon 305701, South Korea. RP Kim, SO (reprint author), Korea Adv Inst Sci & Technol, Inst Basic Sci, Ctr Nanomat & Chem React, Taejon 305701, South Korea. EM sangouk@kaist.ac.kr; lupingyu@uchicago.edu RI Kim, Sang Ouk/C-1632-2011; Chen, Wei/G-6055-2011; LUO, ZHIQIANG/G-8410-2015; Lu, Luyao/J-6553-2015; Lee, Junyoung/D-5463-2012 OI Kim, Sang Ouk/0000-0003-1513-6042; Chen, Wei/0000-0001-8906-4278; Lee, Junyoung/0000-0001-6689-2759 FU U.S. National Science Foundation [NSF CHE-1229089]; Air Force Office of Scientific Research; NSF MRSEC program at the University of Chicago; DOE via the ANSER Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059, DE-AC02-06CH11357, DE-AC02-05CH11231]; Institute for Basic Science (IBS); KAIST EEWS; Argonne Director's Postdoctoral Fellowship; University of Chicago-Argonne Strategic Collaborative Initiative Seed Grant FX This work is supported by U.S. National Science Foundation grant (NSF CHE-1229089), Air Force Office of Scientific Research, and NSF MRSEC program at the University of Chicago, DOE via the ANSER Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001059. A generous gift from Zhejiang Pharma is also appreciated. S.O.K. also acknowledges the financial support from Institute for Basic Science (IBS) and KAIST EEWS. W. Chen gratefully acknowledges financial support from Argonne Director's Postdoctoral Fellowship. This work is partially supported by a University of Chicago-Argonne Strategic Collaborative Initiative Seed Grant. We also thank Dr. Joseph Strzalka and Dr. Cheng Wang for the assistance with GISAXS and RSoXS measurements. Use of the Advanced Photon Source (APS) at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 39 TC 97 Z9 99 U1 10 U2 141 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2365 EP 2369 DI 10.1021/nl304533j PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100008 PM 23634818 ER PT J AU Zhou, W Zou, XL Najmaei, S Liu, Z Shi, YM Kong, J Lou, J Ajayan, PM Yakobson, BI Idrobo, JC AF Zhou, Wu Zou, Xiaolong Najmaei, Sina Liu, Zheng Shi, Yumeng Kong, Jing Lou, Jun Ajayan, Pulickel M. Yakobson, Boris I. Idrobo, Juan-Carlos TI Intrinsic Structural Defects in Monolayer Molybdenum Disulfide SO NANO LETTERS LA English DT Article DE Monolayer molybdenum sulfide; point defects; dislocation; grain boundary; edge reconstruction; atomic resolution imaging; first-principles calculations ID CHEMICAL-VAPOR-DEPOSITION; MOS2 ATOMIC LAYERS; LARGE-AREA; GRAIN-BOUNDARIES; GRAPHENE; GROWTH; EDGE; NANOCRYSTALS; MICROSCOPY AB Monolayer molybdenum disulfide (MoS2) is a two-dimensional direct band gap semiconductor with unique mechanical, electronic, optical, and chemical properties that can be utilized for novel nanoelectronics and optoelectronics devices. The performance of these devices strongly depends on the quality and defect morphology of the MoS2 layers. Here we provide a systematic study of intrinsic structural defects in chemical vapor phase grown monolayer MoS2, including point defects, dislocations, grain boundaries, and edges, via direct atomic resolution imaging, and explore their energy landscape and electronic properties using first-principles calculations. A rich variety of point defects and dislocation cores, distinct from those present in graphene, were observed in MoS2 . We discover that one-dimensional metallic wires can be created via two different types of 60 degrees grain boundaries consisting of distinct 4-fold ring chains. A new type of edge reconstruction, representing a transition state during growth, was also identified, providing insights into the material growth mechanism. The atomic scale study of structural C1 [Zhou, Wu; Idrobo, Juan-Carlos] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhou, Wu] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Zou, Xiaolong; Najmaei, Sina; Liu, Zheng; Lou, Jun; Ajayan, Pulickel M.; Yakobson, Boris I.] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. [Shi, Yumeng; Kong, Jing] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. RP Zhou, W (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM zhouw1@ornl.gov RI najmaei, sina/H-8536-2013; Zhou, Wu/D-8526-2011; Liu, Zheng/C-1813-2014; Idrobo, Juan/H-4896-2015; Shi, Yumeng/A-7349-2012 OI Zhou, Wu/0000-0002-6803-1095; Liu, Zheng/0000-0002-8825-7198; Idrobo, Juan/0000-0001-7483-9034; Shi, Yumeng/0000-0002-9623-3778 FU National Science Foundation [DMR-0938330]; Wigner Fellowship through the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; U.S. Department of Energy; Office of Basic Energy Sciences, U.S. U.S. Department of Energy; Welch Foundation [C-1716]; NSF [DMR-0928297, CNS-0821727, OCI-0959097, DMR 0845358]; U.S. Army Research Office MURI Grant [W911NF-11-1-0362]; U.S. Office of Naval Research MUM Grant [N000014-09-1-1066]; Nanoelectronics Research Corporation contract [S201006] FX This research was supported in part by National Science Foundation through Grant DMR-0938330 and a Wigner Fellowship through the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy (W.Z.); Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Facility Program QC, which is sponsored by the Office of Basic Energy Sciences, U.S. U.S. Department of Energy; the Welch Foundation Grant C-1716, the NSF Grant DMR-0928297, the U.S. Army Research Office MURI Grant W911NF-11-1-0362, the U.S. Office of Naval Research MUM Grant N000014-09-1-1066, and the Nanoelectronics Research Corporation contract S201006. The computations were performed at the Cyberinfrastructure for Computational Research funded by NSF under Grant CNS-0821727 and the Data Analysis and Visualization Cyberinfrastructure funded by NSF under Grant OCI-0959097. Y.S. and J.K. acknowledge the support from NSF DMR 0845358. NR 39 TC 350 Z9 354 U1 75 U2 582 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2615 EP 2622 DI 10.1021/nl4007479 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100048 PM 23659662 ER PT J AU Melli, M Polyakov, A Gargas, D Huynh, C Scipioni, L Bao, W Ogletree, DF Schuck, PJ Cabrini, S Weber-Bargioni, A AF Melli, M. Polyakov, A. Gargas, D. Huynh, C. Scipioni, L. Bao, W. Ogletree, D. F. Schuck, P. J. Cabrini, S. Weber-Bargioni, A. TI Reaching the Theoretical Resonance Quality Factor Limit in Coaxial Plasmonic Nanoresonators Fabricated by Helium Ion Lithography SO NANO LETTERS LA English DT Article DE Focus ion beam; helium ion microscope; coaxial apertures; plasmonics; nanofabrication ID OPTICAL-TRANSMISSION; NANO-OPTICS; WAVE-GUIDES; ARRAYS; NANOPARTICLES; MICROSCOPY; ANTENNAS; INDEX AB Optical antenna structures have revolutionized the field of nano-optics by confining light to deep subwavelength dimensions for spectroscopy and sensing. In this work, we fabricated coaxial optical antennae with sub-10-nanometer critical dimensions using helium ion lithography (HIL). Wavelength dependent transmission measurements were used to determine the wavelength-dependent optical response. The quality factor of 11 achieved with our HIL fabricated structures matched the theoretically predicted quality factor for the idealized flawless gold resonators calculated by finite-difference time-domain (FDTD). For comparison, coaxial antennae with 30 nm critical dimensions were fabricated using both HIL and the more common Ga focus ion beam lithography (Ga-FIB). The quality factor of the Ga-FIB resonators was 60% of the ideal HIL results for the same design geometry due to limitations in the Ga-FIB fabrication process. C1 [Melli, M.; Polyakov, A.; Gargas, D.; Bao, W.; Ogletree, D. F.; Schuck, P. J.; Cabrini, S.; Weber-Bargioni, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Huynh, C.; Scipioni, L.] Carl Zeiss Microscopy LLC, Peabody, MA 01960 USA. RP Melli, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM mmelli@lbl.gov; afweber-bargioni@lbl.gov RI Bao, Wei/B-4520-2014; Foundry, Molecular/G-9968-2014; Ogletree, D Frank/D-9833-2016 OI Ogletree, D Frank/0000-0002-8159-0182 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Scientific User Facilities Division [DE-AC02-05CH11231] FX The authors thank our colleagues at the Molecular Foundry for stimulating discussion, advice, and assistance, in particular Edward Barnard. A.P. thanks H. A. Padmore for providing the computational resources for the numerical simulation. Work at the Molecular Foundry was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Scientific User Facilities Division, under contract no. DE-AC02-05CH11231. NR 50 TC 46 Z9 46 U1 5 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2687 EP 2691 DI 10.1021/nl400844a PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100059 PM 23617768 ER PT J AU Tang, W Picraux, ST Huang, JY Gusak, AM Tu, KN Dayeh, SA AF Tang, Wei Picraux, S. Tom Huang, Jian Yu Gusak, Andriy M. Tu, King-Ning Dayeh, Shadi A. TI Nucleation and Atomic Layer Reaction in Nickel Silicide for Defect-Engineered Si Nanochannels SO NANO LETTERS LA English DT Article DE Nickel silicide; silicon nanowire; defects; twin boundary; heterogeneous nucleation; in situ TEM ID NANOWIRE HETEROSTRUCTURES; GROWTH; KINETICS AB At the nanoscale, defects can significantly impact phase transformation processes and change materials properties. The material nickel silicide has been the industry standard electrical contact of silicon microelectronics for decades and is a rich platform for scientific innovation at the conjunction of materials and electronics. Its formation in nanoscale silicon devices that employ high levels of strain, intentional, and unintentional twins or grain boundaries can be dramatically different from the commonly conceived bulk processes. Here, using in situ high-resolution transmission electron microscopy (HRTEM), we capture single events during heterogeneous nucleation and atomic layer reaction of nickel silicide at various crystalline boundaries in Si nanochannels for the first time. We show through systematic experiments and analytical modeling that unlike other typical face-centered cubic materials such as copper or silicon the twin defects in NiSi2 have high interfacial energies. We observe that these twin defects dramatically change the behavior of new phase nucleation and can have direct implications for ultrascaled devices that are prone to defects or may utilize them to improve device performance. C1 [Tang, Wei; Tu, King-Ning] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90024 USA. [Tang, Wei; Picraux, S. Tom; Dayeh, Shadi A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87123 USA. [Gusak, Andriy M.] Cherkasy Natl Univ, Dept Theoret Phys, Cherkassy, Ukraine. [Dayeh, Shadi A.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. RP Tang, W (reprint author), Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90024 USA. EM weitang@ucla.edu; sdayeh@ece.ucsd.edu RI Tang, Wei/A-6917-2015; OI Tang, Wei/0000-0001-6113-7201; Gusak, Andriy/0000-0002-2594-5559 FU U.S. Department of Energy [DE-AC52-06NA25396]; University of California San Diego FX This work was performed in part at the Center for Integrated Nanotechnologies (Proposal No. C2011A1023), a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. We thank Professor Ning Wang from Hong Kong University of Science and Technology for training W.T. in TEM imaging. We thank Blythe Clark from Sandia National Laboratory for providing the in situ TEM heating stage and John Nogan for assistance in fabrication facilities at CINT. S.A.D. acknowledges support from a faculty start-up grant at the University of California San Diego. NR 20 TC 15 Z9 15 U1 3 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2748 EP 2753 DI 10.1021/nl400949n PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100069 PM 23713768 ER PT J AU Ota, S Wang, S Wang, Y Yin, XB Zhang, X AF Ota, Sadao Wang, Sheng Wang, Yuan Yin, Xiaobo Zhang, Xiang TI Lipid Bilayer-Integrated Optoelectronic Tweezers for Nanoparticle Manipulations SO NANO LETTERS LA English DT Article DE Optical imaging; optoelectronics; supported lipid bilayer; nanoparticle; Brownian motion; soft-condensed matter physics ID SINGLE-PARTICLE TRACKING; SIGNAL-TRANSDUCTION; ENERGY LANDSCAPES; OPTICAL TWEEZERS; MEMBRANE; CELLS; FLUID; ELECTROFORMATION; MICROPARTICLES; DIFFUSION AB Remotely manipulating a large number of microscopic objects is important to soft-condensed matter physics, biophysics, and nanotechnology. Optical tweezers and optoelectronic tweezers have been widely used for this purpose but face critical challenges when applied to nanoscale objects, including severe photoinduced damages, undesired ionic convections, or irreversible particle immobilization on surfaces. We report here the first demonstration of a lipid bilayer-integrated optoelectronic tweezers system for simultaneous manipulation of hundreds of 60 nm gold nanoparticles in an arbitrary pattern. We use a fluid lipid bilayer membrane with a similar to 5 nm thickness supported by a photoconductive electrode to confine the diffusion of chemically tethered nanoparticles in a two-dimensional space. Application of an external a.c. voltage together with patterned light selectively activates the photoconducting electrode that creates strong electric field localized near the surface. The field strength changes most significantly at the activated electrode surface where the particles tethered to the membrane thus experience the strongest dielectrophoretic forces. This design allows us to efficiently achieve dynamic, reversible, and parallel manipulation of many nanoparticles. Our approach to integrate biomolecular structures with optoelectronic devices offers a new platform enabling the study of thermodynamics in many particle systems and the selective transport of nanoscale objects for broad applications in biosensing and cellular mechanotransductions. C1 [Ota, Sadao; Wang, Sheng; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Wang, Yuan/F-7211-2011; Yin, Xiaobo/A-4142-2011; Zhang, Xiang/F-6905-2011 FU U.S. Army Research Office (ARO) MURI program [W911NF-09-1-0539]; U.S. National Science Foundation [NSF CMMI-1120724] FX The authors acknowledge funding support from the U.S. Army Research Office (ARO) MURI program (W911NF-09-1-0539) and the U.S. National Science Foundation (NSF CMMI-1120724). NR 45 TC 10 Z9 11 U1 4 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2766 EP 2770 DI 10.1021/nl400999f PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100072 PM 23659726 ER PT J AU Wang, E Desai, MS Lee, SW AF Wang, Eddie Desai, Malav S. Lee, Seung-Wuk TI Light-Controlled Graphene-Elastin Composite Hydrogel Actuators SO NANO LETTERS LA English DT Article DE Elastin-like polypeptides; graphene; actuators; hydrogels; composites ID NANOCOMPOSITE HYDROGELS; PHASE-TRANSITION; POLYMER GELS; PROTEIN; OXIDE; FUNCTIONALIZATION; PEPTIDES; MEMORY AB Hydrogels actuators (HAs) that can reversibly respond to stimuli have applications in diverse fields. However, faster response rates and improved control over actuation timing and location are required to fulfill their potential. To address these criteria, we synthesized near infrared light driven HAs by interfacing genetically engineered elastin-like polypeptides with reduced-graphene oxide sheets. The resulting nanocomposites exhibited rapid and tunable motions controlled by light position, intensity, and path, including finger-like flexing and crawling. This work demonstrates the ability of rationally designed proteins to be combined with synthetic nanoparticles for the creation of macroscale functional materials. C1 [Lee, Seung-Wuk] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Lee, SW (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM leesw@berkeley.edu OI Desai, Malav/0000-0002-4160-6944; Wang, Eddie/0000-0002-9814-0102 FU U.S. Army Engineering Research Development Center [W912HZ-11-2-0047]; National Science Foundation Center of Integrated Nanomechanical Systems [EEC-0832819]; NIH ARRA supplement to an NIDCR R21 Grant [DE 018360-02] FX This work was supported by the U.S. Army Engineering Research Development Center (W912HZ-11-2-0047), National Science Foundation Center of Integrated Nanomechanical Systems (EEC-0832819), and NIH ARRA supplement to an NIDCR R21 Grant (DE 018360-02). The authors thank Dr. Jin-Woo Oh and Dong Shin Choi for helping with laser setup and video capture. NR 45 TC 117 Z9 117 U1 42 U2 387 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2826 EP 2830 DI 10.1021/nl401088b PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100083 PM 23647361 ER PT J AU Tongay, S Zhou, J Ataca, C Liu, J Kang, JS Matthews, TS You, L Li, JB Grossman, JC Wu, JQ AF Tongay, Sefaattin Zhou, Jian Ataca, Can Liu, Jonathan Kang, Jeong Seuk Matthews, Tyler S. You, Long Li, Jingbo Grossman, Jeffrey C. Wu, Junqiao TI Broad-Range Modulation of Light Emission in Two-Dimensional Semiconductors by Molecular Physisorption Gating SO NANO LETTERS LA English DT Article DE 2D semiconductors; optical emission; charge transfer; excitons; molecular physi-sorption ID QUANTUM-WELLS; VALLEY POLARIZATION; OPTICAL-ABSORPTION; MONOLAYER MOS2; ELECTRON-GAS; PHOTOLUMINESCENCE; TRIONS AB In the monolayer limit, transition metal dichalcogenides become direct-bandgap, light-emitting semiconductors. The quantum yield of light emission is low and extremely sensitive to the substrate used, while the underlying physics remains elusive. In this work, we report over 100 times modulation of light emission efficiency of these two-dimensional semiconductors by physical adsorption of O-2 and/or H2O molecules, while inert gases do not cause such effect. The O-2 and/or H2O pressure acts quantitatively as an instantaneously reversible "molecular gating" force, providing orders of magnitude broader control of carrier density and light emission than conventional electric field gating. Physi-sorbed O-2 and/or H2O molecules electronically deplete n-type materials such as MoS2 and MoSe2, which weakens electrostatic screening that would otherwise destabilize excitons, leading to the drastic enhancement in photoluminescence. In p-type materials such as WSe2, the molecular physisorption results in the opposite effect Unique and universal in two-dimensional semiconductors, the effect offers a new mechanism for modulating electronic interactions and implementing optical devices. C1 [Tongay, Sefaattin; Zhou, Jian; Liu, Jonathan; Kang, Jeong Seuk; Matthews, Tyler S.; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ataca, Can; Grossman, Jeffrey C.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [You, Long] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Li, Jingbo] Chinese Acad Sci, Inst Semiconduct, Beijing 100083, Peoples R China. [Wu, Junqiao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wu, JQ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Tongay, Sefaattin/E-6388-2011; Wu, Junqiao/G-7840-2011 OI Wu, Junqiao/0000-0002-1498-0148 FU U.S. Department of Energy Early Career Award [DE-FG02-11ER46796]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy Early Career Award DE-FG02-11ER46796. Part of the materials processing and device fabrication used facilities at the Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Dr. Changhyun Ko for his help on nano-Auger measurements. NR 25 TC 183 Z9 186 U1 23 U2 227 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2831 EP 2836 DI 10.1021/nl4011172 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100084 PM 23627637 ER PT J AU Widawsky, JR Chen, W Vazquez, H Kim, T Breslow, R Hybertsen, MS Venkataraman, L AF Widawsky, J. R. Chen, W. Vazquez, H. Kim, T. Breslow, R. Hybertsen, M. S. Venkataraman, L. TI Length-Dependent Thermopower of Highly Conducting Au-C Bonded Single Molecule Junctions SO NANO LETTERS LA English DT Article DE Molecular thermopower; molecular conductance; density functional theory; Au-C covalent bonds ID ELECTRONIC-STRUCTURE; CONTACT CHEMISTRY; THERMOELECTRICITY; HETEROJUNCTIONS; TRANSPORT AB We report the simultaneous measurement of conductance and thermopower of highly conducting single-molecule junctions using a scanning tunneling microscope-based break-junction setup. We start with molecular backbones (alkanes and oligophenyls) terminated with trimethyltin end groups that cleave off in situ to create junctions where terminal carbons are covalently bonded to the Au electrodes. We apply a thermal gradient across these junctions and measure their conductance and thermopower. Because of the electronic properties of the highly conducting Au-C links, the thermoelectric properties and power factor are very high. Our results show that the molecular thermopower increases nonlinearly with the molecular length while conductance decreases exponentially with increasing molecular length. Density functional theory calculations show that a gateway state representing the Au-C covalent bond plays a key role in the conductance. With this as input, we analyze a series of simplified models and show that a tight-binding model that explicitly includes the gateway states and the molecular backbone states accurately captures the experimentally measured conductance and thermopower trends. C1 [Widawsky, J. R.; Vazquez, H.; Kim, T.; Venkataraman, L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Hybertsen, M. S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Chen, W.; Kim, T.; Breslow, R.] Columbia Univ, Dept Chem, New York, NY 10027 USA. RP Venkataraman, L (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM mhyberts@bnl.gov; lv2117@columbia.edu RI chen, wenbo/I-7263-2013; Vazquez, Hector/G-5788-2014; OI Vazquez, Hector/0000-0002-3865-9922; Hybertsen, Mark S/0000-0003-3596-9754; Venkataraman, Latha/0000-0002-6957-6089 FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-SC0001085]; U.S. Departement of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Nanoscience and Engineering center by the New York State Office of Science, Technology, and Academic Research (NYSTAR); Packard Foundation FX Overall project coordination, measurements, and sample synthesis were supported as part of the Center for Re-Defining Photovoltaic Efficiency Through Molecular-Scale Control, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award DE-SC0001085. Part of this work was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Departement of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. H.V. and T.K. were supported through the Nanoscience and Engineering center by the New York State Office of Science, Technology, and Academic Research (NYSTAR). L.V. thanks the Packard Foundation for support. NR 40 TC 55 Z9 56 U1 2 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2889 EP 2894 DI 10.1021/nl4012276 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100094 PM 23682792 ER PT J AU Guo, CH Lin, YH Witman, MD Smith, KA Wang, C Hexemer, A Strzalka, J Gomez, ED Verduzco, R AF Guo, Changhe Lin, Yen-Hao Witman, Matthew D. Smith, Kendall A. Wang, Cheng Hexemer, Alexander Strzalka, Joseph Gomez, Enrique D. Verduzco, Rafael TI Conjugated Block Copolymer Photovoltaics with near 3% Efficiency through Microphase Separation SO NANO LETTERS LA English DT Article DE Self-assembly; organic solar cells; all conjugated block copolymers; RSOXS; GIWAXS ID X-RAY-SCATTERING; POLYMER SOLAR-CELLS; OPEN-CIRCUIT VOLTAGE; SEMICONDUCTOR HETEROJUNCTIONS; ORGANIC PHOTOVOLTAICS; DIBLOCK COPOLYMERS; EXCITON DIFFUSION; BLENDS; CHARGE; PERFORMANCE AB Organic electronic materials have the potential to impact almost every aspect of modern life including how we access information, light our homes, and power personal electronics. Nevertheless, weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. Here, we demonstrate control of donor acceptor heterojunctions through microphase-separated conjugated block copolymers When utilized as the active layer of photovoltaic cells, block copolymer based devices demonstrate efficient photoconversion well beyond devices composed of homopolymer blends. The 3% block copolymer device efficiencies are achieved without the use of a fullerene acceptor. X-ray scattering results reveal that the remarkable performance of block copolymer solar cells is due to self-assembly into mesoscale lamellar morphologies with primarily face on crystallite orientations. Conjugated block copolymers thus provide a pathway to enhance performance in excitonic solar cells through control of donor acceptor interfaces. C1 Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA. [Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Strzalka, Joseph] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. EM edg12@psu.edu; rafaelv@rice.edu RI Wang, Cheng/A-9815-2014 FU NSF [DMR-1056199]; Office of Science, Office of Basic energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357]; Welch Foundation for Chemical Research [C-1750]; Shell Center for Sustainability; Louis and Peaches Owen FX C.G., M.D.W., and E.D.G. acknowledge financial support from NSF under Award DMR-1056199. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of SCience, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. R.V., K.A.S., and Y.H.L. acknowledge support from the Welch Foundation for Chemical Research (Grant C-1750), the Shell Center for Sustainability, and Louis and Peaches Owen. The authors acknowledge John Asbury at the Pennsylvania State University for use of his UV-vis spectrometer. NR 66 TC 100 Z9 100 U1 6 U2 146 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2957 EP 2963 DI 10.1021/nl401420s PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100104 PM 23687903 ER PT J AU Jungjohann, KL Bliznakov, S Sutter, PW Stach, EA Sutter, EA AF Jungjohann, K. L. Bliznakov, S. Sutter, P. W. Stach, E. A. Sutter, E. A. TI In Situ Liquid Cell Electron Microscopy of the Solution Growth of Au-Pd Core-Shell Nanostructures SO NANO LETTERS LA English DT Article DE Liquid cell TEM; in situ TEM; gold-palladium core-shell nanoparticles; seeded growth of Pd in solution; diffusion of aqueous electron ID GOLD-PALLADIUM CATALYSTS; BIMETALLIC GOLD/PALLADIUM CATALYSTS; ADVANCED CATHODE CATALYSTS; PEM FUEL-CELLS; AQUEOUS-SOLUTION; HYDROGEN-PEROXIDE; INITIAL-STAGES; SEMICONDUCTOR NANOWIRES; ABSORPTION-SPECTRA; IRRADIATED WATER AB Using in situ liquid cell electron microscopy we investigate Pd growth in dilute aqueous Pd salt solutions containing Au nanoparticle seeds. Au-Pd core-shell nanostructures are formed via deposition of Pd-0, generated by the reduction of chloropalladate complexes by radicals, such as hydrated electrons (e(aq)(-)) induced by the electron beam in the solution. The size and shape of the Au seeds determine the morphology of the Pd shells, via preferential Pd incorporation in low-coordination sites and avoidance of extended facets. Analysis of the Pd incorporation on Au particles at different distances from a focused electron beam provides a quantitative picture of the growth process and shows that the growth is limited by the diffusion of e(aq)(-) in the solution. C1 Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM esutter@bnl.gov RI Stach, Eric/D-8545-2011 OI Stach, Eric/0000-0002-3366-2153 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors would like to thank Dr. S. Lymar for helpful discussions. This research has been carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 63 TC 63 Z9 63 U1 21 U2 212 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2964 EP 2970 DI 10.1021/nl4014277 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100105 PM 23721080 ER PT J AU Wang, HL Wang, YH Zhu, ZW Sapi, A An, K Kennedy, G Michalak, WD Somorjai, GA AF Wang, Hailiang Wang, Yihai Zhu, Zhongwei Sapi, Andras An, Kwangjin Kennedy, Griffin Michalak, William D. Somorjai, Gabor A. TI Influence of Size-Induced Oxidation State of Platinum Nanoparticles on Selectivity and Activity in Catalytic Methanol Oxidation in the Gas Phase SO NANO LETTERS LA English DT Article DE Heterogeneous catalysis; methanol oxidation; Pt nanoparticles; size effect ID OXYGEN REDUCTION REACTION; PARTICLE-SIZE; PYRROLE HYDROGENATION; VIBRATIONAL SPECTROSCOPY; STRUCTURE SENSITIVITY; MESOPOROUS SILICA; SHAPE CONTROL; FUEL-CELL; NM; NANOCRYSTALS AB Pt nanoparticles with various sizes of 1, 2, 4, and 6 nm were synthesized and studied as catalysts for gas-phase methanol oxidation reaction toward formaldehyde and carbon dioxide under ambient pressure (10 Ton of methanol, 50 Torr of oxygen, and 710 Ton of helium) at a low temperature of 60 degrees C. While the 2, 4, and 6 rim nanoparticles exhibited similar catalytic activity and selectivity, the 1 nm nanoparticles showed a significantly higher selectivity toward partial oxidation of methanol to formaldehyde, but a lower total turnover frequency. The observed size effect in catalysis was correlated to the size dependent structure and oxidation state of the Pt nanoparticles. X-ray photoelectron spectroscopy and infrared vibrational spectroscopy using adsorbed CO as molecular probes revealed that the 1 nm nanoparticles were predominantly oxidized while the 2, 4, and 6 nm nanoparticles were largely metallic. Transmission electron microscopy imaging witnessed the transition from crystalline to quasicrystalline structure as the size of the Pt nanoparticles was reduced to 1 nm. The results highlighted the important impact of size induced oxidation state of Pt nanoparticles on catalytic selectivity as well as activity in gas-phase methanol oxidation reactions. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Sapi, Andras/G-3527-2015 OI Sapi, Andras/0000-0001-6557-0731 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Philomathia Postdoctoral Fellowship; Basic Research Program of Young Scientists by National Natural Science Foundation of China; Chinese University of Hong Kong FX This work is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. H.W. acknowledges support from the Philomathia Postdoctoral Fellowship. Y.W. appreciates support from Basic Research Program of Young Scientists by National Natural Science Foundation of China and Chinese University of Hong Kong. NR 27 TC 31 Z9 31 U1 5 U2 110 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2976 EP 2979 DI 10.1021/nl401568x PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100107 PM 23701488 ER PT J AU Liu, C Tang, JY Chen, HM Liu, B Yang, PD AF Liu, Chong Tang, Jinyao Chen, Hao Ming Liu, Bin Yang, Peidong TI A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting SO NANO LETTERS LA English DT Article DE Artificial photosynthesis; water splitting; nanowire-based heterostructure ID PHOTOELECTROCHEMICAL CELLS; HYDROGEN; EFFICIENCIES; PHOTOLYSIS; ELECTRODE; SYSTEMS AB Artificial photosynthesis, the biomimetic approach to converting sunlight's energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12% solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Chen, Hao Ming/B-8851-2012; OI Chen, Hao Ming/0000-0002-7480-9940; Liu, Chong/0000-0001-5546-3852 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank S. Brittman for helpful discussion. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 30 TC 215 Z9 219 U1 41 U2 399 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2989 EP 2992 DI 10.1021/nl401615t PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100109 PM 23647159 ER PT J AU Zhao, GM Wang, J Ren, Y Beeli, P AF Zhao, Guo-meng Wang, Jun Ren, Yang Beeli, Pieder TI Giant Enhancement and Anomalous Thermal Hysteresis of Saturation Moment in Magnetic Nanoparticles Embedded in Multiwalled Carbon Nanotubes SO NANO LETTERS LA English DT Article DE Giant moment enhancement; Anomalous thermal hysteresis; Multiwalled carbon nanotubes; Magnetic nanoparticles; Magnetic proximity effect; High-field paramagnetic Meissner effect ID SUPERCONDUCTING-LIKE BEHAVIOR; ROOM-TEMPERATURE; GRAPHITE; FERROMAGNETISM AB We report high-energy synchrotron X-ray diffraction spectrum and high-temperature magnetic data for multiwalled carbon nanotubes (MWCNTs) embedded with Fe and Fe3O4 nanoparticles. We unambiguously show that the saturation moments of the embedded Fe and Fe3O4 nanoparticles are enhanced by a factor of about 3.0 compared with what would be expected if they would, be unembedded. More intriguingly the enhanced moments were completely lost When the sample was heated up to 1120 K, and the lost moments were completely recovered through two more thermal cycles below 1020 K. These novel results cannot be explained by the magnetism of the Fe and Fe3O4 impurity phases, the magnetic proximity effect between magnetic nanoparticles and carbon, and the ballistic transport of MWCNTs. C1 Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA. Ningbo Univ, Fac Sci, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China. Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM gzhao2@calstatela.edu FU state of California; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Natural Science Foundation of China [11174165] FX We thank M. Du and F. M. Zhou for the elemental analyses using ICP-MS. We also thank the state of California for providing a fund for a Quantum Design Physical Property Measurement System (PPMS). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was partly supported by the National Natural Science Foundation of China (Grant No. 11174165). NR 17 TC 4 Z9 4 U1 1 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUN PY 2013 VL 13 IS 6 BP 2993 EP 2996 DI 10.1021/nl401685h PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165LJ UT WOS:000320485100110 PM 23701203 ER PT J AU Bahn, CB AF Bahn, Chi Bum TI CHEMICAL EFFECTS ON PWR SUMP STRAINER BLOCKAGE AFTER A LOSS-OF-COOLANT ACCIDENT: REVIEW ON US RESEARCH EFFORTS SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE GSI-191; Sump Strainer; Chemical Effects; Head Loss; Fibrous Debris; Colloidal Particles; Aluminum Solubility ID NUCLEAR-POWER-PLANT; HEAD LOSS; ENVIRONMENT; CORROSION AB Industry- or regulatory-sponsored research activities on the resolution of Generic Safety Issue (GSI)-191 were reviewed, especially on the chemical effects. Potential chemical effects on the head loss across the debris-loaded sump strainer under a post-accident condition were experimentally evidenced by small-scale bench tests, integrated chemical effects test (ICET), and vertical loop head loss tests. Three main chemical precipitates were identified by WCAP-16530-NP: calcium phosphate, aluminum oxyhydroxide, and sodium aluminum silicate. The former two precipitates were also identified as major chemical precipitates by the ICETs. The assumption that all released calcium would form precipitates is reasonable. CalSil insulation needs to be minimized especially in a plant using trisodium phosphate buffer. The assumption that all released aluminum would form precipitates appears highly conservative because ICETs and other studies suggest substantial solubility of aluminum at high temperature and inhibition of aluminum corrosion by silicate or phosphate. The industry-proposed chemical surrogates are quite effective in increasing the head loss across the debris-loaded bed and more effective than the prototypical aluminum hydroxide precipitates generated by in-situ aluminum corrosion. There appears to be some unresolved potential issues related to GSI-191 chemical effects as identified in NUREG/CR-6988. The United States Nuclear Regulatory Commission, however, concluded that the implications of these issues are either not generically significant or are appropriately addressed, although several issues associated with downstream in-vessel effects remain. C1 Argonne Natl Lab, Lemont, IL 60439 USA. RP Bahn, CB (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA. EM bahn@anl.gov FU U.S. Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357] FX This work is supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract # DE-AC02-06CH11357. NR 33 TC 2 Z9 2 U1 2 U2 10 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD JUN PY 2013 VL 45 IS 3 BP 295 EP 310 DI 10.5516/NET.07.2013.705 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 178TA UT WOS:000321469100002 ER PT J AU Chen, YR AF Chen, Yiren TI IRRADIATION EFFECTS OF HT-9 MARTENSITIC STEEL SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE High-Cr Martenistic steels; HT-9; Irradiation Effects; Radiation Damage; Irradiation Embrittlement ID IN-REACTOR CREEP; FERRITIC STEELS; MECHANICAL-PROPERTIES; STRUCTURAL-MATERIALS; NEUTRON IRRADIATION; FRACTURE-TOUGHNESS; DAMAGE PRODUCTION; FUSION HEATS; ALLOYS; BEHAVIOR AB High-Cr martensitic steel HT-9 is one of the candidate materials for advanced nuclear energy systems. Thanks to its excellent thermal conductivity and irradiation resistance, ferritic/martensitic steels such as HT-9 are considered for in-core applications of advanced nuclear reactors. The harsh neutron irradiation environments at the reactor core region pose a unique challenge for structural and cladding materials. Microstructural and microchemical changes resulting from displacement damage are anticipated for structural materials after prolonged neutron exposure. Consequently, various irradiation effects on the service performance of in-core materials need to be understood. In this work, the fundamentals of radiation damage and irradiation effects of the HT-9 martensitic steel are reviewed. The objective of this paper is to provide a background introduction of displacement damage, microstructural evolution, and subsequent effects on mechanical properties of the HT-9 martensitic steel under neutron irradiations. Mechanical test results of the irradiated HT-9 steel obtained from previous fast reactor and fusion programs are summarized along with the information of irradiated microstructure. This review can serve as a starting point for additional investigations on the in-core applications of ferritic/martensitic steels in advanced nuclear reactors. C1 Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Chen, YR (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yiren_chen@anl.gov FU U.S. Department of Energy, Office of Nuclear Energy [DE-AC02-06CH11357] FX This work is supported by the U.S. Department of Energy, Office of Nuclear Energy, under contract # DE-AC02-06CH11357. NR 65 TC 10 Z9 10 U1 6 U2 35 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD JUN PY 2013 VL 45 IS 3 BP 311 EP 322 DI 10.5516/NET.07.2013.706 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 178TA UT WOS:000321469100003 ER PT J AU Ciaccio, G Veranda, M Bonfiglio, D Cappello, S Spizzo, G Chacon, L White, RB AF Ciaccio, G. Veranda, M. Bonfiglio, D. Cappello, S. Spizzo, G. Chacon, L. White, R. B. TI Numerical verification of Orbit and Nemato codes for magnetic topology diagnosis SO PHYSICS OF PLASMAS LA English DT Article ID REVERSED-FIELD PINCH; POLOIDAL CURRENT DRIVE; LYAPUNOV EXPONENT; TRANSPORT; SURFACES; STATES; CHAOS AB We present the results of a benchmark study involving the Orbit and Nemato codes. The two codes have been used to compare magnetic structure in a reversed-field pinch (RFP), where conserved magnetic structures/islands appear both in the core (dominated by m = 1 modes) and in the edge (dominated by m = 0 modes). As input, a snapshot of a 3D nonlinear MHD visco-resistive simulation (produced by the SpeCyl code) has been used. The first test is given by the reconstruction via Poincare surface of section plot of an island generated by a single mode. In this case, the magnetic field topology corresponds to a time-independent Hamiltonian and shows conserved flux-surfaces used as a reference. Both codes successfully yield field lines which follow the same flux surfaces, in both the m = 1 and m = 0 cases. The benchmark between the codes has then been extended to a more complex configuration with chaotic magnetic field, using as input a fully 3D multiple mode RFP condition, characterized by the typical chain of edge magnetic islands providing a transport barrier. Finally, a quantitative benchmark has been performed, using the same 3D input, by estimating the correlation length of the magnetic field line in a bounded stochastic domain. The conclusion is that both codes yield consistent Poincare plot structure on one hand, and very good quantitative agreement in correlation length estimate. This gives confidence to the application of both codes to magnetic topology in the RFX-mod device, for which they are used routinely, as well as for a generic fusion device. C1 [Ciaccio, G.; Veranda, M.] Univ Padua, Padua, Italy. [Bonfiglio, D.; Cappello, S.; Spizzo, G.] Euratom ENEA Assoc, Consorzio RFX, I-35127 Padua, Italy. [Chacon, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [White, R. B.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ciaccio, G (reprint author), Univ Padua, Padua, Italy. EM giovanni.ciaccio@igi.cnr.it; marco.veranda@igi.cnr.it RI Spizzo, Gianluca/B-7075-2009; Bonfiglio, Daniele/I-9398-2012; White, Roscoe/D-1773-2013; Cappello, Susanna/H-9968-2013; OI Spizzo, Gianluca/0000-0001-8586-2168; Bonfiglio, Daniele/0000-0003-2638-317X; White, Roscoe/0000-0002-4239-2685; Cappello, Susanna/0000-0002-2022-1113; Chacon, Luis/0000-0002-4566-8763 FU European Communities FX This work was supported by the European Communities under the contract of Association between EURATOM/ENEA. NR 49 TC 10 Z9 10 U1 3 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2013 VL 20 IS 6 AR 062505 DI 10.1063/1.4811380 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 175ZT UT WOS:000321273200033 ER PT J AU Damiano, PA Johnson, JR AF Damiano, P. A. Johnson, J. R. TI Mirror force induced wave dispersion in Alfven waves SO PHYSICS OF PLASMAS LA English DT Article ID PARALLEL ELECTRIC-FIELDS; MAGNETOSPHERE AB Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfven waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror force effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves. (C) 2013 AIP Publishing LLC. C1 [Damiano, P. A.; Johnson, J. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Damiano, PA (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM pdamiano@pppl.gov FU NASA [NNH09AM53I, NNH09AK63I, NNH11AR071]; NSF [ATM0902730, AGS1203299]; DOE [DE-AC02-09CH11466] FX The authors acknowledge support from NASA grants (NNH09AM53I, NNH09AK63I and NNH11AR071) and NSF grants (ATM0902730 and AGS1203299) and DOE Contract DE-AC02-09CH11466. NR 14 TC 3 Z9 3 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2013 VL 20 IS 6 AR 062901 DI 10.1063/1.4810788 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 175ZT UT WOS:000321273200042 ER PT J AU Egedal, J Le, A Daughton, W AF Egedal, Jan Le, Ari Daughton, William TI A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection SO PHYSICS OF PLASMAS LA English DT Review ID CURRENT SHEET; DAYSIDE MAGNETOPAUSE; MOTION; ACCELERATION; COMPONENT; FLUID; FIELD; CUSP; LINE AB From spacecraft data, it is evident that electron pressure anisotropy develops in collisionless plasmas. This is in contrast to the results of theoretical investigations, which suggest this anisotropy should be limited. Common for such theoretical studies is that the effects of electron trapping are not included; simply speaking, electron trapping is a non-linear effect and is, therefore, eliminated when utilizing the standard methods for linearizing the underlying kinetic equations. Here, we review our recent work on the anisotropy that develops when retaining the effects of electron trapping. A general analytic model is derived for the electron guiding center distribution (f) over bar (v(parallel to), v(perpendicular to)) of an expanding flux tube. The model is consistent with anisotropic distributions observed by spacecraft, and is applied as a fluid closure yielding anisotropic equations of state for the parallel and perpendicular components (relative to the local magnetic field direction) of the electron pressure. In the context of reconnection, the new closure accounts for the strong pressure anisotropy that develops in the reconnection regions. It is shown that for generic reconnection in a collisionless plasma nearly all thermal electrons are trapped, and dominate the properties of the electron fluid. A new numerical code is developed implementing the anisotropic closure within the standard two-fluid framework. The code accurately reproduces the detailed structure of the reconnection region observed in fully kinetic simulations. These results emphasize the important role of pressure anisotropy for the reconnection process. In particular, for reconnection geometries characterized by small values of the normalized upstream electron pressure, beta(e infinity), the pressure anisotropy becomes large with p(parallel to) >> p(perpendicular to) and strong parallel electric fields develop in conjunction with this anisotropy. The parallel electric fields can be sustained over large spatial scales and, therefore, become important for electron acceleration. (C) 2013 AIP Publishing LLC. C1 [Egedal, Jan; Le, Ari] MIT, Dept Phys, Cambridge, MA 02139 USA. [Egedal, Jan; Le, Ari] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Daughton, William] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Egedal, J (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. RI Daughton, William/L-9661-2013 FU DOE [DE-FG02-06ER54878, ER55099]; NASA [NNX10AL11G]; NSF CAREER [0844620]; NASA Heliophysics Theory Program at LANL FX We gratefully acknowledge scientific contributions, help and support by several colleagues including Dr. M. Porkolab, Dr. A. Fasoli, Dr. W. Fox, Dr. N. Katz, Dr. O. Ohia, Dr. A. Vrublevskis, Dr. J. Ng, Dr. V. S. Lukin, Dr. H. Karimabadi, Dr. J. F. Drake, Dr. P. L. Pritchett, Dr. G. Lapenta, Dr. M. Oieroset, Dr. R. P. Lin, Dr. T. D. Phan, Dr. L.-J. Chen, Dr. H. Ji, Dr. P. Cassak, Dr. F. I. Parra, Dr. A. Ram, Dr. D. Ernst, and Dr. J. Wright. The work at MIT was funded in part by DOE Grant Nos. DE-FG02-06ER54878 and ER55099, NASA grant NNX10AL11G, an NSF CAREER grant 0844620, and by the NASA Heliophysics Theory Program at LANL. Simulations were carried out using LANL institutional computing resources, the Pleiades computer at NASA, and Hopper at NERSC. NR 63 TC 37 Z9 37 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2013 VL 20 IS 6 AR 061201 DI 10.1063/1.4811092 PG 18 WC Physics, Fluids & Plasmas SC Physics GA 175ZT UT WOS:000321273200003 ER PT J AU Hao, GZ Liu, YQ Wang, AK Matsunaga, G Okabayashi, M Mou, ZZ Qiu, XM AF Hao, G. Z. Liu, Y. Q. Wang, A. K. Matsunaga, G. Okabayashi, M. Mou, Z. Z. Qiu, X. M. TI Destabilization of low-n peeling modes by trapped energetic particles SO PHYSICS OF PLASMAS LA English DT Article ID HYDROMAGNETIC-STABILITY; KINK MODE; TOKAMAK; REGIME; JET AB The kinetic effect of trapped energetic particles (EPs), arising from perpendicular neutral beam injection, on the stable low-n peeling modes in tokamak plasmas is investigated, through numerical solution of the mode's dispersion relation derived from an energy principle. A resistive-wall peeling mode with m/n = 6/1, with m and n being the poloidal and toroidal mode numbers, respectively, is destabilized by trapped EPs as the EPs' pressure exceeds a critical value beta*(c), which is sensitive to the pitch angle of trapped EPs. The dependence of beta*(c) on the particle pitch angle is eventually determined by the bounce average of the mode eigenfunction. Peeling modes with higher m and n numbers can also be destabilized by trapped EPs. Depending on the wall distance, either a resistive-wall peeling mode or an ideal-kink peeling mode can be destabilized by EPs. (C) 2013 AIP Publishing LLC. C1 [Hao, G. Z.; Wang, A. K.; Mou, Z. Z.; Qiu, X. M.] Southwestern Inst Phys, Chengdu 610041, Peoples R China. [Liu, Y. Q.] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Matsunaga, G.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hao, GZ (reprint author), Southwestern Inst Phys, POB 432, Chengdu 610041, Peoples R China. FU National Natural Science Foundation of China [11205051]; National Magnetic Confinement Fusion Science Program [2009GB101002, 2010GB106006]; RCUK Energy Programme [EP/I501045]; European Communities FX This work was supported by National Natural Science Foundation of China under Grant No. 11205051 and also supported by National Magnetic Confinement Fusion Science Program under Grant Nos. 2009GB101002 and 2010GB106006. This work was part-funded by the RCUK Energy Programme under Grant No. EP/I501045 and the European Communities under the contract of Association between EURATOM and CCFE. The views and opinions expressed herein do not necessarily reflect those of the European Commission. G. Z. Hao acknowledges the hospitality of Euratom/CCFE Fusion Association, where part of the work was completed. NR 29 TC 3 Z9 3 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2013 VL 20 IS 6 AR 062502 DI 10.1063/1.4811382 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 175ZT UT WOS:000321273200030 ER PT J AU Hochhaus, DC Aurand, B Basko, M Ecker, B Kuhl, T Ma, T Rosmej, F Zielbauer, B Neumayer, P AF Hochhaus, D. C. Aurand, B. Basko, M. Ecker, B. Kuehl, T. Ma, T. Rosmej, F. Zielbauer, B. Neumayer, P. TI X-ray radiographic expansion measurements of isochorically heated thin wire targets SO PHYSICS OF PLASMAS LA English DT Article ID LASER; CONFINEMENT; PLASMAS; DENSE AB Solid density matter at temperatures ranging from 150 eV to <5 eV has been created by irradiating thin wire targets with high-energy laser pulses at intensities approximate to 10(18)W/cm(2). Energy deposition and transport of the laser-produced fast electrons are inferred from spatially resolved K-alpha-spectroscopy. Time resolved x-ray radiography is employed to image the target mass density up to solid density and proves isochoric heating. The subsequent hydrodynamic evolution of the target is observed for up to 3 ns and is compared to radiation-hydrodynamic simulations. At distances of several hundred micrometers from the laser interaction region, where temperatures of 5-20 eV and small temperature gradients are found, the hydrodynamic evolution of the wire is a near axially symmetric isentropic expansion, and good agreement between simulations and radiography data confirms heating of the wire over hundreds of micrometers. (C) 2013 AIP Publishing LLC. C1 [Hochhaus, D. C.; Aurand, B.; Basko, M.; Kuehl, T.; Neumayer, P.] GSI Darmstadt, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Hochhaus, D. C.] Goethe Univ Frankfurt, D-60438 Frankfurt, Germany. [Hochhaus, D. C.; Aurand, B.; Ecker, B.; Neumayer, P.] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany. [Aurand, B.; Ecker, B.; Kuehl, T.] Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany. [Basko, M.] Alikhanov Inst Theoret & Expt Phys, Moscow 117218, Russia. [Ecker, B.; Kuehl, T.; Zielbauer, B.] Helmholtz Inst Jena, D-07743 Jena, Germany. [Kuehl, T.; Zielbauer, B.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Ma, T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Rosmej, F.] UPMC, UMR7605, LULI, F-75252 Paris 05, France. [Rosmej, F.] Ecole Polytech, LULI, PAPD, F-91128 Palaiseau, France. RP Hochhaus, DC (reprint author), GSI Darmstadt, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. EM p.neumayer@gsi.de RI Ma, Tammy/F-3133-2013; Kuhl, Thomas/C-2243-2012; Basko, Mikhail/Q-7767-2016 OI Ma, Tammy/0000-0002-6657-9604; Kuhl, Thomas/0000-0001-6306-4579; Basko, Mikhail/0000-0001-8809-8601 FU PHELIX laser team; EMMI FX We would like to acknowledge the support by the PHELIX laser team. This work was supported by EMMI. NR 37 TC 4 Z9 4 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2013 VL 20 IS 6 AR 062703 DI 10.1063/1.4810801 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 175ZT UT WOS:000321273200038 ER PT J AU Hollmann, EM Commaux, N Eidietis, NW Humphreys, DA Jernigan, TJ Lasnier, CJ Moyer, RA Pitts, RA Sugihara, M Strait, EJ Watkins, J Wesley, JC AF Hollmann, E. M. Commaux, N. Eidietis, N. W. Humphreys, D. A. Jernigan, T. J. Lasnier, C. J. Moyer, R. A. Pitts, R. A. Sugihara, M. Strait, E. J. Watkins, J. Wesley, J. C. TI Characterization of heat loads from mitigated and unmitigated vertical displacement events in DIII-D SO PHYSICS OF PLASMAS LA English DT Article ID DISRUPTION MITIGATION; OPERATIONAL LIMITS; MHD STABILITY; POWER LOAD; CHAPTER 3; QUENCH AB Experiments have been conducted on the DIII-D tokamak to study the distribution and repeatability of heat loads and vessel currents resulting from vertical displacement events (VDEs). For unmitigated VDEs, the radiated power fraction appears to be of order 50%, with the remaining power dominantly conducted to the vessel walls. Shot-to-shot scatter in heat loads measured at one toroidal location is not large (<+/- 50%), suggesting that toroidal asymmetries in conducted heat loads are not large. Conducted heat loads are clearly observed during the current quench (CQ) of both mitigated and unmitigated disruptions. Significant poloidal asymmetries in heat loads and radiated power are often observed in the experiments but are not yet understood. Energy dissipated resistively in the conducting walls during the CQ appears to be small (<5%). The mitigating effect of neon massive gas injection (MGI) as a function of MGI trigger delay has also been studied. Improved mitigation is observed as the MGI trigger delay is decreased. For sufficiently early MGI mitigation, close to 100% radiated energy and a reduction of roughly a factor 2 in vessel forces is achieved. (C) 2013 AIP Publishing LLC. C1 [Hollmann, E. M.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Commaux, N.; Jernigan, T. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Eidietis, N. W.; Humphreys, D. A.; Strait, E. J.; Wesley, J. C.] Gen Atom Co, San Diego, CA 92186 USA. [Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Pitts, R. A.; Sugihara, M.] ITER Org, F-13115 St Paul Les Durance, France. [Watkins, J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hollmann, EM (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. FU U.S. Department of Energy [DE-FG02-07ER54917, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC05-06OR23100] FX This work was supported in part by the U.S. Department of Energy under DE-FG02-07ER54917, DE-FC02-04ER54698, DE-AC05-00OR22725, and DE-AC05-06OR23100. Assistance of E. Unterberg in adjusting filterscope gains and M. Fenstermacher with running the IR camera is gratefully acknowledged. Helpful suggestions from M. Lehnen, S. Putvinski, and R. Goldston are acknowledged. NR 24 TC 7 Z9 7 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2013 VL 20 IS 6 AR 062501 DI 10.1063/1.4810792 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 175ZT UT WOS:000321273200029 ER PT J AU Ji, HT Ono, Y Matsumoto, R AF Ji, Hantao Ono, Yasushi Matsumoto, Ryoji TI Preface to Special Topic Section: Advances in Magnetic Reconnection Research in Space and Laboratory Plasmas. Part II SO PHYSICS OF PLASMAS LA English DT Article C1 [Ji, Hantao] Princeton Univ, Ctr Magnet Self Org, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Ji, Hantao] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08544 USA. [Ono, Yasushi] Univ Tokyo, Grad Sch Frontier Sci, Chiba 2778561, Japan. [Matsumoto, Ryoji] Chiba Univ, Grad Sch Sci, Dept Phys, Chiba 2638522, Japan. RP Ji, HT (reprint author), Princeton Univ, Ctr Magnet Self Org, Dept Astrophys Sci, Princeton, NJ 08544 USA. NR 10 TC 0 Z9 0 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2013 VL 20 IS 6 AR 061101 DI 10.1063/1.4811118 PG 3 WC Physics, Fluids & Plasmas SC Physics GA 175ZT UT WOS:000321273200002 ER PT J AU Knapp, PF Sinars, DB Hahn, KD AF Knapp, P. F. Sinars, D. B. Hahn, K. D. TI Diagnosing suprathermal ion populations in Z-pinch plasmas using fusion neutron spectra SO PHYSICS OF PLASMAS LA English DT Article ID SPACE PLASMAS; KAPPA-DISTRIBUTIONS; ACCELERATION; RUNAWAY; FOCUS AB The existence of suprathermal ion populations gives rise to significant broadening of and modifications to the fusion neutron spectrum. We show that when this population takes the form of a power-law at high energies, specific changes occur to the spectrum which are diagnosable. In particular, the usual Gaussian spectral shape produced by a thermal plasma is replaced by a Lorentz-like spectrum with broad wings extending far from the spectral peak. Additionally, it is found that the full width at half maximum of the spectrum depends on both the ion temperature and the power-law exponent. This causes the use of the spectral width for determination of the ion temperature to be unreliable. We show that these changes are distinguishable from other broadening mechanisms, such as temporal and motional broadening, and that detailed fitting of the spectral shape is a promising method for extracting information about the state of the ions. (C) 2013 AIP Publishing LLC. C1 [Knapp, P. F.; Sinars, D. B.; Hahn, K. D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Knapp, PF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04- 94AL85000] FX The authors would like to thank Dr. Brian Appelbe and Dr. Jeremy Chittenden for helpful conversations during the course of this work. We would also like to thank Dr. Christine Coverdale and the neutron diagnostics group on the Z machine for conducting the experiments and collecting and analyzing the data discussed here. Finally, we would like to thank Dr. Adam Sefkow for his valuable input during the preparation of this manuscript. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04- 94AL85000. NR 32 TC 5 Z9 5 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2013 VL 20 IS 6 AR 062701 DI 10.1063/1.4810805 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 175ZT UT WOS:000321273200036 ER PT J AU Roytershteyn, V Dorfman, S Daughton, W Ji, H Yamada, M Karimabadi, H AF Roytershteyn, V. Dorfman, S. Daughton, W. Ji, H. Yamada, M. Karimabadi, H. TI Electromagnetic instability of thin reconnection layers: Comparison of three-dimensional simulations with MRX observations SO PHYSICS OF PLASMAS LA English DT Article ID HYBRID-DRIFT INSTABILITY; MAGNETIC RECONNECTION; CURRENT SHEET; PLASMA; MAGNETOPAUSE; RESISTIVITY AB The influence of current-aligned instabilities on magnetic reconnection in weakly collisional regimes is investigated using experimental observations from Magnetic Reconnection Experiment (MRX) [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)] and large-scale fully kinetic simulations. In the simulations as well as in the experiment, the dominant instability is localized near the center of the reconnection layer, produces large perturbations of the magnetic field, and is characterized by the wavenumber that is a geometric mean between electron and ion gyroradii k similar to (rho(e)rho(i))(-1/2). However, both the simulations and the experimental observations suggest the instability is not the dominant reconnection mechanism under parameters typical of MRX. (C) 2013 AIP Publishing LLC. C1 [Roytershteyn, V.; Karimabadi, H.] SciberQuest Inc, Del Mar, CA 92014 USA. [Dorfman, S.; Ji, H.; Yamada, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Karimabadi, H.] Univ Calif San Diego, ECE Dept, San Diego, CA 92093 USA. RP Roytershteyn, V (reprint author), SciberQuest Inc, Del Mar, CA 92014 USA. RI Yamada, Masaaki/D-7824-2015; Daughton, William/L-9661-2013; OI Yamada, Masaaki/0000-0003-4996-1649; Roytershteyn, Vadim/0000-0003-1745-7587 FU NSF/DOE [1202018]; U.S. Department of Energy; NASA's Heliophysics Theory Program; DOE Office of Sciences-Fusion Energy Science [DE-AC02-09CH11466]; NASA [NNH10AO47I]; DOE FES Fellowship; NDSEG Fellowship Program; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-05CH11231]; National Energy Research Scientific Computing Center FX We gratefully acknowledge support the from NSF/DOE program on basic plasma physics (Award No. 1202018), the U.S. Department of Energy through the LANL/LDRD Program, and from NASA's Heliophysics Theory Program. Contributions from MRX group were partially supported by DOE Office of Sciences-Fusion Energy Science under Contract No. DE-AC02-09CH11466 and NASA Geospace Science Award NNH10AO47I. S. D. was supported by a DOE FES Fellowship and the NDSEG Fellowship Program. Some of the simulations were performed on Roadrunner supercomputer at LANL supported through the Advanced Simulation and Computing program. In addition, this research utilized computational resources of the following centers: Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725; National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Additional simulations were performed using resources provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. NR 39 TC 9 Z9 9 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2013 VL 20 IS 6 AR 061212 DI 10.1063/1.4811371 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 175ZT UT WOS:000321273200014 ER PT J AU Shiraishi, S Benedetti, C Gonsalves, AJ Nakamura, K Shaw, BH Sokollik, T van Tilborg, J Geddes, CGR Schroeder, CB Toth, C Esarey, E Leemans, WP AF Shiraishi, S. Benedetti, C. Gonsalves, A. J. Nakamura, K. Shaw, B. H. Sokollik, T. van Tilborg, J. Geddes, C. G. R. Schroeder, C. B. Toth, Cs Esarey, E. Leemans, W. P. TI Laser red shifting based characterization of wakefield excitation in a laser-plasma accelerator SO PHYSICS OF PLASMAS LA English DT Article ID ELECTRON-ACCELERATORS; PULSES; INJECTION AB Optical spectra of a drive laser exiting a channel guided laser-plasma accelerator (LPA) are analyzed through experiments and simulations to infer the magnitude of the excited wakefields. The experiments are performed at sufficiently low intensity levels and plasma densities to avoid electron beam generation via self-trapping. Spectral redshifting of the laser light is studied as an indicator of the efficiency of laser energy transfer into the plasma through the generation of coherent plasma wakefields. Influences of input laser energy, plasma density, temporal and spatial laser profiles, and laser focal location in a plasma channel are analyzed. Energy transfer is found to be sensitive to details of laser pulse shape and focal location. The experimental conditions for these critical parameters are modeled and included in particle-in-cell simulations. Simulations reproduce the redshift of the laser within uncertainties of the experiments and produce an estimate of the wake amplitudes in the experiments as a function of amount of redshift. The results support the practical use of laser redshifting to quantify the longitudinally averaged accelerating field that a particle would experience in an LPA powered below the self-trapping limit. (C) 2013 AIP Publishing LLC. C1 [Shiraishi, S.; Benedetti, C.; Gonsalves, A. J.; Nakamura, K.; Shaw, B. H.; Sokollik, T.; van Tilborg, J.; Geddes, C. G. R.; Schroeder, C. B.; Toth, Cs; Esarey, E.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Shiraishi, S.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Shiraishi, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Sokollik, Thomas/P-2584-2015; OI Schroeder, Carl/0000-0002-9610-0166 FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [PHY-0935197] FX This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and by the National Science Foundation under Grant No. PHY-0935197 and used the computational facilities at NERSC. S. S. gratefully acknowledges Professor Young-Kee Kim for her support and advice. NR 31 TC 13 Z9 13 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2013 VL 20 IS 6 AR 063103 DI 10.1063/1.4810802 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 175ZT UT WOS:000321273200048 ER PT J AU Polley, S Huang, DB Hauenstein, AV Fusco, AJ Zhong, XY Vu, D Schrofelbauer, B Kim, Y Hoffmann, A Verma, IM Ghosh, G Huxford, T AF Polley, Smarajit Huang, De-Bin Hauenstein, Arthur V. Fusco, Amanda J. Zhong, Xiangyang Vu, Don Schroefelbauer, Baerbel Kim, Youngchang Hoffmann, Alexander Verma, Inder M. Ghosh, Gourisankar Huxford, Tom TI A Structural Basis for I kappa B Kinase 2 Activation Via Oligomerization-Dependent Trans Auto-Phosphorylation SO PLOS BIOLOGY LA English DT Article ID IKK-BETA SUBUNIT; PROTEIN-KINASES; DIRECT PHOSPHORYLATION; COMPLEX; NEMO; CRYSTALLOGRAPHY; ALPHA; TRANSCRIPTION; RECOGNITION; SPECIFICITY AB Activation of the I kappa B kinase (IKK) is central to NF-kappa B signaling. However, the precise activation mechanism by which catalytic IKK subunits gain the ability to induce NF-kappa B transcriptional activity is not well understood. Here we report a 4 angstrom x-ray crystal structure of human IKK2 (hIKK2) in its catalytically active conformation. The hIKK2 domain architecture closely resembles that of Xenopus IKK2 (xIKK2). However, whereas inactivated xIKK2 displays a closed dimeric structure, hIKK2 dimers adopt open conformations that permit higher order oligomerization within the crystal. Reversible oligomerization of hIKK2 dimers is observed in solution. Mutagenesis confirms that two of the surfaces that mediate oligomerization within the crystal are also critical for the process of hIKK2 activation in cells. We propose that IKK2 dimers transiently associate with one another through these interaction surfaces to promote trans auto-phosphorylation as part of their mechanism of activation. This structure-based model supports recently published structural data that implicate strand exchange as part of a mechanism for IKK2 activation via trans auto-phosphorylation. Moreover, oligomerization through the interfaces identified in this study and subsequent trans auto-phosphorylation account for the rapid amplification of IKK2 phosphorylation observed even in the absence of any upstream kinase. C1 [Polley, Smarajit; Huang, De-Bin; Fusco, Amanda J.; Zhong, Xiangyang; Vu, Don; Schroefelbauer, Baerbel; Hoffmann, Alexander; Ghosh, Gourisankar] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Hauenstein, Arthur V.; Huxford, Tom] San Diego State Univ, Dept Chem & Biochem, Struct Biochem Lab, San Diego, CA 92182 USA. [Schroefelbauer, Baerbel; Hoffmann, Alexander] Univ Calif San Diego, Signaling Syst Lab, La Jolla, CA 92093 USA. [Kim, Youngchang] Argonne Natl Lab, Argonne, IL 60439 USA. [Verma, Inder M.] Salk Inst Biol Studies, Genet Lab, La Jolla, CA 92037 USA. RP Polley, S (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. EM gghosh@ucsd.edu; thuxford@mail.sdsu.edu FU U.S. DOE [DE-AC02-06CH11357]; NIH/NCI [R01 CA141722]; NIH/NIAID [R01 AI048034]; American Cancer Society [RSG-08-287-01-GMC]; Ipsen/Biomeasure; H.N. and Frances C. Berger Foundation; California Metabolic Research Foundation FX Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. This research is supported by NIH/NCI Grant R01 CA141722 to GG and AH, NIH/NIAID Grant R01 AI048034 to IMV, and American Cancer Society Grant RSG-08-287-01-GMC to TH. AVH is an Arne N. Wick pre-doctoral fellowship recipient. IMV is an American Cancer Society Emeritus Professor of Molecular Biology, and holds the Irwin and Joan Jacobs Chair in Exemplary Life Science. This work was supported in part by the Ipsen/Biomeasure and the H.N. and Frances C. Berger Foundation and the California Metabolic Research Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 40 TC 27 Z9 27 U1 2 U2 12 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1545-7885 J9 PLOS BIOL JI PLoS. Biol. PD JUN PY 2013 VL 11 IS 6 AR e1001581 DI 10.1371/journal.pbio.1001581 PG 13 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 172YJ UT WOS:000321042900009 PM 23776406 ER PT J AU Baltay, C Rabinowitz, D Hadjiyska, E Walker, ES Nugent, P Coppi, P Ellman, N Feindt, U McKinnon, R Horowitz, B Effron, A AF Baltay, Charles Rabinowitz, David Hadjiyska, Elena Walker, Emma S. Nugent, Peter Coppi, Paolo Ellman, Nancy Feindt, Ulrich McKinnon, Ryan Horowitz, Benjamin Effron, Aaron TI The La Silla-QUEST Low Redshift Supernova Survey SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID DARK ENERGY; OPTICAL VARIABILITY; CONSTRAINTS AB The La Silla-QUEST Low Redshift Supernova Survey is a part of the La Silla-QUEST Southern Hemisphere Variability Survey. The survey uses the 10 deg(2) QUEST camera installed at the prime focus of the 1.0-m Schmidt Telescope of the European Southern Observatory at La Silla, Chile, and utilizes essentially all of the observing time of the telescope. The QUEST camera was installed on the ESO Schmidt telescope in 2009 after completing a 5 year variability survey in the northern hemisphere using the 1.2-m Oschin Schmidt telescope at Palomar. La Silla-QUEST started science operations in 2009 September. The low redshift supernova survey commenced in 2011 December and is planned to continue for the next 4 years. In this article we describe the instrumentation, software, operation, and performance characteristics of the survey. C1 [Baltay, Charles; Rabinowitz, David; Hadjiyska, Elena; Walker, Emma S.; Coppi, Paolo; Ellman, Nancy; McKinnon, Ryan; Horowitz, Benjamin; Effron, Aaron] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Nugent, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Nugent, Peter] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Feindt, Ulrich] Univ Bonn, Bonn, Germany. RP Baltay, C (reprint author), Yale Univ, Dept Phys, POB 208120, New Haven, CT 06520 USA. EM charles.baltay@yale.edu FU DOE [DE FG0 ER92 40704]; The Yale University Provosts Office FX We thank Dr. Andreas Kaufer and ESO for their cooperation in making the La Silla-QUEST project possible. We also thank Dr. Gerardo Ihle and the technical staff at the La Silla Observatory for their outstanding efforts both during the installation and the operation of this survey. We thank Mark Gebhard from Indiana University for his help with the installation and commissioning of the camera electronics. We are also grateful to Dr. Hans-Werner Braun, Jim Hale, and Sam Leffler for their help in the design and implementation of the radio link from La Silla to Cerro Tololo. We acknowledge the support of our Yale colleagues Will Emmet, Tom Hurteau, and Ed Reed for their technical help without which the survey would not have been possible. This research was supported by DOE grant DE FG0 ER92 40704 and The Yale University Provosts Office. NR 29 TC 35 Z9 35 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JUN PY 2013 VL 125 IS 928 BP 683 EP 694 DI 10.1086/671198 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 172JX UT WOS:000321000400007 ER PT J AU Adams, B Chollet, M Elagin, A Oberla, E Vostrikov, A Wetstein, M Obaid, R Webster, P AF Adams, Bernhard Chollet, Matthieu Elagin, Andrey Oberla, Eric Vostrikov, Alexander Wetstein, Matthew Obaid, Razib Webster, Preston TI Invited Article: A test-facility for large-area microchannel plate detector assemblies using a pulsed sub-picosecond laser SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MCP-PMT AB The Large Area Picosecond Photodetector Collaboration is developing large-area fast photodetectors with time resolution less than or similar to 10 ps and space resolution less than or similar to 1 mm based on atomic layer deposition-coated glass Micro-Channel Plates (MCPs). We have assembled a facility at Argonne National Laboratory for characterizing the performance of a wide variety of microchannel plate configurations and anode structures in configurations approaching complete detector systems. The facility consists of a pulsed Ti:Sapphire laser with a pulse duration approximate to 100 fs, an optical system allowing the laser to be scanned in two dimensions, and a computer-controlled data-acquisition system capable of reading out 60 channels of anode signals with a sampling rate of over 10 GS/s. The laser can scan on the surface of a sealed large-area photodetector, or can be introduced into a large vacuum chamber for tests on bare 8 in.-square MCP plates or into a smaller chamber for tests on 33-mm circular substrates. We present the experimental setup, detector calibration, data acquisition, analysis tools, and typical results demonstrating the performance of the test facility. (C) 2013 AIP Publishing LLC. C1 [Adams, Bernhard] Argonne Natl Lab, Lemont, IL 60439 USA. [Chollet, Matthieu] Stanford Linear Accelerator Lab, Menlo Pk, CA 94025 USA. [Elagin, Andrey; Oberla, Eric; Vostrikov, Alexander; Wetstein, Matthew] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Obaid, Razib] IIT, Dept Phys, Chicago, IL 60616 USA. [Webster, Preston] Arizona State Univ, Fulton Sch Elect Comp, Tempe, AZ 85287 USA. [Webster, Preston] Arizona State Univ, Fulton Sch Energy Engn, Tempe, AZ 85287 USA. RP Adams, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. FU (U.S.) Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics [DE-AC02-06CH11357]; National Science Foundation (NSF) [PHY-1066014] FX The activities at Argonne National Laboratory were supported by the (U.S.) Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics under Contract No. DE-AC02-06CH11357, and at the University of Chicago by the National Science Foundation (NSF) under Grant No. PHY-1066014. NR 29 TC 12 Z9 12 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2013 VL 84 IS 6 AR 061301 DI 10.1063/1.4810018 PG 13 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 175ZW UT WOS:000321273500001 PM 23822326 ER PT J AU Amole, C Ashkezari, MD Baquero-Ruiz, M Bertsche, W Butler, E Capra, A Cesar, CL Chapman, S Charlton, M Eriksson, S Fajans, J Friesen, T Fujiwara, MC Gill, DR Gutierrez, A Hangst, JS Hardy, WN Hayden, ME Isaac, CA Jonsell, S Kurchaninov, L Little, A Madsen, N McKenna, JTK Menary, S Napoli, SC Nolan, P Olchanski, K Olin, A Povilus, A Pusa, P Rasmussen, CO Robicheaux, F Sarid, E Silveira, DM Stracka, S So, C Thompson, RI Turner, M van der Werf, DP Wurtele, JS Zhmoginov, A AF Amole, C. Ashkezari, M. D. Baquero-Ruiz, M. Bertsche, W. Butler, E. Capra, A. Cesar, C. L. Chapman, S. Charlton, M. Eriksson, S. Fajans, J. Friesen, T. Fujiwara, M. C. Gill, D. R. Gutierrez, A. Hangst, J. S. Hardy, W. N. Hayden, M. E. Isaac, C. A. Jonsell, S. Kurchaninov, L. Little, A. Madsen, N. McKenna, J. T. K. Menary, S. Napoli, S. C. Nolan, P. Olchanski, K. Olin, A. Povilus, A. Pusa, P. Rasmussen, C. O. Robicheaux, F. Sarid, E. Silveira, D. M. Stracka, S. So, C. Thompson, R. I. Turner, M. van der Werf, D. P. Wurtele, J. S. Zhmoginov, A. CA ALPHA Collaboration TI Autoresonant-spectrometric determination of the residual gas composition in the ALPHA experiment apparatus SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NONSTATIONARY EXCITATION; DIOCOTRON MODE; PLASMAS; MASS; H-2 AB Knowledge of the residual gas composition in the ALPHA experiment apparatus is important in our studies of antihydrogen and nonneutral plasmas. A technique based on autoresonant ion extraction from an electrostatic potential well has been developed that enables the study of the vacuum in our trap. Computer simulations allow an interpretation of our measurements and provide the residual gas composition under operating conditions typical of those used in experiments to produce, trap, and study antihydrogen. The methods developed may also be applicable in a range of atomic and molecular trap experiments where Penning-Malmberg traps are used and where access is limited. (C) 2013 AIP Publishing LLC. C1 [Amole, C.; Capra, A.; Menary, S.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Ashkezari, M. D.; Hayden, M. E.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Little, A.; Povilus, A.; So, C.; Turner, M.; Wurtele, J. S.; Zhmoginov, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bertsche, W.; Charlton, M.; Eriksson, S.; Isaac, C. A.; Madsen, N.; Napoli, S. C.; van der Werf, D. P.] Swansea Univ, Dept Phys, Swansea SA2 8PP, W Glam, Wales. [Bertsche, W.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Bertsche, W.] SERC, Daresbury Lab, Cockcroft Inst, Warrington WA4 4AD, Cheshire, England. [Butler, E.] CERN, Dept Phys, CH-1211 Geneva 23, Switzerland. [Cesar, C. L.; Silveira, D. M.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. [Fajans, J.; Wurtele, J. S.; Zhmoginov, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Friesen, T.; Fujiwara, M. C.; Thompson, R. I.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Fujiwara, M. C.; Gill, D. R.; Kurchaninov, L.; Olchanski, K.; Olin, A.; Stracka, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Gutierrez, A.; Hardy, W. N.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hangst, J. S.; Rasmussen, C. O.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Hardy, W. N.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Jonsell, S.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [McKenna, J. T. K.; Nolan, P.; Pusa, P.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Olin, A.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Sarid, E.] Nucl Res Ctr Negev, Dept Phys, IL-84190 Beer Sheva, Israel. RP Amole, C (reprint author), York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. RI Bertsche, William/A-3678-2012; Stracka, Simone/M-3931-2015; Robicheaux, Francis/F-4343-2014; Jonsell, Svante/J-2251-2016; wurtele, Jonathan/J-6278-2016; Fajans, Joel/J-6597-2016; OI Isaac, Aled/0000-0002-7813-1903; Bertsche, William/0000-0002-6565-9282; Stracka, Simone/0000-0003-0013-4714; Robicheaux, Francis/0000-0002-8054-6040; Butler, Eoin/0000-0003-0947-7166; Jonsell, Svante/0000-0003-4969-1714; wurtele, Jonathan/0000-0001-8401-0297; Fajans, Joel/0000-0002-4403-6027; van der Werf, Dirk/0000-0001-5436-5214 FU CNPq (Brazil); FINEP/RENAFAE (Brazil); ISF (Israel); FNU (Denmark); VR (Sweden); NSERC (Canada); NRC/TRIUMF (Canada); AITF (Canada); FQRNT (Canada); DOE (USA); NSF (USA); EPSRC (United Kingdom); Royal Society (United Kingdom); Leverhulme Trust (United Kingdom) FX We are grateful to CERN and the AD team. This work was supported by CNPq, FINEP/RENAFAE (Brazil); ISF (Israel); FNU (Denmark); VR (Sweden); NSERC, NRC/TRIUMF, AITF, FQRNT (Canada); DOE, NSF (USA); and EPSRC, the Royal Society, and the Leverhulme Trust (United Kingdom). NR 22 TC 0 Z9 0 U1 4 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2013 VL 84 IS 6 AR 065110 DI 10.1063/1.4811527 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 175ZW UT WOS:000321273500056 PM 23822381 ER PT J AU Feng, J Nasiatka, J Hertlein, M Rude, B Padmore, H AF Feng, J. Nasiatka, J. Hertlein, M. Rude, B. Padmore, H. TI Compact cryogenically cooled Ti:Sapphire dual multi-kilohertz amplifiers for synchrotron radiation ultra-fast x-ray applications (vol 84, 053111, 2013) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Correction C1 [Feng, J.; Nasiatka, J.; Hertlein, M.; Rude, B.; Padmore, H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Feng, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM fjun@lbl.gov NR 1 TC 0 Z9 0 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2013 VL 84 IS 6 AR 069901 DI 10.1063/1.4811646 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 175ZW UT WOS:000321273500073 ER PT J AU Fiflis, P Andrucyzk, D Roquemore, AL McGuire, M Curreli, D Ruzic, DN AF Fiflis, P. Andrucyzk, D. Roquemore, A. L. McGuire, M. Curreli, D. Ruzic, D. N. TI Lithium pellet production (LiPP): A device for the production of small spheres of lithium SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB With lithium as a fusion material gaining popularity, a method for producing lithium pellets relatively quickly has been developed for NSTX. The Lithium Pellet Production device is based on an injector with a sub-millimeter diameter orifice and relies on a jet of liquid lithium breaking apart into small spheres via the Plateau-Rayleigh instability. A prototype device is presented in this paper and for a pressure difference of Delta P = 5 Torr, spheres with diameters between 0.91 < D < 1.37 mm have been produced with an average diameter of D = 1.14 mm, which agrees with the developed theory. Successive tests performed at Princeton Plasma Physics Laboratory with Wood's metal have confirmed the dependence of sphere diameter on pressure difference as predicted. (C) 2013 AIP Publishing LLC. C1 [Fiflis, P.; Andrucyzk, D.; McGuire, M.; Curreli, D.; Ruzic, D. N.] Univ Illinois, Ctr Plasma Mat Interact, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Fiflis, P (reprint author), Univ Illinois, Ctr Plasma Mat Interact, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. EM fiflis1@illinois.edu NR 7 TC 4 Z9 4 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2013 VL 84 IS 6 AR 063506 DI 10.1063/1.4811665 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 175ZW UT WOS:000321273500019 PM 23822344 ER PT J AU Jana, MR Chung, M Freemire, B Hanlet, P Leonova, M Moretti, A Palmer, M Schwarz, T Tollestrup, A Torun, Y Yonehara, K AF Jana, M. R. Chung, M. Freemire, B. Hanlet, P. Leonova, M. Moretti, A. Palmer, M. Schwarz, T. Tollestrup, A. Torun, Y. Yonehara, K. TI Measurement of transmission efficiency for 400 MeV proton beam through collimator at Fermilab MuCool Test Area using Chromox-6 scintillation screen SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and/or Neutrino Factory. As part of this research program, feasibility studies of various types of RF cavities in a high magnetic field environment are in progress. As a unique approach, we have tested a RF cavity filled with a high pressure hydrogen gas with a 400 MeV proton beam in an external magnetic field (B = 3 T). Quantitative information about the number of protons passing through this cavity is an essential requirement of the beam test. The MTA is a flammable gas (hydrogen) hazard zone. Due to safety reasons, no active (energized) beam diagnostic instrument can be used. Moreover, when the magnetic field is on, current transformers (toroids) used for beam intensity measurements do not work due to the saturation of the ferrite material of the transformer. Based on these requirements, we have developed a passive beam diagnostic instrumentation using a combination of a Chromox-6 scintillation screen and CCD camera. This paper describes details of the beam profile and position obtained from the CCD image with B = 0 T and B = 3 T, and for high and low intensity proton beams. A comparison is made with beam size obtained from multi-wires detector. Beam transmission efficiency through a collimator with a 4 mm diameter hole is measured by the toroids and CCD image of the scintillation screen. Results show that the transmission efficiency estimated from the CCD image is consistent with the toroid measurement, which enables us to monitor the beam transmission efficiency even in a high magnetic field environment. (C) 2013 AIP Publishing LLC. C1 [Jana, M. R.; Chung, M.; Leonova, M.; Moretti, A.; Palmer, M.; Schwarz, T.; Tollestrup, A.; Yonehara, K.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Freemire, B.; Hanlet, P.; Torun, Y.] IIT, Chicago, IL 60616 USA. RP Jana, MR (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM mukti@fnal.gov OI Torun, Yagmur/0000-0003-2336-6585 FU Fermi Research Alliance, LLC [De-AC02-07CH11359]; United States Department of Energy (DOE) FX Authors wish to thank C. Johnstone, G. Koizumi, J. Volk, M. Popovic, G. R. Tassotto, D. P. Schoo, M. Yang, D. R. Mcarthur, S. Geer, T. Sen, Fermilab Accelerator Division (AD), and Main Control Room (MCR) staff for various help during experiment. This work was supported by the Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy (DOE). NR 29 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2013 VL 84 IS 6 AR 063301 DI 10.1063/1.4808275 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 175ZW UT WOS:000321273500012 PM 23822337 ER PT J AU Jiang, CY Tong, X Brown, DR Culbertson, H Graves-Brook, MK Hagen, ME Kadron, B Lee, WT Robertson, JL Winn, B AF Jiang, C. Y. Tong, X. Brown, D. R. Culbertson, H. Graves-Brook, M. K. Hagen, M. E. Kadron, B. Lee, W. T. Robertson, J. L. Winn, B. TI Spin exchange optical pumping based polarized He-3 filling station for the Hybrid Spectrometer at the Spallation Neutron Source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SCATTERING; FILTERS AB The Hybrid Spectrometer (HYSPEC) is a new direct geometry spectrometer at the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is equipped with polarization analysis capability with 60 degrees horizontal and 15 degrees vertical detector coverages. In order to provide wide angle polarization analysis for this instrument, we have designed and built a novel polarized He-3 filling station based on the spin exchange optical pumping method. It is designed to supply polarized He-3 gas to HYSPEC as a neutron polarization analyzer. In addition, the station can optimize the He-3 pressure with respect to the scattered neutron energies. The depolarized He-3 gas in the analyzer can be transferred back to the station to be repolarized. We have constructed the prototype filling station. Preliminary tests have been carried out demonstrating the feasibility of the filling station. Here, we report on the design, construction, and the preliminary results of the prototype filling station. (C) 2013 AIP Publishing LLC. C1 [Jiang, C. Y.; Tong, X.; Brown, D. R.; Culbertson, H.; Kadron, B.; Robertson, J. L.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA. [Graves-Brook, M. K.] Oak Ridge Natl Lab, Res Accelerator Div, Oak Ridge, TN 37831 USA. [Hagen, M. E.] Oak Ridge Natl Lab, Neutron Data Anal & Visualizat Div, Oak Ridge, TN 37831 USA. [Lee, W. T.] Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia. [Winn, B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Tong, X (reprint author), Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA. EM tongx@ornl.gov RI Winn, Barry/A-5065-2016; tong, Xin/C-4853-2012; OI Winn, Barry/0000-0001-6383-4318; tong, Xin/0000-0001-6105-5345; Jiang, Chenyang/0000-0002-6321-3164 FU Scientific User Facilities Division, Office of Basic Energy Sciences, and the U.S. Department of Energy FX Research at the Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, and the U.S. Department of Energy. We thank Dr. Thomas Gentile at NIST for his thoughtful input. We also thank Professor Mike Snow at the Indiana University for his valuable suggestions. NR 20 TC 5 Z9 5 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2013 VL 84 IS 6 AR 065108 DI 10.1063/1.4809942 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 175ZW UT WOS:000321273500054 PM 23822379 ER PT J AU Krishnan, M Elliott, KW Madden, RE Coleman, PL Thompson, JR Bixler, A Lamppa, DC McKenney, JL Strizic, T Johnson, D Johns, O Vigil, MP Jones, B Ampleford, DJ Savage, ME Cuneo, ME Jones, MC AF Krishnan, Mahadevan Elliott, Kristi Wilson Madden, Robert E. Coleman, P. L. Thompson, John R. Bixler, Alex Lamppa, D. C. McKenney, J. L. Strizic, T. Johnson, D. Johns, O. Vigil, M. P. Jones, B. Ampleford, D. J. Savage, M. E. Cuneo, M. E. Jones, M. C. TI Architecture, implementation, and testing of a multiple-shell gas injection system for high current implosions on the Z accelerator SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; Z-PINCH SPECTROSCOPY; DISTRIBUTIONS; PUFF; LOAD AB Tests are ongoing to conduct similar to 20 MA z-pinch implosions on the Z accelerator at Sandia National Laboratory using Ar, Kr, and D-2 gas puffs as the imploding loads. The relatively high cost of operations on a machine of this scale imposes stringent requirements on the functionality, reliability, and safety of gas puff hardware. Here we describe the development of a prototype gas puff system including the multiple-shell nozzles, electromagnetic drivers for each nozzle's valve, a UV pre-ionizer, and an inductive isolator to isolate the similar to 2.4 MV machine voltage pulse present at the gas load from the necessary electrical and fluid connections made to the puff system from outside the Z vacuum chamber. This paper shows how the assembly couples to the overall Z system and presents data taken to validate the functionality of the overall system. (C) 2013 AIP Publishing LLC. C1 [Krishnan, Mahadevan; Elliott, Kristi Wilson; Madden, Robert E.] Alameda Appl Sci Corp, San Leandro, CA 94577 USA. [Coleman, P. L.] Evergreen Hill Sci, Philomath, OR 97370 USA. [Bixler, Alex] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Lamppa, D. C.; McKenney, J. L.; Strizic, T.; Johnson, D.; Johns, O.; Vigil, M. P.; Jones, B.; Ampleford, D. J.; Savage, M. E.; Cuneo, M. E.; Jones, M. C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Krishnan, M (reprint author), Alameda Appl Sci Corp, San Leandro, CA 94577 USA. RI Thompson, John/K-9851-2016 FU Sandia National Laboratory [PO 941521]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was supported by Sandia National Laboratory under Contract No. PO 941521. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. We thank DTRA, particularly S. Seiler and J. Davis, for support in the development of the Systems Integration Test Facility (SITF) gas puff testing and interferometer system at Sandia. NR 27 TC 9 Z9 9 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2013 VL 84 IS 6 AR 063504 DI 10.1063/1.4809511 PG 19 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 175ZW UT WOS:000321273500017 PM 23822342 ER PT J AU Rotundu, CR Cuk, T Greene, RL Shen, ZX Hemley, RJ Struzhkin, VV AF Rotundu, C. R. Cuk, T. Greene, R. L. Shen, Z. -X. Hemley, Russell J. Struzhkin, V. V. TI High-pressure resistivity technique for quasi-hydrostatic compression experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID CELL AB Diamond anvil cell techniques are now well established and powerful methods for measuring materials properties to very high pressure. However, high pressure resistivity measurements are challenging because the electrical contacts attached to the sample have to survive to extreme stress conditions. Until recently, experiments in a diamond anvil cell were mostly limited to non-hydrostatic or quasi-hydrostatic pressure media other than inert gases. We present here a solution to the problem by using focused ion beam ultrathin lithography for a diamond anvil cell loaded with inert gas (Ne) and show typical resistivity data. These ultrathin leads are deposited on the culet of the diamond and are attaching the sample to the anvil mechanically, therefore allowing for measurements in hydrostatic or nearly hydrostatic conditions of pressure using noble gases like Ne or He as pressure transmitting media. (C) 2013 AIP Publishing LLC. C1 [Rotundu, C. R.; Greene, R. L.] Univ Maryland, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. [Rotundu, C. R.; Greene, R. L.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Rotundu, C. R.; Cuk, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Cuk, T.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Shen, Z. -X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Shen, Z. -X.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Hemley, Russell J.; Struzhkin, V. V.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. RP Rotundu, CR (reprint author), Univ Maryland, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. EM CostelRRotundu@gmail.com RI Struzhkin, Viktor/J-9847-2013; OI Struzhkin, Viktor/0000-0002-3468-0548; Rotundu, Costel/0000-0002-1571-8352 FU DOE/BES [DEFG02-02ER45955]; State of Maryland; NSF [DMR-1104256] FX We thank J. Barry for assistance with FIB lithography at Institute for Research in Electronics and Applied Physics, University of Maryland. The high pressure work was supported by DOE/BES through Grant No. DEFG02-02ER45955. C. R. R. and R. L. G. were supported by the State of Maryland and the NSF through Grant No. DMR-1104256. NR 18 TC 6 Z9 6 U1 2 U2 36 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2013 VL 84 IS 6 AR 063903 DI 10.1063/1.4809025 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 175ZW UT WOS:000321273500028 PM 23822353 ER PT J AU Saltonstall, CB Serrano, J Norris, PM Hopkins, PE Beechem, TE AF Saltonstall, Christopher B. Serrano, Justin Norris, Pamela M. Hopkins, Patrick E. Beechem, Thomas E. TI Single element Raman thermometry SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SILICON-CARBIDE; TEMPERATURE; SCATTERING; RELIABILITY; SOLIDS; LASER AB Despite a larger sensitivity to temperature as compared to other microscale thermometry methods, Raman based measurements typically have greater uncertainty. In response, a new implementation of Raman thermometry is presented having lower uncertainty while also reducing the time and hardware needed to perform the experiment. Using a modulated laser to excite the Raman response, the intensity of only a portion of the total Raman signal is leveraged as the thermometer by using a single element detector monitored with a lock-in amplifier. Implementation of the lock-in amplifier removes many sources of noise that are present in traditional Raman thermometry where the use of cameras preclude a modulated approach. To demonstrate, the portion of the Raman spectrum that is most advantageous for thermometry is first identified by highlighting, via both numerical prediction and experiment, those spectral windows having the largest linear dependence on temperature. Using such windows, the new technique, termed single element Raman thermometry (SERT), is utilized to measure the thermal profile of an operating microelectromechanical systems (MEMS) device and compared to results obtained with a traditional Raman approach. The SERT method is shown to reduce temperature measurement uncertainty by greater than a factor of 2 while enabling 3 times as many data points to be taken in an equal amount of time as compared to traditional Raman thermometry. (C) 2013 AIP Publishing LLC. C1 [Saltonstall, Christopher B.; Norris, Pamela M.; Hopkins, Patrick E.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Saltonstall, Christopher B.; Serrano, Justin; Beechem, Thomas E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Saltonstall, CB (reprint author), Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. EM tebeech@sandia.gov FU AFOSR [FA9550-13-1-0067]; National Science Foundation (CMMI) [1229603]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94Al85000]; Student Intern Programs at Sandia National Laboratories FX C.B.S. is appreciative for the funding through the Student Intern Programs at Sandia National Laboratories. P. E. H. gratefully acknowledges support from AFOSR Young Investigator Program (FA9550-13-1-0067). This work was partially funded through the National Science Foundation (CMMI Grant No. 1229603). Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94Al85000. NR 37 TC 5 Z9 5 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2013 VL 84 IS 6 AR 064903 DI 10.1063/1.4810850 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 175ZW UT WOS:000321273500043 PM 23822368 ER PT J AU Seagle, CT Dolan, DH AF Seagle, C. T. Dolan, D. H. TI Note: Visible reflectivity system for high-pressure studies SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DIAMOND-ANVIL CELL; OPTICAL-PROPERTIES; HIGH-TEMPERATURE; REFLECTANCE; METALS AB A near-normal visible reflectivity system was constructed for investigating the optical properties of materials at high pressure and temperatures. The system consists of focusing optics, spectrometers, and imaging cameras for use with a resistively-heated membrane-controlled diamond anvil cell (DAC). The DAC allows optical access on two sides: one dedicated to pressure measurement via fluorescence, the other side dedicated to absolute reflectance measurements. With this configuration, pressure and temperature may be controlled and measured without disturbing the sample position, permitting quantitative reflectivity measurements as a function of thermodynamic state variables. The system was tested on gold at high pressure conditions, and compared to data obtained on a commercial ellipsometer system at 1 bar. (C) 2013 AIP Publishing LLC. C1 [Seagle, C. T.; Dolan, D. H.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Seagle, CT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ctseagl@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Tommy Ao for encouragement and helpful discussions, Richard Hacking and Chase Smith for assistance in building and aligning the reflectivity system and detector linearity measurements, and Leslie Phinney for collecting the ellipsometry data. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 18 TC 0 Z9 0 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2013 VL 84 IS 6 AR 066104 DI 10.1063/1.4811151 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 175ZW UT WOS:000321273500066 PM 23822391 ER PT J AU Wang, KK Rosenmann, D Holt, M Winarski, R Hla, SW Rose, V AF Wang, Kangkang Rosenmann, Daniel Holt, Martin Winarski, Robert Hla, Saw-Wai Rose, Volker TI An easy-to-implement filter for separating photo-excited signals from topography in scanning tunneling microscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SYNCHROTRON-RADIATION; PROBE MICROSCOPY; SPECTROSCOPY; NANOSCALE; TIP AB In order to achieve elemental and chemical sensitivity in scanning tunneling microscopy (STM), synchrotron x-rays have been applied to excite core-level electrons during tunneling. The x-ray photo-excitations result in tip currents that are superimposed onto conventional tunneling currents. While carrying important physical information, the varying x-ray induced currents can destabilize the feedback loop causing it to be unable to maintain a constant tunneling current, sometimes even causing the tip to retract fully or crash. In this paper, we report on an easy-to-implement filter circuit that can separate the x-ray induced currents from conventional tunneling currents, thereby allowing simultaneous measurements of topography and chemical contrasts. The filter and the schematic presented here can also be applied to other variants of light-assisted STM such as laser STM. (C) 2013 AIP Publishing LLC. C1 [Wang, Kangkang; Rosenmann, Daniel; Holt, Martin; Winarski, Robert; Hla, Saw-Wai; Rose, Volker] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Rose, Volker] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Rose, V (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vrose@anl.gov RI Rose, Volker/B-1103-2008 OI Rose, Volker/0000-0002-9027-1052 FU Office of Science Early Career Research Program through the Division of Scientific User Facilities, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) [SC70705]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was funded by the Office of Science Early Career Research Program through the Division of Scientific User Facilities, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) through Grant No. SC70705. Work at the Advanced Photon Source, the Center for Nanoscale Materials, and the Electron Microscopy Center was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank Jon Hiller for assistance with the fabrication of smart tips, Curt Preissner for engineering support, and Peter Fuesz for support at the beamline. NR 27 TC 7 Z9 7 U1 1 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2013 VL 84 IS 6 AR 063704 DI 10.1063/1.4811652 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 175ZW UT WOS:000321273500024 PM 23822349 ER PT J AU Peterson, TC Heim, RR Hirsch, R Kaiser, DP Brooks, H Diffenbaugh, NS Dole, RM Giovannettone, JP Guirguis, K Karl, TR Katz, RW Kunkel, K Lettenmaier, D McCabe, GJ Paciorek, CJ Ryberg, KR Schubert, S Silva, VBS Stewart, BC Vecchia, AV Villarini, G Vose, RS Walsh, J Wehner, M Wolock, D Wolter, K Woodhouse, CA Wuebbles, D AF Peterson, Thomas C. Heim, Richard R., Jr. Hirsch, Robert Kaiser, Dale P. Brooks, Harold Diffenbaugh, Noah S. Dole, Randall M. Giovannettone, Jason P. Guirguis, Kristen Karl, Thomas R. Katz, Richard W. Kunkel, Kenneth Lettenmaier, Dennis McCabe, Gregory J. Paciorek, Christopher J. Ryberg, Karen R. Schubert, Siegfried Silva, Viviane B. S. Stewart, Brooke C. Vecchia, Aldo V. Villarini, Gabriele Vose, Russell S. Walsh, John Wehner, Michael Wolock, David Wolter, Klaus Woodhouse, Connie A. Wuebbles, Donald TI MONITORING AND UNDERSTANDING CHANGES IN HEAT WAVES, COLD WAVES, FLOODS, AND DROUGHTS IN THE UNITED STATES: State of Knowledge SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID SOUTHWESTERN NORTH-AMERICA; SOIL-MOISTURE; CLIMATE-CHANGE; WATER MANAGEMENT; GREAT-PLAINS; NEW-ENGLAND; DUST-BOWL; US; TEMPERATURE; STREAMFLOW AB Weather and climate extremes have been varying and changing on many different time scales. In recent decades, heat waves have generally become more frequent across the United States, while cold waves have been decreasing. While this is in keeping with expectations in a warming climate, it turns out that decadal variations in the number of U.S. heat and cold waves do not correlate well with the observed U.S. warming during the last century. Annual peak flow data reveal that river flooding trends on the century scale do not show uniform changes across the country. While flood magnitudes in the Southwest have been decreasing, flood magnitudes in the Northeast and north-central United States have been increasing. Confounding the analysis of trends in river flooding is multiyear and even multidecadal variability likely caused by both large-scale atmospheric circulation changes and basin-scale memory in the form of soil moisture. Droughts also have long-term trends as well as multiyear and decadal variability. Instrumental data indicate that the Dust Bowl of the 1930s and the drought in the 1950s were the most significant twentieth-century droughts in the United States, while tree ring data indicate that the megadroughts over the twelfth century exceeded anything in the twentieth century in both spatial extent and duration. The state of knowledge of the factors that cause heat waves, cold waves, floods, and drought to change is fairly good with heat waves being the best understood. C1 [Peterson, Thomas C.; Heim, Richard R., Jr.; Vose, Russell S.] NOAA, Natl Climat Data Ctr, Asheville, NC 28803 USA. [Hirsch, Robert] US Geol Survey, Reston, VA 22092 USA. [Kaiser, Dale P.] US DOE, Carbon Dioxide Informat Anal Ctr, Oak Ridge Natl Lab, Oak Ridge, TN USA. [Brooks, Harold] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Diffenbaugh, Noah S.] Stanford Univ, Stanford, CA 94305 USA. [Dole, Randall M.; Wolter, Klaus] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Giovannettone, Jason P.] US Army Corp Engineers, Inst Water Resources, Alexandria, VA USA. [Guirguis, Kristen] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Guirguis, Kristen] Univ Corp Atmospher Res, Boulder, CO USA. [Katz, Richard W.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Kunkel, Kenneth] Cooperat Inst Climate & Satellites, Asheville, NC USA. [Lettenmaier, Dennis] Univ Washington, Seattle, WA 98195 USA. [McCabe, Gregory J.; Wolock, David] USGS, Lawrence, KS USA. [Paciorek, Christopher J.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Ryberg, Karen R.; Vecchia, Aldo V.] US Geol Survey, Bismarck, ND USA. [Schubert, Siegfried] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Silva, Viviane B. S.] NOAA, Climate Serv Div, NWS, OCWWS, Silver Spring, MD USA. [Stewart, Brooke C.] STG, Asheville, NC USA. [Villarini, Gabriele] Univ Iowa, IIHR Hydrosci & Engn, Iowa City, IA USA. [Walsh, John] Univ Alaska Fairbanks, Fairbanks, AK USA. [Wehner, Michael] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Woodhouse, Connie A.] Univ Arizona, Tucson, AZ USA. [Wuebbles, Donald] Univ Illinois, Urbana, IL USA. RP Peterson, TC (reprint author), NOAA, Natl Climat Data Ctr, 151 Patton Ave, Asheville, NC 28803 USA. EM thomas.c.peterson@noaa.gov RI lettenmaier, dennis/F-8780-2011; Diffenbaugh, Noah/I-5920-2014; Kunkel, Kenneth/C-7280-2015; Wolter, Klaus/D-5988-2015; Katz, Richard/K-4133-2012; Ryberg, Karen/E-1871-2016; Villarini, Gabriele/F-8069-2016; OI lettenmaier, dennis/0000-0003-3317-1327; Diffenbaugh, Noah/0000-0002-8856-4964; Kunkel, Kenneth/0000-0001-6667-7047; Katz, Richard/0000-0002-0267-8953; Ryberg, Karen/0000-0002-9834-2046; Villarini, Gabriele/0000-0001-9566-2370; Hirsch, Robert/0000-0002-4534-075X NR 95 TC 84 Z9 85 U1 10 U2 133 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUN PY 2013 VL 94 IS 6 BP 821 EP 834 DI 10.1175/BAMS-D-12-00066.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 175TK UT WOS:000321256100005 ER PT J AU Banta, RM Pichugina, YL Kelley, ND Hardesty, RM Brewer, WA AF Banta, Robert M. Pichugina, Yelena L. Kelley, Neil D. Hardesty, R. Michael Brewer, W. Alan TI WIND ENERGY METEOROLOGY: Insight into Wind Properties in the Turbine-Rotor Layer of the Atmosphere from High-Resolution Doppler Lidar SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID LOW-LEVEL JET; STABLE-BOUNDARY-LAYER; MOUNTAIN BASIN COMPLEX; SLOPING TERRAIN; SURFACE-LAYER; INTERMITTENT TURBULENCE; WEATHER RESEARCH; MESOSCALE MODEL; RESEARCH NEEDS; SPEED PROFILE AB Addressing the need for high-quality wind information aloft in the layer occupied by turbine rotors (similar to 30-150 m above ground level) is one of many significant challenges facing the wind energy industry. Without wind measurements at heights within the rotor sweep of the turbines, characteristics of the flow in this layer are unknown for wind energy and modeling purposes. Since flow in this layer is often decoupled from the surface, near-surface measurements are prone to errant extrapolation to these heights, and the behavior of the near-surface winds may not reflect that of the upper-level flow. C1 [Banta, Robert M.; Pichugina, Yelena L.; Hardesty, R. Michael; Brewer, W. Alan] NOAA, ESRL, Boulder, CO 80305 USA. [Pichugina, Yelena L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Kelley, Neil D.] Natl Wind Technol Ctr, Natl Renewable Energy Lab, Golden, CO USA. RP Banta, RM (reprint author), NOAA, ESRL, 325 Broadway, Boulder, CO 80305 USA. EM robert.banta@noaa.gov RI Brewer, Wm Alan/I-3920-2013; pichugina, yelena/I-4141-2013; Banta, Robert/B-8361-2008; Manager, CSD Publications/B-2789-2015; Hardesty, Robert/H-9844-2013 FU NOAA Air Quality and Health of the Atmosphere Program FX Views expressed in this paper are the authors', and not necessarily those of NOAA. Support for the analysis in this study, which has taken place over several years' time, came from a number of sources, including the U.S. Army Research Office (ARO, Dr. Walter Bach) of the Army Research Laboratory under Proposal 43711-EV and the National Renewable Energy Laboratory (NREL, Neil D. Kelley) of the U.S. Department of Energy (DOE) under Interagency Agreement DOE-AI36-03GO13094. Further analysis and manuscript preparation were supported by the NOAA Air Quality and Health of the Atmosphere Program. The authors are indebted to colleagues from the NOAA/ESRL lidar optical remote sensing group for their contributions to HRDL preparation and setup and data acquisition during CASES and Lamar, including Scott Sandberg, Rob K. Newsom, Volker Wulfmeyer, Janet Machol, Brandi McCarty, Joanne George, Raul Alvarez, Andreas Muschinski, Jennifer Keane, Ann Weickmann, Ron Richter, Sara Tucker, Jeff Otten, Wynn Eberhard, Maxim Pichugin, and Lisa Darby. We also thank Debra Dailey-Fisher for figure preparation; and Lisa Darby, Tom Schlatter, Kathleen Human, and three anonymous reviewers for their helpful editorial reviews. NR 72 TC 23 Z9 23 U1 2 U2 18 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUN PY 2013 VL 94 IS 6 BP 883 EP 902 DI 10.1175/BAMS-D-11-00057.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 175TK UT WOS:000321256100009 ER PT J AU Stack, AG Gale, JD Raiteri, P AF Stack, Andrew G. Gale, Julian D. Raiteri, Paolo TI Virtual Probes of Mineral-Water Interfaces: The More Flops, the Better! SO ELEMENTS LA English DT Article DE simulation; molecular dynamics; calcite; barite; kinetics ID AMORPHOUS CALCIUM-CARBONATE; MOLECULAR-DYNAMICS; CRYSTAL-GROWTH; AQUEOUS-SOLUTION; FREE-ENERGY; DISSOLUTION; EXCHANGE; SURFACE; ION; MECHANISMS AB New approaches are allowing computer simulations to be compared quantitatively with experimental results, and they are also raising new questions about reactivity at mineral-water interfaces. Molecular simulations not only help us to understand experimental observations, they can also be used to test hypotheses about the properties of geochemical systems. These new approaches include rigorous calibration of simulation models against thermodynamic properties and atomic structure. They also encompass rare event theory methods that allow simulation of slow, complex mineral surface reactions. Here, we give an overview of how these techniques have been applied to simulate mineral-water interface structure, growth/dissolution mechanisms, and cluster formation. C1 [Stack, Andrew G.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Gale, Julian D.; Raiteri, Paolo] Curtin Univ, Nanochem Res Inst, Perth, WA 6845, Australia. [Gale, Julian D.; Raiteri, Paolo] Curtin Univ, Dept Chem, Perth, WA 6845, Australia. RP Stack, AG (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM stackag@ornl.gov; J.Gale@curtin.edu.au; P.Raiteri@curtin.edu.au RI Gale, Julian/B-7987-2009; Raiteri, Paolo/E-1465-2011; Stack, Andrew/D-2580-2013 OI Gale, Julian/0000-0001-9587-9457; Raiteri, Paolo/0000-0003-0692-0505; Stack, Andrew/0000-0003-4355-3679 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Australian Research Council through Discovery Grant [DP0986999] FX This research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (AGS) and the Australian Research Council through Discovery Grant DP0986999 (PR and JDG). NR 32 TC 10 Z9 10 U1 3 U2 56 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 1811-5209 J9 ELEMENTS JI Elements PD JUN PY 2013 VL 9 IS 3 BP 211 EP 216 DI 10.2113/gselements.9.3.211 PG 6 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 171AX UT WOS:000320898300010 ER PT J AU Prather, WD Giri, DV Gardner, RL Tesche, FM Hutchins, RL Giles, JC AF Prather, William D. Giri, Dave V. Gardner, Robert L. Tesche, Fred M. Hutchins, Robert L. Giles, Joseph C. TI Early Developments in Sensors and Simulators at the Air Force Weapons Laboratory SO IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY LA English DT Article DE Electromagnetic pulse (EMP); electromagnetic (EM) theory; high-altitude electromagnetic pulse (HEMP); sensors; simulators; test AB Personnel at the Air Force Weapons Laboratory introduced many innovative concepts in electromagnetics (EM) and created new antenna and sensor designs that made possible much of the wideband electromagnetics technology we have today. Many practitioners in high power EM are familiar with wideband sensors and simulators, but may not be aware of their origin. The purpose of this paper is to describe some of the concepts from which many of the designs evolved and provide some interesting insight into the mind of Dr. Carl Baum, who created them. C1 [Prather, William D.] Air Force Res Lab, Albuquerque, NM 87117 USA. [Giri, Dave V.] Protech, Alamo, CA 94507 USA. [Gardner, Robert L.] Off Secretary Def, Washington, DC 20330 USA. [Tesche, Fred M.] Clemson Univ, Clemson, SC 29634 USA. [Hutchins, Robert L.] Northrop Grumman, Albuquerque, NM 87109 USA. [Giles, Joseph C.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Prather, WD (reprint author), Air Force Res Lab, Albuquerque, NM 87117 USA. EM william.prather@ieee.org; giri@dvgiri.com; robert.gardner.ctr@osd.mil; fred@tesche.com; rhutchins10@comcast.net; cliffgiles@comcast.net NR 38 TC 0 Z9 0 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9375 J9 IEEE T ELECTROMAGN C JI IEEE Trans. Electromagn. Compat. PD JUN PY 2013 VL 55 IS 3 SI SI BP 431 EP 439 DI 10.1109/TEMC.2013.2247767 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 170QI UT WOS:000320867900004 ER PT J AU Giles, JC Prather, WD AF Giles, Joseph C. Prather, William D. TI Worldwide High-Altitude Nuclear Electromagnetic Pulse Simulators SO IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY LA English DT Article DE Electromagnetic pulse (EMP); electromagnetic theory; high-altitude nuclear electromagnetic pulse (HEMP); sensors; simulators; test ID EMP SIMULATORS; POWER AB The five decades since the discovery that the electromagnetic pulse created by a nuclear detonation at high altitude (HEMP) threatens the survivability of strategic military and civilian electronic systems saw development and construction worldwide of many large test facilities for simulating that threat. This paper describes simulators in three categories: guided wave, dipole, and hybrid. In 2002, the International Electrotechnical Commission (IEC) published a compendium of technical information about 42 simulators in 14 countries using this classification system. This paper provides a summary of information in the compendium and describes some developments in the field since 2002. C1 [Giles, Joseph C.] Los Alamos Natl Lab, Albuquerque, NM 87544 USA. [Giles, Joseph C.] EG&G Inc, Albuquerque, NM 87544 USA. [Prather, William D.] Air Force Res Lab, Directed Energy Directorate, Kirtland AFB, NM 87117 USA. EM cliffgiles@comcast.net; william.prather@ieee.org NR 40 TC 4 Z9 6 U1 2 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9375 J9 IEEE T ELECTROMAGN C JI IEEE Trans. Electromagn. Compat. PD JUN PY 2013 VL 55 IS 3 SI SI BP 475 EP 483 DI 10.1109/TEMC.2013.2238239 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 170QI UT WOS:000320867900009 ER PT J AU Santos-Villalobos, HJ Bingham, PR Gregor, J AF Santos-Villalobos, Hector J. Bingham, Philip R. Gregor, Jens TI Iterative Reconstruction of Coded Source Neutron Radiographs SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Image reconstruction; iterative methods; neutrons; nuclear Imaging ID OPTICS AB A coded source facilitates high-resolution neutron imaging through magnification but requires that the radiographic data be deconvolved. A comparison of convolution-based and model-based de-blurring algorithms has been performed. Two convolution-based approaches are assessed, direct deconvolution and an iterative algorithm based on a maximum likelihood estimation (MLE)-like framework. The model-based approach specifies a geometric model of the neutron beam with a least squares formulation of the inverse imaging problem. Simulated data for both uniform and Gaussian shaped source distributions was used to study the impact of non-uniformities present in neutron beam distributions on the reconstructed images. Results indicate that the model based reconstruction method will match resolution and improve on contrast over convolution methods in the presence of non-uniform sources. Additionally, the model based iterative algorithm provides direct calculation of quantitative transmission values while the convolution based methods must be normalized based on known values. C1 [Santos-Villalobos, Hector J.; Bingham, Philip R.] Oak Ridge Natl Lab, Oak Ridge, TN 37931 USA. [Gregor, Jens] Univ Tennessee, Knoxville, TN 37996 USA. RP Santos-Villalobos, HJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37931 USA. EM hsantos@ornl.gov; binghampr@ornl.gov; jgregor@eecs.utk.edu OI Bingham, Philip/0000-0003-4616-6084 FU U.S. Department of Energy through an Early Career Award out of the Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC05-00OR22725] FX Manuscript received December 06, 2012; revised March 26, 2013; accepted March 27, 2013. Date of publication May 23, 2013; date of current version June 12, 2013. Funding for this effort comes from the U.S. Department of Energy through an Early Career Award out of the Office of Basic Energy Sciences which also sponsors both the High Flux Isotope Reactor and the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory where portions of this research were performed. Portions of this manuscript have been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 15 TC 2 Z9 2 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2013 VL 60 IS 3 BP 1624 EP 1631 DI 10.1109/TNS.2013.2255894 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 170MT UT WOS:000320857000020 ER PT J AU Black, JD Dodd, PE Warren, KM AF Black, Jeffrey D. Dodd, Paule E. Warren, Kevin M. TI Physics of Multiple-Node Charge Collection and Impacts on Single-Event Characterization and Soft Error Rate Prediction SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Charge sharing; multiple bit upset; multiple cell upset; multiple-node charge collection; single-event testing; technology computer-aided design ID NM CMOS TECHNOLOGY; BIT UPSETS; HEAVY-ION; ANGULAR-DEPENDENCE; INTEGRATED-CIRCUITS; SILICON DEVICES; CELL UPSETS; SRAM CELL; SEU; SIMULATION AB Physical mechanisms of single-event effects that result in multiple-node charge collection or charge sharing are reviewed and summarized. A historical overview of observed circuit responses is given that concentrates mainly on memory circuits. Memory devices with single-node upset mechanisms are shown to exhibit multiple cell upsets, and spatially redundant logic latches are shown to upset when charge is collected on multiple circuit nodes in the latch. Impacts on characterizing these effects in models and ground-based testing are presented. The impact of multiple-node charge collection on soft error rate prediction is also presented and shows that full circuit prediction is not yet well understood. Finally, gaps in research and potential future impacts are identified. C1 [Black, Jeffrey D.; Dodd, Paule E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Warren, Kevin M.] Vanderbilt Univ, Inst Space & Def Elect, Nashville, TN 37235 USA. RP Black, JD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jefblac@sandia.gov; pedodd@sandia.gov; kevin.m.warren@van-derbilt.edu FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 96 TC 26 Z9 29 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2013 VL 60 IS 3 SI SI BP 1836 EP 1851 DI 10.1109/TNS.2013.2260357 PN 2 PG 16 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 170MU UT WOS:000320857200013 ER PT J AU Schwank, JR Shaneyfelt, MR Dodd, PE AF Schwank, James R. Shaneyfelt, Marty R. Dodd, Paul E. TI Radiation Hardness Assurance Testing of Microelectronic Devices and Integrated Circuits: Radiation Environments, Physical Mechanisms, and Foundations for Hardness Assurance SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Enhanced low dose rate sensitivity; hardness assurance; interaction of radiation with materials; preirradiation elevated temperature stress; single-event effects; single-event gate burnout; single-event gate latchup; single-event gate rupture; single-event upset; space radiation environment; total ionizing dose ID EVENT GATE-RUPTURE; VERTICAL POWER MOSFETS; DOSE-RATE SENSITIVITY; BIPOLAR JUNCTION TRANSISTORS; INTERFACE-TRAP FORMATION; SILICON-ON-INSULATOR; LOW ELECTRIC-FIELDS; NM SOI SRAM; GAIN DEGRADATION; IONIZING-RADIATION AB This document describes the radiation environments, physical mechanisms, and test philosophies that underpin radiation hardness assurance test methodologies. The natural space radiation environment is presented, including the contributions of both trapped and transient particles. The effects of shielding on radiation environments are briefly discussed. Laboratory radiation sources used to simulate radiation environments are covered, including how to choose appropriate sources to mimic environments of interest. The fundamental interactions of radiation with materials via direct and indirect ionization are summarized. Some general test considerations are covered, followed by in-depth discussions of physical mechanisms and issues for total dose and single-event effects testing. The purpose of this document is to describe why the test protocols we use are constructed the way they are. In other words, to answer the question: "Why do we test it that way?" C1 [Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Schwank, JR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM schwanjr@sandia.gov FU Defense Threat Reduction Agency [IACRO 11-4466I]; U.S. Department of Energy; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by the Defense Threat Reduction Agency under IACRO 11-4466I and by the U.S. Department of Energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 126 TC 32 Z9 32 U1 0 U2 25 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2013 VL 60 IS 3 SI SI BP 2074 EP 2100 DI 10.1109/TNS.2013.2254722 PN 2 PG 27 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 170MU UT WOS:000320857200024 ER PT J AU Schwank, JR Shaneyfelt, MR Dodd, PE AF Schwank, James R. Shaneyfelt, Marty R. Dodd, Paul E. TI Radiation Hardness Assurance Testing of Microelectronic Devices and Integrated Circuits: Test Guideline for Proton and Heavy Ion Single-Event Effects SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Hardness assurance; heavy ions; protons; single-event effects; single-event gate burnout; single-event gate latchup; single-event gate rupture; single-event upset ID VERTICAL POWER MOSFETS; NM SOI SRAM; DIELECTRIC-BREAKDOWN; GATE RUPTURE; ENERGY; UPSETS; CELLS; ELECTRONICS; DEGRADATION; IMPACT AB This document gives detailed test guidelines for single-event upset (SEU), single-event latchup (SEL), single-event burnout (SEB), and single-event gate rupture (SEGR) hardness assurance testing. It includes guidelines for both heavy-ion and proton environments. The guidelines are based on many years of testing at remote site facilities and our present understanding of the mechanisms for single-event effects. C1 [Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Schwank, JR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM schwanjr@sandia.gov FU Defense Threat Reduction Agency [IACRO 11-4466I]; U.S. Department of Energy; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Defense Threat Reduction Agency under IACRO 11-4466I and the U.S. Department of Energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 26 TC 8 Z9 10 U1 4 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2013 VL 60 IS 3 SI SI BP 2101 EP 2118 DI 10.1109/TNS.2013.2261317 PN 2 PG 18 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 170MU UT WOS:000320857200025 ER PT J AU Quinn, HM Black, DA Robinson, WH Buchner, SP AF Quinn, Heather M. Black, Dolores A. Robinson, William H. Buchner, Stephen P. TI Fault Simulation and Emulation Tools to Augment Radiation-Hardness Assurance Testing SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Emulation; fault diagnosis; radiation hardening; simulation ID SINGLE-EVENT TRANSIENTS; SOFT-ERROR RATES; MODULAR REDUNDANCY CIRCUITS; PHASE-LOCKED LOOPS; SET PULSE WIDTHS; SRAM-BASED FPGA; COMBINATIONAL LOGIC; HEAVY-ION; ARCHITECTURAL VULNERABILITY; RATE PREDICTION AB As of 2013, the gold standard for assessing radiation-hardness assurance (RHA) for a system, subsystem, or a component is accelerated radiation testing and/or pulsed laser testing. Fault injection tools, which include both fault simulation and emulation tools, have become more common in the last 15 years. Fault simulation tools use analytical methods for assessing RHA, whereas fault emulation uses hardware methods. Both fault simulation and emulation allow designers to augment traditional RHA techniques to determine whether circuit designs, microarchitectures, components, and application-specific integrated circuits (ASICs) meet the requirements for a particular mission. Fault simulation and emulation can provide the designers the luxury of testing on the benchtop without the time and financial constraints of accelerated radiation testing. This paper explores how to design, implement, and validate a fault simulation or emulation system. The paper ends with several case studies of currently used fault simulation and emulation systems. C1 [Quinn, Heather M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Black, Dolores A.] Embry Riddle Aeronaut Univ, Albuquerque, NM 87117 USA. [Robinson, William H.] Vanderbilt Univ, Nashville, TN 37235 USA. [Buchner, Stephen P.] Naval Res Lab, Washington, DC 20375 USA. RP Quinn, HM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM hquinn@lanl.gov; black6@erau.edu; william.h.robinson@vanderbilt.edu; stephen.buchner@nrl.navy.mil NR 167 TC 24 Z9 24 U1 1 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2013 VL 60 IS 3 SI SI BP 2119 EP 2142 DI 10.1109/TNS.2013.2259503 PN 2 PG 24 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 170MU UT WOS:000320857200026 ER PT J AU Chung, JM Lee, D Song, WJ Choi, S Lim, C Yeoum, T AF Chung, Jong-Moon Lee, Daeyoung Song, William J. Choi, Sungho Lim, Chaegwon Yeoum, Taesun TI ENHANCEMENTS TO FPMIPV6 FOR IMPROVED SEAMLESS VERTICAL HANDOVER BETWEEN LTE AND HETEROGENEOUS ACCESS NETWORKS SO IEEE WIRELESS COMMUNICATIONS LA English DT Article AB Fast handovers for proxy mobile IPv6 (FPMIPv6) was created to reduce packet-delay that occurs during proxy mobile IPv6 (PMIPv6) handover. Based on vertical handover (VHO) experiments conducted between Long Term Evolution (LTE) and heterogeneous accesses over the evolved packet core (EPC) using FPMIPv6, it was recognized that consistently reliable seamless VHO operations were difficult to accomplish due to limitations in FPMIPv6. Noticeably, VHO performance degradation resulted from the serving network (SN) lacking information of the target network (TN) when the TN is a heterogeneous protocol domain, packet congestion and loss problems occurring on specific network gateway interfaces, and also from using long packet-forwarding paths. In this article, an enhanced FPMIPv6 technique is proposed to solve these problems and improve the VHO operation by using shorter data-paths and improved coordination of buffered packet-forwarding and TN switching, which results in a significantly reduced packet-delay. C1 [Chung, Jong-Moon; Lee, Daeyoung] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120749, South Korea. [Chung, Jong-Moon] Yonsei Univ, CNL, Seoul 120749, South Korea. [Chung, Jong-Moon] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA. [Chung, Jong-Moon] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Song, William J.] Sandia Natl Labs, Scalable Comp Dept, Albuquerque, NM 87185 USA. RP Chung, JM (reprint author), Yonsei Univ, Sch Elect & Elect Engn, Seoul 120749, South Korea. EM jmc@yonsei.ac.kr FU Samsung Electronics Co. Ltd.; Information Technology Research Center program of the Ministry of Knowledge Economy, Republic of Korea [NIPA-2013-H0301-13-1002] FX This research was supported by Samsung Electronics Co. Ltd. and the Information Technology Research Center program (NIPA-2013-H0301-13-1002) supervised by the National IT Industry Promotion Agency of the Ministry of Knowledge Economy, Republic of Korea. NR 9 TC 7 Z9 7 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1536-1284 J9 IEEE WIREL COMMUN JI IEEE Wirel. Commun. PD JUN PY 2013 VL 20 IS 3 BP 112 EP 119 PG 8 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA 176BT UT WOS:000321278800016 ER PT J AU Sharon, JA Padilla, HA Boyce, BL AF Sharon, John A. Padilla, Henry A., II Boyce, Brad L. TI Interpreting the ductility of nanocrystalline metals SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID STRAIN-RATE SENSITIVITY; HIGH-TENSILE DUCTILITY; SEVERE PLASTIC-DEFORMATION; COUPLED GRAIN-GROWTH; ALUMINUM THIN-FILMS; NANO-SCALE TWINS; MECHANICAL-BEHAVIOR; NI-FE; NANOSTRUCTURED METALS; ELECTRODEPOSITED CU AB Nanocrystalline (NC) metals are known for having excellent strength but perceived to have poor ductility. Miniature tensile tests on NC Ni-Fe measured ultimate strengths of 2 GPa and elongations, by digital image correlation, of up to 10%. Detailed examination of the fracture surface revealed dimpled rupture and cross-section reduction up to 75%, suggesting an intrinsic ability for small grained Ni-Fe to accommodate plasticity. A survey of published studies on NC metals reveals that this behavior is quite common; despite low macroscopic elongation, NC metals often achieve extensive deformation suggesting good intrinsic ductility. Unfortunately, the common sheet-like configuration of NC tensile specimens muddies a simple evaluation of ductility based on elongation, since thin and wide geometries promote localized necking that expedites catastrophic failure. This paper presents a compact review of ductility concepts and literature to interpret the experimental ductility measurements of an electrodeposited nickel alloy. C1 [Sharon, John A.; Padilla, Henry A., II; Boyce, Brad L.] Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87123 USA. RP Boyce, BL (reprint author), Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87123 USA. EM blboyce@sandia.gov FU agency of the United States Government; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000]; United States Department of Energy's National Nuclear Security Administration; DE-AC04-94AL85000 FX This work of authorship was prepared as an account of work sponsored by an agency of the United States Government. Accordingly, the United States Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so for United States Government purposes. Neither Sandia Corporation, the United States Government, nor any agency thereof, nor any of their employees make any warranty, express or imply, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Sandia Corporation, the United States Government, or any agency thereof. The views and opinions expressed herein do not necessarily state or reflect those of Sandia Corporation, the United States Government or any agency thereof.; The authors would like to thank M. Rye for TEM specimen prep, Dr. B.G. Clark for TEM imaging, and Dr. A.M. Rowen for electro-deposition. This work was funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Specimen preparation and electron microscopy characterization was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract No. DE-AC04-94AL85000). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 98 TC 19 Z9 19 U1 2 U2 52 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD JUN PY 2013 VL 28 IS 12 BP 1539 EP 1552 DI 10.1557/jmr.2013.139 PG 14 WC Materials Science, Multidisciplinary SC Materials Science GA 167DO UT WOS:000320611000001 ER PT J AU Palade, LI Reimanis, IE Graham, AL AF Palade, Liviu Iulian Reimanis, Ivar E. Graham, Alan L. TI Complex Dielectric Relaxation Behaviour of Highly Crosslinked PDMS Networks in the Glass Transition Region: an experimental study SO MATERIALE PLASTICE LA English DT Article DE highly crosslinked siloxane elastomers; silica filler; dielectric relaxation in the glass transition region; a-relaxation ID VISCOUS-LIQUIDS; SECONDARY RELAXATIONS; VISCOELASTIC BEHAVIOR; BETA-RELAXATION; COUPLING MODEL; POLYBUTADIENES; FRAGILITY; MOLECULES; TIME AB Dielectric relaxation studies were carried out on unfilled and silica particle filled highly crosslinked PDMS samples, at temperatures above the calorimetric glass transition temperature. Our experiments suggest that the main alpha relaxation peak is preceded by a pre - alpha relaxation one, whose characteristics are not dependent in their nature on the presence of the reinforcing silica particles. This suggests that its presence may be characteristic of the high crosslink density PDMS. C1 [Palade, Liviu Iulian; Reimanis, Ivar E.] Colorado Sch Mines, George S Ansell Dept Met & Mat Engn, Golden, CO 80401 USA. [Palade, Liviu Iulian; Reimanis, Ivar E.] Univ Lyon, CNRS, Inst Camille Jordan UMR5208, INSA Lyon, F-69621 Villeurbanne, France. [Graham, Alan L.] Los Alamos Natl Lab, Inst Multiscale Mat Studies, Los Alamos, NM 87545 USA. RP Palade, LI (reprint author), Colorado Sch Mines, George S Ansell Dept Met & Mat Engn, Golden, CO 80401 USA. EM liviu-iulian.palade@insa-lyon.fr NR 25 TC 2 Z9 2 U1 1 U2 11 PU CHIMINFORM DATA S A PI BUCHAREST PA CALEA PLEVNEI NR 139, SECTOR 6, BUCHAREST R-77131, ROMANIA SN 0025-5289 J9 MATER PLAST JI Mater. Plast. PD JUN PY 2013 VL 50 IS 2 BP 97 EP 99 PG 3 WC Materials Science, Multidisciplinary SC Materials Science GA 170IC UT WOS:000320842600006 ER PT J AU Skerker, JM Leon, D Price, MN Mar, JS Tarjan, DR Wetmore, KM Deutschbauer, AM Baumohl, JK Bauer, S Ibanez, AB Mitchell, VD Wu, CH Hu, P Hazen, T Arkin, AP AF Skerker, Jeffrey M. Leon, Dacia Price, Morgan N. Mar, Jordan S. Tarjan, Daniel R. Wetmore, Kelly M. Deutschbauer, Adam M. Baumohl, Jason K. Bauer, Stefan Ibanez, Ana B. Mitchell, Valerie D. Wu, Cindy H. Hu, Ping Hazen, Terry Arkin, Adam P. TI Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates SO MOLECULAR SYSTEMS BIOLOGY LA English DT Article DE biofuels; chemogenomics; plant hydrolysate; systems biology; tolerance ID ETHANOLOGENIC ESCHERICHIA-COLI; RECOMBINANT SACCHAROMYCES-CEREVISIAE; ZYMOMONAS-MOBILIS STRAIN; IRON-SULFUR CLUSTERS; ACETIC-ACID; HYDROGEN-PEROXIDE; LIGNOCELLULOSIC HYDROLYSATE; HEMICELLULOSIC HYDROLYSATE; PRETREATMENT TECHNOLOGIES; DEINOCOCCUS-RADIODURANS AB The efficient production of biofuels from cellulosic feedstocks will require the efficient fermentation of the sugars in hydrolyzed plant material. Unfortunately, plant hydrolysates also contain many compounds that inhibit microbial growth and fermentation. We used DNA-barcoded mutant libraries to identify genes that are important for hydrolysate tolerance in both Zymomonas mobilis (44 genes) and Saccharomyces cerevisiae (99 genes). Overexpression of a Z. mobilis tolerance gene of unknown function (ZMO1875) improved its specific ethanol productivity 2.4-fold in the presence of miscanthus hydrolysate. However, a mixture of 37 hydrolysate-derived inhibitors was not sufficient to explain the fitness profile of plant hydrolysate. To deconstruct the fitness profile of hydrolysate, we profiled the 37 inhibitors against a library of Z. mobilis mutants and we modeled fitness in hydrolysate as a mixture of fitness in its components. By examining outliers in this model, we identified methylglyoxal as a previously unknown component of hydrolysate. Our work provides a general strategy to dissect how microbes respond to a complex chemical stress and should enable further engineering of hydrolysate tolerance. C1 [Skerker, Jeffrey M.; Leon, Dacia; Mar, Jordan S.; Tarjan, Daniel R.; Bauer, Stefan; Ibanez, Ana B.; Mitchell, Valerie D.; Arkin, Adam P.] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. [Skerker, Jeffrey M.; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Skerker, Jeffrey M.; Leon, Dacia; Price, Morgan N.; Wetmore, Kelly M.; Deutschbauer, Adam M.; Baumohl, Jason K.; Arkin, Adam P.] LBNL, Phys Biosci Div, Berkeley, CA USA. [Mar, Jordan S.; Tarjan, Daniel R.; Wu, Cindy H.; Hu, Ping; Hazen, Terry] LBNL, Div Earth Sci, Berkeley, CA USA. RP Arkin, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,Mailstop 955-512L, Berkeley, CA 94720 USA. EM aparkin@lbl.gov RI Arkin, Adam/A-6751-2008; Hazen, Terry/C-1076-2012; Hu, Ping/G-2384-2015; OI Arkin, Adam/0000-0002-4999-2931; Hazen, Terry/0000-0002-2536-9993; , /0000-0003-0495-3274; Mitchell, Valerie/0000-0001-9097-4500 FU Energy Biosciences Institute [OO7G02] FX We thank the Stanford Genome Technology Center for help with sequencing and for the yeast deletion collection. We thank Rebecca Arundale (UIUC) for providing the samples of miscanthus and switchgrass. This work was funded by the Energy Biosciences Institute grant OO7G02. NR 113 TC 30 Z9 30 U1 1 U2 27 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1744-4292 J9 MOL SYST BIOL JI Mol. Syst. Biol. PD JUN PY 2013 VL 9 AR 674 DI 10.1038/msb.2013.30 PG 21 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 175DP UT WOS:000321210700004 PM 23774757 ER PT J AU Hossu, M Schaeffer, RO Ma, L Chen, W Zhu, YB Sammynaiken, R Joly, AG AF Hossu, Marius Schaeffer, Roger O. Ma, Lun Chen, Wei Zhu, Yongbin Sammynaiken, Ramaswami Joly, Alan G. TI On the luminescence enhancement of Mn2+ by co-doping of Eu2+ in ZnS:Mn,Eu SO OPTICAL MATERIALS LA English DT Article DE ZnS; Mn; Eu; Photoluminescence; X-ray luminescence; Energy transfer ID DOPED SEMICONDUCTOR NANOPARTICLES; ELECTRON-SPIN-RESONANCE; OPTICAL-PROPERTIES; ZNS-EU; CRYSTALS; FLUORESCENCE; ZNS-MN2+; EUROPIUM; PHOTOLUMINESCENCE; NANOCRYSTALS AB The photoluminescence and X-ray luminescence of ZnS:Mn, ZnS:Mn,Eu and ZnS:Eu were investigated and it was found that the luminescence intensity of Mn2+ in ZnS:Mn,Eu co-doped phosphors is highly dependent on the doping concentration of Eu2+. At the optimized Eu2+ concentration (0.2%), the photoluminescence of Mn2+ shows about a 5.5 times enhancement and its X-ray luminescence is enhanced by a factor of 2.5. Both wurtzite and zinc blend phases are present in the samples with wurtzite phase dominant. Co-doping of Eu2+ into ZnS:Mn does not change appreciably the ratio of the two phases or the Mn2+ emission luminescence lifetime; however, the doping of Eu2+ into ZnS:Mn does change the phonon activity. Furthermore, it was found that the defect-related blue emission of ZnS:Eu overlaps with the excitation bands of Mn2+ in ZnS:Mn and there is likely energy transfer from these defect states to Mn2+ in ZnS:Mn,Eu. This energy transfer and the phonon modification are considered to be the two main reasons for the luminescence enhancement and the intensity dependence of Mn2+ emission on Eu2+ doping concentration in ZnS:Mn,Eu. (c) 2013 Elsevier B.V. All rights reserved. C1 [Hossu, Marius; Schaeffer, Roger O.; Ma, Lun; Chen, Wei] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Zhu, Yongbin; Sammynaiken, Ramaswami] Univ Saskatchewan, Saskatchewan Struct Sci Ctr, Saskatoon, SK S7N 5C9, Canada. [Joly, Alan G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chen, W (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM weichen@uta.edu; ras962@campus.usask.ca; agjoly@pnnl.gov FU UTA; NSF; DHS joint ARI program [2011-DN-077-ARI053-03, CBET-1039068]; DOD [DTRA08-005]; US Army Medical Research Acquisition Activity (USAMRAA) [W81XWH-10-1-0279, W81XWH-10-1-0234]; Department of Energy's Office of Biological and Environmental Research FX We would like to acknowledge the support from the startup funds from UTA, the NSF and DHS joint ARI program (2011-DN-077-ARI053-03, CBET-1039068), DOD DTRA08-005, and the US Army Medical Research Acquisition Activity (USAMRAA) under Contracts of W81XWH-10-1-0279 and W81XWH-10-1-0234. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 33 TC 9 Z9 9 U1 2 U2 66 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-3467 J9 OPT MATER JI Opt. Mater. PD JUN PY 2013 VL 35 IS 8 BP 1513 EP 1519 DI 10.1016/j.optmat.2013.03.014 PG 7 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 168DK UT WOS:000320685700003 ER PT J AU Lawson, AC Lashley, JC AF Lawson, A. C. Lashley, J. C. TI Kondo entropy of delta-phase plutonium and its impact on Pu alloy phase diagrams SO PHILOSOPHICAL MAGAZINE LA English DT Article DE actinides; calorimetry; Kondo effect; metals ID HEAT-CAPACITY; ELECTRONS; MODEL AB We present a new analysis of the heat capacity of -phase Pu-5 at.% Al with a fit using a single-ion Kondo term and a low-temperature Schottky anomaly in addition to the Debye and linear terms. The Kondo and Schottky terms together contribute 1.2 R to the entropy at 300K. We show how the extra entropy could affect the alloy phase diagrams of -phase Pu. C1 [Lawson, A. C.; Lashley, J. C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Lawson, AC (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM aclawson@cybermesa.com FU Los Alamos National Laboratory under the auspices of the US Department of Energy FX We are pleased to thank Prof G. Kotliar and Dr Tongsik Lee for very useful discussions, and we are grateful to an anonymous reviewer for suggesting several significant improvements. This work was supported in part by the Los Alamos National Laboratory under the auspices of the US Department of Energy. NR 19 TC 2 Z9 2 U1 2 U2 14 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD JUN 1 PY 2013 VL 93 IS 18 BP 2377 EP 2383 DI 10.1080/14786435.2013.765993 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 170PB UT WOS:000320864200011 ER PT J AU Du Frane, WL Sharp, TG Mosenfelder, JL Leinenweber, K AF Du Frane, Wyatt L. Sharp, Thomas G. Mosenfelder, Jed L. Leinenweber, Kurt TI Ringwoodite growth rates from olivine with similar to 75 ppmw H2O: Metastable olivine must be nearly anhydrous to exist in the mantle transition zone SO PHYSICS OF THE EARTH AND PLANETARY INTERIORS LA English DT Article DE Olivine; Ringwoodite; Transformation Kinetics; Growth rates; Hydrogen; Mantle; Subduction ID DEEP-FOCUS EARTHQUAKES; ALPHA-BETA TRANSFORMATION; DOUBLE SEISMIC ZONE; SAN CARLOS OLIVINE; SPINEL TRANSFORMATION; SUBDUCTING LITHOSPHERE; EXPERIMENTAL CONSTRAINTS; PHASE-TRANSFORMATIONS; OCEANIC LITHOSPHERE; HYDROUS RINGWOODITE AB It has been previously demonstrated that as little as 300 ppmw H2O increases wadsleyite and ringwoodite growth rates to magnitudes that are inconsistent with the metastable olivine hypothesis. To further test this hypothesis, we present new ringwoodite growth rate measurements from olivine with similar to 75 ppmw H2O at 18 GPa and 700, 900, and 1100 degrees C. These growth rates are nearly identical to those from olivine with similar to 300 ppmw H2O, and significantly higher than those from nominally anhydrous olivine. We infer that transformation of olivine with 75-300 ppmw H2O is primarily enhanced by hydrolytic weakening of reaction rims, which reduces the elastic strain-energy barrier to growth. We present a new method for fitting non-linear nominally anhydrous data, to demonstrate that reduction of growth rates by elastic strain energy is an additional requirement for metastable olivine. Based on previous thermokinetic modeling, these enhanced growth rates are inconsistent with the persistence of metastable olivine wedges into the mantle transition zone. Metastable persistence of olivine into the mantle transition-zone would therefore require <75 ppmw H2O. (C) 2013 Elsevier B.V. All rights reserved. C1 [Du Frane, Wyatt L.; Sharp, Thomas G.; Leinenweber, Kurt] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Du Frane, Wyatt L.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. [Mosenfelder, Jed L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Du Frane, WL (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. EM wd@asu.edu FU NSF [EAR-0622775, EAR-0838159, EAR-0947956]; Gordon and Betty Moore Foundation; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank T. Diedrich and G. Moore for help with experiments conducted at the ASU OmniPressure lab; K. Roggensack for assistance with sample sectioning; E. Soignard and R. Tricky for assistance with Raman; and T. Tenner, A. Withers, and M. Hirschmann for providing their assistance with SIMS calibration and measurements on the Cameca 6f at ASU. We thank T. Kubo and D. Rubie for their reviews and comments that helped us significantly improve this manuscript. SIMS data were obtained at the ASU National SIMS Facility, supported by NSF EAR-0622775 to R. Hervig and P.Williams. SIMS data obtained at the Center for Microanalysis at Caltech were partially supported by the Gordon and Betty Moore Foundation. We acknowledge the LeRoy-Eyring Center for Solid State Science for access to Raman and SEM instrumentation. This work was supported by NSF EAR-0838159 to T. Sharp and NSF EAR-0947956 to G. Rossman. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 65 TC 7 Z9 7 U1 0 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-9201 EI 1872-7395 J9 PHYS EARTH PLANET IN JI Phys. Earth Planet. Inter. PD JUN PY 2013 VL 219 BP 1 EP 10 DI 10.1016/j.pepi.2013.04.001 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 170BX UT WOS:000320825700001 ER PT J AU Lawrie, BJ Mu, R Haglund, RF AF Lawrie, B. J. Mu, R. Haglund, R. F. TI Plasmonic Control of Near-Interface Exciton Dynamics in Defect-Rich ZnO Thin Films SO PLASMONICS LA English DT Article DE Purcell effect; Ultrafast spectroscopy; Interface defects ID GREEN; PHOTOLUMINESCENT AB Zinc oxide (ZnO) is an attractive material for many electro-optical applications, but the control of impurities remains an issue in device fabrication. For this paper, the dynamics of defect states produced by annealing ZnO thin films at temperatures of 400-800 degrees C were probed by band-edge pump-probe spectroscopy in differential reflection and transmission. The distinction between the differential reflection and transmission spectra allowed for the analysis of ultrafast near-interface dynamics, which cannot be separated from the bulk thin-film dynamics by traditional ultrafast spectroscopies. In particular, simultaneous differential reflection and transmission spectroscopy provided clear evidence that the band-edge recombination dynamics in samples annealed at 400 degrees C were absent near the ZnO/substrate interface. However, the Purcell enhancement observed in Ag/ZnO heterostructures resulted in the dramatic emergence of the band-edge recombination signal nearly two orders of magnitude greater in intensity than the defect differential reflectivity. This indicates that the spatial range of the Purcell effect is at least twice as large as inferred from previous photoluminescence studies. C1 [Lawrie, B. J.] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37234 USA. [Mu, R.] Fisk Univ, Dept Phys, Nashville, TN 37208 USA. [Haglund, R. F.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Lawrie, BJ (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM lawriebj@ornl.gov RI Lawrie, Benjamin/B-7182-2016 OI Lawrie, Benjamin/0000-0003-1431-066X FU US Department of Energy, Office of Science [DE-FG02-01ER45916]; NSF-CREST grant [HRD-0420516]; Department of Defense [W911NF-11-1-0156]; Oak Ridge National Laboratory; US Department of Energy [DE-AC05-00OR22725] FX BJL and RFH acknowledge support of the ultrafast spectroscopy experiments at Vanderbilt by the US Department of Energy, Office of Science (DE-FG02-01ER45916). PL experiments and thin-film fabrication at Fisk University were supported by an NSF-CREST grant (HRD-0420516) and by a Department of Defense grant (W911NF-11-1-0156). BJL acknowledges additional support from an IC postdoctoral fellowship at Oak Ridge National Laboratory. The Oak Ridge National Laboratory is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. NR 15 TC 3 Z9 3 U1 1 U2 26 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-1955 J9 PLASMONICS JI Plasmonics PD JUN PY 2013 VL 8 IS 2 BP 693 EP 697 DI 10.1007/s11468-012-9459-9 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 164XN UT WOS:000320445700069 ER PT J AU Hinkens, DM Chen, QL Siddiki, MK Gosztola, D Tapsak, MA Qiao, QQ Jeffries-EL, M Darling, SB AF Hinkens, Diane M. Chen, Qiliang Siddiki, Mahbube Khoda Gosztola, David Tapsak, Mark A. Qiao, Qiquan Jeffries-EL, Malika Darling, Seth B. TI Model compounds based on poly(p-phenylenevinyleneborane) and terthiophene: Investigating the p-n junction in diblock copolymers SO POLYMER LA English DT Article DE Organoborane; Block copolymer; Conjugated polymers ID CONJUGATED BLOCK-COPOLYMERS; HYDROBORATION POLYMERIZATION; ELECTRICAL-CONDUCTIVITY; ORGANOBORON POLYMERS; ELECTRONIC-STRUCTURE; TRIBLOCK COPOLYMERS; ANION-BINDING; OLIGOMERS; DERIVATIVES; POLYTHIOPHENE AB Conjugated block copolymers represent a class of materials with potential applications in electronics and optoelectronics. Three block copolymer model compounds were made by first synthesizing 5-ethynyl-2,2':5',2 ''-terthiophene, 5-(2-propynyl)-2,2':5',2 ''-terthiophene and 5-(3-butynyl)-2,2':5',2 ''-terthiophene and then performing hydroboration polymerization from the alkyne of the terthiophene. The impact of the connectivity between the polymer blocks of these compounds was investigated. Theoretical and experimental studies indicated that charge transfer was occurring within the all-conjugated copolymer model compound, and that electronic coupling decreased with increasing length of the linking bridge between the n-type and p-type materials. Preliminary efforts to synthesize the related regioregular poly(3-hexylthiophene) all-conjugated diblock copolymer and use this material as the active layer in photovoltaic cells are discussed. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Hinkens, Diane M.; Chen, Qiliang; Siddiki, Mahbube Khoda; Qiao, Qiquan] S Dakota State Univ, Pierre, SD USA. [Gosztola, David; Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Hinkens, Diane M.; Tapsak, Mark A.] Bloomsburg Univ Penn, Dept Chem & Biochem, Bloomsburg, PA 17815 USA. [Jeffries-EL, Malika] Iowa State Univ, Dept Chem, Ames, IA USA. [Darling, Seth B.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. RP Hinkens, DM (reprint author), Bloomsburg Univ Penn, Dept Chem & Biochem, Bloomsburg, PA 17815 USA. EM dhinkens@gmail.com; darling@anl.gov RI Gosztola, David/D-9320-2011 OI Gosztola, David/0000-0003-2674-1379 FU National Science Foundation [CHE-0836082]; MRSEC Program of the National Science Foundation [DMR-0212302]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Bloomsburg University of Pennsylvania; Iowa State University; South Dakota State University FX This material is based upon work supported by the National Science Foundation under CHE-0836082. This work was supported in part by the MRSEC Program of the National Science Foundation under Award #DMR-0212302. Use of the Center for Nanoscale Materials at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was also supported by Bloomsburg University of Pennsylvania, Iowa State University and South Dakota State University. NR 71 TC 14 Z9 14 U1 1 U2 37 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD JUN PY 2013 VL 54 IS 14 BP 3510 EP 3520 DI 10.1016/j.polymer.2013.05.008 PG 11 WC Polymer Science SC Polymer Science GA 168BB UT WOS:000320679600011 ER PT J AU Wang, K Mao, JF Dickinson, RE Shi, XY Post, WM Zhu, ZC Myneni, RB AF Wang, Kai Mao, Jiafu Dickinson, Robert E. Shi, Xiaoying Post, Wilfred M. Zhu, Zaichun Myneni, Ranga B. TI Evaluation of CLM4 Solar Radiation Partitioning Scheme Using Remote Sensing and Site Level FPAR Datasets SO REMOTE SENSING LA English DT Article DE land surface; solar radiation partitioning; climate modeling; evaluation ID LEAF-AREA INDEX; PHOTOSYNTHETICALLY ACTIVE RADIATION; NET PRIMARY PRODUCTION; SURFACE PROCESSES; VEGETATION INDEX; GLOBAL PRODUCTS; BOREAL FORESTS; ABSORBED PAR; FIELD DATA; MODIS DATA AB This paper examines a land surface solar radiation partitioning scheme, i.e., that of the Community Land Model version 4 (CLM4) with coupled carbon and nitrogen cycles. Taking advantage of a unique 30-year fraction of absorbed photosynthetically active radiation (FPAR) dataset, derived from the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) data set, multiple other remote sensing datasets, and site level observations, we evaluated the CLM4 FPAR's seasonal cycle, diurnal cycle, long-term trends, and spatial patterns. Our findings show that the model generally agrees with observations in the seasonal cycle, long-term trends, and spatial patterns, but does not reproduce the diurnal cycle. Discrepancies also exist in seasonality magnitudes, peak value months, and spatial heterogeneity. We identify the discrepancy in the diurnal cycle as, due to, the absence of dependence on sun angle in the model. Implementation of sun angle dependence in a one-dimensional (1-D) model is proposed. The need for better relating of vegetation to climate in the model, indicated by long-term trends, is also noted. Evaluation of the CLM4 land surface solar radiation partitioning scheme using remote sensing and site level FPAR datasets provides targets for future development in its representation of this naturally complicated process. C1 [Wang, Kai; Dickinson, Robert E.] Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA. [Mao, Jiafu; Shi, Xiaoying; Post, Wilfred M.] Oak Ridge Natl Lab, Div Environm Sci, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Zhu, Zaichun; Myneni, Ranga B.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. RP Mao, JF (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Climate Change Sci Inst, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM kaiwang@utexas.edu; maoj@ornl.gov; robted@jsg.utexas.edu; shix@ornl.gov; mpost3116@gmail.com; zhu.zaichun@gmail.com; ranga.myneni@gmail.com RI Yu, Miao/J-2965-2013; Myneni, Ranga/F-5129-2012; Mao, Jiafu/B-9689-2012 OI Mao, Jiafu/0000-0002-2050-7373 FU US Department of Energy [DE-FG02-01ER63198, DE-AC05-00OR22725] FX The study was conducted at The University of Texas at Austin with support from the US Department of Energy (DE-FG02-01ER63198), and also at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-BATTELLE for the U.S. Department of Energy under contract DE-AC05-00OR22725. We thank for inspiring discussions with Zongliang Yang and Lianhong Gu. We appreciate the valuable suggestions and feedback from all reviewers. NR 65 TC 9 Z9 9 U1 1 U2 30 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUN PY 2013 VL 5 IS 6 BP 2857 EP 2882 DI 10.3390/rs5062857 PG 26 WC Remote Sensing SC Remote Sensing GA 169HP UT WOS:000320771100014 ER PT J AU Greve, DW Chin, TL Zheng, P Ohodnicki, P Baltrus, J Oppenheim, IJ AF Greve, David W. Chin, Tao-Lun Zheng, Peng Ohodnicki, Paul Baltrus, John Oppenheim, Irving J. TI Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing SO SENSORS LA English DT Article DE surface acoustic wave; gas sensor; oxygen; langasite; zinc oxide; tin oxide ID HIGH-TEMPERATURE APPLICATIONS; SHEAR HORIZONTAL SAW; GAS SENSOR; THIN-FILM; LANGASITE; TRANSDUCERS; PERFORMANCE; FABRICATION; PLATINUM; BEHAVIOR AB Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity. C1 [Greve, David W.; Chin, Tao-Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Greve, David W.; Chin, Tao-Lun; Zheng, Peng] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA. [Oppenheim, Irving J.] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. RP Greve, DW (reprint author), Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM dg07@andrew.cmu.edu; tchin@andrew.cmu.edu; pzheng08@gmail.com; paul.ohodnicki@netl.doe.gov; john.baltrus@netl.doe.gov; ijo@andrew.cmu.edu FU Department of Energy, National Energy Technology Laboratory, an agency of the United States of Government, through URS Energy & Construction, Inc. FX We acknowledge the contribution of Limin Cao who performed wafer fabrication. This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States of Government, through a support contract with URS Energy & Construction, Inc. Neither the United States Government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by the trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 65 TC 13 Z9 14 U1 3 U2 67 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD JUN PY 2013 VL 13 IS 6 BP 6910 EP 6935 DI 10.3390/s130606910 PG 26 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 169GK UT WOS:000320767600003 PM 23708273 ER PT J AU Liu, P Yang, YX White, MG AF Liu, Ping Yang, Yixiong White, Michael G. TI Theoretical perspective of alcohol decomposition and synthesis from CO2 hydrogenation SO SURFACE SCIENCE REPORTS LA English DT Review DE Methanol; Ethanol; Catalysts; Decomposition; CO2 hydrogenation; Reaction mechanism; Kinetic modeling; DFT ID DENSITY-FUNCTIONAL THEORY; GAS-SHIFT REACTION; O BOND SCISSION; DIPPED ADCLUSTER MODEL; ELECTRON-ENERGY-LOSS; METHANOL SYNTHESIS CATALYSTS; COMPLEX-REACTION NETWORK; MIXED-METAL OXIDE; AU-C INTERACTIONS; ETHANOL DECOMPOSITION AB Advances in theoretical methods, in particular density functional theory (DFT), make it possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare with experiment in a meaningful way. The theoretical studies also describe chemical reaction networks and understand variations in catalytic activity from one catalyst to another. Such understanding allows the theoretical optimization for better catalysts. In the current report we discussed the theoretical studies in the past few years on decomposition and synthesis of methanol and ethanol on various catalyst surfaces. The knowledge of reactions including the intermediates and transition states along different reaction pathways together with kinetic modeling was demonstrated. The theoretical studies on alcohol synthesis help gain better understanding of the complex kinetics and the roles that each component of a catalyst plays. In general, moving from mono-functional catalysts to multi-functional catalysts by increasing the complexity offers new opportunities to tune the behavior of a catalyst. A good multi-functional catalyst is not necessary to compromise the binding strong enough to adsorb and dissociate reactants and weak enough to allow the formation of intermediates and removal of products; instead, it may take advantage of each component, which catalyzes different elementary steps depending on its unique activity. The synergy between the different components can enable the multifunctional catalyst a novel activity in catalysis. This is of great importance for rational design of better catalysts for alcohol renewal synthesis and efficient use. (c) 2013 Elsevier B.V. All rights reserved. C1 [Liu, Ping; White, Michael G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Yang, Yixiong; White, Michael G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Liu, P (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM pingliu3@bnl.gov FU US Department of Energy, Division of Chemical Sciences [DEAC02-98CH10886] FX The financial support from the US Department of Energy, Division of Chemical Sciences under contract DEAC02-98CH10886. NR 294 TC 9 Z9 9 U1 26 U2 171 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-5729 EI 1879-274X J9 SURF SCI REP JI Surf. Sci. Rep. PD JUN 1 PY 2013 VL 68 IS 2 BP 233 EP 272 DI 10.1016/j.surfrep.2013.01.001 PG 40 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 169AD UT WOS:000320748400001 ER PT J AU Bagus, PS Ilton, ES Nelin, CJ AF Bagus, Paul S. Ilton, Eugene S. Nelin, Connie J. TI The interpretation of XPS spectra: Insights into materials properties SO SURFACE SCIENCE REPORTS LA English DT Review ID X-RAY PHOTOEMISSION; BINDING-ENERGY SHIFTS; ELECTRONIC POPULATION ANALYSIS; HARTREE-FOCK CALCULATIONS; MOLECULAR WAVE FUNCTIONS; TRANSITION-METAL COMPOUNDS; DENSITY-FUNCTIONAL THEORY; EFFECTIVE CORE POTENTIALS; ALKALINE-EARTH OXIDES; ORBITAL CLUSTER-MODEL AB We review basic and advanced concepts needed for the correct analysis of XPS features. We place these concepts on rigorous foundations and explore their physical and chemical meanings without stressing the derivation of the mathematical formulations, which can be found in the cited literature. The significance and value of combining theory and experiment is demonstrated by discussions of the physical and chemical origins of the main and satellite XPS features for a variety of molecular and condensed phase materials. (c) 2013 Elsevier B.V. All rights reserved. C1 [Bagus, Paul S.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Nelin, Connie J.] CJ Nelin Consulting, Austin, TX USA. RP Bagus, PS (reprint author), Univ N Texas, Dept Chem, Denton, TX 76203 USA. EM bagus@unt.edu RI Bagus, Paul/M-1273-2015 FU Geosciences Research Program, Office of Basic Energy Sciences, U.S. DOE FX We acknowledge support by the Geosciences Research Program, Office of Basic Energy Sciences, U.S. DOE. We also wish to express our gratitude to Prof. Hajo Freund for his support and encouragement in the preparation of this paper, which was essential for the successful completion of the work. NR 176 TC 61 Z9 61 U1 18 U2 166 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-5729 EI 1879-274X J9 SURF SCI REP JI Surf. Sci. Rep. PD JUN 1 PY 2013 VL 68 IS 2 BP 273 EP 304 DI 10.1016/j.surfrep.2013.03.001 PG 32 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 169AD UT WOS:000320748400002 ER PT J AU Pailloux, SL Rosario-Amorin, D Chakravarty, M Camus, JM Smith, KA Duesler, EN Dickie, DA Paine, RT Klausmeyer, KK Padron, DA Hay, BP Delmau, LH AF Pailloux, Sylvie L. Rosario-Amorin, Daniel Chakravarty, Manab Camus, Jean-Michel Smith, Karen Ann Duesler, Eileen N. Dickie, Diane A. Paine, Robert T. Klausmeyer, Kevin K. Padron, Daniel A. Hay, Benjamin P. Delmau, Laetitia H. TI Synthesis and Properties of New (Phosphinoylmethyl)Pyridine N-Oxides SO ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE LA English DT Article DE Phosphine oxides; Pyridine N-oxides; Coordination chemistry; X-ray diffraction; Lanthanides; Actinides; Solvent extraction ID MM3 FORCE-FIELD; LANTHANIDE COORDINATION CHEMISTRY; STRUCTURE-STABILITY RELATIONSHIP; STRUCTURE-BASED DESIGN; MOLECULAR-MECHANICS; SELECTIVE LIGANDS; NITRIC-ACID; STRUCTURAL CRITERIA; SOLVENT-EXTRACTION; CRYSTAL-STRUCTURE AB Syntheses for 2-[1-(diarylphosphinoyl)-1-(pyridin-2-yl)methyl]pyridines, (8a, b), and 2-[1-(diarylphosphinoyl)-1, 1-bis(methylpyridin-2yl)methyl]pyridines, (11a, b), (Ar = C6H5 and 2-CF3C6H4), based on substitution of 2-methylpyridine fragments onto the exo methylene carbon atom of 2-[(diaryl)phosphinoylmethyl]pyridine platforms, are described. N-oxidations of 8a, b and 11a, b produced the 2-[1-(diarylphosphinoyl)-1-(1-oxy-pyridin-2yl)methyl]pyridine N-oxides (5a, b) and the 2-[1-(diarylphosphinoyl)-1, 1-bis(1-oxy-methylpyridin-2-yl)methyl]pyridines (6a, b), respectively. The short-arm pyridine fragment of 11a, b resists N-oxidation, and the fully oxidized molecules, 2-[1-(diarylphosphinoyl)-1, 1-bis(1-oxy-methylpyridin-2-yl)methyl]pyridine N-oxides (7a, b) were not isolated. Molecular mechanics calculations for gas phase 1:1 ligand/lanthanide complexes indicated that 5a should accommodate a tridentate NO(meNO)PO coordination mode with minimal steric strain. In contrast, 7a cannot form tetradentate NO(meNO)2PO chelates; however, tridentate binding should be accessible with minimal ligand strain. Coordination complexes of 8a, b, 5a, b, 6a, b and 11a, b with Ln(NO3)3 salts were isolated and a X-ray crystal structure for [Er(8a)(NO3)3(MeOH)2]center dot CH2Cl2, revealed a monodentate Er-O=P interaction. On the other hand, complexes formed by a more symmetrical trifunctional phenylphosphino-bis-2-methylpyridine N, N, P-trioxide ligand, (meNO)2PO*, {La[(meNO)2PO*)](OTf)2(MeOH)3(H2O)+}(OTf-) and {Pr[(meNO)2PO*)](OTf)(MeOH)4+}(OTf-)2, realized a tridentate coordination mode. Solvent extraction behaviors for EuIII and AmIII in nitric acid solutions using 5a, b, 6a, b, Ph3PO and the parent bifunctional ligand 2-[(diphenylphosphanyl)methyl]pyridine N, P-dioxide (3a) in 1, 2-dichloroethane were assessed, and 5a, b and 6a, b were found to behave more like Ph3PO than 3a. C1 [Pailloux, Sylvie L.; Rosario-Amorin, Daniel; Chakravarty, Manab; Camus, Jean-Michel; Smith, Karen Ann; Duesler, Eileen N.; Dickie, Diane A.; Paine, Robert T.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Klausmeyer, Kevin K.; Padron, Daniel A.] Baylor Univ, Dept Chem & Biochem, Waco, TX 76798 USA. [Hay, Benjamin P.; Delmau, Laetitia H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Paine, RT (reprint author), Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. EM rtpaine@unm.edu RI Dickie, Diane/B-1647-2010 OI Dickie, Diane/0000-0003-0939-3309 FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG02-03ER15419]; National Science Foundation [CHE-0443580]; NMR spectrometers at UNM [CHE-0840523, CHE-0946690]; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy; Robert A. Welch Foundation [AA-1508]; University Research Committee; Vice Provost for Research at Baylor University FX Financial support for the studies at the University of New Mexico was provided by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (Grant DE-FG02-03ER15419 (R. T. P)). In addition, funds from the National Science Foundation assisted with the purchases of the X-ray diffractometer (CHE-0443580) and NMR spectrometers (CHE-0840523 and CHE-0946690) at UNM. B. P. H. and L. H. D. acknowledge support from the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy. K. K. K acknowledges support provided by the Robert A. Welch Foundation (AA-1508) and in part by funds from the University Research Committee and the Vice Provost for Research at Baylor University. NR 73 TC 3 Z9 3 U1 1 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0044-2313 J9 Z ANORG ALLG CHEM JI Z. Anorg. Allg. Chem. PD JUN PY 2013 VL 639 IS 7 SI SI BP 1101 EP 1116 DI 10.1002/zaac.201300099 PG 16 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 161EE UT WOS:000320173800007 ER PT J AU Xu, HM Rodgers, AJ Lomov, IN Petersson, NA Sjogreen, B Vorobiev, OY AF Xu, Heming Rodgers, Arthur J. Lomov, Ilya N. Petersson, N. Anders Sjoegreen, Bjorn Vorobiev, Oleg Y. TI Simulation of Explosion Ground Motions Using a Hydrodynamic-to-Elastic Coupling Approach in Three Dimensions SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID SEISMIC-WAVE PROPAGATION; PART II; PENETRATION; EARTHQUAKES; EQUATION; PERIOD; MEDIA; MODEL; ROCK AB Near-field ground motions from explosions are governed by hydrodynamics and nonlinear material response. However, the calculation of the response using hydrodynamic solvers to observational distances, where motions are elastic, is computationally challenging. In order to propagate explosion ground motions from the near-source region to the far field, we developed a hybrid modeling approach with a hydrodynamic-to-elastic coupling in three dimensions. Near-source motions are computed with a Eulerian hydrodynamics code with adaptive mesh refinement. Motions on a dense grid of points are saved, resampled, and then passed to an elastic finite-difference code for seismic-wave modeling. Our coupling strategy is based on the uniqueness theorem, where motions are introduced into the elastic code as time-dependent boundary sources and propagate as elastic waves at much lower computational cost than with the hydrodynamics code. We developed and verified the methodology to compute the hydrodynamic responses in either 2D or 3D into the elastic region and pass these to the elastic solver as 3D boundary motions. The accuracy of the numerical calculations and the coupling strategy is demonstrated in cases with a purely elastic medium as well as a nonlinear medium. Importantly, we show that our hydrodynamics code can accurately model motions for shallow sources in an elastic medium including surface waves, which is essential to insure that near-source motions are correct. An application of our hybrid modeling approach is shown for a problem with scattering by 3D heterogeneity. Our strategy is capable of incorporating complex nonlinear effects near the source as well as volumetric and topographic material heterogeneity along the propagation path to receiver, making it very powerful for modeling a wide variety of effects and providing new prospects for modeling and understanding explosion-generated seismic waveforms. C1 [Xu, Heming; Rodgers, Arthur J.; Lomov, Ilya N.; Vorobiev, Oleg Y.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Petersson, N. Anders; Sjoegreen, Bjorn] Lawrence Livermore Natl Lab, Ctr Adv Sci Comp, Computat Directorate, Livermore, CA 94551 USA. RP Xu, HM (reprint author), San Diego Supercomp Ctr, 9500 Gilman Dr,MS 0505, La Jolla, CA 92093 USA. RI Rodgers, Arthur/E-2443-2011 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX Simulations were performed on the SIERRA Linux cluster operated by Livermore Computing. We are grateful for access to these facilities through a Grand Challenge Allocation. We would also like to acknowledge helpful discussions with Tarabay Antoun, Ben Liu, Lew Glenn, and Bill Walter. Reviews from Associate Editor Eric Chael and an anonymous referee were helpful. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. This is LLNL Contribution LLNL-JRNL-557566. NR 49 TC 1 Z9 1 U1 0 U2 7 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD JUN PY 2013 VL 103 IS 3 BP 1629 EP 1639 DI 10.1785/0120120180 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 160FH UT WOS:000320102100001 ER PT J AU Stacchiola, DJ Senanayake, SD Liu, P Rodriguez, JA AF Stacchiola, Dario J. Senanayake, Sanjaya D. Liu, Ping Rodriguez, Jose A. TI Fundamental Studies of Well-Defined Surfaces of Mixed-Metal Oxides: Special Properties of MOx/TiO2(110) {M = V, Ru, Ce, or W} SO CHEMICAL REVIEWS LA English DT Review ID GAS SHIFT REACTION; VANADIUM-OXIDE; ELECTRONIC-STRUCTURE; SUPPORT INTERACTIONS; CATALYTIC-ACTIVITY; (WO3)(3) CLUSTERS; ULTRATHIN FILMS; MODEL CATALYST; VISIBLE-LIGHT; TIO2 110 C1 [Stacchiola, Dario J.; Senanayake, Sanjaya D.; Liu, Ping; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Stacchiola, Dario/B-1918-2009; Senanayake, Sanjaya/D-4769-2009 OI Stacchiola, Dario/0000-0001-5494-3205; Senanayake, Sanjaya/0000-0003-3991-4232 FU U.S. Department of Energy (Chemical Sciences Division) [DE-AC02-98CH10886] FX Many of the studies described above were done in collaboration with members of the Catalysis Group at Brookhaven National Laboratory and collaborators from the Universidad Central de Venezuela, the University of Barcelona, the University of Seville, and the CSIC Institute of Catalysis in Madrid: S. Agnoli, L. Barrio, A. Bruix, J. Ciston, M. Estrella, J. Evans, J. Fernandez-Sanz, J. L. G. Fierro, J. Graciani, I. D. Gonzalez, J. Hanson, J. Hrbek, F. Illas, S. Kundu, S. Ma, R. M. Navarro, J.-B. Park, P. J. Ramirez, F. Yang, A. Vidal, and W. Wen. Many thanks to all of them. Work carried out at Brookhaven National Laboratory was supported by the U.S. Department of Energy (Chemical Sciences Division, DE-AC02-98CH10886). NR 114 TC 38 Z9 39 U1 7 U2 160 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD JUN PY 2013 VL 113 IS 6 BP 4373 EP 4390 DI 10.1021/cr300316v PG 18 WC Chemistry, Multidisciplinary SC Chemistry GA 165KU UT WOS:000320483600013 PM 23210768 ER PT J AU Henderson, MA Lyubinetsky, I AF Henderson, Michael A. Lyubinetsky, Igor TI Molecular-Level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110) SO CHEMICAL REVIEWS LA English DT Review ID ATOMIC-FORCE MICROSCOPY; SINGLE-CRYSTAL SURFACE; METAL-OXIDE SURFACE; AUGER-ELECTRON-SPECTROSCOPY; 1ST PRINCIPLES CALCULATIONS; PHOTOINDUCED REDOX REACTION; FINAL-STATE DISTRIBUTIONS; DENSITY-FUNCTIONAL THEORY; FULLY OXIDIZED TIO2(110); REDUCED RUTILE TIO2(110) C1 [Henderson, Michael A.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Lyubinetsky, Igor] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MS K8-87, Richland, WA 99352 USA. EM ma.henderson@pnnl.gov; igor.lyubinetsky@pnnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; Pacific Northwest National Laboratory (PNNL) Chemical Imaging Initiative project FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. I.L. was partially supported by a Pacific Northwest National Laboratory (PNNL) Chemical Imaging Initiative project. PNNL is a multiprogram national laboratory operated for DOE by Battelle. NR 360 TC 84 Z9 85 U1 17 U2 255 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD JUN PY 2013 VL 113 IS 6 BP 4428 EP 4455 DI 10.1021/cr300315m PG 28 WC Chemistry, Multidisciplinary SC Chemistry GA 165KU UT WOS:000320483600015 PM 23488875 ER PT J AU Akimov, AV Neukirch, AJ Prezhdo, OV AF Akimov, Alexey V. Neukirch, Amanda J. Prezhdo, Oleg V. TI Theoretical Insights into Photoinduced Charge Transfer and Catalysis at Oxide Interfaces SO CHEMICAL REVIEWS LA English DT Review ID SENSITIZED SOLAR-CELLS; TRANSITION-STATE THEORY; ELECTRON-TRANSFER REACTIONS; ENERGY-GAP LAW; NANOCRYSTALLINE THIN-FILMS; MULTIPLE EXCITON GENERATION; QUANTIZED-HAMILTON-DYNAMICS; QUANTUM-CLASSICAL DYNAMICS; NONADIABATIC MOLECULAR-DYNAMICS; VISIBLE-LIGHT IRRADIATION C1 [Akimov, Alexey V.; Prezhdo, Oleg V.] Univ Rochester, Dept Chem, Rochester, NY 14627 USA. [Akimov, Alexey V.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Neukirch, Amanda J.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. RP Prezhdo, OV (reprint author), Univ Rochester, Dept Chem, Rochester, NY 14627 USA. EM oleg.prezhdo@rochester.edu RI Akimov, Alexey/H-9547-2014 FU National Science Foundation [CHE-1300118]; U.S. Department of Energy [DE-SC0006527]; U.S. Department of Energy, Brookhaven National Laboratory [DE-AC02-98CH10886] FX The authors thank Julia DeBaecke for comments on the manuscript. O.V.P. and A.J.N. acknowledge financial support from the National Science Foundation, grant CHE-1300118, and U.S. Department of Energy, grant DE-SC0006527. A.V.A. was funded at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the U.S. Department of Energy. NR 654 TC 168 Z9 170 U1 17 U2 317 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD JUN PY 2013 VL 113 IS 6 BP 4496 EP 4565 DI 10.1021/cr3004899 PG 70 WC Chemistry, Multidisciplinary SC Chemistry GA 165KU UT WOS:000320483600017 PM 23627277 ER PT J AU Bryson, AJ Woodley, CM Karls, RK Hall, KD Weiland, MA Deng, ZD Carlson, TJ Eppard, MB AF Bryson, Amanda J. Woodley, Christa M. Karls, Rhonda K. Hall, Kathleen D. Weiland, Mark A. Deng, Z. Daniel Carlson, Thomas J. Eppard, M. Brad TI Comparison of 180-degree and 90-degree needle rotation to reduce wound size in PIT-injected juvenile Chinook salmon SO FISHERIES RESEARCH LA English DT Article DE Fish telemetry; Passive integrated transponder; Acoustic telemetry; Wound healing; Injection techniques ID INTEGRATED TRANSPONDER TAGS; RETENTION; MORTALITY; SURVIVAL; IMPLANTATION; PERFORMANCE; BEVEL AB Most telemetry studies require the implantation or attachment of passive transponders or active transmitters to monitor and assess fish stocks and conservation to gain an understanding of fish physiology and behavior. As new telemetry technologies become available, it is imperative to study the effect of the transmitter or implantation technique on species of interest. In this study, we investigated the effects of needle axial or bevel rotation (0-, 90-, 180-degree) on wound extent and healing, and tag loss in juvenile Chinook salmon injected with an 8-gauge needle, which is required for implantation of the injectable juvenile Salmon Acoustic Telemetry Systems acoustic transmitter and some passive integrated transponders (PITs). Although the wounds were not closed after injection (e.g., with sutures or glue), there were no mortalities, dropped tags, or indications of fungus, ulceration, or redness around the wound. No axial rotation (0-degrees) resulted in the PIT tag frequently misloading or falling out before injection. On Day 0 and post-implantation Day 7, the 90-degree bevel rotation produced a significantly smaller wound extent than the 180-degree bevel rotation. Given the wound extent compared to size of fish, we recommend researchers should consider a 90-degree rotation over the 180-degree rotation when injecting transmitters. (C) 2013 Elsevier B.V. All rights reserved. C1 [Bryson, Amanda J.; Woodley, Christa M.; Karls, Rhonda K.; Hall, Kathleen D.; Carlson, Thomas J.] Pacific NW Natl Lab, Sequim, WA 98382 USA. [Weiland, Mark A.] Pacific NW Natl Lab, North Bonneville, WA 98369 USA. [Deng, Z. Daniel] Pacific NW Natl Lab, Richland, WA 99354 USA. [Eppard, M. Brad] USA, Corps Engineers, Portland, OR 97208 USA. RP Woodley, CM (reprint author), Pacific NW Natl Lab, 1529W Sequim Bay Rd, Sequim, WA 98382 USA. EM christa.woodley@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU United States Army Corps of Engineers FX This research was funded by United States Army Corps of Engineers as part of the bio-effects research for the JSATS injectable acoustic transmitter development project. We thank PNNL staff Tim Linley, Shon Zimmerman, Katie Wagner, Eric Fischer, Ron Kaufmann, John Vavrinec, Michele Halvorsen, Lara Aston, and Jayson Martinez for technical and graphical support. In addition, we thank Susan Ennor and Amoret Bunn for the editorial review and comments. NR 18 TC 2 Z9 2 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 J9 FISH RES JI Fish Res. PD JUN PY 2013 VL 143 BP 201 EP 204 DI 10.1016/j.fishres.2013.02.011 PG 4 WC Fisheries SC Fisheries GA 151WS UT WOS:000319491700022 ER PT J AU Hunt, RM Abbott, RP Havstad, MA Dunne, AM AF Hunt, R. M. Abbott, R. P. Havstad, M. A. Dunne, A. M. TI Fatigue cracking of a bare steel first wall in an inertial confinement fusion chamber SO FUSION ENGINEERING AND DESIGN LA English DT Article DE First wall; Fatigue; Thermomechanical stress; Crack propagation ID COMPRESSION; HT-9 AB Inertial confinement fusion power plants will deposit high energy X-rays onto the outer surfaces of the first wall many times a second for the lifetime of the plant. These X-rays create brief temperature spikes in the first few microns of the wall, which cause an associated highly compressive stress response on the surface of the material. The periodicity of this stress pulse is a concern due to the possibility of fatigue cracking of the wall. We have used finite element analyses to simulate the conditions present on the first wall in order to evaluate the driving force of crack propagation on fusion-facing surface cracks. Analysis results indicate that the X-ray induced plastic compressive stress creates a region of residual tension on the surface between pulses. This tension film will likely result in surface cracking upon repeated cycling. Additionally, the compressive pulse may induce plasticity ahead of the crack tip, leaving residual tension in its wake. However, the stress amplitude decreases dramatically for depths greater than 80-100 mu m into the fusion-facing surface. Crack propagation models as well as stress-life estimates agree that even though small cracks may form on the surface of the wall, they are unlikely to propagate further than 100 mu m without assistance from creep or grain erosion phenomena. (c) 2013 Elsevier B.V. All rights reserved. C1 [Hunt, R. M.; Abbott, R. P.; Havstad, M. A.; Dunne, A. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hunt, RM (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM hunt52@llnl.gov; abbott13@llnl.gov; havstad1@llnl.gov; dunne8@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 12 TC 4 Z9 4 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD JUN PY 2013 VL 88 IS 5 BP 311 EP 316 DI 10.1016/j.fusengdes.2013.03.017 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 161UO UT WOS:000320219000010 ER PT J AU Ma, CYT Yau, DKY Yip, NK Rao, NSV AF Ma, Chris Y. T. Yau, David K. Y. Yip, Nung Kwan Rao, Nageswara S. V. TI Privacy Vulnerability of Published Anonymous Mobility Traces SO IEEE-ACM TRANSACTIONS ON NETWORKING LA English DT Article DE Mobility traces; privacy; security and protection ID ANONYMIZATION; MODEL AB Mobility traces of people and vehicles have been collected and published to assist the design and evaluation of mobile networks, such as large-scale urban sensing networks. Although the published traces are often made anonymous in that the true identities of nodes are replaced by random identifiers, the privacy concern remains. This is because in real life, nodes are open to observations in public spaces, or they may voluntarily or inadvertently disclose partial knowledge of their whereabouts. Thus, snapshots of nodes' location information can be learned by interested third parties, e. g., directly through chance/engineered meetings between the nodes and their observers, or indirectly through casual conversations or other information sources about people. In this paper, we investigate how an adversary, when equipped with a small amount of the snapshot information termed as side information, can infer an extended view of the whereabouts of a victim node appearing in an anonymous trace. Our results quantify the loss of victim nodes' privacy as a function of the nodal mobility, the inference strategies of adversaries, and any noise that may appear in the trace or the side information. Generally, our results indicate that the privacy concern is significant in that a relatively small amount of side information is sufficient for the adversary to infer the true identity (either uniquely or with high probability) of a victim in a set of anonymous traces. For instance, an adversary is able to identify the trace of 30%-50% of the victims when she has collected 10 pieces of side information about a victim. C1 [Ma, Chris Y. T.; Yau, David K. Y.] Adv Digital Sci Ctr, Singapore 138632, Singapore. [Yau, David K. Y.; Yip, Nung Kwan] Purdue Univ, W Lafayette, IN 47907 USA. [Rao, Nageswara S. V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ma, CYT (reprint author), Adv Digital Sci Ctr, Singapore 138632, Singapore. EM chris.ytma@gmail.com OI Rao, Nageswara/0000-0002-3408-5941 FU Human Sixth Sense Programme at the Advanced Digital Sciences Center from Singapore's Agency for Science, Technology and Research (A*STAR); US National Science Foundation [CNS-0963715, CNS-0964086, DMS-0707926]; Mathematics of Complex, Distributed, Interconnected Systems Program, Office of Advanced Computing Research, US Department of Energy; National Natural Science Foundation of China (NSFC) [61028007]; US Department of Energy [DE-AC05-00OR22725] FX This work was supported in part by the Human Sixth Sense Programme at the Advanced Digital Sciences Center from Singapore's Agency for Science, Technology and Research (A*STAR) under a research grant; the US National Science Foundation under Grants No. CNS-0963715, CNS-0964086, and DMS-0707926; the Mathematics of Complex, Distributed, Interconnected Systems Program, Office of Advanced Computing Research, US Department of Energy; and the National Natural Science Foundation of China (NSFC) under Grant No. 61028007. This work was performed in part at the Advanced Digital Sciences Center, Purdue University, and Oak Ridge National Laboratory managed by UT-Battelle, LLC, for the US Department of Energy under Contract No. DE-AC05-00OR22725. NR 41 TC 11 Z9 13 U1 0 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1063-6692 J9 IEEE ACM T NETWORK JI IEEE-ACM Trans. Netw. PD JUN PY 2013 VL 21 IS 3 BP 720 EP 733 DI 10.1109/TNET.2012.2208983 PG 14 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA 167BS UT WOS:000320605900004 ER PT J AU Melin, A Kisner, R Fugate, D AF Melin, Alexander Kisner, Roger Fugate, David TI Advanced Instrumentation for Extreme Environments SO IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE LA English DT Article C1 [Melin, Alexander; Kisner, Roger; Fugate, David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Melin, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM melina@ornl.gov NR 7 TC 3 Z9 3 U1 1 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1094-6969 J9 IEEE INSTRU MEAS MAG JI IEEE Instrum. Meas. Mag. PD JUN PY 2013 VL 16 IS 3 BP 6 EP 11 PG 6 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 158SK UT WOS:000319992900002 ER PT J AU Coble, J Ramuhalli, P Meyer, R Hashemian, H AF Coble, Jamie Ramuhalli, Pradeep Meyer, Ryan Hashemian, Hash TI Online Sensor Calibration Assessment in Nuclear Power Systems SO IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE LA English DT Article C1 [Coble, Jamie; Ramuhalli, Pradeep; Meyer, Ryan] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ramuhalli, Pradeep] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA. [Hashemian, Hash] Anal & Measurement Serv Corp AMS, Knoxville, TN USA. RP Coble, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. OI Ramuhalli, Pradeep/0000-0001-6372-1743 FU United States Department of Energy, Office of Nuclear Energy (DOE-NE) through the Nuclear Energy Enabling Technology (NEET) Advanced Sensors and Instrumentation program FX The work described here was funded by the United States Department of Energy, Office of Nuclear Energy (DOE-NE) through the Nuclear Energy Enabling Technology (NEET) Advanced Sensors and Instrumentation program and is not subject to copyright. NR 7 TC 0 Z9 0 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1094-6969 J9 IEEE INSTRU MEAS MAG JI IEEE Instrum. Meas. Mag. PD JUN PY 2013 VL 16 IS 3 BP 32 EP 37 PG 6 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 158SK UT WOS:000319992900006 ER PT J AU Martin, RL Haranczyk, M AF Martin, Richard Luis Haranczyk, Maciej TI Optimization-Based Design of Metal-Organic Framework Materials SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID CRYSTALLINE POROUS MATERIALS; MOLECULAR SIMULATIONS; SHAPE SELECTIVITY; CARBON-DIOXIDE; ADSORPTION; ALGORITHMS; ZEOLITES; STORAGE; POTENTIALS; SEPARATION AB Metal organic frameworks (MOFs) are a class of porous materials constructed from metal or metal oxide building blocks connected by organic linkers. MOFs are highly tunable structures that can in theory be custom designed to meet the specific pore geometry and chemistry required for a given application such as methane storage or carbon capture. However, due to the sheer number of potential materials, identification of optimal MOF structures is a significant challenge. In this contribution we describe an automated technique for MOF design based on mathematical optimization. Optimization is performed on linkers represented by abstract space-filling shapes, in order to generalize the desirable geometric parameters describing linkers, and optimal shapes are projected to real molecules to illustrate realistic MOFs exhibiting the calculated properties. Six examined topologies of MOF and two distinct geometrical pore properties relevant to guest adsorption phenomena are explored We demonstrate that the optimal shapes of linkers depend on both the topology and the property of interest and moreover that synthetically challenging linkers are not necessary to achieve the most promising candidate materials C1 [Martin, Richard Luis; Haranczyk, Maciej] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Haranczyk, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, 1 Cyclotron Rd,Mail Stop 50F-1650, Berkeley, CA 94720 USA. EM mharanczyk@lbl.gov RI Haranczyk, Maciej/A-6380-2014; Martin, Richard/C-7129-2013 OI Haranczyk, Maciej/0000-0001-7146-9568; Martin, Richard/0000-0001-9858-2608 FU aboratory Directed Research and Development Program of the Lawrence Berkeley National Laboratory (LBNL); Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231., DEAC02-05CH11231] FX The authors wish to thank the reviewer for valuable comments leading to improving the manuscript. This work is supported by the Laboratory Directed Research and Development Program of the Lawrence Berkeley National Laboratory (LBNL). LBNL is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC02-05CH11231., NR 49 TC 16 Z9 16 U1 1 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUN PY 2013 VL 9 IS 6 BP 2816 EP 2825 DI 10.1021/ct400255C PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 165LD UT WOS:000320484500026 PM 26583871 ER PT J AU Klett, KJC Torgersen, CE Henning, JA Murray, CJ AF Klett, Katherine J. C. Torgersen, Christian E. Henning, Julie A. Murray, Christopher J. TI Spatial Consistency of Chinook Salmon Redd Distribution within and among Years in the Cowlitz River, Washington SO NORTH AMERICAN JOURNAL OF FISHERIES MANAGEMENT LA English DT Article ID SPAWNING SITE SELECTION; COLUMBIA RIVER; ONCORHYNCHUS-TSHAWYTSCHA; GEOMORPHIC CONTROLS; YAKIMA-RIVER; HABITAT USE; STREAM; SCALE; REGRESSION; PATTERNS AB We investigated the spawning patterns of Chinook Salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington, using a unique set of fine- and coarse-scale temporal and spatial data collected during biweekly aerial surveys conducted in 1991-2009 (500m to 28km resolution) and 2008-2009 (100-500m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held GPS synchronized with in-flight audio recordings. We examined spatial patterns of Chinook Salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook Salmon spawned in the same sections each year with little variation among years. On a coarse scale, 5years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years. Comparisons on a fine scale (500m) between 2008 and 2009 also revealed a high degree of consistency among redd locations. On a finer temporal scale, we observed that Chinook Salmon spawned in the same sections during the first and last week. Redds were clustered in both 2008 and 2009. Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook Salmon spawning surveys. Received August 10, 2012; accepted February 14, 2013 C1 [Klett, Katherine J. C.] Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA. [Klett, Katherine J. C.; Torgersen, Christian E.] Univ Washington, US Geol Survey, Forest & Rangeland Ecosyst Sci Ctr, Cascadia Field Stn,Sch Environm & Forest Sci, Seattle, WA 98195 USA. [Henning, Julie A.] Washington Dept Fish & Wildlife, Olympia, WA 98501 USA. [Murray, Christopher J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Klett, KJC (reprint author), Univ Washington, Sch Environm & Forest Sci, Box 352100, Seattle, WA 98195 USA. EM kjcm22@u.washington.edu FU School of Environmental and Forest Sciences at the University of Washington; U.S. Geological Survey; Forest and Rangeland Ecosystem Science Center FX We thank Ryan Klett, Matt Groce, and Jeremy Cram for assistance with field work, Ethan Welty for GIS expertise and programming in R statistical software (linbin package), and Mark LaRiviere, from Tacoma Power, for providing logistical support and background information on the Cowlitz River. We would also like to thank Gino Lucchetti, Susan Bolton, and two anonymous reviewers for their constructive comments and recommendations. The School of Environmental and Forest Sciences at the University of Washington and the U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center provided partial funding for this work. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 53 TC 3 Z9 3 U1 0 U2 19 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0275-5947 EI 1548-8675 J9 N AM J FISH MANAGE JI North Am. J. Fish Manage. PD JUN 1 PY 2013 VL 33 IS 3 BP 508 EP 518 DI 10.1080/02755947.2013.778924 PG 11 WC Fisheries SC Fisheries GA 159CI UT WOS:000320021200007 ER PT J AU Browne, E Tuli, JK AF Browne, E. Tuli, J. K. TI Nuclear Data Sheets for A=231 SO NUCLEAR DATA SHEETS LA English DT Article ID ACTIVATION CROSS-SECTIONS; ALLOWED BETA TRANSITIONS; GAMMA-RAY INTENSITIES; ALPHA-DECAY; HALF-LIFE; NEUTRON-CAPTURE; HEAVY-NUCLEI; TH-232(N,2N)TH-231 REACTION; EMISSION PROBABILITIES; CLUSTER RADIOACTIVITY AB Spectroscopic data for all nuclei with mass number A=231 have been evaluated, and the corresponding level schemes from radioactive decay and reaction studies are presented. Highlights of this evaluation include: A new interpretation of gamma-ray spectroscopic results measured with the GAMMASPHERE spectrometer (2002AbZV, 2000JaZY, 1999Br17) has established the level structure of the ground state rotational band 1/2[400] up to spin/parity 45/2+ in Ac-231. Precise measurements of energies and cross sections of scattered tritons from the Th-232(d, t) reaction has produced or confirmed the identification of several rotational bands in Th-231. The alpha hindrance factors (HF) presented in this evaluation were calculated using values of the radius parameter (r(0)) interpolated from those for even-even adjacent nuclei given in 1998Ak04. The Limitation of Relative Statistical Weight (LWM) method (1985ZiZY) has been used for discrepant data throughout this evaluation. C1 [Browne, E.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Lawrence Berkeley Natl Lab, Upton, NY 11973 USA. [Tuli, J. K.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Browne, E (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Lawrence Berkeley Natl Lab, Upton, NY 11973 USA. FU Office of Nuclear Physics, Office of Science, US Department of Energy [DE-AC02-98CH10946] FX Research sponsored by Office of Nuclear Physics, Office of Science, US Department of Energy, under contract DE-AC02-98CH10946. NR 171 TC 4 Z9 5 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD JUN-JUL PY 2013 VL 114 IS 6-7 BP 751 EP 840 DI 10.1016/j.nds.2013.05.002 PG 90 WC Physics, Nuclear SC Physics GA 168AZ UT WOS:000320679400002 ER PT J AU Phillips, MC Bernacki, BE AF Phillips, Mark C. Bernacki, Bruce E. TI Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser SO OPTICAL ENGINEERING LA English DT Article DE infrared spectroscopy; quantum cascade laser; tunable laser; infrared microscopy; explosives detection ID FOCAL-PLANE ARRAY; STANDOFF DETECTION; SPECTROSCOPY; RDX; RESOLUTION AB Using infrared hyperspectral imaging, microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance is demonstrated. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13 to 10.53 mu m in 4 s, coupled with a microbolometer focal plane array to record infrared transmission images. The hyperspectral microscopy technique is used to study the infrared absorption spectra of individual explosives particles, and demonstrate subnanogram detection limits. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). C1 [Phillips, Mark C.; Bernacki, Bruce E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Phillips, MC (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM mark.phillips@pnnl.gov FU U.S. Department of Energy [DE-AC05-76RL01830] FX We thank Daylight Solutions for supplying the quantum cascade laser devices. The research described in this paper was conducted under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 29 TC 12 Z9 12 U1 0 U2 28 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD JUN PY 2013 VL 52 IS 6 AR 061302 DI 10.1117/1.OE.52.6.061302 PG 8 WC Optics SC Optics GA 151EV UT WOS:000319444400002 ER PT J AU Yamazaki, I Tadano, H Sakurai, T Ikegami, T AF Yamazaki, Ichitaro Tadano, Hiroto Sakurai, Tetsuya Ikegami, Tsutomu TI Performance comparison of parallel eigensolvers based on a contour integral method and a Lanczos method SO PARALLEL COMPUTING LA English DT Article DE Parallel eigensolvers; Cauchy integral; Thick restart Lanczos; Accelerator cavity modeling ID EIGENVALUE PROBLEMS; SYSTEMS AB We study the performance of a parallel nonlinear eigensolver SSEig which is based on a contour integral method. We focus on symmetric generalized eigenvalue problems (GEPs) of computing interior eigenvalues. We chose to focus on GEPs because we can then compare the performance of SSEig with that of a publicly-available software package TRLan, which is based on a thick restart Lanczos method. To solve this type of problems, SSEig requires the solution of independent linear systems with different shifts, while TRLan solves a sequence of linear systems with a single shift. Therefore, while SSEig typically has a computational cost greater than that of TRLan, it also has greater parallel scalability. To compare the performance of these two solvers, in this paper, we develop performance models and present numerical results of solving large-scale eigenvalue problems arising from simulations of modeling accelerator cavities. In particular, we identify the crossover point, where SSEig becomes faster than TRLan. The parallel performance of SSEig solving nonlinear eigenvalue problems is also studied. (c) 2012 Elsevier B.V. All rights reserved. C1 [Yamazaki, Ichitaro; Tadano, Hiroto; Sakurai, Tetsuya] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Yamazaki, Ichitaro; Sakurai, Tetsuya] Japan Sci & Technol Agcy, CREST, Saitama, Japan. [Yamazaki, Ichitaro; Ikegami, Tsutomu] AIST, Informat Technol Res Inst, Tsukuba, Ibaraki, Japan. RP Yamazaki, I (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM ic.yamazaki@gmail.com FU Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; Ministry of Education, Culture, Sports, Science and Technology of Japan [21105502, 21246018, 23105702] FX We thank Lie-Quan Lee, Xiaoye Li, Esmond Ng, Kesheng Wu, and our editors and anonymous reviewers for helpful comments. This research was supported in part by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nos. 21105502, 21246018, and 23105702). We used the resources at National Energy Research Scientific Computing Center (NERSC). NR 24 TC 4 Z9 4 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD JUN-JUL PY 2013 VL 39 IS 6-7 BP 280 EP 290 DI 10.1016/j.parco.2012.04.001 PG 11 WC Computer Science, Theory & Methods SC Computer Science GA 168BI UT WOS:000320680300004 ER PT J AU Maiti, A AF Maiti, Amitesh TI Ionic Liquids and Energetic Materials SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Editorial Material C1 Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94550 USA. RP Maiti, A (reprint author), Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94550 USA. NR 0 TC 2 Z9 2 U1 0 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD JUN PY 2013 VL 38 IS 3 BP 319 EP 319 DI 10.1002/prep.201380331 PG 1 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 160IP UT WOS:000320113300001 ER PT J AU Stepanov, V Willey, TM Ilavsky, J Gelb, J Qiu, HW AF Stepanov, Victor Willey, Trevor M. Ilavsky, Jan Gelb, Jeff Qiu, Hongwei TI Structural Characterization of RDX-Based Explosive Nanocomposites SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Nanoenergetics; RDX; Voids; USAXS; X-ray microscopy ID X-RAY-SCATTERING; POROSITY; IMPACT AB Recently developed cyclotrimethylene trinitramine (RDX)-based nanostructured explosive compositions were shown to exhibit greatly reduced initiation sensitivity as compared to conventional compositions prepared with coarser, micrometer-scale RDX. In particular, improvements were shown in the sensitivity towards shock and impact stimuli, key sources of inadvertent initiation. Such an improved response to mechanical stimuli is believed to be largely a result of smaller crystal and void sizes. Characterization of these structural parameters is therefore necessary in order to construct a meaningful physical description of these novel explosive compositions. Herein, we report the results of a detailed structural characterization of these novel RDX-based nanocomposites. The analyzed specimens were in pellet form with nominally 10% porosity. These results constitute an unprecedentedly complete structural picture of this new class of energetic materials. C1 [Stepanov, Victor] USA, RDECOM ARDEC, Picatinny Arsenal, NJ 07806 USA. [Willey, Trevor M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ilavsky, Jan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Gelb, Jeff] Xradia Inc, Pleasanton, CA 94588 USA. [Qiu, Hongwei] Stevens Inst Technol, Dept Chem Engn & Mat Sci, Hoboken, NJ 07030 USA. RP Stepanov, V (reprint author), USA, RDECOM ARDEC, B 3028, Picatinny Arsenal, NJ 07806 USA. EM victor.stepanov.civ@mail.mil RI USAXS, APS/D-4198-2013; Willey, Trevor/A-8778-2011 OI Willey, Trevor/0000-0002-9667-8830 FU National Science Foundation/Department of Energy [NSF/CHE-0822838]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation through NSF [DMR-0922522] FX ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Microscopy resources used in this work were partially funded by the National Science Foundation through NSF Grant DMR-0922522. NR 23 TC 9 Z9 9 U1 2 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD JUN PY 2013 VL 38 IS 3 BP 386 EP 393 DI 10.1002/prep.201200151 PG 8 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 160IP UT WOS:000320113300011 ER PT J AU Souers, PC Lauderbach, L Garza, R Ferranti, L Vitello, P AF Souers, P. Clark Lauderbach, Lisa Garza, Raul Ferranti, Louis, Jr. Vitello, Peter TI Upgraded Analytical Model of the Cylinder Test SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Cylinder test; Detonation energy; Gurney equation; Cyclex; JWL ID VELOCIMETRY; INTERFEROMETRY; VELOCITY AB A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of about 15 and the JWL parameter was obtained directly. The total detonation energy density was locked to the v=7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL. C1 [Souers, P. Clark; Lauderbach, Lisa; Garza, Raul; Ferranti, Louis, Jr.; Vitello, Peter] Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94550 USA. RP Souers, PC (reprint author), Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94550 USA. EM souers1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 19 TC 6 Z9 8 U1 1 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD JUN PY 2013 VL 38 IS 3 BP 419 EP 424 DI 10.1002/prep.201200192 PG 6 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 160IP UT WOS:000320113300015 ER PT J AU Mei, DH Lebarbier, VM Rousseau, R Glezakou, VA Albrecht, KO Kovarik, L Flake, M Dagle, RA AF Mei, Donghai Lebarbier, Vanessa M. Rousseau, Roger Glezakou, Vassiliki-Alexandra Albrecht, Karl O. Kovarik, Libor Flake, Matt Dagle, Robert A. TI Comparative Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts SO ACS CATALYSIS LA English DT Article DE benzene; steam reforming; density functional theory; rhodium; iridium; reaction pathways ID DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; BIOMASS-DERIVED SYNGAS; AUGMENTED-WAVE METHOD; 1ST PRINCIPLES; GASIFICATION GAS; METAL-CATALYSTS; BASIS-SET; PT(111); SURFACE AB In a combined experimental and first-principles density functional theory (DFT) study, benzene steam reforming (BSR) over MgAl2O4-supported Rh and Ir catalysts was investigated. Experimentally, it has been found that both highly dispersed Rh and Ir clusters (1-2 nm) on the spinel (e.g., MgAl2O4) support are stable during the BSR in the temperature range of 700-850 degrees C. Compared to the Ir/MgAl2O4 catalyst, the Rh/MgAl2O4 catalyst is more active with higher benzene turnover frequency and conversion. At steam conditions with the molar steam-to-carbon ratio >12, the benzene conversion is only a weak function of the H2O concentration in the feed. This suggests that the initial benzene decomposition step, rather than the benzene adsorption, is most likely the rate-determining step in BSR over supported Rh and Ir catalysts. To understand the differences between the two catalysts, we followed with a comparative DFT study of initial benzene decomposition pathways over two representative model systems for each supported metal (Rh and Ir) catalysts. A periodic terrace (111) surface and an amorphous 50-atom metal cluster with a diameter of 1.0 nm were used to represent the two supported model catalysts under low and high dispersion conditions. Our DFT results show that the decreasing catalyst particle size enhances the benzene decomposition on supported Rh catalysts by lowering both C-C and C-H bond scission. The activation barriers of the C-C and the C-H bond scission decrease from 1.60 and 1.61 eV on the Rh(111) surface to 1.34 and 1.26 eV on the Rh-50 cluster. For supported Ir catalysts, the decreasing particle size only affects the C-C scission. The activation barrier of the C-C scission of benzene decreases from 1.60 eV on the Ir(111) surface to 1.35 eV on the Ir-50 cluster while the barriers of the C-H scission are practically the same. The experimentally measured higher BSR activity on the supported highly dispersed Rh catalyst can be rationalized by the thermodynamic limitation for the very first C-C bond scission of benzene on the small Ir-50 catalyst. The C-C bond scission of benzene on the small Ir-50 catalyst is highly endothermic although the barrier is competitive with those of both the C-C and the C-H bond-breaking on the small Rh-50 catalyst. The calculations also imply that, for the supported Rh catalysts, the C-C and C-H bond scissions are competitive, independent of the Rh cluster sizes. After the initial dissociation step via either the C-C or the C-H bond scission, the C-H bond breaking seems to be more favorable rather than the C-C bond breaking on the larger Rh terrace surface. C1 [Mei, Donghai; Rousseau, Roger; Glezakou, Vassiliki-Alexandra] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Inst Integrated Catalysis, Richland, WA 99352 USA. [Lebarbier, Vanessa M.; Albrecht, Karl O.; Flake, Matt; Dagle, Robert A.] Pacific NW Natl Lab, Energy & Environm Directorate, Inst Integrated Catalysis, Richland, WA 99352 USA. [Kovarik, Libor] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Mei, DH (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Inst Integrated Catalysis, Richland, WA 99352 USA. EM donghai.mei@pnnl.gov; robert.dagle@pnnl.gov RI Mei, Donghai/A-2115-2012; Rousseau, Roger/C-3703-2014; Mei, Donghai/D-3251-2011; Kovarik, Libor/L-7139-2016 OI Mei, Donghai/0000-0002-0286-4182; FU United States Department of Energy's Office of Biomass Program's; Department of Energy's Office of Biological and Environmental Research FX This work was financially supported by the United States Department of Energy's Office of Biomass Program's. Computing time was granted by a user project at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). Part of computational time is provided by the National Energy Research Scientific Computing Center (NERSC). The research was performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). We also want to thank Cortland Johnson of PNNL for making the cover graphic. NR 44 TC 15 Z9 15 U1 2 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUN PY 2013 VL 3 IS 6 BP 1133 EP 1143 DI 10.1021/cs4000427 PG 11 WC Chemistry, Physical SC Chemistry GA 162XH UT WOS:000320298800007 ER PT J AU Ye, JY Liu, CJ Mei, DH Ge, QF AF Ye, Jingyun Liu, Changjun Mei, Donghai Ge, Qingfeng TI Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study SO ACS CATALYSIS LA English DT Article DE catalytic CO2 hydrogenation; methanol synthesis; defective In2O3 surface; oxygen vacancy; density functional theory ID AUGMENTED-WAVE METHOD; WATER-GAS SHIFT; REFORMING ACTIVITY; INDIUM OXIDE; CATALYSTS; ADSORPTION; CU(111); FORMATE; SURFACE; ENERGY AB Methanol synthesis from CO2 hydrogenation on the defective In2O3 (110) surface with surface oxygen vacancies has been investigated using periodic density functional theory calculations. The relative stabilities of six possible surface oxygen vacancies numbered from O-v1 to O-v6 on the perfect In2O3(110) surface were examined. The calculated oxygen vacancy formation energies show that the D1 surface with the O-v1 defective site is the most thermodynamically favorable while the D4 surface with the O-v4 defective site is the least stable. Two different methanol synthesis routes from CO2 hydrogenation over both D1 and D4 surfaces were studied, and the D4 surface was found to be more favorable for CO2 activation and hydrogenation. On the D4 surface, one of the O atoms of the CO2 molecule fills in the O-v4 site upon adsorption. Hydrogenation of CO2 to HCOO on the D4 surface is both thermodynamically and kinetically favorable. Further hydrogenation of HCOO involves both forming the C-H bond and breaking the C-O bond, resulting, in H2CO and hydroxyl. The hydrogenation is slightly endothermic with an activation barrier of 0.57 eV. A high barrier of 1.14 eV for the hydrogenation of H2CO to H3CO indicates that this step is the rate-limiting step in the methanol synthesis on the defective In2O3(110) surface. C1 [Ye, Jingyun; Liu, Changjun; Ge, Qingfeng] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China. [Ye, Jingyun; Ge, Qingfeng] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. [Mei, Donghai] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Ge, QF (reprint author), Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China. EM qge@chem.siu.edu RI Ge, Qingfeng/A-8498-2009; Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011; OI Ge, Qingfeng/0000-0001-6026-6693; Mei, Donghai/0000-0002-0286-4182; Liu, Chang-jun/0000-0001-9918-1638 FU National Natural Science Foundation of China [20990223]; U.S. Department of Energy, Basic Energy Science program [DE-FG02-05ER46231]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences FX We gratefully acknowledge the support from the National Natural Science Foundation of China (#20990223) and from U.S. Department of Energy, Basic Energy Science program (DE-FG02-05ER46231). D.M. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The computations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, Washington. NR 43 TC 28 Z9 29 U1 20 U2 184 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUN PY 2013 VL 3 IS 6 BP 1296 EP 1306 DI 10.1021/cs400132a PG 11 WC Chemistry, Physical SC Chemistry GA 162XH UT WOS:000320298800024 ER PT J AU Maclennan, A Banerjee, A Hu, YF Miller, JT Scott, RWJ AF Maclennan, Aimee Banerjee, Abhinandan Hu, Yongfeng Miller, Jeffrey T. Scott, Robert W. J. TI In Situ X-ray Absorption Spectroscopic Analysis of Gold-Palladium Bimetallic Nanoparticle Catalysts SO ACS CATALYSIS LA English DT Article DE alcohol oxidation catalysis; gold-palladium nanoparticles; X-ray absorption spectroscopy; in situ study; nanocatalysis ID LIQUID-PHASE OXIDATION; ALPHA,BETA-UNSATURATED CARBONYL-COMPOUNDS; SELECTIVE AEROBIC OXIDATION; AU-PD NANOPARTICLES; BENZYL ALCOHOL; ALLOY NANOPARTICLES; FINE-STRUCTURE; AG-CU; ALLYLIC ALCOHOLS; CROTYL ALCOHOL AB Gold-palladium core-shell nanoparticles have been previously shown to be extremely effective catalysts for a number of oxidation reactions including the aerobic oxidation of alcohols. However, the novel activity and durability of such catalysts are still poorly understood, and there are several putative mechanisms by which oxidation reactions can proceed. Previously we showed that Pd(II) salts in the presence of Au nanoparticles were also effective catalysts for the room temperature oxidation of crotyl alcohol. Herein we show an in situ X-ray absorption spectroscopy (XAS) study at both the Pd-K and Pd-L-III edges of Au nanoparticle/Pd(II) salt solutions in the presence of crotyl alcohol. Liquid cells with X-ray permeable windows were used to obtain quick-scan XAS data during the oxidation of crotyl alcohol, allowing for time-resolved Pd speciation information and information about the reaction mechanism and kinetics. XAS measurements definitively show that the first step of this reaction involves Pd reduction onto the Au nanoparticles; in addition, further studies of the stability of the resulting Au-Pd core-shell nanoparticles toward oxygen gas suggests that the role of Au in such catalysts is to prevent the reoxidation of the catalytically active surface Pd atoms. Catalytic crotyl alcohol oxidation measurements were done which validated that the in situ reduction of Pd(II) in the presence of Au nanoparticles did indeed result in catalytically active AuPd bimetallic catalysts. C1 [Maclennan, Aimee; Banerjee, Abhinandan; Scott, Robert W. J.] Univ Saskatchewan, Dept Chem, Saskatoon, SK S7N 5C9, Canada. [Hu, Yongfeng] Univ Saskatchewan, Canadian Light Source, Saskatoon, SK S7N 0X4, Canada. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Scott, RWJ (reprint author), Univ Saskatchewan, Dept Chem, 110 Sci Pl, Saskatoon, SK S7N 5C9, Canada. EM robert.scott@usask.ca RI ID, MRCAT/G-7586-2011; OI Scott, Robert/0000-0003-2155-7652 FU NSERC; University of Saskatchewan; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy-Basic Energy Sciences; University of Washington; Simon Fraser University; Advanced Photon Source; Department of Energy; Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center FX The authors would like to thank NSERC and the University of Saskatchewan for funding. The authors would also like to thank Drs. Tianpin Wu, Jeremy Kropf, and Trudy Bolin at the Advanced Photon Source (APS) for the assistance with EXAFS and XANES measurements. Use of the Advanced Photon Source is also supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. PNC/XOR facilities at the Advanced Photon Source, and research at these facilities, are supported by the U.S. Department of Energy-Basic Energy Sciences, a Major Resources Support grant from NSERC, the University of Washington, Simon Fraser University, and the Advanced Photon Source. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Funding for J.T.M. is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 65 TC 21 Z9 21 U1 7 U2 125 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUN PY 2013 VL 3 IS 6 BP 1411 EP 1419 DI 10.1021/cs400230t PG 9 WC Chemistry, Physical SC Chemistry GA 162XH UT WOS:000320298800039 ER PT J AU El Kadiri, H Kapil, J Oppedal, AL Hector, LG Agnew, SR Cherkaoui, M Vogel, SC AF El Kadiri, Haitham Kapil, J. Oppedal, A. L. Hector, L. G., Jr. Agnew, Sean R. Cherkaoui, M. Vogel, S. C. TI The effect of twin-twin interactions on the nucleation and propagation of {10(1)over-bar2} twinning in magnesium SO ACTA MATERIALIA LA English DT Article DE Deformation twinning; Twin boundary; Slip; EBSD; Twin-twin hardening ID FINITE-ELEMENT ANALYSIS; CLOSE-PACKED CRYSTALS; SLIP DISLOCATIONS; GRAIN-BOUNDARIES; MECHANICAL RESPONSE; TEXTURE DEVELOPMENT; DAMAGE NUCLEATION; ZIRCONIUM ALLOYS; CONSTITUTIVE LAW; SINGLE-CRYSTALS AB Electron backscattered diffraction serial image analyses on AM30 magnesium alloy compressed under profuse {10 (1) over bar2} twinning conditions at different strain levels suggest that twin nucleation and twin propagation rates strongly depend on the number of activated twins in a given grain. This behavior was identified by comparing the twin growth evolution in two grains with roughly the same high Schmid factors for twinning. One grain deformed by a single twin variant, while in the other grain, two intersecting twin variants grew at approximately the same rate. The twin thickening rate was higher in the predominant twinning condition, but the nucleation rate was substantially faster in the two variant twinning condition. The overall volume fraction of twins, however, was approximately the same in both grains, despite the difference in twin microstructure. According to the theory by Christian and Mahajan, there is a higher stress for nucleation than for propagation, and because of the Hall-Petch effect associated with twin segmentation, it is suggested that the grain with two variants should undergo a higher hardening rate than that with a single variant. These observations correspond to some of the most important characteristics of twin twin hardening, which must be addressed in crystal plasticity simulations. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [El Kadiri, Haitham] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. [El Kadiri, Haitham; Kapil, J.; Oppedal, A. L.] Mississippi State Univ, Ctr Adv Vehicular Syst, Mississippi State, MS 39762 USA. [Hector, L. G., Jr.] Gen Motors Res & Dev Ctr, Chem Sci & Mat Syst Lab, Warren, MI 48090 USA. [Agnew, Sean R.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Cherkaoui, M.] George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Vogel, S. C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP El Kadiri, H (reprint author), Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. EM elkadiri@me.msstate.edu OI Vogel, Sven C./0000-0003-2049-0361 FU National Science Foundation [CMMI-1235009, CMMI-1234103, CMMI-1235259]; Center for Advanced Vehicular Systems (CAVS) at Mississippi State University; U.S. Department of Energy, Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX The authors acknowledge the National Science Foundation, which supported this work under the award numbers CMMI-1235009, CMMI-1234103 and CMMI-1235259. The authors also acknowledge the Center for Advanced Vehicular Systems (CAVS) at Mississippi State University for supporting this work. This work has benefited from the Lujan Neutron Scattering Center at LANSCE, which is funded by the U.S. Department of Energy, Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. NR 63 TC 59 Z9 59 U1 7 U2 112 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUN PY 2013 VL 61 IS 10 BP 3549 EP 3563 DI 10.1016/j.actamat.2013.02.030 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 149FM UT WOS:000319304400002 ER PT J AU Benafan, O Padula, SA Noebe, RD Brown, DW Clausen, B Vaidyanathan, R AF Benafan, O. Padula, S. A., II Noebe, R. D. Brown, D. W. Clausen, B. Vaidyanathan, R. TI An in situ neutron diffraction study of shape setting shape memory NiTi SO ACTA MATERIALIA LA English DT Article DE NiTi; Shape setting; Neutron diffraction; Blocking stress; Stress relaxation ID CONSTRAINED PHASE-TRANSFORMATION; MARTENSITIC-TRANSFORMATION; RIETVELD REFINEMENT; STRESS-RELAXATION; TEXTURE ANALYSIS; RECOVERY STRESS; ALLOYS; STRAIN; BEHAVIOR; DEFORMATION AB A bulk polycrystalline Ni49.9Ti50.1 (at.%) shape memory alloy specimen was shape set while neutron diffraction spectra were simultaneously acquired. The objective was to correlate internal stress, phase volume fraction, and texture measurements (from neutron diffraction spectra) with the macroscopic stress and shape changes (from load cell and extensometry measurements) during the shape setting procedure and subsequent shape recovery. Experimental results showed the evolution of the martensitic transformation (lattice strains, phase fractions and texture) against external constraints during both heating and cooling. Constrained heating resulted in a build-up of stresses during the martensite to austenite transformation, followed by stress relaxation due to thermal expansion, final conversion of retained martensite, and recovery processes. Constrained cooling also resulted in stress build-up arising from thermal contraction and early formation of martensite, followed by relaxation as the austenite fully transformed to martensite. Comparisons were also made between specimens pre-shape set and post-shape set with and without external constraints. The specimens displayed similar shape memory behavior consistent with the microstructure of the shape set sample, which was mostly unchanged by the shape setting process and similar to that of the as-received material. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Benafan, O.; Vaidyanathan, R.] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Mat & Aerosp Engn Dept, Orlando, FL 32816 USA. [Benafan, O.; Padula, S. A., II; Noebe, R. D.] NASA, Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA. [Brown, D. W.; Clausen, B.] Los Alamos Natl Lab, Lujan Ctr, Los Alamos, NM 87545 USA. RP Benafan, O (reprint author), NASA, Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA. EM othmane.benafan@nasa.gov RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X FU NASA Fundamental Aeronautics Program; Aeronautical Sciences Project; Office of Basic Energy Sciences DOE; DOE [DE-AC52-06NA25396] FX Funding from the NASA Fundamental Aeronautics Program, Aeronautical Sciences Project is gratefully acknowledged. The authors thank T.A. Sisneros at LANL, and D. Gaydosh, G. Bigelow and A. Garg at NASA GRC for technical support and helpful discussions. The authors also thank S. Qiu and D.E. Nicholson from UCF for their help in performing the neutron diffraction experiments. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences DOE. LANL is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. NR 49 TC 13 Z9 14 U1 2 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD JUN PY 2013 VL 61 IS 10 BP 3585 EP 3599 DI 10.1016/j.actamat.2013.02.040 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 149FM UT WOS:000319304400005 ER PT J AU Brandl, C Germann, TC Misra, A AF Brandl, C. Germann, T. C. Misra, A. TI Structure and shear deformation of metallic crystalline-amorphous interfaces SO ACTA MATERIALIA LA English DT Article DE Interface; Atomistic simulation; Crystalline; Amorphous; Dislocation ID MECHANICAL-BEHAVIOR; MOLECULAR-DYNAMICS; GLASSES; AMORPHIZATION; PROPAGATION; COMPOSITES; PLASTICITY; ALUMINUM; ALLOYS AB The structure and shear properties of crystalline amorphous laminar nanocomposites are studied in an atomistic model of face-centered cubic copper with amorphous Cu46Zr54 bulk metallic glass in the quasi-static limit. The plastic shear deformation response is determined by the production and motion of interface dislocations at the crystalline amorphous interface, which is closely linked to the structural and chemical transition from crystalline Cu to the amorphous Cu/Zr phase. The implication of interfacial shear are discussed in context of dislocation interface interactions and co-deformation of a crystalline amorphous nanocomposite. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Brandl, C.; Germann, T. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Brandl, C (reprint author), Karlsruhe Inst Technol, Inst Angew Mat Werkstoff & Biomech, D-76021 Karlsruhe, Germany. EM science@cbrandl.net; tcg@lanl.gov RI Brandl, Christian/C-6405-2009; Misra, Amit/H-1087-2012; Brandl, Christian/D-4013-2015; OI Brandl, Christian/0000-0003-1587-4678; Brandl, Christian/0000-0003-1587-4678; Germann, Timothy/0000-0002-6813-238X FU US Department of Energy, Office of Science, Office of Basic Energy Sciences; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX This work was fully supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by LANS, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract DE-AC52-06NA25396. The authors thank R.G. Hoagland, D. Perez and J. Wang for fruitful discussions. NR 38 TC 16 Z9 17 U1 1 U2 80 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD JUN PY 2013 VL 61 IS 10 BP 3600 EP 3611 DI 10.1016/j.actamat.2013.02.047 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 149FM UT WOS:000319304400006 ER PT J AU Balogh, L Niezgoda, SR Kanjarla, AK Brown, DW Clausen, B Liu, W Tome, CN AF Balogh, L. Niezgoda, S. R. Kanjarla, A. K. Brown, D. W. Clausen, B. Liu, W. Tome, C. N. TI Spatially resolved in situ strain measurements from an interior twinned grain in bulk polycrystalline AZ31 alloy SO ACTA MATERIALIA LA English DT Article DE Twinning; Magnesium AZ31; Intra-granular strain; Differential-aperture X-ray microscopy; 3-D X-ray Laue diffraction microscope ID ADVANCED PHOTON SOURCE; FINITE-ELEMENT MODEL; DIFFRACTION MICROSCOPY; DEFORMATION; TEXTURE AB In this paper, we report for the first time, to our knowledge, spatially resolved measurements of strain gradients across a grain containing twins, located in the bulk of a polycrystalline Mg AZ31 sample. We also report orientation mapping on three parallel sections from the bulk of the sample. We use for such purpose the technique of differential-aperture X-ray microscopy (DAXM) based on synchrotron X-rays. The DAXM technique allows us to map crystallographic strains with sub-micron-sized spatial resolution. The results of this experiment confirm indirect evidence from previous experiments having less spatial resolution that important stress gradients exist in the vicinity of twin boundaries. Such a result is relevant to understanding twin growth and de-twinning, since both mechanisms are affected by stress-driven twin dislocations at the interface. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Balogh, L.; Niezgoda, S. R.; Brown, D. W.; Tome, C. N.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Kanjarla, A. K.] Indian Inst Technol, Dept Met & Mat Engn, Madras 600036, Tamil Nadu, India. [Clausen, B.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Liu, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Balogh, L (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM baloghlevente@gmail.com RI Niezgoda, Stephen/I-6750-2013; Clausen, Bjorn/B-3618-2015; Tome, Carlos/D-5058-2013; Balogh, Levente/S-1238-2016 OI Niezgoda, Stephen/0000-0002-7123-466X; Clausen, Bjorn/0000-0003-3906-846X; FU Office of Basic Energy Sciences under US DOE [FWP 06SCPE401, W-7405-ENG-36]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was performed with support from Office of Basic Energy Sciences, Project FWP 06SCPE401, under US DOE Contract No. W-7405-ENG-36. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 23 TC 20 Z9 20 U1 2 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUN PY 2013 VL 61 IS 10 BP 3612 EP 3620 DI 10.1016/j.actamat.2013.02.048 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 149FM UT WOS:000319304400007 ER PT J AU De Leon, N Wang, BL Weinberger, CR Matson, LE Thompson, GB AF De Leon, Nicholas Wang, Billie Weinberger, Christopher R. Matson, Lawrence E. Thompson, Gregory B. TI Elevated-temperature deformation mechanisms in Ta2C: An experimental study SO ACTA MATERIALIA LA English DT Article DE UHTC; Slip system; Dislocations; TEM; Plastic deformation ID TANTALUM CARBIDE; PLASTIC-FLOW AB A polycrystalline alpha-Ta2C bar, fabricated by hot isostatic pressing, was tested in four-point bending at approximately 1930 C. The sample showed significant plastic deformation. Transmission electron microscopy, using two-beam defect analysis, confirmed pyramidal dislocation slip of the type alpha/3(1 1 (2) over bar 3) {1 0 (1) over bar 1}. Basal and prismatic slip of alpha/3(1 1 (2) over bar 0) type could not be determined because of significant contrast interference from stacking faults that formed in the material. The increase in stacking fault density observed after thermomechanical loading is not believed to be caused by deformation but rather is due to growth faults that formed from the slight carburization of Ta2C from the graphite heating filaments in the testing apparatus. The significant plasticity accommodation in Ta2C is a result of basal and non-basal slip and the wide spacing of the Ta-Ta metallic bonds that form inherent to its crystallography. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [De Leon, Nicholas; Wang, Billie; Thompson, Gregory B.] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35401 USA. [Weinberger, Christopher R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Matson, Lawrence E.] Mat & Mfg Directorate, Air Force Res Lab, Wright Patterson AFB, OH 45433 USA. RP Thompson, GB (reprint author), Univ Alabama, Dept Met & Mat Engn, Box 870202, Tuscaloosa, AL 35401 USA. EM gthompson@eng.ua.edu FU Army Research Office [W911NF-08-1-0300]; Sandia National Laboratories Truman Fellowship in National Security Science and Engineering; Sandia Corporation; National Laboratories under its US Department of Energy [DE-AC04-94AL85000] FX This research was supported under the Army Research Office under grant W911NF-08-1-0300. This research was supported in part by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its US Department of Energy Contract No. DE-AC04-94AL85000. NR 29 TC 5 Z9 5 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUN PY 2013 VL 61 IS 11 BP 3905 EP 3913 DI 10.1016/j.actamat.2013.01.043 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 162WI UT WOS:000320296300001 ER PT J AU Wang, BL De Leon, N Weinberger, CR Thompson, GB AF Wang, Billie De Leon, Nicholas Weinberger, Christopher R. Thompson, Gregory B. TI A theoretical investigation of the slip systems of Ta2C SO ACTA MATERIALIA LA English DT Article DE UHTC; First-principles calculation; Stacking fault energy; Modeling ID TRANSITION-METAL CARBIDES; TANTALUM CARBIDE; PHASE-EQUILIBRIA; PLASTIC-FLOW; C SYSTEM; DEFORMATION; TRANSFORMATIONS; TEMPERATURES; DIFFRACTION; MECHANISMS AB Tantalum carbides show a wide range of interesting properties including plasticity at elevated temperatures. In a companion paper, the plastic deformation of high-temperature polycrystalline Ta2C was examined using transmission electron microscopy. Here, we investigate the different potential slip systems in alpha-Ta2C using density functional theory to compute generalized stacking fault (GSF) energy curves. The GSF curves show that the preferred slip system is the basal plane. The results further show that slip occurs preferentially between the Ta-Ta layers, or between metal-metal bonds. GSF energy curves for the basal, prismatic and pyramidal planes show a hierarchy of preferred slip systems and pyramidal slip is likely enabled by the high temperature and the need for additional slip systems caused by the general deformation. These results are not only useful in understanding deformation in alpha-Ta2C but can be used to understand plasticity in general transition metal hemicarbides. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wang, Billie; De Leon, Nicholas; Thompson, Gregory B.] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35487 USA. [Weinberger, Christopher R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Weinberger, CR (reprint author), Sandia Natl Labs, POB 5800,MS1411, Albuquerque, NM 87185 USA. EM crweinb@sandia.gov OI Weinberger, Christopher/0000-0001-9550-6992 FU Army Research Office [W911NF-08-1-0300]; Sandia National Laboratories Truman Fellowship in National Security Science and Engineering; Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation); Operator of Sandia National Laboratories under its US Department of Energy [AC04-94AL85000] FX This research was supported under the Army Research Office under Grant W911NF-08-1-0300. This research was supported in part by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its US Department of Energy Contract No. DE-AC04-94AL85000. NR 45 TC 5 Z9 5 U1 0 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUN PY 2013 VL 61 IS 11 BP 3914 EP 3922 DI 10.1016/j.actamat.2013.01.047 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 162WI UT WOS:000320296300002 ER PT J AU El Kadiri, H Utegulov, ZN Khafizov, M Zaeem, MA Mamivand, M Oppedal, AL Enakoutsa, K Cherkaoui, M Graham, RH Arockiasamy, A AF El Kadiri, Haitham Utegulov, Z. N. Khafizov, M. Zaeem, M. Asle Mamivand, M. Oppedal, A. L. Enakoutsa, K. Cherkaoui, M. Graham, R. H. Arockiasamy, A. TI Transformations and cracks in zirconia films leading to breakaway oxidation of Zircaloy SO ACTA MATERIALIA LA English DT Article DE Zirconium alloys; Oxidation; Cracking; Phase transformation; Breakaway ID HIGH-TEMPERATURE OXIDATION; ATOMIC-FORCE MICROSCOPY; FECRAL-RE FOIL; MARTENSITIC PHASE-TRANSFORMATION; YTTRIA-STABILIZED ZIRCONIA; THERMAL BARRIER COATINGS; TETRAGONAL ZIRCONIA; CRYSTAL-STRUCTURE; RAMAN-SPECTROSCOPY; NANOCRYSTALLINE ZIRCONIA AB Using combined Raman spectroscopy, atomic force microscopy and optical microscopy, this paper suggests that breakaway oxidation of Zircaloy is caused by the change of circumferential stress sign from compressive to tensile, which triggers catastrophic cracks to propagate from the oxide free surface toward the oxide-metal interface. The stress sign changes at a critical oxide thickness, which depends on the circumferential stress at the interface. This biaxial interfacial stress is promoted by a lattice expansion stress that accompanies the tetragonal to monoclinic crystal phase transition. In contrast with current research in the literature, this allotropic transformation is suggested to be beneficial, not detrimental, because it contributes to retard the thresholds for the change of circumferential stress sign, and thus breakaway oxidation. The tetragonal phase was revealed to localize at the interface and adopt the shape of prismatic isosceles triangles detected at early stages of oxidation. These growth morphologies are consistent with a cationic oxidation mechanism. Upon phase transition, the monoclinic variant quickly dominates the oxide scale above the interfacial regions and forces the overall oxidation to proceed by an anionic diffusion mechanism. The results of Raman spectroscopy compared well with those of atomic force microscopy. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [El Kadiri, Haitham] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. [El Kadiri, Haitham; Mamivand, M.; Oppedal, A. L.; Enakoutsa, K.; Graham, R. H.; Arockiasamy, A.] Mississippi State Univ, Ctr Adv Vehicular Syst, Mississippi State, MS 39762 USA. [Utegulov, Z. N.] Nazarbayev Univ, Dept Phys, Sch Sci & Technol, Astana 010000, Kazakhstan. [Khafizov, M.] Idaho Natl Lab, Dept Mat Sci & Engn, Idaho Falls, ID 83415 USA. [Zaeem, M. Asle] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA. [Cherkaoui, M.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. RP El Kadiri, H (reprint author), Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. EM elkadiri@me.msstate.edu RI Khafizov, Marat/B-3744-2012 OI Khafizov, Marat/0000-0001-8171-3528 FU DOE Battelle Energy Alliance LLC; INEST [00108032, 00121507]; Battelle Energy Alliance, LLC [DE-AC07-051D14517]; US Department of Energy; National Science Foundation [CBET-0923474] FX This work was supported by DOE Battelle Energy Alliance LLC with INEST funding umbrella under Project No. 00108032 for Year 2011, and 00121507 for Year 2012. This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-051D14517 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The authors are grateful for the support of Professor Todd R. Allen at the University of Wisconsin-Madison. The AFM work was supported by the National Science Foundation (CBET-0923474). We gratefully acknowledge the AFM assistance by I-Wei Chu at the Institute for Imaging and Analytical Technologies (I2AT) at Mississippi State University. NR 77 TC 8 Z9 8 U1 4 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD JUN PY 2013 VL 61 IS 11 BP 3923 EP 3935 DI 10.1016/j.actamat.2013.02.052 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 162WI UT WOS:000320296300003 ER PT J AU Patterson, BR Rule, DJ DeHoff, RT Tikare, V AF Patterson, Burton R. Rule, David J. DeHoff, R. T. Tikare, Veena TI Schlegel description of grain form evolution in grain growth SO ACTA MATERIALIA LA English DT Article DE Computer simulation; Grain growth; Microstructure; Topology ID ALUMINUM AB The paths of evolution of topological grain forms during grain growth are described in terms of number of faces, edges per face and face arrangements, as depicted by Schlegel diagrams and the topological events that change them. This "Schlegel tree" describes transitions to higher face classes by grain encounters at corners and to lower face classes by grain-pair separation at three-edged faces. Transitions within face classes are described through rearrangements that occur to neighboring grains during these events. The process is further described by probabilities of the different paths in terms of numbers of edges, corners and three-edged faces at which face gain and loss events occur. Schlegel data from separated grains and three-dimensional Monte Carlo and front-tracking simulations show good comparison. Grain form frequencies increase with increasing number of transition paths into them from other forms. The highest frequency forms have few or no three-edged faces, while those with the most three-edged faces are present the least. These observations suggest that three-edged faces are catalysts for topological change, and forms with higher frequencies of these have shorter residence times before transitioning to lower classes. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Patterson, Burton R.; Rule, David J.; DeHoff, R. T.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Tikare, Veena] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Patterson, BR (reprint author), Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. EM patters@mse.ufl.edu FU NSF [DMR-1035188]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors gratefully acknowledge support from NSF Grant No. DMR-1035188. They also acknowledge Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 17 TC 9 Z9 10 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUN PY 2013 VL 61 IS 11 BP 3986 EP 4000 DI 10.1016/j.actamat.2013.03.013 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 162WI UT WOS:000320296300009 ER PT J AU Baker, K Cantatore, G Cetin, SA Davenport, M Desch, K Dobrich, B Gies, H Irastorza, IG Jaeckel, J Lindner, A Papaevangelou, T Pivovaroff, M Raffelt, G Redondo, J Ringwald, A Semertzidis, Y Siemko, A Sulc, M Upadhye, A Zioutas, K AF Baker, K. Cantatore, G. Cetin, S. A. Davenport, M. Desch, K. Doebrich, B. Gies, H. Irastorza, I. G. Jaeckel, J. Lindner, A. Papaevangelou, T. Pivovaroff, M. Raffelt, G. Redondo, J. Ringwald, A. Semertzidis, Y. Siemko, A. Sulc, M. Upadhye, A. Zioutas, K. TI The quest for axions and other new light particles SO ANNALEN DER PHYSIK LA English DT Article AB Standard Model extensions often predict low-mass and very weakly interacting particles, such as the axion. A number of small-scale experiments at the intensity/precision frontier are actively searching for these elusive particles, complementing searches for physics beyond the Standard Model at colliders. Whilst a next generation of experiments will give access to a huge unexplored parameter space, a discovery would have a tremendous impact on our understanding of fundamental physics. C1 [Baker, K.] Yale Univ, New Haven, CT 06520 USA. [Cantatore, G.] Univ & INFN Trieste, Trieste, Italy. [Cetin, S. A.] Dogus Univ, Istanbul, Turkey. [Davenport, M.; Siemko, A.] CERN, CH-1211 Geneva 23, Switzerland. [Desch, K.] Univ Bonn, Bonn, Germany. [Doebrich, B.; Lindner, A.; Ringwald, A.] DESY, Hamburg, Germany. [Gies, H.] Univ Jena, Jena, Germany. [Gies, H.] Helmholtz Inst, Jena, Germany. [Irastorza, I. G.] Univ Zaragoza, E-50009 Zaragoza, Spain. [Jaeckel, J.] Heidelberg Univ, Heidelberg, Germany. [Papaevangelou, T.] IRFU, Gif Sur Yvette, France. [Pivovaroff, M.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Raffelt, G.; Redondo, J.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Semertzidis, Y.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sulc, M.] Tech Univ Liberec, Liberec, Czech Republic. [Upadhye, A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Zioutas, K.] Univ Patras, GR-26110 Patras, Greece. RP Baker, K (reprint author), Yale Univ, New Haven, CT 06520 USA. EM babette.doebrich@desy.de RI Semertzidis, Yannis K./N-1002-2013; Irastorza, Igor/B-2085-2012; Pivovaroff, Michael/M-7998-2014; Redondo, Javier/H-9362-2015; Papaevangelou, Thomas/G-2482-2016 OI Irastorza, Igor/0000-0003-1163-1687; Pivovaroff, Michael/0000-0001-6780-6816; Redondo, Javier/0000-0002-1044-8197; Papaevangelou, Thomas/0000-0003-2829-9158 NR 12 TC 29 Z9 29 U1 2 U2 20 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0003-3804 J9 ANN PHYS-BERLIN JI Ann. Phys.-Berlin PD JUN PY 2013 VL 525 IS 6 BP A93 EP A99 DI 10.1002/andp.201300727 PG 7 WC Physics, Multidisciplinary SC Physics GA 161IQ UT WOS:000320186700003 ER PT J AU Krukowski, A Wray, CP AF Krukowski, Andrea Wray, Craig P. TI Standardizing Data for VFD Efficiency SO ASHRAE JOURNAL LA English DT Article C1 [Krukowski, Andrea] Inst Market Transformat, Washington, DC USA. [Wray, Craig P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Commercial Bldg Syst Grp, Berkeley, CA 94720 USA. RP Krukowski, A (reprint author), Inst Market Transformat, Washington, DC USA. NR 16 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD JUN PY 2013 VL 55 IS 6 BP 16 EP + PG 9 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 160XC UT WOS:000320152800010 ER PT J AU Cenko, SB Kulkarni, SR Horesh, A Corsi, A Fox, DB Carpenter, J Frail, DA Nugent, PE Perley, DA Gruber, D Gal-Yam, A Groot, PJ Hallinan, G Ofek, EO Rau, A MacLeod, CL Miller, AA Bloom, JS Filippenko, AV Kasliwal, MM Law, NM Morgan, AN Polishook, D Poznanski, D Quimby, RM Sesar, B Shen, KJ Silverman, JM Sternberg, A AF Cenko, S. Bradley Kulkarni, S. R. Horesh, Assaf Corsi, Alessandra Fox, Derek B. Carpenter, John Frail, Dale A. Nugent, Peter E. Perley, Daniel A. Gruber, D. Gal-Yam, Avishay Groot, Paul J. Hallinan, G. Ofek, Eran O. Rau, Arne MacLeod, Chelsea L. Miller, Adam A. Bloom, Joshua S. Filippenko, Alexei V. Kasliwal, Mansi M. Law, Nicholas M. Morgan, Adam N. Polishook, David Poznanski, Dovi Quimby, Robert M. Sesar, Branimir Shen, Ken J. Silverman, Jeffrey M. Sternberg, Assaf TI DISCOVERY OF A COSMOLOGICAL, RELATIVISTIC OUTBURST VIA ITS RAPIDLY FADING OPTICAL EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; stars: flare; supernovae: general ID GAMMA-RAY BURST; SIMULTANEOUS MULTIWAVELENGTH OBSERVATIONS; TRANSIENT XTE J1118+480; BLACK-HOLE BINARIES; X-RAY; RADIO-EMISSION; ORPHAN AFTERGLOWS; LIGHT CURVES; H-ALPHA; L-DWARF AB We report the discovery by the Palomar Transient Factory (PTF) of the transient source PTF11agg, which is distinguished by three primary characteristics: (1) bright (R-peak = 18.3mag), rapidly fading (Delta R = 4mag in Delta t = 2 days) optical transient emission; (2) a faint (R = 26.2 +/- 0.2mag), blue (g' - R = 0.17 +/- 0.29 mag) quiescent optical counterpart; and (3) an associated year-long, scintillating radio transient. We argue that these observed properties are inconsistent with any known class of Galactic transients (flare stars, X-ray binaries, dwarf novae), and instead suggest a cosmological origin. The detection of incoherent radio emission at such distances implies a large emitting region, from which we infer the presence of relativistic ejecta. The observed properties are all consistent with the population of long-duration gamma-ray bursts (GRBs), marking the first time such an outburst has been discovered in the distant universe independent of a high-energy trigger. We searched for possible high-energy counterparts to PTF11agg, but found no evidence for associated prompt emission. We therefore consider three possible scenarios to account for a GRB-like afterglow without a high-energy counterpart: an "untriggered" GRB (lack of satellite coverage), an "orphan" afterglow (viewing-angle effects), and a "dirty fireball" (suppressed high-energy emission). The observed optical and radio light curves appear inconsistent with even the most basic predictions for off-axis afterglow models. The simplest explanation, then, is that PTF11agg is a normal, on-axis long-duration GRB for which the associated high-energy emission was simply missed. However, we have calculated the likelihood of such a serendipitous discovery by PTF and find that it is quite small (approximate to 2.6%). While not definitive, we nonetheless speculate that PTF11agg may represent a new, more common (>4 times the on-axis GRB rate at 90% confidence) class of relativistic outbursts lacking associated high-energy emission. If so, such sources will be uncovered in large numbers by future wide-field optical and radio transient surveys. C1 [Cenko, S. Bradley; Nugent, Peter E.; Miller, Adam A.; Bloom, Joshua S.; Filippenko, Alexei V.; Morgan, Adam N.; Shen, Ken J.; Silverman, Jeffrey M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Kulkarni, S. R.; Horesh, Assaf; Carpenter, John; Perley, Daniel A.; Groot, Paul J.; Hallinan, G.; Sesar, Branimir] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Corsi, Alessandra] CALTECH, LIGO Lab, Pasadena, CA 91125 USA. [Corsi, Alessandra] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Fox, Derek B.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Frail, Dale A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Nugent, Peter E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gruber, D.; Rau, Arne] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Gal-Yam, Avishay; Ofek, Eran O.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Groot, Paul J.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [MacLeod, Chelsea L.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Kasliwal, Mansi M.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Law, Nicholas M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Polishook, David] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Poznanski, Dovi] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Quimby, Robert M.] Univ Tokyo, Kavli IPMU, Kashiwa, Chiba 2778583, Japan. [Silverman, Jeffrey M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Sternberg, Assaf] Max Planck Inst Astrophys, D-85741 Garching, Germany. RP Cenko, SB (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM cenko@astro.berkeley.edu RI Groot, Paul/K-4391-2016; Horesh, Assaf/O-9873-2016 OI Groot, Paul/0000-0002-4488-726X; Horesh, Assaf/0000-0002-5936-1156 FU Gary and Cynthia Bengier; Richard and Rhoda Goldman Fund; Christopher R. Redlich Fund; NASA/Swift [NNX10AI21G, NNX12AD73G]; TABASGO Foundation; NSF [AST-1211916, PHY-0757058, CDI-0941742]; LIGO; Massachusetts Institute of Technology; NASA [HST-HF-51296.01-A, NAS 5-26555]; Space Telescope Science Institute; ISF; BSF; GIF; EU/FP7 via an ERC; Kimmel Award; Caltech; Israeli Ministry of Science; NSF Graduate Research Fellowship Program; Minerva Fellowship; Hubble Fellowship; Carnegie-Princeton Fellowship FX A.V.F. and his group acknowledge generous financial assistance from Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, the Christopher R. Redlich Fund, NASA/Swift grants NNX10AI21G and NNX12AD73G, the TABASGO Foundation, and NSF grant AST-1211916. A. C. acknowledges support from LIGO, which was constructed by the California Institute of Technology and the Massachusetts Institute of Technology with funding from the NSF and operates under cooperative agreement PHY-0757058. D. A. P. is supported by NASA through Hubble Fellowship grant HST-HF-51296.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. Research by A.G.Y. and his team is supported by grants from the ISF, BSF, GIF, the EU/FP7 via an ERC grant, and a Kimmel Award. P.J.G. acknowledges support from Caltech during his 2011 sabbatical stay. E.O.O. is incumbent of the Arye Dissentshik career development chair and is grateful to support by a grant from the Israeli Ministry of Science. A. A. M. is supported by the NSF Graduate Research Fellowship Program. J.S.B. acknowledges NSF grant CDI-0941742. D. P. is grateful for the AXA research fund. A. S. is supported by a Minerva Fellowship. M. M. K. acknowledges generous support from the Hubble Fellowship and Carnegie-Princeton Fellowship. NR 157 TC 26 Z9 26 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2013 VL 769 IS 2 AR 130 DI 10.1088/0004-637X/769/2/130 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 158UM UT WOS:000319999100046 ER PT J AU Chen, B Dai, XY Baron, E Kantowski, R AF Chen, Bin Dai, Xinyu Baron, E. Kantowski, R. TI EFFECTS OF KERR STRONG GRAVITY ON QUASAR X-RAY MICROLENSING SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; gravitational lensing: strong; quasars: general; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; ROTATING BLACK-HOLE; ACCRETION DISK; PERIODIC OSCILLATIONS; LINE-PROFILES; PG 1115+080; EMISSION; SPIN; MASS; POLARIZATION AB Recent quasar microlensing observations have constrained the sizes of X-ray emission regions to be within about 10 gravitational radii of the central supermassive black hole. Therefore, the X-ray emission from lensed quasars is first strongly lensed by the black hole before it is lensed by the foreground galaxy and star fields. We present a scheme that combines the initial strong lensing of a Kerr black hole with standard linearized microlensing by intervening stars. We find that X-ray microlensed light curves incorporating Kerr strong gravity can differ significantly from standard curves. The amplitude of the fluctuations in the light curves can increase or decrease by similar to 0.65-0.75 mag by including Kerr strong gravity. Larger inclination angles give larger amplitude fluctuations in the microlensing light curves. Consequently, current X-ray microlensing observations can under or overestimate the sizes of the X-ray emission regions. We estimate this bias using a simple metric based on the amplitude of magnitude fluctuations. The half-light radius of the X-ray emission region can be underestimated by up to similar to 50% or overestimated by up to similar to 20% depending on the spin of the black hole, the emission profile, and the inclination angle of the observer. Underestimates were found in most situations we investigated. The only exception was for a disk with large spin and a radially flat emission profile, observed nearly face-on. We thus conclude that more accurate microlensing size constraints should be obtainable by including Kerr lensing. We also find that the caustic crossing time can differ by months when Kerr strong gravity is included. A simultaneous monitoring of gravitational lensed quasars in both X-ray and optical bands with densely sampled X-ray light curves should reveal this feature. We conclude that it should be possible to constrain important parameters such as inclination angles and black hole spins from combined Kerr and microlensing effects. C1 [Chen, Bin; Dai, Xinyu; Baron, E.; Kantowski, R.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Baron, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Baron, E.] Hamburger Sternwarte, D-21029 Hamburg, Germany. RP Chen, B (reprint author), Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. EM bchen@ou.edu RI Dai, Xinyu/B-5735-2011; OI Dai, Xinyu/0000-0001-9203-2808; Baron, Edward/0000-0001-5393-1608 FU National Aeronautics and Space Administration issued by the Chandra X-Ray Observatory Center [GO0-11121B, GO1-12139B, GO2-13132A]; National Aeronautics Space Administration [NAS8-03060]; NASA through Space Telescope Science Institute [HST-GO-11732.07-A, HST-GO-12298.05-A]; US DOE [DE-FG02-07ER41517]; NASA [NAS5-26555]; Research Council of the University of Oklahoma Norman Campus FX We thank C. S. Kochanek for comments and suggestions. We thank the anonymous referee for careful review of this paper. B. C. and X. D. acknowledge support for this work provided by the National Aeronautics and Space Administration through Chandra Award Number GO0-11121B, GO1-12139B, GO2-13132A issued by the Chandra X-Ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. B. C. and X. D. also acknowledge support for program number HST-GO-11732.07-A provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated. B. C. and E. B. acknowledge NSF AST-0707704, and US DOE Grant DE-FG02-07ER41517 and support for program number HST-GO-12298.05-A provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. X. D. acknowledges a grant from the Research Council of the University of Oklahoma Norman Campus. NR 61 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2013 VL 769 IS 2 AR UNSP 131 DI 10.1088/0004-637X/769/2/131 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 158UM UT WOS:000319999100047 ER PT J AU Hodge, JA Becker, RH White, RL Richards, GT AF Hodge, J. A. Becker, R. H. White, R. L. Richards, G. T. TI MILLIJANSKY RADIO VARIABILITY IN SDSS STRIPE 82 SO ASTROPHYSICAL JOURNAL LA English DT Article DE quasars: general; radio continuum: galaxies; surveys ID ALLEN TELESCOPE ARRAY; DIGITAL-SKY-SURVEY; SCINTILLATION-INDUCED VARIABILITY; EFFICIENT PHOTOMETRIC SELECTION; LINEAR-POLARIZATION PROPERTIES; PROBE WMAP OBSERVATIONS; READHEAD SURVEY SOURCES; BL LACERTAE OBJECTS; DATA RELEASE; 1.4 GHZ AB We report on a blind survey for extragalactic radio variability that was carried out by comparing two epochs of data from the Faint Images of the Radio Sky at Twenty centimeters survey with a third epoch from a new 1.4 GHz survey of SDSS Stripe 82. The three epochs are spaced seven years apart and have an overlapping area of 60 deg(2). We uncover 89 variable sources down to the millijansky level, 75 of which are newly identified, and we find no evidence for transient phenomena. This new sample of variable sources allows us to infer an upper limit to the mean characteristic timescale of active galactic nucleus radio variability of 14 yr. We find that only 1% of extragalactic sources have fractional variability f(var) > 3, while 44% of Galactic sources vary by this much. The variable sample contains a larger fraction of quasars than a comparable non-variable control sample, though the majority of the variable sources appear to be extended galaxies in the optical. This implies that either quasars are not the dominant contributor to the variability of the sample, or that the deep optical data allow us to detect the host galaxies of some low-z quasars. We use the new, higher resolution data to report on the morphology of the variable sources. Finally, we show that the fraction of sources that are variable remains constant or increases at low flux densities. This may imply that next generation radio surveys with telescopes like Australian Square Kilometer Array Pathfinder and MeerKAT will see a constant or even increasing fraction of variable sources down into the sub-millijansky regime. C1 [Hodge, J. A.; Becker, R. H.] Univ Calif Davis, Davis, CA 95616 USA. [Hodge, J. A.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Becker, R. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [White, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Richards, G. T.] Drexel Univ, Philadelphia, PA 19104 USA. RP Hodge, JA (reprint author), Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA. EM hodge@mpia.de FU NRAO [GSSP08-0034]; UC Davis Graduate Block Grant Fellowship; Space Telescope [HST-GO-10412.03-A]; National Science Foundation [AST 00-98355, AST-1108798]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Space Telescope Science Institute under NASA [NAS5-26555] FX J.A.H. acknowledges the support of NRAO Grant GSSP08-0034, a UC Davis Graduate Block Grant Fellowship, and Grant HST-GO-10412.03-A from the Space Telescope. R. H. B. acknowledge the support of the National Science Foundation under grant AST 00-98355. The work by R. H. B. was partly performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. R. L. W. acknowledges the support of the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS5-26555. G. T. R. acknowledges the support of NSF grant AST-1108798. NR 50 TC 4 Z9 4 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2013 VL 769 IS 2 AR UNSP 125 DI 10.1088/0004-637X/769/2/125 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 158UM UT WOS:000319999100041 ER PT J AU Velmurugan, N Sung, M Yim, SS Park, MS Yang, JW Jeong, KJ AF Velmurugan, Natarajan Sung, Minji Yim, Sung Sun Park, Min S. Yang, Ji Won Jeong, Ki Jun TI Evaluation of intracellular lipid bodies in Chlamydomonas reinhardtii strains by flow cytometry SO BIORESOURCE TECHNOLOGY LA English DT Article DE Lipid; Fluorescence-activated cell sorting; Single cell sorting; Chlamydomonas reinhardtii; BODIPY 505/515 ID NILE RED; MICROALGAE; ACCUMULATION; BIODIESEL AB A comparative study of Chlamydomonas reinhardtii wild type CC124 and a cell wall-less mutant sta6-1 is described using FACS in conjunction with two different lipophilic fluorescent dyes, Nile Red and BODIN 505/515. The results indicate that BODIPY 505/515 is more effective for the vital staining of intracellular lipid bodies and single cell sorting than Nile Red. While BODIPY 505/515 stained cells continued to grow after single cell sorting using FACS, Nile Red stained cells failed to recover from sorting. In addition, a comprehensive study was performed to establish a quantitative baseline for future studies for either lipid accumulation and/or microalgal growth by measuring various parameters such as cell count, size, fatty acid contents/composition, and optical/confocal images of the wild type and mutant. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Velmurugan, Natarajan; Sung, Minji; Yim, Sung Sun; Park, Min S.; Yang, Ji Won; Jeong, Ki Jun] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea. [Park, Min S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP Park, MS (reprint author), Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea. EM minsungpark0@kaist.ac.kr; jwyang@kaist.ac.kr; kjjeong@kaist.ac.kr RI JEONG, KI JUN/C-1704-2011; Yang, Ji-Won/C-1933-2011 FU Advanced Biomass R&D Center (ABC) of Korea; Ministry of Education, Science, and Technology [ABC-2010-0029728, ABC-2012-053891]; BK21 Post-Doctoral Research Fund; Brain Pool Program; Korean Federation of Science and Technology Societies Grant by Korea Government (MEST) FX This work was supported by the Advanced Biomass R&D Center (ABC) of Korea Grant funded by the Ministry of Education, Science, and Technology (ABC-2010-0029728 and ABC-2012-053891). N. Velmurugan was supported by the BK21 Post-Doctoral Research Fund and Min S. Park was supported by the Brain Pool Program funded by the Korean Federation of Science and Technology Societies Grant by Korea Government (MEST, Basic Research Promotion Fund). NR 26 TC 17 Z9 17 U1 3 U2 73 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUN PY 2013 VL 138 BP 30 EP 37 DI 10.1016/j.biortech.2013.03.078 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 162WL UT WOS:000320296600005 PM 23612159 ER PT J AU Sun, JM Mei, DH Karim, AM Datye, AK Wang, Y AF Sun, Junming Mei, Donghai Karim, Ayman M. Datye, Abhaya K. Wang, Yong TI Minimizing the Formation of Coke and Methane on Co Nanoparticles in Steam Reforming of Biomass-Derived Oxygenates SO CHEMCATCHEM LA English DT Article DE biomass; cobalt; hydrogen; nanoparticles; steam reforming ID EFFICIENT HYDROGEN-PRODUCTION; SUPPORTED COBALT CATALYSTS; BIMETALLIC CATALYSTS; BIO-BUTANOL; WATER-VAPOR; ACETIC-ACID; ETHANOL; CONVERSION; HYDROCARBONS; CHEMISTRY C1 [Sun, Junming; Mei, Donghai; Karim, Ayman M.; Wang, Yong] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Datye, Abhaya K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Datye, Abhaya K.] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. RP Mei, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM donghai.mei@pnnl.gov; yongwang@pnnl.gov RI Sun, Junming/B-3019-2011; Mei, Donghai/A-2115-2012; Karim, Ayman/G-6176-2012; Mei, Donghai/D-3251-2011; OI Sun, Junming/0000-0002-0071-9635; Mei, Donghai/0000-0002-0286-4182; Karim, Ayman/0000-0001-7449-542X; Datye, Abhaya/0000-0002-7126-8659 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Laboratory Directed Research and Development (LDRD) project of Pacific Northwest National Laboratory (PNNL); U.S. DOE's Office of Biological and Environmental Research FX We gratefully acknowledge financial support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and the Laboratory Directed Research and Development (LDRD) project of Pacific Northwest National Laboratory (PNNL). Computing time was granted by the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. DOE national scientific user facility located at PNNL and sponsored by the U.S. DOE's Office of Biological and Environmental Research. The National Energy Research Scientific Computing Center (NERSC) also granted part of the computing time. NR 30 TC 20 Z9 20 U1 1 U2 70 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1867-3880 J9 CHEMCATCHEM JI ChemCatChem PD JUN PY 2013 VL 5 IS 6 BP 1299 EP 1303 DI 10.1002/cctc.201300041 PG 5 WC Chemistry, Physical SC Chemistry GA 154MV UT WOS:000319680800009 ER PT J AU Sun, YJ Padbury, RP Akyildiz, HI Goertz, MP Palmer, JA Jur, JS AF Sun, Yujie Padbury, Richard P. Akyildiz, Halil I. Goertz, Matthew P. Palmer, Jeremy A. Jur, Jesse S. TI Influence of Subsurface Hybrid Material Growth on the Mechanical Properties of Atomic Layer Deposited Thin Films on Polymers SO CHEMICAL VAPOR DEPOSITION LA English DT Article DE ALD nucleation; Flexibility; Hybrid layer; Mechanical properties; PA6 ID SEQUENTIAL VAPOR INFILTRATION; GAS-DIFFUSION BARRIERS; ALUMINA FILMS; NANOINDENTATION; TEMPERATURE; SUBSTRATE; TOUGHNESS; FIBERS AB The mechanical properties of atomic layer deposition (ALD) coatings play a key role in their long-term use as encapsulation barriers for organic-based, flexible, electronic devices. Nano-indentation characteristics and flexure testing of nanometer-scale alumina on polyamide 6 (PA6) films are investigated to determine the influence of a sub-surface hybrid layer formed during the ALD process. This hybrid layer is observed to affect the mechanical performance of the thin films, in particular at lower processing temperatures. This work has important consequences on how ALD materials need to be applied and evaluated on polymers for application as encapsulation barrier layers. C1 [Sun, Yujie; Padbury, Richard P.; Akyildiz, Halil I.; Jur, Jesse S.] N Carolina State Univ, Dept Text Engn Chem & Sci, Raleigh, NC 27695 USA. [Goertz, Matthew P.; Palmer, Jeremy A.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Sun, YJ (reprint author), N Carolina State Univ, Dept Text Engn Chem & Sci, Raleigh, NC 27695 USA. EM jsjur@ncsu.edu OI Akyildiz, Halil/0000-0002-8727-5829 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Sandia Nationl Laboratories (Department of Energy) [2011-1953]; National Science Foundation [CMMI-1000382] FX The authors gratefully acknowledge the assistance of Mangesh Champhekar (N.C. State) for guidance in the nano-indentation characterization performed in this work. The authors also acknowledge Stephen J. Bull (Univ. of Newcastle) for guidance on the model for the contact modulus. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U. S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was supported by Sandia Nationl Laboratories (Department of Energy) #2011-1953. This work was supported in part by the National Science Foundation Project no. CMMI-1000382 (J.S.J.) NR 36 TC 18 Z9 18 U1 2 U2 44 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0948-1907 J9 CHEM VAPOR DEPOS JI Chem. Vapor Depos. PD JUN PY 2013 VL 19 IS 4-6 SI SI BP 134 EP 141 DI 10.1002/cvde.201207042 PG 8 WC Electrochemistry; Materials Science, Coatings & Films; Physics, Condensed Matter SC Electrochemistry; Materials Science; Physics GA 165GB UT WOS:000320470300009 ER PT J AU Mane, AU Elam, JW AF Mane, Anil U. Elam, Jeffrey W. TI Atomic Layer Deposition of W:Al2O3 Nanocomposite Films with Tunable Resistivity SO CHEMICAL VAPOR DEPOSITION LA English DT Article DE ALD; Al2O3; Nanocomposites; Resistive coatings; Tungsten ID QUARTZ-CRYSTAL MICROBALANCE; THIN-FILMS; ELECTROCHROMIC PROPERTIES; BIOMEDICAL APPLICATIONS; GROWTH; MEMORY; AL2O3; CHEMISTRY; SI2H6; OXIDE AB Nanocomposite tungsten-aluminum oxide (W:Al2O3) thin films were prepared by atomic layer deposition (ALD) using tungsten hexafluoride (WF6) and disilane (Si2H6) for the W ALD and trimethyl aluminum (TMA) and H2O for the Al2O3 ALD. Quartz crystal microbalance (QCM) measurements performed using various W cycle percentages revealed that the W ALD inhibits the Al2O3 ALD and vice versa. Despite this inhibition, the relationship between W content and W cycle percentage was close to that predicted by theoretical calculations based on the growth per cycle values of binary compounds. Depth profiling XPS showed that the (W:Al2O3) films were uniform in composition and contained Al, O, and metallic W as expected, but also included significant F and C. Cross-sectional TEM revealed the composite film structure to be metallic nanoparticles (approximate to 1nm) embedded in an amorphous matrix. The resistivity of these composite films could be tuned in the range of 1012-108 cm by adjusting the W cycle percentage between 10% and 30%W. These films have applications in electron multipliers as well as electron and ion optics. C1 [Mane, Anil U.; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Mane, AU (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jelam@anl.gov FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics [DE-AC02-06CH11357] FX This work was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics under contract DE-AC02-06CH11357 as part of the Large Area Picosecond Photodetector (LAPPD) project. NR 47 TC 16 Z9 16 U1 0 U2 45 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0948-1907 EI 1521-3862 J9 CHEM VAPOR DEPOS JI Chem. Vapor Depos. PD JUN PY 2013 VL 19 IS 4-6 SI SI BP 186 EP 193 DI 10.1002/cvde.201307054 PG 8 WC Electrochemistry; Materials Science, Coatings & Films; Physics, Condensed Matter SC Electrochemistry; Materials Science; Physics GA 165GB UT WOS:000320470300017 ER PT J AU Cheng, DJ Negreiros, FR Apra, E Fortunelli, A AF Cheng, Daojian Negreiros, Fabio R. Apra, Edoardo Fortunelli, Alessandro TI Computational Approaches to the Chemical Conversion of Carbon Dioxide SO CHEMSUSCHEM LA English DT Review DE catalysts; density functional theory; hydrogenation; reaction mechanisms; reduction ID WATER-GAS-SHIFT; DENSITY-FUNCTIONAL THEORY; TRANSITION-METAL CATALYSTS; MONTE-CARLO SIMULATIONS; CO2 HYDROGENATION; METHANOL SYNTHESIS; ELECTROCHEMICAL REDUCTION; FORMIC-ACID; REACTION-MECHANISM; PHOTOCATALYTIC CONVERSION AB The conversion of CO2 into fuels and chemicals is viewed as an attractive route for controlling the atmospheric concentration and recycling of this greenhouse gas, but its industrial application is limited by the low selectivity and activity of the current catalysts. Theoretical modeling, in particular density functional theory (DFT) simulations, provides a powerful and effective tool to discover chemical reaction mechanisms and design new catalysts for the chemical conversion of CO2, overcoming the repetitious and time/labor consuming trial-and-error experimental processes. In this article we give a comprehensive survey of recent advances on mechanism determination by DFT calculations for the catalytic hydrogenation of CO2 into CO, CH4, CH3OH, and HCOOH, and CO2 methanation, as well as the photo- and electrochemical reduction of CO2. DFT-guided design procedures of new catalytic systems are also reviewed, and challenges and perspectives in this field are outlined. C1 [Cheng, Daojian] Beijing Univ Chem Technol, Div Mol & Mat Simulat, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China. [Negreiros, Fabio R.; Fortunelli, Alessandro] CNR, IPCF, I-56124 Pisa, Italy. [Apra, Edoardo] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab Battelle, Richland, WA 99352 USA. RP Cheng, DJ (reprint author), Beijing Univ Chem Technol, Div Mol & Mat Simulat, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China. EM chengdj@mail.buct.edu.cn; alessandro.fortunelli@cnr.it RI Cheng, Daojian/F-4878-2010; Apra, Edoardo/F-2135-2010 OI Apra, Edoardo/0000-0001-5955-0734 FU National Natural Science Foundation of China [21106003]; Foundation of Excellent Doctoral Dissertation of Beijing City [YB20091001001]; Beijing Novel Program [Z12111000250000]; "Chemical Grid Project" of BUCT; Super-computing Center of Chinese Academy of Sciences (SCCAS); SEPON project within the Advanced Grants of the European Research Council; US Department of Energy [DE-AC06.76RLO-1830] FX We would like to thank Professor Wenchuan Wang of BUCT for helpful comments and suggestions. D. C. gratefully acknowledges support by the National Natural Science Foundation of China (21106003), the Foundation of Excellent Doctoral Dissertation of Beijing City (No. YB20091001001), Beijing Novel Program (Z12111000250000), "Chemical Grid Project" of BUCT, and Super-computing Center of Chinese Academy of Sciences (SCCAS). A. F. gratefully acknowledges support from the SEPON project within the Advanced Grants of the European Research Council. The Pacific Northwest National Laboratory is operated for the US Department of Energy by the Battelle Memorial Institute under Contract DE-AC06.76RLO-1830. Networking from the MP0903 COST action is also acknowledged. NR 219 TC 43 Z9 44 U1 45 U2 418 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD JUN PY 2013 VL 6 IS 6 BP 944 EP 965 DI 10.1002/cssc.201200872 PG 22 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA 156NC UT WOS:000319828000001 PM 23716438 ER PT J AU Bazilevskaya, E Lebedeva, M Pavich, M Rother, G Parkinson, DY Cole, D Brantley, SL AF Bazilevskaya, Ekaterina Lebedeva, Marina Pavich, Milan Rother, Gernot Parkinson, Dilworth Y. Cole, David Brantley, Susan L. TI Where fast weathering creates thin regolith and slow weathering creates thick regolith SO EARTH SURFACE PROCESSES AND LANDFORMS LA English DT Article DE regolith thickness; fluid transport; neutron scattering; geomorphology; nanoporosity ID LUQUILLO MOUNTAINS; NEUTRON-SCATTERING; VIRGINIA PIEDMONT; NORTH-CAROLINA; PUERTO-RICO; LONG-TERM; RATES; GRANITE; SAPROLITE; ROCKS AB Weathering disaggregates rock into regolith - the fractured or granular earth material that sustains life on the continental land surface. Here, we investigate what controls the depth of regolith formed on ridges of two rock compositions with similar initial porosities in Virginia (USA). A priori, we predicted that the regolith on diabase would be thicker than on granite because the dominant mineral (feldspar) in the diabase weathers faster than its granitic counterpart. However, weathering advanced 20x deeper into the granite than the diabase. The 20x-thicker regolith is attributed mainly to connected micron-sized pores, microfractures formed around oxidizing biotite at 20m depth, and the lower iron (Fe) content in the felsic rock. Such porosity allows pervasive advection and deep oxidation in the granite. These observations may explain why regolith worldwide is thicker on felsic compared to mafic rock under similar conditions. To understand regolith formation will require better understanding of such deep oxidation reactions and how they impact fluid flow during weathering. Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Bazilevskaya, Ekaterina; Lebedeva, Marina; Brantley, Susan L.] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. [Pavich, Milan] US Geol Survey, Eastern Geol & Paleoclimate Sci Ctr, Reston, VA 22092 USA. [Rother, Gernot] Oak Ridge Natl Lab, Geochem & Interfacial Sci Grp, Div Chem Sci, Oak Ridge, TN USA. [Parkinson, Dilworth Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Cole, David] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. RP Bazilevskaya, E (reprint author), Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. EM eab204@psu.edu RI Rother, Gernot/B-7281-2008; Parkinson, Dilworth/A-2974-2015 OI Rother, Gernot/0000-0003-4921-6294; Parkinson, Dilworth/0000-0002-1817-0716 FU DOE [DE-FG02-05ER15675]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (OBES), US Department of Energy (DOE); DOE OBES as part of an Energy Frontier Research Center led by Lawrence Berkeley National Laboratory; Office of Science, DOE OBES [DE-AC02-05CH11231]; National Institute of Standards and Technology (NIST), US Department of Commerce; National Science Foundation [DMR-0944772] FX EB and SLB acknowledge DOE grant #DE-FG02-05ER15675. GR was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (OBES), US Department of Energy (DOE). DRC was supported by the DOE OBES as part of an Energy Frontier Research Center led by Lawrence Berkeley National Laboratory. The Advanced Light Source is supported by the Director, Office of Science, DOE OBES under Contract No. DE-AC02-05CH11231. The authors acknowledge the support of the National Institute of Standards and Technology (NIST), US Department of Commerce, in providing the neutron research facilities used in this work. Neutron scattering measurements utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0944772. The authors acknowledge two anonymous reviews that improved the manuscript, as well as conversations with David Mildner and other NIST staff. SLB also acknowledges helpful discussions with Jean-Jacques Braun. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 70 TC 21 Z9 21 U1 1 U2 51 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0197-9337 J9 EARTH SURF PROC LAND JI Earth Surf. Process. Landf. PD JUN PY 2013 VL 38 IS 8 BP 847 EP 858 DI 10.1002/esp.3369 PG 12 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 164CT UT WOS:000320387100007 ER PT J AU Kitamura, N Hamao, N Vogel, SC Idemota, Y AF Kitamura, Naoto Hamao, Naoki Vogel, Sven C. Idemota, Yasushi TI Oxide-Ion Conduction, Average and Local Structures of LaSrGa1-xMgxO4-delta with Layered Perovskite Structure SO ELECTROCHEMISTRY LA English DT Article DE Pair Distribution Function; Rietveld Method; Oxide-Ion Conductor; Layered Perovskite Structure ID PAIR DISTRIBUTION FUNCTION; DOPED LAGAO3 PEROVSKITE; MELILITE-TYPE CERAMICS; DISORDER; BEHAVIOR; LA1-XBA1+XGAO4-X/2; REFINEMENT; CRYSTAL; SITE AB In this work, we prepared LaSrGa1-xMgxO4-delta with the K2NiF4-type layered perovskite structure and then investigated the electrical conduction property and the crystal structure. From the conductivity measurements, it was indicated that LaSrGaO4 exhibited oxide-ion conduction by substituting Mg for Ga partially, but the conductivity of the substituted sample was lower than those of LaGaO3-based materials reported previously. In order to clarify the reason of the lower conductivity, we performed the Rietveld and Pair Distribution Function (PDF) analyses using neutron scattering data, and also carried out first principle calculation as a theoretical approach. As a result, it was indicated the material had a two-dimensional oxide-ion conduction pathway and the oxygen vacancy tended to be localized at the corner sharing position of GaO6 within the perovskite layer. In addition, it was suggested that the low ionic conductivity in the LaSrGaO4-based materials were caused by a large distortion around the defect and a large repulsive force between the oxygen vacancy and La3+. (C) The Electrochemical Society of Japan, All rights reserved. C1 [Kitamura, Naoto; Hamao, Naoki; Idemota, Yasushi] Tokyo Univ Sci, Fac Sci & Technol, Dept Pure & Appl Chem, Noda, Chiba 2788510, Japan. [Kitamura, Naoto; Idemota, Yasushi] Tokyo Univ Sci, Res Inst Sci & Technol, Div Ecosyst Res, Noda, Chiba 2788510, Japan. [Vogel, Sven C.] Los Alamos Natl Lab, LANSCE Lujan Ctr, Los Alamos, NM 87545 USA. RP Kitamura, N (reprint author), Tokyo Univ Sci, Fac Sci & Technol, Dept Pure & Appl Chem, 2641 Yamazaki, Noda, Chiba 2788510, Japan. EM naotok@rs.tus.ac.jp NR 34 TC 3 Z9 3 U1 6 U2 36 PU ELECTROCHEMICAL SOC JAPAN PI TOKYO PA ARUSUICHIGAYA202, 4-8-30, KUDANMINAMI, CHIYODA-KU, TOKYO, 102-0074, JAPAN SN 1344-3542 J9 ELECTROCHEMISTRY JI Electrochemistry PD JUN PY 2013 VL 81 IS 6 BP 448 EP 453 DI 10.5796/electrochemistry.81.448 PG 6 WC Electrochemistry SC Electrochemistry GA 166NV UT WOS:000320563600005 ER PT J AU McManamay, RA Orth, DJ Dolloff, CA Mathews, DC AF McManamay, Ryan A. Orth, Donald J. Dolloff, Charles A. Mathews, David C. TI Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study SO ENVIRONMENTAL MANAGEMENT LA English DT Article DE Environmental flow; Water policy; Dams; Habitat restoration; Fish; Riparian ID ALTERED FLOW REGIMES; FISH COMMUNITIES; UNITED-STATES; STREAM FISHES; HABITAT REHABILITATION; HYDROLOGIC ALTERATION; ENVIRONMENTAL FLOWS; ADAPTIVE MANAGEMENT; SCALE-DEPENDENCE; THERMAL HABITAT AB In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate univariate relationships between altered flows and ecology within the UTRB. By comparison, we constructed multivariate models to determine improvements in predictive capacity with the addition of non-flow variables. We then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not suggest that univariate relationships between flow and ecology (step 4, ELOHA process) can produce results sufficient to guide flow restoration in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted 4 years after restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored. C1 [McManamay, Ryan A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Orth, Donald J.] Virginia Tech, Dept Fish & Wildlife Conservat, Blacksburg, VA 24061 USA. [Dolloff, Charles A.] US Forest Serv, USDA, Dept Fish & Wildlife Conservat, Virginia Tech, Blacksburg, VA 24061 USA. [Mathews, David C.] Tennessee Valley Author, Knoxville, TN 37902 USA. RP McManamay, RA (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM mcmanamayra@ornl.gov OI Orth, Donald/0000-0002-9236-0147 FU Cheoah Fund Board; USDA Forest Service; US Fish and Wildlife Service; North Carolina Wildlife Resources Commission; NC Division of Water Resources-DENR; Sigma Xi FX This work was funded by the Cheoah Fund Board, a multi-agency collaboration among Alcoa Power, the USDA Forest Service, the US Fish and Wildlife Service, the North Carolina Wildlife Resources Commission, the NC Division of Water Resources-DENR, and other grants provided by the USDA Forest Service. Funding was also provided by the Sigma Xi Grants-In-Aid of Research Program. We thank Mark Cantrell, Chris Goodreau, Steve Fraley, Steve Reid, Jim Mead, Rick Simmons, Paul Leonard, and Andrew Bearden for providing reports, summaries, and data. Suggested revisions on earlier versions of this paper were provided by Mark Cantrell, Paul Angermeier, Emmanuel Frimpong, and Tess Wynn. In addition, comments provided by five anonymous reviewers substantially improved this paper. We also extend gratitude to Tyler Young, Toby Coyner, David Belkoski, Travis Patton, Jason Emmel, McKeever Henley, and Adam Hart for their assistance with field work. NR 105 TC 15 Z9 15 U1 7 U2 48 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0364-152X EI 1432-1009 J9 ENVIRON MANAGE JI Environ. Manage. PD JUN PY 2013 VL 51 IS 6 BP 1210 EP 1235 DI 10.1007/s00267-013-0055-3 PG 26 WC Environmental Sciences SC Environmental Sciences & Ecology GA 157FS UT WOS:000319882000010 PM 23624994 ER PT J AU Chen, JM Florian, J Carter, W Fleischer, RD Hammerstrom, TS Jadhav, PR Zeng, W Murray, J Birnkrant, D AF Chen, Jianmeng Florian, Jeffry Carter, Wendy Fleischer, Russell D. Hammerstrom, Thomas S. Jadhav, Pravin R. Zeng, Wen Murray, Jeffrey Birnkrant, Debra TI Earlier Sustained Virologic Response End Points for Regulatory Approval and Dose Selection of Hepatitis C Therapies SO GASTROENTEROLOGY LA English DT Article DE Therapy; Outcome; Effectiveness; Quantification. ID GENOTYPE 1 INFECTION; INTERFERON-ALPHA; VIRUS-INFECTION; HCV INFECTION; FOLLOW-UP; RIBAVIRIN; BOCEPREVIR; TELAPREVIR; RNA; MANAGEMENT AB BACKGROUND & AIMS: Trials of therapies for chronic hepatitis C have used detection of hepatitis C virus (HCV) at week 24 of follow-up (sustained virologic response [SVR] 24) as a primary end point. However, there is increasing evidence that most patients who have an SVR at earlier time points (such as SVR12) maintain it until week 24. Use of earlier time points for key regulatory decisions (SVR12) and dose selection (SVR4) could facilitate HCV drug development. METHODS: We assessed data from 15 phase II and III trials, 3 pediatric studies, and 5 drug-development programs to determine the concordance between SVR24 and SVR12 or SVR4. Data were analyzed from groups of subjects who received various combinations and regimens with interferon, pegylatedinterferon, ribavirin, and direct-acting antivirals. RESULTS: The positive predictive value (PPV) of SVR12 was 98% and the negative predictive value (NPV) was 99% for SVR24 among subjects with genotype 1 HCV infection. A similar level of concordance was observed for subjects with HCV genotype 2 or 3 infections, as well as in pediatric studies. About 2% of subjects who achieved an SVR12 subsequently relapsed by week 24 (did not achieve an SVR24). Furthermore, the treatment effect size (difference between treatment and active control arms) was similar for subjects with SVR12 and SVR24. The PPV of SVR4 was 91% and the NPV was 98% for SVR24 in subjects with genotype 1 HCV infection. CONCLUSIONS: SVR12 and SVR24 measurements were concordant in a large population of subjects with HCV infection who participated in clinical trials with various treatment regimens and durations. SVR12 is suitable as a primary end point for regulatory approval. SVR4 might be used to guide dose and treatment strategies in trials. C1 [Chen, Jianmeng; Florian, Jeffry; Jadhav, Pravin R.] US FDA, Div Pharmacometr, Off Clin Pharmacol, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USA. [Chen, Jianmeng] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Carter, Wendy; Fleischer, Russell D.; Murray, Jeffrey; Birnkrant, Debra] US FDA, Div Antiviral Drug Prod, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USA. [Hammerstrom, Thomas S.; Zeng, Wen] US FDA, Div Biometr, Silver Spring, MD 20993 USA. RP Florian, J (reprint author), US FDA, Div Pharmacometr, Off Clin Pharmacol, Ctr Drug Evaluat & Res, 10903 New Hampshire Ave,Room 3180,Bldg 51, Silver Spring, MD 20993 USA. EM jeffry.florian@fda.hhs.gov FU ORISE Research Participation Program at the Center for Drug Evaluation and Research FX This project was supported by funding through a critical path grant and in part by an appointment to the ORISE Research Participation Program at the Center for Drug Evaluation and Research administered by the Oak Ridge Institute for Science and Education through an agreement between the US Department of Energy and Center for Drug Evaluation and Research. NR 26 TC 81 Z9 83 U1 0 U2 3 PU W B SAUNDERS CO-ELSEVIER INC PI PHILADELPHIA PA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA SN 0016-5085 J9 GASTROENTEROLOGY JI Gastroenterology PD JUN PY 2013 VL 144 IS 7 BP 1450 EP U218 DI 10.1053/j.gastro.2013.02.039 PG 8 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 151ZI UT WOS:000319498500028 PM 23470616 ER PT J AU Ambrosio, G Andreev, N Anerella, M Barzi, E Bossert, R Buehler, M Chlachidze, G Dietderich, D DiMarco, J Escallier, J Felice, H Ferracin, P Ghosh, A Godeke, A Hafalia, R Jochen, G Kim, MJ Kovach, P Lamm, M Marchevsky, M Muratore, J Nobrega, F Orris, D Prebys, E Prestemon, S Sabbi, GL Schmalzle, J Sylvester, C Tartaglia, M Turrioni, D Velev, G Wanderer, P Wang, X Whitson, G Yu, M Zlobin, AV AF Ambrosio, G. Andreev, N. Anerella, M. Barzi, E. Bossert, R. Buehler, M. Chlachidze, G. Dietderich, D. DiMarco, J. Escallier, J. Felice, H. Ferracin, P. Ghosh, A. Godeke, A. Hafalia, R. Jochen, G. Kim, M. J. Kovach, P. Lamm, M. Marchevsky, M. Muratore, J. Nobrega, F. Orris, D. Prebys, E. Prestemon, S. Sabbi, G. L. Schmalzle, J. Sylvester, C. Tartaglia, M. Turrioni, D. Velev, G. Wanderer, P. Wang, X. Whitson, G. Yu, M. Zlobin, A. V. TI Test Results and Analysis of LQS03 Third Long Nb3Sn Quadrupole by LARP SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Accelerator magnet; Large Hadron Collider (LHC) upgrade; long magnet; Nb3Sn; quadrupole ID LHC AB With the first test of LQS03, the long quadrupole (LQ) R&D by LARP (the US LHC Accelerator Research Program, a collaboration of BNL, FNAL, LBNL, and SLAC) is approaching conclusion. LQS03 is the third 3.7-m-long quadrupole, with 90mm aperture, using a full new set of Nb3Sn coils. The LQS03 coils were made using 108/127 RRP strand (with 108 Nb3Sn subelements) produced by Oxford Superconducting Technology, whereas both previous models used 54/61 RRP strand (with 54 larger Nb3Sn subelements). In this paper, LQS03 test results are presented and discussed. The test results are also compared with the performances of the previous models. Observations are made for the future use of Nb3Sn in accelerator magnets. C1 [Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Buehler, M.; Chlachidze, G.; DiMarco, J.; Kim, M. J.; Lamm, M.; Nobrega, F.; Orris, D.; Prebys, E.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Velev, G.; Whitson, G.; Yu, M.; Zlobin, A. V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Anerella, M.; Escallier, J.; Ghosh, A.; Jochen, G.; Kovach, P.; Muratore, J.; Schmalzle, J.; Wanderer, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Dietderich, D.; Felice, H.; Godeke, A.; Hafalia, R.; Marchevsky, M.; Prestemon, S.; Sabbi, G. L.; Wang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ferracin, P.] CERN, TE Dept, CH-1211 Geneva, Switzerland. RP Ambrosio, G (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM giorgioa@fnal.gov; mda@BNL.gov; barzi@fnal.gov; bossert@fnal.gov; buehler@fnal.gov; guram@fnal.gov; drdietderich@lbl.gov; dimarco@fnal.gov; hfelice@lbl.gov; paolo.ferracin@cern.ch; aghosh@bnl.gov; agodeke@lbl.gov; RRHafalia@lbl.gov; MMartchevskii@lbl.gov; nobrega@fnal.gov; SOPrestemon@lbl.gov; GLSabbi@lbl.gov; schmalzle@bnl.gov; tartaglia@fnal.gov; velev@fnal.gov; wanderer@bnl.gov; XRWang@lbl.gov; miaoyu@fnal.gov; zlobin@fnal.gov FU US Department of Energy through the US LHC Accelerator Research Program (LARP) FX This work was supported in part by the US Department of Energy through the US LHC Accelerator Research Program (LARP). NR 18 TC 4 Z9 4 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4002204 DI 10.1109/TASC.2013.2237941 PN 2 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100028 ER PT J AU Andreev, N Apollinari, G Auchmann, B Barzi, E Bossert, R Chlachidze, G DiMarco, J Karppinen, M Nobrega, F Novitski, I Rossi, L Smekens, D Turrioni, D Velev, GV Zlobin, AV AF Andreev, N. Apollinari, G. Auchmann, B. Barzi, E. Bossert, R. Chlachidze, G. DiMarco, J. Karppinen, M. Nobrega, F. Novitski, I. Rossi, L. Smekens, D. Turrioni, D. Velev, G. V. Zlobin, A. V. TI Field Quality Measurements in a Single-Aperture 11 T Nb3Sn Demonstrator Dipole for LHC Upgrades SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Field quality; magnetic measurement; superconducting accelerator magnets AB The upgrade of the Large Hadron Collider (LHC) collimation system foresees additional collimators in the LHC dispersion suppressor areas. The longitudinal space for the collimators could be provided by replacing some NbTi LHC main dipoles with shorter 11 T Nb3Sn dipoles. To demonstrate this possibility, Fermilab and CERN have started a joint program to develop a Nb3Sn dipole prototype suitable for installation in the LHC. The first step of this program is the development of a 2-m long, 60-mm-bore, single-aperture demonstrator dipole with the nominal field of 11 T at the LHC operational current of 11.85 kA. This paper presents the results of magnetic measurements of the single-aperture Nb3Sn demonstrator dipole including geometrical harmonics, coil magnetization, and iron saturation effects. The experimental data are compared with the magnetic calculations. C1 [Andreev, N.; Apollinari, G.; Barzi, E.; Bossert, R.; Chlachidze, G.; DiMarco, J.; Nobrega, F.; Novitski, I.; Turrioni, D.; Velev, G. V.; Zlobin, A. V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Auchmann, B.; Karppinen, M.; Rossi, L.; Smekens, D.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. RP Andreev, N (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM zlobin@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; U.S. Department of Energy; European Commission under FP7 project HiLumi LHC [GA 284404] FX This work was supported by the Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. Department of Energy and European Commission under FP7 project HiLumi LHC, GA 284404. NR 15 TC 6 Z9 6 U1 1 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4001804 DI 10.1109/TASC.2013.2237819 PN 2 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100024 ER PT J AU Bossert, R Krave, S Ambrosio, G Andreev, N Barzi, E Chlachidze, G Kashikhin, VV Lamm, M Nobrega, A Novitski, I Zlobin, AV AF Bossert, R. Krave, S. Ambrosio, G. Andreev, N. Barzi, E. Chlachidze, G. Kashikhin, V. V. Lamm, M. Nobrega, A. Novitski, I. Zlobin, A. V. TI Fabrication and Test of 90-mm Nb3Sn Quadrupole Coil Impregnated With MATRIMID-Bismaleimide Based Material SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Magnetic mirror; Matrimid; Nb3Sn quadrupole AB The traditional fabrication process used for Nb3Sn accelerator magnets involves reaction of the coils at high temperature and impregnation with epoxy to restore the electrical and mechanical properties of the insulation. The traditional epoxy offers adequate structural and electrical properties, but has low radiation strength, limiting the lifetime of magnets operating in severe radiation environments. This paper presents the results of a study in which the traditional epoxy was replaced with Matrimid 5292 as a coil impregnation material. Test stacks of cable were fabricated and impregnated with epoxy and Matrimid. Electrical, structural and thermal properties were measured and compared. A 90-mm-bore, 1-meter-long Nb3Sn quadrupole coil made of RRP 54/61 strand was fabricated, reacted, impregnated with Matrimid, and tested in a single coil test structure (quadrupole magnetic mirror). Test results are compared with the results for similar coils impregnated with epoxy. C1 [Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Chlachidze, G.; Kashikhin, V. V.; Lamm, M.; Nobrega, A.; Novitski, I.; Zlobin, A. V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Bossert, R (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM bossert@fnal.gov; skrave@fnal.gov; giorgioa@fnal.gov; andreev@fnal.gov; barzi@fnal.gov; guram@fnal.gov; vadim@fnal.gov; lamm@fnal.gov; nobrega@fnal.gov; novitski@fnal.gov; zlobin@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; U.S. Department of Energy; U.S. Department of Energy through the US LHC Accelerator Research Program (LARP) FX This work was supported by the Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. Department of Energy and supported in part by the U.S. Department of Energy through the US LHC Accelerator Research Program (LARP). NR 14 TC 0 Z9 0 U1 1 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4001405 DI 10.1109/TASC.2012.2236598 PN 2 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100021 ER PT J AU Cheng, DW Caspi, S Dietderich, DR Felice, H Ferracin, P Hafalia, AR Marchevsky, M Prestemon, S Sabbi, G AF Cheng, D. W. Caspi, S. Dietderich, D. R. Felice, H. Ferracin, P. Hafalia, A. R. Marchevsky, M. Prestemon, S. Sabbi, G. TI Design and Fabrication Experience With Nb3Sn Block-Type Coils for High Field Accelerator Dipoles SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Dipole magnet; Nb3Sn ID MAGNET AB For the last several years, the Lawrence Berkeley National Laboratory has been engaged in the development of Nb3Sn block-type accelerator quality dipoles with operational bore fields in the range of 13-15 T. The magnet design features two coil modules wound around a titanium-alloy pole with a clear aperture of 43 mm. The latest model, HD3, incorporates several new features to overcome the limitations observed in previous tests. Among the key objectives are improved conductor positioning at critical transitions between straight section and end regions, and a more robust fabrication process. To date, several coils have been fabricated and we describe their performance with respect to these design and process changes. Additionally, we present our experience in design and fabrication of a new generation of magnet coils that introduce a two-piece pole design that allows for cable growth during reaction. These experiences are intended to form the basis for scale-up to longer lengths and larger aperture magnets. C1 [Cheng, D. W.; Caspi, S.; Dietderich, D. R.; Felice, H.; Hafalia, A. R.; Marchevsky, M.; Prestemon, S.; Sabbi, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ferracin, P.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. RP Cheng, DW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM dwcheng@lbl.gov FU Office of Science, High Energy Physics, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the Director, Office of Science, High Energy Physics, U.S. Department of Energy, under Contract DE-AC02-05CH11231. NR 10 TC 6 Z9 6 U1 0 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 EI 1558-2515 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4002504 DI 10.1109/TASC.2013.2246811 PN 2 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100031 ER PT J AU Ciovati, G Anlage, SM Gurevich, AV AF Ciovati, Gianluigi Anlage, Steven M. Gurevich, Alexander V. TI Imaging of the Surface Resistance of an SRF Cavity by Low-Temperature Laser Scanning Microscopy SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Laser scanning microscopy; niobium; superconducting accelerator cavities; surface resistance ID FILMS; SYSTEM; DC AB Temperature mapping of the outer surface of a superconducting radio-frequency cavity is a technique that is often used to identify lossy areas on the cavity surface. In this contribution, we present 2-D images of the superconducting state surface resistance R-s of the inner surface of a superconducting radio-frequency (SRF) cavity obtained by low-temperature laser scanning microscopy. This technique, which is applied for the first time to study lossy regions in an operating SRF cavity, allows identifying "hotspots" with about one order of magnitude better spatial resolution (similar to 2 mm) than by thermometry. The R-s-resolution is of the order of 1 mu Omega at 3.3 GHz. Surface resistance maps with different laser power and optical images of the cavity surface are discussed in this contribution. It is also shown that the thermal gradient on the niobium surface created by the laser beam can move some of the hotspots, which are identified as locations of trapped bundle of fluxoids. The prospects for this microscope to identify defects that limit the performance of SRF cavities will also be discussed. C1 [Ciovati, Gianluigi] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Anlage, Steven M.] Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. [Gurevich, Alexander V.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Ciovati, G (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM gciovati@jlab.org; anlage@umd.edu; agurevic@odu.edu RI Gurevich, Alex/A-4327-2008 OI Gurevich, Alex/0000-0003-0759-8941 FU US DOE [DE-PS02-09ER09-05]; DOE [DESC0004950]; ONR/AppEl Task D10 [N000140911190]; US Government Presidential Early Career Award for Scientists and Engineers FX This manuscript has been authored by Jefferson Science Associates, LLC, under US DOE Contract DE-PS02-09ER09-05. The work at the University of Maryland was supported by DOE Grant DESC0004950 and ONR/AppEl Task D10, through Grant N000140911190. Additional support for this work was provided by the US Government Presidential Early Career Award for Scientists and Engineers. NR 11 TC 1 Z9 1 U1 1 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 3500506 DI 10.1109/TASC.2012.2233253 PN 2 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100002 ER PT J AU Collings, EW Sumption, MD Susner, MA Dietderich, DR Kroopshoop, E Nijhuis, A AF Collings, E. W. Sumption, M. D. Susner, M. A. Dietderich, D. R. Kroopshoop, E. Nijhuis, A. TI Coupling- and Persistent-Current Magnetizations of Nb3Sn Rutherford Cables With Cores of Stainless Steel and Woven Glass-Fiber Tape Measured by Pick-Up Coil Magnetometry SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE AC loss; core-type cables; coupling magnetization; interstrand contact resistance; persistent-current magnetization; pick-up-coil magnetometry; Rutherford cables; stainless-steel-tape cores; woven glass-fiber-tape cores ID INTERSTRAND CONTACT RESISTANCE; AC-LOSS; SUPERCONDUCTING CABLES; LOSSES; FIELDS AB Coupling- and persistent-current magnetization of Nb3Sn Rutherford cables with cores of stainless steel (SS) and woven glass-fiber tape were measured by pick-up coil magnetometry in transverse magnetic fields of amplitude 400 mT and frequencies of up to 90 mHz applied in the face-on orientation. Analysis of the results yielded the interstrand contact resistances as well as estimates of the face-on coupling magnetizations generated by fields ramping at the LHC-specified 6.5 mT/s. Distinct differences were discovered in the behaviors of the SS-cored and glass-fiber-cored cables. The cable with a wide SS core had suitable coupling properties; that with a narrow off-center SS core provided excessively large coupling magnetization. The glass-fiber-cored cables exhibited anomalous ac-loss frequency dependence indicative of loose Rutherford-like assemblies of strands with relatively few points of low-resistance interstrand contact. C1 [Collings, E. W.; Sumption, M. D.; Susner, M. A.] Ohio State Univ, Dept Mat Sci & Engn, Labs Appl Superconduct and Magnetism LASM, Columbus, OH 43210 USA. [Dietderich, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Superconducting Magnet Grp, Berkeley, CA 94720 USA. [Kroopshoop, E.; Nijhuis, A.] Univ Twente, Fac Sci Appl, Low Temp Div, NL-7500 AE Enschede, Netherlands. RP Collings, EW (reprint author), Ohio State Univ, Dept Mat Sci & Engn, Labs Appl Superconduct and Magnetism LASM, Columbus, OH 43210 USA. EM collings.2@osu.edu; mdsumption@osu.edu; drdietderich@lbl.gov; a.nijhuis@tnw.utwente.nl RI Susner, Michael/G-3275-2015; Susner, Michael/B-1666-2013; Sumption, Mike/N-5913-2016 OI Susner, Michael/0000-0002-1211-8749; Susner, Michael/0000-0002-1211-8749; Sumption, Mike/0000-0002-4243-8380 FU U.S. Department of Energy, Office of High Energy Physics [DE-FG02-95ER40900, DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Office of High Energy Physics, under Grant DE-FG02-95ER40900 (OSU) and Grant DE-AC02-05CH11231 (LBNL). NR 19 TC 3 Z9 3 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 EI 1558-2515 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4702305 DI 10.1109/TASC.2013.2243796 PN 2 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100098 ER PT J AU Iio, M Nakamoto, T Xu, QJ Higashi, N Ogitsu, T Sasaki, K Terashima, A Tsuchiya, K Yamamoto, A Kikuchi, A Takeuchi, T Sabbi, G Caspi, S Ferracin, P Felice, H Hafalia, RR Zlobin, AV Barzi, E Yamada, R AF Iio, Masami Nakamoto, Tatsushi Xu, Qingjin Higashi, Norio Ogitsu, Toru Sasaki, Ken-ichi Terashima, Akio Tsuchiya, Kiyosumi Yamamoto, Akira Kikuchi, Akihiro Takeuchi, Takeo Sabbi, Gianluca Caspi, Shlomo Ferracin, Paolo Felice, Helene Hafalia, Ray R. Zlobin, Alexander V. Barzi, Emanuela Yamada, Ryuji TI Development of a Nb3Al and Nb3Sn Subscale Magnet SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Common coil; high-field magnet; Nb3Al; shell based structure ID STRANDS AB A 13 T class Nb3Al and Nb3Sn subscale magnet has been in development at the High Energy Accelerator Research Organization (KEK) to establish technology for a high-field accelerator magnet. The magnet was designed to generate a high magnetic field efficiently in a minimum-gap, common coil configuration with 200-mm-long racetrack coils. Two of the five coils in the magnet are Nb3Sn-produced by Lawrence Berkeley National Laboratory. The other three coils are Nb3Al-produced by KEK. The Nb3Al Rutherford cables are comprised of 28 RHQ-Nb3Al wires and were developed at KEK in collaboration with National Institute for Materials Science and Fermi National Accelerator Laboratory. Presently, the fabrication of two double pancake Nb3Al coils with the same configuration of 13 turns per layer was completed using the wind and react method. The magnet assembly and the preparations for excitation tests are currently in progress. C1 [Iio, Masami; Nakamoto, Tatsushi; Xu, Qingjin; Higashi, Norio; Ogitsu, Toru; Sasaki, Ken-ichi; Terashima, Akio; Tsuchiya, Kiyosumi; Yamamoto, Akira] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Kikuchi, Akihiro; Takeuchi, Takeo] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. [Sabbi, Gianluca; Caspi, Shlomo; Ferracin, Paolo; Felice, Helene; Hafalia, Ray R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Zlobin, Alexander V.; Barzi, Emanuela; Yamada, Ryuji] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Iio, M (reprint author), High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. EM masami.iio@kek.jp; KIKUCHI.Akihiro@nims.go.jp; GLSabbi@lbl.gov; zlobin@fnal.gov FU CERN for "R&D of advanced superconducting magnets for the LHC upgrade"; Superconducting Magnet Group of LBNL; Technical Division of Fermilab; [20340065]; [2303] FX This work was supported in part by Grant-in-Aid for Scientific Research (B) (20340065), Grant-in-Aid for Scientific Research on Innovative Areas (2303), and by CERN for "R&D of advanced superconducting magnets for the LHC upgrade."; The authors would like to thank Prof. L. Rossi and collaborators at CERN for their strong support. They would also like to thank the Superconducting Magnet Group of LBNL and the Technical Division of Fermilab for their support of this work. NR 13 TC 2 Z9 2 U1 1 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4300605 DI 10.1109/TASC.2013.2243493 PN 2 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100050 ER PT J AU Kim, HS Sumption, MD Lim, H Collings, EW AF Kim, H. S. Sumption, M. D. Lim, H. Collings, E. W. TI Evaluation of Mechanical Properties of Tubular Materials With Hydraulic Bulge Test for Superconducting Radio Frequency (SRF) Cavities SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE ABAQUS; finite element method (FEM); flow stress; hydraulic bulge test; hydroforming; simulation; superconducting radiofrequency (SRF) cavities AB The plastic constitutive equation of tubular materials under hydraulic pressure needs to be determined for the successful application of hydroforming technique to the seamless fabrication of multicell superconducting radiofrequency cavities. This paper provides the empirical constitutive properties of tubular material determined by tensile and hydraulic bulge tests. During an experimental bulge test, the internal pressure, bulge height and wall thickness were continuously measured. Based on this data, the flow stress curves were calculated using an analytical model. From the obtained flow stress curves, numerical simulations were performed, and the resulting bulge heights and wall thicknesses obtained were compared with the experimental results to verify the procedure. C1 [Kim, H. S.; Sumption, M. D.; Collings, E. W.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Lim, H.] Sandia Natl Labs, Computat Mat Sci & Engn Dept, Albuquerque, NM 87185 USA. RP Kim, HS (reprint author), Ohio State Univ, Dept Mat Sci & Engn, 116 W 19Th Ave, Columbus, OH 43210 USA. EM kim.3237@osu.edu RI Sumption, Mike/N-5913-2016 OI Sumption, Mike/0000-0002-4243-8380 FU U.S. Department of Energy [DE-SC0004217] FX This work was supported in part by the U.S. Department of Energy under Grant DE-SC0004217. NR 8 TC 1 Z9 1 U1 0 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 3500604 DI 10.1109/TASC.2013.2241812 PN 2 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100003 ER PT J AU Novitski, I Andreev, N Auchmann, B Barzi, E Bossert, R Karppinen, M Nobrega, A Smekens, D Zlobin, AV AF Novitski, I. Andreev, N. Auchmann, B. Barzi, E. Bossert, R. Karppinen, M. Nobrega, A. Smekens, D. Zlobin, A. V. TI Study of Mechanical Models of a Single-Aperture 11 T Nb3Sn Dipole SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Finite element analysis (FEA); mechanical model; strain gauges; superconducting accelerator magnet AB Fermilab and CERN have a joint R&D program with the goal of building a 5.5-m-long twin-aperture Nb3Sn dipole magnet suitable for installation in the Large Hadron Collider. The first step of this program is the development of a 2-m-long single-aperture demonstration dipole with the nominal field of 11 T at the Large Hadron Collider nominal current of 11.85 kA, 60 mm bore and similar to 20% margin. Prior to the construction of the real magnets, a shorter section of the magnet straight part was assembled to validate the results of the structural finite element analysis and to gain experience with magnet assembly. This paper summarizes the lessons learned from this mechanical model. C1 [Novitski, I.; Andreev, N.; Barzi, E.; Bossert, R.; Nobrega, A.; Zlobin, A. V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Auchmann, B.; Karppinen, M.; Smekens, D.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. RP Novitski, I (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM novitski@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; U.S. Department of Energy; European Commission under FP7 project HiLumi LHC [GA 284404] FX This work was supported in part by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. Department of Energy, and in part by the European Commission under FP7 project HiLumi LHC, GA 284404. NR 8 TC 1 Z9 1 U1 1 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4001905 DI 10.1109/TASC.2013.2239591 PN 2 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100025 ER PT J AU Ogitsu, T Makida, Y Nakamoto, T Sasaki, K Araoka, O Fujii, Y Iida, M Ishii, T Iwasaki, R Kimura, N Kobayashi, T Nakadaira, T Nakayoshi, K Ohhata, H Okamura, T Okada, R Sakashita, K Shibata, M Sugano, M Yoshida, M Anerella, M Escallier, J Ganetis, G Ghosh, A Gupta, R Muratore, J Parker, B Wanderer, P Jain, A Charrier, JP Boussuge, T Kakuno, H AF Ogitsu, Toru Makida, Yasuhiro Nakamoto, Tatsushi Sasaki, Ken-ichi Araoka, Osamu Fujii, Yoshiaki Iida, Masahisa Ishii, Takanobu Iwasaki, Ruri Kimura, Nobuhiro Kobayashi, Takashi Nakadaira, Takeshi Nakayoshi, Kazuo Ohhata, Hirokatsu Okamura, Takahiro Okada, Ryutaro Sakashita, Ken Shibata, Masahiro Sugano, Michinaka Yoshida, Makoto Anerella, Michael Escallier, John Ganetis, George Ghosh, Arup Gupta, Ramesh Muratore, Joe Parker, Brett Wanderer, Peter Jain, Animesh Charrier, Jean-Paul Boussuge, Thierry Kakuno, Hidekazu TI Status of Superconducting Magnet System for J-PARC Neutrino Beam Line SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Beam line; combined function magnet; neutrino; superconducting magnet ID DESIGN AB The Great East Japan earthquake that occurred on March 11, 2011 resulted in devastating damages to J-PARC. Although damages to the superconducting magnet system for the J-PARC neutrino beam line appeared to be relatively small, a long recovery procedure was required to resume the operation. Except for this long shutdown period, the system has been operated stably ensuring good accumulation of the physics data. The paper reports on the operation status including the damages by the earthquake and its recovery process. Repair of the insufficient cooling of steering corrector coils, which was present prior to the earthquake, was also performed during the recovery process. The paper also reports on the repair. C1 [Anerella, Michael; Escallier, John; Ganetis, George; Ghosh, Arup; Gupta, Ramesh; Muratore, Joe; Parker, Brett; Wanderer, Peter; Jain, Animesh] Brookhaven Natl Lab, Upton, NY 11973 USA. [Charrier, Jean-Paul; Boussuge, Thierry] CEA Saclay, F-91191 Gif Sur Yvette, France. [Kakuno, Hidekazu] Tokyo Metropolitan Univ, Tokyo 158, Japan. EM toru.ogitsu@kek.jp; wanderer@bnl.gov; jean-paul.charrier@cea.fr; kakuno@phys.se.tmu.ac.jp OI Kobayashi, Takashi/0000-0003-1577-4001 NR 23 TC 0 Z9 0 U1 1 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4001506 DI 10.1109/TASC.2012.2234821 PN 2 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100022 ER PT J AU Ostojic, R Coleman, R Fang, I Lamm, M Miller, J Page, T Tang, Z Tartaglia, M Wands, R AF Ostojic, R. Coleman, R. Fang, I. Lamm, M. Miller, J. Page, T. Tang, Z. Tartaglia, M. Wands, R. TI Challenges in the Design of the Detector Solenoid for the Mu2e Experiment SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Detector magnets ID FERMILAB AB The Mu2e experiment at Fermilab is being designed to measure the rare process of direct muon-to-electron conversion in the field of a nucleus. The experiment comprises a system of three superconducting solenoids, which focus secondary muons from the production target and transport them to the stopping target, while minimizing the associated background. The detector solenoid is the last magnet in the transport line and it consists of an axially graded-field section at the upstream end, where the stopping target is located, and a spectrometer section with uniform field at the downstream end for accurate momentum measurement of the conversion elections. The detector solenoid has a warm bore of 1.9 m and is 10.75 m long. The stored energy of the magnet is 30 MJ. The conceptual design of the magnet is presented, in particular the challenge of achieving tight magnetic field specification in a cost-effective design. C1 [Ostojic, R.] CERN 23, Geneva, Switzerland. [Coleman, R.; Fang, I.; Lamm, M.; Miller, J.; Page, T.; Tang, Z.; Tartaglia, M.; Wands, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Ostojic, R (reprint author), CERN 23, Geneva, Switzerland. EM ranko.ostojic@cern.ch FU Fermi Research Alliance under DOE [DE-AC02-07CH11359] FX This work was supported in part by the Fermi Research Alliance under DOE Contract DE-AC02-07CH11359. NR 8 TC 1 Z9 1 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4500404 DI 10.1109/TASC.2013.2239337 PN 2 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100062 ER PT J AU Pan, H Green, MA Guo, XL Prestemon, SO Smith, BA AF Pan, H. Green, M. A. Guo, X. L. Prestemon, S. O. Smith, B. A. TI A Comparison of the Quench Analysis on an Impregnated Solenoid Magnet Wound on an Aluminum Mandrel Using Three Computer Codes SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE NbTi; passive quench protection; S/C magnets AB The magnet used for the quench protection comparison has an ID of 1.5 m. At a maximum current of similar to 210-A, the stored energy is similar to 13 MJ. The impregnated magnet coil is 281 mm long and about 105.6 mm thick. The coil is wound on a 6061-aluminum mandrel. The magnet quench protection system is passive. The magnet coil is subdivided with back-to-back diodes and resistors across each of the coil subdivision to reduce the magnet internal voltages. Conservative quench protection criteria were applied when the magnet was designed. These criteria are presented in this paper. Quench protection of the magnet was simulated using three computer codes from three different places. The results calculated using the three codes are compared to the original magnet quench protection criteria used to design the magnet. The three quench simulation codes assumptions are compared. The calculated hot-spot temperature and peak voltages are compared for the three quench simulation codes. C1 [Pan, H.; Green, M. A.; Prestemon, S. O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Guo, X. L.] Jiangsu Univ, Zhenjiang 212013, Peoples R China. [Smith, B. A.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Pan, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM hengpan@lbl.gov; magreen@lbl.gov; gxlong@163.com; soprestemon@lbl.gov; bsmith@psfc.mit.edu FU U.S. Department of Energy [DE-AC02-05CH11231] FX Manuscript received October 10, 2012; accepted December 5, 2012. Date of publication December 20, 2012; date of current version March 20, 2013. This work was supported in part by the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 20 TC 4 Z9 4 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4901005 DI 10.1109/TASC.2012.2235134 PN 2 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100120 ER PT J AU Pilipenko, R Carcagno, RH Makulski, A Nehring, R Orris, DF AF Pilipenko, R. Carcagno, R. H. Makulski, A. Nehring, R. Orris, D. F. TI An FPGA-Based Quench Detection and Continuous Logging System for Testing Superconducting Magnets SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Data logger; quench detection; superconducting magnets AB A quench detection system for testing superconducting magnets with two concurrent data logging modes was developed at Fermilab. This system consists of two functional components: An active quench detection component, which is based on a reconfigurable input/output module with a field-programmable gate array, and a data logger component based on a set of simultaneous sampling data logger modules. The data logger component has two concurrent modes of operation: A fast logger mode that is triggered to capture a user specified window of data at rates up to 10 kHz, and a continuous data logger mode that can log data at rates between 0.1 and 100 Hz continuously using the same data loggers. The system was designed with a modular structure using commercially available hardware along with in-house developed programmable isolation amplifiers. This approach makes the new system easily scalable for multiple magnets or magnets with more complex coil and lead voltage tap configurations. The new system has been used for testing the MICE Spectrometer Solenoid. A detailed description of the system along with test results is presented in this paper. C1 [Pilipenko, R.; Carcagno, R. H.; Makulski, A.; Nehring, R.; Orris, D. F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Pilipenko, R (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM pilipen@fnal.gov FU U.S. Department of Energy FX This work was supported by the U.S. Department of Energy. NR 9 TC 3 Z9 3 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 9500503 DI 10.1109/TASC.2013.2240753 PN 2 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100205 ER PT J AU Reed, RP Walsh, RP Weeks, T McColskey, JD Martovetsky, NN AF Reed, R. P. Walsh, R. P. Weeks, T. McColskey, J. D. Martovetsky, N. N. TI Compression-Fatigue, Elastic Modulus, and Thermal Contraction of Insulated Conduit Arrays of ITER CS Modules SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Compression fatigue; elastic modulus; glass/epoxy composite; thermal contraction; turn insulation AB Compression-fatigue tests at similar to 77 K were conducted to compare two insulation systems (epoxy resin impregnated glass/Kapton) for use in the ITER central solenoid modules. Test samples consisted of insulated conduits that were stacked in 4x4 arrays. The thermal contraction (295-77 K) prior to fatigue, elastic modulus during fatigue, and the structural integrity of the insulation were measured and assessed at the National Institute of Standards and Technology large-scale test facilities. The maximum cyclic stress of 72 MPa, minimum stress of 25 MPa, and 1.2 x 10(6) cycles were used to comply with ITER design objectives. Thermal contraction between 295 and 77 K and the elastic modulus were measured using strain gages and strain-gage extensometers. Calibration of the strain was obtained through the use of an equivalent-size block of 6061-T6 aluminum alloy with known thermal contraction and elastic moduli. Following fatigue, the arrays were cross-sectioned and optically examined for resin-impregnation quality and fatigue cracking tendencies of the insulation systems. The thermal contraction and elastic modulus of cross-sectioned samples were remeasured at the National High Magnetic Field Laboratory for property confirmation, using different techniques. C1 [Reed, R. P.; Weeks, T.; McColskey, J. D.] NIST, Boulder, CO 80303 USA. [Walsh, R. P.] Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Martovetsky, N. N.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Reed, RP (reprint author), Cryogen Mat Inc, Boulder, CO 80305 USA. EM rpreed@comcast.net FU UT-Battelle, Oak Ridge National Laboratory [4000095921] FX This work was supported in part by UT-Battelle, Oak Ridge National Laboratory Subcontract 4000095921. NR 7 TC 1 Z9 1 U1 2 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4200805 DI 10.1109/TASC.2013.2237940 PN 2 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100041 ER PT J AU Stautner, W Fair, R Sivasubramaniam, K Amm, K Bray, J Laskaris, ET Weeber, K Douglass, M Fulton, L Hou, S Kim, J Longtin, R Moscinski, M Rochford, J Rajput-Ghoshal, R Riley, P Wagner, D Duckworth, R AF Stautner, W. Fair, R. Sivasubramaniam, K. Amm, K. Bray, J. Laskaris, E. T. Weeber, K. Douglass, M. Fulton, L. Hou, S. Kim, J. Longtin, R. Moscinski, M. Rochford, J. Rajput-Ghoshal, R. Riley, P. Wagner, D. Duckworth, R. TI Large Scale Superconducting Wind Turbine Cooling SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Low temperature superconductor; stationary field winding; superconducting generator; thermosiphon cooled magnet AB General Electric proposes to apply transformational technology in the form of low-temperature superconductivity to the design of direct-drive wind turbine generators of the 10-MW power level and greater. Generally, optimal steady state 4 K cryogenic cooling of a large thermal mass (> 10 000 kg) and its dimensions (> 4 m diameter and 2.5 m length) with minimum levelized cost of energy is difficult to achieve. A cooling strategy has been found that turns this size disadvantage to ones favor, and furthermore enables the design scalability of the field winding cooling assembly towards 15 to 20 MW. In this design study, we show that size and efficiency are not mutually exclusive and that it is indeed possible to minimize cryogenic complexity and reduce cost. The cryogenic push-button closed loop circulating system is invisible within the nacelle of a wind turbine and requires no handling of cryogenic liquids. Besides the occasional cryocooler service requirement, the proposed solution is maintenance-free in all operating states and allows the system health to be monitored remotely. The design solutions proposed could potentially make large superconducting generators a reality for off-shore wind turbine deployment. C1 [Stautner, W.; Fair, R.; Sivasubramaniam, K.; Amm, K.; Bray, J.; Laskaris, E. T.; Weeber, K.; Douglass, M.; Fulton, L.; Hou, S.; Kim, J.; Longtin, R.; Moscinski, M.; Rochford, J.; Rajput-Ghoshal, R.; Riley, P.; Wagner, D.] Gen Elect Global Res Ctr, Niskayuna, NY 12309 USA. [Duckworth, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Stautner, W (reprint author), Gen Elect Global Res Ctr, Niskayuna, NY 12309 USA. EM stautner@ge.com; fair@ge.com; sivasubr@ge.com; ammk@ge.com; bray@ge.com; laskaris@ge.com; weeber@research.ge.com; Douglass@ge.com; lopez@ge.com; hous@ge.com; kimj@ge.com; longtin@ge.com; moscinski@ge.com; rochford@ge.com; ghoshalr@ge.com; riley@ge.com; wagner@ge.com; duckworth@ornl.gov FU U.S. Department of Energy; DOE EERE-Wind and Water Power Program [DE-EE0005143]; Department of Energy's Golden Field Office FX This work was supported in part by the U.S. Department of Energy, DOE EERE-Wind and Water Power Program under Award DE-EE0005143, and by the Department of Energy's Golden Field Office. NR 10 TC 15 Z9 15 U1 1 U2 24 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 5200804 DI 10.1109/TASC.2012.2231138 PN 2 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100132 ER PT J AU Todesco, E Allain, H Ambrosio, G Borgnolutti, F Cerutti, F Dietderich, D Esposito, LS Felice, H Ferracin, P Sabbi, G Wanderer, P Van Weelderen, R AF Todesco, Ezio Allain, Herve Ambrosio, Giorgio Borgnolutti, Franck Cerutti, Francesco Dietderich, Dan Esposito, Luigi Salvatore Felice, Helene Ferracin, Paolo Sabbi, Gianluca Wanderer, Peter Van Weelderen, Rob TI Design Studies for the Low-Beta Quadrupoles for the LHC Luminosity Upgrade SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Colliding beam accelerator; superconducting magnets; superconducting materials AB In this paper, we outline the present status of the design studies for the high-luminosity Large Hadron Collider, focusing on the choice of the aperture of the inner triplet quadrupoles. After reviewing some critical aspects of the design such as energy deposition, shielding, heat load, and protection, we present the main tentative parameters for building a 150-mm-aperture Nb3Sn quadrupole, based on the experience gathered by the LARP program in the past several years. C1 [Todesco, Ezio; Allain, Herve; Cerutti, Francesco; Esposito, Luigi Salvatore; Ferracin, Paolo; Van Weelderen, Rob] CERN, CH-1211 Geneva, Switzerland. [Ambrosio, Giorgio] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Borgnolutti, Franck; Dietderich, Dan; Felice, Helene; Sabbi, Gianluca] Lawrence Berkeley Natl Berkeley Lab, Berkeley, CA USA. [Wanderer, Peter] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Todesco, E (reprint author), CERN, CH-1211 Geneva, Switzerland. EM ezio.todesco@cern.ch FU European Commission [GA 284404]; High Energy Physics Division, U.S. Department of Energy [DE-AC02-05CH11231] FX The research leading to these results has received funding from the European Commission under the FP7 project HiLumi LHC, GA 284404, from the High Energy Physics Division, U.S. Department of Energy, under Contract DE-AC02-05CH11231. NR 17 TC 16 Z9 16 U1 1 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4002405 DI 10.1109/TASC.2013.2248314 PN 2 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100030 ER PT J AU Yamamoto, A Adolphsen, C Carwardine, J Fukuda, S Geng, R Ginsburg, C Harms, E Hayano, H Kako, E Kerby, J Lilje, L Nantista, C Ohuchi, N Peterson, T Pierini, P Ross, M Shidara, T Walker, N AF Yamamoto, A. Adolphsen, C. Carwardine, J. Fukuda, S. Geng, R. Ginsburg, C. Harms, E. Hayano, H. Kako, E. Kerby, J. Lilje, L. Nantista, C. Ohuchi, N. Peterson, T. Pierini, P. Ross, M. Shidara, T. Walker, N. TI Advances in Superconducting RF Technology for the ILC SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE International Linear Collider (ILC); linear accelerator; linear collider; particle accelerator; superconducting radio frequency (RF) technology; superconducting radio frequency (SCRF) cavity AB Superconducting radio frequency (RF) is an enabling technology for the International Linear Collider (ILC); the ILC Global Design Effort has led R&D programs to push the limits of superconducting RF cavities and associated technologies. This report summarizes the progress in development for superconducting RF cavity technology during the Technical Design Phase for the ILC since 2007. C1 [Yamamoto, A.; Fukuda, S.; Hayano, H.; Kako, E.; Ohuchi, N.; Shidara, T.] KEK, Tsukuba, Ibaraki 3050801, Japan. [Adolphsen, C.; Nantista, C.; Ross, M.] SLAC, Menlo Pk, CA 94025 USA. [Carwardine, J.; Kerby, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Geng, R.] JLab, Newport News, VA 23606 USA. [Ginsburg, C.; Harms, E.; Kerby, J.; Peterson, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Lilje, L.; Walker, N.] DESY, D-22607 Hamburg, Germany. [Pierini, P.] INFN LASA, I-20090 Milan, Italy. RP Yamamoto, A (reprint author), KEK, Tsukuba, Ibaraki 3050801, Japan. EM akira.yamamoto@kek.jp RI Pierini, Paolo/J-3555-2012 OI Pierini, Paolo/0000-0002-3062-6181 NR 33 TC 1 Z9 1 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 3500706 DI 10.1109/TASC.2013.2242192 PN 2 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100004 ER PT J AU Yoshida, M Makida, Y Mihara, S Nakamoto, T Ogitsu, T Kuno, Y Lamm, M Kashikhin, V AF Yoshida, Makoto Makida, Yasuhiro Mihara, Satoshi Nakamoto, Tatsushi Ogitsu, Toru Kuno, Yoshitaka Lamm, Michael Kashikhin, Vadim TI Development of a Radiation Resistant Superconducting Solenoid Magnet for mu-e Conversion Experiments SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Aluminum stabilized superconductor; intense muon source; radiation resistant magnet; superconducting solenoids AB A radiation-resistant superconducting magnet is mandatory to generate intense negative-charged muon beams in the next-generation mu-e conversion experiments, COMET at J-PARC and Mu2e at FNAL. Expected neutron fluence on the superconducting coils in the projects reaches 10(21) n/m(2). Therefore, irradiation effects in superconducting magnet material are considered in a design of the superconducting magnet system. The pion capture solenoid magnet is designed to utilize aluminum-stabilized superconducting cable to reduce the nuclear heating by radiation from the pion production target enclosed in the magnet. To achieve higher magnetic field on the target, the coil has multiple layers of thick conductor, and need pure aluminum strips in between the coil layers for heat removal. Prototyping of the coil with aluminum stabilized conductor, heat removal strips, and radiation-hard insulator is performed to check the feasibility of the coil winding and basic properties. The conceptual design of the COMET magnet and the prototype coil are reported. C1 [Yoshida, Makoto; Makida, Yasuhiro; Ogitsu, Toru] High Energy Accelerator Res Org KEK, Tokai, Ibaraki 3191106, Japan. [Mihara, Satoshi; Nakamoto, Tatsushi] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Kuno, Yoshitaka] Osaka Univ, Toyonaka, Osaka 5600043, Japan. [Lamm, Michael; Kashikhin, Vadim] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Yoshida, M (reprint author), High Energy Accelerator Res Org KEK, Tokai, Ibaraki 3191106, Japan. EM makoto.yoshida@kek.jp FU JSPS KAKENHI Grant [23740219]; Japan-U.S. Cooperative Program in High-Energy Physics FX This work was supported in part by the JSPS KAKENHI Grant 23740219, and in part by the Japan-U.S. Cooperative Program in High-Energy Physics. NR 18 TC 6 Z9 6 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 EI 1558-2515 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 4101404 DI 10.1109/TASC.2013.2238276 PN 2 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 143VA UT WOS:000318895100036 ER PT J AU Wang, LF AF Wang, Li-Fang TI Mesh-Free Analysis of Electrostatic Problems Using the Convex Approximation SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article DE Boundary condition; convex approximation; finite element; mesh-free method ID COMPUTATIONS AB In this paper, a two-dimensional mesh-free formulation using a first-order convex approximation is presented for the analysis of electrostatic problems. The generalized mesh-free approximation method is employed to construct the first-order convex approximation which exhibits a weak Kronecker-delta property at the boundary and allows a direct enforcement of essential boundary conditions. A two by two Gaussian quadrature rule based on finite element mesh is utilized for the domain integration of mesh-free discrete equation. One numerical example is analyzed to demonstrate the accuracy of the proposed formulation and comparison is made with the analytical and finite element solutions. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Wang, LF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM wang22@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 16 TC 2 Z9 2 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD JUN PY 2013 VL 49 IS 6 BP 2842 EP 2846 DI 10.1109/TMAG.2013.2238680 PN 2 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 158NE UT WOS:000319977800002 ER PT J AU Adur, R Lauback, S Banerjee, P Lee, I Fratello, VJ Hammel, PC AF Adur, R. Lauback, S. Banerjee, P. Lee, I. Fratello, V. J. Hammel, P. C. TI Anisotropy and Field-Sensing Bandwidth in Self-Biased Bismuth-Substituted Rare-Earth Iron Garnet Films: Measurement by Ferromagnetic Resonance Spectroscopy SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article DE Faraday effect; garnet films; magnetic anisotropy; magnetic resonance; magnetic sensing; magnetooptic films. ID MAGNETOOPTIC PROBE AB The high-frequency response ofmagneto-optic ferrites for field-sensing applications is dictated by the ferromagnetic resonance (FMR) frequency. The FMR frequency can be increased by applying an external biasing field or by tuning the internal anisotropies of the material to provide a self-bias. We report the angular dependence of FMR spectra of bismuth-substituted rare-earth iron garnet thin films to extract their uniaxial and cubic anisotropies. These measurements allow us to estimate the characteristic resonant frequency in the self-bias regime, which is equivalent to the high-frequency limit for magnetic field-sensing in these materials when no external field is applied. We find that the frequency limit estimated by FMR agrees with the measured frequency limit of a magneto-optic field sensor utilizing the same garnet composition. C1 [Adur, R.; Banerjee, P.; Lee, I.; Hammel, P. C.] Ohio State Univ, Dept Phys, Columbus, OH 43201 USA. [Lauback, S.] Ohio No Univ, Dept Phys & Astron, Columbus, OH 43201 USA. [Banerjee, P.] Univ Wisconsin, Dept Phys & Astron, Stevens Point, WI 54481 USA. [Lee, I.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Fratello, V. J.] Integrated Photon Inc, Hillsborough, NJ 08844 USA. [Fratello, V. J.] Quest Integrated Inc, Kent, WA 98032 USA. RP Adur, R (reprint author), Ohio State Univ, Dept Phys, Columbus, OH 43201 USA. EM adur.2@osu.edu RI Hammel, P Chris/O-4845-2014 OI Hammel, P Chris/0000-0002-4138-4798 FU Department of Energy [DE-FG02-03ER46054]; Center for Emergent Materials at the Ohio State University, a NSF Materials Research Science and Engineering Center [DMR-0820414] FX The work of R. Adur, I. Lee and P. C. Hammel was supported by the Department of Energy (DE-FG02-03ER46054) and the work of S. Ash was supported by the Center for Emergent Materials at the Ohio State University, a NSF Materials Research Science and Engineering Center (DMR-0820414). NR 16 TC 1 Z9 1 U1 0 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 J9 IEEE T MAGN JI IEEE Trans. Magn. PD JUN PY 2013 VL 49 IS 6 BP 2899 EP 2902 DI 10.1109/TMAG.2012.2233746 PN 2 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 158NE UT WOS:000319977800011 ER PT J AU Garrett, AJ Kurzeja, RJ Villa-Aleman, E Bollinger, JS Pendergast, MM AF Garrett, Alfred J. Kurzeja, Robert J. Villa-Aleman, Eliel Bollinger, James S. Pendergast, Malcolm M. TI Remote Measurement of Heat Flux from Power Plant Cooling Lakes SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID SURFACE-TEMPERATURE FIELD; DISCHARGES; CONVECTION; IMAGERY; MODELS; OCEAN; SEA AB Laboratory experiments have demonstrated a correlation between the rate of heat loss q '' from an experimental fluid to the air above and the standard deviation sigma of the thermal variability in images of the fluid surface. These experimental results imply that q '' can be derived directly from thermal imagery by computing sigma. This paper analyses thermal imagery collected over two power plant cooling lakes to determine if the same relationship exists. Turbulent boundary layer theory predicts a linear relationship between q '' and sigma when both forced (wind driven) and free (buoyancy driven) convection are present. Datasets derived from ground- and helicopter-based imagery collections had correlation coefficients between sigma and q '' of 0.45 and 0.76, respectively. Values of q '' computed from a function of sigma and friction velocity u(*) derived from turbulent boundary layer theory had higher correlations with measured values of q '' (0.84 and 0.89). This research may be applicable to the problem of calculating losses of heat from the ocean to the atmosphere during high-latitude cold-air outbreaks because it does not require the information typically needed to compute sensible, evaporative, and thermal radiation energy losses to the atmosphere. C1 [Garrett, Alfred J.; Kurzeja, Robert J.; Villa-Aleman, Eliel; Bollinger, James S.; Pendergast, Malcolm M.] Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. RP Garrett, AJ (reprint author), Westinghouse Savannah River Co, Savannah River Lab, Off B-108,Bldg 735-A, Aiken, SC 29808 USA. EM alfred.garrett@srnl.doe.gov FU U.S. Department of Energy Office of Nonproliferation Research and Development FX This research was funded by the U.S. Department of Energy Office of Nonproliferation Research and Development. The authors gratefully acknowledge Professor John Saylor's inspiration for the project. NR 20 TC 0 Z9 0 U1 2 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD JUN PY 2013 VL 52 IS 6 BP 1366 EP 1378 DI 10.1175/JAMC-D-12-0158.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 164AS UT WOS:000320381700006 ER PT J AU Tao, Y Sen, MK Zhang, R Spikes, KT AF Tao, Yi Sen, Mrinal K. Zhang, Rui Spikes, Kyle T. TI A new stochastic inversion workflow for time-lapse data: hybrid starting model and double-difference inversion SO JOURNAL OF GEOPHYSICS AND ENGINEERING LA English DT Article DE seismic inversion; time-lapse; VFSA; fractal; warping ID WAVE-FORM INVERSION; SEISMIC INVERSION; UNCERTAINTY; ALGORITHM; FAULT; GAS AB Non-uniqueness presents challenges to seismic inverse problems, especially for time-lapse inversion where multiple inversions are needed for different vintages of seismic data. For time-lapse applications, the focus typically is to detect relatively small changes in seismic attributes at limited locations and to relate these differences to changes in the underlying physical properties. We propose a robust inversion workflow where the baseline inversion uses a starting model, which combines a high-frequency fractal component and a low-frequency component from well log data. This starting model provides an estimate of the null space based on fractal statistics of well data. To further focus on the localized changes, the inverted elastic parameters from the baseline model and the difference between two time-lapse data are summed together to produce the virtual time-lapse seismic data. This is known as double-difference inversion, which focuses primarily on the areas where time-lapse changes occur. The misfit function uses both data and model norms so that the ill-posedness of the inverse problem can be regularized. We pre-process the seismic data using a local correlation-based warping algorithm to register the time-lapse datasets. Finally, very fast simulated annealing, a nonlinear global search method, is used to minimize the misfit function. We demonstrate the effectiveness of our method with synthetic data and field data from Cranfield site used for CO2 sequestration studies. C1 [Tao, Yi] Conoco Phillips, Houston, TX USA. [Sen, Mrinal K.; Spikes, Kyle T.] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. [Sen, Mrinal K.] Natl Geophys Res Inst, Hyderabad 500007, Andhra Pradesh, India. [Zhang, Rui] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Tao, Y (reprint author), Conoco Phillips, Houston, TX USA. EM yitao1983@gmail.com RI Spikes, Kyle/B-5913-2011; Sen, Mrinal/G-5938-2010; Zhang, Rui/H-2993-2013 OI Spikes, Kyle/0000-0002-4732-4657; FU ConocoPhillips Fellowship; Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center; US Department of Energy, Office of Science and Office of Basic Energy Sciences [DESC0001114] FX YT was partially supported by a ConocoPhillips Fellowship. This material was based upon work partially supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science and Office of Basic Energy Sciences under award no. DESC0001114. We thank Dr Susan D Hovorka (GCCC, the University of Texas) for providing data seismic and well log data from the Cranfield site. NR 44 TC 6 Z9 6 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-2132 J9 J GEOPHYS ENG JI J. Geophys. Eng. PD JUN PY 2013 VL 10 IS 3 AR 035011 DI 10.1088/1742-2132/10/3/035011 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 162DC UT WOS:000320243700019 ER PT J AU Zhang, R Sen, MK Srinivasan, S AF Zhang, Rui Sen, Mrinal K. Srinivasan, Sanjay TI Multi-trace basis pursuit inversion with spatial regularization SO JOURNAL OF GEOPHYSICS AND ENGINEERING LA English DT Article DE basis pursuit; regularization; lateral continuity ID SEISMIC INVERSION; DECOMPOSITION AB Basis pursuit inversion (BPI) was developed to derive spiky reflection coefficients, which was applied on post-stack seismic data trace-by-trace for subsurface reflectivity. Such a trace-by-trace operation has no control on lateral continuity. To address this, we extend the former BPI to a multi-trace procedure with spatial regularization-a spatial derivative operator-to stabilize the lateral variation. The original objective function of BPI is reformed with a 'Z' shape spatial derivative imposed, which can balance the lateral continuity and vertical resolution. Synthetic tests show improved lateral continuity by spatial regularized BPI in the case of noise contamination. Real data applications demonstrate its effectiveness to enhance the lateral continuity of inverted spiky reflectivity. C1 [Zhang, Rui] Univ Texas Austin, Lawrence Berkeley Natl Lab, Austin, TX 78712 USA. [Sen, Mrinal K.; Srinivasan, Sanjay] Univ Texas Austin, Austin, TX 78712 USA. [Sen, Mrinal K.] Natl Geophys Res Inst, Hyderabad 500007, Andhra Pradesh, India. RP Zhang, R (reprint author), Univ Texas Austin, Lawrence Berkeley Natl Lab, Austin, TX 78712 USA. EM ruizhang2@lbl.gov RI Sen, Mrinal/G-5938-2010; Zhang, Rui/H-2993-2013 FU Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001114]; US Department of Energy (DOE) National Energy Technology Laboratory (NETL) [DEFE FC26-05NT42590] FX This work was supported by Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. We thank Dr Susan D Hovorka (BEG, GCCC) for providing data from Cranfield. Data to support this analysis were collected as part of the Southeast Regional Carbon Sequestration Partnership Phase III project supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DEFE FC26-05NT42590. This project is administered by the Southern States Energy Board. NR 15 TC 5 Z9 6 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-2132 J9 J GEOPHYS ENG JI J. Geophys. Eng. PD JUN PY 2013 VL 10 IS 3 AR 035012 DI 10.1088/1742-2132/10/3/035012 PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 162DC UT WOS:000320243700020 ER PT J AU Qian, Y Huang, MY Yang, B Berg, LK AF Qian, Yun Huang, Maoyi Yang, Ben Berg, Larry K. TI A Modeling Study of Irrigation Effects on Surface Fluxes and Land-Air-Cloud Interactions in the Southern Great Plains SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID UNITED-STATES; SOIL-MOISTURE; CONVECTIVE PARAMETERIZATION; REGIONAL CLIMATE; PART I; PRECIPITATION; TEMPERATURE; SYSTEM; SUMMER; IMPACT AB In this study, the authors incorporate an operational-like irrigation scheme into the Noah land surface model as part of the Weather Research and Forecasting Model (WRF). A series of simulations, with and without irrigation, is conducted over the Southern Great Plains (SGP) for an extremely dry (2006) and wet (2007) year. The results show that including irrigation reduces model bias in soil moisture and surface latent heat (LH) and sensible heat (SH) fluxes, especially during a dry year. Irrigation adds additional water to the surface, leading to changes in the planetary boundary layer. The increase in soil moisture leads to increases in the surface evapotranspiration and near-surface specific humidity but decreases in the SH and surface temperature. Those changes are local and occur during daytime. There is an irrigation-induced decrease in both the lifting condensation level (Z(LCL)) and mixed-layer depth. The decrease in Z(LCL) is larger than the decrease in mixed-layer depth, suggesting an increasing probability of shallow clouds. The simulated changes in precipitation induced by irrigation are highly variable in space, and the average precipitation over the SGP region only slightly increases. A high correlation is found among soil moisture, SH, and Z(LCL). Larger values of soil moisture in the irrigated simulation due to irrigation in late spring and summer persist into the early fall, suggesting that irrigation-induced soil memory could last a few weeks to months. The results demonstrate the importance of irrigation parameterization for climate studies and improve the process-level understanding on the role of human activity in modulating land-air-cloud interactions. C1 [Qian, Yun; Huang, Maoyi; Berg, Larry K.] PNNL, Richland, WA 99352 USA. [Yang, Ben] Nanjing Univ, Dept Atmospher Sci, Nanjing 210008, Jiangsu, Peoples R China. RP Qian, Y (reprint author), PNNL, 3200 Q Ave, Richland, WA 99352 USA. EM yun.qian@pnnl.gov RI qian, yun/E-1845-2011; Huang, Maoyi/I-8599-2012; Yang, Ben/O-8548-2015; Berg, Larry/A-7468-2016 OI Huang, Maoyi/0000-0001-9154-9485; Berg, Larry/0000-0002-3362-9492 FU DOE Office of Science Biological and Environmental Research (BER) Atmospheric System Research (ASR) program; State of Oklahoma; U.S. DOE by Battelle Memorial Institute [DE-AC06-76RLO1830] FX The study was supported by the DOE Office of Science Biological and Environmental Research (BER) Atmospheric System Research (ASR) program. We thank the DOE Atmospheric Radiation Measurement and Oklahoma Mesonet Programs for providing the ARM/CART and Oklahoma Mesonet meteorological, heat flux, and soil data. The Oklahoma Mesonet Program is supported by the State of Oklahoma. We thank Dr. Youlong Xia for his assistance in providing the NLDAS-2 dataset. PNNL is operated for the U.S. DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO1830. NR 66 TC 38 Z9 38 U1 1 U2 23 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2013 VL 14 IS 3 BP 700 EP 721 DI 10.1175/JHM-D-12-0134.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 162XZ UT WOS:000320300600002 ER PT J AU Li, HY Wigmosta, MS Wu, H Huang, MY Ke, YH Coleman, AM Leung, LR AF Li, Hongyi Wigmosta, Mark S. Wu, Huan Huang, Maoyi Ke, Yinghai Coleman, Andre M. Leung, L. Ruby TI A Physically Based Runoff Routing Model for Land Surface and Earth System Models SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID GENERAL-CIRCULATION MODELS; CLIMATE-CHANGE; RIVER FLOW; WATER; SIMULATION; HYDROLOGY; VELOCITY; COLUMBIA; ALGORITHM; WETLANDS AB A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a "tributary subnetwork'' before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration. MOSART has been applied to the Columbia River basin at 1/16 degrees, 1/88 degrees, 1/4 degrees, and 1/2 degrees spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations of MOSART and future directions for improvements are discussed. C1 [Li, Hongyi; Wigmosta, Mark S.; Huang, Maoyi; Ke, Yinghai; Coleman, Andre M.; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wu, Huan] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Wu, Huan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Li, HY (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K9-33, Richland, WA 99352 USA. EM hongyi.li@pnnl.gov RI Li, Hong-Yi/C-9143-2014; Wu, Huan/K-1003-2013; Huang, Maoyi/I-8599-2012 OI Li, Hong-Yi/0000-0001-5690-3610; Wu, Huan/0000-0003-2920-8860; Huang, Maoyi/0000-0001-9154-9485 FU Department of Energy Biological and Environmental Research (BER) (ESM) and (IAM) programs through the (iESM) and (CSSEF) projects; Platform for Regional Integrated Modeling and Analysis (PRIMA) initiative; U.S. Department of Energy [DE-AC06-76RLO1830] FX This study is supported by the Department of Energy Biological and Environmental Research (BER) Earth System Modeling (ESM) and Integrated Assessment Modeling (IAM) programs through the Integrated Earth System Modeling (iESM) and Climate Science for Sustainable Energy Future (CSSEF) projects. Development of the datasets used in this study is also partly supported by the Platform for Regional Integrated Modeling and Analysis (PRIMA) initiative. In addition, some data and information were provided by the Surface Hydrology Group, University of Washington (http://www.hydro.washington.edu/2860/). We thank Sara Kallio, William Perkins, and Marshall Richmond of PNNL for providing the simulation results from the MASS model. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO1830. NR 61 TC 37 Z9 38 U1 0 U2 49 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2013 VL 14 IS 3 BP 808 EP 828 DI 10.1175/JHM-D-12-015.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 162XZ UT WOS:000320300600007 ER PT J AU Craig, NC Chen, YH Lu, YH Neese, CF Nemchick, DJ Blake, TA AF Craig, Norman C. Chen, Yihui Lu, Yuhua Neese, Christopher F. Nemchick, Deacon J. Blake, Thomas A. TI Analysis of the rotational structure in the high-resolution infrared spectra of cis,cis- and trans,trans-1,4-difluorobutadiene-1-d(1) and trans,trans-1,4-difluorobutadiene-1,4-d(2) SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Cis,cis- and trans,trans-1,4-difluorobutadiene-1-d(1); Trans,trans-1,4-difluorobutadiene-1,4-d(2) Syntheses; High-resolution infrared spectroscopy; Analysis of rotational structure; Rotational constants ID SEMIEXPERIMENTAL EQUILIBRIUM STRUCTURE; VIBRATIONAL SPECTROSCOPY; ELECTRON DELOCALIZATION; CIS,TRANS-1,4-DIFLUOROBUTADIENE; BUTADIENE; BANDS AB Samples of cis,cis- and trans,trans-1,4-dffluorobutadiene-1-d(1) and of trans,trans-1,4-difluorobutadiene-1,4-d(2) have been synthesized, and high-resolution (<= 0.0018 cm(-1)) infrared spectra of these substances have been recorded in the gas phase. Analysis of the rotational structure, mostly in C-type bands, has yielded ground state rotational constants. For the two 1-d(1) species more than one band has been analyzed. For the 1,4-d(2) species only one band was available for analysis. However, good agreement between the experimental centrifugal distortion constants and those predicted with a B3LYP/cc-pVTZ model give strong support to the analysis of the very dense spectrum. The ground state rotational constants are a contribution to finding semiexperimental equilibrium structures of the two nonpolar isomers of 1,4-difiuorobutadiene. (C) 2013 Elsevier Inc. All rights reserved. C1 [Craig, Norman C.; Chen, Yihui; Lu, Yuhua; Neese, Christopher F.; Nemchick, Deacon J.] Oberlin Coll, Dept Chem & Biochem, Oberlin, OH 44074 USA. [Blake, Thomas A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Craig, NC (reprint author), Oberlin Coll, 119 Woodland St, Oberlin, OH 44074 USA. EM Norm.Craig@oberlin.edu FU Dreyfus Senior Scholar Mentor grants; National Science Foundation [0420717]; Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest Laboratory (PNNL); Battelle [DE-AC05-75RLO-1830] FX We are grateful to Dr. Michael Lock for recording the spectra of the mixture of partly deuterated ttDFBD at Justus Liebig Universitat in Giessen, Germany. At Oberlin College Ethan Glor, Erik Hernandez, Zoe McLaughlin, Petros Svoronos, and Herman van Besien contributed to the syntheses. The work at Oberlin College was supported by Dreyfus Senior Scholar Mentor grants and by the college. National Science Foundation Grant 0420717 provided for the purchase and technical support of the Beowulf computer cluster at Oberlin College. The high-resolution spectroscopy was done at the W.R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest Laboratory (PNNL). PNNL is operated for the United States Department of Energy by Battelle under contract DE-AC05-75RLO-1830. NR 19 TC 2 Z9 2 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD JUN PY 2013 VL 288 BP 18 EP 27 DI 10.1016/j.jms.2013.03.006 PG 10 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 163QA UT WOS:000320350800005 ER PT J AU Overman, NR Hoppe, EW Addleman, RS AF Overman, N. R. Hoppe, E. W. Addleman, R. S. TI Surface cleaning techniques: ultra-trace ICP-MS sample preparation and assay of HDPE SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE HDPE; Leaching; Ultra-trace; ICP-MS; Uranium; Thorium ID PLASMA-MASS SPECTROMETRY; GAMMA-RAY SPECTROMETRY; GRAN SASSO; RADIOACTIVITY; DETECTOR; IMPURITIES; THORIUM; URANIUM; GERDA AB The world's most sensitive radiation detection and assay systems depend upon ultra-low-background (ULB) materials to reduce unwanted radiological backgrounds. In this study, we evaluate methods to clean HDPE, a material of interest to ULB systems and the means to provide rapid assay of surface and bulk contamination. ULB-level material and ultra-trace-level detection of actinide elements is difficult to attain, due to the introduction of contamination from sample preparation equipment such as pipette tips, sample vials, forceps, etc and airborne particulate. To date, literature available on the cleaning of such polymeric materials and equipment for ULB applications and ultra-trace analyses is limited. For these reasons, a study has been performed to identify an effective way to remove surface contamination from polymers in an effort to provide improved instrumental detection limits. Inductively Coupled Plasma Mass Spectroscopy was utilized to assess the effectiveness of a variety of leachate solutions for removal of inorganic uranium and thorium surface contamination from polymers, specifically high density polyethylene (HDPE). Leaching procedures for HDPE were tested to optimize contaminant removal of thorium and uranium. Calibration curves for thorium and uranium ranged from 15 ppq (fg/mL) to 1 ppt (pg/mL). Detection limits were calculated at 6 ppq for uranium and 7 ppq for thorium. Results showed the most effective leaching reagent to be clean 6 M nitric acid for 72 h exposures. Contamination levels for uranium and thorium found in the leachate solutions were significant for ultra-low-level radiation detection applications. C1 [Overman, N. R.; Hoppe, E. W.; Addleman, R. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Overman, NR (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Nicole.Overman@pnnl.gov FU PNNL's Laboratory Directed Research and Development (LDRD); Battelle [DE-AC06-67RLO 1830] FX This work was supported by the PNNL's Laboratory Directed Research and Development (LDRD) as part of the Ultra-Sensitive Nuclear Measurements Initiative. Pacific Northwest National Laboratory is operated for the US. Department of Energy by Battelle under contract DE-AC06-67RLO 1830. NR 28 TC 5 Z9 5 U1 1 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUN PY 2013 VL 296 IS 3 BP 1303 EP 1310 DI 10.1007/s10967-012-2301-1 PG 8 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 162RT UT WOS:000320283700017 ER PT J AU Leggett, R Marsh, J Gregoratto, D Blanchardon, E AF Leggett, Rich Marsh, James Gregoratto, Demetrio Blanchardon, Eric TI A generic biokinetic model for noble gases with application to radon SO JOURNAL OF RADIOLOGICAL PROTECTION LA English DT Article ID HUMAN-BODY; COMPARTMENTAL MODEL; OLIVE OIL; SOLUBILITY; TISSUES; WATER; PARTITION; INGESTION; RN-222; BLOOD AB To facilitate the estimation of radiation doses from intake of radionuclides, the International Commission on Radiological Protection (ICRP) publishes dose coefficients (dose per unit intake) based on reference biokinetic and dosimetric models. The ICRP generally has not provided biokinetic models or dose coefficients for intake of noble gases, but plans to provide such information for Rn-222 and other important radioisotopes of noble gases in a forthcoming series of reports on occupational intake of radionuclides (OIR). This paper proposes a generic biokinetic model framework for noble gases and develops parameter values for radon. The framework is tailored to applications in radiation protection and is consistent with a physiologically based biokinetic modelling scheme adopted for the OIR series. Parameter values for a noble gas are based largely on a blood flow model and physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions for radon are shown to be consistent with results of controlled studies of its biokinetics in human subjects. C1 [Leggett, Rich] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Marsh, James; Gregoratto, Demetrio] Hlth Protect Agcy, Radiat Protect Div, Didcot, Oxon, England. [Blanchardon, Eric] Inst Radioprotect & Surete Nucl, Fontenay Aux Roses, France. RP Leggett, R (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Bldg 5700,Room O101, Oak Ridge, TN 37831 USA. EM rwl@ornl.gov FU Office of Radiation and Indoor Air, US Environmental Protection Agency (EPA) [1824-S581-A1, AC05-00OR22725]; UT-Battelle FX The work described in this paper was sponsored by the Office of Radiation and Indoor Air, US Environmental Protection Agency (EPA), under Interagency Agreement DOE No. 1824-S581-A1, under contract No. DE-AC05-00OR22725 with UT-Battelle. NR 45 TC 2 Z9 2 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0952-4746 EI 1361-6498 J9 J RADIOL PROT JI J. Radiol. Prot. PD JUN PY 2013 VL 33 IS 2 BP 413 EP 432 DI 10.1088/0952-4746/33/2/413 PG 20 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 157FV UT WOS:000319882300015 PM 23612507 ER PT J AU Atkins, R Disch, S Jones, Z Haeusler, I Grosse, C Fischer, SF Neumann, W Zschack, P Johnson, DC AF Atkins, Ryan Disch, Sabrina Jones, Zachary Haeusler, Ines Grosse, Corinna Fischer, Saskia F. Neumann, Wolfgang Zschack, Paul Johnson, David C. TI Synthesis, structure and electrical properties of a new tin vanadium selenide SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Ferecrystal; Misfit layer compound; Self-assembly; Modulated elemental reactant; Charge density wave ID MISFIT LAYER COMPOUNDS; CHARGE-DENSITY WAVES; TRANSPORT-PROPERTIES; MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; COMPOUND; INTERCALATION; DISELENIDE; SNNB2SE5; 1T-VSE2 AB The turbostratically disordered misfit layer compound (SnSe)(1.15)VSe2 was synthesized and structurally characterized. Electrical transport measurements suggest this compound undergoes a charge or spin density wave (CDW or SDW) transition, which has not been observed in previous misfit layer compounds. The (SnSe)(1.15)VSe2 compound, created through the modulated elemental reactants technique, contains highly oriented intergrowths of SnSe bilayers and VSe2 structured Se-V-Se trilayers with abrupt interfaces between them perpendicular to the c-axis. X-ray diffraction data and transmission electron microscope images show that each constituent has in-plane crystallinity but that there is a random rotational disorder between the constituent layers. Temperature-dependent electrical resistivity data and Hall measurements are consistent with (SnSe)(1.15)VSe2 being a metal, however an abrupt increase in the resistivity occurs between 30 and 100 K. The carrier concentration decreases by approximately 1 carrier per vanadium atom during this temperature interval. (C) 2013 Elsevier Inc. All rights reserved. C1 [Atkins, Ryan; Jones, Zachary; Neumann, Wolfgang; Johnson, David C.] Univ Oregon, Dept Chem, Eugene, OR 97403 USA. [Atkins, Ryan; Jones, Zachary; Neumann, Wolfgang; Johnson, David C.] Univ Oregon, Inst Mat Sci, Eugene, OR 97403 USA. [Disch, Sabrina] ILL Grenoble, F-38042 Grenoble, France. [Haeusler, Ines; Grosse, Corinna; Fischer, Saskia F.] Humboldt Univ, D-12489 Berlin, Germany. [Zschack, Paul] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Johnson, DC (reprint author), Univ Oregon, Dept Chem, Eugene, OR 97403 USA. EM atkins@uoregon.edu; disch@ill.fr; zjones@chem.ucsb.edu; haeusler@physik.hu-berlin.de; Corinna.Grosse@physik.hu-berlin.de; Saskia.Fischer@physik.hu-berlin.de; wsn@uoregon.edu; zschack@bnl.gov; davej@uoregon.edu RI Disch, Sabrina/K-7185-2013 OI Disch, Sabrina/0000-0002-4565-189X FU National Science Foundation [DMR 0907049, MRI 0923577]; ONR [N000141110193]; National Science Foundation through CCI [CHE-1102637]; University of Oregon's National Science Foundation IGERT Fellowship Program [DGE-0549503]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge support from the National Science Foundation under grant DMR 0907049. Coauthors CG and WN acknowledge support from ONR Award no. N000141110193. Coauthors DCJ and RA acknowledge support from the National Science Foundation through CCI grant number CHE-1102637. Coauthor RA acknowledges support by the University of Oregon's National Science Foundation IGERT Fellowship Program under Grant no. DGE-0549503. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. The authors also acknowledge support from the National Science Foundation under grant MRI 0923577, which provided funding for the dual beam fib used in this investigation. NR 41 TC 28 Z9 28 U1 12 U2 103 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUN PY 2013 VL 202 BP 128 EP 133 DI 10.1016/j.jssc.2013.03.008 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 156SX UT WOS:000319845300022 ER PT J AU Liu, YJ Fergus, JW Dela Cruz, C AF Liu, Yingjia Fergus, Jeffrey W. Dela Cruz, Clarina TI Electrical Properties, Cation Distributions, and Thermal Expansion of Manganese Cobalt Chromite Spinel Oxides SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID SOFC INTERCONNECT APPLICATIONS; FERRITIC STAINLESS-STEELS; FUEL-CELLS; METALLIC INTERCONNECTS; PROTECTION LAYERS; CATHODE MATERIALS; COATINGS; CONDUCTIVITY; CR2O3; TEMPERATURES AB As the oxidation and chromium volatilization of chromia-forming alloy interconnects can cause Solid oxide fuel cells (SOFC) cathode poisoning and cell degradation, spinel coatings like Mn1.5Co1.5O4 have been applied as a barrier to oxygen and chromium diffusion. To evaluate their long-term stability, the properties of the reaction layer between the Mn1.5Co1.5O4 coating and Cr2O3 scale formed on the alloy surface need to be characterized. Therefore, compositions of Mn1.5-0.5xCo1.5-0.5xCrxO4 (x=0-2) were prepared to investigate their electrical properties, cation distributions, and thermal expansion behavior at high temperature. With increasing Cr content in manganese cobalt spinel oxides, the cubic crystal structure is stabilized and the electrical conductivity and coefficient of thermal expansion both decrease. The cation distributions determined from neutron diffraction show that Cr and Mn have stronger preference for octahedral sites in the spinel structure as compared with Co. C1 [Liu, Yingjia; Fergus, Jeffrey W.] Auburn Univ, Mat Res & Educ Ctr, Auburn, AL 36849 USA. [Dela Cruz, Clarina] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Fergus, JW (reprint author), Auburn Univ, Mat Res & Educ Ctr, Auburn, AL 36849 USA. EM jwfergus@eng.auburn.edu RI dela Cruz, Clarina/C-2747-2013; OI dela Cruz, Clarina/0000-0003-4233-2145; Fergus, Jeffrey/0000-0002-8067-1992 FU Department of Energy through Building EPSCoR-State/National Laboratory Partnerships Program (Timothy Fitzsimmons, Program Officer); Scientific User Facilities Division, Office of Basic Energy Sciences; U.S. Department of Energy FX Financial support from the Department of Energy through the Building EPSCoR-State/National Laboratory Partnerships Program (Timothy Fitzsimmons, Program Officer) is gratefully acknowledged. Part of this research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, and U.S. Department of Energy. The authors would also like to thank Prof. Jiahong Zhu from Tennessee Technological University for his kind help in discussion. NR 34 TC 7 Z9 7 U1 4 U2 66 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUN PY 2013 VL 96 IS 6 BP 1841 EP 1846 DI 10.1111/jace.12254 PG 6 WC Materials Science, Ceramics SC Materials Science GA 159HN UT WOS:000320036600030 ER PT J AU Pokorny, R Rice, JA Schweiger, MJ Hrma, P AF Pokorny, Richard Rice, Jarrett A. Schweiger, Michael J. Hrma, Pavel TI Determination of Temperature-Dependent Heat Conductivity and Thermal Diffusivity of Waste Glass Melter Feed SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID COLD-CAP; BATCH; BEHAVIOR AB The cold cap is a layer of reacting glass batch floating on the surface of melt in an all-electric continuous glass melter. The heat needed for the conversion of the melter feed to molten glass must be transferred to and through the cold cap. Since the heat flux into the cold cap influences the rate of melting, the heat conductivity is a key property of the reacting feed. We designed an experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples (TC) that monitors the evolution of the temperature field while the crucible is heated at a constant rate. Then we used two methods to calculate the heat conductivity and thermal diffusivity of the reacting feed: the approximation of the temperature field by polynomial functions and the finite-volume method (FVM) coupled with least-squares analysis. Up to 680 degrees C, the heat conductivity of the reacting melter feed was represented by a linear function of temperature. C1 [Pokorny, Richard] Inst Chem Technol, Dept Chem Engn, CR-16628 Prague 6, Czech Republic. [Rice, Jarrett A.; Schweiger, Michael J.; Hrma, Pavel] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hrma, Pavel] Pohang Univ Sci & Technol, Div Adv Nucl Engn, Pohang 790784, South Korea. RP Hrma, P (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM pavel.hrma@pnnl.gov FU U.S. Department of Energy by Battelle [DE-AC05-76RL01830]; U.S. Department of Energy Federal Project Office Engineering Division for the Hanford Tank Waste Treatment and Immobilization Plant; World Class University (WCU) program through the National Research Foundation of Korea; Ministry of Education, Science and Technology [R31 - 30005]; MSMT [20/2013] FX The authors are grateful to Albert A. Kruger for his assistance and guidance, David Pierce for DSC data, and to Jaehun Chun and Dong-Sang Kim for insightful discussions. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. Supported by the U.S. Department of Energy Federal Project Office Engineering Division for the Hanford Tank Waste Treatment and Immobilization Plant and by the World Class University (WCU) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31 - 30005). Richard Pokorny acknowledges financial support from specific university research (MSMT no. 20/2013). NR 27 TC 8 Z9 8 U1 1 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUN PY 2013 VL 96 IS 6 BP 1891 EP 1898 DI 10.1111/jace.12313 PG 8 WC Materials Science, Ceramics SC Materials Science GA 159HN UT WOS:000320036600038 ER PT J AU Bernal, SA Provis, JL Rose, V de Gutierrez, RM AF Bernal, Susan A. Provis, John L. Rose, Volker Mejia de Gutierrez, Ruby TI High-Resolution X-ray Diffraction and Fluorescence Microscopy Characterization of Alkali-Activated Slag-Metakaolin Binders SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID BLAST-FURNACE SLAG; CALCIUM SILICATE HYDRATE; A-S-H; ION-EXCHANGE; POWDER DIFFRACTION; FLY-ASH; PART I; GEOPOLYMERS; CEMENTS; BLENDS AB The effect of the activator concentration on the structure of alkali silicate-activated slag/metakaolin pastes is assessed through synchrotron radiation-based X-ray techniques. As main reaction products, both calcium aluminosilicate hydrate (C-A-S-H) and sodium/calcium aluminosilicate hydrate [(C,N)-A-S-H] type gels are formed in activated binders solely based on slag, along with the zeolitic products gismondine and garronite. In activated blended pastes, the inclusion of metakaolin in the binder hinders the formation of zeolite products, instead favoring the formation of a (C,N)-A-S-H type gel consistent with the activation of metakaolin in the presence of high concentrations of Ca. The formation of the two distinct binding products is confirmed by high-resolution X-ray fluorescence microscopy, where the inner products and the outer products have compositions consistent with (C,N)-A-S-H and C-A-S-H type gels, respectively. These results provide important new insights into the gel chemistry and micro/nanostructure of blended alkali-activated binder systems. C1 [Bernal, Susan A.; Mejia de Gutierrez, Ruby] Univ Valle, Composite Mat Grp, Sch Mat Engn, Cali, Colombia. [Bernal, Susan A.; Provis, John L.] Univ Sheffield, Dept Mat Sci & Engn, Sheffield S1 3JD, S Yorkshire, England. [Rose, Volker] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Rose, Volker] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Bernal, SA (reprint author), Univ Valle, Composite Mat Grp, Sch Mat Engn, Cali, Colombia. EM s.bernal@sheffield.ac.uk; j.provis@sheffield.ac.uk RI Provis, John/A-7631-2008; Rose, Volker/B-1103-2008; OI Provis, John/0000-0003-3372-8922; Rose, Volker/0000-0002-9027-1052; Bernal, Susan A/0000-0002-9647-3106; MEJIA DE GUTIERREZ, RUBY/0000-0002-5404-2738 FU Universidad del Valle (Colombia); Patrimonio Autonomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnologia y la Innovacion Francisco Jose de Caldas - COLCIENCIAS, GEOCERAM project; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This study was sponsored by Universidad del Valle (Colombia), and Patrimonio Autonomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnologia y la Innovacion Francisco Jose de Caldas - COLCIENCIAS, GEOCERAM project. Use of the Advanced Photon Source and the Center for Nanoscale Materials at Argonne National Laboratory were supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 59 TC 25 Z9 26 U1 2 U2 39 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUN PY 2013 VL 96 IS 6 BP 1951 EP 1957 DI 10.1111/jace.12247 PG 7 WC Materials Science, Ceramics SC Materials Science GA 159HN UT WOS:000320036600046 ER PT J AU Wilson, MW Martin, AB Lillaney, P Losey, AD Yee, EJ Bernhardt, A Malba, V Evans, L Sincic, R Saeed, M Arenson, RL Hetts, SW AF Wilson, Mark W. Martin, Alastair B. Lillaney, Prasheel Losey, Aaron D. Yee, Erin J. Bernhardt, Anthony Malba, Vincent Evans, Lee Sincic, Ryan Saeed, Maythem Arenson, Ronald L. Hetts, Steven W. TI Magnetic Catheter Manipulation in the Interventional MR Imaging Environment SO JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY LA English DT Article ID REMOTE-CONTROL; DEFLECTION; NAVIGATION; SYSTEM AB Purpose: To evaluate deflection capability of a prototype endovascular catheter, which is remotely magnetically steerable, for use in the interventional. magnetic resonance (MR) imaging environment. Materials and Methods: Copper coils were mounted on the tips of commercially available 2.3-3.0-F microcatheters. The coils were fabricated in a novel manner by plasma vapor deposition of a copper layer followed by laser lithography of the layer into coils. Orthogonal helical (ie, solenoid) and saddle-shaped (ie, Helmholtz) coils were mounted on a single catheter tip. Microcatheters were tested in water bath phantoms in a 1.54 clinical MR scanner, with variable simultaneous currents applied to the coils. Catheter tip deflection was imaged in the axial plane by using a "real-time" steady-state free precession MR imaging sequence. Degree of deflection and catheter tip orientation were measured for each current application. Results: The catheter tip was clearly visible in the longitudinal and axial planes. Magnetic field artifacts were visible when the orthogonal coils at the catheter tip were energized. Variable amounts Of current applied to a single coil demonstrated consistent catheter deflection in all water bath experiments. Changing current polarity reversed the observed direction of deflection, whereas current applied to two different coils resulted, in deflection represented by the composite vector of individual coil activations: Microcatheter navigation through the vascular phantom was successful through control of applied current to one or more coils. Conclusions: Controlled catheter deflection is possible with laser lithographed multiaxis coil-tipped catheters in. the MR imaging environment. C1 [Wilson, Mark W.; Martin, Alastair B.; Lillaney, Prasheel; Losey, Aaron D.; Yee, Erin J.; Sincic, Ryan; Saeed, Maythem; Arenson, Ronald L.; Hetts, Steven W.] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94107 USA. [Bernhardt, Anthony; Malba, Vincent; Evans, Lee] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Hetts, SW (reprint author), Univ Calif San Francisco, Dept Radiol & Biomed Imaging, 185 Berry St,Suite 350, San Francisco, CA 94107 USA. EM steven.hetts@ucsf.edu OI Hetts, Steven/0000-0001-5885-7259 FU National Institutes of Health/National Heart, Lung, and Blood Institute Award [1R01HL076486]; American Society of Neuroradiology Research and Education Foundation Scholar Award; National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering Award [1R01EB012031]; Stryker (Kalamazoo, Michigan); Silk Road Medical (Sunnyvale, California) FX This work was supported by National Institutes of Health/National Heart, Lung, and Blood Institute Award 1R01HL076486 to (to M.W.W.), an American Society of Neuroradiology Research and Education Foundation Scholar Award (to S.W.H.), and National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering Award 1R01EB012031 (to S.W.H.). S.W.H. has received grant support from Stryker (Kalamazoo, Michigan), is a paid consultant for Silk Road Medical (Sunnyvale, California), and is a member of the scientific advisory board of Medina (Menlo Park, California). None of the other authors have identified a conflict of interest. NR 9 TC 5 Z9 5 U1 1 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1051-0443 J9 J VASC INTERV RADIOL JI J. Vasc. Interv. Radiol. PD JUN PY 2013 VL 24 IS 6 BP 885 EP 891 DI 10.1016/j.jvir.2013.01.487 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging; Peripheral Vascular Disease SC Radiology, Nuclear Medicine & Medical Imaging; Cardiovascular System & Cardiology GA 158FY UT WOS:000319956100022 PM 23707097 ER PT J AU Abdul Halim, MF Pfeiffer, F Zou, J Frisch, A Haft, D Wu, S Tolic, N Brewer, H Payne, SH Pasa-Tolic, L Pohlschroder, M AF Abdul Halim, Mohd Farid Pfeiffer, Friedhelm Zou, James Frisch, Andrew Haft, Daniel Wu, Si Tolic, Nikola Brewer, Heather Payne, Samuel H. Pasa-Tolic, Ljiljana Pohlschroder, Mechthild TI Haloferax volcanii archaeosortase is required for motility, mating, and C-terminal processing of the S-layer glycoprotein SO MOLECULAR MICROBIOLOGY LA English DT Article ID GRAM-POSITIVE BACTERIA; SURFACE-PROTEINS; STAPHYLOCOCCUS-AUREUS; CELL-WALL; PROTEOMIC ANALYSES; ACCURATE MASS; TAG STRATEGY; SORTASE; SYSTEM; ATTACHMENT AB Cell surfaces are decorated by a variety of proteins that facilitate interactions with their environments and support cell stability. These secreted proteins are anchored to the cell by mechanisms that are diverse, and, in archaea, poorly understood. Recently published in silico data suggest that in some species a subset of secreted euryarchaeal proteins, which includes the S-layer glycoprotein, is processed and covalently linked to the cell membrane by enzymes referred to as archaeosortases. In silico work led to the proposal that an independent, sortase-like system for proteolysis-coupled, carboxy-terminal lipid modification exists in bacteria (exosortase) and archaea (archaeosortase). Here, we provide the first in vivo characterization of an archaeosortase in the haloarchaeal model organism Haloferax volcanii. Deletion of the artA gene (HVO_0915) resulted in multiple biological phenotypes: (a) poor growth, especially under low-salt conditions, (b) alterations in cell shape and the S-layer, (c) impaired motility, suppressors of which still exhibit poor growth, and (d) impaired conjugation. We studied one of the ArtA substrates, the S-layer glycoprotein, using detailed proteomic analysis. While the carboxy-terminal region of S-layer glycoproteins, consisting of a putative threonine-rich O-glycosylated region followed by a hydrophobic transmembrane helix, has been notoriously resistant to any proteomic peptide identification, we were able to identify two overlapping peptides from the transmembrane domain present in the artA strain but not in the wild-type strain. This clearly shows that ArtA is involved in carboxy-terminal post-translational processing of the S-layer glycoprotein. As it is known from previous studies that a lipid is covalently attached to the carboxy-terminal region of the S-layer glycoprotein, our data strongly support the conclusion that archaeosortase functions analogously to sortase, mediating proteolysis-coupled, covalent cell surface attachment. C1 [Abdul Halim, Mohd Farid; Zou, James; Frisch, Andrew; Pohlschroder, Mechthild] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA. [Pfeiffer, Friedhelm] Max Planck Inst Biochem, Dept Membrane Biochem, D-82152 Martinsried, Germany. [Haft, Daniel] J Craig Venter Inst, Rockville, MD 20850 USA. [Wu, Si; Tolic, Nikola; Brewer, Heather; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Payne, Samuel H.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Pohlschroder, M (reprint author), Univ Penn, Dept Biol, Philadelphia, PA 19104 USA. EM pohlschr@sas.upenn.edu OI Payne, Samuel/0000-0002-8351-1994 FU National Science Foundation [MCB02]; National Aeronautics and Space Administration [NNX10AR84G]; U.S. Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC05-76RLO-1830]; U.S. Department of Energy (DOE) Early Career Research Award FX J.Z. was supported by National Science Foundation grant MCB02. M. P., A. F., and M. F. A. H. were supported by National Aeronautics and Space Administration grant NNX10AR84G. We thank Dewight Williams and Tatyana Svitkina for invaluable advice on microscopy and Fevzi Daldal for helpful discussions. Mass Spec analysis was performed in the W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RLO-1830. S. H. P. is supported by the U.S. Department of Energy (DOE) Early Career Research Award. NR 40 TC 3 Z9 3 U1 2 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0950-382X J9 MOL MICROBIOL JI Mol. Microbiol. PD JUN PY 2013 VL 88 IS 6 BP 1164 EP 1175 DI 10.1111/mmi.12248 PG 12 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 161EJ UT WOS:000320174300011 PM 23651326 ER PT J AU Ronnebro, ECE Majzoub, EH AF Ronnebro, Ewa C. E. Majzoub, Eric H. TI Recent advances in metal hydrides for clean energy applications SO MRS BULLETIN LA English DT Article ID REVERSIBLE HYDROGEN STORAGE; INITIO MOLECULAR-DYNAMICS; WAVE BASIS-SET; NAALH4; THERMODYNAMICS; BOROHYDRIDE; TRANSITION; KINETICS; RELEASE; BATTERY AB Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin, we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs. C1 [Ronnebro, Ewa C. E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Majzoub, Eric H.] Univ Missouri St Louis, Dept Phys & Astron, St Louis, MO USA. [Majzoub, Eric H.] Univ Missouri St Louis, Ctr Nanosci, St Louis, MO USA. RP Ronnebro, ECE (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Ewa.Ronnebro@pnnl.gov; majzoube@umsl.edu FU ARPA-E HEATS Program; US DOE EERE Fuel Cell Technologies Office FX Majzoub and Ronnebro acknowledge the US DOE EERE Fuel Cell Technologies Office for support. Ronnebro also acknowledges the ARPA-E HEATS Program for support. NR 43 TC 23 Z9 23 U1 6 U2 80 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD JUN PY 2013 VL 38 IS 6 BP 452 EP 461 DI 10.1557/mrs.2013.132 PG 10 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 159FA UT WOS:000320029200011 ER PT J AU de Jongh, PE Allendorf, M Vajo, JJ Zlotea, C AF de Jongh, Petra E. Allendorf, Mark Vajo, John J. Zlotea, Claudia TI Nanoconfined light metal hydrides for reversible hydrogen storage SO MRS BULLETIN LA English DT Article ID SODIUM ALANATE NANOPARTICLES; MELT INFILTRATION; NAALH4; LIBH4; SIZE; KINETICS; RELEASE; NANOCOMPOSITES; NANOMATERIALS; CATALYSTS AB Nano-sizing and scaffolding have emerged in the past decade as important strategies to control the kinetics, reversibility, and equilibrium pressure for hydrogen storage in light metal hydride systems. Reducing the size of metal hydrides to the nanometer range allows fast kinetics for both hydrogen release and subsequent uptake. Reversibility of the hydrogen release is impressively facilitated by nanoconfining the materials in a carbon or metal-organic framework scaffold, in particular for reactions involving multiple solid phases, such as the decomposition of LiBH4, NaBH4, and NaAlH4. More complex is the impact of nanoconfinement on phase equilibria. It is clear that equilibrium pressures, and even decomposition pathways, are changed. However, further experimental and computational studies are essential to understand the exact origins of these effects and to unravel the role of particle size, physical confinement, and interfaces. Nevertheless, it has become clear that nanoconfinement is a strong tool to change physicochemical properties of metal hydrides, which might not only be of relevance for hydrogen storage, but also for other applications such as rechargeable batteries. C1 [de Jongh, Petra E.] Univ Utrecht, Debye Inst Nanomat Sci, NL-3508 TC Utrecht, Netherlands. [Allendorf, Mark] Sandia Natl Labs, Livermore, CA 94550 USA. [Vajo, John J.] HRL Labs LLC, Malibu, CA USA. [Zlotea, Claudia] Inst Chim & Mat Paris, Paris, France. RP de Jongh, PE (reprint author), Univ Utrecht, Debye Inst Nanomat Sci, NL-3508 TC Utrecht, Netherlands. EM P.E.deJongh@uu.nl; mdallen@sandia.gov; JJVajo@hrl.com; claudia.zlotea@icmpe.cnrs.fr RI de Jongh, Petra/A-4761-2009; Institute (DINS), Debye/G-7730-2014; Zlotea, Claudia/F-2954-2015 OI de Jongh, Petra/0000-0002-2216-2620; FU US Department of Energy (DOE) [DEE-FC36-05G015067]; NWO-Vidi; NWO-ACTS/Sustainable Hydrogen FX J.J.V. acknowledges support by the US Department of Energy (DOE contract DEE-FC36-05G015067). P.E.dJ acknowledges financial support from NWO-Vidi and NWO-ACTS/Sustainable Hydrogen. NR 58 TC 35 Z9 35 U1 6 U2 128 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD JUN PY 2013 VL 38 IS 6 BP 488 EP 494 DI 10.1557/mrs.2013.108 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 159FA UT WOS:000320029200015 ER PT J AU Hartman, MR Keller, ST Reese, SR Robinson, B Stevens, J Matos, JE Marcum, WR Palmer, TS Woods, BG AF Hartman, M. R. Keller, S. T. Reese, S. R. Robinson, B. Stevens, J. Matos, J. E. Marcum, W. R. Palmer, T. S. Woods, B. G. TI Neutronic Analysis of the Oregon State TRIGA Reactor in Support of Conversion from HEU Fuel to LEU Fuel SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB In support of the conversion of the Oregon State TRIGA Reactor (OSTR) from highly enriched uranium (HE U) fuel to low-enriched uranium (LEU) fuel, a comprehensive neutronic analysis utilizing MCNP5 was performed on the HEU and LEU core configurations. The initial 1974 HEU core provided an opportunity for verification of the MCNP5 baseline model; all fuel elements in the initial core were congruent in geometry and material composition, having no burnup. In addition, a substantial database of core parameters was documented during the initial HEU core start-up. This verification study examined control rod worth, core excess reactivity, burnup, core power, power per element, temperature coefficient of reactivity, void coefficient of reactivity, moderator coefficient of reactivity, axial and radial power profiles, prompt-neutron lifetime, effective delayed-neutron fraction, power defect, and xenon poisoning. Fuel material composition and core loadings are presented. The excellent comparison between the numerical results and the experimental data of the initial HEU core established an objective, credible baseline model and methodology, which were then extended to the LEU core neutronic analysis. Comparison between the numerically calculated core physics values for the new LEU core and data collected during start-up provided a complete verification that the MCNP5 models developed for both the HEU and LEU cores were representative of the OSTR. C1 [Hartman, M. R.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Keller, S. T.; Reese, S. R.; Robinson, B.; Marcum, W. R.; Palmer, T. S.; Woods, B. G.] Oregon State Univ, Dept Nucl Engn & Radiat Hlth Phys, Corvallis, OR 97331 USA. [Stevens, J.; Matos, J. E.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Hartman, MR (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. EM steve.reese@oregonstate.edu FU U.S. Department of Energy through Argonne National Laboratory as part of the Reduced Enrichment for Research and Test Reactors program [7F-01101] FX This work was supported in part by the U.S. Department of Energy under contract 7F-01101 through Argonne National Laboratory as part of the Reduced Enrichment for Research and Test Reactors program. The authors would like to acknowledge E. Woolstenhulme of Idaho National Laboratory for his project management and support on this project and A. Veca of General Atomics for his valuable advice and coordination with the manufacturing of the LEU fuel. NR 8 TC 2 Z9 2 U1 2 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUN PY 2013 VL 174 IS 2 BP 135 EP 149 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 165KH UT WOS:000320482300002 ER PT J AU Babst, BA Karve, AA Judt, T AF Babst, Benjamin A. Karve, Abhijit A. Judt, Tatjana TI Radio-Metabolite Analysis of Carbon-11 Biochemical Partitioning to Non-Structural Carbohydrates for Integrated Metabolism and Transport Studies SO PLANT AND CELL PHYSIOLOGY LA English DT Article DE Carbohydrate metabolism; Carbon-11; Leaf export; Phloem transport; Starch; Sugars ID RAPID CHANGES; PLANT-GROWTH; CARBON; ARABIDOPSIS; STARCH; POPULUS; INCREASES; HERBIVORY; LEAVES; ROOTS AB Metabolism and phloem transport of carbohydrates are interactive processes, yet each is often studied in isolation from the other. Carbon-11 (C-11) has been successfully used to study transport and allocation processes dynamically over time. There is a need for techniques to determine metabolic partitioning of newly fixed carbon that are compatible with existing non-invasive C-11-based methodologies for the study of phloem transport. In this report, we present methods using C-11-labeled CO2 to trace carbon partitioning to the major non-structural carbohydrates in leaves-sucrose, glucose, fructose and starch. High-performance thin-layer chromatography (HPTLC) was adapted to provide multisample throughput, raising the possibility of measuring different tissues of the same individual plant, or for screening multiple plants. An additional advantage of HPTLC was that phosphor plate imaging of radioactivity had a much higher sensitivity and broader range of sensitivity than radio-HPLC detection, allowing measurement of C-11 partitioning to starch, which was previously not possible. Because of the high specific activity of C-11 and high sensitivity of detection, our method may have additional applications in the study of rapid metabolic responses to environmental changes that occur on a time scale of minutes. The use of this method in tandem with other C-11 assays for transport dynamics and whole-plant partitioning makes a powerful combination of tools to study carbohydrate metabolism and whole-plant transport as integrated processes. C1 [Babst, Benjamin A.; Karve, Abhijit A.] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Judt, Tatjana] Johannes Gutenberg Univ Mainz, Dept Chem, D-55099 Mainz, Germany. RP Babst, BA (reprint author), Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. EM bbabst@bnl.gov OI Babst, Benjamin/0000-0001-5657-0633 FU United States Department of Energy, Office of Biological and Environmental Research [DE-AC02-98CH10886]; United States Department of Agriculture [MO094]; United States Department of Energy, Office of Biological Research [MO094]; Goldhaber Distinguished Fellowship FX The United States Department of Energy, Office of Biological and Environmental Research [under contract DE-AC02-98CH10886]; the United States Department of Agriculture and the United States Department of Energy, Office of Biological Research [a jointly funded Plant Feedstock Genomics for Bioenergy grant (No. MO094)]; a Goldhaber Distinguished Fellowship [to B.A.B.]. NR 29 TC 14 Z9 14 U1 0 U2 24 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0032-0781 J9 PLANT CELL PHYSIOL JI Plant Cell Physiol. PD JUN PY 2013 VL 54 IS 6 BP 1016 EP 1025 DI 10.1093/pcp/pct045 PG 10 WC Plant Sciences; Cell Biology SC Plant Sciences; Cell Biology GA 160JS UT WOS:000320116400017 PM 23531845 ER PT J AU Sarver, T Al-Qaraghuli, A Kazmerski, LL AF Sarver, Travis Al-Qaraghuli, Ali Kazmerski, Lawrence L. TI A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Photovoltaics (PV); Concentrating Solar Power (CSP); Concentrating Photovoltaics (CPV); Dust; Soiling; Performance; Reflective; Transmissive; Mitigation; Cleaning; Preventative; Restorative ID WAVE ELECTRIC CURTAIN; PHOTOVOLTAIC CELLS; AIRBORNE DUST; PV MODULES; INDUCED DEGRADATION; DESALINATION PLANT; FIELD CONDITIONS; MARS PATHFINDER; PERFORMANCE; DEPOSITION AB The energy delivery of a solar-energy system is generally associated with the sun's available irradiance and spectral content, as well as a variety of environmental and climatic factors and inherent system and component performances. However, other external factors relating to geographical location and conditions can have even greater impacts on system performance. Among these, soiling is a commonly overlooked or underestimated issue that can be a showstopper for the viability of a solar installation. This paper provides a comprehensive overview of soiling problems, primarily those associated with "dust" (sand) and combined dust-moisture conditions that are inherent to many of the most solar-rich geographic locations worldwide. We review and evaluate key contributions to the understanding, performance effects, and mitigation of these problems. These contributions span a technical history of almost seven decades. We also present an inclusive literature survey/assessment. The focus is on both transmissive surfaces (e.g., those used for flat-plate photovoltaics or for concentrating lenses) and reflective surfaces (e.g., mirrors or heliostats for concentrating power systems). (C) 2013 Published by Elsevier Ltd. C1 [Sarver, Travis] Natl Renewable Energy Lab, Sci Undergrad Lab Internship SULI Program, Golden, CO 80401 USA. [Al-Qaraghuli, Ali; Kazmerski, Lawrence L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kazmerski, LL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM kaz@nrel.gov FU US-India Partnership to Advance Clean Energy-Research (PACE-R); US Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program [DE-AC36-08GO28308]; Government of India, through the Department of Science and Technology FX This review is based upon work supported in part under the US-India Partnership to Advance Clean Energy-Research (PACE-R) for the Solar Energy Research Institute for India and the United States (SERIIUS), funded jointly by the US Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, under under Subcontract DE-AC36-08GO28308 to the National Renewable Energy Laboratory, Golden, Colorado) and the Government of India, through the Department of Science and Technology. The authors gratefully acknowledge the unselfish assistance of Dr. Ali Al-Harthy, Dean of College of Engineering, Sultan Qaboos University, Oman; Dr. Fuad Abulfotuh, Consultant, Egypt; Dr. Waheeb Al-Naser, Vice President, University of Bahrain; Dr. Samir Rauof, Senior Deputy, Ministry of Science and Technology, Iraq; and Dr. Habib Abualhamayel, King Fand University for Petroleum and Minerals, Saudi Arabia, for providing guidance and for supplying samples of dust from modules in their regions. We want to acknowledge and thank especially the extremely useful discussions with Dr. M. Ellis and the groups at Masdar Institute and Dr. Maher Alodan of K.A.CARE and Dr. A.R.M. Alamoud of King Saud University, Saudi Arabia, on the current issues and investments in solar energy and dust mitigation. Finally, the authors want to express their appreciation and acknowledgment of the SERIIUS research group: Dr. Govisawami Tamizhmani of ASU, Dr. Bibek Bandyopadhyay of the Solar Energy Center (MNRE) in India, Dr. Kamanio Chattopadhyay of IISc-Bangalore, and Jim John of IIT-Bombay for their discussions and expert inputs. NR 256 TC 91 Z9 92 U1 13 U2 87 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD JUN PY 2013 VL 22 BP 698 EP 733 DI 10.1016/j.rser.2012.12.065 PG 36 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 158EL UT WOS:000319952100059 ER PT J AU Piper, DM Yersak, TA Son, SB Kim, SC Kang, CS Oh, KH Ban, CM Dillon, AC Lee, SH AF Piper, Daniela Molina Yersak, Thomas A. Son, Seoung-Bum Kim, Seul Cham Kang, Chan Soon Oh, Kyu Hwan Ban, Chunmei Dillon, Anne C. Lee, Se-Hee TI Conformal Coatings of Cyclized-PAN for Mechanically Resilient Si nano-Composite Anodes SO ADVANCED ENERGY MATERIALS LA English DT Article DE coating; cyclization; polyacrylonitrile; resilient; silicon ID LITHIUM-ION BATTERIES; HIGH-CAPACITY; NANOSTRUCTURED SILICON; ELECTRONIC-STRUCTURE; CARBON NITRIDE; POLYACRYLONITRILE; STORAGE; MATRIX; STABILIZATION; SPECTROSCOPY C1 [Piper, Daniela Molina; Yersak, Thomas A.; Son, Seoung-Bum; Lee, Se-Hee] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Piper, Daniela Molina; Ban, Chunmei; Dillon, Anne C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Son, Seoung-Bum; Kim, Seul Cham; Kang, Chan Soon; Oh, Kyu Hwan] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea. RP Lee, SH (reprint author), Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. EM sehee.lee@colorado.edu RI Lee, Sehee/A-5989-2011; Yersak, Thomas/L-9018-2013; Son, Seoung-Bum/C-6783-2014 FU U.S. Department of Energy under DOE office of Energy Efficiency [NFT-8-88527-01]; Fundamental R&D Program for Technology of World Premier Materials; Ministry of Knowledge Economy, Republic of Korea [10037919]; National Science Foundation (NSF) [DMR-1206462]; National Science Foundation graduate research fellowship program (NSF-GRFP); U.S. Department of Energy under Renewable Energy Office of the Vehicle Technology Program [NFT-8-88527-01] FX This work was funded by the U.S. Department of Energy under subcontract number NFT-8-88527-01 through the DOE office of Energy Efficiency and Renewable Energy Office of the Vehicle Technology Program, by a grant from the Fundamental R&D Program for Technology of World Premier Materials funded by the Ministry of Knowledge Economy, Republic of Korea (10037919), the National Science Foundation (NSF, DMR-1206462), and the National Science Foundation graduate research fellowship program (NSF-GRFP). NR 46 TC 39 Z9 40 U1 14 U2 201 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JUN PY 2013 VL 3 IS 6 BP 697 EP 702 DI 10.1002/aenm.201200850 PG 6 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 157HV UT WOS:000319888000001 ER PT J AU Guo, BK Sun, XG Veith, GM Bi, ZH Mahurin, SM Liao, C Bridges, C Paranthaman, MP Dai, S AF Guo, Bingkun Sun, Xiao-Guang Veith, Gabriel M. Bi, Zhonghe Mahurin, Shannon M. Liao, Chen Bridges, Craig Paranthaman, Mariappan Parans Dai, Sheng TI Nitrogen-Enriched Carbons from Alkali Salts with High Coulombic Efficiency for Energy Storage Applications SO ADVANCED ENERGY MATERIALS LA English DT Article DE alkali tricyanomethanide; coulombic efficiency; lithium ion batteries; nitrogen-doped carbon; sodium ion batteries ID LITHIUM-ION BATTERIES; LI-AIR CELLS; ANODE MATERIALS; CARBONACEOUS MATERIALS; MESOPOROUS CARBONS; RATE CAPABILITY; PERFORMANCE; CAPACITY; INTERCALATION; SUBSTITUTION C1 [Guo, Bingkun; Sun, Xiao-Guang; Bi, Zhonghe; Mahurin, Shannon M.; Liao, Chen; Bridges, Craig; Paranthaman, Mariappan Parans; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Sun, XG (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM sunx@ornl.gov; dais@ornl.gov RI Guo, Bingkun/J-5774-2014; Paranthaman, Mariappan/N-3866-2015; Dai, Sheng/K-8411-2015; OI Paranthaman, Mariappan/0000-0003-3009-8531; Dai, Sheng/0000-0002-8046-3931; Liao, Chen/0000-0001-5168-6493 FU U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering FX This work was supported by the U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering. NR 52 TC 21 Z9 21 U1 9 U2 190 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JUN PY 2013 VL 3 IS 6 BP 708 EP 712 DI 10.1002/aenm.201200925 PG 5 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 157HV UT WOS:000319888000003 ER PT J AU Chen, ZH Ren, Y Lee, E Johnson, C Qin, Y Amine, K AF Chen, Zonghai Ren, Yang Lee, Eungje Johnson, Christopher Qin, Yan Amine, Khalil TI Study of Thermal Decomposition of Li1-x(Ni1/3Mn1/3Co1/3)0.9O2 Using In-Situ High-Energy X-Ray Diffraction SO ADVANCED ENERGY MATERIALS LA English DT Article DE cathode; in-situ high-energy X-ray diffraction; lithium-ion battery; safety; thermal decomposition ID HYBRID ELECTRIC VEHICLES; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; STABILITY; CATHODE; IMPACT; AL; LI(NI0.8CO0.15AL0.05)O-2; LI(NI1/3CO1/3MN1/3)O-2; SUBSTITUTION AB Safety has been a major technological concern hindering the deployment of lithium-ion batteries for automobile applications. We investigated the decomposition mechanism of delithiated cathode materials at thermal abuse conditions using Li1.1[Ni1/3Mn1/3Co1/3]0.9O2 as a model cathode material. An in-situ high-energy X-ray diffraction technique was established as an alternative to conventional thermal analysis techniques like differential scanning calorimetry and accelerating rate calorimetry. The X-ray diffraction data revealed that the thermal decomposition pathway of delithiated Li1-x[Ni1/3Mn1/3Co1/3]0.9O2 strongly depended on the exposed chemical environment, like solvents and lithium salts. A phase transformation of dry delithiated Li1-x[Ni1/3Mn1/3Co1/3]0.9O2 was observed at about 278 degrees C, and its onset temperature was reduced to about 197 degrees C with the presence of the electrolyte. It is suggested that the reduction in thermal stability is possibly related to proton intercalation into the delithiated material. C1 [Chen, Zonghai; Lee, Eungje; Johnson, Christopher; Qin, Yan; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Chen, ZH (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Zonghai.chen@anl.gov RI Chen, Zonghai/K-8745-2013; Amine, Khalil/K-9344-2013; Chen, Zonghai/F-1067-2015 OI Chen, Zonghai/0000-0001-5371-9463 FU U.S. Department of Energy, Office of Vehicle Technologies; U.S. Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX Research at Argonne National Laboratory was funded by U.S. Department of Energy, Office of Vehicle Technologies. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. The authors also acknowledge the use of the Advanced Photon Source and Electron Microscopy Center of Argonne National Laboratory supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 39 TC 14 Z9 14 U1 6 U2 97 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JUN PY 2013 VL 3 IS 6 BP 729 EP 736 DI 10.1002/aenm.201201059 PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 157HV UT WOS:000319888000007 ER PT J AU Bar, M Klaer, J Weinhardt, L Wilks, RG Krause, S Blum, M Yang, WL Heske, C Schock, HW AF Baer, Marcus Klaer, Joachim Weinhardt, Lothar Wilks, Regan G. Krause, Stefan Blum, Monika Yang, Wanli Heske, Clemens Schock, Hans-Werner TI Cu2-xS Surface Phases and Their Impact on the Electronic Structure of CuInS2 Thin Films - A Hidden Parameter in Solar Cell Optimization SO ADVANCED ENERGY MATERIALS LA English DT Article DE (chalcopyrite thin-film solar cells; copper sulfides; electron and X-ray spectroscopy; electronic structure; surface phases) ID BURIED INTERFACES; SPECTROSCOPY; SCATTERING; QUALITY; RAMAN AB The surface properties of CuInS2 (CIS) thin-film solar cell absorbers are investigated by a combination of electron and soft X-ray spectroscopies. Spatially separated regions of varying colors are observed and identified to be dominated by either CuS or Cu2S surface phases. After their removal by KCN etching, the samples cannot be distinguished by eye and the CIS surface is found to be Cu-deficient in both regions. However, a significantly more pronounced off-stoichiometry in the region initially covered by Cu2S can be identified. In this region, the resulting surface band gap is also significantly larger than the EgSurf of the initially CuS-terminated region. Such variations may represent a hidden parameter which, if overlooked, induces irreproducibility and thus prevents systematic optimization efforts. C1 [Baer, Marcus; Klaer, Joachim; Wilks, Regan G.; Schock, Hans-Werner] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany. [Baer, Marcus] Brandenburg Tech Univ Cottbus, Inst Phys & Chem, D-03044 Cottbus, Germany. [Baer, Marcus; Weinhardt, Lothar; Krause, Stefan; Blum, Monika; Heske, Clemens] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Weinhardt, Lothar; Heske, Clemens] Karlsruhe Inst Technol, Inst Photon Sci & Synchrotron Radiat, D-76344 Eggenstein Leopoldshafen, Germany. [Weinhardt, Lothar; Heske, Clemens] Karlsruhe Inst Technol, ANKA Synchrotron Radiat Facil, D-76344 Eggenstein Leopoldshafen, Germany. [Blum, Monika; Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Heske, Clemens] Karlsruhe Inst Technol, Inst Chem Technol & Polymer Chem, D-76128 Karlsruhe, Germany. RP Bar, M (reprint author), Helmholtz Zentrum Berlin Mat & Energie GmbH, Hahn Meitner Pl 1, D-14109 Berlin, Germany. EM marcus.baer@helmholtz-berlin.de RI Krause, Stefan/A-1281-2011; Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 FU Helmholtz-Association [VH-NG-423]; DoE-BES [DE-AC02-05CH11231] FX R.G. Wilks and M. Bar acknowledge financial support by the Helmholtz-Association (VH-NG-423). The ALS is supported by DoE-BES #DE-AC02-05CH11231. NR 29 TC 9 Z9 9 U1 5 U2 96 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JUN PY 2013 VL 3 IS 6 BP 777 EP 781 DI 10.1002/aenm.201200946 PG 5 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 157HV UT WOS:000319888000013 ER PT J AU Leonard, DN Kumar, A Jesse, S Biegalski, MD Christen, HM Mutoro, E Crumlin, EJ Shao-Horn, Y Kalinin, SV Borisevich, AY AF Leonard, Donovan N. Kumar, Amit Jesse, Stephen Biegalski, Michael D. Christen, Hans M. Mutoro, Eva Crumlin, Ethan J. Shao-Horn, Yang Kalinin, Sergei V. Borisevich, Albina Y. TI Nanoscale Probing of Voltage Activated Oxygen Reduction/Evolution Reactions in Nanopatterned (LaxSr1-x)CoO3-Cathodes SO ADVANCED ENERGY MATERIALS LA English DT Article DE electrochemical strain microscopy; solid oxide fuel cells; cobaltites; oxygen vacancy ordering; scanning transmission electron microscopy ID OXIDE FUEL-CELLS; ATOMIC-FORCE MICROSCOPY; PEROVSKITE THIN-FILMS; REDUCTION KINETICS; NANOMETER RESOLUTION; ACOUSTIC MICROSCOPY; ELECTRON-MICROSCOPY; ENERGY-DISSIPATION; ION DIFFUSION; TEMPERATURE AB Bias-dependent mechanisms of reversible and irreversible electrochemical processes on a (La0.5Sr0.5)2CoO4 +/- modified (LaxSr1-x)CoO3- surface are studied using dynamic electrochemical strain microscopy (D-ESM). The reversible oxygen reduction/evolution process is activated at voltages as low as 3-4 V and the degree of transformation increases linearly with applied bias. The irreversible processes associated with static surface deformation become apparent above 10-12 V. Post-mortem focused-ion milling combined with atomic resolution scanning transmission electron microscopy and electron energy loss spectroscopy is used to establish the mechanisms of irreversible transformations and attribute it to amorphization of the top layer of material. These studies both establish the framework for probing irreversible electrochemical processes in solids and illustrate rich spectrum of electrochemical transformations underpinning electrocatalytic activity in cobaltites. C1 [Leonard, Donovan N.; Kumar, Amit; Jesse, Stephen; Biegalski, Michael D.; Christen, Hans M.; Kalinin, Sergei V.; Borisevich, Albina Y.] Oak Ridge Natl Lab, Oak Ridge, TN 37922 USA. [Mutoro, Eva; Crumlin, Ethan J.; Shao-Horn, Yang] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37922 USA. EM sergei2@ornl.gov; albinab@ornl.gov RI Kumar, Amit/C-9662-2012; Christen, Hans/H-6551-2013; Borisevich, Albina/B-1624-2009; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016 OI Kumar, Amit/0000-0002-1194-5531; Christen, Hans/0000-0001-8187-7469; Borisevich, Albina/0000-0002-3953-8460; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483 NR 62 TC 7 Z9 7 U1 10 U2 156 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JUN PY 2013 VL 3 IS 6 BP 788 EP 797 DI 10.1002/aenm.201200681 PG 10 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 157HV UT WOS:000319888000015 ER PT J AU Gelbstein, Y Davidow, J Girard, SN Chung, DY Kanatzidis, M AF Gelbstein, Yaniv Davidow, Joseph Girard, Steven N. Chung, Duck Young Kanatzidis, Mercouri TI Controlling Metallurgical Phase Separation Reactions of the Ge0.87Pb0.13Te Alloy for High Thermoelectric Performance SO ADVANCED ENERGY MATERIALS LA English DT Article DE GeTe; PbTe; phase separation; thermoelectric ID SYSTEM PBTE-GETE; SPINODAL DECOMPOSITION; NANOSTRUCTURED THERMOELECTRICS; FIGURE; MERIT; EFFICIENCY; RATIO AB We demonstrate the potential of metallurgical controlling of the phase separation reaction, by means of spark plasma sintering consolidation and subsequently controlled heat treatments sequence, for enhancement the thermoelectric properties of the p-type Ge0.87Pb0.13Te composition. Very high ZTs of up to approximate to 2, attributed to the nucleation of sub-micron phase separation domains and to comparable sized twinning and dislocation networks features, were observed. Based on the experimentally measured transport properties, combined with the previously reported phase separated n-type (Pb0.95Sn0.05Te)0.92(PbS)0.08 composition, a maximal efficiency value of approximate to 11.5% was theoretically calculated. These ZT and efficiency values are among the highest reported for single composition non-segmented bulk material legs. C1 [Gelbstein, Yaniv; Davidow, Joseph] Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel. [Girard, Steven N.; Kanatzidis, Mercouri] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Chung, Duck Young] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Gelbstein, Y (reprint author), Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel. EM yanivge@bgu.ac.il; m-kanatzidis@northwestern.edu FU United States-Israel Binational Science Foundation (BSF) [2008114]; Revolutionary Materials for Solid State Energy Conversion, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001054]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The work was supported by the United States-Israel Binational Science Foundation (BSF), Grant No. 2008114. In the Kanatzidis labs the thermoelectric transport work is supported by the Revolutionary Materials for Solid State Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001054. Research at Argonne National Laboratory is supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. The authors wish to thank Dr. Jeff Sharp from Marlow Industries, Texas and Dr. Benjamin Balke, Mr. Michael Schwall from Johannes Gutenberg University in Mainz, for their assistance in verification of the measured transport properties. NR 37 TC 45 Z9 44 U1 8 U2 113 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JUN PY 2013 VL 3 IS 6 BP 815 EP 820 DI 10.1002/aenm.201200970 PG 6 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 157HV UT WOS:000319888000018 ER PT J AU Guildenbecher, DR Gao, J Reu, PL Chen, J AF Guildenbecher, Daniel R. Gao, Jian Reu, Phillip L. Chen, Jun TI Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method SO APPLIED OPTICS LA English DT Article ID IN-LINE HOLOGRAPHY; CORRELATION-COEFFICIENT METHOD; FRESNEL DIFFRACTION; MICROSCOPY; RECONSTRUCTION; ELIMINATION; ALGORITHMS; EXTRACTION; APERTURES; TRACKING AB The accuracy of digital in-line holography to detect particle position and size within a 3D domain is evaluated with particular focus placed on detection of nonspherical particles. Dimensionless models are proposed for simulation of holograms from single particles, and these models are used to evaluate the uncertainty of existing particle detection methods. From the lessons learned, a new hybrid method is proposed. This method features automatic determination of optimum thresholds, and simulations indicate improved accuracy compared to alternative methods. To validate this, experiments are performed using quasi-stationary, 3D particle fields with imposed translations. For the spherical particles considered in experiments, the proposed hybrid method resolves mean particle concentration and size to within 4% of the actual value, while the standard deviation of particle depth is less than two particle diameters. Initial experimental results for nonspherical particles reveal similar performance. (C) 2013 Optical Society of America C1 [Guildenbecher, Daniel R.; Reu, Phillip L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Gao, Jian; Chen, Jun] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. RP Guildenbecher, DR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM drguild@sandia.gov RI Gao, Jian/Q-6457-2016 OI Gao, Jian/0000-0003-3744-453X FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Daniel J. Scoglietti and Thomas Grasser for help with the optical setup, Lindsay Gloe Hughes for the particle size measurements using the Malvern Mastersizer, and Luke H. Engvall for implementation of the particle matching routines, all are from Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract no. DE-AC04-94AL85000. NR 38 TC 11 Z9 11 U1 2 U2 20 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X J9 APPL OPTICS JI Appl. Optics PD JUN 1 PY 2013 VL 52 IS 16 BP 3790 EP 3801 DI 10.1364/AO.52.003790 PG 12 WC Optics SC Optics GA 156FK UT WOS:000319807000020 PM 23736335 ER PT J AU Long, JP Kotur, MS Stark, GV Warren, RL Kasoji, M Craft, JL Albrecht, RA Garcia-Sastre, A Katze, MG Waters, KM Vasconcelos, D Sabourin, PJ Bresler, HS Sabourin, CL AF Long, James P. Kotur, Mark S. Stark, Gregory V. Warren, Richard L. Kasoji, Manjula Craft, Jeremy L. Albrecht, Randy A. Garcia-Sastre, Adolfo Katze, Michael G. Waters, Katrina M. Vasconcelos, Daphne Sabourin, Patrick J. Bresler, Herbert S. Sabourin, Carol L. TI Accumulation of CD11b(+)Gr-1(+) cells in the lung, blood and bone marrow of mice infected with highly pathogenic H5N1 and H1N1 influenza viruses SO ARCHIVES OF VIROLOGY LA English DT Article ID 1918 PANDEMIC VIRUS; SUPPRESSOR-CELLS; T-LYMPHOCYTES; A VIRUS; INFLAMMATION; GENES; POPULATION; EXPRESSION; ARGININE; HUMANS AB Infection with pathogenic influenza viruses is associated with intense inflammatory disease. Here, we investigated the innate immune response in mice infected with H5N1 A/Vietnam/1203/04 and with reassortant human H1N1 A/Texas/36/91 viruses containing the virulence genes hemagglutinin (HA), neuraminidase (NA) and NS1 of the 1918 pandemic virus. Inclusion of the 1918 HA and NA glycoproteins rendered a seasonal H1N1 virus capable of inducing an exacerbated host innate immune response similar to that observed for highly pathogenic A/Vietnam/1203/04 virus. Infection with 1918 HA/NA:Tx/91 and A/Vietnam/1203/04 were associated with severe lung pathology, increased cytokine and chemokine production, and significant immune cell changes, including the presence of CD11b(+)Gr-1(+) cells in the blood, lung and bone marrow. Significant differential gene expression in the lung included pathways for cell death, apoptosis, production and response to reactive oxygen radicals, as well as arginine and proline metabolism and chemokines associated with monocyte and neutrophil/granulocyte accumulation and/or activation. Arginase was produced in the lung of animals infected with A/Vietnam/1204. These results demonstrate that the innate immune cell response results in the accumulation of CD11b(+)Gr-1(+) cells and products that have previously been shown to contribute to T cell suppression. C1 [Long, James P.; Kotur, Mark S.; Stark, Gregory V.; Warren, Richard L.; Kasoji, Manjula; Craft, Jeremy L.; Vasconcelos, Daphne; Sabourin, Patrick J.; Bresler, Herbert S.; Sabourin, Carol L.] Battelle Mem Inst, Columbus, OH 43201 USA. [Albrecht, Randy A.; Garcia-Sastre, Adolfo] Mt Sinai Sch Med, Dept Microbiol, New York, NY USA. [Garcia-Sastre, Adolfo] Mt Sinai Sch Med, Dept Med, Div Infect Dis, New York, NY USA. [Garcia-Sastre, Adolfo] Mt Sinai Sch Med, Global Hlth & Emerging Pathogens Inst, New York, NY USA. [Katze, Michael G.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Katze, Michael G.] Univ Washington, Washington Natl Primate Res Ctr, Seattle, WA 98195 USA. [Waters, Katrina M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Long, JP (reprint author), Battelle Mem Inst, 505 King Ave, Columbus, OH 43201 USA. EM longj@battelle.org OI Albrecht, Randy/0000-0003-4008-503X FU NIAID [P01AI058113] FX The authors wish to thank Kevin Coty, Lindsay Hendey, Morgan Wendling, Rebecca Migliozzi and Connie Essman-Wood for support with the experiments; Carla Baugess for editorial support; Nick Machesky for microarray support; and Eric Vela for review of the manuscript. These studies were partly funded by NIAID grant P01AI058113 (to AG-S). NR 31 TC 7 Z9 7 U1 0 U2 4 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0304-8608 J9 ARCH VIROL JI Arch. Virol. PD JUN PY 2013 VL 158 IS 6 BP 1305 EP 1322 DI 10.1007/s00705-012-1593-3 PG 18 WC Virology SC Virology GA 155QK UT WOS:000319762800019 PM 23397329 ER PT J AU Adrianos, SL Teule, F Hinman, MB Jones, JA Weber, WS Yarger, JL Lewis, RV AF Adrianos, Sherry L. Teule, Florence Hinman, Michael B. Jones, Justin A. Weber, Warner S. Yarger, Jeffery L. Lewis, Randolph V. TI Nephila clavipes Flagelliform Silk-Like GGX Motifs Contribute to Extensibility and Spacer Motifs Contribute to Strength in Synthetic Spider Silk Fibers SO BIOMACROMOLECULES LA English DT Article ID SOLID-STATE NMR; DRAGLINE SILK; MECHANICAL-PROPERTIES; BETA-SHEETS; MOLECULAR-ORIENTATION; SECONDARY STRUCTURE; ARGIOPE-AURANTIA; ORB WEB; PROTEINS; SEQUENCE AB Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk. To investigate the source of flagelliform fiber strength, four recombinant proteins were produced containing variations of the three core motifs of the Nephila clavipes flagelliform Flag protein that produces this type of fiber. The as-spun fibers were processed in 80% aqueous isopropanol using a standardized process for all four fiber types, which produced improved mechanical properties. Mechanical testing of the recombinant proteins determined that the GGX motif contributes extensibility and the spacer motif contributes strength to the recombinant fibers. Recombinant protein fibers containing the spacer motif were stronger than the proteins constructed without the spacer that contained only the GGX motif or the combination of the GGX and GPGGX motifs. The mechanical and structural X-ray diffraction analysis of the recombinant fibers provide data that suggests a functional role of the spacer motif that produces tensile strength, though the spacer motif is not clearly defined structurally. These results indicate that the spacer is likely a primary contributor of strength, with the GGX motif supplying mobility to the protein network of native N. clavipes flagelliform silk fibers. C1 [Adrianos, Sherry L.] Univ Wyoming, Dept Mol Biol, Laramie, WY 82071 USA. [Teule, Florence] Univ Wyoming, Casper Coll Ctr, Dept Zool & Physiol, Casper, WY 82601 USA. [Hinman, Michael B.; Jones, Justin A.; Lewis, Randolph V.] Utah State Univ, Dept Biol, Synthet Biomfg Ctr, Logan, UT 84422 USA. [Weber, Warner S.; Yarger, Jeffery L.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Yarger, Jeffery L.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Adrianos, SL (reprint author), Univ Wyoming, Dept Mol Biol, Laramie, WY 82071 USA. EM 7sherrya@gmail.com RI Yarger, Jeff/L-8748-2014 OI Yarger, Jeff/0000-0002-7385-5400 FU DOD; DOE; NIH FX The authors would like to thank the DOD, DOE, and NIH for funding. The data and views presented here are solely those of the authors and not of the agencies listed above. NR 75 TC 17 Z9 19 U1 2 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 J9 BIOMACROMOLECULES JI Biomacromolecules PD JUN PY 2013 VL 14 IS 6 BP 1751 EP 1760 DI 10.1021/bm400125w PG 10 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 163SA UT WOS:000320356000006 PM 23646825 ER PT J AU Le Brun, AP Clifton, LA Halbert, CE Lin, BH Meron, M Holden, PJ Lakey, JH Holt, SA AF Le Brun, Anton P. Clifton, Luke A. Halbert, Candice E. Lin, Binhua Meron, Mati Holden, Peter J. Lakey, Jeremy H. Holt, Stephen A. TI Structural Characterization of a Model Gram-Negative Bacterial Surface Using Lipopolysaccharides from Rough Strains of Escherichia coli SO BIOMACROMOLECULES LA English DT Article ID AIR-WATER-INTERFACE; OUTER-MEMBRANE PERMEABILITY; BILAYER-LIPID MEMBRANES; X-RAY-SCATTERING; PSEUDOMONAS-AERUGINOSA; NEUTRON REFLECTOMETRY; LATERAL ORGANIZATION; AIR/WATER INTERFACE; MONOLAYERS; DIFFRACTION AB Lipopolysaccharides (LPS) make up approximately 75% of the Gram-negative bacterial outer membrane (OM) surface, but because of the complexity of the molecule, there are very few model OMs that include LPS. The LPS molecule consists of lipid A, which anchors the LPS within the OM, a core polysaccharide region, and a variable O-antigen polysaccharide chain. In this work we used RcLPS (consisting of lipid A plus the first seven sugars of the core polysaccharide) from a rough strain of Escherichia coli to form stable monolayers of LPS at the air liquid interface. The vertical structure RcLPS monolayers were characterized using neutron and Xray reflectometry, while the lateral structure was investigated using grazing incidence X-ray diffraction and Brewster angle microscopy. It was found that RcLPS monolayers at surface pressures of 20 mN m(-1) and above are resolved as hydrocarbon tails, an inner headgroup, and an outer headgroup of polysaccharide with increasing solvation from tails to outer headgroups. The lateral organization of the hydrocarbon lipid chains displays an oblique hexagonal unit cell at all surface pressures, with only the chain tilt angle changing with surface pressure. This is in contrast to lipid A, which displays hexagonal or, above 20 mN m(-1), distorted hexagonal packing. This work provides the first complete structural analysis of a realistic E. coli OM surface model. C1 [Le Brun, Anton P.; Holden, Peter J.; Holt, Stephen A.] Australian Nucl Sci & Technol Org, Bragg Inst, Kirrawee Dc, NSW 2232, Australia. [Clifton, Luke A.] STFC Rutherford Appleton Lab, ISIS Neutron Facil, Didcot OX11 0QX, Oxon, England. [Halbert, Candice E.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Lin, Binhua; Meron, Mati] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Lakey, Jeremy H.] Newcastle Univ, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England. RP Holt, SA (reprint author), Australian Nucl Sci & Technol Org, Bragg Inst, Locked Bag 2001, Kirrawee Dc, NSW 2232, Australia. EM sph@ansto.gov.au RI Le Brun, Anton/A-2604-2010; Holt, Stephen/E-4662-2011; OI Le Brun, Anton/0000-0003-2431-6985; Lakey, Jeremy/0000-0003-4646-9085 FU National Collaborative Research Infrastructure Strategy; Australian Government; National Science Foundation Department of Energy [NSF/CHE-0822838]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-ACO2-06CH11357]; ISIS [RB1110411]; Access to Major Research Facilities Programme [AMRFP10/11-N-22]; International Synchrotron Access Programme [I5AP4385]; Australian Institute for Nuclear Science and Engineering (AINSE); Wellcome Trust [093581/Z/10/Z] FX The production of the deuterated RcLPS was undertaken at the National Deuteration Facility (proposal NDF1421), which was partly funded by the National Collaborative Research Infrastructure Strategy of the Australian Government. A portion of this research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division (proposal IPTS-4051), Office of Basic Energy Sciences, U.S. Department of Energy. ChemIVIatCARS Sector 15 is principally supported by the National Science Foundation Department of Energy (NSF/CHE-0822838). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-ACO2-06CH11357. ISIS beam time was awarded through the use of proposal RB1110411. A.P.L.B. and S.A.H. acknowledge the award of funding from the Access to Major Research Facilities Programme (AMRFP10/11-N-22), International Synchrotron Access Programme (I5AP4385) and the Australian Institute for Nuclear Science and Engineering (AINSE). J.H.L. thanks the Wellcome Trust for support (grant number 093581/Z/10/Z). The authors thank Diamond Light Source Ltd for imaging ellipsometer access. A.P.L.B., P.J.H., and S.A.H. thank Marie Gilion and Rob Russell for technical assistance. NR 55 TC 17 Z9 17 U1 2 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 EI 1526-4602 J9 BIOMACROMOLECULES JI Biomacromolecules PD JUN PY 2013 VL 14 IS 6 BP 2014 EP 2022 DI 10.1021/bm400356m PG 9 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 163SA UT WOS:000320356000035 PM 23617615 ER PT J AU Ru, H Ni, XM Zhao, LX Crowley, C Ding, W Hung, LW Shaw, N Cheng, GH Liu, ZJ AF Ru, Heng Ni, Xiangmin Zhao, Lixia Crowley, Christopher Ding, Wei Hung, Li-Wei Shaw, Neil Cheng, Genhong Liu, Zhi-Jie TI Structural basis for termination of AIM2-mediated signaling by p202 SO CELL RESEARCH LA English DT Letter ID DNA; INFLAMMASOME; RECOGNITION; ACTIVATION; PROTEINS C1 [Ru, Heng; Ni, Xiangmin; Zhao, Lixia; Ding, Wei; Shaw, Neil; Liu, Zhi-Jie] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China. [Crowley, Christopher; Cheng, Genhong] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA. [Zhao, Lixia; Shaw, Neil; Liu, Zhi-Jie] Kunming Med Univ, Inst Mol & Clin Med, Kunming 650500, Peoples R China. [Hung, Li-Wei] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Liu, ZJ (reprint author), Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China. EM neilshaw@moon.ibp.ac.cn; gcheng@mednet.ucla.edu; zjliu@ibp.ac.cn OI Hung, Li-Wei/0000-0001-6690-8458 FU NIAID NIH HHS [R01 AI047868, R01 AI069120] NR 6 TC 10 Z9 13 U1 1 U2 10 PU INST BIOCHEMISTRY & CELL BIOLOGY PI SHANGHAI PA SIBS, CAS, 319 YUEYANG ROAD, SHANGHAI, 200031, PEOPLES R CHINA SN 1001-0602 J9 CELL RES JI Cell Res. PD JUN PY 2013 VL 23 IS 6 BP 855 EP 858 DI 10.1038/cr.2013.52 PG 4 WC Cell Biology SC Cell Biology GA 156FL UT WOS:000319807100015 PM 23567559 ER PT J AU Goesten, M Stavitski, E Pidko, EA Gucuyener, C Boshuizen, B Ehrlich, SN Hensen, EJM Kapteijn, F Gascon, J AF Goesten, Maarten Stavitski, Eli Pidko, Evgeny A. Gucuyener, Canan Boshuizen, Bart Ehrlich, Steven N. Hensen, Emiel J. M. Kapteijn, Freek Gascon, Jorge TI The Molecular Pathway to ZIF-7 Microrods Revealed by In Situ Time-Resolved Small- and Wide-Angle X-Ray Scattering, Quick-Scanning Extended X-Ray Absorption Spectroscopy, and DFT Calculations SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE crystal engineering; density functional calculations; metal-organic frameworks; self-assembly; X-ray absorption spectroscopy ID METAL-ORGANIC FRAMEWORK; POROUS COORDINATION POLYMER; BUILDING UNITS; CRYSTAL-GROWTH; NANOPARTICLES; DESIGN; ZINC; N,N-DIMETHYLFORMAMIDE; CRYSTALLIZATION; NH2-MIL-101(AL) AB We present an in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and quick-scanning extended X-ray absorption fine-structure (QEXAFS) spectroscopy study on the crystallization of the metal-organic framework ZIF-7. In combination with DFT calculations, the self-assembly and growth of ZIF-7 microrods together with the chemical function of the crystal growth modulator (diethylamine) are revealed at all relevant length scales, from the atomic to the full crystal size. C1 [Goesten, Maarten; Gucuyener, Canan; Boshuizen, Bart; Kapteijn, Freek; Gascon, Jorge] Delft Univ Technol, Catalysis Engn Chem Engn Dept, NL-2628 BL Delft, Netherlands. [Stavitski, Eli] Canadian Light Source Inc, Saskatoon, SK S7N 2V3, Canada. [Pidko, Evgeny A.; Hensen, Emiel J. M.] Eindhoven Univ Technol, Dept Chem & Chem Engn, Schuit Inst Catalysis, NL-5600 MB Eindhoven, Netherlands. [Pidko, Evgeny A.] Eindhoven Univ Technol, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands. [Ehrlich, Steven N.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Gascon, J (reprint author), Delft Univ Technol, Catalysis Engn Chem Engn Dept, Julianalaan 136, NL-2628 BL Delft, Netherlands. EM j.gascon@tudelft.nl RI Pidko, Evgeny/A-7811-2008; Gascon, Joaquim/M-3598-2015; Kapteijn, Frederik /F-2031-2010; Stavitski, Eli/C-4863-2009; Gascon, Jorge/E-8798-2010; Group, CE/C-3853-2009; Gucuyener, Canan/I-5608-2014; Hensen, Emiel /B-4973-2013 OI Pidko, Evgeny/0000-0001-9242-9901; Gascon, Joaquim/0000-0002-5045-1585; Kapteijn, Frederik /0000-0003-0575-7953; Gascon, Jorge/0000-0001-7558-7123; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Technology Foundation STW; National Science Foundation NWO FX Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. Dr. Lin Yang is acknowledged for his help during beamtime at NSLS beamline X9. E. P. and J.G. thank the Technology Foundation STW and the National Science Foundation NWO for their personal VENI grants. The NWO is acknowledged for access to SARA computing facilities. NR 49 TC 18 Z9 18 U1 10 U2 89 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD JUN PY 2013 VL 19 IS 24 BP 7809 EP 7816 DI 10.1002/chem.201204638 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 156ME UT WOS:000319825500021 PM 23589117 ER PT J AU Hibbard, KA Janetos, AC AF Hibbard, Kathy A. Janetos, Anthony C. TI The regional nature of global challenges: a need and strategy for integrated regional modeling SO CLIMATIC CHANGE LA English DT Article ID LAND-USE; CLIMATE; IMPACTS; ENERGY AB In this paper, we explore the regional nature of global environmental challenges. We take a broad approach by examining the scientific foundation that is needed to support policy and decision making and identifying some of the most important barriers to progress that are truly scale-dependent. In so doing, we hope to show that understanding global environmental changes requires understanding a number of intrinsically regional phenomena, and that successful decision making likewise requires an integrated approach that accounts for a variety of regional Earth system processes-which we define to include both human activities and environmental systems that operate or interact primarily at sub-continental scales. Understanding regional processes and phenomena, including regional decision-making processes and information needs, should thus be an integral part of the global change research agenda. To address some of the key issues and challenges, we propose an integrated regional modeling approach that accounts for the dynamic interactions among physical, ecological, biogeochemical, and human processes and provides relevant information to regional decision makers and stakeholders. C1 [Hibbard, Kathy A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Janetos, Anthony C.] Pacific NW Natl Lab, College Pk, MD USA. RP Hibbard, KA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM kathy.hibbard@pnnl.gov NR 39 TC 8 Z9 8 U1 0 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD JUN PY 2013 VL 118 IS 3-4 BP 565 EP 577 DI 10.1007/s10584-012-0674-3 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 150VB UT WOS:000319418300007 ER PT J AU Girod, B van Vuuren, DP Grahn, M Kitous, A Kim, SH Kyle, P AF Girod, Bastien van Vuuren, Detlef P. Grahn, Maria Kitous, Alban Kim, Son H. Kyle, Page TI Climate impact of transportation A model comparison SO CLIMATIC CHANGE LA English DT Article ID ENERGY; SCENARIOS; EMISSIONS; PASSENGER; FUEL AB Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global service demand (passenger-kilometers, ton-kilometers), fuel use, and CO2 emissions of five different global transport models using harmonized input assumptions on income and population. For four models we also evaluate the impact of a carbon tax. All models project a steep increase in service demand over the century. Technology change is important for limiting energy consumption and CO2 emissions, the study also shows that in order to stabilise or even decrease emissions radical changes would be required. While all models project liquid fossil fuels dominating up to 2050, they differ regarding the use of alternative fuels (natural gas, hydrogen, biofuels, and electricity), because of different fuel price projections. The carbon tax of 200 USD/tCO(2) in 2050 stabilizes or reverses global emission growth in all models. Besides common findings many differences in the model assumptions and projections indicate room for further understanding long-term trends and uncertainty in future transport systems. C1 [Girod, Bastien] Swiss Fed Inst Technol Zurich ETH Zurich, Dept Management Technol & Econ, Chair Sustainabil & Technol, CH-8032 Zurich, Switzerland. [Girod, Bastien; van Vuuren, Detlef P.] Univ Utrecht, Dept Geosci, NL-3584 Utrecht, Netherlands. [van Vuuren, Detlef P.] PBL Netherlands Environm Assessment Agcy, NL-3720 Bilthoven, Netherlands. [Grahn, Maria] Chalmers, Environm & Energy Dept, S-41296 Gothenburg, Sweden. [Kitous, Alban] JRC IPTS, European Commiss, Seville 41092, Spain. [Kim, Son H.; Kyle, Page] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Girod, B (reprint author), Swiss Fed Inst Technol Zurich ETH Zurich, Dept Management Technol & Econ, Chair Sustainabil & Technol, Weinbergstr 56-58, CH-8032 Zurich, Switzerland. EM bgirod@ethz.ch RI van Vuuren, Detlef/A-4764-2009 OI van Vuuren, Detlef/0000-0003-0398-2831 FU Swiss National Science Foundation FX Bastien Girod's contribution to this article has been funded by the Swiss National Science Foundation. We acknowledge Lew Fulton and the IEA ETP Transport Unit for running the IEA Transport model (MoMo) with the harmonized population and income projections and providing resulting output data. NR 29 TC 9 Z9 9 U1 3 U2 34 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD JUN PY 2013 VL 118 IS 3-4 BP 595 EP 608 DI 10.1007/s10584-012-0663-6 PG 14 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 150VB UT WOS:000319418300009 ER PT J AU Rodo, X Pascual, M Doblas-Reyes, FJ Gershunov, A Stone, DA Giorgi, F Hudson, PJ Kinter, J Rodriguez-Arias, MA Stenseth, NC Alonso, D Garcia-Serrano, J Dobson, AP AF Rodo, Xavier Pascual, Mercedes Doblas-Reyes, Francisco J. Gershunov, Alexander Stone, Daithi A. Giorgi, Filippo Hudson, Peter J. Kinter, James Rodriguez-Arias, Miquel-Angel Stenseth, Nils Ch. Alonso, David Garcia-Serrano, Javier Dobson, Andrew P. TI Climate change and infectious diseases: Can we meet the needs for better prediction? SO CLIMATIC CHANGE LA English DT Article ID CHOLERA DYNAMICS; ENDEMIC CHOLERA; MALARIA; TRANSMISSION; TEMPERATURE; VARIABILITY; AFRICA; PRECIPITATION; 21ST-CENTURY; SENSITIVITY AB The next generation of climate-driven, disease prediction models will most likely require a mechanistically based, dynamical framework that parameterizes key processes at a variety of locations. Over the next two decades, consensus climate predictions make it possible to produce forecasts for a number of important infectious diseases that are largely independent of the uncertainty of longer-term emissions scenarios. In particular, the role of climate in the modulation of seasonal disease transmission needs to be unravelled from the complex dynamics resulting from the interaction of transmission with herd immunity and intervention measures that depend upon previous burdens of infection. Progress is also needed to solve the mismatch between climate projections and disease projections at the scale of public health interventions. In the time horizon of seasons to years, early warning systems should benefit from current developments on multi-model ensemble climate prediction systems, particularly in areas where high skill levels of climate models coincide with regions where large epidemics take place. A better understanding of the role of climate extremes on infectious diseases is urgently needed. C1 [Rodo, Xavier; Doblas-Reyes, Francisco J.] ICREA, Barcelona 08005, Catalunya, Spain. [Rodo, Xavier; Doblas-Reyes, Francisco J.; Rodriguez-Arias, Miquel-Angel; Garcia-Serrano, Javier] Inst Catala Ciencies Clima IC3, Barcelona 08005, Catalunya, Spain. [Pascual, Mercedes] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA. [Gershunov, Alexander] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Stone, Daithi A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Lab Comp Sci, Sci Comp Grp, Berkeley, CA 94720 USA. [Giorgi, Filippo] Abdus Salam Int Ctr Theoret Phys, Earth Syst Phys Sect, I-34100 Trieste, Italy. RP Rodo, X (reprint author), Inst Catala Ciencies Clima IC3, C Doctor Trueta 203,3rd, Barcelona 08005, Catalunya, Spain. EM xavier.rodo@ic3.cat RI alonso, david/A-5406-2008; Rodriguez Arias, Miquel Angel/E-9543-2015; Garcia-Serrano, Javier/I-5058-2015; Doblas-Reyes, Francisco/C-1228-2016; Stenseth, Nils Chr./G-5212-2016; Giorgi, Filippo/C-3169-2013; Kinter, James/A-8610-2015; OI alonso, david/0000-0002-8888-1644; Rodriguez Arias, Miquel Angel/0000-0003-2743-8304; Garcia-Serrano, Javier/0000-0003-3913-0876; Doblas-Reyes, Francisco/0000-0002-6622-4280; Stenseth, Nils Chr./0000-0002-1591-5399; Kinter, James/0000-0002-6277-0559; Stone, Daithi/0000-0002-2518-100X; Rodo, Xavier/0000-0003-4843-6180 FU La Caixa Foundation; ENSEMBLES project [GOCE-CT-2003-505539]; CIRCE-EUFP6; NIH/NSF EID [0430120]; NOAA; EU; European Commission [243964]; DENFREE: DENgue research Framework for Resisting Epidemics in Europe of the EUFP7 programme project FX The authors want to thank the La Caixa Foundation and in particular, Paquita Ciller, for the support received to host and fund the meeting on climate, populations and infectious diseases held at the COSMOCAIXA museum in Barcelona, in November, 2006. We also thank Kyrre l. Kausrud, Sunetra Gupta, Kevin Lafferty, Menno Bouma, D. Volpi and three Anonymous Referees for many useful discussions and comments on earlier versions of the manuscript. FJDR received financial support from the ENSEMBLES project (GOCE-CT-2003-505539). Support for this work was also provided by CIRCE-EUFP6 to X. R., by NIH/NSF EID Grant 0430120 and a NOAA award to X. R., M. P., J.K. and A.J.D. J.G-S and X. Rodo wants to acknowledge support from the EU project QWeCI (Quantifying Weather and Climate Impacts on health in developing countries; funded by the European Commission's Seventh Framework Research Programme under the grant agreement 243964). and the DENFREE: DENgue research Framework for Resisting Epidemics in Europe of the EUFP7 programme project. M. Pascual is an investigator of the Howard Hughes Medical Institute. NR 71 TC 18 Z9 18 U1 1 U2 81 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD JUN PY 2013 VL 118 IS 3-4 BP 625 EP 640 DI 10.1007/s10584-013-0744-1 PG 16 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 150VB UT WOS:000319418300011 ER PT J AU Hofmeyr, S Colmenares, JA Iancu, C Kubiatowicz, J AF Hofmeyr, Steven Colmenares, Juan A. Iancu, Costin Kubiatowicz, John TI Juggle: addressing extrinsic load imbalances in SPMD applications on multicore computers SO CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS LA English DT Article DE Proactive load balancing; Parallel programming; Single-program multiple-data parallelism; Operating system; Multicore AB We investigate proactive dynamic load balancing on multicore systems, in which threads are continually migrated to reduce the impact of processor/thread mismatches. Our goal is to enhance the flexibility of the SPMD-style programming model and enable SPMD applications to run efficiently in multiprogrammed environments. We present Juggle, a practical decentralized, user-space implementation of a proactive load balancer that emphasizes portability and usability. In this paper we assume perfect intrinsic load balance and focus on extrinsic imbalances caused by OS noise, multiprogramming and mismatches of threads to hardware parallelism. Juggle shows performance improvements of up to 80 % over static load balancing for oversubscribed UPC, OpenMP, and pthreads benchmarks. We also show that Juggle is effective in unpredictable, multiprogrammed environments, with up to a 50 % performance improvement over the Linux load balancer and a 25 % reduction in performance variation. We analyze the impact of Juggle on parallel applications and derive lower bounds and approximations for thread completion times. We show that results from Juggle closely match theoretical predictions across a variety of architectures, including NUMA and hyper-threaded systems. C1 [Hofmeyr, Steven; Iancu, Costin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Colmenares, Juan A.; Kubiatowicz, John] Univ Calif Berkeley, Parallel Comp Lab, Berkeley, CA USA. RP Hofmeyr, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM shofmeyr@lbl.gov FU DOE [DE-FG02-08ER25849]; Microsoft [024263]; Intel [024894]; matching U.C. Discovery funding [DIG07-102270]; Par Lab affiliates National Instruments; NEC; Nokia; NVIDIA; Samsung; Sun Microsystems FX The authors acknowledge the support of DOE Grant #DE-FG02-08ER25849. Juan Colmenares and John Kubiatowicz acknowledge support of Microsoft (Award #024263), Intel (Award #024894), matching U.C. Discovery funding (Award #DIG07-102270), and additional support from Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA, Samsung, and Sun Microsystems. No part of this paper represents the views and opinions of the sponsors. NR 24 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1386-7857 J9 CLUSTER COMPUT JI Cluster Comput. PD JUN PY 2013 VL 16 IS 2 BP 299 EP 319 DI 10.1007/s10586-012-0204-0 PG 21 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA 155KQ UT WOS:000319747200009 ER PT J AU Knowlen, GG Weller, RE Perry, RL Baer, JF Gozalo, AS AF Knowlen, Grant G. Weller, Richard E. Perry, Ruby L. Baer, Janet F. Gozalo, Alfonso S. TI Hypertrophic Cardiomyopathy in Owl Monkeys (Aotus spp.) SO COMPARATIVE MEDICINE LA English DT Article ID CROSS-SECTIONAL ECHOCARDIOGRAPHY; PLASMODIUM-FALCIPARUM; MATHEMATIC MODELS; LEFT-VENTRICLE; HEART-DISEASE; DENGUE VIRUS; HEPATITIS-A; TRIVIRGATUS; NANCYMAE; SAIMIRI AB Cardiac hypertrophy is a common postmortem finding in owl monkeys. In most cases the animals do not exhibit clinical signs until the disease is advanced, making antemortem diagnosis of subclinical disease difficult and treatment unrewarding. We obtained echocardiograms, electrocardiograms, and thoracic radiographs from members of a colony of owl monkeys that previously was identified as showing a 40% incidence of gross myocardial hypertrophy at necropsy, to assess the usefulness of these modalities for antemortem diagnosis. No single modality was sufficiently sensitive and specific to detect all monkeys with cardiac hypertrophy. Electrocardiography was the least sensitive method for detecting owl monkeys with hypertrophic cardiomyopathy. Thoracic radiographs were more sensitive than was electrocardiography in this context but cannot detect animals with concentric hypertrophy without an enlarged cardiac silhouette. Echocardiography was the most sensitive method for identifying cardiac hypertrophy in owl monkeys. The most useful parameters suggestive of left ventricular hypertrophy in our owl monkeys were an increased average left ventricular wall thickness to chamber radius ratio and an increased calculated left ventricular myocardial mass. Parameters suggestive of dilative cardiomyopathy were an increased average left ventricular myocardial mass and a decreased average ratio of left ventricular free wall thickness to left ventricular chamber radius. When all 4 noninvasive diagnostic modalities (physical examination, echocardiography, electrocardiography, and thoracic radiography) were used concurrently, the probability of detecting hypertrophic cardiomyopathy in owl monkeys was increased greatly. C1 [Knowlen, Grant G.] Washington State Univ, Dept Vet Clin Med & Surg, Pullman, WA 99164 USA. [Weller, Richard E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Perry, Ruby L.] Tuskegee Univ, Dept Clin Sci, Tuskegee, AL 36088 USA. [Baer, Janet F.] CALTECH, Off Lab Anim Resources, Pasadena, CA 91125 USA. [Gozalo, Alfonso S.] NIAID, Comparat Med Branch, NIH, Bethesda, MD 20892 USA. RP Weller, RE (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM dick.weller@pnl.gov FU US Agency for International Development [DPE-0453-C-00-6061-00]; National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID), Comparative Medicine Branch; Office of Research Support FX We extend a note of appreciation to Interspec Corporation for the loan of equipment used to obtain the echocardiograms reported in the current article. This study was supported by the US Agency for International Development (contract DPE-0453-C-00-6061-00) and the Intramural Research Program of the National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID), Comparative Medicine Branch, and the Office of Research Support. NR 45 TC 2 Z9 2 U1 0 U2 2 PU AMER ASSOC LABORATORY ANIMAL SCIENCE PI MEMPHIS PA 9190 CRESTWYN HILLS DR, MEMPHIS, TN 38125 USA SN 1532-0820 J9 COMPARATIVE MED JI Comparative Med. PD JUN PY 2013 VL 63 IS 3 BP 279 EP 287 PG 9 WC Veterinary Sciences; Zoology SC Veterinary Sciences; Zoology GA 162WP UT WOS:000320297000012 PM 23759531 ER PT J AU Mohapatra, S Yannone, SM Lee, SH Hromas, RA Akopiants, K Menon, V Ramsden, DA Povirk, LF AF Mohapatra, Susovan Yannone, Steven M. Lee, Suk-Hee Hromas, Robert A. Akopiants, Konstantin Menon, Vijay Ramsden, Dale A. Povirk, Lawrence F. TI Trimming of damaged 3 ' overhangs of DNA double-strand breaks by the Metnase and Artemis endonucleases SO DNA REPAIR LA English DT Article DE Nonhomologous end joining; Free radicals; Oxidative damage; Clustered DNA damage ID DEPENDENT PROTEIN-KINASE; WHOLE-CELL EXTRACTS; HUMAN NUCLEAR EXTRACTS; IONIZING-RADIATION; BIOCHEMICAL-CHARACTERIZATION; LIGASE IV; REPAIR; ENDS; SET; PHOSPHORYLATION AB Both Metnase and Artemis possess endonuclease activities that trim 3' overhangs of duplex DNA. To assess the potential of these enzymes for facilitating resolution of damaged ends during double-strand break rejoining, substrates bearing a variety of normal and structurally modified 3' overhangs were constructed, and treated either with Metnase or with Artemis plus DNA-dependent protein kinase (DNA-PK). Unlike Artemis, which trims long overhangs to 4-5 bases, cleavage by Metnase was more evenly distributed over the length of the overhang, but with significant sequence dependence. In many substrates, Metnase also induced marked cleavage in the double-stranded region within a few bases of the overhang. Like Artemis, Metnase efficiently trimmed overhangs terminated in 3'-phosphoglycolates (PGs), and in some cases the presence of 3'-PG stimulated cleavage and altered its specificity. The nonplanar base thymine glycol in a 3' overhang severely inhibited cleavage by Metnase in the vicinity of the modified base, while Artemis was less affected. Nevertheless, thymine glycol moieties could be removed by Metnase- or Artemis-mediated cleavage at sites farther from the terminus than the lesion itself. In in vitro end-joining systems based on human cell extracts, addition of Artemis, but not Metnase, effected robust trimming of an unligatable 3'-PG overhang, resulting in a dramatic stimulation of ligase IV- and XLF-dependent end joining. Thus, while both Metnase and Artemis are biochemically capable of resolving a variety of damaged DNA ends for the repair of complex double-strand breaks, Artemis appears to act more efficiently in the context of other nonhomologous end joining proteins. (c) 2013 Elsevier B.V. All rights reserved. C1 [Mohapatra, Susovan; Akopiants, Konstantin; Menon, Vijay; Povirk, Lawrence F.] Virginia Commonwealth Univ, Dept Pharmacol & Toxicol, Massey Canc Ctr, Richmond, VA 23298 USA. [Yannone, Steven M.] Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Lee, Suk-Hee] Indiana Univ, Med Ctr, Dept Biochem Mol Biol & Med, Ctr Canc, Indianapolis, IN 46202 USA. [Hromas, Robert A.] Univ Florida, Dept Med, Gainesville, FL 32610 USA. [Ramsden, Dale A.] Univ N Carolina, Dept Biochem & Biophys, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. RP Povirk, LF (reprint author), VCU Goodwin Lab, 401 Coll St,POB 980035, Richmond, VA 23298 USA. EM LPOVIRK@vcu.edu FU National Institutes of Health, US Public Health Service [CA40615, CA151367, CA84442]; US Department of Energy Office of Science [DE-AC02-05CH11231] FX This work was supported by grants CA40615 (SM, KA, LFP), CA151367 (SHL) and CA84442 (DAR) from the National Institutes of Health, US Public Health Service, and by contract DE-AC02-05CH11231, US Department of Energy Office of Science (SMY). NR 50 TC 9 Z9 10 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1568-7864 J9 DNA REPAIR JI DNA Repair PD JUN 1 PY 2013 VL 12 IS 6 BP 422 EP 432 DI 10.1016/j.dnarep.2013.03.005 PG 11 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 162TV UT WOS:000320289800005 PM 23602515 ER PT J AU Moeller, SJ Beebe-Wang, N Woicik, PA Konova, AB Maloney, T Goldstein, RZ AF Moeller, Scott J. Beebe-Wang, Nicasia Woicik, Patricia A. Konova, Anna B. Maloney, Thomas Goldstein, Rita Z. TI Choice to view cocaine images predicts concurrent and prospective drug use in cocaine addiction SO DRUG AND ALCOHOL DEPENDENCE LA English DT Article DE Cocaine addiction; Abstinence; Cocaine choice behavior; Relapse; Treatment outcome; IAPS; Reinforcement ID SELF-ADMINISTER COCAINE; ATTENTIONAL BIAS; ALTERNATIVE REINFORCERS; CLINICAL-IMPLICATIONS; BEHAVIORAL TREATMENT; TREATMENT RETENTION; DEPENDENT PATIENTS; DECISION-MAKING; USE DISORDERS; RELAPSE AB Background: Identifying variables that predict drug use in treatment-seeking drug addicted individuals is a crucial research and therapeutic goal. This study tested the hypothesis that choice to view cocaine images is associated with concurrent and prospective drug use in cocaine addiction. Methods: To establish choice-concurrent drug use associations, 71 cocaine addicted subjects (43 current users and 28 treatment seekers) provided data on (A) choice to view cocaine images and affectively pleasant, unpleasant, and neutral images [collected under explicit contingencies (when choice was made between two fully visible side-by-side images) and under more probabilistic contingencies (when choice was made between pictures hidden under flipped-over cards)]; and (B) past-month cocaine and other drug use. To establish choice-prospective drug use associations, 20 of these treatment-seeking subjects were followed over the next 6 months. Results: Baseline cocaine-related picture choice as measured by both tasks positively correlated with subjects' concurrent cocaine and other drug use as driven by the actively-using subjects. In a subsequent multiple regression analysis, choice to view cocaine images as compared with affectively pleasant images (under probabilistic contingencies) was the only predictor that continued to be significantly associated with drug use. Importantly, this same baseline cocaine > pleasant probabilistic choice also predicted the number of days drugs were used (cocaine, alcohol, and marijuana) over the next 6 months. Conclusions: Simulated cocaine choice - especially when probabilistic and when compared with other positive reinforcers - may provide a valid laboratory marker of current and future drug use in cocaine addiction. (C) 2012 Elsevier Ireland Ltd. All rights reserved. C1 [Moeller, Scott J.; Beebe-Wang, Nicasia; Woicik, Patricia A.; Konova, Anna B.; Maloney, Thomas; Goldstein, Rita Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Konova, Anna B.] SUNY Stony Brook, Stony Brook, NY 11794 USA. RP Goldstein, RZ (reprint author), Brookhaven Natl Lab, 30 Bell Ave,Bldg 490, Upton, NY 11973 USA. EM rgoldstein@bnl.gov RI Moeller, Scott/L-5549-2016 OI Moeller, Scott/0000-0002-4449-0844 FU National Institute on Drug Abuse [1R01DA023579, 1F32DA030017-01] FX This study was supported by grants from the National Institute on Drug Abuse (to RZG: 1R01DA023579; to SJM: 1F32DA030017-01). NIDA had no further role in study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication. NR 59 TC 6 Z9 6 U1 2 U2 9 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0376-8716 J9 DRUG ALCOHOL DEPEN JI Drug Alcohol Depend. PD JUN 1 PY 2013 VL 130 IS 1-3 BP 178 EP 185 DI 10.1016/j.drugalcdep.2012.11.001 PG 8 WC Substance Abuse; Psychiatry SC Substance Abuse; Psychiatry GA 154ZK UT WOS:000319715000023 PM 23218913 ER PT J AU Qu, Y Wu, S Zhao, R Zink, E Orton, DJ Moore, RJ Meng, D Clauss, TRW Aldrich, JT Lipton, MS Pasa-Tolic, L AF Qu, Yi Wu, Si Zhao, Rui Zink, Erika Orton, Daniel J. Moore, Ronald J. Meng, Da Clauss, Therese R. W. Aldrich, Joshua T. Lipton, Mary S. Pasa-Tolic, Ljiljana TI Automated immobilized metal affinity chromatography system for enrichment of Escherichia coli phosphoproteome SO ELECTROPHORESIS LA English DT Article DE Immobilized metal affinity chromatography enrichment; Phosphorylation; Proteomics ID TANDEM MASS-SPECTROMETRY; ELONGATION-FACTOR-TU; PROTEIN-PHOSPHORYLATION; BACTERIA; KINASES; DEPHOSPHORYLATION; SPECTRA; ENZYME; SITE AB Enrichment of bacterial phosphopeptides is an essential step prior to bottom-up mass spectrometry-based analysis of the phosphoproteome, which is fundamental to understanding the role of phosphoproteins in cell signaling and regulation of protein activity. We developed an automated immobilized metal affinity chromatography (IMAC) system to enrich strong cation exchange-fractionated phosphopeptides from the soluble proteome of Escherichia coli MG1655 grown on minimal medium. Initial demonstration of the system resulted in identification of 75 phosphopeptides covering 52 phosphoproteins. Consistent with previous studies, many of these phosphoproteins are involved in the carbohydrate portion of central metabolism. The automated system utilizes a large capacity IMAC column that can effectively enrich phosphopeptides from a bacterial sample by increasing peptide loading and reducing the wash time. An additional benefit of the automated IMAC system is reduced labor and associated costs. C1 [Qu, Yi; Zink, Erika; Orton, Daniel J.; Moore, Ronald J.; Clauss, Therese R. W.; Lipton, Mary S.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Wu, Si; Zhao, Rui; Aldrich, Joshua T.; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Meng, Da] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. RP Pasa-Tolic, L (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999-MS K8-98, Richland, WA 99352 USA. EM ljiljana.pasatolic@pnnl.gov RI Lipton, Mary/H-3913-2012 FU U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER) as part of the Genome Sciences Program Biofuels Scientific Focus Area project; EMSL intramural research projects; EMSL capability development projects; U.S. Department of Energy, located at Pacific Northwest National Laboratory (PNNL); Battelle Memorial Institute under DOE [DE-AC05-76RL01830] FX This research was funded by the U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER) as part of the Genome Sciences Program Biofuels Scientific Focus Area project. Portions of this work were supported by funds from EMSL intramural research projects and EMSL capability development projects. Work was performed in the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. Department of Energy, located at Pacific Northwest National Laboratory (PNNL) and operated by Battelle Memorial Institute under DOE contract DE-AC05-76RL01830. NR 37 TC 4 Z9 5 U1 2 U2 22 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0173-0835 J9 ELECTROPHORESIS JI Electrophoresis PD JUN PY 2013 VL 34 IS 11 SI SI BP 1619 EP 1626 DI 10.1002/elps.201200628 PG 8 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 157ZW UT WOS:000319939300021 PM 23494780 ER PT J AU Nuccio, EE Hodge, A Pett-Ridge, J Herman, DJ Weber, PK Firestone, MK AF Nuccio, Erin E. Hodge, Angela Pett-Ridge, Jennifer Herman, Donald J. Weber, Peter K. Firestone, Mary K. TI An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ORGANIC MATERIAL; MICROBIAL COMMUNITY; GLOMUS-INTRARADICES; PLANT-GROWTH; HOST-PLANT; HYPHAE; ROOTS; RHIZOSPHERE; MATTER; CARBON AB Arbuscular mycorrhizal fungi (AMF) perform an important ecosystem service by improving plant nutrient capture from soil, yet little is known about how AMF influence soil microbial communities during nutrient uptake. We tested whether an AMF modifies the soil microbial community and nitrogen cycling during litter decomposition. A two-chamber microcosm system was employed to create a root-free soil environment to control AMF access to 13C- and 15N-labelled root litter. Using a 16S rRNA gene microarray, we documented that approximately 10% of the bacterial community responded to the AMF, Glomus hoi. Taxa from the Firmicutes responded positively to AMF, while taxa from the Actinobacteria and Comamonadaceae responded negatively to AMF. Phylogenetic analyses indicate that AMF may influence bacterial community assembly processes. Using nanometre-scale secondary ion mass spectrometry (NanoSIMS) we visualized the location of AMF-transported 13C and 15N in plant roots. Bulk isotope ratio mass spectrometry revealed that the AMF exported 4.9% of the litter 15N to the host plant (Plantago lanceolataL.), and litter-derived 15N was preferentially exported relative to litter-derived 13C. Our results suggest that the AMF primarily took up N in the inorganic form, and N export is one mechanism by which AMF could modify the soil microbial community and decomposition processes. C1 [Nuccio, Erin E.; Herman, Donald J.; Firestone, Mary K.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hodge, Angela] Univ York, York YO10 5DD, N Yorkshire, England. [Pett-Ridge, Jennifer; Weber, Peter K.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Firestone, MK (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM mkfstone@berkeley.edu FU Underwood Fellowship (BBSRC); California Experiment Station project [6117-H]; BBSRC [BB/E016359/1]; DOE Genomic Science Program grant [FOA DE-PS02-09ER09-25, 0016377]; LLNL LDRD [10-ERD-021]; UC Laboratory Research Fees [116577]; UC TSRTP fellowship FX This work was funded by an Underwood Fellowship (BBSRC) and California Experiment Station project 6117-H to M. K. F., a BBSRC research grant BB/E016359/1 to A. H., a DOE Genomic Science Program grant (FOA DE-PS02-09ER09-25 award #0016377) to M. K. F. and J. P. R., LLNL LDRD 10-ERD-021 to J. P. R., and a UC Laboratory Research Fees grant 116577 to M. K. F. and J. P. R. E. E. N. was funded by a UC TSR&TP fellowship. We thank Alastair Fitter for comments on this manuscript, Eoin Brodie and Todd DeSantis for helpful conversations regarding microarray analyses, Yvette Piceno for microarray technical assistance, Rebecca A. Daly and David Armitage for advice regarding phylogenetic analyses, and Jeremy Bougoure for assistance with SEM imaging. NanoSIMS analyses were performed under the auspices of the US DOE at LLNL (DE-AC52-07NA27344). The authors have no conflicts of interest to declare. NR 61 TC 38 Z9 46 U1 15 U2 273 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD JUN PY 2013 VL 15 IS 6 BP 1870 EP 1881 DI 10.1111/1462-2920.12081 PG 12 WC Microbiology SC Microbiology GA 157CM UT WOS:000319873300017 PM 23360621 ER PT J AU Shakya, M Quince, C Campbell, JH Yang, ZMK Schadt, CW Podar, M AF Shakya, Migun Quince, Christopher Campbell, James H. Yang, Zamin K. Schadt, Christopher W. Podar, Mircea TI Comparative metagenomic and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID GRADIENT GEL-ELECTROPHORESIS; IN-VITRO TRANSPOSITION; RARE BIOSPHERE; PCR; GENE; AMPLIFICATION; PRIMERS; GENOMES; BIAS; SEQUENCES AB Next-generation sequencing has dramatically changed the landscape of microbial ecology, large-scale and in-depth diversity studies being now widely accessible. However, determining the accuracy of taxonomic and quantitative inferences and comparing results obtained with different approaches are complicated by incongruence of experimental and computational data types and also by lack of knowledge of the true ecological diversity. Here we used highly diverse bacterial and archaeal synthetic communities assembled from pure genomic DNAs to compare inferences from metagenomic and SSU rRNA amplicon sequencing. Both Illumina and 454 metagenomic data outperformed amplicon sequencing in quantifying the community composition, but the outcome was dependent on analysis parameters and platform. New approaches in processing and classifying amplicons can reconstruct the taxonomic composition of the community with high reproducibility within primer sets, but all tested primers sets lead to significant taxon-specific biases. Controlled synthetic communities assembled to broadly mimic the phylogenetic richness in target environments can provide important validation for fine-tuning experimental and computational parameters used to characterize natural communities. C1 [Shakya, Migun; Campbell, James H.; Yang, Zamin K.; Schadt, Christopher W.; Podar, Mircea] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Shakya, Migun; Schadt, Christopher W.; Podar, Mircea] Univ Tennessee, Genome Sci & Technol Program, Knoxville, TN USA. [Schadt, Christopher W.; Podar, Mircea] Univ Tennessee, Dept Microbiol, Knoxville, TN USA. [Quince, Christopher] Univ Glasgow, Sch Engn, Glasgow G12 8LT, Lanark, Scotland. RP Podar, M (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. EM podarm@ornl.gov RI Schadt, Christopher/B-7143-2008; OI Schadt, Christopher/0000-0001-8759-2448; Podar, Mircea/0000-0003-2776-0205 FU NIH National Human Genome Research Institute Grant [1R01HG004857-01A1]; US Department of Energy, Office of Science - Biological and Environmental Research; US Department of Energy [DE-AC05-00OR22725]; EPSRC [EP/H003851/1] FX This research was sponsored by NIH National Human Genome Research Institute Grant 1R01HG004857-01A1 and by the US Department of Energy, Office of Science - Biological and Environmental Research as part of the Plant Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. C. Q. is funded by an EPSRC Career Acceleration Fellowship EP/H003851/1. We thank our colleagues that provided us archaeal, bacterial cultures or purified gDNA for this study (Table S1). NR 69 TC 58 Z9 59 U1 5 U2 126 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD JUN PY 2013 VL 15 IS 6 BP 1882 EP 1899 DI 10.1111/1462-2920.12086 PG 18 WC Microbiology SC Microbiology GA 157CM UT WOS:000319873300018 PM 23387867 ER PT J AU Ning, FL Zhang, KN Wu, NY Zhang, L Li, G Jiang, GS Yu, YB Liu, L Qin, YH AF Ning, Fulong Zhang, Keni Wu, Nengyou Zhang, Ling Li, Gang Jiang, Guosheng Yu, Yibing Liu, Li Qin, Yinghong TI Invasion of drilling mud into gas-hydrate-bearing sediments. Part I: effect of drilling mud properties SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Downhole methods; Geomechanics; Gas and hydrate systems; Ocean drilling; Phase transitions ID GULF-OF-MEXICO; RELATIVE PERMEABILITY; THEORETICAL APPROACH; WELLBORE STABILITY; MARINE-SEDIMENTS; SHENHU AREA; WATER; DISSOCIATION; MODEL; FLUID AB To our knowledge, this study is the first to perform a numerical simulation and analysis of the dynamic behaviour of drilling mud invasion into oceanic gas-hydrate-bearing sediment (GHBS) and to consider the effects of such an invasion on borehole stability and the reliability of well logging. As a case study, the simulation background sets up the conditions of mud temperature over hydrate equilibrium temperature and overbalanced drilling, considering the first Chinese expedition to drill gas hydrate (GMGS-1). The results show that dissociating gas may fouli secondary hydrates in the sediment around borehole by the combined effects of increased pore pressure (caused by mud invasion and flow resistance), endothermic cooling that accompanies hydrate dissociation compounded by the Joule Thompson effect and the lagged effect of heat transfer in sediments. The secondary hydrate ring around the borehole may be more highly saturated than the in situ sediment. Mud invasion in GHBS is a dynamic process of thermal, fluid (mud invasion), chemical (hydrate dissociation and reformation) and mechanical couplings. All of these factors interact and influence the pore pressure, flow ability, saturation of fluid and hydrates, mechanical parameters and electrical properties of sediments around the borehole, thereby having a strong effect on borehole stability and the results of well logging. The effect is particularly clear in the borehole SH7 of GMGS-1 project. The borehole collapse and resistivity distortion were observed during practical drilling and wireline logging operations in borehole SH7 of the GMGS-1.mud density (i.e. the corresponding borehole pressure), temperature and salinity have a marked influence on the dynamics of mud invasion and on hydrate stability. Therefore, perhaps well-logging distortion caused by mud invasion, hydrate dissociation and reformation should be considered for identifying and evaluating gas hydrate reservoirs. And some suitable drilling measurements need to be adopted to reduce the risk of well-logging distortion and borehole instability. C1 [Ning, Fulong; Zhang, Ling; Jiang, Guosheng; Yu, Yibing; Liu, Li; Qin, Yinghong] China Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China. [Ning, Fulong; Wu, Nengyou; Li, Gang] Chinese Acad Sci, Guangzhou Ctr Gas Hydrate Res, Guangzhou 510640, Guangdong, Peoples R China. [Zhang, Keni] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Syst Div, Berkeley, CA 94720 USA. [Zhang, Keni] Beijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R China. RP Ning, FL (reprint author), China Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China. EM nflzx770803@163.com RI Ning, Fulong/G-4478-2010 OI Ning, Fulong/0000-0003-1236-586X FU National Natural Science Foundation of China [50704028, 40974071, U0933004]; Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences [o807s2]; Fundamental Research Funds for Central Universities [CUGL100410, 120112] FX The authors would like to thank Dr. George Moridis and Wenyue Xu for valuable suggestions regarding our models and theoretical analysis. We also sincerely thank Dr. Timothy S. Collett and M.W. Lee for kind and valuable discussions at the 7th ICGH. We also thank two anonymous reviewers for their constructive suggestions and Mrs. Valerie Dennis and Dr. Bruce Buffett as editors. This work was supported by the National Natural Science Foundation of China (Nos 50704028, 40974071, U0933004), the Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences (No. o807s2) and Fundamental Research Funds for Central Universities (No. CUGL100410 & 120112). NR 76 TC 5 Z9 6 U1 10 U2 70 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD JUN PY 2013 VL 193 IS 3 BP 1370 EP 1384 DI 10.1093/gji/ggt015 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 151TC UT WOS:000319482100022 ER PT J AU Ning, FL Wu, NY Yu, YB Zhang, KN Jiang, GS Zhang, L Sun, JX Zheng, MM AF Ning, Fulong Wu, Nengyou Yu, Yibing Zhang, Keni Jiang, Guosheng Zhang, Ling Sun, Jiaxin Zheng, Mingming TI Invasion of drilling mud into gas-hydrate-bearing sediments. Part II: Effects of geophysical properties of sediments SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Dovvnhole methods; Geomechanics; Gas and hydrate systems; Ocean drilling; Phase transitions ID ALASKA NORTH SLOPE; GULF-OF-MEXICO; STRATIGRAPHIC TEST WELL; GREEN CANYON 955; METHANE-HYDRATE; MARINE-SEDIMENTS; POROUS-MEDIA; RELATIVE PERMEABILITY; WAVE VELOCITIES; SEA-FLOOR AB This study examines the dynamic behaviour of drilling-mud invasion into gas-hydrate-bearing sediment (GHBS) and the effects of such an invasion on wellbore stability and the reliability of well logging. The effects of mud properties on mud invasion into the GHBS are detailed in Part I. Here, we discuss the effects of sediment properties on mud invasion by considering the Chinese first gas-hydrate-drilling expedition in the South China Sea and other hydrate projects. Our simulation results further show that mud-invasion coupling hydrate dissociation and reformation is the main unique characteristic observed during mud invasion in GHBS compared with conventional oil/gas sediments. The appearance of a high-saturation hydrate ring during mud-invasion process is related to not only mud density, temperature and salinity but also sediment properties. On the whole, the effective permeability and initial hydrate saturation plays a critical role in mud invasion in GHBS. The effect of initial hydrate saturation, which corresponds to effective permeability and porosity on the mud invasion in SH7 is pronounced because initial hydrate saturations vary greatly. For pore-filling GHBS without fractures, well-logging results in high-saturation hydrate intervals are more reliable and accurate than those in low-saturation hydrate intervals. The log results at the interbeds with low-saturation hydrates are easily distorted by mud invasion. C1 [Ning, Fulong; Yu, Yibing; Jiang, Guosheng; Zhang, Ling; Sun, Jiaxin; Zheng, Mingming] China Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China. [Ning, Fulong; Wu, Nengyou] Chinese Acad Sci, Guangzhou Ctr Gas Hydrate Res, Guangzhou 510640, Guangdong, Peoples R China. [Zhang, Keni] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Syst Div, Berkeley, CA 94720 USA. [Zhang, Keni] Beijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R China. RP Ning, FL (reprint author), China Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China. EM nflzx770803@163.com RI Ning, Fulong/G-4478-2010 OI Ning, Fulong/0000-0003-1236-586X FU National Natural Science Foundation of China [50704028, 40974071, U0933004]; Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences [o807s2]; Fundamental Research Funds for the Central Universities [CUGL100410, 120112] FX The authors would like to thank Dr. George Moridis and Wenyue Xu for valuable suggestions on our models and theoretical analysis. We also sincerely thank Dr. Timothy S. Collett and M.W. Lee for kind and valuable discussions at the 7th ICGH and two anonymous reviewers for their constructive suggestions and Mrs. Valerie Dennis and Dr. Bruce Buffett as editors. This work was supported by the National Natural Science Foundation of China (No. 50704028, 40974071, U0933004), the Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences (No. o807s2) and the Fundamental Research Funds for the Central Universities (No. CUGL100410& 120112). NR 79 TC 2 Z9 2 U1 9 U2 38 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X J9 GEOPHYS J INT JI Geophys. J. Int. PD JUN PY 2013 VL 193 IS 3 BP 1385 EP 1398 DI 10.1093/gji/ggt016 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 151TC UT WOS:000319482100023 ER PT J AU Um, ES Commer, M Newman, GA AF Um, Evan Schankee Commer, Michael Newman, Gregory A. TI Efficient pre-conditioned iterative solution strategies for the electromagnetic diffusion in the Earth: finite-element frequency-domain approach SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Numerical solutions; Electromagnetic theory; Marine electromagnetics ID LINEAR-SYSTEMS; SIMULATION; DIFFERENCE; INDUCTION; INVERSION; GERMANY; EXAMPLE; TRENDS; AREA; 2.5D AB We formulate a 3-D finite-element frequency-domain (FEFD) solution for electromagnetic (EM) diffusion and present efficient solution strategies. A system of FEFD equations is preconditioned by incomplete LU (ILU) and subsequently solved by the quasi-minimal residual (QMR) method. A rule of thumb for choosing an effective drop tolerance of ILU is proposed. When multiple sources are simulated in a given model, ILU is computed only once and is reused as a pre-conditioner for multiple QMR computations with different source vectors. Resulting solution vectors are also bootstrapped to reduce the number of QMR iterations required for the convergence. We demonstrate that when conductivity structures of an earth model and source frequencies are updated/perturbed, ILU that is computed from the previous model is still an effective and useful pre-conditioner for new forward modelling problems. Using the reusability of ILU, we also propose a new efficient way to overcome the slow convergence rate of the iterative FEFD solution in the static limit. We show that the reuse of ILU and solution bootstrapping serve as effective strategies for improving the computational efficiency of the iterative FEFD solution. Finally, we apply the proposed efficient solution strategies to marine EM survey scenarios in complex offshore models and further demonstrate their effectiveness. C1 [Um, Evan Schankee; Commer, Michael; Newman, Gregory A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Um, ES (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM evanum@gmail.com RI Um, Evan/E-9414-2015; Newman, Gregory/G-2813-2015; Commer, Michael/G-3350-2015 OI Commer, Michael/0000-0003-0015-9217 FU Earth Sciences Division FX This study was carried out at Lawrence Berkeley National Laboratory. Um is supported through Early Career Development Grants provided by Earth Sciences Division. The authors would like to thank Editor Mark Everett and three anonymous reviewers for providing valuable reviews and comments. NR 42 TC 18 Z9 18 U1 1 U2 16 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X J9 GEOPHYS J INT JI Geophys. J. Int. PD JUN PY 2013 VL 193 IS 3 BP 1460 EP 1473 DI 10.1093/gji/ggt071 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 151TC UT WOS:000319482100028 ER PT J AU Yirak, K Foster, JM Hartigan, P Wilde, BH Douglas, MR Paguio, R Blue, BE Martinez, D Farley, D Rosen, PA Frank, A AF Yirak, K. Foster, J. M. Hartigan, P. Wilde, B. H. Douglas, M. R. Paguio, R. Blue, B. E. Martinez, D. Farley, D. Rosen, P. A. Frank, A. TI Mach stem hysteresis: Experiments addressing a novel explanation of clumpy astrophysical jet emission SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Laboratory astrophysics; Shock wave phenomena; Warm dense matter ID EVOLUTION; SHOCKS AB Recent time-series observations of shock waves in stellar jets taken with the Hubble Space Telescope reveal localized bright knots that persist over nearly 15 years. While some of these features represent shock fronts caused by variable velocities in the flow, others appear at the intersection points between distinct bow shocks. Theoretically, when the angle between two intersecting shocks exceeds a certain critical value, a third shock (Mach stem) should form. Because Mach stems form perpendicular to the direction of flow, incoming particles encounter a normal shock instead of an oblique one, which results in brighter emission at this location. To study this phenomenon in a controlled laboratory setting, we have carried out experiments on the Omega laser aimed at understanding the formation, growth, and destruction of Mach stems in the warm dense plasma regime. Our experimental results indicate how the growth rate depends upon included angle, and numerical simulations indicate that it may be possible to stabilize an already-formed Mach stem below the critical angle when certain conditions are satisfied. Published by Elsevier B.V. C1 [Yirak, K.; Wilde, B. H.; Douglas, M. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Foster, J. M.; Rosen, P. A.] Atom Weap Estab, Reading RG7 4PR, Berks, England. [Hartigan, P.] Rice Univ, Dept Phys & Astron, Houston, TX 77521 USA. [Paguio, R.; Blue, B. E.] Gen Atom, San Diego, CA 92121 USA. [Martinez, D.; Farley, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Frank, A.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14620 USA. RP Yirak, K (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM yirak@lanl.gov FU Los Alamos National Laboratory; NNSA FX The authors wish to thank the anonymous referees for their insightful comments on an earlier draft of this manuscript. The authors gratefully acknowledge the target fabricators' craftsmanship at GA, the staff and operations team of the Omega laser facility, and the conference organizers at which this research was offered in presentation form. This work was supported by the Los Alamos National Laboratory and by the NNSA-sponsored NLUF Program for University Research. NR 23 TC 3 Z9 3 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD JUN PY 2013 VL 9 IS 2 BP 251 EP 257 DI 10.1016/j.hedp.2013.01.006 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 158EN UT WOS:000319952300004 ER PT J AU Melvin, J Rao, P Kaufman, R Lim, H Yu, Y Glimm, J Sharp, DH AF Melvin, J. Rao, P. Kaufman, R. Lim, H. Yu, Y. Glimm, J. Sharp, D. H. TI Atomic scale mixing for inertial confinement fusion associated hydro instabilities SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Hydro instabilities; Inertial confinement fusion ID FRONT TRACKING; SIMULATION; MODEL AB Hydro instabilities have been identified as a potential cause of performance degradation in inertial confinement fusion (ICF) experiments. We study instabilities associated with a single Richtmyer-Meshkov (RM) interface in a circular geometry, idealized from an ICF geometry. In an ICF application, atomic level mix, as an input to nuclear burn, is an important, but difficult to compute, variable. We find numerical convergence for this important quantity, in a purely hydro study, with only a mild dependence on the Reynolds number of the flow, in the high Reynolds number limit We also find that mixing properties show a strong sensitivity to turbulent transport parameters; this sensitivity translates into an algorithmic dependence and a nonuniqueness of solutions for nominally converged solutions. It is thus a complication to any verification and validation program. To resolve the nonuniqueness of the solution, we propose a validation program with an extrapolation component, linking turbulent transport quantities in experimental regimes to mildly perturbed turbulent transport values in ICF Reynolds number regimes. In view of the observed solution nonuniqueness, the validation program and its justification from the results presented here, has a fundamental significance. (c) 2013 Elsevier B.V. All rights reserved. C1 [Melvin, J.; Rao, P.; Kaufman, R.; Lim, H.; Yu, Y.; Glimm, J.] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Sharp, D. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Melvin, J (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. EM jmelvin@ams.sunysb.edu; glimm@ams.sunysb.edu FU Nuclear Energy University Program of the Department of Energy [NEUP-09-349]; Battelle Energy Alliance LLC [00088495]; DOE; Leland Stanford Junior University [2175022040367A]; Army Research Office [W911NF0910306]; Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357] FX This work is supported in part by the Nuclear Energy University Program of the Department of Energy, project NEUP-09-349, Battelle Energy Alliance LLC 00088495 (subaward with DOE as prime sponsor), Leland Stanford Junior University 2175022040367A (subaward with DOE as prime sponsor), Army Research Office W911NF0910306. Computational resources were provided by the Stony Brook Galaxy cluster and the Stony Brook/BNL New York Blue Gene/L IBM machine. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. David H. Sharp, Los Alamos National Laboratory, retired. We also thank the reviewers for their helpful comments and suggestions. Los Alamos National Laboratory preprint LA-UR-12-23768. Stony Brook University preprint SUNYSB-AMS-12-01. NR 31 TC 5 Z9 5 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD JUN PY 2013 VL 9 IS 2 BP 288 EP 296 DI 10.1016/j.hedp.2013.01.007 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 158EN UT WOS:000319952300010 ER PT J AU Trantham, MR Kuranz, CC Malamud, G Grosskopf, MJ Myra, ES Drake, RP Miles, AR Park, HS Remington, BA AF Trantham, M. R. Kuranz, C. C. Malamud, G. Grosskopf, M. J. Myra, E. S. Drake, R. P. Miles, A. R. Park, H. -S. Remington, B. A. TI Simulations of radiative effects on the Rayleigh-Taylor instability using the CRASH code SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Laboratory astrophysics; National Ignition Facility; Radiation hydrodynamics; Hydrodynamic instability; Radiative shocks ID INERTIAL CONFINEMENT FUSION; II SUPERNOVAE; NOVA LASER; SHOCKS; RELEVANT; SN-1987A; COLLAPSE; JETS; HYDRODYNAMICS; ASTROPHYSICS AB Future experiments at the National Ignition Facility will be able to generate diagnosable Rayleigh-Taylor instability growth in the presence of locally generated, high radiation fluxes. This interplay of radiative energy transfer and hydrodynamic instability is relevant to many astrophysical systems, such as core-collapse red supergiant supernovae. Previous simulations of high-energy-density Rayleigh-Taylor instabilities in the presence of a hot environment near a radiative shock demonstrate behavior that differs from that found in non-radiative cases. However, these simulations considered only 1D or single wavelength cases. Here we report simulations of an entire experimental system using the CRASH code. These simulations lead to modified predictions, attributed to the effects of radial energy losses. (C) 2013 Elsevier B.V. All rights reserved. C1 [Trantham, M. R.; Kuranz, C. C.; Malamud, G.; Grosskopf, M. J.; Myra, E. S.; Drake, R. P.] Univ Michigan, Ann Arbor, MI 48109 USA. [Miles, A. R.; Park, H. -S.; Remington, B. A.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Malamud, G.] Nucl Res Ctr Negev, Dept Phys, IL-84190 Beer Sheva, Israel. RP Trantham, MR (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. EM mtrantha@umich.edu RI Drake, R Paul/I-9218-2012 OI Drake, R Paul/0000-0002-5450-9844 FU Predictive Sciences Academic Alliances Program in NNSA-ASC [DEFC52-08NA28616]; NNSA-DS [DE-FG52-09NA29548]; SC-OFES [DE-FG52-09NA29548] FX This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52-08NA28616 and by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548. NR 47 TC 1 Z9 1 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD JUN PY 2013 VL 9 IS 2 BP 303 EP 308 DI 10.1016/j.hedp.2012.12.016 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 158EN UT WOS:000319952300012 ER PT J AU Keiter, PA Mussack, K Klein, SR AF Keiter, Paul A. Mussack, Katie Klein, Sallee R. TI An experimental concept to measure opacities under solar-relevant conditions SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Opacity ID ABSORPTION MEASUREMENT; CHEMICAL-COMPOSITION; PLASMA; ABUNDANCES; FOILS; HELIOSEISMOLOGY; SCATTERING; TARGETS; MODEL; IRON AB Recent solar abundance models (Asplund 2009) use a significantly lower abundance for C, N, O compared to models used roughly a decade ago. Although the models used now are much more sophisticated than before, a discrepancy still exists between the abundances in the models and the abundances determined by helioseismic measurements. Agreement can be obtained by ad hoc adjustments to the opacity of high-Z (Z > 2) elements ranging from a few percent in the solar interior to as much as 30 just below the convection zone (CZ). Although many of the opacity models are thought to agree within a few percent, a recent element-by-element study (Blancard 2012) indicates a larger disagreement between models for certain elements. Experimental opacity measurements for these elements in the regimes of interest will provide valuable information to help resolve these discrepancies. We will present an experimental platform designed to measure the opacity of C, N, and O and discuss the achievable parameter regime. We will also briefly discuss how this platform can be extended to include other high-Z elements. (C) 2013 Elsevier B.V. All rights reserved. C1 [Keiter, Paul A.; Klein, Sallee R.] Univ Michigan, Ann Arbor, MI 48105 USA. [Mussack, Katie] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Keiter, PA (reprint author), Univ Michigan, Ann Arbor, MI 48105 USA. EM pkeiter@umich.edu RI Keiter, Paul/J-3037-2013 FU NNSA-DS [DE-FG52-09NA29548]; SC-OFES [DE-FG52-09NA29548] FX We would like to thank Joe Satcher of LLNL for useful discussions concerning foams. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548. NR 44 TC 5 Z9 5 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD JUN PY 2013 VL 9 IS 2 BP 319 EP 324 DI 10.1016/j.hedp.2013.01.011 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 158EN UT WOS:000319952300015 ER PT J AU Fu, W Liang, EP Fatenejad, M Lamb, DQ Grosskopf, M Park, HS Remington, B Spitkovsky, A AF Fu, Wen Liang, Edison P. Fatenejad, Milad Lamb, Donald Q. Grosskopf, Michael Park, Hye-Sook Remington, Bruce Spitkovsky, Anatoly TI Increase of the density, temperature and velocity of plasma jets driven by a ring of high energy laser beams SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Laboratory astrophysics; Collisionless shocks; Computational modeling ID HIGH-POWER LASERS; HYDRODYNAMICS AB Supersonic plasma outflows driven by multi-beam, high-energy lasers, such as Omega and NIF, have been and will be used as platforms for a variety of laboratory astrophysics experiments. Here we propose a new way of launching high density and high velocity, plasma jets using multiple intense laser beams in a hollow ring formation. We show that such jets provide a more flexible and versatile platform for future laboratory astrophysics experiments. Using high resolution hydrodynamic simulations, we demonstrate that the collimated jets can achieve much higher density, temperature and velocity when multiple laser beams are focused to form a hollow ring pattern at the target, instead of focused onto a single spot. We carried out simulations with different ring radii and studied their effects on the jet properties. Implications for laboratory collisionless shock experiments are discussed. (C) 2013 Elsevier B.V. All rights reserved. C1 [Fu, Wen; Liang, Edison P.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Fatenejad, Milad; Lamb, Donald Q.] Univ Chicago, Flash Ctr Computat Sci, Chicago, IL 60637 USA. [Grosskopf, Michael] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Park, Hye-Sook; Remington, Bruce] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Spitkovsky, Anatoly] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Fu, W (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM Wen.Fu@rice.edu FU U.S. DOE [FWP 57789, DE-AC02-06CH11357]; NSF [CNS-0821727]; U.S. Department of Energy by Lawrence Livermore National Laboratory [B595752] FX We thank the careful review and valuable comments by an anonymous referee. This work was supported in part at the University of Chicago by the U.S. DOE through FWP 57789 under contract DE-AC02-06CH11357 to ANL. The FLASH code used in this work was developed in part by the U. S. DOE NNSA ASC- and NSF-supported Flash Center for Computational Science at the University of Chicago. Computing resource was provided by the Cyberinfrastructure for Computational Research funded by NSF under Grant CNS-0821727. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. B595752. NR 18 TC 1 Z9 1 U1 0 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD JUN PY 2013 VL 9 IS 2 BP 336 EP 340 DI 10.1016/j.hedp.2013.03.004 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 158EN UT WOS:000319952300017 ER PT J AU Dasgupta, A Clark, RW Giuliani, JL Quart, ND Jones, B Ampleford, DJ Hansen, SB AF Dasgupta, A. Clark, R. W. Giuliani, J. L. Quart, N. D. Jones, B. Ampleford, D. J. Hansen, S. B. TI K-alpha emission spectroscopic analysis from a Cu Z-pinch SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Non-LTE; Emission spectra; Z-pinch; K-alpha radiation ID DIELECTRONIC RECOMBINATION; RADIATION TRANSPORT; PLASMAS; LINE; SELENIUM; SPECTRA; PHYSICS; DENSE; FE AB Advances in diagnostic techniques at the Sandia Z-facility have facilitated the production of very detailed spectral data. In particular, data from the copper nested wire-array shot Z1975 provides a wealth of information about the implosion dynamics and ionization history of the pinch. Besides the dominant valence K- and L-shell lines in Z1975 spectra, K-alpha lines from various ionization stages were also observed. K-shell vacancies can be created from inner-shell excitation and ionization by hot electrons and from photo-ionization by high-energy photons; these vacancies are subsequently filled by Auger decay or resonance fluorescence. The latter process produces the K-alpha emission. For plasmas in collisional equilibrium, K-alpha emission usually occurs from highly charged ions due to the high electron temperatures required for appreciable excitation of the K-alpha transitions. Our simulation of Z1975 was carried out with the NRL 1-D DZAPP non-LTE radiation-hydrodynamics model, and the resulting K- and L-shell synthetic spectra are compared with measured radiation data. Our investigation will focus on K-alpha generation by both impacting electrons and photons. Synthetic K-alpha spectra will be generated either by self-consistently calculating the K-shell vacancy production in a full Z-pinch simulation, or by post-processing data from a simulation. The analysis of these K-alpha lines as well as K- and L-shell emission from valence electrons should provide quantitative information about the dynamics of the pinch plasma. Published by Elsevier B.V. C1 [Dasgupta, A.; Giuliani, J. L.; Quart, N. D.] USN, Div Plasma Phys, Res Lab, Washington, DC USA. [Clark, R. W.] Berkeley Scholars Inc, Springfield, VA USA. [Jones, B.; Ampleford, D. J.; Hansen, S. B.] Sandia Natl Labs, Albuquerque, NM USA. RP Dasgupta, A (reprint author), USN, Div Plasma Phys, Res Lab, Washington, DC USA. EM arati.dasgupta@nrl.navy.mil FU US Department of Energy/NNSA; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the US Department of Energy/NNSA. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No DE-AC04-94AL85000. NR 22 TC 5 Z9 5 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD JUN PY 2013 VL 9 IS 2 BP 347 EP 353 DI 10.1016/j.hedp.2013.03.003 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 158EN UT WOS:000319952300019 ER PT J AU Seely, JF Weber, BV Phipps, DG Pereira, NR Mosher, D Slabkowska, K Polasik, M Starosta, J Rzadkiewicz, J Hansen, S Feldman, U Hudson, LT Schumer, JW AF Seely, John F. Weber, B. V. Phipps, D. G. Pereira, N. R. Mosher, D. Slabkowska, K. Polasik, M. Starosta, J. Rzadkiewicz, J. Hansen, S. Feldman, Uri Hudson, L. T. Schumer, J. W. TI Tungsten L transition line shapes and energy shifts resulting from ionization in warm dense matter SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Warm dense matter; Ionization distribution ID LASER-PRODUCED PLASMAS; RAY; SPECTROMETER AB Spectra of the W L transitions in the energy range 8-12 keV from warm dense plasmas generated by the Naval Research Laboratory's Gamble II pulsed power machine were recorded by a newly developed high-resolution transmission-crystal X-ray spectrometer with +/-2 eV accuracy. The discharges have up to 2 MV voltage, 0.5 MA current, and produce up to 2.4 MJ/cm(-3) energy density. The plasma-filled rod pinch (PFRP) diode produces a plasma with N-e approximate to 10(22) cm(-3) and T-e approximate to 50 eV during the time of maximum X-ray emission. By analyzing the line shapes, it was determined that the L beta(2) inner-shell transition from the 4d(5/2) level was shifted to higher energy by up to 23 eV relative to nearby L beta transitions from n = 3 levels. In addition, the L beta(2) transition was significantly broader and asymmetric compared to the n = 3 transitions. The energy shift of the L beta(2) transition results from the ionization of electrons outside the 4d shell that perturbs the transition energies in the ions to higher values. The increased line width and asymmetry result from unresolved transitions from a range of ionization states up to +28. The ionization distribution was determined by comparison of the measured energy shifts and widths to calculated transition energies in W ions, and the ionization was correlated with Gamble discharge parameters such as the anode type and the high voltage delay time. This work demonstrates a new hard X-ray spectroscopic diagnostic technique for the direct measurement of the ionization distribution in warm dense plasmas of the heavy elements W through U that is independent of the other plasma parameters and does not require interpretation by hydrodynamic, atomic kinetics, and radiative simulation codes. (C) 2013 Elsevier B.V. All rights reserved. C1 [Seely, John F.; Feldman, Uri] Artep Inc, Ellicott City, MD 21042 USA. [Weber, B. V.; Phipps, D. G.; Schumer, J. W.] USN, Res Lab, Washington, DC 20375 USA. [Pereira, N. R.] Ecopulse Inc, Springeld, VA 22150 USA. [Mosher, D.] USN, Res Lab, Engil Corp, Chantilly, VA 20151 USA. [Slabkowska, K.; Polasik, M.; Starosta, J.] Nicolaus Copernicus Univ, Fac Chem, PL-87100 Torun, Poland. [Rzadkiewicz, J.] Natl Ctr Nucl Studies, PL-01497 Warsaw, Poland. [Hansen, S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hudson, L. T.] NIST, Gaithersburg, MD 20899 USA. RP Seely, JF (reprint author), Artep Inc, 2922 Excelsior Springs Ct, Ellicott City, MD 21042 USA. EM seelyjf@gmail.com RI Slabkowska, katarzyna/O-8760-2015 FU US Office of Naval Research; US Defense Threat Reduction Agency; US Department of Energy; Polish National Science Centre [2011/01/D/ST2/01286]; Polish Ministry of Science and Higher Education; Framework Programme EURATOM [FU07-CT-2007-00061] FX This work was supported by the US Office of Naval Research, US Defense Threat Reduction Agency, and the US Department of Energy. This work was also supported by the Polish National Science Centre under Grant No. 2011/01/D/ST2/01286. This work was partly financed within an international project co-funded by the Polish Ministry of Science and Higher Education from the funds for science in 2012 and the Framework Programme EURATOM within the FU07-CT-2007-00061 contract. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Certain commercial equipment, instruments, or materials are identified in this work in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose. NR 21 TC 10 Z9 10 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD JUN PY 2013 VL 9 IS 2 BP 354 EP 362 DI 10.1016/j.hedp.2013.03.005 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 158EN UT WOS:000319952300020 ER PT J AU Colgan, J Kilcrease, DP Magee, NH Armstrong, GSJ Abdallah, J Sherrill, ME Fontes, CJ Zhang, HL Hakel, P AF Colgan, J. Kilcrease, D. P. Magee, N. H., Jr. Armstrong, G. S. J. Abdallah, J., Jr. Sherrill, M. E. Fontes, C. J. Zhang, H. L. Hakel, P. TI Light element opacities from ATOMIC SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Opacities; Iron; Sun; Configuration-interaction ID FREE ABSORPTION-COEFFICIENT; STELLAR ENVELOPES; LINES; TRANSITIONS; PLASMA; SCATTERING; IONS AB We present new calculations of local-thermodynamic-equilibrium (LTE) light element opacities from the Los Alamos ATOMIC code. ATOMIC is a multi-purpose code that can generate LTE or non-LTE quantities of interest at various levels of approximation. A program of work is currently underway to compute new LTE opacity data for all elements H through Zn. New opacity tables for H through Ne are complete, and a new Fe opacity table will be available soon. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. Our opacity calculations incorporate atomic structure data computed from the CATS code, which is based on Cowan's atomic structure codes, and photoionization cross section data computed from the Los Alamos ionization code GIPPER. We make use of a new equation-of-state (EOS) model based on the chemical picture. ATOMIC incorporates some physics packages from LEDCOP and also includes additional physical processes, such as improved free-free cross sections and additional scattering mechanisms. In this report, we briefly discuss the physics improvements included in our new opacity calculations and present comparisons of our new opacities with other work for C, O, and Fe at selected conditions. (C) 2013 Elsevier B.V. All rights reserved. C1 [Colgan, J.; Kilcrease, D. P.; Magee, N. H., Jr.; Armstrong, G. S. J.; Abdallah, J., Jr.; Sherrill, M. E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Fontes, C. J.; Zhang, H. L.; Hakel, P.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. RP Colgan, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jcolgan@lanl.gov OI Colgan, James/0000-0003-1045-3858; Hakel, Peter/0000-0002-7936-4231; Kilcrease, David/0000-0002-2319-5934 FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 38 TC 22 Z9 22 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD JUN PY 2013 VL 9 IS 2 BP 369 EP 374 DI 10.1016/j.hedp.2013.03.001 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 158EN UT WOS:000319952300022 ER PT J AU Komanduri, VR Jackson, DR Williams, JT Mehrotra, AR AF Komanduri, Varada Rajan Jackson, David R. Williams, Jeffery T. Mehrotra, Amit R. TI A General Method for Designing Reduced Surface Wave Microstrip Antennas SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Antennas; microstrip antennas; mutual coupling; reduced surface wave microstrip antennas; surface waves ID PATCH ANTENNAS AB Surface-wave excitation from microstrip antennas is of major concern in many practical antenna applications. In this paper, the challenge of reducing the surface-wave excitation from microstrip antennas in a general way is addressed. The proposed approach is based on a theorem called the reduced surface wave (RSW) theorem. The RSW theorem suggests that by properly selecting the permittivity of the filling material inside the patch cavity, the patch will not excite the dominant TM0 surface-wave mode. A validation of this theorem is demonstrated here for the first time by comparing the mutual coupling between a pair of RSW antennas and a pair of conventional antennas. C1 [Komanduri, Varada Rajan] Trimble Nav Ltd, Sunnyvale, CA 94085 USA. [Jackson, David R.] Univ Houston, Dept ECE, Houston, TX 77204 USA. [Williams, Jeffery T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Mehrotra, Amit R.] Nokia Siemens Networks, Small Cells & Customer Experience Management, Sales Dev New Serv Areas, Plano, TX USA. RP Komanduri, VR (reprint author), Trimble Nav Ltd, Sunnyvale, CA 94085 USA. EM Varada_Komanduri@trimble.com; djackson@uh.edu; jtwill@sandia.gov; amit.mehrotra@nsn.com NR 17 TC 6 Z9 6 U1 0 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD JUN PY 2013 VL 61 IS 6 BP 2887 EP 2894 DI 10.1109/TAP.2013.2254441 PG 8 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 157BW UT WOS:000319871400001 ER PT J AU Malikopoulos, AA Aguilar, JP AF Malikopoulos, Andreas A. Aguilar, Juan P. TI An Optimization Framework for Driver Feedback Systems SO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS LA English DT Article DE Driver information systems; fuel economy; optimization methods; transportation; vehicle driving ID FUEL CONSUMPTION; VEHICLE; EMISSIONS; ECONOMY AB Modern vehicles have sophisticated electronic control units that can control engine operation with discretion to balance fuel economy, emissions, and power. These control units are designed for specific driving conditions (e. g., different speed profiles for highway and city driving). However, individual driving styles are different and rarely match the specific driving conditions for which the units were designed. In the research reported here, we investigate driving-style factors that have a major impact on fuel economy and construct an optimization framework to optimize individual driving styles with respect to these driving factors. In this context, we construct a set of polynomial metamodels to reflect the responses produced in fuel economy by changing the driving factors. Then, we compare the optimized driving styles to the original driving styles and evaluate the effectiveness of the optimization framework. Finally, we use this proposed framework to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in response to actual driving conditions to improve fuel efficiency. C1 [Malikopoulos, Andreas A.; Aguilar, Juan P.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Malikopoulos, AA (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. EM andreas@ornl.gov FU Oak Ridge National Laboratory; U.S. Department of Energy; [DEAC05-00OR22725] FX Manuscript received October 1, 2012; revised January 8, 2013 and February 10, 2013; accepted February 12, 2013. Date of publication March 11, 2013; date of current version May 29, 2013. This work was supported by the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the Department of Energy, through the Laboratory Directed Research and Development Program. This manuscript has been authored by UT-Battelle, LLC, under Contract DEAC05-00OR22725 with the U.S. Department of Energy. The U.S. government retains, and the publisher, by accepting the article for publication, acknowledges, that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. government purposes. The Associate Editor for this paper was S. S. Nedevschi. NR 25 TC 8 Z9 8 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1524-9050 J9 IEEE T INTELL TRANSP JI IEEE Trans. Intell. Transp. Syst. PD JUN PY 2013 VL 14 IS 2 BP 955 EP 964 DI 10.1109/TITS.2013.2248058 PG 10 WC Engineering, Civil; Engineering, Electrical & Electronic; Transportation Science & Technology SC Engineering; Transportation GA 156NK UT WOS:000319828800042 ER PT J AU Sun, CJ Xu, DB Brewe, DL Chen, JS Heald, SM Chow, GM AF Sun, C. J. Xu, D. B. Brewe, D. L. Chen, J. S. Heald, S. M. Chow, G. M. TI Investigation of Heat-Assisted Magnetic Recording Media Films in Four Dimensions SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT ASIA-PACIFIC MAGNETIC RECORDING CONFERENCE (APMRC) CY OCT 31-NOV 02, 2012 CL undefined, SINGAPORE DE FePt; heat-assisted magnetic recording; laser excitation; time resolved ID ANISOTROPY; ENERGY AB Heat-assisted magnetic recording is one of the most promising approaches to achieve extremely high density magnetic recording. A laser is used to temporarily heat the recording media film to render its switching field to become lower than the magnetic field of the writing head. After writing, the film material is cooled down to room temperature for data storage. In this dynamic writing process, the challenge is to tailor and optimize the time resolved structural/thermal/magnetic properties of the media films and their correlations during/after the laser heating. In this paper, the four dimensions of current progress in HAMR media research, i.e., structure, magnetic properties, thermal properties and time, are briefly overviewed and discussed. Their correlations are also emphasized. C1 [Sun, C. J.; Xu, D. B.; Brewe, D. L.; Heald, S. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Xu, D. B.; Chen, J. S.; Chow, G. M.] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117576, Singapore. RP Sun, CJ (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM cjsun@aps.anl.gov RI Chen, Jingsheng/D-9107-2011 FU U.S. Department of Energy-Basic Energy Sciences; NSERC; University of Washington; Canadian Light Source; U.S. DOE [DE-AC02-06CH11357]; Ministry of Education, Singapore [R-284-000-061-112]; A*STAR [R-284-000-082-305] FX PNC/XSD facilities at the Advanced Photon Source, and research at these facilities, were supported by the U.S. Department of Energy-Basic Energy Sciences, by NSERC, by the University of Washington, by the Canadian Light Source and the by Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract DE-AC02-06CH11357. Work at National University of Singapore was supported by Ministry of Education, Singapore, under Grant R-284-000-061-112, and A*STAR under Grant R-284-000-082-305. NR 20 TC 2 Z9 2 U1 2 U2 24 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD JUN PY 2013 VL 49 IS 6 BP 2510 EP 2513 DI 10.1109/TMAG.2013.2248055 PN 1 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 158NB UT WOS:000319977400017 ER PT J AU Labyed, Y Huang, LJ AF Labyed, Yassin Huang, Lianjie TI Super-Resolution Ultrasound Imaging Using a Phase-Coherent MUSIC Method With Compensation for the Phase Response of Transducer Elements SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL LA English DT Article ID MULTIPLE SIGNAL CLASSIFICATION; TIME-REVERSAL; SCATTERING; TARGETS; DECOMPOSITION; DIFFRACTION AB Time-reversal with multiple signal classification (TR-MUSIC) is an imaging method for locating point-like targets beyond the classic resolution limit. In the presence of noise, however, the super-resolution capability of TR-MUSIC is diminished. Recently a new method, phase-coherent MUSIC (PC-MUSIC), was developed. This algorithm modifies TR-MUSIC to make use of phase information from multiple frequencies to reduce noise effects and preserve the super resolution. PC-MUSIC however, ignores the phase response of the transducer elements. In this paper, we account for the phase response of the transducer elements in the derivation of the PC-MUSIC algorithm. Unfortunately, the phase response of the transducer elements may not be known beforehand. We develop an experimental method to estimate this response using measured signals scattered from a glass microsphere embedded in a tissue-mimicking phantom with a homogeneous background medium of a known sound speed. We use numerical simulations to illustrate that the maximum resolution achieved with PC-MUSIC is limited by the transducer bandwidth and the signal-to-noise ratio. We perform experiments on tissue-mimicking phantoms and compare images obtained with different imaging modalities, including X-ray mammography, synthetic-aperture ultrasound imaging, TR-MUSIC, and PC-MUSIC. We demonstrate the significantly improved resolving power of PC-MUSIC. C1 [Labyed, Yassin; Huang, Lianjie] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Labyed, Y (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM yassin@lanl.gov; ljh@lanl.gov FU Breast Cancer Research Program of the Department of Defense Congressionally Directed Medical Research Programs FX This work was supported by the Breast Cancer Research Program of the Department of Defense Congressionally Directed Medical Research Programs. NR 20 TC 8 Z9 9 U1 0 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-3010 J9 IEEE T ULTRASON FERR JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control PD JUN PY 2013 VL 60 IS 6 BP 1048 EP 1060 DI 10.1109/TUFFC.2013.2669 PG 13 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA 158RR UT WOS:000319990800002 PM 25004469 ER PT J AU Silva, GT Lopes, JH Mitri, FG AF Silva, Glauber T. Henrique Lopes, J. Mitri, Farid G. TI Off-Axial Acoustic Radiation Force of Repulsor and Tractor Bessel Beams on a Sphere SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL LA English DT Article ID NEUTRAL PARTICLES; ELASTIC SPHERE; SCATTERING; FLUID; LIGHT; MANIPULATION; EXCITATION; ULTRASOUND; RESONANCE; PRESSURE AB Acoustic Bessel beams are known to produce an axial radiation force on a sphere centered on the beam axis (on-axial configuration) that exhibits both repulsor and tractor behaviors. The repulsor and the tractor forces are oriented along the beam's direction of propagation and opposite to it, respectively. The behavior of the acoustic radiation force generated by Bessel beams when the sphere lies outside the beam's axis (off-axial configuration) is unknown. Using the 3-D radiation force formulas given in terms of the partial wave expansion coefficients for the incident and scattered waves, both axial and transverse components of the force exerted on a silicone-oil sphere are obtained for a zero-and a first-order Bessel vortex beam. As the sphere departs from the beam's axis, the tractor force becomes weaker. Moreover, the behavior of the transverse radiation force field may vary with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on ka values. These results are particularly important for the design of acoustical tractor beam devices operating with Bessel beams. C1 [Silva, Glauber T.; Henrique Lopes, J.] Univ Fed Alagoas, Inst Fis, Phys Acoust Grp GAF, Maceio, Brazil. [Mitri, Farid G.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Acoust & Sensors Technol Team, Los Alamos, NM USA. RP Silva, GT (reprint author), Univ Fed Alagoas, Inst Fis, Phys Acoust Grp GAF, Maceio, Brazil. EM glauber@pq.cnpq.br RI Silva, Glauber/B-3240-2008; Lopes, Jose Henrique/C-7725-2016 OI Silva, Glauber/0000-0001-8911-5848; FU CNPq (Brazilian agency) [306697/2010-6, 477653/2010-3] FX This work was supported by grants 306697/2010-6 and 477653/2010-3 CNPq (Brazilian agency). NR 36 TC 26 Z9 26 U1 3 U2 40 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-3010 EI 1525-8955 J9 IEEE T ULTRASON FERR JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control PD JUN PY 2013 VL 60 IS 6 BP 1207 EP 1212 DI 10.1109/TUFFC.2013.2683 PG 6 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA 158RR UT WOS:000319990800016 PM 25004483 ER PT J AU Wang, BL Lee, CW Reitz, RD Miles, PC Han, ZY AF Wang, Bao-Lin Lee, Chang-Wook Reitz, Rolf D. Miles, Paul C. Han, Zhiyu TI A generalized renormalization group turbulence model and its application to a light-duty diesel engine operating in a low-temperature combustion regime SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH LA English DT Article DE Turbulence modeling; diesel engine; low-temperature combustion; turbulent diffusion; engine emissions AB A generalized renormalization group closure model based on the dimensionality of the flow strain rate is proposed and applied to engine flows in this study. In the model, the model coefficients C-1, C-2, and C-3 are constructed as functions of the flow strain rate. Computations were made for compressing/expanding flows in a diesel engine under motoring conditions. It was found that the generalized renormalization group model performs better than the standard renormalization group k-epsilon model in terms of its predictions of turbulent kinetic energy and model length scales. Computations in a diesel engine operating under low-temperature combustion conditions were also investigated to further assess the performance of the present model. Predictions of the spatial distributions of unburned hydrocarbons were significantly improved and agreed well with available experimental images. Engine-out unburned hydrocarbon emission was predicted to be smaller with the generalized renormalization group model than with the standard renormalization group k-epsilon model. C1 [Wang, Bao-Lin; Han, Zhiyu] Hunan Univ, Res Ctr Adv Powertrain Technol, Changsha 410082, Hunan, Peoples R China. [Wang, Bao-Lin; Lee, Chang-Wook; Reitz, Rolf D.] Univ Wisconsin, Engine Res Ctr, Madison, WI 53706 USA. [Miles, Paul C.] Sandia Natl Labs, Combust Res Facil, Livermore, CA USA. RP Reitz, RD (reprint author), Univ Wisconsin, Engine Res Ctr, 1500 Engn Dr,Rm 1018A, Madison, WI 53706 USA. EM reitz@engr.wisc.edu FU Chinese Scholarship Council (CSC); National Key Technology Research and Development Program of China [2009BAG13B00]; US Department of Energy Sandia National Laboratories (SNL) FX This study was supported by the Chinese Scholarship Council (CSC) and the National Key Technology Research and Development Program (2009BAG13B00) of China. The authors acknowledge the US Department of Energy Sandia National Laboratories (SNL) for supporting the project. Valuable discussions and help from Mr Yue Wang at the Engine Research Center (ERC), University of Wisconsin-Madison are also appreciated. NR 29 TC 11 Z9 11 U1 1 U2 14 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1468-0874 J9 INT J ENGINE RES JI Int. J. Engine Res. PD JUN PY 2013 VL 14 IS 3 BP 279 EP 292 DI 10.1177/1468087412465379 PG 14 WC Thermodynamics; Engineering, Mechanical; Transportation Science & Technology SC Thermodynamics; Engineering; Transportation GA 160FV UT WOS:000320103800005 ER PT J AU Weinberger, CR Boyce, BL Battaile, CC AF Weinberger, C. R. Boyce, B. L. Battaile, C. C. TI Slip planes in bcc transition metals SO INTERNATIONAL MATERIALS REVIEWS LA English DT Review DE Dislocations; Plasticity; Slip; bcc metals; Ductility ID MOLYBDENUM SINGLE-CRYSTALS; CENTERED-CUBIC METALS; STRAIN-RATE DEPENDENCE; 1/2 111 DISLOCATIONS; HIGH-PURITY NIOBIUM; PERCENT SILICON-IRON; TENSILE FLOW-STRESS; EXTERNAL SHEAR-STRESS; FE-3 PERCENT SI; 573 DEGREES K AB Slip in face centred cubic (fcc) metals is well documented to occur on {111} planes in < 110 > directions. In body centred cubic (bcc) metals, the slip direction is also well established to be < 111 >, but it is much less clear as to the slip planes on which dislocations move. Since plasticity in metals is governed by the collective motion and interaction of dislocations, the nature of the relevant slip planes is of critical importance in understanding and modelling plasticity in bcc metals. This review attempts to address two fundamental questions regarding the slip planes in bcc metals. First, on what planes can slip, and thus crystallographic rotation, be observed to occur, i.e. what are the effective slip planes? Second, on what planes do kinks form along the dislocation lines, i.e. what are the fundamental slip planes? We review the available literature on direct and indirect characterisation of slip planes from experiments, and simulations using atomistic models. Given the technological importance of bcc transition metals, this review focuses specifically on those materials. C1 [Weinberger, C. R.; Boyce, B. L.; Battaile, C. C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Weinberger, CR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM crweinb@sandia.gov OI Weinberger, Christopher/0000-0001-9550-6992 FU US Department of Energy and National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy and National Nuclear Security Administration under contract no. DE-AC04-94AL85000. NR 205 TC 27 Z9 27 U1 5 U2 82 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0950-6608 EI 1743-2804 J9 INT MATER REV JI Int. Mater. Rev. PD JUN PY 2013 VL 58 IS 5 BP 296 EP 314 DI 10.1179/1743280412Y.0000000015 PG 19 WC Materials Science, Multidisciplinary SC Materials Science GA 156IJ UT WOS:000319815000003 ER PT J AU Jones, AD Collins, WD Edmonds, J Torn, MS Janetos, A Calvin, KV Thomson, A Chini, LP Mao, JF Shi, XY Thornton, P Hurtt, GC Wise, M AF Jones, Andrew D. Collins, William D. Edmonds, James Torn, Margaret S. Janetos, Anthony Calvin, Katherine V. Thomson, Allison Chini, Louise P. Mao, Jiafu Shi, Xiaoying Thornton, Peter Hurtt, George C. Wise, Marshall TI Greenhouse Gas Policy Influences Climate via Direct Effects of Land-Use Change SO JOURNAL OF CLIMATE LA English DT Article ID COVER CHANGE; SYSTEM MODEL; WOOD-HARVEST; TROPICAL DEFORESTATION; SECONDARY LANDS; FUTURE CLIMATES; USE TRANSITIONS; GLOBAL CLIMATE; SCENARIOS; IMPACTS AB Proposed climate mitigation measures do not account for direct biophysical climate impacts of land-use change (LUC), nor do the stabilization targets modeled for phase 5 of the Coupled Model Intercomparison Project (CMIP5) representative concentration pathways (RCPs). To examine the significance of such effects on global and regional patterns of climate change, a baseline and an alternative scenario of future anthropogenic activity are simulated within the Integrated Earth System Model, which couples the Global Change Assessment Model, Global Land-Use Model, and Community Earth System Model. The alternative scenario has high biofuel utilization and approximately 50% less global forest cover than the baseline, standard RCP4.5 scenario. Both scenarios stabilize radiative forcing from atmospheric constituents at 4.5 W m(-2) by 2100. Thus, differences between their climate predictions quantify the biophysical effects of LUC. Offline radiative transfer and land model simulations are also utilized to identify forcing and feedback mechanisms driving the coupled response. Boreal deforestation is found to strongly influence climate because of increased albedo coupled with a regional-scale water vapor feedback. Globally, the alternative scenario yields a twenty-first-century warming trend that is 0.5 degrees C cooler than baseline, driven by a 1 W m(-2) mean decrease in radiative forcing that is distributed unevenly around the globe. Some regions are cooler in the alternative scenario than in 2005. These results demonstrate that neither climate change nor actual radiative forcing is uniquely related to atmospheric forcing targets such as those found in the RCPs but rather depend on particulars of the socioeconomic pathways followed to meet each target. C1 [Jones, Andrew D.; Collins, William D.; Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Jones, Andrew D.; Collins, William D.; Torn, Margaret S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Edmonds, James; Janetos, Anthony; Calvin, Katherine V.; Thomson, Allison; Wise, Marshall] Pacific NW Natl Lab, College Pk, MD USA. [Edmonds, James; Janetos, Anthony; Calvin, Katherine V.; Thomson, Allison; Wise, Marshall] Joint Global Change Res Inst, College Pk, MD USA. [Mao, Jiafu; Shi, Xiaoying; Thornton, Peter] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Chini, Louise P.; Hurtt, George C.] Univ Maryland, College Pk, MD 20742 USA. RP Jones, AD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 74-0171, Berkeley, CA 94720 USA. EM adjones@lbl.gov RI Thomson, Allison/B-1254-2010; Jones, Andrew/M-4363-2013; Collins, William/J-3147-2014; Torn, Margaret/D-2305-2015; Thornton, Peter/B-9145-2012; Mao, Jiafu/B-9689-2012 OI Calvin, Katherine/0000-0003-2191-4189; Jones, Andrew/0000-0002-1913-7870; Collins, William/0000-0002-4463-9848; Thornton, Peter/0000-0002-4759-5158; Mao, Jiafu/0000-0002-2050-7373 FU Office of Science, Office of Biological and Environmental Research, Climate Change Research Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation; Office of Science (Biological and Environmental Research) of the U.S. Department of Energy FX This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, Climate Change Research Division, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. In addition, this research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231. The CESM project is supported by the National Science Foundation and the Office of Science (Biological and Environmental Research) of the U.S. Department of Energy. NR 48 TC 24 Z9 24 U1 2 U2 54 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUN PY 2013 VL 26 IS 11 BP 3657 EP 3670 DI 10.1175/JCLI-D-12-00377.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 155HT UT WOS:000319739300011 ER PT J AU Jiang, XY Rauscher, SA Ringler, TD Lawrence, DM Williams, AP Allen, CD Steiner, AL Cai, DM McDowell, NG AF Jiang, Xiaoyan Rauscher, Sara A. Ringler, Todd D. Lawrence, David M. Williams, A. Park Allen, Craig D. Steiner, Allison L. Cai, D. Michael McDowell, Nate G. TI Projected Future Changes in Vegetation in Western North America in the Twenty-First Century SO JOURNAL OF CLIMATE LA English DT Article ID CHANGE-TYPE DROUGHT; CLIMATE-CHANGE; UNITED-STATES; GLOBAL VEGETATION; DYNAMIC VEGETATION; CARBON-CYCLE; NATURAL DISTURBANCES; PRIMARY PRODUCTIVITY; MOUNTAIN SNOWPACK; FIRE DISTURBANCE AB Rapid and broad-scale forest mortality associated with recent droughts, rising temperature, and insect outbreaks has been observed over western North America (NA). Climate models project additional future warming and increasing drought and water stress for this region. To assess future potential changes in vegetation distributions in western NA, the Community Earth System Model (CESM) coupled with its Dynamic Global Vegetation Model (DGVM) was used under the future A2 emissions scenario. To better span uncertainties in future climate, eight sea surface temperature (SST) projections provided by phase 3 of the Coupled Model Intercomparison Project (CMIP3) were employed as boundary conditions. There is a broad consensus among the simulations, despite differences in the simulated climate trajectories across the ensemble, that about half of the needleleaf evergreen tree coverage (from 24% to 11%) will disappear, coincident with a 14% (from 11% to 25%) increase in shrubs and grasses by the end of the twenty-first century in western NA, with most of the change occurring over the latter half of the twenty-first century. The net impact is a similar to 6 GtC or about 50% decrease in projected ecosystem carbon storage in this region. The findings suggest a potential for a widespread shift from tree-dominated landscapes to shrub and grass-dominated landscapes in western NA because of future warming and consequent increases in water deficits. These results highlight the need for improved process-based understanding of vegetation dynamics, particularly including mortality and the subsequent incorporation of these mechanisms into earth system models to better quantify the vulnerability of western NA forests under climate change. C1 [Jiang, Xiaoyan; Rauscher, Sara A.; Ringler, Todd D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Lawrence, David M.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Williams, A. Park; McDowell, Nate G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Allen, Craig D.] US Geol Survey, Ft Collins Sci Ctr, Jemez Mt Field Stn, Los Alamos, NM USA. [Steiner, Allison L.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Cai, D. Michael] Los Alamos Natl Lab, Space Data Syst Grp, Los Alamos, NM USA. RP Jiang, XY (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. EM xjiang@ucar.edu RI Steiner, Allison/F-4942-2011; Lawrence, David/C-4026-2011; Williams, Park/B-8214-2016 OI Lawrence, David/0000-0002-2968-3023; Williams, Park/0000-0001-8176-8166 FU Los Alamos National Laboratory LDRD; DOE Office of Science (BER); National Science Foundation FX We thank A. T. Hoang and S. Levis for their help on obtaining CMIP3 data and CLM4 initial data files. Los Alamos National Laboratory LDRD and DOE Office of Science (BER) provided funding for this project. The National Center for Atmospheric Research (NCAR) is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. NR 102 TC 32 Z9 34 U1 3 U2 83 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUN PY 2013 VL 26 IS 11 BP 3671 EP 3687 DI 10.1175/JCLI-D-12-00430.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 155HT UT WOS:000319739300012 ER PT J AU De Boer, RJ Perelson, AS AF De Boer, Rob J. Perelson, Alan S. TI Antigen-Stimulated CD4 T Cell Expansion Can Be Limited by Their Grazing of Peptide-MHC Complexes SO JOURNAL OF IMMUNOLOGY LA English DT Article ID IN-VIVO; PRECURSOR FREQUENCY; VIRUS-INFECTION; CUTTING EDGE; CLASS-II; PROLIFERATION; COMPETITION; DIFFERENTIATION; AFFINITY; MEMORY AB It was recently shown that the expansion of CD4(+) T cells during a primary immune reaction to a peptide from cytochrome c decreases similar to 0.5 log for every log increase in the number of cognate precursor cells, and that this remains valid over more than four orders of magnitude (Quiel et al. 2011. Proc. Natl. Acad. Sci. USA. 108: 3312-3317). This observed "power law" was explained by a mechanism where nondividing mature T cells inhibit the proliferation of less-differentiated cells of the same specificity. In this article, we interpret the same data by a mechanism where CD4(+) T cells acquire cognate peptide-MHC (pMHC) complexes from the surface of APCs, thereby increasing the loss rate of pMHC. We show that a mathematical model implementing this "T cell grazing" mechanism, and having a T cell proliferation rate that is determined by the concentration of pMHC, explains the data equally well. As a consequence, the data no longer unequivocally support the previous explanation, and the increased loss of pMHC complexes on APCs at high T cell densities is an equally valid interpretation of this striking data. C1 [De Boer, Rob J.] Univ Utrecht, NL-3584 CH Utrecht, Netherlands. [De Boer, Rob J.; Perelson, Alan S.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Perelson, Alan S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP De Boer, RJ (reprint author), Univ Utrecht, Padualaan 8, NL-3584 CH Utrecht, Netherlands. EM r.j.deboer@uu.nl RI De Boer, Rob/B-6050-2011 OI De Boer, Rob/0000-0002-2130-691X FU U.S. Department of Energy [DE-AC52-06NA25396]; National Institutes of Health [AI028433, OD011095, P01-AI071195, P20-GM103452, HHSN272201000055C]; National Science Foundation [NSF PHY11-25915] FX This work was supported by U.S. Department of Energy Contract DE-AC52-06NA25396; National Institutes of Health Grants AI028433, OD011095, P01-AI071195, and P20-GM103452, and Contract HHSN272201000055C (to A.S.P); and National Science Foundation Grant NSF PHY11-25915. NR 36 TC 1 Z9 1 U1 1 U2 4 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 J9 J IMMUNOL JI J. Immunol. PD JUN 1 PY 2013 VL 190 IS 11 BP 5454 EP 5458 DI 10.4049/jimmunol.1203569 PG 5 WC Immunology SC Immunology GA 147XY UT WOS:000319205900016 PM 23606541 ER PT J AU Czaplewski, DA Nordquist, CD Patrizi, GA Kraus, GM Cowan, WD AF Czaplewski, David A. Nordquist, Christopher D. Patrizi, Gary A. Kraus, Garth M. Cowan, William D. TI RF MEMS Switches With RuO2-Au Contacts Cycled to 10 Billion Cycles SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE Contact evolution; electrical contacts; friction polymer; gold; microelectromechanical systems (MEMS); relay; RF MEMS; ruthenium; ruthenium oxide; switch; wear ID METAL CONTACTS; TECHNOLOGY; STABILITY; ACTUATION; SYSTEMS; RELAYS AB We present improvements in RF microelectromechanical switch design and fabrication that demonstrated improved lifetimes in cycled switches. First, implementation of RuO2-Au contact metallurgy into an existing design showed improved switch lifetime over switches with Pt-Au, Ir-Au, and Au-Au contacts. Second, the switch design was changed to reduce impact upon switch closure, and the fabrication process was changed to avoid the use of polymer sacrificial materials while including the RuO2-Au contact metallurgy. Switches with the new design were cycled to 10 billion cycles with a resistance less than 4 Omega, an insertion loss of 0.4 dB, and an isolation of 28.0 dB at 10 GHz. We propose that the catalytic behavior of the RuO2 film prevents or delays the failure of the switches due to accumulation of carbon at the contacts. Additionally, the reduced impact upon closure prevented significant contact evolution during cycling. C1 [Czaplewski, David A.; Nordquist, Christopher D.; Patrizi, Gary A.; Kraus, Garth M.; Cowan, William D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Czaplewski, DA (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. EM dczaplewski@anl.gov; cdnordq@sandia.gov; gapatri@sandia.gov; gmkraus@sandia.gov; wdcowan@sandia.gov FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This paper was created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive irrevocable worldwide license in this paper to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The MEMS switches were fabricated and characterized in the Sandia MESA facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Subject Editor C. T.-C. Nguyen. NR 42 TC 16 Z9 16 U1 2 U2 38 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7157 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD JUN PY 2013 VL 22 IS 3 BP 655 EP 661 DI 10.1109/JMEMS.2013.2239256 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 156MZ UT WOS:000319827700016 ER PT J AU Suter, JD Hohimer, CJ Fricke, JM Christ, J Kim, H Evans, AT AF Suter, Jonathan D. Hohimer, Cameron J. Fricke, Jacob M. Christ, Josef Kim, Hanseup Evans, Allan T. TI Principles of Meniscus-Based MEMS Gas or Liquid Pressure Sensors SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE Capacitive sensing; microfabrication; microfluidics; pressure sensors ID CAPILLARY; DESIGN AB Pressure sensing using a trapped-gas volume-liquid meniscus interface offers several advantages over other micro-electromechanical systems technologies for certain applications, including the potential for smaller footprints, harsh environment survivability, simple CMOS integration, and ease of fabrication. The small effective hydraulic diameter of microchannels can be exploited to produce gas/liquid interfaces that create menisci used to trap gas in sealed chambers. The pressure is monitored by optically or electronically measuring the displacement of the meniscus which behaves according to gas laws. This paper reports on the theory and realization of several fundamental concepts for this type of sensor, including the autocalibration of meniscus forces regardless of the sensor material or liquid; electrode integration for electronic interrogation in addition to optical measurements; simple repeatable manufacturing; and long-term drift. Hundreds of sensor devices were fabricated from silicon and glass and demonstrated positive pressure sensitivities of 42.5 mu m/kPa near atmospheric pressure. C1 [Suter, Jonathan D.; Hohimer, Cameron J.; Fricke, Jacob M.; Christ, Josef; Evans, Allan T.] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. [Kim, Hanseup] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA. RP Suter, JD (reprint author), Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. EM jonathan.suter@pnnl.gov; cameron.hohimer@pnnl.gov; jacob.fricke@pnnl.gov; josef.f.christ@pnnl.gov; hanseup@eng.utah.edu; allan.evans@pnnl.gov OI Suter, Jonathan/0000-0001-5709-6988 FU Department of Energy's Office of Biological and Environmental Research FX The authors would like to thank Dr. R. Kelly for the assistance with the fabrication. A portion of the research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. NR 32 TC 4 Z9 4 U1 0 U2 46 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7157 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD JUN PY 2013 VL 22 IS 3 BP 670 EP 677 DI 10.1109/JMEMS.2013.2239258 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 156MZ UT WOS:000319827700018 ER PT J AU Usov, IO Dickerson, RM Dickerson, PO Hawley, ME Byler, DD McClellan, KJ AF Usov, I. O. Dickerson, R. M. Dickerson, P. O. Hawley, M. E. Byler, D. D. McClellan, K. J. TI Thin uranium dioxide films with embedded xenon SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID GAS-RELEASE; UO2; KRYPTON; FUEL; TEM; PRECIPITATION; TEMPERATURE; DIFFUSION; CRYSTALS; BEHAVIOR AB The ion beam assisted deposition (IBAD) method was applied as a means to incorporate Xe atoms into UO2 films to fabricate reference samples that are representative of an irradiated nuclear fuel without an actual reactor irradiation. The characterization of Xe content and the films microstructure was performed using Rutherford backscattering spectroscopy (RBS), atomic force microscopy (AFM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDXS). A set of UO2 films with excellent control of Xe content ranging from similar to 1.0 to 4.0 at.% was fabricated. The thin UO2(Xe) films deposited on single crystalline 4H-S1C substrates were found to be composed primarily of randomly oriented nanocrystalline grains and a small fraction of amorphous material. TEM analysis detected no Xe-filled bubbles at a scale of 2.5 nm or larger. (C) 2013 Elsevier B.V. All rights reserved. C1 [Usov, I. O.; Dickerson, R. M.; Dickerson, P. O.; Hawley, M. E.; Byler, D. D.; McClellan, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Usov, IO (reprint author), Los Alamos Natl Lab, Mailstop E549, Los Alamos, NM 87545 USA. EM iusov@lanl.gov FU US Department of Energy Advanced Fuel Cycle Campaign and Fuel Cycle RD Program FX This work was supported by the US Department of Energy Advanced Fuel Cycle Campaign and Fuel Cycle R&D Program. RBS analysis was performed at the Ion Beam Materials Laboratory (IBML), AFM analysis was performed at the Surface Probe Microscopy Laboratory (SPML) and TEM analysis was performed at the Electron Microscopy Laboratory (EML) at LANL. The authors would like to thank J. Tesmer and Y. Wang from the IBML facility for their technical assistance. NR 25 TC 1 Z9 1 U1 0 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN PY 2013 VL 437 IS 1-3 BP 1 EP 5 DI 10.1016/j.jnucmat.2013.01.304 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 147MR UT WOS:000319172200001 ER PT J AU Selby, AP Xu, DH Juslin, N Capps, NA Wirth, BD AF Selby, Aaron P. Xu, Donghua Juslin, Niklas Capps, Nathan A. Wirth, Brian D. TI Primary defect production by high energy displacement cascades in molybdenum SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID COMPUTER-SIMULATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; ALPHA-IRON; FE; IRRADIATION; EVOLUTION AB We report molecular dynamics simulations of primary damage in molybdenum produced by high energy displacement cascades on the femto- to pico-second and Angstrom to nanometer scales. Clustering directly occurred for both interstitials and vacancies in the 1-50 keV cascade energy range explored. Point defect survival efficiency and partitioning probabilities into different sized clusters were quantified. The results will provide an important reference for kinetic models to describe the microstructural evolution in Mo under ion or neutron irradiations over much longer time and length scales. (C) 2013 Elsevier B.V. All rights reserved. C1 [Selby, Aaron P.; Xu, Donghua; Juslin, Niklas; Capps, Nathan A.; Wirth, Brian D.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Wirth, Brian D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Xu, DH (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM xudh@utk.edu RI Wirth, Brian/O-4878-2015 OI Wirth, Brian/0000-0002-0395-0285 FU U.S. Department of Energy, Office of Fusion Energy Sciences [DOE-DE-5C0006661]; U.S. Department of Energy, Office of Nuclear Energy's Nuclear Energy University Programs (NEUP) FX We acknowledge support by the U.S. Department of Energy, Office of Fusion Energy Sciences under Grant DOE-DE-5C0006661 and the U.S. Department of Energy, Office of Nuclear Energy's Nuclear Energy University Programs (NEUP). NR 24 TC 6 Z9 6 U1 1 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN PY 2013 VL 437 IS 1-3 BP 19 EP 23 DI 10.1016/j.jnucmat.2013.01.332 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 147MR UT WOS:000319172200004 ER PT J AU Kim, YS Hofman, GL Cheon, JS Robinson, AB Wachs, DM AF Kim, Yeon Soo Hofman, G. L. Cheon, J. S. Robinson, A. B. Wachs, D. M. TI Fission induced swelling and creep of U-Mo alloy fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID IRRADIATION; URANIUM AB Tapering of U-Mo alloy fuel at the end of plates is attributed to lateral mass transfer by fission induced creep, by which fuel mass is relocated away from the fuel end region where fission product induced fuel swelling is in fact the highest. This mechanism permits U-Mo fuel to achieve high burnup by effectively relieving stresses at the fuel end region, where peak stresses are otherwise expected because peak fission product induced fuel swelling occurs there. ABAQUS FEA was employed to examine whether the observed phenomenon can be simulated using physical-mechanical data available in the literature. The simulation results obtained for several plates with different fuel fabrication and loading scheme showed that the measured data were able to be simulated with a reasonable creep rate coefficient. The obtained creep rate constant lies between values for pure uranium and MOX, and is greater than all other ceramic uranium fuels. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kim, Yeon Soo; Hofman, G. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cheon, J. S.] Korea Atom Energy Res Inst, Taejon 305353, South Korea. [Robinson, A. B.; Wachs, D. M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Kim, YS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yskim@anl.gov FU U.S. Department of Energy, Office of Global Threat Reduction (NA-21), National Nuclear Security Administration [DE-AC-02-06CH11357]; Department of Energy; Argonne National Laboratory [DE-AC-02-06CH11357] FX The authors would like to thank Mrs. C. Clark, G. Moore, and J. Jue for the fabrication of the plates used in this work. The operations staff at ATR is also acknowledged for the irradiation tests. The physics data available by Dr. G. Chang and Ms. M. Lillo are also appreciated. One of the authors (Y.S. Kim) thanks Mr. Y.S. Choo of KAERI for the measurement of pore sizes used in Fig. 6 and Ms. S.H. Kim for the review of the manuscript. This work was supported by the U.S. Department of Energy, Office of Global Threat Reduction (NA-21), National Nuclear Security Administration, under Contract No. DE-AC-02-06CH11357 between UChicago Argonne, LLC and the Department of Energy.; The submitted manuscript has been created by the UChicago Argonne, LCC as Operator of Argonne National Laboratory under contract No. DE-AC-02-06CH11357 between the UChicago Argonne, LLC and the Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 23 TC 16 Z9 16 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN PY 2013 VL 437 IS 1-3 BP 37 EP 46 DI 10.1016/j.jnucmat.2013.01.346 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 147MR UT WOS:000319172200007 ER PT J AU Wang, CM Kaspar, TC Shutthanandan, V Joly, AG Kovarik, L Arey, BW Gu, M Devaraj, A Wirth, BD Kurtz, RJ AF Wang, Chong-Min Kaspar, Tiffany C. Shutthanandan, Vaithiyalingam Joly, Alan G. Kovarik, Libor Arey, Bruce W. Gu, Meng Devaraj, Arun Wirth, Brian D. Kurtz, Richard J. TI Structure and radiation damage behavior of epitaxial CrxMo1-x alloy thin films on MgO SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RELEVANT HE/DPA RATIOS; ATOMIC-STRUCTURE; NB-AL2O3 INTERFACES; MISFIT DISLOCATIONS; POINT-DEFECTS; DPA RATES; IRRADIATION; COMPOSITES; TRANSPORT; HELIUM AB Phenomena related to the interaction of point defects and dopants with grain boundaries and interfaces have been very well documented. However, a quantitative understanding of such an interaction is still missing. In this paper we explore the correlation between radiation damage and interface structure. In doing so, CrxMo1-x, (001) films of thickness similar to 100 nm were epitaxially grown on MgO (001) using molecular beam epitaxy. The interface dislocation density can be systematically varied by controlling the composition of the film. This system allows us to probe the response of the defects generated during the irradiation to the interface dislocation density. The microstructural features of these films before and after irradiation are carefully studied using high resolution scanning/transmission electron microscopy and electron diffraction. It has been found that the film/substrate system is very resistant to ion-induced irradiation damage. No visible point defect clusters, dislocation network or amorphization has been identified, which is contrasted with other materials of either metallic or ionic bonding. In combination with RBS analysis, we conclude that the defects in the present system appear to be very mobile and were annihilated during the irradiation process. (C) 2013 Elsevier B.V. All rights reserved. C1 [Wang, Chong-Min; Shutthanandan, Vaithiyalingam; Kovarik, Libor; Arey, Bruce W.; Gu, Meng; Devaraj, Arun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Kaspar, Tiffany C.; Joly, Alan G.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. [Wirth, Brian D.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Kurtz, Richard J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Wang, CM (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. EM chongmin.wang@pnnl.gov RI Wirth, Brian/O-4878-2015; Gu, Meng/B-8258-2013; Kovarik, Libor/L-7139-2016 OI Wirth, Brian/0000-0002-0395-0285; FU US Department of Energy (DOE), Office of Basic Energy Sciences; US DOE Office of Biological and Environmental Research; Battelle Memorial Institute for the US DOE [DE-AC 06-76RLO 1830] FX This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences. The experiments were carried out at the Environmental Molecular Sciences Laboratory (EMSL), a National Scientific User Facility located at Pacific Northwest National Laboratory (PNNL) and supported by the US DOE Office of Biological and Environmental Research. PNNL is operated by Battelle Memorial Institute for the US DOE under Contract DE-AC 06-76RLO 1830. NR 35 TC 2 Z9 2 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN PY 2013 VL 437 IS 1-3 BP 55 EP 61 DI 10.1016/j.jnucmat.2013.01.345 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 147MR UT WOS:000319172200009 ER PT J AU Tan, L Busby, JT Chichester, HJM Sridharan, K Allen, TR AF Tan, L. Busby, J. T. Chichester, H. J. M. Sridharan, K. Allen, T. R. TI Thermomechanical treatment for improved neutron irradiation resistance of austenitic alloy (Fe-21Cr-32Ni) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID BOUNDARY; 800H; MICROSTRUCTURE; BEHAVIOR AB An optimized thermomechanical treatment (TMT) applied to austenitic alloy 800H (Fe-21Cr-32Ni) had shown significant improvements in corrosion resistance and basic mechanical properties. This study examined its effect on radiation resistance by irradiating both the solution-annealed (SA) and TMT samples at 500 degrees C for 3 dpa. Microstructural characterization using transmission electron microscopy revealed that the radiation-induced Frank loops, voids, and gamma'-Ni-3(Ti,Al) precipitates had similar sizes between the SA and TMT samples. The amounts of radiation-induced defects and more significantly 7' precipitates, however, were reduced in the TMT samples. These reductions would approximately reduce by 40.9% the radiation hardening compared to the SA samples. This study indicates that optimized-TMT is an economical approach for effective overall property improvements. (C) 2013 Elsevier B.V. All rights reserved. C1 [Tan, L.; Busby, J. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Chichester, H. J. M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Sridharan, K.; Allen, T. R.] Univ Wisconsin, Madison, WI 53706 USA. RP Tan, L (reprint author), 1 Bethel Valley Rd,POB 2008,MS-6151, Oak Ridge, TN 37831 USA. EM tanl@ornl.gov RI Tan, Lizhen/A-7886-2009; OI Tan, Lizhen/0000-0002-3418-2450; Allen, Todd/0000-0002-2372-7259 FU U.S. Department of Energy (DOE), Office of Nuclear Energy [DE-AC05-000R22725]; ORNL's Shared Research Equipment (ShaRE) User Facility; Office of Basic Energy Sciences, U.S. DOE; Battelle, LLC FX This research was sponsored by the U.S. Department of Energy (DOE), Office of Nuclear Energy, under contract DE-AC05-000R22725 with UT-Battelle, LLC. Research supported in part by ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, U.S. DOE. NR 18 TC 4 Z9 4 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN PY 2013 VL 437 IS 1-3 BP 70 EP 74 DI 10.1016/j.jnucmat.2013.01.333 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 147MR UT WOS:000319172200012 ER PT J AU Miller, MK Powers, KA Nanstad, RK Efsing, P AF Miller, M. K. Powers, K. A. Nanstad, R. K. Efsing, P. TI Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PRESSURE-VESSEL STEELS; NEUTRON-IRRADIATION; EVOLUTION AB The Ringhals Units 3 and 4 reactors in Sweden are pressurized water reactors (PWRs) designed and supplied by Westinghouse Electric Company, with commercial operation in 1981 and 1983, respectively. The reactor pressure vessels (RPVs) for both reactors were fabricated with ring forgings of SA 508 class 2 steel. Surveillance blocks for both units were fabricated using the same weld wire heat, welding procedures, and base metals used for the RPVs. The primary interest in these weld metals is because they have very high nickel contents, with 1.58 and 1.66 wt.% for Unit 3 and Unit 4, respectively. The nickel content in Unit 4 is the highest reported nickel content for any Westinghouse PWR. Although both welds contain less than 0.10 wt.% copper, the weld metals have exhibited high irradiation-induced Charpy 41-J transition temperature shifts in surveillance testing. The Charpy impact 41-J shifts and corresponding fluences are 192 degrees C at 5.0 x 10(23) n/m(2) (>1 MeV) for Unit 3 and 162 degrees C at 6.0 x 10(23) n/m(2) (>1 MeV) for Unit 4. These relatively low-copper, high-nickel, radiation-sensitive welds relate to the issue of so-called late-blooming nickel-manganese-silicon phases. Atom probe tomography measurements have revealed similar to 2 nm-diameter irradiation-induced precipitates containing manganese, nickel, and silicon, with phosphorus evident in some of the precipitates. However, only a relatively few number of copper atoms are contained within the precipitates. The larger increase in the transition temperature shift in the higher copper weld metal from the Ringhals R3 Unit is associated with copper-enriched regions within the manganese-nickel-silicon-enriched precipitates rather than changes in their size or number density. (C) 2013 Elsevier B.V. All rights reserved. C1 [Miller, M. K.; Powers, K. A.; Nanstad, R. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Efsing, P.] Vattenfall Ringhals AB, Varobacka, Sweden. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM millermk@ornl.gov FU Light-Water Reactor Sustainability Program of the Office of Nuclear Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; United States Government [DE-AC05-000R22725]; United States Department of Energy FX Research on this topic at Oak Ridge National Laboratory was sponsored by the Light-Water Reactor Sustainability Program of the Office of Nuclear Energy. Atom probe tomography research (MKM, KAP) at Oak Ridge National Laboratory's ShaRE User Facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.; This submission was sponsored by a contractor of the United States Government under contract DE-AC05-000R22725 with the United States Department of Energy. The United States Government retains, and the publisher, by accepting this submission for publication, acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this submission, or allow others to do so, for United States Government purposes. NR 22 TC 19 Z9 19 U1 1 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN PY 2013 VL 437 IS 1-3 BP 107 EP 115 DI 10.1016/j.jnucmat.2013.01.312 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 147MR UT WOS:000319172200018 ER PT J AU Terrani, KA Silva, CM Kiggans, JO Cai, Z Shin, D Snead, L AF Terrani, K. A. Silva, C. M. Kiggans, J. O. Cai, Z. Shin, D. Snead, Ll. TI In situ ceramic layer growth on coated fuel particles dispersed in a zirconium metal matrix SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CARBON; DIFFUSION; SYSTEM AB The extent and nature of the chemical interaction between the outermost coating layer of coated fuel particles embedded in zirconium metal during fabrication of metal matrix microencapsulated fuels were examined. Various particles with outermost coating layers of pyrocarbon, SiC, and ZrC have been investigated in this study. ZrC-Zr interaction was the least substantial, while the PyC-Zr reaction can be exploited to produce a ZrC layer at the interface in an in situ manner. The thickness of the ZrC layer in the latter case can be controlled by adjusting the time and temperature during processing. The kinetics of ZrC layer growth is significantly faster from what is predicted using literature carbon diffusivity data in ZrC. SiC-Zr interaction is more complex and results in formation of various chemical phases in a layered aggregate morphology at the interface. Published by Elsevier B.V. C1 [Terrani, K. A.; Silva, C. M.] Oak Ridge Natl Lab, Fuel Cycle & Isotopes Div, Oak Ridge, TN 37831 USA. [Kiggans, J. O.; Shin, D.; Snead, Ll.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Cai, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Terrani, KA (reprint author), Oak Ridge Natl Lab, Fuel Cycle & Isotopes Div, Oak Ridge, TN 37831 USA. EM terranika@ornl.gov RI Shin, Dongwon/C-6519-2008; kiggans, james/E-1588-2017 OI Shin, Dongwon/0000-0002-5797-3423; kiggans, james/0000-0001-5056-665X FU U.S. Department of Energy, Office of Basic Energy Sciences; ORNL's Shared Research Equipment (ShaRE) User Facility [JEOL6500]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Advanced Fuels Campaign of the Fuel Cycle R&D program in the Office of Nuclear Energy, US Department of Energy; Laboratory Directed RD funds at ORNL FX The aid and technical insight of Eliot Specht and Theodore Besmann at ORNL is gratefully acknowledged. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Basic Energy Sciences. The JEOL6500 FEG SEM was supported by ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The work presented in this paper was also partially supported by the Advanced Fuels Campaign of the Fuel Cycle R&D program in the Office of Nuclear Energy, US Department of Energy and Laboratory Directed R&D funds at ORNL. NR 17 TC 1 Z9 1 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN PY 2013 VL 437 IS 1-3 BP 171 EP 177 DI 10.1016/j.jnucmat.2013.02.042 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 147MR UT WOS:000319172200027 ER PT J AU Kossoy, A Schulze, R Tang, M Safarik, DJ McCabe, RJ AF Kossoy, A. Schulze, R. Tang, M. Safarik, D. J. McCabe, R. J. TI Nd-Mo-borosilicate glass-ceramic: Synthesis, characterization and response to ionizing radiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HIGH-LEVEL WASTE; NUCLEAR-WASTE; PHASE-SEPARATION; MAS NMR; MOLYBDENUM; IMMOBILIZATION; CRYSTALLIZATION; ENVIRONMENT; CHEMISTRY; STATE AB A new borosilicate glass-ceramic with high content of Mo and Nd was synthesized and thoroughly characterized. The structure of the material after it was subjected to 5 MeV He was investigated. 5 MeV He was chosen since it deposits most of the energy as ionizing radiation rather than as nuclear stopping and therefore can be used to simulate self-radiation in advanced nuclear waste-forms. As a result of irradiation, slight Mo reduction occurred together with increased numbers of crystalline precipitates. Those results are interesting for understanding the behavior of systems with high Mo and Nd content such as nuclear waste-forms demonstrating an influence that ionizing radiation can have on the chemistry, environmental stability and microstructure of the waste-forms. Published by Elsevier B.V. C1 [Kossoy, A.; Schulze, R.; Tang, M.; Safarik, D. J.; McCabe, R. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kossoy, A (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM anna.kossoy@gmail.com OI Safarik, Douglas/0000-0001-8648-9377; McCabe, Rodney /0000-0002-6684-7410; Schulze, Roland/0000-0002-6601-817X FU US Department of Energy (DOE), Office of Nuclear Energy; Fuel Cycle Research & Development Program FX The authors want to thank Joe Tesmer for his help with the irradiation. A. Kossoy wants to thank I.O. Usov for his help with preliminary experiments and fruitful discussions. This work was sponsored by the US Department of Energy (DOE), Office of Nuclear Energy, the Fuel Cycle Research & Development Program. The authors would also like to thank. J. Vienna (Pacific Northwest National Laboratory), T. Todd (Idaho National Laboratory), and J. Bresee (DOE-NE) for project oversight and guidance. NR 22 TC 2 Z9 2 U1 1 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN PY 2013 VL 437 IS 1-3 BP 216 EP 221 DI 10.1016/j.jnucmat.2013.02.038 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 147MR UT WOS:000319172200033 ER PT J AU Lessing, PA Cannon, WR Egeland, GW Zuck, LD Jewell, JK Akers, DW Groenewold, GS AF Lessing, Paul A. Cannon, W. Roger Egeland, Gerald W. Zuck, Larry D. Jewell, James K. Akers, Douglas W. Groenewold, Gary S. TI Strength loss in MA-MOX green pellets from radiation damage to binders SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TRANSMUTATION; FUEL AB The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt.% PuO2, 3 wt.% AmO2 and 2 wt.% NpO2 was studied as a function of storage time, after mixing with the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA-MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed that strength degradation was more rapid in pellets containing 1.0 wt.% Carbowax PEG 8000 compared to those containing only 0.2 wt.%, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 days period. It was suggested that the styrene portion present in the Duramax B1022 copolymer provided the radiation resistance. (C) 2013 Elsevier B.V. All rights reserved. C1 [Lessing, Paul A.; Cannon, W. Roger; Egeland, Gerald W.; Zuck, Larry D.; Jewell, James K.; Akers, Douglas W.; Groenewold, Gary S.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Cannon, WR (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM wrogercannon@gmail.com FU National Science Foundation [PHY-1064819]; Battelle Energy Alliance, LLC [DE-AC07-05ID14517]; U.S. Department of Energy FX This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Work at Florida State University's Superconducting Linear Accelerator was partially supported by the National Science Foundation under Grant No. PHY-1064819. NR 17 TC 0 Z9 0 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN PY 2013 VL 437 IS 1-3 BP 229 EP 234 DI 10.1016/j.jnucmat.2013.02.019 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 147MR UT WOS:000319172200035 ER PT J AU Yun, D Kirk, MA Baldo, PM Rest, J Yacout, AM Insepov, ZZ AF Yun, Di Kirk, Marquis A. Baldo, Peter M. Rest, Jeffrey Yacout, Abdellatif M. Insepov, Zinetula Z. TI In situ TEM investigation of Xe ion irradiation induced defects and bubbles in pure molybdenum single crystal SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; BURNUP UO2 FUEL; KR; EVOLUTION; BEHAVIOR; NI; PRECIPITATION; ALUMINUM; KINETICS; METALS AB In order to study irradiation damage and inert gas bubble formation and growth behaviors, and to provide results and insights useful towards the validation of a multi-scale simulation approach based on a newly developed Xe-Mo inter-atomic potential, in situ Transmission Electron Microscopy (TEM) studies of Xe implantations in pure single crystal Molybdenum (Mo) have been conducted. 300 key and 400 keV Xer ion beams were used to implant Xe in pre-thinned TEM Mo specimens. The irradiations were conducted at 300 degrees C and 600 degrees C to ion fluence up to 4 x 1016 ions/cm(2). In situ TEM characterization allows detailed behaviors of defect clusters to be observed and is very useful in illustrating defect interaction mechanisms and processes. Dislocation loops were found to form at relatively low irradiation fluence levels. The characterization results showed that the free surfaces, formed in the process of producing pre-thinned specimens, play an important role in influencing the behaviors of dislocation loops. Similar characterizations were conducted at high fluence levels where Xe gas bubbles can be clearly observed. Xe gas bubbles were observed to form by a multi-atom nucleation process and they were immobile throughout the irradiation process at both temperatures. Measurements on both the number density and the size of dislocation loops and gas bubbles were taken. The results and implications of the measurements are discussed in this paper. Published by Elsevier B.V. C1 [Yun, Di; Kirk, Marquis A.; Baldo, Peter M.; Rest, Jeffrey; Yacout, Abdellatif M.; Insepov, Zinetula Z.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Yun, D (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM diyun@anl.gov RI Yun, Di/K-6441-2013; Insepov, Zinetula/L-2095-2013 OI Yun, Di/0000-0002-9767-3214; Insepov, Zinetula/0000-0002-8079-6293 FU US Department of Energy [DE-ACO2-06CH11357] FX The authors are grateful for the many useful discussions with Dr. R.C. Birtcher regarding the observations. The authors would also like to acknowledge Dr. E. Ryan for the assistance in the ion irradiation at the IVEM facility at Argonne and Dr. Meimei Li for providing very useful information regarding the sample preparations. This work was supported under US Department of Energy Contract DE-ACO2-06CH11357. NR 33 TC 6 Z9 6 U1 1 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN PY 2013 VL 437 IS 1-3 BP 240 EP 249 DI 10.1016/j.jnucmat.2013.01305 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 147MR UT WOS:000319172200037 ER PT J AU Chung, CW Turo, LA Ryan, JV Johnson, BR McCloy, JS AF Chung, Chul-Woo Turo, Laura A. Ryan, Joseph V. Johnson, Bradley R. McCloy, John S. TI The effect of concentration on the structure and crystallinity of a cementitious waste form for caustic wastes SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB Cement-based waste forms have long been considered economical technologies for disposal of various types of waste. A solidified cementitious waste form, Cast Stone, has been identified to immobilize the radioactive secondary waste from vitrification processes. In this work, Cast Stone was considered for a Na-based caustic liquid waste, and its physical properties were analyzed as a function of liquid waste loading up to 2 M Na. Differences in crystallinity (phase composition), microstructure, mesostructure (pore size distribution and surface area), and macrostructure (density and compressive strength) were investigated using various analytical techniques, in order to assess the suitability of Cast Stone as a chemically durable waste. It was found that the concentration of secondary waste simulant (caustic waste) had little effect on the relevant engineering properties of Cast Stone, showing that Cast Stone could be an effective and tolerant waste form for a wide range of concentrations of high sodium waste. (C) 2013 Elsevier B.V. All rights reserved. C1 [Chung, Chul-Woo; Turo, Laura A.; Ryan, Joseph V.; Johnson, Bradley R.; McCloy, John S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP McCloy, JS (reprint author), 902 Battelle Blvd,POB 999,MSIN K6-24, Richland, WA 99352 USA. EM john.mccloy@pnnl.gov RI McCloy, John/D-3630-2013 OI McCloy, John/0000-0001-7476-7771 FU Laboratory-Directed Research and Development (LDRD) program at Pacific Northwest National Laboratory (PNNL); Battelle Memorial Institute for the United States Department of Energy [DE-AC06-76RLO 1830] FX This research was partially supported under the Laboratory-Directed Research and Development (LDRD) program at Pacific Northwest National Laboratory (PNNL). The authors appreciate all the necessary discussions with Joe Westsik, Nancy Washton, Karl T. Mueller, Rick Williford, Anderson L. Ward, and Diana H. Bacon. We appreciate Kent E. Parker for the synthesis of the waste simulant, Jarrod V. Crum and Ashutosh Goel for assistance with the XRD analysis, Carolyne Burns for running the raw material particle size distribution tests, and Kathryn E. Draper for coordinating the mercury intrusion porosimetry. We also appreciate the raw material supply and characterization from John Harris in Lafarge North America. PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the United States Department of Energy under Contract DE-AC06-76RLO 1830. NR 30 TC 0 Z9 0 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN PY 2013 VL 437 IS 1-3 BP 332 EP 340 DI 10.1016/j.jnucmat.2013.02.035 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 147MR UT WOS:000319172200049 ER PT J AU Luscher, WG Senor, DJ Clayton, KK Longhurst, GR AF Luscher, Walter G. Senor, David J. Clayton, Kevin K. Longhurst, Glen R. TI In situ measurement of tritium permeation through stainless steel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HYDROGEN ISOTOPE PERMEABILITY; DEUTERIUM PERMEATION; NEUTRON-IRRADIATION; COUNTER-PERMEATION; DRIVEN PERMEATION; ALLOYS; RECOMBINATION; 18CR-10NI-TI; DIFFUSION; RADIATION AB The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a He-4 carrier gas mixed with a specified quantity of tritium (T-2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 degrees C and 330 degrees C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of He-3 to T, was also evaluated by introducing a He-4 carrier gas mixed with He-3 at a partial pressure of 1013 Pa at 330 degrees C. Less than 3% of the tritium resulting from He-3 transmutation contributed to tritium permeation. (C) 2013 Elsevier B.V. All rights reserved. C1 [Luscher, Walter G.; Senor, David J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Clayton, Kevin K.; Longhurst, Glen R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Luscher, WG (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM walter.luscher@pnnl.gov; david.senor@pnnl.-gov; kevin.clayton@inl.gov; glenlonghurst@suu.edu NR 29 TC 1 Z9 1 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN PY 2013 VL 437 IS 1-3 BP 373 EP 379 DI 10.1016/j.jnucmat.2013.02.009 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 147MR UT WOS:000319172200054 ER PT J AU Cantrell, KJ Williams, BD AF Cantrell, Kirk J. Williams, Benjamin D. TI Solubility control of technetium release from Saltstone by TcO2.xH(2)O SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SPECIATION AB Saltstone leaching experiments were conducted using a modified single-pass flow-through method under anoxic conditions. The analytical results of leachates collected from these experiments were evaluated using thermodynamic modeling to determine if the data were consistent with potential solubility controlling phases. The results demonstrate that technetium release from Saltstone under anoxic conditions is controlled by the solubility of TcO2.xH(2)O (likely TcO2.1.6H(2)O). In our system the solubility of TcO(2.)1.6H(2)O appears to have been reached equilibrium within 2 weeks, with a Tc concentration of approximately 1.5 x 10(-6) M. Because Saltstone is a cementitious material, it is a continuously reacting solid with component phases that continue to change over very long time periods (up to hundreds of years). As a result of this process, the concentrations of technetium in equilibrium with TcO2.1.6H(2)O are likely to vary as the composition of Saltstone pore fluid evolves over time. In a disposal scenario where the initially high pH values (similar to 12.5-13) decrease (due to carbonation over very long time periods), the solubility of TcO(2.)x.H2O would decrease significantly. The thermodynamic data used to determine the solubility of TcO2.1.6H(2)O were taken from the tabulation of critically selected thermodynamic data determined by the Nuclear Energy Agency. Solid phase characterization to demonstrate the presence of TcO2.xH(2)O was not possible due to the low concentrations of technetium in our samples. Previous solid phase characterization studies with cementitious waste forms that were very similar to our Saltstone samples as well as reaction products derived from reductive immobilization of TcO4- by amorphous FeS clearly indicate the presence of TcO2 with varying degrees of hydration. Although, the presence of TcSx or other reduced technetium sulfide phases are likely present in our samples, release of technetium from Saltstone will be controlled by TcO2.1.6H(2)O because of its higher solubility. Our results clearly demonstrate that the release mechanism of technetium from Saltstone under reducing conditions controlled by the solubility of TcO2.xH(2)O (likely TcO2.1.6H(2)O); however, empirical distribution coefficients (Kds), that describe sorption and not solubility, were calculated for comparison with past literature values. After 84 days of reaction under anoxic conditions, the average K-d value for technetium was determined to be 610 mL/g. This value is similar to a value determined previously for a similar Saltstone sample under reducing conditions at 56 days (712 +/- 81 mL/g). (C) 2013 Elsevier B.V. All rights reserved. C1 [Cantrell, Kirk J.; Williams, Benjamin D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cantrell, KJ (reprint author), Pacific NW Natl Lab, POB 999,Mail Stop K6-81, Richland, WA 99352 USA. EM kirk.cantrell@pnnl.gov FU Savannah River Remediation FX The authors acknowledge Kent H. Rosenberger of the Savannah River Remediation for providing Project funding support. Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under Contract DE-ACO5-76RL01830. NR 17 TC 0 Z9 0 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN PY 2013 VL 437 IS 1-3 BP 424 EP 431 DI 10.1016/j.jnucmat.2013.02.049 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 147MR UT WOS:000319172200060 ER PT J AU Baba, JS Endres, CJ Foss, CA Nimmagadda, S Jung, H Goddard, JS Lee, S McKisson, J Smith, MF Stolin, AV Weisenberger, AG Pomper, MG AF Baba, Justin S. Endres, Christopher J. Foss, Catherine A. Nimmagadda, Sridhar Jung, Hyeyun Goddard, James S. Lee, Seungjoon McKisson, John Smith, Mark F. Stolin, Alexander V. Weisenberger, Andrew G. Pomper, Martin G. TI Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE awake; mouse; SPECT; anesthesia; ioflupane ID POSITRON-EMISSION-TOMOGRAPHY; CEREBRAL-BLOOD-FLOW; ANIMAL PET SCANNER; DOPAMINE TRANSPORTER; HEALTHY-SUBJECTS; FUNCTIONAL MRI; BRAIN; ANESTHESIA; MECHANISMS; MONKEYS AB We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a Tc-99m-pertechnetate phantom, Tc-99m-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand I-123-ioflupane in mouse brain in the awake and anesthetized (iso-flurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of I-123-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake. C1 [Baba, Justin S.; Goddard, James S.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Pomper, Martin G.] Johns Hopkins Med Inst, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21205 USA. [Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. [Smith, Mark F.] Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA. [Stolin, Alexander V.] W Virginia Univ, Dept Radiol, Morgantown, WV 26506 USA. RP Pomper, MG (reprint author), Johns Hopkins Med Sch, 1550 Orleans St,492 CRB 2, Baltimore, MD 21231 USA. EM mpomper@jhmi.edu RI Lee, Seung Joon/M-8163-2013; OI Nimmagadda, Sridhar/0000-0002-6413-7191 FU U.S. Department of Energy [DE-AC05-00OR22725]; Thomas Jefferson National Accelerator Facility [DE-AC05-06OR23177]; NIH [U24 CA92871, R21 MH82277-2S1]; U.S. Government [DE-AC05-00OR22725] FX The costs of publication of this article were defrayed in part by the payment of page charges. Therefore, and solely to indicate this fact, this article is hereby marked "advertisement" in accordance with 18 USC section 1734. This research was sponsored by the U.S. Department of Energy under contract DE-AC05-00OR22725 with the Oak Ridge National Laboratory managed by UT-Battelle, LLC; by contract DE-AC05-06OR23177 with the Thomas Jefferson National Accelerator Facility managed by Jefferson Science Associates; and by NIH grants U24 CA92871 and R21 MH82277-2S1. No other potential conflict of interest relevant to this article was reported.; We thank James Fox and Gilbert Green for excellent technical assistance. 123I-ioflupane was a kind gift from Dr. Roger Pickett of GE Healthcare, Arlington Heights, IL. The submitted article was authored in part by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 32 TC 8 Z9 8 U1 0 U2 9 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD JUN 1 PY 2013 VL 54 IS 6 BP 969 EP 976 DI 10.2967/jnumed.112.109090 PG 8 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 156HA UT WOS:000319811400021 PM 23536223 ER PT J AU James, SC Janardhanam, V Hanson, DT AF James, Scott C. Janardhanam, Vijayasarathi Hanson, David T. TI Simulating pH effects in an algal-growth hydrodynamics model SO JOURNAL OF PHYCOLOGY LA English DT Article DE biofuels; CE-QUAL; CO2; EFDC; modeling algae growth; pH effects ID HYDROGEN-PRODUCTION; NANNOCHLOROPSIS-SALINA; MICROALGAE; CARBON; STOICHIOMETRY; CHLAMYDOMONAS; TEMPERATURE; BIODIESEL; FIXATION; WATERS AB Models and numerical simulations are relatively inexpensive tools that can be used to enhance economic competitiveness through operation and system optimization to minimize energy and resource consumption, while maximizing algal oil yield. This work uses modified versions of the U.S. Environmental Protection Agency's Environmental Fluid Dynamics Code (EFDC) in conjunction with the U.S. Army Corp of Engineers' water-quality code (CE-QUAL) to simulate flow hydrodynamics coupled to algal growth kinetics. The model allows the flexibility of manipulating a host of variables associated with algal growth such as temperature, light intensity, and nutrient availability. pH of the medium is a newly added operational parameter governing algal growth that affects algal photosynthesis, differential availability of inorganic forms of carbon, enzyme activity in algae cell walls, and oil production rates. A single-layer algal-growth/hydrodynamic model without pH limitation was verified by comparing solution curves of algal biomass and phosphorus concentrations to an analytical solution. Media pH, now included in the model as a growth-limiting factor, can be entered as a measured value or calculated based on CO2 concentrations. Upon adding the ability to limit growth due to pH, physically reasonable results have been obtained from the model both with and without pH limitation. When the model was used to simulate algal growth from a pond experiment in the greenhouse, a least-squares fitting technique yielded a maximum algal production (subsequently modulated by limitation factors) of 1.05d-1. Overall, the measured and simulated biomass concentrations in the greenhouse pond were in close agreement. C1 [James, Scott C.] Sandia Natl Labs, Livermore, CA 94551 USA. [James, Scott C.] E Ponent Inc, Irvine, CA 92618 USA. [Janardhanam, Vijayasarathi] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Hanson, David T.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. RP James, SC (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM sjames@exponent.com RI Hanson, David/J-8034-2012; OI James, Scott/0000-0001-7955-0491 FU Laboratory Directed Research and Development program at Sandia National Laboratories (SNL); Exponent Incorporated; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The Laboratory Directed Research and Development program at Sandia National Laboratories (SNL) provided a majority of the funding for this work within SNL and through subcontracts to DTH. Additional support was provided by Exponent Incorporated to SCJ. Special thanks are extended to Dr. Jerilyn Timlin of SNL for her help funding this effort and in managing the project as a whole. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 40 TC 15 Z9 15 U1 3 U2 84 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-3646 J9 J PHYCOL JI J. Phycol. PD JUN PY 2013 VL 49 IS 3 BP 608 EP 615 DI 10.1111/jpy.12071 PG 8 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA 157DB UT WOS:000319874900017 PM 27007048 ER PT J AU Shi, FH Chen, YH Han, P Soukoulis, CM AF Shi, Fenghua Chen, Yihang Han, Peng Soukoulis, Costas M. TI Investigation of one-dimensional photonic bandgap structures containing lossy double-negative metamaterials through the Bloch impedance SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS LA English DT Article ID EXPERIMENTAL-VERIFICATION; SPONTANEOUS-EMISSION; REFRACTIVE-INDEX; WAVE-GUIDES; CRYSTALS AB The Bloch impedance is studied and used to understand the properties of the absorption loss in one-dimensional photonic crystals (PCs) composed of air and metal-based double-negative metamaterials. We find that as the frequency increases across the zero-(n) over bar gap of the considered structures, the modulus of the Bloch impedance always decreases from a maximum to a minimum value. On the other hand, the frequency dependence of the phase angle of the Bloch impedance is greatly influenced by the ratio of the electric to the magnetic damping coefficient gamma(e)/gamma(m) of the metamaterials. When the phase angle of the Bloch impedance reaches maximum inside the zero-(n) over bar gap, the impedance mismatch between the incident medium and the considered PC becomes greatest, the reflection will be strongest and a minimum absorption will be observed. As gamma(e)/gamma(m) increases, the frequency corresponding to the minimum absorption shifts from the lower to the upper gap edge. We also show that the main characteristics of both the Bloch impedance and the absorption loss are insensitive to the geometrical parameters. Our study offers a valuable reference in the designs of zero-(n) over bar gap with optimized properties. (C) 2013 Optical Society of America C1 [Shi, Fenghua; Chen, Yihang; Han, Peng] S China Normal Univ, Sch Phys & Telecommun Engn, Lab Quantum Informat Technol, Guangzhou 510006, Guangdong, Peoples R China. [Chen, Yihang; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Chen, Yihang; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Soukoulis, Costas M.] FORTH, Inst Elect Struct & Lasers, Iraklion 71110, Crete, Greece. RP Chen, YH (reprint author), S China Normal Univ, Sch Phys & Telecommun Engn, Lab Quantum Informat Technol, Guangzhou 510006, Guangdong, Peoples R China. EM chenyh@ameslab.gov; hanp@scnu.edu.cn RI Soukoulis, Costas/A-5295-2008 FU National Natural Science Foundation of China [11274126]; Natural Science Foundation of Guangdong Province of China [9151063101000040]; U.S. Department of Energy (Basic Energy Science, Division of Materials Science and Engineering) [DE-AC02-07CH11358] FX This work is supported by National Natural Science Foundation of China (grant 11274126), the Natural Science Foundation of Guangdong Province of China (grant 9151063101000040). This work is also supported by the U.S. Department of Energy (Basic Energy Science, Division of Materials Science and Engineering) under Contract No. DE-AC02-07CH11358. NR 28 TC 0 Z9 0 U1 0 U2 13 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0740-3224 EI 1520-8540 J9 J OPT SOC AM B JI J. Opt. Soc. Am. B-Opt. Phys. PD JUN PY 2013 VL 30 IS 6 BP 1473 EP 1478 DI 10.1364/JOSAB.30.001473 PG 6 WC Optics SC Optics GA 155HR UT WOS:000319739100012 ER PT J AU Atkins, E Morzfeld, M Chorin, AJ AF Atkins, Ethan Morzfeld, Matthias Chorin, Alexandre J. TI Implicit Particle Methods and Their Connection with Variational Data Assimilation SO MONTHLY WEATHER REVIEW LA English DT Article ID ENSEMBLE KALMAN FILTER; MONTE-CARLO; MODELS; 4D-VAR; IMPLEMENTATION; FORMULATION; STATISTICS; FLOW AB The implicit particle filter is a sequential Monte Carlo method for data assimilation that guides the particles to the high-probability regions via a sequence of steps that includes minimizations. A new and more general derivation of this approach is presented and the method is extended to particle smoothing as well as to data assimilation for perfect models. Minimizations required by implicit particle methods are shown to be similar to those that one encounters in variational data assimilation, and the connection of implicit particle methods with variational data assimilation is explored. In particular, it is argued that existing variational codes can be converted into implicit particle methods at a low additional cost, often yielding better estimates that are also equipped with quantitative measures of the uncertainty. A detailed example is presented. C1 [Atkins, Ethan; Chorin, Alexandre J.] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. [Morzfeld, Matthias] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Morzfeld, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mmo@math.lbl.gov FU Office of Science, Computational and Technology Research, U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DMS-0705910, OCE-0934298] FX We thank our collaborators at Oregon State University, Professors Robert Miller and Yvette Spitz and Dr. Brad Weir, for helpful discussion and comments. This work was supported in part by the director, Office of Science, Computational and Technology Research, U.S. Department of Energy under Contract DE-AC02-05CH11231, and by the National Science Foundation under Grants DMS-0705910 and OCE-0934298. NR 61 TC 13 Z9 13 U1 0 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD JUN PY 2013 VL 141 IS 6 BP 1786 EP 1803 DI 10.1175/MWR-D-12-00145.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 156ZN UT WOS:000319864300003 ER PT J AU van der Molen, SJ Naaman, R Scheer, E Neaton, JB Nitzan, A Natelson, D Tao, NJ van der Zant, H Mayor, M Ruben, M Reed, M Calame, M AF van der Molen, Sense Jan Naaman, Ron Scheer, Elke Neaton, Jeffrey B. Nitzan, Abraham Natelson, Douglas Tao, N. J. van der Zant, Herre Mayor, Marcel Ruben, Mario Reed, Mark Calame, Michel TI Visions for a molecular future SO NATURE NANOTECHNOLOGY LA English DT Editorial Material AB Leading researchers in molecular electronics discuss the motivation behind their work and what they consider to be the grand challenges for the field. C1 [van der Molen, Sense Jan] Leiden Univ, Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. [Naaman, Ron] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel. [Scheer, Elke] Univ Konstanz, Dept Phys, D-78457 Constance, Germany. [Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. [Nitzan, Abraham] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel. [Natelson, Douglas] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Natelson, Douglas] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Tao, N. J.] Arizona State Univ, Tempe, AZ 85287 USA. [van der Zant, Herre] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. [Mayor, Marcel] Univ Basel, Dept Chem, CH-4056 Basel, Switzerland. [Ruben, Mario] Karlsruhe Inst Technol, Helmholtz Soc, D-76344 Eggenstein Leopoldshafen, Germany. [Ruben, Mario] Univ Strasbourg, Inst Phys & Chim Mat, F-67034 Strasbourg, France. [Reed, Mark] Yale Univ, Sch Engn & Appl Sci, New Haven, CT 06520 USA. [Calame, Michel] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Calame, Michel] Univ Basel, Swiss Nanosci Inst, CH-4056 Basel, Switzerland. RP van der Molen, SJ (reprint author), Leiden Univ, Kamerlingh Onnes Lab, POB 9504, NL-2300 RA Leiden, Netherlands. EM Molen@Physics.LeidenUniv.nl; ron.naaman@weizmann.ac.il; elke.scheer@uni-konstanz.de; jbneaton@lbl.gov; nitzan@post.tau.ac.il; natelson@rice.edu; njtao@asu.edu; H.S.J.vanderZant@tudelft.nl; marcel.mayor@unibas.ch; mario.ruben@kit.edu; mark.reed@yale.edu; michel.calame@unibas.ch RI Calame, Michel/A-5037-2008; Ruben, Mario/C-6816-2008; van der Molen, Sense/F-3035-2014; Neaton, Jeffrey/F-8578-2015; van der Zant, Herre/J-9467-2016 OI Ruben, Mario/0000-0002-7718-7016; Neaton, Jeffrey/0000-0001-7585-6135; van der Zant, Herre/0000-0002-5385-0282 NR 0 TC 21 Z9 21 U1 3 U2 135 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD JUN PY 2013 VL 8 IS 6 BP 385 EP 389 DI 10.1038/nnano.2013.101 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 158NS UT WOS:000319979400004 ER PT J AU Ma, J Delaire, O May, AF Carlton, CE McGuire, MA VanBebber, LH Abernathy, DL Ehlers, G Hong, T Huq, A Tian, W Keppens, VM Shao-Horn, Y Sales, BC AF Ma, J. Delaire, O. May, A. F. Carlton, C. E. McGuire, M. A. VanBebber, L. H. Abernathy, D. L. Ehlers, G. Hong, Tao Huq, A. Tian, Wei Keppens, V. M. Shao-Horn, Y. Sales, B. C. TI Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2 SO NATURE NANOTECHNOLOGY LA English DT Article ID PHASE-CHANGE MATERIALS; THERMOELECTRIC-MATERIALS; PRECIPITATION; AGPBMSBTE2+M; TELLURIDE; AGBISE2; ALLOYS; FIGURE; MERIT AB Materials with very low thermal conductivity are of great interest for both thermoelectric and optical phase-change applications. Synthetic nanostructuring is most promising for suppressing thermal conductivity through phonon scattering, but challenges remain in producing bulk samples. In crystalline AgSbTe2 we show that a spontaneously forming nanostructure leads to a suppression of thermal conductivity to a glass-like level. Our mapping of the phonon mean free paths provides a novel bottom-up microscopic account of thermal conductivity and also reveals intrinsic anisotropies associated with the nanostructure. Ground-state degeneracy in AgSbTe2 leads to the natural formation of nanoscale domains with different orderings on the cation sublattice, and correlated atomic displacements, which efficiently scatter phonons. This mechanism is general and suggests a new avenue for the nanoscale engineering of materials to achieve low thermal conductivities for efficient thermoelectric converters and phase-change memory devices. C1 [Ma, J.; Abernathy, D. L.; Ehlers, G.; Hong, Tao; Tian, Wei] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Delaire, O.; May, A. F.; McGuire, M. A.; Sales, B. C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Carlton, C. E.; Shao-Horn, Y.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [VanBebber, L. H.; Keppens, V. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Huq, A.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Delaire, O (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM delaireoa@ornl.gov RI Ma, Jie/C-1637-2013; McGuire, Michael/B-5453-2009; Hong, Tao/F-8166-2010; Instrument, CNCS/B-4599-2012; Abernathy, Douglas/A-3038-2012; Tian, Wei/C-8604-2013; May, Andrew/E-5897-2011; Huq, Ashfia/J-8772-2013; Ehlers, Georg/B-5412-2008; BL18, ARCS/A-3000-2012 OI McGuire, Michael/0000-0003-1762-9406; Hong, Tao/0000-0002-0161-8588; Abernathy, Douglas/0000-0002-3533-003X; Tian, Wei/0000-0001-7735-3187; May, Andrew/0000-0003-0777-8539; Huq, Ashfia/0000-0002-8445-9649; Ehlers, Georg/0000-0003-3513-508X; FU US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; US Department of Energy, Office of Basic Energy Sciences, through the S3TEC Energy Frontier Research Center [DESC0001299]; Joint Directed Research and Development programme of the UTK Science Alliance; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX Simulations and integration of results (O.D.), as well as synthesis and characterization (A.F.M., M.A.M. and B.C.S) were supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. Neutron scattering (J.M.) and electron microscopy (C.E.C. and Y.S-H.) were supported by the US Department of Energy, Office of Basic Energy Sciences, through the S3TEC Energy Frontier Research Center (DESC0001299). L.H.V. and V.M.K. acknowledge support provided by the Joint Directed Research and Development programme of the UTK Science Alliance. The Oak Ridge National Laboratory's Spallation Neutron Source and High- Flux Isotope Reactor are sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 43 TC 51 Z9 52 U1 10 U2 165 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD JUN PY 2013 VL 8 IS 6 BP 445 EP 451 DI 10.1038/NNANO.2013.95 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 158NS UT WOS:000319979400017 PM 23728075 ER PT J AU Dunleavy, EM Zhang, WG Karpen, GH AF Dunleavy, Elaine M. Zhang, Weiguo Karpen, Gary H. TI Solo or doppio: how many CENP-As make a centromeric nucleosome? SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Editorial Material ID CELL-CYCLE; HISTONE H3; CHROMATIN; HJURP; REQUIRES; YEAST; ARRAY AB Whether centromere-specific CENP-A-containing nucleosomes comprise one molecule each of CENP-A and histones H4, H2A and H2B (forming a tetramer or hemisome) or two molecules of all four histones (forming an octamer) has been controversial. Three new studies now address this controversy using complementary in vitro and in vivo approaches. C1 [Dunleavy, Elaine M.; Zhang, Weiguo; Karpen, Gary H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Dept Genome Biol, Berkeley, CA 94720 USA. [Dunleavy, Elaine M.; Zhang, Weiguo; Karpen, Gary H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Dunleavy, Elaine M.] Natl Univ Ireland, Ctr Chromosome Biol, Sch Nat Sci, Galway, Ireland. RP Dunleavy, EM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Dept Genome Biol, Berkeley, CA 94720 USA. EM edunleavy@lbl.gov; karpen@fruitfly.org FU NIGMS NIH HHS [R01 GM066272] NR 31 TC 10 Z9 10 U1 0 U2 3 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9993 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD JUN PY 2013 VL 20 IS 6 BP 648 EP 650 DI 10.1038/nsmb.2602 PG 3 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 157RD UT WOS:000319915900002 PM 23739165 ER PT J AU Taylor, DW Ma, EB Shigematsu, H Cianfrocco, MA Noland, CL Nagayama, K Nogales, E Doudna, JA Wang, HW AF Taylor, David W. Ma, Enbo Shigematsu, Hideki Cianfrocco, Michael A. Noland, Cameron L. Nagayama, Kuniaki Nogales, Eva Doudna, Jennifer A. Wang, Hong-Wei TI Substrate-specific structural rearrangements of human Dicer SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID CONTRAST CRYOELECTRON MICROSCOPY; TRANSMISSION ELECTRON-MICROSCOPY; RISC-LOADING COMPLEX; RNA INTERFERENCE; HELICASE DOMAIN; IN-VITRO; TRBP; RECOGNITION; BIOGENESIS; MICRORNA AB Dicer has a central role in RNA-interference pathways by cleaving double-stranded RNAs (dsRNAs) to produce small regulatory RNAs. Human Dicer can process long double-stranded and hairpin precursor RNAs to yield short interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. Previous studies have shown that pre-miRNAs are cleaved more rapidly than pre-siRNAs in vitro and are the predominant natural Dicer substrates. We have used EM and single-particle analysis of Dicer-RNA complexes to gain insight into the structural basis for human Dicer's substrate preference. Our studies show that Dicer traps pre-siRNAs in a nonproductive conformation, whereas interactions of Dicer with pre-miRNAs and dsRNA-binding proteins induce structural changes in the enzyme that enable productive substrate recognition in the central catalytic channel. These findings implicate RNA structure and cofactors in determining substrate recognition and processing efficiency by human Dicer. C1 [Taylor, David W.; Shigematsu, Hideki; Wang, Hong-Wei] Yale Univ, Sch Med, Dept Mol Biophys & Biochem, New Haven, CT 06510 USA. [Taylor, David W.; Nogales, Eva; Doudna, Jennifer A.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Ma, Enbo; Noland, Cameron L.; Nogales, Eva; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cianfrocco, Michael A.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Nagayama, Kuniaki] Natl Inst Nat Sci, Okazaki Inst Integrat Biosci, Div Nanostruct Physiol, Okazaki, Aichi 4448787, Japan. [Nagayama, Kuniaki] Natl Inst Nat Sci, Natl Inst Physiol Sci, Okazaki, Aichi 4448585, Japan. [Nagayama, Kuniaki] Grad Univ Adv Studies, Dept Physiol Sci, Okazaki, Aichi, Japan. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Nogales, Eva; Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Wang, Hong-Wei] Tsinghua Univ, Tsinghua Peking Ctr Life Sci, Beijing 100084, Peoples R China. [Wang, Hong-Wei] Tsinghua Univ, Ctr Struct Biol, Sch Life Sci, Beijing 100084, Peoples R China. RP Wang, HW (reprint author), Yale Univ, Sch Med, Dept Mol Biophys & Biochem, New Haven, CT 06510 USA. EM doudna@berkeley.edu; hongweiwang@tsinghua.edu.cn RI Shigematsu, Hideki/E-1052-2017; OI Shigematsu, Hideki/0000-0003-3951-8651; Taylor, David/0000-0002-6198-1194 FU US National Science Foundation (NSF) Graduate Research Fellow; NSF; Japan Society for the Promotion of Science East Asia and Pacific Summer Institute Fellow; US National Institutes of Health (NIH) [5 T32 GM008283]; Core Research for Evolutional Science and Technology of Japan Science and Technology Agency; NIH [5R01GM073794]; Human Frontiers in Science Program [RPG0039/2008-C]; Smith Family Awards Program for Excellence in Biomedical Research; National Natural Science Foundation of China [31270765]; Howard Hughes Medical Institute Investigators FX We thank W. Filipowicz (Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland) for antibodies to human Dicer; A. Giraldez (Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA) for purified pre-miR-430; G. Lander, P. Grob and T. Houweling for expert EM and image-processing assistance; A. Brewster for help with creating the homology model of human Dicer; T. Albergo for help with particle picking; members of the Wang, Doudna, Nagayama and Nogales labs for helpful discussions; A. Giraldez, D. Cifuentes, A. Bazzini, S. Baserga, J. Steitz and members of the Giraldez and Baserga labs for discussion and expert technical assistance; H. Okawara and M. Ohara (Division of Nano-Structure Physiology, Okazaki Institute for Integrative Bioscience, Okazaki, Japan) for preparing the Zernike phase plates; and the Yale Center for Cellular and Molecular Imaging and Yale Center for High Performance Computation in Biology and Medicine. D.W.T. is supported as a US National Science Foundation (NSF) Graduate Research Fellow and as an NSF and Japan Society for the Promotion of Science East Asia and Pacific Summer Institute Fellow. This work was supported in part by US National Institutes of Health (NIH) molecular biophysics training grant 5 T32 GM008283 (D.W.T.), the Core Research for Evolutional Science and Technology of Japan Science and Technology Agency (K.N.), NIH 5R01GM073794 (J.A.D.), Human Frontiers in Science Program RPG0039/2008-C (E.N.), the Smith Family Awards Program for Excellence in Biomedical Research (H.-W.W.) and National Natural Science Foundation of China 31270765 (H.-W.W.). J.A.D. and E.N. are supported as Howard Hughes Medical Institute Investigators. NR 59 TC 31 Z9 31 U1 0 U2 36 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9993 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD JUN PY 2013 VL 20 IS 6 BP 662 EP + DI 10.1038/nsmb.2564 PG 11 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 157RD UT WOS:000319915900006 PM 23624860 ER PT J AU Rajagopalan, S Teter, SJ Zwart, PH Brennan, RG Phillips, KJ Kiley, PJ AF Rajagopalan, Senapathy Teter, Sarah J. Zwart, Petrus H. Brennan, Richard G. Phillips, Kevin J. Kiley, Patricia J. TI Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID IRON-SULFUR CLUSTERS; ESCHERICHIA-COLI; TRANSCRIPTION FACTOR; ASSEMBLY PROTEINS; CRYSTAL-STRUCTURE; OXIDATIVE-STRESS; GENE-EXPRESSION; SOXR PROTEIN; RECOGNITION; METHIONINE AB IscR from Escherichia coli is an unusual metalloregulator in that both apo and iron sulfur (Fe-S)-IscR regulate transcription and exhibit different DNA binding specificities. Here, we report structural and biochemical studies of IscR suggesting that remodeling of the protein-DNA interface upon Fe-S ligation broadens the DNA binding specificity of IscR from binding the type 2 motif only to both type 1 and type 2 motifs. Analysis of an apo-IscR variant with relaxed target-site discrimination identified a key residue in wild-type apo-IscR that, we propose, makes unfavorable interactions with a type 1 motif. Upon Fe-S binding, these interactions are apparently removed, thereby allowing holo-IscR to bind both type 1 and type 2 motifs. These data suggest a unique mechanism of ligand-mediated DNA site recognition, whereby metallocluster ligation relocates a protein-specificity determinant to expand DNA target-site selection, allowing a broader transcriptomic response by holo-IscR. C1 [Rajagopalan, Senapathy; Phillips, Kevin J.] Methodist Hosp, Genom Med Program, Res Inst, Houston, TX 77030 USA. [Teter, Sarah J.; Kiley, Patricia J.] Univ Wisconsin, Dept Biomol Chem, Madison, WI USA. [Zwart, Petrus H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Brennan, Richard G.] Duke Univ, Sch Med, Dept Biochem, Durham, NC USA. [Phillips, Kevin J.] Methodist Hosp, Diabet Res Program, Res Inst, Houston, TX 77030 USA. [Phillips, Kevin J.] Univ Houston, Dept Biol & Biochem, Houston, TX USA. RP Phillips, KJ (reprint author), Methodist Hosp, Genom Med Program, Res Inst, 6535 Fannin, Houston, TX 77030 USA. EM kphillips@tmhs.org; pjkiley@wisc.edu FU NIH; National Institute of General Medical Sciences [8 P41 GM103403-10]; Howard Hughes Medical Institute; Office of Science and the Office of Basic Energy Sciences of the US Department of Energy (DOE) [DE-AC02-05CH11231]; National Center for Research Resources [5P41RR015301-10]; DOE [DE-AC02-06CH11357]; US National Institutes of Health (NIH) [GM045844]; Methodist Hospital Research Institute FX We thank the organizers and instructors of the 2012 CCP4 APS school (attended by S.R.) for providing valuable insights into analyzing the data. Structural data were collected at the Berkeley Center for Structural Biology (BCSB) beamlines at Advanced Light Source (ALS) and at the Northeastern Collaborative Access Team (NE-CAT) beamlines at Advanced Photon Source (APS). BCSB is supported in part by the NIH, the National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The ALS is supported by the Director, Office of Science and the Office of Basic Energy Sciences of the US Department of Energy (DOE) under contract no. DE-AC02-05CH11231. The NE-CAT beamlines are supported by grants from the National Center for Research Resources (5P41RR015301-10) and the National Institute of General Medical Sciences (8 P41 GM103403-10). Use of the APS, operated for the DOE Office of Science by Argonne National Laboratory, was supported by the DOE under contract no. DE-AC02-06CH11357. This work was funded by grants from the US National Institutes of Health (NIH; GM045844 to P.J.K.) and The Methodist Hospital Research Institute to K.J.P. NR 41 TC 37 Z9 37 U1 2 U2 30 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9993 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD JUN PY 2013 VL 20 IS 6 BP 740 EP + DI 10.1038/nsmb.2568 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 157RD UT WOS:000319915900016 PM 23644595 ER PT J AU Lee, SY King, WD AF Lee, Si Y. King, William D. TI Thermal analysis for ion-exchange column system SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID SILICOTITANATE; REMOVAL AB Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating. (C) 2013 Elsevier B.V. All rights reserved. C1 [Lee, Si Y.; King, William D.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Lee, SY (reprint author), Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA. EM si.lee@srnl.doe.gov; william02.king@srnl.doe.gov NR 12 TC 0 Z9 0 U1 1 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD JUN PY 2013 VL 259 BP 102 EP 112 DI 10.1016/j.nucengdes.2013.02.054 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 148HD UT WOS:000319234400011 ER PT J AU Iyengar, A Norman, EB Howard, C Angell, C Kaplan, A Ressler, JJ Chodash, P Swanberg, E Czeszumska, A Wang, B Yee, R Shugart, HA AF Iyengar, A. Norman, E. B. Howard, C. Angell, C. Kaplan, A. Ressler, J. J. Chodash, P. Swanberg, E. Czeszumska, A. Wang, B. Yee, R. Shugart, H. A. TI Distinguishing fissions of Th-232, Np-237 and U-238 with beta-delayed gamma rays SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Fission; Beta-delayed gamma rays; Germanium detectors; Plastic scintillation detectors; Nuclear forensics ID SPECTRA AB Measurements of beta-delayed gamma-ray spectra following 14-MeV neutron-induced fissions of Th-232, U-238, and Np-237 were conducted at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. Spectra were collected for times ranging from 1 min to 14 h after irradiation. Intensity ratios of gamma-ray lines were extracted from the data that allow identification of the fissioning isotope. (C) 2013 Elsevier B.V. All rights reserved. C1 [Iyengar, A.; Norman, E. B.; Howard, C.; Angell, C.; Kaplan, A.; Chodash, P.; Swanberg, E.; Czeszumska, A.; Wang, B.; Yee, R.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Ressler, J. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Shugart, H. A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Norman, EB (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM ebnorman@lbl.gov RI Chodash, Perry/P-1840-2014; OI Chodash, Perry/0000-0002-4154-7219; Angell, Christopher/0000-0003-0333-6557 FU Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Department of Energy, NNSA, Office of Non-Proliferation [NA-22]; U.S. Dept. of Homeland Security [ARI-022]; NSERC FX We wish to thank the 88-Inch Cyclotron operations and facilities staff for their help in performing this experiment. This work was supported in part at Lawrence Berkeley National Laboratory by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy under Contract DE-AC02-05CH11231; the U.S. Department of Energy, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344; the Department of Energy, NNSA, Office of Non-Proliferation (NA-22); the U.S. Dept. of Homeland Security under contract number ARI-022, and NSERC. NR 9 TC 6 Z9 7 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUN PY 2013 VL 304 IS 1 BP 11 EP 15 DI 10.1016/j.nimb.2013.03.054 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 161TW UT WOS:000320217200003 ER PT J AU Raman, RN Negres, RA Matthews, MJ Carr, CW AF Raman, Rajesh N. Negres, Raluca A. Matthews, Manyalibo J. Carr, Christopher W. TI Effect of thermal anneal on growth behavior of laser-induced damage sites on the exit surface of fused silica SO OPTICAL MATERIALS EXPRESS LA English DT Article ID 351 NM; INDUCED DEFECTS; OPTICS; CRYSTALS; MICROSTRUCTURE; RESISTANCE; MORPHOLOGY; FRACTURE; DIOXIDE; PULSES AB Thermal anneal is known to arrest the growth of laser-induced damage in optical materials. However, the response of the material which leads to this observed behavior is poorly understood. In this work, we investigate the effect of isothermal anneal at 1100 degrees C for 12 hours on the growth rate of laser-induced damage sites in fused silica. Growth rate was significantly lower for annealed initiated damage sites than that for untreated sites. This decrease in growth rate was associated with the closure of small surface and subsurface cracks, suggesting that aggressive growth rate is due, at least in part, to subsurface fracture complexity. (C) 2013 Optical Society of America C1 [Raman, Rajesh N.; Negres, Raluca A.; Matthews, Manyalibo J.; Carr, Christopher W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Raman, RN (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM raman4@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to acknowledge William Steele, Ted Laurence, David Cross and the OSL team for assistance with sample preparation and growth experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 39 TC 7 Z9 7 U1 1 U2 36 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2159-3930 J9 OPT MATER EXPRESS JI Opt. Mater. Express PD JUN 1 PY 2013 VL 3 IS 6 BP 765 EP 776 DI 10.1364/OME.3.000765 PG 12 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 155IA UT WOS:000319740000011 ER PT J AU Driscoll, JB Grote, RR Souhan, B Dadap, JI Lu, M Osgood, RM AF Driscoll, Jeffrey B. Grote, Richard R. Souhan, Brian Dadap, Jerry I. Lu, Ming Osgood, Richard M., Jr. TI Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing SO OPTICS LETTERS LA English DT Article ID TRANSMISSION; CONVERSION; NETWORKS; COMPACT; FUTURE; DESIGN; WIRES AB Silicon waveguide asymmetric Y junction mode multiplexers and demultiplexers are demonstrated for applications in on-chip mode-division multiplexing (MDM). We measure demultiplexed crosstalk as low as -30 dB, < -9 dB over the C band, and insertion loss < 1.5 dB for multimode links up to 1.2 mm in length. The frequency response of these devices is shown to depend upon Y junction angle and multimode interconnect length. Interference effects are shown to be advantageous for low-crosstalk MDM, even while using compact Y junctions designed to be outside the mode-sorting regime. (C) 2013 Optical Society of America C1 [Driscoll, Jeffrey B.; Grote, Richard R.; Souhan, Brian; Dadap, Jerry I.; Osgood, Richard M., Jr.] Columbia Univ, Microelect Sci Labs, New York, NY 10027 USA. [Lu, Ming] Brookhaven Natl Labs, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Driscoll, JB (reprint author), Columbia Univ, Microelect Sci Labs, New York, NY 10027 USA. EM jbd2112@columbia.edu FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 18 TC 75 Z9 75 U1 4 U2 50 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUN 1 PY 2013 VL 38 IS 11 BP 1854 EP 1856 DI 10.1364/OL.38.001854 PG 3 WC Optics SC Optics GA 156IL UT WOS:000319815200033 PM 23722767 ER PT J AU Gao, J Guildenbecher, DR Reu, PL Kulkarni, V Sojka, PE Chen, J AF Gao, Jian Guildenbecher, Daniel R. Reu, Phillip L. Kulkarni, Varun Sojka, Paul E. Chen, Jun TI Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography SO OPTICS LETTERS LA English DT Article AB Quantitative application of digital in-line holography (DIH) to characterize multiphase fragmentation is demonstrated. DIH is applied to record sequential holograms of the breakup of an ethanol droplet in an aerodynamic flow field. Various stages of the breakup process are recorded, including deformation, bag growth, bag breakup, and rim breakup. A recently proposed hybrid method is applied to extract the three-dimensional (3D) location and size of secondary droplets as well as the 3D morphology of the rim. Particle matching between sequential frames is used to determine the velocity. Coincidence with the results obtained from phase Doppler anemometry measurement demonstrates the accuracy of measurement by DIH and the hybrid method. (C) 2013 Optical Society of America C1 [Gao, Jian; Kulkarni, Varun; Sojka, Paul E.; Chen, Jun] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. [Guildenbecher, Daniel R.; Reu, Phillip L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Chen, J (reprint author), Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. EM junchen@purdue.edu RI Gao, Jian/Q-6457-2016 OI Gao, Jian/0000-0003-3744-453X FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is supported by Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract no. DE-AC04-94AL85000. NR 13 TC 17 Z9 17 U1 3 U2 16 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUN 1 PY 2013 VL 38 IS 11 BP 1893 EP 1895 DI 10.1364/OL.38.001893 PG 3 WC Optics SC Optics GA 156IL UT WOS:000319815200046 PM 23722780 ER PT J AU Nemenman, I Gnanakaran, S Munsky, B Wall, ME Jiang, Y Hlavacek, WS Faeder, JR AF Nemenman, Ilya Gnanakaran, S. Munsky, Brian Wall, Michael E. Jiang, Yi Hlavacek, William S. Faeder, James R. TI Special section dedicated to The Sixth q-bio Conference: meeting report and preface PREFACE SO PHYSICAL BIOLOGY LA English DT Editorial Material C1 [Nemenman, Ilya] Emory Univ, Atlanta, GA 30322 USA. [Gnanakaran, S.; Munsky, Brian; Wall, Michael E.; Hlavacek, William S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Jiang, Yi] Georgia State Univ, Atlanta, GA 30303 USA. [Hlavacek, William S.] Univ New Mexico, Albuquerque, NM 87131 USA. [Faeder, James R.] Univ Pittsburgh, Sch Med, Pittsburgh, PA 15260 USA. RP Nemenman, I (reprint author), Emory Univ, Atlanta, GA 30322 USA. RI Munsky, Brian/A-1947-2016; OI Munsky, Brian/0000-0001-6147-7329; Gnanakaran, S/0000-0002-9368-3044; Alexandrov, Ludmil/0000-0003-3596-4515; Hlavacek, William/0000-0003-4383-8711 FU NIGMS NIH HHS [R13GM082162, R25 GM105608] NR 10 TC 2 Z9 2 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1478-3967 J9 PHYS BIOL JI Phys. Biol. PD JUN PY 2013 VL 10 IS 3 AR 030301 DI 10.1088/1478-3975/10/3/030301 PG 4 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 156ZH UT WOS:000319863500001 PM 23735417 ER PT J AU Patel, M Pitts, S Beavis, P Robinson, M Morrell, P Khan, N Khan, I Pockett, N Letant, S Von White, G Labouriau, A AF Patel, Mogon Pitts, Simon Beavis, Peter Robinson, Mathew Morrell, Paul Khan, Niaz Khan, Imran Pockett, Nicola Letant, Sonia Von White, Gregory, II Labouriau, Andrea TI Thermal stability of poly(ethylene-co-vinyl acetate) based materials SO POLYMER TESTING LA English DT Article DE Characterisation; Thermal stability; Poly(ethylene-co-vinyl acetate) ID DEGRADATION MECHANISM; EVA; NANOCOMPOSITES; OXIDATION; COPOLYMER; BEHAVIOR AB The thermal stability of poly(ethylene-co-vinyl acetate) based materials has been investigated in support of materials qualification and service life prediction programmes. Poly(ethylene-co-vinyl acetate) is used as a binder phase for boron particles in highly filled (greater than 70 wt%) composites. Studies have been carried out to generate improved understanding of the stability of the binder material and the mechanical response of the highly filled composite. Our studies show that the uncured resin (emulsion) readily accumulates acetic acid through hydrolysis of the pendent acetate groups, which alters the acidity (pH) of the material. Thermal desorption studies in combination with gas-chromatography-mass spectrometry show that the resin readily evolves acetic acid when thermally aged to temperatures up to 75 degrees C. Gel Permeation Chromatography (GPC) suggests that thermal ageing induces a gradual reduction in the molecular weight of the resin and is linked to the susceptibility of the material to chain scission. Heating at elevated temperatures in excess of 300 degrees C is shown to induce significant changes in the carbon skeleton through deacetylation and dehydration processes, with the production of unsaturated main chain double bonds. The key insight or improved understanding offered from these studies is the complex mechanical responses of these highly filled materials. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved. C1 [Patel, Mogon; Pitts, Simon; Beavis, Peter; Robinson, Mathew; Morrell, Paul; Khan, Niaz; Khan, Imran; Pockett, Nicola] AWE, Reading RG7 4PR, Berks, England. [Letant, Sonia] Lawrence Livermore Natl Lab, Livermore, CA USA. [Von White, Gregory, II] Sandia Natl Labs, Albuquerque, NM USA. [Labouriau, Andrea] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Patel, M (reprint author), AWE, Reading RG7 4PR, Berks, England. EM mogon.patel@awe.co.uk RI Beavis, Peter/I-5154-2013; OI Labouriau, Andrea/0000-0001-8033-9132 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Dr PDD Monks (system modelling, AWE) and Dr Ben Jones (ageing and compatibility, AWE) for useful discussions and support within this project. This includes work performed under joint working agreements between AWE and the US, and collaborative focus exchange activities by the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.; This project also incorporates input from Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 NR 14 TC 6 Z9 6 U1 2 U2 48 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9418 J9 POLYM TEST JI Polym. Test PD JUN PY 2013 VL 32 IS 4 BP 785 EP 793 DI 10.1016/j.polymertesting.2013.03.014 PG 9 WC Materials Science, Characterization & Testing; Polymer Science SC Materials Science; Polymer Science GA 160BH UT WOS:000320090700022 ER PT J AU Blanton, T Havrilla, G AF Blanton, Tom Havrilla, George TI Sixty-first Denver X-ray Conference and selected papers for the special June Powder Diffraction issue SO POWDER DIFFRACTION LA English DT Editorial Material C1 [Blanton, Tom] Eastman Kodak Co, Rochester, NY 14650 USA. [Havrilla, George] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Blanton, T (reprint author), Eastman Kodak Co, Rochester, NY 14650 USA. OI Havrilla, George/0000-0003-2052-7152 NR 0 TC 0 Z9 0 U1 0 U2 3 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2013 VL 28 IS 2 BP 61 EP 61 DI 10.1017/S0885715613000341 PG 1 WC Materials Science, Characterization & Testing SC Materials Science GA 158OE UT WOS:000319981000001 ER PT J AU Rodriguez, MA Pearl, MR Van Benthem, MH Griego, JJM Pillars, JR AF Rodriguez, Mark A. Pearl, Megan R. Van Benthem, Mark H. Griego, James J. M. Pillars, Jamin R. TI TILT-A-WHIRL: a texture analysis package for 3D rendering of pole figures using MATLAB SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT 61st annual Denver X-ray Conference (DXC) CY AUG 06-10, 2012 CL Denver, CO DE texture analysis; pole figures; macrostrain; Au film on Ni substrate ID X-RAY-DIFFRACTION; MULTIVARIATE-ANALYSIS; SIGNAL EXTRACTION; BATTERIES AB A new MATLAB-based software suite called TILT-A-WHIRL has been applied to XRD data from textured gold films electro-deposited onto nickel substrates. The software routines facilitate phase identification, texture analysis via pole figure visualization, and macrostrain determination. The use of principal component analysis with multivariate curve resolution (PCA/MCR) revealed the extraction of texture components. The unusual hardness properties of one Au film (deposited from a 30% gold depleted BDT-200 bath) were found to be dependent on the (210) out-of-plane preferred orientation of the polycrystalline gold film. The progressive nucleation of Au crystallites during electro-plating has been tied to improved hardness properties of this film. (C) 2013 International Centre for Diffraction Data. C1 [Rodriguez, Mark A.; Pearl, Megan R.; Van Benthem, Mark H.; Griego, James J. M.; Pillars, Jamin R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rodriguez, MA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM marodri@sandia.gov FU Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 16 TC 0 Z9 0 U1 0 U2 11 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 EI 1945-7413 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2013 VL 28 IS 2 BP 81 EP 89 DI 10.1017/S0885715613000262 PG 9 WC Materials Science, Characterization & Testing SC Materials Science GA 158OE UT WOS:000319981000007 ER PT J AU Worley, CG Tandon, L Martinez, PT Decker, DL AF Worley, Christopher G. Tandon, Lav Martinez, Patrick T. Decker, Diana L. TI Application of micro-XRF for nuclear materials characterization and problem solving SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT 61st annual Denver X-ray Conference (DXC) CY AUG 06-10, 2012 CL Denver, CO DE micro-X-ray fluorescence; elemental mapping; nuclear materials; radiologically contaminated samples; plutonium and neptunium mixed oxide AB A number of spatially resolved elemental imaging techniques are commonly employed to examine plutonium and other nuclear materials (e.g., scanning electron microscopy). Up until the past 10-15 years, micro-X-ray fluorescence (MXRF) instrumentation had been relatively uncommon, and even currently, it is underutilized for spatially resolved nuclear materials analysis and imaging. In the current study, a number of plutonium materials problem solving applications are presented to demonstrate the power and utility of MXRF for providing unique, spatially resolved elemental composition information. Applications discussed include identification of multiple insoluble fractions in plutonium and neptunium mixed oxide, spatially resolved imaging of plutonium residue and other elements on surface swipes, and spatial mapping of impurities in plutonium metal. The mixed oxide particle analysis demonstrated the ability to non-destructively identify particles of interest for potential extraction and analysis by other methods. The surface swipes study demonstrated the unique ability of MXRF to non-destructively image large multiple cm(2) sized, non-conducting, radiologically contaminated samples. The plutonium metal investigation showed the capability of MXRF to non-destructively map elemental heterogeneity directly in an actinide matrix. Such information is extremely valuable prior to using destructive analysis (DA) trace elemental analytical chemistry techniques. If a metal is found to contain significant elemental impurity heterogeneity by MXRF, time consuming destructive sample preparation and analysis do not need to be repeated to confirm that the sample is indeed heterogeneous. (c) 2013 International Centre for Diffraction Data. C1 [Worley, Christopher G.; Tandon, Lav; Martinez, Patrick T.; Decker, Diana L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Worley, CG (reprint author), Los Alamos Natl Lab, MS G740, Los Alamos, NM 87545 USA. EM cworley@lanl.gov FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX The authors thank Elmer Lujan, Kathy Garduno, and Lisa Colletti for providing neptunium and plutonium mixed oxide and Fran Martin for cutting the ER plutonium metal sample. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. The institutional number for this publication is LA-UR-12-24511. NR 6 TC 1 Z9 1 U1 1 U2 12 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 EI 1945-7413 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2013 VL 28 IS 2 BP 127 EP 131 DI 10.1017/S0885715613000201 PG 5 WC Materials Science, Characterization & Testing SC Materials Science GA 158OE UT WOS:000319981000014 ER PT J AU Abdalla, M Osborne, B Lanigan, G Forristal, D Williams, M Smith, P Jones, MB AF Abdalla, M. Osborne, B. Lanigan, G. Forristal, D. Williams, M. Smith, P. Jones, M. B. TI Conservation tillage systems: a review of its consequences for greenhouse gas emissions SO SOIL USE AND MANAGEMENT LA English DT Review DE Greenhouse gas emissions; Conservation tillage; Conventional tillage; N leaching; Dissolved organic C and N ID NITROUS-OXIDE EMISSIONS; SOIL ORGANIC-CARBON; LONG-TERM TILLAGE; FLUXES FOLLOWING TILLAGE; CROP RESIDUE MANAGEMENT; CORN-SOYBEAN ROTATIONS; NO-TILLAGE; CONVENTIONAL TILLAGE; CLIMATE-CHANGE; N2O EMISSIONS AB Conservation tillage (CT) is an umbrella term encompassing many types of tillage and residue management systems that aim to achieve sustainable and profitable agriculture. Through a global review of CT research, the objective of this paper was to investigate the impacts of CT on greenhouse gas (GHG) emissions. Based on the analysis presented, CT should be developed within the context of specific climates and soils. A number of potential disadvantages in adopting CT practices were identified, relating mainly to enhanced nitrous oxide emissions, together with a number of advantages that would justify its wider adoption. Almost all studies examined showed that the adoption of CT practices reduced carbon dioxide emissions, while also contributing to increases in soil organic carbon and improvements in soil structure. C1 [Abdalla, M.; Williams, M.; Jones, M. B.] Trinity Coll Dublin, Sch Nat Sci, Dept Bot, Dublin 2, Ireland. [Abdalla, M.; Smith, P.] Univ Aberdeen, Sch Biol Sci, Inst Biol & Environm Sci, Aberdeen AB24 3UU, Scotland. [Osborne, B.] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin 4, Ireland. [Lanigan, G.] TEAGASC, Johnstown Castle Res Ctr, Wexford, Ireland. [Forristal, D.] Teagasc Co, Oak Pk Crops Res Ctr, Carlow, Ireland. RP Abdalla, M (reprint author), Trinity Coll Dublin, Sch Nat Sci, Dept Bot, Dublin 2, Ireland. EM abdallm@tcd.ie RI Lanigan, Gary/C-6864-2012; Smith, Pete/G-1041-2010 OI Lanigan, Gary/0000-0003-0813-3097; Smith, Pete/0000-0002-3784-1124 FU Irish Department of Agriculture [07 528]; European Union (GHG-Europe project) FX This work was funded by the Irish Department of Agriculture (Project no: 07 528) and European Union (GHG-Europe project). P. Smith is a Royal Society-Wolfson Research Merit Award holder. NR 103 TC 24 Z9 26 U1 16 U2 161 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0266-0032 J9 SOIL USE MANAGE JI Soil Use Manage. PD JUN PY 2013 VL 29 IS 2 BP 199 EP 209 DI 10.1111/sum.12030 PG 11 WC Soil Science SC Agriculture GA 161FC UT WOS:000320176700006 ER PT J AU Kitamura, N Vogel, SC Idemoto, Y AF Kitamura, Naoto Vogel, Sven C. Idemoto, Yasushi TI Local structure analysis on (La,Ba)(Ga,Mg)O3-delta by the pair distribution function method using a neutron source and density functional theory calculations SO SOLID STATE COMMUNICATIONS LA English DT Article DE Oxide-ion conductor; Defect; Pair distribution function; Neutron ID DOPED LAGAO3 PEROVSKITE; OXIDE-ION CONDUCTOR; TRANSPORT; ELECTROLYTE; SITE; SR AB In this work, we focused on La0.95Ba0.05Ga0.8Mg0.2O3-delta with the perovskite structure, and investigated the local structure around the oxygen vacancy by pair distribution function (PDF) method and density functional theory (DFT) calculation. By comparing the G(r) simulated based on the OFT calculation and the experimentally-observed G(r), it was suggested that the oxygen vacancy was trapped by Ba2+ at the La3+ site at least at room temperature. Such a defect association may be one of the reasons why the La0.95Ba0.05Ga0.8Mg0.2O3-delta showed lower oxide-ion conductivity than (La,Sr)(Ga,Mg)O3-delta which was widely-used as an electrolyte of the solid oxide fuel cell. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Kitamura, Naoto; Idemoto, Yasushi] Tokyo Univ Sci, Fac Sci & Technol, Dept Pure & Appl Chem, Noda, Chiba 2788510, Japan. [Vogel, Sven C.] Los Alamos Natl Lab, LANSCE Lujan Ctr, Los Alamos, NM 87545 USA. RP Kitamura, N (reprint author), Tokyo Univ Sci, Fac Sci & Technol, Dept Pure & Appl Chem, 2647 Yamazaki, Noda, Chiba 2788510, Japan. EM naotok@rs.tus.ac.jp NR 26 TC 2 Z9 2 U1 2 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD JUN PY 2013 VL 163 BP 46 EP 49 DI 10.1016/j.ssc.2013.03.026 PG 4 WC Physics, Condensed Matter SC Physics GA 164MQ UT WOS:000320414600011 ER PT J AU Wiens, RC Reisenfeld, DB Olinger, C Wurz, P Heber, VS Burnett, DS AF Wiens, Roger C. Reisenfeld, Daniel B. Olinger, Chad Wurz, Peter Heber, Veronika S. Burnett, Donald S. TI The Genesis Solar Wind Concentrator: Flight and Post-Flight Conditions and Modeling of Instrumental Fractionation SO SPACE SCIENCE REVIEWS LA English DT Review DE Solar wind; Composition; Solar; Genesis; Cosmochemistry; Solar nebula ID OXYGEN-ISOTOPIC COMPOSITION; CARBONACEOUS CHONDRITES; LUNAR REGOLITH; MINOR IONS; NITROGEN; SPACECRAFT; NEBULA; SYSTEM; EQUILIBRIUM; MAGNESIUM AB The Genesis mission Solar Wind Concentrator was built to enhance fluences of solar wind by an average of 20x over the 2.3 years that the mission exposed substrates to the solar wind. The Concentrator targets survived the hard landing upon return to Earth and were used to determine the isotopic composition of solar-wind-and hence solar-oxygen and nitrogen. Here we report on the flight operation of the instrument and on simulations of its performance. Concentration and fractionation patterns obtained from simulations are given for He, Li, N, O, Ne, Mg, Si, S, and Ar in SiC targets, and are compared with measured concentrations and isotope ratios for the noble gases. Carbon is also modeled for a Si target. Predicted differences in instrumental fractionation between elements are discussed. Additionally, as the Concentrator was designed only for ions a parts per thousand currency sign22 AMU, implications of analyzing elements as heavy as argon are discussed. Post-flight simulations of instrumental fractionation as a function of radial position on the targets incorporate solar-wind velocity and angular distributions measured in flight, and predict fractionation patterns for various elements and isotopes of interest. A tighter angular distribution, mostly due to better spacecraft spin stability than assumed in pre-flight modeling, results in a steeper isotopic fractionation gradient between the center and the perimeter of the targets. Using the distribution of solar-wind velocities encountered during flight, which are higher than those used in pre-flight modeling, results in elemental abundance patterns slightly less peaked at the center. Mean fractionations trend with atomic mass, with differences relative to the measured isotopes of neon of +4.1 +/- 0.9 aEuro degrees/amu for Li, between -0.4 and +2.8 aEuro degrees/amu for C, +1.9 +/- 0.7aEuro degrees/amu for N, +1.3 +/- 0.4 aEuro degrees/amu for O, -7.5 +/- 0.4 aEuro degrees/amu for Mg, -8.9 +/- 0.6 aEuro degrees/amu for Si, and -22.0 +/- 0.7 aEuro degrees/amu for S (uncertainties reflect Monte Carlo statistics). The slopes of the fractionation trends depend to first order only on the relative differential mass ratio, Delta m/m. This article and a companion paper (Reisenfeld et al. 2012, this issue) provide post-flight information necessary for the analysis of the Genesis solar wind samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003). C1 [Wiens, Roger C.; Olinger, Chad] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Reisenfeld, Daniel B.] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [Wurz, Peter] Univ Bern, Phys Inst, CH-3012 Bern, Switzerland. [Heber, Veronika S.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Burnett, Donald S.] CALTECH, Pasadena, CA 91109 USA. RP Wiens, RC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rwiens@lanl.gov RI Reisenfeld, Daniel/F-7614-2015; UCLA, SIMS/A-1459-2011 FU NASA's Laboratory Analysis of Returned Samples (LARS) program; Discovery Program office funding FX The authors at LANL are grateful for a grant from NASA's Laboratory Analysis of Returned Samples (LARS) program, as well as Discovery Program office funding to the Genesis mission. The authors are also grateful to all who made possible the Concentrator experiment, including the Genesis flight. We thank the ACE SWICS instrument team and the ACE Science Center for providing the ACE data. NR 65 TC 2 Z9 2 U1 0 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2013 VL 175 IS 1-4 BP 93 EP 124 DI 10.1007/s11214-013-9961-1 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 162RI UT WOS:000320282500004 ER PT J AU Aylward, FO McDonald, BR Adams, SM Valenzuela, A Schmidt, RA Goodwin, LA Woyke, T Currie, CR Suen, G Poulsen, M AF Aylward, Frank O. McDonald, Bradon R. Adams, Sandra M. Valenzuela, Alejandra Schmidt, Rebeccah A. Goodwin, Lynne A. Woyke, Tanja Currie, Cameron R. Suen, Garret Poulsen, Michael TI Comparison of 26 Sphingomonad Genomes Reveals Diverse Environmental Adaptations and Biodegradative Capabilities SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID HEXACHLOROCYCLOHEXANE-DEGRADING BACTERIUM; MULTIPLE SEQUENCE ALIGNMENT; OPERON COPY NUMBER; OLIGOTROPHIC ULTRAMICROBACTERIUM; STRAIN RB2256; WHOLE GENOME; SPHINGOBIUM; NOVOSPHINGOBIUM; DEGRADATION; SPHINGOPYXIS AB Sphingomonads comprise a physiologically versatile group within the Alphaproteobacteria that includes strains of interest for biotechnology, human health, and environmental nutrient cycling. In this study, we compared 26 sphingomonad genome sequences to gain insight into their ecology, metabolic versatility, and environmental adaptations. Our multilocus phylogenetic and average amino acid identity (AAI) analyses confirm that Sphingomonas, Sphingobium, Sphingopyxis, and Novosphingobium are well-resolved monophyletic groups with the exception of Sphingomonas sp. strain SKA58, which we propose belongs to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible for their ability to degrade various recalcitrant aromatic compounds and polysaccharides, respectively. Many of these enzymes are encoded on megaplasmids, suggesting that they may be readily transferred between species. We also identified enzymes putatively used for the catabolism of sulfonate and nitroaromatic compounds in many of the genomes, suggesting that plant-based compounds or chemical contaminants may be sources of nitrogen and sulfur. Many of these sphingomonads appear to be adapted to oligotrophic environments, but several contain genomic features indicative of host associations. Our work provides a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling. C1 [Aylward, Frank O.; McDonald, Bradon R.; Adams, Sandra M.; Valenzuela, Alejandra; Schmidt, Rebeccah A.; Currie, Cameron R.; Suen, Garret; Poulsen, Michael] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Aylward, Frank O.; Adams, Sandra M.; Valenzuela, Alejandra; Schmidt, Rebeccah A.; Currie, Cameron R.; Suen, Garret; Poulsen, Michael] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Poulsen, Michael] Univ Copenhagen, Dept Biol, Sect Ecol & Evolut, Copenhagen East, Denmark. [Goodwin, Lynne A.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Goodwin, Lynne A.; Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA USA. RP Poulsen, M (reprint author), Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. EM MPoulsen@bio.ku.dk RI McDonald, Bradon/F-8386-2013; Poulsen, Michael/C-6276-2012; OI Poulsen, Michael/0000-0002-2839-1715; Suen, Garret/0000-0002-6170-711X FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; Danish Agency for Science, Technology and Innovation; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494), supporting F.O.A., S.M.A., A.V., B.R.M., R.A.S., C.R.C., G.S., and M.P., and by a STENO stipend awarded by the Danish Agency for Science, Technology and Innovation to M.P. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 69 TC 41 Z9 41 U1 3 U2 55 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUN PY 2013 VL 79 IS 12 BP 3724 EP 3733 DI 10.1128/AEM.00518-13 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 152CO UT WOS:000319507700021 PM 23563954 ER PT J AU Aylward, FO Burnum-Johnson, KE Tringe, SG Teiling, C Tremmel, DM Moeller, JA Scott, JJ Barry, KW Piehowski, PD Nicora, CD Malfatti, SA Monroe, ME Purvine, SO Goodwin, LA Smith, RD Weinstock, GM Gerardo, NM Suen, G Lipton, MS Currie, CR AF Aylward, Frank O. Burnum-Johnson, Kristin E. Tringe, Susannah G. Teiling, Clotilde Tremmel, Daniel M. Moeller, Joseph A. Scott, Jarrod J. Barry, Kerrie W. Piehowski, Paul D. Nicora, Carrie D. Malfatti, Stephanie A. Monroe, Matthew E. Purvine, Samuel O. Goodwin, Lynne A. Smith, Richard D. Weinstock, George M. Gerardo, Nicole M. Suen, Garret Lipton, Mary S. Currie, Cameron R. TI Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ATTA-SEXDENS-RUBROPILOSA; CUTTING ANTS; SYMBIOTIC FUNGUS; PROTEIN DATABASE; GROWING ANTS; CELLULOSE; ANNOTATION; EVOLUTION; ECOLOGY; COMMUNITIES AB Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar. C1 [Aylward, Frank O.; Tremmel, Daniel M.; Moeller, Joseph A.; Scott, Jarrod J.; Suen, Garret; Currie, Cameron R.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Aylward, Frank O.; Moeller, Joseph A.; Scott, Jarrod J.; Currie, Cameron R.] Univ Wisconsin, Dept Energy Great Lakes Bioenergy, Res Ctr, Madison, WI 53706 USA. [Burnum-Johnson, Kristin E.; Piehowski, Paul D.; Nicora, Carrie D.; Monroe, Matthew E.; Purvine, Samuel O.; Smith, Richard D.; Lipton, Mary S.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Currie, Cameron R.] Smithsonian Trop Res Inst, Balboa, Ancon, Panama. [Tringe, Susannah G.; Barry, Kerrie W.; Malfatti, Stephanie A.; Goodwin, Lynne A.] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Gerardo, Nicole M.] Emory Univ, Dept Biol, Atlanta, GA 30322 USA. [Teiling, Clotilde] Roche Diagnost, Indianapolis, IN USA. [Weinstock, George M.] Washington Univ, Sch Med, Genome Ctr, St Louis, MO USA. RP Currie, CR (reprint author), Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. EM currie@bact.wisc.edu RI Piehowski, Paul/B-1108-2011; Smith, Richard/J-3664-2012; Burnum, Kristin/B-1308-2011; Lipton, Mary/H-3913-2012; OI Smith, Richard/0000-0002-2381-2349; Burnum, Kristin/0000-0002-2722-4149; Suen, Garret/0000-0002-6170-711X; Piehowski, Paul/0000-0001-5108-2227 FU Roche 454 Life Sciences 10 GB grant; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy's (DOE) Office of Biological and Environmental Research (OBER) Pan-omics program at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy (DOE) Office of Biological and Environmental Research national scientific user facility on the PNNL campus; DOE [DE-AC05-76RL01830]; National Science Foundation [DEB-0747002, MCB-0702025, MCB-0731822]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494] FX Fungal genome sequencing was supported by a Roche 454 Life Sciences 10 GB grant. The U.S. Department of Energy Joint Genome Institute effort was supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. Metaproteomics measurements were supported by the U.S. Department of Energy's (DOE) Office of Biological and Environmental Research (OBER) Pan-omics program at Pacific Northwest National Laboratory (PNNL) and performed in the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) Office of Biological and Environmental Research national scientific user facility on the PNNL campus. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under contract DE-AC05-76RL01830. This work was also supported by National Science Foundation grants DEB-0747002, MCB-0702025, and MCB-0731822 to C.R.C. and the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). NR 60 TC 31 Z9 31 U1 8 U2 100 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUN PY 2013 VL 79 IS 12 BP 3770 EP 3778 DI 10.1128/AEM.03833-12 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 152CO UT WOS:000319507700026 PM 23584789 ER PT J AU Paper, JM Scott-Craig, JS Cavalier, D Faik, A Wiemels, RE Borrusch, MS Bongers, M Walton, JD AF Paper, Janet M. Scott-Craig, John S. Cavalier, David Faik, Ahmed Wiemels, Richard E. Borrusch, Melissa S. Bongers, Mareike Walton, Jonathan D. TI alpha-Fucosidases with different substrate specificities from two species of Fusarium SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Fucose; Xyloglucan; Fusarium oxysporum; Fusarium graminearum ID CELL-WALL POLYSACCHARIDES; XYLOGLUCAN OLIGOSACCHARIDES; FUCOSYLATED XYLOGLUCAN; DEGRADING ENZYMES; IN-VITRO; ARABIDOPSIS; BIOSYNTHESIS; GRAMINEARUM; PROTEINS; IDENTIFICATION AB Two fungal-secreted alpha-fucosidases and their genes were characterized. FoFCO1 was purified from culture filtrates of Fusarium oxysporum strain 0685 grown on l-fucose and its encoding gene identified in the sequenced genome of strain 4287. FoFCO1 was active on p-nitrophenyl-alpha-fucoside (pNP-Fuc), but did not defucosylate a nonasaccharide (XXFG) fragment of pea xyloglucan. A putative alpha-fucosidase gene (FgFCO1) from Fusarium graminearum was expressed in Pichia pastoris. FgFCO1 was similar to 1,800 times less active on pNP-Fuc than FoFCO1, but was able to defucosylate the XXFG nonasaccharide. Although FgFCO1 and FoFCO1 both belong to Glycosyl Hydrolase family 29, they share < 25 % overall amino acid identity. Alignment of all available fungal orthologs of FoFCO1 and FgFCO1 indicated that these two proteins belong to two subfamilies of fungal GH29 alpha-fucosidases. Fungal orthologs of subfamily 1 (to which FoFCO1 belongs) are taxonomically more widely distributed than subfamily 2 (FgFCO1), but neither was universally present in the sequenced fungal genomes. Trichoderma reesei and most species of Aspergillus lack genes for either GH29 subfamily. C1 [Paper, Janet M.; Scott-Craig, John S.; Cavalier, David; Borrusch, Melissa S.; Bongers, Mareike; Walton, Jonathan D.] Michigan State Univ, Dept Energy DOE, Plant Res Lab, E Lansing, MI 48824 USA. [Paper, Janet M.; Scott-Craig, John S.; Cavalier, David; Borrusch, Melissa S.; Bongers, Mareike; Walton, Jonathan D.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Faik, Ahmed; Wiemels, Richard E.] Ohio Univ, Environm & Plant Biol Dept, Athens, OH 45701 USA. [Faik, Ahmed; Wiemels, Richard E.] Ohio Univ, Mol & Cellular Biol Program, Athens, OH 45701 USA. [Bongers, Mareike] ETH, CH-8093 Zurich, Switzerland. RP Walton, JD (reprint author), Michigan State Univ, Dept Energy DOE, Plant Res Lab, E Lansing, MI 48824 USA. EM walton@msu.edu FU U.S. Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-91ER200021]; National Research Initiative Competitive Grants from the United States Department of Agriculture National Institute of Food and Agriculture [2008-35318-04563, 2008-35318-04572] FX This work was funded in part by the U.S. Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494) and in part by grant DE-FG02-91ER200021 to the MSU-Plant Research Laboratory from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Research in A.F.'s laboratory was supported in part by National Research Initiative Competitive Grants 2008-35318-04563 and 2008-35318-04572 from the United States Department of Agriculture National Institute of Food and Agriculture. We thank Ken Keegstra (Michigan State University and DOE-Great Lakes Bioenergy Research Center) for the gift of Arabidopsis FUT1, Cliff Foster (Great Lakes Bioenergy Research Center) for cell wall analysis, and Doug Whitten (Michigan State University Research Technology Support Facility) for proteomics. NR 29 TC 8 Z9 8 U1 2 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD JUN PY 2013 VL 97 IS 12 BP 5371 EP 5380 DI 10.1007/s00253-012-4423-3 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 153NP UT WOS:000319609400017 PM 23011349 ER PT J AU Gaur, S Wu, HY Stanley, GG More, K Kumar, CSSR Spivey, JJ AF Gaur, Sarthak Wu, Hongyi Stanley, George G. More, Karren Kumar, Challa S. S. R. Spivey, James J. TI CO oxidation studies over cluster-derived Au/TiO2 and AUROlite (TM) Au/TiO2 catalysts using DRIFTS SO CATALYSIS TODAY LA English DT Article DE CO oxidation; Au catalysis; DRIFTS; Au clusters; Au/TiO2 ID SUPPORTED GOLD CATALYSTS; CARBON-MONOXIDE; NANOPARTICLE CATALYSTS; ROOM-TEMPERATURE; FT-IR; TIO2; AU; ADSORPTION; MECHANISM; SPECTROSCOPY AB Thiol-ligated Au-38(SC12H25)(24) clusters were synthesized and supported on a microporous TiO2 support by incipient wetness impregnation. After a reductive pretreatment designed to remove the thiol ligands, the activity of catalyst was tested using CO oxidation in a fixed-bed reactor at 30 and 60 degrees C. CO oxidation was also performed at similar conditions in an in situ FTIR (DRIFTS) cell to monitor the species that were formed during the reaction, and results were compared to commercially available Au/TiO2 catalyst. Our Au/TiO2 was less active than this commercial catalyst for CO oxidation, likely due to the presence of bidentate carbonate species. DRIFTS studies on the commercial catalyst showed strong peaks at 1718 and 1690 cm(-1) that are not present in our catalyst. We propose that these bands are due to bridging CO2 between Au-Ti and Au-Au centers formed via direct oxygen atom transfer from the titania surface to Au-CO. On the surface of our catalyst, however, a different reaction mechanism involving sulfur-mediated oxygen transfer at the Au-TiO2 interface has been proposed. (C) 2012 Elsevier B.V. All rights reserved. C1 [Gaur, Sarthak; Spivey, James J.] Louisiana State Univ, Ctr Atom Level Catalyst Design, Baton Rouge, LA 70803 USA. [Gaur, Sarthak; Spivey, James J.] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. [Wu, Hongyi] Southern Univ, Dept Chem, Baton Rouge, LA 70816 USA. [Stanley, George G.] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. [More, Karren] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kumar, Challa S. S. R.] CAMD, Baton Rouge, LA 70806 USA. RP Spivey, JJ (reprint author), Louisiana State Univ, Ctr Atom Level Catalyst Design, Baton Rouge, LA 70803 USA. EM jjspivey@lsu.edu RI wu, hongyi/H-5784-2013; More, Karren/A-8097-2016 OI wu, hongyi/0000-0002-2331-3603; More, Karren/0000-0001-5223-9097 FU Center for Atomic Level Catalyst Design, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001058]; Oak Ridge National Laboratory's Shared Research Equipment (ShaRE); Office of Basic Energy Sciences, U.S. Department of Energy FX This material is based upon work supported as part of the Center for Atomic Level Catalyst Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001058. Research supported in part by Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 54 TC 12 Z9 13 U1 10 U2 105 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUN 1 PY 2013 VL 208 BP 72 EP 81 DI 10.1016/j.cattod.2012.10.029 PG 10 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 151ZK UT WOS:000319498700013 ER PT J AU O'Brien, TA Sloan, LC Chuang, PY Faloona, IC Johnstone, JA AF O'Brien, Travis A. Sloan, Lisa C. Chuang, Patrick Y. Faloona, Ian C. Johnstone, James A. TI Multidecadal simulation of coastal fog with a regional climate model SO CLIMATE DYNAMICS LA English DT Article DE Regional climate model; Marine stratocumulus; Planetary boundary layer; Cloud topped boundary layer; Turbulence closure; Coastal climate; Coastal fog; Sequoia sempervirens; Redwood ID MARINE STRATOCUMULUS CONVECTION; CALIFORNIA COAST; BOUNDARY-LAYERS; REDWOOD FOREST; LOS-ANGELES; CLOUDS; WATER; PARAMETERIZATION; PLANTS; REGCM AB In order to model stratocumulus clouds and coastal fog, we have coupled the University of Washington boundary layer model to the regional climate model, RegCM (RegCM-UW). By comparing fog occurrences observed at various coastal airports in the western United States, we show that RegCM-UW has success at modeling the spatial and temporal (diurnal, seasonal, and interannual) climatology of northern California coastal fog. The quality of the modeled fog estimate depends on whether coast-adjacent ocean or land grid cells are used; for the model runs shown here, the oceanic grid cells seem to be most appropriate. The interannual variability of oceanic northern California summertime fog, from a multi-decadal simulation, has a high and statistically significant correlation with the observed interannual variability (r = 0.72), which indicates that RegCM-UW is capable of investigating the response of fog to long-term climatological forcing. While RegCM-UW has a number of aspects that would benefit from further investigation and development, RegCM-UW is a new tool for investigating the climatology of coastal fog and the physical processes that govern it. We expect that with appropriate physical parameterizations and moderate horizontal resolution, other climate models should be capable of simulating coastal fog. The source code for RegCM-UW is publicly available, under the GNU license, through the International Centre for Theoretical Physics. C1 [O'Brien, Travis A.; Sloan, Lisa C.; Chuang, Patrick Y.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95604 USA. [Faloona, Ian C.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95618 USA. [Johnstone, James A.] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA. RP O'Brien, TA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd MS84R-171, Berkeley, CA 94720 USA. EM TAOBrien@lbl.gov RI O'Brien, Travis/M-5250-2013 OI O'Brien, Travis/0000-0002-6643-1175 FU National Science Foundation [ATM-0533482-001, ATM-0736046-001]; California Energy Commission; UC Santa Cruz STEPS Institute; Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to extend their deep gratitude to Professor Christopher Bretherton of the University of Washington for kindly sharing his turbulence closure model code with us. We would also like to thank two anonymous reviewers, whose thorough comments and suggestions improved the focus and clarity of this manuscript, and Professor Filippo Giorgi, who has kindly provided travel support for the lead author to work with the RegCM developers at ICTP on two occasions. This material is based upon work supported by the National Science Foundation under Grant No. ATM-0533482-001 and ATM-0736046-001. This work was partially supported by a grant from the California Energy Commission and a grant from the UC Santa Cruz STEPS Institute. This research was partially supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 as part of the Regional and Global Climate Modeling Program (RGCM). Figures were prepared using the NCAR Command Language (NCL 2012). NR 31 TC 7 Z9 7 U1 1 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 J9 CLIM DYNAM JI Clim. Dyn. PD JUN PY 2013 VL 40 IS 11-12 BP 2801 EP 2812 DI 10.1007/s00382-012-1486-x PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 149ZU UT WOS:000319360800014 ER PT J AU Hardis, R Jessop, JLP Peters, FE Kessler, MR AF Hardis, Ricky Jessop, Julie L. P. Peters, Frank E. Kessler, Michael R. TI Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE A. Thermosetting resin; B. Cure behavior; D. Thermal analysis; D. Process monitoring ID OPENING METATHESIS POLYMERIZATION; ISOCONVERSIONAL ANALYSIS; THERMOGRAVIMETRIC DATA; DIELECTRIC ANALYSIS; SYSTEM; DICYCLOPENTADIENE; TEMPERATURE; DIAMINE AB The use of thick sections of fiber-reinforced polymers (FRPs) is increasing for numerous industrial applications such as wind turbine blades. In situ cure monitoring is very important to directly observe the cure process of FRPs during the manufacturing process. In this work, Raman spectroscopy and dielectric analysis (DEA) are investigated for in situ cure monitoring of an epoxy resin. The cure behavior is first characterized using differential scanning calorimetry (DSC) as a baseline comparison, and the best-fit phenomenological reaction model is determined to describe the cure behavior of the epoxy resin as well as the kinetic parameters. The relationship between T-g and degree of cure is also established. The degree of cure obtained from Raman spectroscopy and DEA under isothermal conditions is compared to that obtained from DSC. A good agreement is observed among the three methods, supporting the potential of these in situ cure monitoring methods during manufacturing. An implementation plan for in-plant monitoring is also discussed. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Hardis, Ricky; Peters, Frank E.] Iowa State Univ, Dept Ind & Mfg Syst Engn, Ames, IA 50011 USA. [Jessop, Julie L. P.] Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA. [Kessler, Michael R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Kessler, Michael R.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Kessler, Michael R.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Kessler, MR (reprint author), Iowa State Univ, Dept Mat Sci & Engn, 2220 Hoover Hall, Ames, IA 50011 USA. EM mkessler@iastate.edu RI Kessler, Michael/C-3153-2008 OI Kessler, Michael/0000-0001-8436-3447 NR 31 TC 52 Z9 54 U1 10 U2 89 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X EI 1878-5840 J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD JUN PY 2013 VL 49 BP 100 EP 108 DI 10.1016/j.compositesa.2013.01.021 PG 9 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA 152LQ UT WOS:000319533600012 ER PT J AU Ke, J Price, L McNeil, M Khanna, NZ Zhou, N AF Ke, Jing Price, Lynn McNeil, Michael Khanna, Nina Zheng Zhou, Nan TI Analysis and practices of energy benchmarking for industry from the perspective of systems engineering SO ENERGY LA English DT Article DE System analysis; Modeling; Energy performance; Energy intensity; Benchmarking; Industrial processes ID CARBON-DIOXIDE EMISSIONS; CO2 EMISSIONS; CEMENT INDUSTRY; STEEL-INDUSTRY; EFFICIENCY; CHINA; CONSUMPTION; SAVINGS; IRON AB Benchmarking has been recognized to be an effective analysis methodology and management tool that helps to improve efficiency and performance in many areas for different objectives. Industrial energy benchmarking is a process of evaluating energy performance of an individual industrial plant or sector against a reference plant or sector. Energy benchmarking based on the performance of industry leaders or best practices is particularly useful for identifying energy inefficiencies in the production processes and estimating the potential for energy savings. This paper introduces industrial energy benchmarking and existing programs and practices and then provides a formal general system description of industrial energy benchmarking. Process-based energy benchmarking approach is further analyzed in detail from the perspective of systems engineering. The resulting system description and methodologies provide a general unified framework for analyzing and implementing industrial energy benchmarking. An industrial energy benchmarking prototype is analyzed to demonstrate the basic idea and practices of industrial energy benchmarking within this general system framework. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Ke, Jing; Price, Lynn; McNeil, Michael; Khanna, Nina Zheng; Zhou, Nan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Ke, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Environm Energy Technol Div, 1 Cyclotron Rd,MS 90R2002, Berkeley, CA 94720 USA. EM Jke@lbl.gov RI Ke, Jing/H-4816-2016 OI Ke, Jing/0000-0002-5972-8042 FU Energy Foundation and Dow Chemical Company through Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Energy Foundation and Dow Chemical Company (through a charitable contribution) through the Department of Energy under contract No.DE-AC02-05CH11231. The authors thank the three anonymous reviewers for their valuable and constructive comments and suggestions. NR 50 TC 17 Z9 17 U1 2 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 J9 ENERGY JI Energy PD JUN 1 PY 2013 VL 54 BP 32 EP 44 DI 10.1016/j.energy.2013.03.018 PG 13 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA 150DY UT WOS:000319371600003 ER PT J AU Wang, HL Turner, JA AF Wang, Heli Turner, John A. TI Photoelectrochemical reduction of nitrates at the illuminated p-GaInP2 photoelectrode SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID ELECTROCATALYTIC REDUCTION; ELECTROCHEMICAL REDUCTION; PHOTOCATALYTIC ACTIVITY; BIMETALLIC CATALYSTS; AQUEOUS-ELECTROLYTES; HYDROGEN-PRODUCTION; NITRIC-ACID; WATER; TIO2; ELECTRODES AB Nitrates are photoelectrochemically reduced at the p-GaInP2 electrode in nitrate-bearing solutions. The rate-determining step of the nitrate reduction process is significantly promoted by band gap illumination, resulting in over 80% Faradaic efficiency. IPCE at -1 V exceeds 60% at wavelengths of light below 580 nm. C1 [Wang, Heli; Turner, John A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wang, HL (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM heli.wang@nrel.gov FU United States Department of Energy FX This work was supported by the Fuel Cells Technologies Program of the United States Department of Energy. NR 38 TC 4 Z9 4 U1 3 U2 50 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUN PY 2013 VL 6 IS 6 BP 1802 EP 1805 DI 10.1039/c3ee40745d PG 4 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 148YF UT WOS:000319284200016 ER PT J AU Zhang, ZC Hu, LB Wu, HM Weng, W Koh, M Redfern, PC Curtiss, LA Amine, K AF Zhang, Zhengcheng Hu, Libo Wu, Huiming Weng, Wei Koh, Meiten Redfern, Paul C. Curtiss, Larry A. Amine, Khalil TI Fluorinated electrolytes for 5 V lithium-ion battery chemistry SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SULFONE-BASED ELECTROLYTES; FLUOROETHYLENE CARBONATE; RECHARGEABLE BATTERIES; CATHODE; PERFORMANCE; STABILITY; DINITRILE; LIQUIDS AB An electrolyte based on fluorinated carbonate solvents was evaluated with high voltage cathode materials at elevated temperature. The theoretically high anodic stability of these new electrolytes was supported by electrochemical evaluation results using LiNi0.5Mn1.5O4/Li and LiNi0.5Mn1.5O4/Li4Ti5O12 electrochemical couples. Fluorinated carbonate appears to be a suitable electrolyte candidate for transition metal oxide cathodes at high voltage (5 V vs. Li+/Li). C1 [Zhang, Zhengcheng; Hu, Libo; Wu, Huiming; Weng, Wei; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Redfern, Paul C.; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Koh, Meiten] Daikin Ind Ltd, Settsu, Osaka, Japan. [Amine, Khalil] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. RP Zhang, ZC (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. EM zzhang@anl.gov; hul@anl.gov; wuhm@anl.gov; meiten.kou@daikin.co.jp; redfern@anl.gov; curtiss@anl.gov; amine@anl.gov RI Amine, Khalil/K-9344-2013; Hu, Libo/A-5911-2012 FU Advanced Battery Research for Transportation Program (ABR); Vehicle Technologies Program; Office of Energy Efficiency and Renewable Energy; U.S. Department of Energy; U.S. Department of Energy by UChicago Argonne, LLC [DE-AC02-06CH11357] FX This research is supported by Advanced Battery Research for Transportation Program (ABR), Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy, and U.S. Department of Energy. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. NR 34 TC 115 Z9 117 U1 23 U2 251 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUN PY 2013 VL 6 IS 6 BP 1806 EP 1810 DI 10.1039/c3ee24414h PG 5 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 148YF UT WOS:000319284200017 ER PT J AU Chen, WF Iyer, S Iyer, S Sasaki, K Wang, CH Zhu, YM Muckerman, JT Fujita, E AF Chen, Wei-Fu Iyer, Shilpa Iyer, Shweta Sasaki, Kotaro Wang, Chiu-Hui Zhu, Yimei Muckerman, James T. Fujita, Etsuko TI Biomass-derived electrocatalytic composites for hydrogen evolution SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID ACTIVE EDGE SITES; MOLYBDENUM SULFIDE; EFFICIENT ELECTROCATALYST; VISIBLE-LIGHT; WATER; MOS2; CARBIDE; NI; PHOTOCATHODE; GENERATION AB The production of hydrogen from water electrolysis calls for an efficient non-precious-metal catalyst to make the process economically viable because of the high cost and the limited supply of the currently used platinum catalysts. Here we present such a catalyst made from earth-abundant molybdenum and common, humble soybeans (MoSoy). This catalyst, composed of a catalytic beta-Mo2C phase and an acid-proof gamma-Mo2N phase, drives the hydrogen evolution reaction (HER) with low overpotentials, and is highly durable in a corrosive acidic solution over a period exceeding 500 hours. When supported on graphene sheets, the MoSoy catalyst exhibits very fast charge transfer kinetics, and its performance rivals that of noble-metal catalysts such as Pt for hydrogen production. These findings prove that the soybean (as well as other high-protein biomass) is a useful material for the generation of catalysts incorporating an abundant transition metal, thereby challenging the exclusivity of platinum catalysts in the hydrogen economy. C1 [Chen, Wei-Fu; Iyer, Shilpa; Iyer, Shweta; Sasaki, Kotaro; Wang, Chiu-Hui; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Wang, Chiu-Hui; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Chen, WF (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM wfchen@bnl.gov; ksasaki@bnl.gov; muckerma@bnl.gov FU Brookhaven National Laboratory (BNL) [DE-AC02-98CH10886]; U.S. Department of Energy (DOE); U.S. Department of Energy (DOE) by its Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences; BNL Laboratory Directed Research and Development (LDRD) [10-015]; BNL [TM12-008]; BNL Office of Educational Programs; Synchrotron Catalysis Consortium, U.S. Department of Energy [DE-FG02-05ER15688] FX The authors thank Dr Chun-Han Hsu at National Cheng Kung University for surface area analysis and Enyuan Hu at Stony Brook University for Rietveld refinement. This work was carried out at Brookhaven National Laboratory (BNL) under contract DE-AC02-98CH10886 with the U.S. Department of Energy (DOE) and supported by its Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences. Initial stages of this work were supported by BNL Laboratory Directed Research and Development (LDRD) Project no. 10-015. C.H.W. and K.S. acknowledge support by BNL Technology Maturation Funding TM12-008. Shilpa I. and Shweta I. gratefully acknowledge support by the BNL Office of Educational Programs. Beamline X18B at the NSLS is supported in part by the Synchrotron Catalysis Consortium, U.S. Department of Energy Grant no. DE-FG02-05ER15688. XRD and SEM were carried out at the Center for Functional Nanomaterials. NR 43 TC 107 Z9 108 U1 34 U2 335 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUN PY 2013 VL 6 IS 6 BP 1818 EP 1826 DI 10.1039/c3ee40596f PG 9 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 148YF UT WOS:000319284200019 ER PT J AU Renslow, RS Babauta, JT Dohnalkova, AC Boyanov, MI Kemner, KM Majors, PD Fredrickson, JK Beyenal, H AF Renslow, R. S. Babauta, J. T. Dohnalkova, A. C. Boyanov, M. I. Kemner, K. M. Majors, P. D. Fredrickson, J. K. Beyenal, H. TI Metabolic spatial variability in electrode-respiring Geobacter sulfurreducens biofilms SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID MICROBIAL FUEL-CELLS; C-TYPE CYTOCHROME; SHEWANELLA-ONEIDENSIS MR-1; STAINLESS-STEEL CATHODES; ELECTRICAL-CONDUCTIVITY; NANOWIRES; TRANSPORT; BACTERIA; URANIUM; ANODE AB In this study, we quantified electron transfer rates, depth profiles of electron donor, and biofilm structure of Geobacter sulfurreducens biofilms using an electrochemical-nuclear magnetic resonance microimaging biofilm reactor. Our goal was to determine whether electron donor limitations existed in electron transfer processes of electrode-respiring G. sulfurreducens biofilms. Cells near the top of the biofilms consumed acetate and were metabolically active; however, acetate concentration decreased to below detection within the top 100 microns of the biofilms. Additionally, porosity in the biofilms fell below 10% near the electrode surface, exacerbating exclusion of acetate from the lower regions. The dense biofilm matrix in the acetate-depleted zone acted as an electrical conduit passing electrons generated at the top of the biofilm to the electrode. To verify the distribution of cell metabolic activity, we used uranium as a redox-active probe for localizing electron transfer activity and X-ray absorption spectroscopy to determine the uranium oxidation state. Cells near the top reduced U-VI more actively than the cells near the base. High-resolution transmission electron microscopy images showed intact, healthy cells near the top and plasmolyzed cells near the base. Contrary to models proposed in the literature, which hypothesize that cells nearest the electrode surface are the most metabolically active because of a lower electron transfer resistance, our results suggest that electrical resistance through the biofilm does not restrict long-range electron transfer. Cells far from the electrode can respire across metabolically inactive cells, taking advantage of their extracellular infrastructure produced during the initial biofilm formation. C1 [Renslow, R. S.; Babauta, J. T.; Beyenal, H.] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Renslow, R. S.; Dohnalkova, A. C.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Boyanov, M. I.; Kemner, K. M.] Argonne Natl Lab, Biosci Div, Chicago, IL 60439 USA. [Majors, P. D.; Fredrickson, J. K.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Renslow, RS (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM beyenal@wsu.edu RI ID, MRCAT/G-7586-2011; Renslow, Ryan/E-5851-2010 OI Renslow, Ryan/0000-0002-3969-5570 FU United States Office of Naval Research (ONR) [N00014-09-1 0090]; National Institutes of Health (NIDCR) [R21 DE017232]; U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER); Department of Energy's Office of Biological and Environmental Research; ANL Scientific Focus Area project, Subsurface Biogeochemical Research Program of the Office of Biological and Environmental Research (BER), U.S. DOE [DE-AC05-76RLO, DE-AC02-06CH11357]; DOE-SC Office of Basic Energy Sciences [DE-AC02-06CH11357]; DOE; MRCAT/EnviroCAT; NIH [T32-GM008336] FX This research was financially supported by the United States Office of Naval Research (ONR) (Grant no. N00014-09-1 0090). The custom-built NMR microscopy and biofilm reactor hardware development was supported by the National Institutes of Health (NIDCR) (Grant no. R21 DE017232). This research was supported by the U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of BER's Subsurface Biogeochemistry Research Program (SBR). This contribution originates, in part, from the SBR Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL). Part of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. M. B. and K. K. were supported in part by the ANL Scientific Focus Area project, which is part of the Subsurface Biogeochemical Research Program of the Office of Biological and Environmental Research (BER), U.S. DOE under contracts DE-AC05-76RLO and DE-AC02-06CH11357, respectively. Use of the Advanced Photon Source (APS) was supported by the DOE-SC Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. MRCAT/EnviroCAT operations are supported by DOE and the MRCAT/EnviroCAT member institutions. NIH Protein Biotechnology Training Grant T32-GM008336 helped fund R. R. and J. B. during this project. We thank H. S. Mehta for assistance with the radio frequency coil design, R. J. Ewing and T. W. Ewing for computer-aided design of the biofilm reactor figures, and D. Sholto-Douglas for assistance with the X-ray micro-XANES measurements. NR 48 TC 28 Z9 28 U1 7 U2 82 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUN PY 2013 VL 6 IS 6 BP 1827 EP 1836 DI 10.1039/c3ee40203g PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 148YF UT WOS:000319284200020 PM 23930138 ER PT J AU Lu, XC Li, GS Kim, JY Lemmon, JP Sprenkle, VL Yang, ZG AF Lu, Xiaochuan Li, Guosheng Kim, Jin Y. Lemmon, John P. Sprenkle, Vincent L. Yang, Zhenguo TI A novel low-cost sodium-zinc chloride battery SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID BETA-ALUMINA ELECTROLYTE; ELECTROCHEMICAL PERFORMANCE; TEMPERATURE; CELL AB The sodium-metal halide (ZEBRA) batteries have been considered as one of the most attractive energy storage systems for stationary and transportation applications. Even though the battery technologies have been widely investigated for a few decades, there is still a need to further improve the battery performance, cost and safety for practical applications. In the present work, a novel low-cost Na-ZnCl2 battery with a planar beta ''-Al2O3 solid electrolyte (BASE) was proposed, and its electrochemical reactions and battery performance were investigated. Compared to Na-NiCl2 chemistry, the ZnCl2-based chemistry was more complicated, in which multiple electrochemical reactions including liquid-phase formation occurred at temperatures above 253 degrees C. During the first stage of charge, NaCl reacted with Zn to form Na in the anode and Na2ZnCl4 in the cathode. Once all the NaCl was consumed, further charge with the reaction between Na2ZnCl4 and Zn led to the formation of a NaCl-ZnCl2 liquid phase. During the end of charge, the liquid phase reacted with Zn to produce solid ZnCl2. To identify the effect of liquid-phase formation on electrochemical performance, button cells were assembled and tested at 280 and 240 degrees C. At 280 degrees C, with the liquid phase formed during cycling, cells revealed quite stable cyclability. On the other hand, more rapid increase in polarization was observed at 240 degrees C where only solid-state electrochemical reactions occurred. SEM analysis indicated that the stable performance at 280 degrees C was due to the suppressed growth of Zn and NaCl particles, which were generated from the liquid phase during the discharge of each cycle. C1 [Lu, Xiaochuan; Li, Guosheng; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Lu, XC (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM Jin.Kim@pnnl.gov FU Laboratory-Directed Research and Development Program (LDRD) of the Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy's (DOE's) Office of Electricity Delivery & Energy Reliability (OE); Department of Energy [DE-AC05-76RL01830] FX The work is supported by the Laboratory-Directed Research and Development Program (LDRD) of the Pacific Northwest National Laboratory (PNNL) and the U.S. Department of Energy's (DOE's) Office of Electricity Delivery & Energy Reliability (OE). We appreciate useful discussions with Dr Imre Gyuk of the DOE-OE Grid Storage Program. PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the Department of Energy under Contract DE-AC05-76RL01830. NR 20 TC 9 Z9 9 U1 4 U2 75 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUN PY 2013 VL 6 IS 6 BP 1837 EP 1843 DI 10.1039/c3ee24244g PG 7 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 148YF UT WOS:000319284200021 ER PT J AU Resch, MG Donohoe, BS Baker, JO Decker, SR Bayer, EA Beckham, GT Himmel, ME AF Resch, Michael G. Donohoe, Bryon S. Baker, John O. Decker, Stephen R. Bayer, Edward A. Beckham, Gregg T. Himmel, Michael E. TI Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID CLOSTRIDIUM-THERMOCELLUM CELLULOSOME; CARBOHYDRATE-BINDING MODULES; CRYSTAL-STRUCTURE; CELLOBIOSE DEHYDROGENASE; CELLOBIOHYDROLASE CEL7A; LIGNOCELLULOSIC BIOMASS; SCAFFOLDING PROTEIN; TRICHODERMA-REESEI; DEGRADATION; HYDROLYSIS AB Nature has evolved multiple enzymatic strategies for the degradation of plant cell wall polysaccharides, which are central to carbon flux in the biosphere and an integral part of renewable biofuels production. Many biomass-degrading organisms secrete synergistic cocktails of individual enzymes with one or several catalytic domains per enzyme, whereas a few bacteria synthesize large multi-enzyme complexes, termed cellulosomes, which contain multiple catalytic units per complex. Both enzyme systems employ similar catalytic chemistries; however, the physical mechanisms by which these enzyme systems degrade polysaccharides are still unclear. Here we examine a prominent example of each type, namely a free-enzyme cocktail expressed by the fungus Hypocrea jecorina and a cellulosome preparation secreted from the anaerobic bacterium Clostridium thermocellum. We observe striking differences in cellulose saccharification exhibited by these systems at the same protein loading. Free enzymes are more active on pretreated biomass and in contrast cellulosomes are much more active on purified cellulose. When combined, these systems display dramatic synergistic enzyme activity on cellulose. To gain further insights, we imaged free enzyme- and cellulosome-digested cellulose and biomass by transmission electron microscopy, which revealed evidence for different mechanisms of cellulose deconstruction by free enzymes and cellulosomes. Specifically, the free enzymes employ an ablative, fibril-sharpening mechanism, whereas cellulosomes physically separate individual cellulose microfibrils from larger particles resulting in enhanced access to cellulose surfaces. Interestingly, when the two enzyme systems are combined, we observe changes to the substrate that suggests mechanisms of synergistic deconstruction. Insight into the different mechanisms underlying these two polysaccharide deconstruction paradigms will eventually enable new strategies for enzyme engineering to overcome biomass recalcitrance. C1 [Resch, Michael G.; Donohoe, Bryon S.; Baker, John O.; Decker, Stephen R.; Himmel, Michael E.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Resch, Michael G.; Donohoe, Bryon S.; Baker, John O.; Decker, Stephen R.; Himmel, Michael E.] Natl Renewable Energy Lab, BESC, Golden, CO 80401 USA. [Bayer, Edward A.] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel. [Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Beckham, Gregg T.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. RP Resch, MG (reprint author), Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM michael.resch@nrel.gov FU U.S. Department of Energy Office of the Biomass Program (OBP); U.S. Department of Energy Office of Biological and Environmental Research through the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center FX We acknowledge the U.S. Department of Energy Office of the Biomass Program (OBP) for funding the activity assays of complexed and noncomplexed cellulases, and the U.S. Department of Energy Office of Biological and Environmental Research through the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center, for funding the TEM work. We thank a reviewer for detailed comments that improved the manuscript. NR 47 TC 50 Z9 51 U1 4 U2 129 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUN PY 2013 VL 6 IS 6 BP 1858 EP 1867 DI 10.1039/c3ee00019b PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 148YF UT WOS:000319284200024 ER PT J AU Martinson, ABF Riha, SC Thimsen, E Elam, JW Pellin, MJ AF Martinson, Alex B. F. Riha, Shannon C. Thimsen, Elijah Elam, Jeffrey W. Pellin, Michael J. TI Structural, optical, and electronic stability of copper sulfide thin films grown by atomic layer deposition SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID GAS-DIFFUSION BARRIERS; X-RAY PHOTOELECTRON; SOLAR-CELL; CONVERSION EFFICIENCY; ELECTRICAL-CONDUCTION; PHOTOVOLTAIC CELLS; ENERGY-CONVERSION; PHASE-TRANSITION; ION-EXCHANGE; NANOCRYSTALS AB Copper sulfide films of nanometer thickness are grown by atomic layer deposition (ALD) and their structural and optoelectronic properties investigated as a function of time and storage environment. At temperatures as low as 80 degrees C polycrystalline thin films are synthesized, which index to the stoichiometric (Cu2S) chalcocite phase. As-prepared and prior to exposure to room ambient, conductive films are obtained as a result of a high mobility (4 cm(2) V-1 s(-1)) and a relatively moderate p-type doping of 10(18) cm(-3). However, exposure to air results in a rapid rise in conductivity due to heavy p-type doping (>10(20) cm(-3)). The evolving electronic properties in air are correlated with a change in both crystalline phase and optical constants. Surface analysis corroborates a copper deficiency induced by room temperature oxidation in air. Surprisingly, storage in a <0.1 ppm oxygen and water atmosphere significantly slows but does not halt the rise in conductivity with time. However, an Al2O3 overlayer-also grown by ALD-results in significantly lower carrier concentrations as well as dramatically slower carrier addition with time, even under ambient conditions. The implications for future use of Cu2S in more efficient (p/n(+)) and stable thin film photovoltaics are discussed. C1 [Martinson, Alex B. F.; Riha, Shannon C.; Thimsen, Elijah; Elam, Jeffrey W.; Pellin, Michael J.] Argonne Natl Lab, Lemont, IL 60439 USA. RP Martinson, ABF (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. EM martinson@anl.gov RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 FU U.S. Department of Energy [FWP-4913A]; U.S. Department of Energy Office of Science Laboratory by UChicago Argonne, LLC. [DE-AC02-06CH11357]; Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE); DOE [DE-AC05-06OR23100] FX This work was supported by the U.S. Department of Energy, EERE-Solar Energy Technologies Program under FWP-4913A. The electron microscopy was accomplished at the Electron Microscopy Center at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract no. DE-AC02-06CH11357 by UChicago Argonne, LLC. SCR was supported in part by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards under the EERE Solar Program administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE-AC05-06OR23100. All opinions expressed in this paper are the author's and do not necessarily reflect the policies and views of DOE, ORAU, or ORISE. NR 50 TC 38 Z9 38 U1 7 U2 112 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUN PY 2013 VL 6 IS 6 BP 1868 EP 1878 DI 10.1039/c3ee40371h PG 11 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 148YF UT WOS:000319284200025 ER PT J AU Calkins, JO Umasankar, Y O'Neill, H Ramasamy, RP AF Calkins, Jessica O. Umasankar, Yogeswaran O'Neill, Hugh Ramasamy, Ramaraja P. TI High photo-electrochemical activity of thylakoid-carbon nanotube composites for photosynthetic energy conversion SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID PHOTOINDUCED ELECTRON-TRANSFER; PHOTOSYSTEM-II; ARTIFICIAL PHOTOSYNTHESIS; ELECTROCHEMICAL-CELL; REACTION CENTERS; SOLAR-ENERGY; LIGHT; WATER; GOLD; GENERATION AB Spinach thylakoids were immobilized onto multiwalled carbon nanotubes using a molecular tethering chemistry. The resulting thylakoid-carbon nanotube composites showed high photo-electrochemical activity under illumination. Multiple membrane proteins have been observed to participate in direct electron transfer with the electrode, resulting in the generation of photocurrents, the first of its kind reported for natural photosynthetic systems. Upon inclusion of a mediator, the photo-activity was enhanced. The major contributor to the photocurrent was the light-induced water oxidation reaction at the photosystem II complex. The thylakoid-MWNT composite electrode yielded a maximum current density of 68 mA cm(-2) and a steady state current density of 38 mA cm(-2), which are two orders of magnitude larger than previously reported for similar systems. The high electrochemical activity of the thylakoid-MWNT composites has significant implications for both photosynthetic energy conversion and photofuel production applications. A fuel cell type photosynthetic electrochemical cell developed using a thylakoid-MWNT composite anode and laccase cathode produced a maximum power density of 5.3 mW cm(-2), comparable to that of enzymatic fuel cells. The carbon based nanostructured electrode has the potential to serve as an excellent immobilization support for photosynthetic electrochemistry based on the molecular tethering approach as demonstrated in this work. C1 [Calkins, Jessica O.; Umasankar, Yogeswaran; Ramasamy, Ramaraja P.] Univ Georgia, Nanoscale Sci & Engn Ctr, Coll Engn, Nano Electrochem Lab, Athens, GA 30602 USA. [O'Neill, Hugh] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Calkins, JO (reprint author), Univ Georgia, Nanoscale Sci & Engn Ctr, Coll Engn, Nano Electrochem Lab, Athens, GA 30602 USA. EM rama@uga.edu RI Umasankar, Yogeswaran/A-4815-2009; OI Umasankar, Yogeswaran/0000-0001-9713-8548; O'Neill, Hugh/0000-0003-2966-5527 FU University of Georgia Research Foundation; Photosynthetic Antenna Research Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC 0001035] FX We acknowledge the help of Dr Gareth Sheppard and Dr Jason Locklin (UGA) in AFM imaging. We also acknowledge the University of Georgia Research Foundation for financial support. H. O'Neill acknowledges the support of the Photosynthetic Antenna Research Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC 0001035. NR 60 TC 51 Z9 51 U1 9 U2 98 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUN PY 2013 VL 6 IS 6 BP 1891 EP 1900 DI 10.1039/c3ee40634b PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 148YF UT WOS:000319284200027 ER PT J AU Rajanna, C Ouellette, G Rashid, M Zemla, A Karavis, M Zhou, C Revazishvili, T Redmond, B McNew, L Bakanidze, L Imnadze, P Rivers, B Skowronski, EW O'Connell, KP Sulakvelidze, A Gibbons, HS AF Rajanna, Chythanya Ouellette, Gary Rashid, Mohammed Zemla, Adam Karavis, Mark Zhou, Carol Revazishvili, Tamara Redmond, Brady McNew, Lauren Bakanidze, Lela Imnadze, Paata Rivers, Bryan Skowronski, Evan W. O'Connell, Kevin P. Sulakvelidze, Alexander Gibbons, Henry S. TI A strain of Yersinia pestis with a mutator phenotype from the Republic of Georgia SO FEMS MICROBIOLOGY LETTERS LA English DT Article DE Yersinia pestis; mutator; DNA repair; mutS; evolution ID TEMPERATURE-DEPENDENT VARIATIONS; COMPLETE GENOME SEQUENCE; ESCHERICHIA-COLI; BACTERIAL-POPULATIONS; PHYLOGENETIC ANALYSIS; TANDEM REPEATS; MUTS GENE; PLAGUE; EVOLUTION; RATES AB We describe here a strain of Yersinia pestis, G1670A, which exhibits a baseline mutation rate elevated 250-fold over wild-type Y.pestis. The responsible mutation, a C to T substitution in the mutS gene, results in the transition of a highly conserved leucine at position 689 to arginine (mutS(L689R)). When the MutSL689R protein of G1670A was expressed in a mutS derivative of Y.pestis strain EV76, mutation rates observed were equivalent to those observed in G1670A, consistent with a causal association between the mutS mutation and the mutator phenotype. The observation of a mutator allele in Yersinia pestis has potential implications for the study of evolution of this and other especially dangerous pathogens. C1 [Rajanna, Chythanya; Rashid, Mohammed; Revazishvili, Tamara; Sulakvelidze, Alexander] Univ Florida, Emerging Pathogens Inst, Gainesville, FL USA. [Ouellette, Gary; Karavis, Mark; Redmond, Brady; McNew, Lauren; Rivers, Bryan; Skowronski, Evan W.; O'Connell, Kevin P.; Gibbons, Henry S.] USA, Edgewood Chem Biol Ctr, Aberdeen Proving Ground, MD 21010 USA. [Ouellette, Gary] Sci Applicat Int Inc, Aberdeen Proving Ground, MD USA. [Zemla, Adam; Zhou, Carol] Lawrence Livermore Natl Lab, Livermore, CA USA. [Bakanidze, Lela; Imnadze, Paata] Natl Ctr Dis Control, Tbilisi, Rep of Georgia. RP Gibbons, HS (reprint author), USA, Edgewood Chem Biol Ctr, RDCB DRB M, 5183 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA. EM henry.s.gibbons.civ@mail.mil NR 36 TC 3 Z9 3 U1 1 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0378-1097 EI 1574-6968 J9 FEMS MICROBIOL LETT JI FEMS Microbiol. Lett. PD JUN PY 2013 VL 343 IS 2 BP 113 EP 120 DI 10.1111/1574-6968.12137 PG 8 WC Microbiology SC Microbiology GA 152ET UT WOS:000319514300002 PM 23521061 ER PT J AU Enuameh, MS Asriyan, Y Richards, A Christensen, RG Hall, VL Kazemian, M Zhu, C Pham, H Cheng, Q Blatti, C Brasefield, JA Basciotta, MD Ou, JH McNulty, JC Zhu, LHJ Celniker, SE Sinha, S Stormo, GD Brodsky, MH Wolfe, SA AF Enuameh, Metewo Selase Asriyan, Yuna Richards, Adam Christensen, Ryan G. Hall, Victoria L. Kazemian, Majid Zhu, Cong Pham, Hannah Cheng, Qiong Blatti, Charles Brasefield, Jessie A. Basciotta, Matthew D. Ou, Jianhong McNulty, Joseph C. Zhu, Lihua J. Celniker, Susan E. Sinha, Saurabh Stormo, Gary D. Brodsky, Michael H. Wolfe, Scot A. TI Global analysis of Drosophila Cys(2)-His(2) zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants SO GENOME RESEARCH LA English DT Article ID TRANSCRIPTION-FACTOR-BINDING; ONE-HYBRID SYSTEM; DNA-RECOGNITION; CRYSTAL-STRUCTURE; IN-VIVO; GENE MODIFICATION; GENOMIC REGIONS; WIDE PREDICTION; NUCLEASES; SEQUENCE AB Cys(2)-His(2) zinc finger proteins (ZFPs) are the largest group of transcription factors in higher metazoans. A complete characterization of these ZFPs and their associated target sequences is pivotal to fully annotate transcriptional regulatory networks in metazoan genomes. As a first step in this process, we have characterized the DNA-binding specificities of 129 zinc finger sets from Drosophila using a bacterial one-hybrid system. This data set contains the DNA-binding specificities for at least one encoded ZFP from 70 unique genes and 23 alternate splice isoforms representing the largest set of characterized ZFPs from any organism described to date. These recognition motifs can be used to predict genomic binding sites for these factors within the fruit fly genome. Subsets of fingers from these ZFPs were characterized to define their orientation and register on their recognition sequences, thereby allowing us to define the recognition diversity within this finger set. We find that the characterized fingers can specify 47 of the 64 possible DNA triplets. To confirm the utility of our finger recognition models, we employed subsets of Drosophila fingers in combination with an existing archive of artificial zinc finger modules to create ZFPs with novel DNA-binding specificity. These hybrids of natural and artificial fingers can be used to create functional zinc finger nucleases for editing vertebrate genomes. C1 [Enuameh, Metewo Selase; Asriyan, Yuna; Richards, Adam; Hall, Victoria L.; Zhu, Cong; Pham, Hannah; Brasefield, Jessie A.; Basciotta, Matthew D.; Ou, Jianhong; McNulty, Joseph C.; Zhu, Lihua J.; Brodsky, Michael H.; Wolfe, Scot A.] Univ Massachusetts, Sch Med, Program Gene Funct & Express, Worcester, MA 01605 USA. [Christensen, Ryan G.; Stormo, Gary D.] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USA. [Kazemian, Majid; Cheng, Qiong; Blatti, Charles; Sinha, Saurabh] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. [Zhu, Lihua J.; Brodsky, Michael H.] Univ Massachusetts, Sch Med, Dept Mol Med, Worcester, MA 01605 USA. [Zhu, Lihua J.] Univ Massachusetts, Sch Med, Program Bioinformat & Integrat Biol, Worcester, MA 01605 USA. [Celniker, Susan E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Genome Dynam, Berkeley, CA 94720 USA. [Sinha, Saurabh] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA. [Wolfe, Scot A.] Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Worcester, MA 01605 USA. RP Wolfe, SA (reprint author), Univ Massachusetts, Sch Med, Program Gene Funct & Express, Worcester, MA 01605 USA. EM scot.wolfe@umassmed.edu FU National Institutes of Health (NIH) [HG004744, GM068110, HG000249, P41HG3487]; Department of Energy [DEAC02-05CH11231] FX We thank the other members of the Wolfe and Brodsky laboratories for insightful comments and discussions. Additionally, we thank Richard Weiszmann for generating the Zn-finger TF clone set. We thank Nathan Wolfe for his assistance with constructing Figure 4. Funding for this work was supported by the National Institutes of Health (NIH) grants HG004744 (M.H.B. and S.A.W.), GM068110 (S.A.W), HG000249 (G.D.S.), and P41HG3487 (S.E.C.). Work at Lawrence Berkeley National Laboratory was conducted under Department of Energy contract DEAC02-05CH11231. NR 113 TC 26 Z9 27 U1 0 U2 7 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 EI 1549-5469 J9 GENOME RES JI Genome Res. PD JUN PY 2013 VL 23 IS 6 BP 928 EP 940 DI 10.1101/gr.151472.112 PG 13 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 156EI UT WOS:000319803700003 PM 23471540 ER PT J AU Pedersen, JBT Kroon, A Jakobsen, BH Mernild, SH Andersen, TJ Andresen, CS AF Pedersen, Jorn Bjarke Torp Kroon, Aart Jakobsen, Bjarne Holm Mernild, Sebastian H. Andersen, Thorbjorn Joest Andresen, Camilla Snowman TI Fluctuations of sediment accumulation rates in front of an Arctic delta in Greenland SO HOLOCENE LA English DT Article DE automatic varve-detection; fluvial runoff; glacial mass balance; Greenland; sediment accumulation rate; Sermilik Fjord ID MITTIVAKKAT GLACIER; SOUTHEAST GREENLAND; AMMASSALIK ISLAND; EAST GREENLAND; COLOR ANALYSIS; SE GREENLAND; ICE-SHEET; CLIMATE; SNOW; SYSTEM AB An automated layer counting technique is developed to estimate the chronology of a marine sediment core and this technique is validated with Pb210 chronology. The marine sediment core was sampled in front of the delta of Mittivakkat Glacier meltwater river in the Sermilik Fjord, SE Greenland, and is a proxy of the sediment delivery from a glacial drainage basin to a fjord. The estimated time series was based on automatic lamination detection (varves) on a line scan of the core using gray scale intensities, and covered the last two centuries. The estimated time series of sediment accumulation rates was coupled to modelled runoff from the Mittivakkat Glacier and compared with local climatic parameters (air temperature and precipitation) and with the Atlantic Multidecadal Oscillation (AMO) index. Maxima in the sediment accumulation rate at the bottom of the side-fjord, about 1 km from the delta, mostly depended on glacier ablation and consequently on changes in river runoff, which were initiated by the air temperature. This was especially the case during transition from colder periods towards warmer, where short-lived maxima in sediment accumulation rates were followed by lower rates, even though the temperature remained high. This suggested a quite rapid glacial response to changes in climatic forcing, and/or a hysteresis effect, where sediment stored in the glacier/valley system was evacuated soon after a temperature dependent increase in discharge. The air temperature was in turn controlled by the AMO index. C1 [Pedersen, Jorn Bjarke Torp] Univ Copenhagen, Dept Geog & Geol, DK-1350 Copenhagen, Denmark. [Kroon, Aart; Jakobsen, Bjarne Holm; Andersen, Thorbjorn Joest] Univ Copenhagen, Ctr Permafrost CENPERM, Dept Geosci & Nat Resource Management, DK-1350 Copenhagen, Denmark. [Mernild, Sebastian H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kroon, A (reprint author), Univ Copenhagen, Ctr Permafrost CENPERM, Oster Voldgade 10, DK-1350 Copenhagen, Denmark. EM ak@geo.ku.dk RI Andersen, Thorbjorn/I-7083-2012; Andresen, Camilla/G-2718-2013; Andersen, Thorbjorn/N-7560-2014; Kroon, Aart/P-9148-2014 OI Andersen, Thorbjorn/0000-0001-5032-9945; Kroon, Aart/0000-0002-9419-2327 FU Geocenter Denmark FX This study was conducted as part of the SEDIMICE - Linking sediments with ice-sheet response and glacier retreat in Greenland - project financed by Geocenter Denmark. NR 38 TC 5 Z9 5 U1 4 U2 27 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0959-6836 J9 HOLOCENE JI Holocene PD JUN PY 2013 VL 23 IS 6 BP 860 EP 868 DI 10.1177/0959683612474480 PG 9 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 148FG UT WOS:000319228000009 ER PT J AU Henry, MD Ahlers, CR AF Henry, Michael David Ahlers, Catalina R. TI Platinum Diffusion Barrier Breakdown in a-Si/Au Eutectic Wafer Bonding SO IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY LA English DT Article DE Eutectic; gold; silicon; wafer bonding ID TEMPERATURE; SI; SYSTEM; GOLD AB Eutectic bonding in semiconductor fabrication requires a large degree of control over the stoichiometry and precision film thickness of the bonding materials. To reduce the migration of the bonding layers, diffusion barriers are typically utilized. Here, we demonstrate that a widely utilized diffusion barrier, Pt, does not prevent migration of Si in Si/Au eutectic bonding. We observe that this barrier breaks down at approximately 375 degrees C, above the Au-Si eutectic temperature (363 degrees C), and encourages consumption of the silicon substrate leading to uncontrolled stoichiometry variations and creation of microvoids. This failure results in reductions of bond strength and hermeticity. As an alternative, silicon dioxide is observed to prevent the silicon diffusion and subsequent substrate loss. C1 [Henry, Michael David; Ahlers, Catalina R.] Sandia Natl Labs, MESA Facil, Albuquerque, NM 87185 USA. RP Henry, MD (reprint author), Sandia Natl Labs, MESA Facil, Albuquerque, NM 87185 USA. EM mdhenry@sandia.gov; crrivas@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 15 TC 3 Z9 3 U1 1 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3950 J9 IEEE T COMP PACK MAN JI IEEE Trans. Compon. Pack. Manuf. Technol. PD JUN PY 2013 VL 3 IS 6 BP 899 EP 903 DI 10.1109/TCPMT.2013.2239363 PG 5 WC Engineering, Manufacturing; Engineering, Electrical & Electronic; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 154NL UT WOS:000319682600001 ER PT J AU Cheng, L Ferguson, GA Zygmunt, SA Curtiss, LA AF Cheng, Lei Ferguson, Glen Allen Zygmunt, Stan A. Curtiss, Larry A. TI Structure-activity relationships for propane oxidative dehydrogenation by anatase-supported vanadium oxide monomers and dimers SO JOURNAL OF CATALYSIS LA English DT Article DE Propane oxidative dehydrogenation; Supported vanadium oxide; DFT; C-H activation ID DENSITY-FUNCTIONAL THEORY; X-RAY-ABSORPTION; QUADRATIC CONFIGURATION-INTERACTION; SITU RAMAN-SPECTROSCOPY; COUPLED-CLUSTER SINGLES; TITANIA CATALYSTS; SURFACE-STRUCTURE; GAMMA-ALUMINA; LASER RAMAN; SILICA AB To understand the importance of the effect of molecular structure on reactivity, we have studied the activity of anatase TiO2 (0 0 1) supported VOx catalytic sites for propane oxidative dehydrogenation (ODH). First, possible structures of monomeric and dimeric VOx species on anatase (0 0 1) after VO4H3 grafting and water elimination were determined. We then studied the conversion reaction of propane to propanol by the supported VOx to elucidate the structure-reactivity relationship. The coordination number of the vanadium atom was the key structural parameter in predicting the catalytic activity. This key structural difference alone resulted in an increase of up to 800 times in the reaction rate of C-H bond activation (rate-determining for propane ODH) for the various vanadium oxide species at 600 K. These results demonstrate the remarkable sensitivity of the catalytic site activity to its geometric structure and its implications for achieving optimal catalyst performance. (c) 2013 Elsevier Inc. All rights reserved. C1 [Cheng, Lei; Ferguson, Glen Allen; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Zygmunt, Stan A.] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA. RP Curtiss, LA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences [DE-AC-02-06CH11357] FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences, Contract No. DE-AC-02-06CH11357. We also thank the Argonne Center for Nanoscale Materials for computing resources. NR 40 TC 8 Z9 9 U1 3 U2 81 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JUN PY 2013 VL 302 BP 31 EP 36 DI 10.1016/j.jcat.2013.02.012 PG 6 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 153YS UT WOS:000319639300004 ER PT J AU Bisoffi, M Severns, V Branch, DW Edwards, TL Larson, RS AF Bisoffi, Marco Severns, Virginia Branch, Darren W. Edwards, Thayne L. Larson, Richard S. TI Rapid Detection of Human Immunodeficiency Virus Types 1 and 2 by Use of an Improved Piezoelectric Biosensor SO JOURNAL OF CLINICAL MICROBIOLOGY LA English DT Article ID ACOUSTIC-WAVE SENSORS; HIV-2 INFECTION; PATHOGENS; DIAGNOSIS; FIELD; ASSAY AB Disasters can create situations in which blood donations can save lives. However, in emergency situations and when resources are depleted, on-site blood donations require the rapid and accurate detection of blood-borne pathogens, including human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Techniques such as PCR and antibody capture by an enzyme-linked immunosorbent assay (ELISA) for HIV-1 and HIV-2 are precise but time-consuming and require sophisticated equipment that is not compatible with emergency point-of-care requirements. We describe here a prototype biosensor based on piezoelectric materials functionalized with specific antibodies against HIV-1 and HIV-2. We show the rapid and accurate detection of HIV-1 and HIV-2 in both simple and complex solutions, including human serum, and in the presence of a cross-confounding virus. We report detection limits of 12 50% tissue culture infective doses (TCID(50)s) for HIV-1 and 87 TCID(50)s for HIV-2. The accuracy, precision of measurements, and operation of the prototype biosensor compared favorably to those for nucleic acid amplification. We conclude that the biosensor has significant promise as a successful point-of-care diagnostic device for use in emergency field applications requiring rapid and reliable testing for blood-borne pathogens. C1 [Bisoffi, Marco; Severns, Virginia] Univ New Mexico, Dept Biochem & Mol Biol, Hlth Sci Ctr, Albuquerque, NM 87131 USA. [Branch, Darren W.; Edwards, Thayne L.] Sandia Natl Labs, Biosensor Program, Albuquerque, NM 87185 USA. [Severns, Virginia; Larson, Richard S.] Univ New Mexico, Sch Med, Dept Pathol, Albuquerque, NM 87131 USA. RP Bisoffi, M (reprint author), Univ New Mexico, Dept Biochem & Mol Biol, Hlth Sci Ctr, Albuquerque, NM 87131 USA. EM mbisoffi@salud.unm.edu FU University of California at Davis Point of Care Technologies Center [UCD-POCTC-08]; National Science Foundation [NSF IIS-0434120] FX This work was supported by the University of California at Davis Point of Care Technologies Center grant UCD-POCTC-08 and National Science Foundation grant NSF IIS-0434120 (to R.S.L.). NR 29 TC 5 Z9 5 U1 3 U2 39 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0095-1137 EI 1098-660X J9 J CLIN MICROBIOL JI J. Clin. Microbiol. PD JUN PY 2013 VL 51 IS 6 BP 1685 EP 1691 DI 10.1128/JCM.03041-12 PG 7 WC Microbiology SC Microbiology GA 147VV UT WOS:000319197800006 PM 23515541 ER PT J AU Greenlee, KJ Socha, JJ Eubanks, HB Pedersen, P Lee, WK Kirkton, SD AF Greenlee, Kendra J. Socha, John J. Eubanks, Haleigh B. Pedersen, Paul Lee, Wah-Keat Kirkton, Scott D. TI Hypoxia-induced compression in the tracheal system of the tobacco hornworm caterpillar, Manduca sexta SO JOURNAL OF EXPERIMENTAL BIOLOGY LA English DT Article DE insect; respiration; tracheae; ventilation; caterpillar ID FALSE DISCOVERY RATE; SCHISTOCERCA-AMERICANA; RESPIRATORY-FUNCTION; GAS-EXCHANGE; BODY-SIZE; OXYGEN; GRASSHOPPER; ECDYSIS; VENTILATION; RESPONSES AB Abdominal pumping in caterpillars has only been documented during molting. Using synchrotron X-ray imaging in conjunction with high-speed flow-through respirometry, we show that Manduca sexta caterpillars cyclically contract their bodies in response to hypoxia, resulting in significant compressions of the tracheal system. Compression of tracheae induced by abdominal pumping drives external gas exchange, as evidenced by the high correlation between CO2 emission peaks and body movements. During abdominal pumping, both the compression frequency and fractional change in diameter of tracheae increased with body mass. However, abdominal pumping and tracheal compression were only observed in larger, older caterpillars (>0.2.g body mass), suggesting that this hypoxic response increases during ontogeny. The diameters of major tracheae in the thorax increased isometrically with body mass. However, tracheae in the head did not scale with mass, suggesting that there is a large safety margin for oxygen delivery in the head in the youngest animals. Together, these results highlight the need for more studies of tracheal system scaling and suggest that patterns of tracheal investment vary regionally in the body. C1 [Greenlee, Kendra J.; Pedersen, Paul] N Dakota State Univ, Dept Biol Sci, Fargo, ND 58108 USA. [Socha, John J.] Virginia Tech, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA. [Eubanks, Haleigh B.] Jackson State Univ, Dept Biol, Jackson, MS 39217 USA. [Lee, Wah-Keat] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Kirkton, Scott D.] Union Coll, Dept Biol Sci, Schenectady, NY 12308 USA. RP Greenlee, KJ (reprint author), N Dakota State Univ, Dept Biol Sci, Fargo, ND 58108 USA. EM kendra.greenlee@ndsu.edu FU National Science Foundation [EPS-0447679, IOS-0953297, EFRI-0938047]; National Institutes of Health (NIH) National Center for Research Resources [2P20RR0l5566]; Institute for Critical Technology and Applied Science [118130]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the National Science Foundation [EPS-0447679, IOS-0953297 to K.J.G. and EFRI-0938047 to J.J.S.], the National Institutes of Health (NIH) National Center for Research Resources [2P20RR0l5566 to K.J.G.] and the Institute for Critical Technology and Applied Science [118130 to J.J.S.]. The contents of this study are solely the responsibility of the authors and do not necessarily reflect the views of the NIH. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]. Deposited in PMC for release after 12 months. NR 30 TC 14 Z9 14 U1 2 U2 27 PU COMPANY OF BIOLOGISTS LTD PI CAMBRIDGE PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND SN 0022-0949 EI 1477-9145 J9 J EXP BIOL JI J. Exp. Biol. PD JUN PY 2013 VL 216 IS 12 BP 2293 EP 2301 DI 10.1242/jeb.082479 PG 9 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 154GG UT WOS:000319659900024 PM 23531813 ER PT J AU Weber, CR Cook, AW Bonazza, R AF Weber, Christopher R. Cook, Andrew W. Bonazza, Riccardo TI Growth rate of a shocked mixing layer with known initial perturbations SO JOURNAL OF FLUID MECHANICS LA English DT Article DE mixing; turbulent mixing ID RICHTMYER-MESHKOV INSTABILITY; RAYLEIGH-TAYLOR INSTABILITY; LATE-TIME DEVELOPMENT; LOW ATWOOD NUMBERS; NONLINEAR-THEORY; VORTEX MODEL; FLUIDS; WAVE; TRANSITION; INTERFACE AB We derive a growth-rate model for the Richtmyer-Meshkov mixing layer, given arbitrary but known initial conditions. The initial growth rate is determined by the net mass flux through the centre plane of the perturbed interface immediately after shock passage. The net mass flux is determined by the correlation between the post-shock density and streamwise velocity. The post-shock density field is computed from the known initial perturbations and the shock jump conditions. The streamwise velocity is computed via Biot-Savart integration of the vorticity field. The vorticity deposited by the shock is obtained from the baroclinic torque with an impulsive acceleration. Using the initial growth rate and characteristic perturbation wavelength as scaling factors, the model collapses the growth-rate curves and, in most cases, predicts the peak growth rate over a range of Mach numbers (1.1 <= M-i <= 1.9), Atwood numbers (-0.73 <= A <= -0.35 and 0.22 <= A <= 0.73), adiabatic indices (1.40/1.67 <= gamma(1)/gamma(2) <= 1.67/1.09) and narrow-band perturbation spectra. The mixing layer at late times exhibits a power-law growth with an average exponent of theta = 0.24. C1 [Weber, Christopher R.; Bonazza, Riccardo] Univ Wisconsin, Madison, WI 53706 USA. [Weber, Christopher R.; Cook, Andrew W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Weber, CR (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM weber30@llnl.gov NR 60 TC 10 Z9 10 U1 2 U2 36 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD JUN PY 2013 VL 725 BP 372 EP 401 DI 10.1017/jfm.2013.216 PG 30 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 152DQ UT WOS:000319511200014 ER PT J AU Savukov, I Karaulanov, T AF Savukov, I. Karaulanov, T. TI Anatomical MRI with an atomic magnetometer SO JOURNAL OF MAGNETIC RESONANCE LA English DT Article DE Atomic magnetometer; MRI; Ultra-low field; Anatomical; Imaging; Low-cost AB Ultra-low field (ULF) MRI is a promising method for inexpensive medical imaging with various additional advantages over conventional instruments such as low weight, low power, portability, absence of artifacts from metals, and high contrast. Anatomical ULF MRI has been successfully implemented with SQUIDs, but SQUIDs have the drawback of a cryogen requirement. Atomic magnetometers have sensitivity comparable to SQUIDs and can be in principle used for ULF MRI to replace SQUIDs. Unfortunately some problems exist due to the sensitivity of atomic magnetometers to a magnetic field and gradients. At low frequency, noise is also substantial and a shielded room is needed for improving sensitivity. In this paper, we show that at 85 kHz, the atomic magnetometer can be used to obtain anatomical images. This is the first demonstration of any use of atomic magnetometers for anatomical MRI. The demonstrated resolution is 1.1 mm x 1.4 mm in about 6 min of acquisition with SNR of 10. Some applications of the method are discussed. We discuss several measures to increase the sensitivity to reach a resolution 1 mm x 1 mm. Published by Elsevier Inc. C1 [Savukov, I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Karaulanov, T.] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. RP Savukov, I (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM isavukov@lanl.gov OI Savukov, Igor/0000-0003-4190-5335 FU NIH [5 R01 EB009355]; U.S. Department of Energy through the LANL/LDRD Program FX This work is sponsored by NIH Grant 5 R01 EB009355. The work of T. Karaulanov was partially supported by the U.S. Department of Energy through the LANL/LDRD Program. NR 11 TC 12 Z9 12 U1 4 U2 24 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1090-7807 J9 J MAGN RESON JI J. Magn. Reson. PD JUN PY 2013 VL 231 BP 39 EP 45 DI 10.1016/j.jmr.2013.02.020 PG 7 WC Biochemical Research Methods; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Biochemistry & Molecular Biology; Physics; Spectroscopy GA 152RH UT WOS:000319548300006 PM 23567881 ER PT J AU Jiao, LY Ouyang, SY Liang, MF Niu, FF Shaw, N Wu, W Ding, W Jin, C Peng, Y Zhu, YP Zhang, FS Wang, T Li, C Zuo, XB Luan, CH Li, DX Liu, ZJ AF Jiao, Lianying Ouyang, Songying Liang, Mifang Niu, Fengfeng Shaw, Neil Wu, Wei Ding, Wei Jin, Cong Peng, Yao Zhu, Yanping Zhang, Fushun Wang, Tao Li, Chuan Zuo, Xiaobing Luan, Chi-Hao Li, Dexin Liu, Zhi-Jie TI Structure of Severe Fever with Thrombocytopenia Syndrome Virus Nucleocapsid Protein in Complex with Suramin Reveals Therapeutic Potential SO JOURNAL OF VIROLOGY LA English DT Article ID RAY SOLUTION SCATTERING; SMALL-ANGLE SCATTERING; NUCLEOPROTEIN REVEALS; DIFFRACTION DATA; RNA REPLICATION; HIGH-THROUGHPUT; BINDING; IDENTIFICATION; TRANSCRIPTION; RESOLUTION AB Severe fever with thrombocytopenia syndrome is an emerging infectious disease caused by a novel bunyavirus (SFTSV). Lack of vaccines and inadequate therapeutic treatments have made the spread of the virus a global concern. Viral nucleocapsid protein (N) is essential for its transcription and replication. Here, we present the crystal structures of N from SFTSV and its homologs from Buenaventura (BUE) and Granada (GRA) viruses. The structures reveal that phleboviral N folds into a compact core domain and an extended N-terminal arm that mediates oligomerization, such as tetramer, pentamer, and hexamer of N assemblies. Structural superimposition indicates that phleboviral N adopts a conserved architecture and uses a similar RNA encapsidation strategy as that of RVFV-N. The RNA binding cavity runs along the inner edge of the ring-like assembly. A triple mutant of SFTSV-N, R64D/K67D/K74D, almost lost its ability to bind RNA in vitro, is deficient in its ability to transcribe and replicate. Structural studies of the mutant reveal that both alterations in quaternary assembly and the charge distribution contribute to the loss of RNA binding. In the screening of inhibitors Suramin was identified to bind phleboviral N specifically. The complex crystal structure of SFTSV-N with Suramin was refined to a 2.30-angstrom resolution. Suramin was found sitting in the putative RNA binding cavity of SFTSV-N. The inhibitory effect of Suramin on SFTSV replication was confirmed in Vero cells. Therefore, a common Suramin-based therapeutic approach targeting SFTSV-N and its homologs could be developed for containing phleboviral outbreaks. C1 [Jiao, Lianying; Ouyang, Songying; Niu, Fengfeng; Shaw, Neil; Ding, Wei; Zhu, Yanping; Liu, Zhi-Jie] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100080, Peoples R China. [Jiao, Lianying; Niu, Fengfeng] Univ Chinese Acad Sci, Beijing, Peoples R China. [Liang, Mifang; Wu, Wei; Jin, Cong; Zhang, Fushun; Wang, Tao; Li, Chuan; Li, Dexin] Natl Inst Viral Dis Control & Prevent, MOH, Key Lab Med Virol, Beijing, Peoples R China. [Shaw, Neil; Peng, Yao; Liu, Zhi-Jie] Kunming Med Univ, Inst Mol & Clin Med, Kunming, Peoples R China. [Zuo, Xiaobing] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Luan, Chi-Hao] Northwestern Univ, Chem Life Proc Inst, Dept Mol Biosci, High Throughput Anal Lab, Evanston, IL 60208 USA. [Luan, Chi-Hao] Northwestern Univ, Ctr Struct Genom Infect Dis, Evanston, IL 60208 USA. RP Liu, ZJ (reprint author), Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100080, Peoples R China. EM zjliu@ibp.ac.cn RI Wang, Tao/B-1331-2016 FU Ministry of Health of China [2013ZX10004-602]; Ministry of Science and Technology of China [2013CB911103, 2009CB918803, 2011CB911103]; National Natural Science Foundation of China [31270795, 31200559, 31070660, 31021062]; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700058C, HHSN272201200026C] FX This study is supported by the Ministry of Health of China (grant 2013ZX10004-602), the Ministry of Science and Technology of China (grants 2013CB911103, 2009CB918803, and 2011CB911103), and the National Natural Science Foundation of China (grants 31270795, 31200559, 31070660, and 31021062). We also received support from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contracts HHSN272200700058C and HHSN272201200026C. NR 44 TC 25 Z9 29 U1 0 U2 18 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD JUN PY 2013 VL 87 IS 12 BP 6829 EP 6839 DI 10.1128/JVI.00672-13 PG 11 WC Virology SC Virology GA 152CW UT WOS:000319508600028 PM 23576501 ER PT J AU Pollard, SD Zhu, YM AF Pollard, Shawn D. Zhu, Yimei TI The Aharanov-Bohm effect, magnetic monopoles and reversal in spin-ice lattices SO MICROSCOPY LA English DT Review DE Aharanov-Bohm effect; magnetic monopoles; spin-ice lattices; frustrated magnetism ID ELECTROMAGNETIC POTENTIALS; ELECTRON HOLOGRAPHY; PHASE; NONEXISTENCE; FIELD; MICROSCOPY AB The proof of the Aharonov-Bohm (AB) effect has been one of the most important experiments of the last century and used as essential evidence for the theory of gauge fields. In this article, we look at its fundamental relation to the Dirac monopole and string. Despite the Dirac string being invisible to the AB effect, it can be used to study emergent quasiparticles in condensed matter settings that behave similar to the fundamental monopoles and strings between them. We utilize phase-imaging method based on the AB effect to study the ordering in a one-model system - that of frustrated spin ice - to understand the ordering processes that occur during a magnetic field reversal cycle. The reversal is linked to the propagation of monopole defects linked by flux channels, reminiscent of Dirac strings. Monopole interactions govern the defect densities within the lattice. Furthermore, we exploit these interactions to propose a new ordering method in which high degrees of ground-state ordering can be achieved in a frustrated system. C1 [Pollard, Shawn D.; Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys, Upton, NY 11973 USA. [Pollard, Shawn D.; Zhu, Yimei] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Zhu, YM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys, Upton, NY 11973 USA. EM zhu@bnl.gov RI Pollard, Shawn/H-2722-2012; Pollard, Shawn/I-5360-2015; OI Pollard, Shawn/0000-0001-9691-0997 FU U.S. Department of Energy, Office of Basic Energy Science, Material Sciences and Engineering Division [DE-AC02-98CH10886] FX The work was supported by U.S. Department of Energy, Office of Basic Energy Science, Material Sciences and Engineering Division, under Contract No. DE-AC02-98CH10886. NR 42 TC 1 Z9 1 U1 1 U2 38 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2050-5698 EI 2050-5701 J9 MICROSCOPY-JPN JI Microscopy PD JUN PY 2013 VL 62 SU 1 SI SI BP S55 EP S64 DI 10.1093/jmicro/dft017 PG 10 WC Microscopy SC Microscopy GA 151OV UT WOS:000319470800006 PM 23549453 ER PT J AU Smith, DJ Aoki, T Mardinly, J Zhou, L McCartney, MR AF Smith, David J. Aoki, Toshihiro Mardinly, John Zhou, Lin McCartney, Martha R. TI Exploring aberration-corrected electron microscopy for compound semiconductors SO MICROSCOPY LA English DT Review DE aberration-corrected electron microscopy; compound semiconductor; dumbbell imaging; polarity reversal ID ATOMIC-RESOLUTION; SYSTEMATIC ANALYSIS; PHASE-RETRIEVAL; ANGSTROM; HOLOGRAPHY; HREM; COLUMNS; HRTEM; GAAS; KV AB The development of aberration-corrected electron microscopes (ACEMs) has made it possible to resolve individual atomic columns ('dumbbells') with correct interatomic spacings in elemental and compound semiconductors. Thus, the latest generations of ACEMs should become powerful instruments for determining detailed structural arrangements at defects and interfaces in these materials. This paper provides a short overview of off-line ('software') and on-line ('hardware') ACEM techniques, with particular reference to characterization of elemental and compound semiconductors. Exploratory probe-corrected studies of ZnTe/InP and ZnTe/GaAs epitaxial heterostructures and interfacial defects are also described. Finally, some of the associated problems and future prospects are briefly discussed. C1 [Smith, David J.; Zhou, Lin; McCartney, Martha R.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Aoki, Toshihiro; Mardinly, John] Arizona State Univ, LeRoy Eyring Ctr Solid State Sci, Tempe, AZ 85287 USA. [Zhou, Lin] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Smith, DJ (reprint author), Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. EM david.smith@asu.edu RI Aoki, Toshihiro/I-4852-2015 FU NSF Grant [DMR-0821796] FX The acquisition of the JEM-ARM 200F at Arizona State University was supported by NSF Grant DMR-0821796. NR 48 TC 4 Z9 4 U1 3 U2 32 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2050-5698 EI 2050-5701 J9 MICROSCOPY-JPN JI Microscopy PD JUN PY 2013 VL 62 SU 1 SI SI BP S65 EP S73 DI 10.1093/jmicro/dft011 PG 9 WC Microscopy SC Microscopy GA 151OV UT WOS:000319470800007 PM 23536701 ER PT J AU Furlanetto, C Santiago, BX Makler, M Cypriano, ES Caminha, GB Pereira, MES Neto, AF Estrada, J Lin, H Hao, JG McKay, TA da Costa, LN Maia, MAG AF Furlanetto, Cristina Santiago, Basilio X. Makler, Martin Cypriano, Eduardo S. Caminha, Gabriel B. Pereira, Maria E. S. Fausti Neto, Angelo Estrada, Juan Lin, Huan Hao, Jiangang McKay, Timothy A. da Costa, Luiz N. Maia, Marcio A. G. TI The SOAR Gravitational Arc Survey - I. Survey overview and photometric catalogues SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: strong; surveys; galaxies: clusters: general ID DIGITAL SKY SURVEY; WEAK-LENSING MEASUREMENTS; GALAXY CLUSTERS; GIANT ARCS; DATA RELEASE; DARK ENERGY; SYSTEMATIC SEARCH; NEARBY CLUSTERS; HIGH-RESOLUTION; REDSHIFT SURVEY AB We present the first results of the SOAR (Southern Astrophysical Research) Gravitational Arc Survey (SOGRAS). The survey imaged 47 clusters in two redshift intervals centred at z = 0.27 and z = 0.55, targeting the richest clusters in each interval. Images were obtained in the g', r' and i' bands using the SOAR Optical Imager (SOI), with a median seeing of 0.83, 0.76 and 0.71 arcsec, respectively, in these filters. Most of the survey clusters are located within the Sloan Digital Sky Survey (SDSS) Stripe 82 region and all of them are in the SDSS footprint. Photometric calibration was therefore performed using SDSS stars located in our SOI fields. We reached for galaxies in all fields the detection limits of g similar to 23.5, r similar to 23 and i similar to 22.5 for a signal-to-noise ratio (S/N) = 3. As a byproduct of the image processing, we generated a source catalogue with 19 760 entries, the vast majority of which are galaxies, where we list their positions, magnitudes and shape parameters. We compared our galaxy shape measurements to those of local galaxies and concluded that they were not strongly affected by seeing. From the catalogue data, we are able to identify a red sequence of galaxies in most clusters in the lower z range. We found 16 gravitational arc candidates around eight clusters in our sample. They tend to be bluer than the central galaxies in the lensing cluster. A preliminary analysis indicates that similar to 10 per cent of the clusters have arcs around them, with a possible indication of a larger efficiency associated with the high-z systems when compared to the low-z ones. Deeper follow-up images with Gemini strengthen the case for the strong lensing nature of the candidates found in this survey. C1 [Furlanetto, Cristina; Santiago, Basilio X.] Univ Fed Rio Grande do Sul, Dept Astron, BR-91501970 Porto Alegre, RS, Brazil. [Furlanetto, Cristina; Santiago, Basilio X.; Makler, Martin; Cypriano, Eduardo S.; Caminha, Gabriel B.; Pereira, Maria E. S.; Fausti Neto, Angelo; da Costa, Luiz N.; Maia, Marcio A. G.] Lab Interinst E Astron, BR-20921400 Rio De Janeiro, RJ, Brazil. [Makler, Martin; Caminha, Gabriel B.; Pereira, Maria E. S.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil. [Cypriano, Eduardo S.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo, Brazil. [Estrada, Juan; Lin, Huan; Hao, Jiangang] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [McKay, Timothy A.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [da Costa, Luiz N.; Maia, Marcio A. G.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. RP Furlanetto, C (reprint author), Univ Fed Rio Grande do Sul, Dept Astron, Av Bento Goncalves 9500, BR-91501970 Porto Alegre, RS, Brazil. EM furlanetto.cristina@gmail.com RI Bartosch Caminha, Gabriel/C-8952-2013; McKay, Timothy/C-1501-2009; Makler, Martin/G-2639-2012; OI Bartosch Caminha, Gabriel/0000-0001-6052-3274; McKay, Timothy/0000-0001-9036-6150; Makler, Martin/0000-0003-2206-2651; Hao, Jiangang/0000-0003-0502-7571 FU Laboratorio Interinstitucional de e-Astronomia (LIneA); Ministry of Science, Technology, and Innovation (MCTI); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); FAPERJ [E-26/110.516/2012, 2009/07154-8-0]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science FX We thank the support of the Laboratorio Interinstitucional de e-Astronomia (LIneA) operated jointly by the Centro Brasileiro de Pesquisas Fisicas (CBPF), the Laboratorio Nacional de Computacao Cientifica (LNCC) and the Observatorio Nacional (ON) and funded by the Ministry of Science, Technology, and Innovation (MCTI). The Brazilian authors of this work are supported by grants from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES). MM is also partially supported by FAPERJ (grant E-26/110.516/2012). ESC also acknowledges support from FAPESP (programme number 2009/07154-8-0).; This paper made extensive use of the data base and tools provided by the Sloan Digital Sky Survey (SDSS), including the SKYERVER and the Catalog Archive Server. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University. NR 84 TC 5 Z9 5 U1 1 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2013 VL 432 IS 1 BP 73 EP 88 DI 10.1093/mnras/stt380 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 152IG UT WOS:000319524600026 ER PT J AU Paparo, M Bognar, Z Plachy, E Molnar, L Bradley, PA AF Paparo, M. Bognar, Zs Plachy, E. Molnar, L. Bradley, P. A. TI Multimode pulsation of the ZZ Ceti star GD 154 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: photometric; stars: individual: GD 154; stars: interiors; stars: oscillations; white dwarfs ID WHOLE EARTH TELESCOPE; WHITE-DWARF STARS; THERMAL-CONDUCTIVITIES; DENSE MATTER; ASTEROSEISMOLOGY; EVOLUTION; MODELS; PHASE; GD358; MASS AB We present the results of a comparative period search on different time-scales and modelling of the ZZ Ceti (DAV) star GD 154. We determined six frequencies as normal modes and four rotational doublets around the ones having the largest amplitude. Two normal modes at 807.62 and 861.56 mu Hz have never been reported before. A rigorous test revealed remarkable intrinsic amplitude variability of frequencies at 839.14 and 861.56 mu Hz over a 50 d time-scale. In addition, the multimode pulsation changed to monoperiodic pulsation with an 843.15 mu Hz dominant frequency at the end of the observing run. The 2.76 mu Hz average rotational split detected led to a determination of a 2.1 d rotational period for GD 154. We searched for model solutions with effective temperatures and log g close to the spectroscopically determined ones. The best-fitting models resulting from the grid search have M-H between 6.3 x 10(-5) and 6.3 x 10(-7) M-*, which means thicker hydrogen layer than the previous studies suggested. Our investigations show that mode trapping does not necessarily operate in all of the observed modes and the best candidate for a trapped mode is at 2484 mu Hz. C1 [Paparo, M.; Bognar, Zs; Molnar, L.] MTA CSFK, Konkoly Observ, H-1121 Budapest, Hungary. [Plachy, E.] Eotvos Lorand Univ, Dept Astron, H-1518 Budapest, Hungary. [Bradley, P. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Paparo, M (reprint author), MTA CSFK, Konkoly Observ, Konkoly Thege U 15-17, H-1121 Budapest, Hungary. EM paparo@konkoly.hu OI Bradley, Paul/0000-0001-6229-6677; Molnar, Laszlo/0000-0002-8159-1599 NR 45 TC 3 Z9 3 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2013 VL 432 IS 1 BP 598 EP 608 DI 10.1093/mnras/stt486 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 152IG UT WOS:000319524600064 ER PT J AU Nuza, SE Sanchez, AG Prada, F Klypin, A Schlegel, DJ Gottlober, S Montero-Dorta, AD Manera, M McBridge, CK Ross, AJ Angulo, R Blanton, M Bolton, A Favole, G Samushia, L Montesano, F Percival, WJ Padmanabhan, N Steinmetz, M Tinker, J Skibba, R Schneider, DP Guo, H Zehavi, I Zheng, Z Bizyaev, D Malanushenko, O Malanushenko, V Oravetz, AE Oravetz, DJ Shelden, AC AF Nuza, Sebastian E. Sanchez, Ariel G. Prada, Francisco Klypin, Anatoly Schlegel, David J. Gottloeber, Stefan Montero-Dorta, Antonio D. Manera, Marc McBridge, Cameron K. Ross, Ashley J. Angulo, Raul Blanton, Michael Bolton, Adam Favole, Ginevra Samushia, Lado Montesano, Francesco Percival, Will J. Padmanabhan, Nikhil Steinmetz, Matthias Tinker, Jeremy Skibba, Ramin Schneider, Donald P. Guo, Hong Zehavi, Idit Zheng, Zheng Bizyaev, Dmitry Malanushenko, Olena Malanushenko, Viktor Oravetz, Audrey E. Oravetz, Daniel J. Shelden, Alaina C. TI The clustering of galaxies at z approximate to 0.5 in the SDSS-III Data Release 9 BOSS-CMASS sample: a test for the Lambda CDM cosmology SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: numerical; methods: observational; galaxies: general; cosmology: theory; large-scale structure of Universe ID DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; HALO OCCUPATION DISTRIBUTION; LUMINOUS RED GALAXIES; BARYONIC ACOUSTIC-OSCILLATIONS; 2-POINT CORRELATION-FUNCTION; POWER SPECTRUM; STELLAR MASS; DARK-MATTER; LOW-REDSHIFT AB We present results on the clustering of 282 068 galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) sample of massive galaxies with redshifts 0.4 < z < 0.7 which is part of the Sloan Digital Sky Survey III project. Our results cover a large range of scales from similar to 500 to similar to 90 h(-1) Mpc. We compare these estimates with the expectations of the flat Lambda cold dark matter (Lambda CDM) standard cosmological model with parameters compatible with Wilkinson Microwave Anisotropy Probe 7 data. We use the MultiDark cosmological simulation, one of the largest N-body runs presently available, together with a simple halo abundance matching technique, to estimate galaxy correlation functions, power spectra, abundance of subhaloes and galaxy biases. We find that the Lambda CDM model gives a reasonable description to the observed correlation functions at z approximate to 0.5, which is remarkably good agreement considering that the model, once matched to the observed abundance of BOSS galaxies, does not have any free parameters. However, we find a greater than or similar to 10 per cent deviation in the correlation functions for scales less than or similar to 1 and similar to 10-40 h(-1) Mpc. A more realistic abundance matching model and better statistics from upcoming observations are needed to clarify the situation. We also estimate that about 12 per cent of the 'galaxies' in the abundance-matched sample are satellites inhabiting central haloes with mass M greater than or similar to 10(14) h(-1) M-circle dot. Using the MultiDark simulation, we also study the real-space halo bias b of the matched catalogue finding that b = 2.00 +/- 0.07 at large scales, consistent with the one obtained using the measured BOSS-projected correlation function. Furthermore, the linear large-scale bias, defined using the extrapolated linear matter power spectrum, depends on the number density n of the abundance-matched sample as b = -0.048 - (0.594 +/- 0.02)log(10)(n/h(3) Mpc(-3)). Extrapolating these results to baryon acoustic oscillation scales, we measure a scale-dependent damping of the acoustic signal produced by non-linear evolution that leads to similar to 2-4 per cent dips at greater than or similar to 3 sigma level for wavenumbers k greater than or similar to 0.1 h Mpc(-1) in the linear large-scale bias. C1 [Nuza, Sebastian E.; Gottloeber, Stefan; Steinmetz, Matthias] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany. [Sanchez, Ariel G.; Montesano, Francesco] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Prada, Francisco] Campus Int Excellence UAM CSIC, E-28049 Madrid, Spain. [Prada, Francisco] Univ Autonoma Madrid, UAM CSIC, Inst Fis Teor, E-28049 Madrid, Spain. [Prada, Francisco; Montero-Dorta, Antonio D.; Favole, Ginevra] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Klypin, Anatoly] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Manera, Marc; Ross, Ashley J.; Samushia, Lado; Percival, Will J.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [McBridge, Cameron K.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Angulo, Raul] Max Planck Inst Astrophys MPA, D-85741 Garching, Germany. [Blanton, Michael; Tinker, Jeremy] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Bolton, Adam; Zheng, Zheng] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Padmanabhan, Nikhil] Yale Univ, Yale Ctr Astron & Astrophys, New Heaven, CT 06511 USA. [Skibba, Ramin] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Guo, Hong; Zehavi, Idit] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Bizyaev, Dmitry; Malanushenko, Olena; Malanushenko, Viktor; Oravetz, Audrey E.; Oravetz, Daniel J.; Shelden, Alaina C.] Apache Point Observ, Sunspot, NM 88349 USA. [Shelden, Alaina C.] Univ Florida, Dept Astron, Bryant Space Sci Ctr 211, Gainesville, FL USA. RP Nuza, SE (reprint author), Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. EM snuza@aip.de RI Guo, Hong/J-5797-2015 OI Guo, Hong/0000-0003-4936-8247 FU Alfred P. Sloan Foundation; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; University of Florida; French Participation Group; German Participation Group; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; National Science Foundation; US Department of Energy; Spanish MultiDark Consolider Project [CSD2009-00064]; Spanish MICINN [CSD2009-00064]; Deutsche Forschungsgemeinschaft [MU1020 16-1]; MICINN Spanish [AYA2010-21231-C02-01]; Campus of International Excellence UAM+CSIC; NSF FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the US Department of Energy. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, University of Florida, the French Participation Group, the German Participation Group, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University.; The MultiDark Database used in this paper and the web application providing online access to it were constructed as part of the activities of the German Astrophysical Virtual Observatory as a result of the collaboration between the Leibniz-Institute for Astrophysics Potsdam (AIP) and the Spanish MultiDark Consolider Project CSD2009-00064. The Bolshoi and MultiDark simulations were run on the NASA's Pleiades supercomputer at the NASA Ames Research Center.; SEN and FP acknowledge support from the Spanish MICINN's Consolider grant MultiDark CSD2009-00064. SEN also acknowledges support by the Deutsche Forschungsgemeinschaft under the grant MU1020 16-1. FP also thanks the support of the MICINN Spanish grant AYA2010-21231-C02-01 and the Campus of International Excellence UAM+CSIC. AK acknowledges support from the NSF under a grant to NMSU. NR 90 TC 55 Z9 55 U1 1 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2013 VL 432 IS 1 BP 743 EP 760 DI 10.1093/mnras/stt513 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 152IG UT WOS:000319524600075 ER PT J AU Barone-Nugent, RL Lidman, C Wyithe, JSB Mould, J Howell, DA Hook, IM Sullivan, M Nugent, PE Arcavi, I Cenko, SB Cooke, J Gal-Yam, A Hsiao, EY Kasliwal, MM Maguire, K Ofek, E Poznanski, D Xu, D AF Barone-Nugent, R. L. Lidman, C. Wyithe, J. S. B. Mould, J. Howell, D. A. Hook, I. M. Sullivan, M. Nugent, P. E. Arcavi, I. Cenko, S. B. Cooke, J. Gal-Yam, A. Hsiao, E. Y. Kasliwal, M. M. Maguire, K. Ofek, E. Poznanski, D. Xu, D. TI Near-infrared observations of type Ia supernovae: The best known standard candle for cosmology SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Correction C1 [Barone-Nugent, R. L.; Wyithe, J. S. B.] Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia. [Lidman, C.] Australian Astron Observ, Epping, NSW, Australia. [Mould, J.; Cooke, J.] Swinburne Univ Technol, Hawthorn, Vic 3122, Australia. [Howell, D. A.] Global Telescope Network, Las Cumbres Observ, Goleta, CA 93117 USA. [Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Hook, I. M.; Sullivan, M.; Maguire, K.] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. [Hook, I. M.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, RM, Italy. [Nugent, P. E.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Arcavi, I.; Gal-Yam, A.; Ofek, E.; Xu, D.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Cenko, S. B.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Hsiao, E. Y.; Kasliwal, M. M.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Poznanski, D.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RP Barone-Nugent, RL (reprint author), Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia. EM robertbn@student.unimelb.edu.au NR 1 TC 1 Z9 1 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2013 VL 432 IS 1 BP L90 EP L91 DI 10.1093/mnrasl/slt038 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 152IG UT WOS:000319524600019 ER PT J AU Schmidt, W Collins, DC Kritsuk, AG AF Schmidt, W. Collins, D. C. Kritsuk, A. G. TI Local support against gravity in magnetoturbulent fluids SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitation; magnetic fields; turbulence; methods: numerical; ISM: kinematics and dynamics ID ADAPTIVE MESH REFINEMENT; SUPERSONIC ISOTHERMAL TURBULENCE; ACCRETION-DRIVEN TURBULENCE; MOLECULAR CLOUDS; STAR-FORMATION; INTERSTELLAR TURBULENCE; MAGNETIC-FIELDS; INTERGALACTIC MEDIUM; JEANS COLLAPSE; GAS CLOUDS AB Comparisons of the integrated thermal pressure support of gas against its gravitational potential energy lead to critical mass scales for gravitational instability such as the Jeans and the Bonnor-Ebert masses, which play an important role in the analysis of many physical systems, including the heuristics of numerical simulations. In a strict theoretical sense, however, neither the Jeans nor the Bonnor-Ebert mass is meaningful when applied locally to substructure in a self-gravitating turbulent medium. For this reason, we investigate the local support by thermal pressure, turbulence and magnetic fields against gravitational compression through an approach that is independent of these concepts. At the centre of our approach is the dynamical equation for the divergence of the velocity field. We carry out a statistical analysis of the source terms of the local compression rate (the negative time derivative of the divergence) for simulations of forced self-gravitating turbulence in periodic boxes with zero, weak and moderately strong mean magnetic fields (measured by the averages of the magnetic and thermal pressures). We also consider the amplification of the magnetic field energy by shear and by compression. Thereby, we are able to demonstrate that the support against gravity is dominated by thermal pressure fluctuations, although magnetic pressure also yields a significant contribution. The net effect of turbulence in the highly supersonic regime, however, is to enhance compression rather than supporting overdense gas even if the vorticity is very high. This is incommensurate with the support of the highly dynamical substructures in magnetoturbulent fluids being determined by local virial equilibria of volume energies without surface stresses. C1 [Schmidt, W.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Collins, D. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Collins, D. C.; Kritsuk, A. G.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Collins, D. C.; Kritsuk, A. G.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Schmidt, W (reprint author), Univ Gottingen, Inst Astrophys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. EM schmidt@astro.physik.uni-goettingen.de FU NSF [AST-0808184, AST-0908740, AST-1109570, OCI-1053575]; Advanced Simulation and Computing Program (ASC); LANL [DE-AC52- 06NA25396] FX We thank Jens Niemeyer and Dominik Schleicher for many useful comments. We also acknowledge the yt toolkit by Turk et al. (2011) that was used for our analysis of numerical data. AK was supported in part by NSF grants AST-0808184, AST-0908740 and AST-1109570. DC was supported by Advanced Simulation and Computing Program (ASC) and LANL which is operated by LANS, LLC for the NNSA of the US DOE under Contract No. DE-AC52- 06NA25396. We utilized computing resources provided by SDSC and NICS through the XRAC allocations MCA07S014 and TG-AST090110. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the NSF grant OCI-1053575. NR 55 TC 13 Z9 13 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2013 VL 431 IS 4 BP 3196 EP 3215 DI 10.1093/mnras/stt399 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 151RX UT WOS:000319479000018 ER PT J AU Antonik, ML Bacon, DJ Bridle, S Doel, P Brooks, D Worswick, S Bernstein, G Bernstein, R DePoy, D Flaugher, B Frieman, JA Gladders, M Gutierrez, G Jain, B Jarvis, M Kent, SM Lahav, O Parker, SJ Roodman, A Walker, AR AF Antonik, Michelle L. Bacon, David J. Bridle, Sarah Doel, Peter Brooks, David Worswick, Sue Bernstein, Gary Bernstein, Rebecca DePoy, Darren Flaugher, Brenna Frieman, Joshua A. Gladders, Michael Gutierrez, Gaston Jain, Bhuvnesh Jarvis, Michael Kent, Stephen M. Lahav, Ofer Parker, S. -J. Roodman, Aaron Walker, Alistair R. TI The impact of camera optical alignments on weak lensing measures for the Dark Energy Survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; methods: data analysis; techniques: image processing; cosmology: observations; dark energy; dark matter ID COSMIC SHEAR; IMAGE-ANALYSIS; REQUIREMENTS; CALIBRATION; CHALLENGE AB Telescope point spread function (PSF) quality is critical for realizing the potential of cosmic weak lensing observations to constrain dark energy and test general relativity. In this paper, we use quantitative weak gravitational lensing measures to inform the precision of lens optical alignment, with specific reference to the Dark Energy Survey (DES). We compute optics spot diagrams and calculate the shear and flexion of the PSF as a function of position on the focal plane. For perfect optical alignment, we verify the high quality of the DES optical design, finding a maximum PSF contribution to the weak lensing shear of 0.04 near the edge of the focal plane. However, this can be increased by a factor of approximately 3 if the lenses are only just aligned within their maximum specified tolerances. We calculate the E-and B-mode shear and flexion variance as a function of the decentre or tilt of each lens in turn. We find tilt accuracy to be a few times more important than decentre, depending on the lens considered. Finally, we consider the compound effect of decentre and tilt of multiple lenses simultaneously, by sampling from a plausible range of values of each parameter. We find that the compound effect can be around twice as detrimental as when considering any one lens alone. Furthermore, this combined effect changes the conclusions about which lens is most important to align accurately. For DES, the tilt of the first two lenses is the most important. C1 [Antonik, Michelle L.; Bridle, Sarah; Doel, Peter; Brooks, David; Worswick, Sue; Lahav, Ofer; Parker, S. -J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Bacon, David J.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Bernstein, Gary; Jain, Bhuvnesh; Jarvis, Michael] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bernstein, Rebecca] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [DePoy, Darren] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Flaugher, Brenna; Frieman, Joshua A.; Gutierrez, Gaston; Kent, Stephen M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Frieman, Joshua A.; Gladders, Michael] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Frieman, Joshua A.; Gladders, Michael] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Parker, S. -J.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Roodman, Aaron] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Walker, Alistair R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, La Serena, Chile. RP Antonik, ML (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM mlantonik@gmail.com; sarah@sarahbridle.net FU US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council (STFC) of Great Britain; Higher Education Funding Council for England; National Centre for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janerio; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Argonne National Laboratories; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Technologicas, Madrid; University of Chicago; University College London; DES-Brazil; Fermilab; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; University of Michigan; National Optical Astronomy Observatory; Ohio State University; University of Pennsylvania; University of Portsmouth; University of Sussex; RCUK Academic Fellowship; Royal Society; European Research Council [240672]; Royal Society Wolfson Research Merit Award; Leverhulme Senior Fellowship FX DES has been funded by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council (STFC) of Great Britain, the Higher Education Funding Council for England, the National Centre for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janerio, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia and the Collaborating Institutions in DES.; These Collaborating Institutions are Argonne National Laboratories, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Technologicas, Madrid, the University of Chicago, University College London, DES-Brazil, Fermilab, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, the Lawrence Berkeley National Laboratory, the University of Michigan, the National Optical Astronomy Observatory, the Ohio State University, the University of Pennsylvania, the University of Portsmouth and the University of Sussex.; We thank STFC for a major grant towards building the DES optical corrector. DB acknowledges support from an RCUK Academic Fellowship. SB acknowledges support from the Royal Society in the form of a University Research Fellowship and from the European Research Council in the form of a Starting Grant with number 240672. OL acknowledges a Royal Society Wolfson Research Merit Award and Leverhulme Senior Fellowship. NR 20 TC 2 Z9 2 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2013 VL 431 IS 4 BP 3291 EP 3300 DI 10.1093/mnras/stt408 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 151RX UT WOS:000319479000026 ER PT J AU Fu, W Lai, D AF Fu, Wen Lai, Dong TI Simulations of overstable inertial-acoustic modes in black hole accretion discs SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; hydrodynamics; instabilities; waves ID QUASI-PERIODIC OSCILLATIONS; RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS; ROSSBY-WAVE INSTABILITY; COROTATIONAL INSTABILITY; MAGNETOROTATIONAL TURBULENCE; EJECTION INSTABILITY; TIME VARIABILITY; MAGNETIC-FIELDS; DISKS; FLUCTUATIONS AB We present two-dimensional inviscid hydrodynamic simulations of overstable inertial-acoustic oscillation modes (p modes) in black hole accretion discs. These global spiral waves are trapped in the innermost region of the disc, and are driven overstable by wave absorption at the corotation resonance (r(c)) when the gradient of the background disc vortensity (vorticity divided by surface density) at r(c) is positive and the disc inner boundary is sufficiently reflective. Previous linear calculations have shown that the growth rates of these modes can be as high as 10 per cent of the rotation frequency at the disc inner edge. We confirm these linear growth rates and the primary disc oscillation frequencies in our simulations when the mode amplitude undergoes exponential growth. We show that the mode growth saturates when the radial velocity perturbation becomes comparable to the disc sound speed. During the saturation stage, the primary disc oscillation frequency differs only slightly (by less than a few per cent) from the linear mode frequency. Sharp features in the fluid velocity profiles at this stage suggest that the saturation results from non-linear wave steepening and shock dissipation. C1 [Fu, Wen; Lai, Dong] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Fu, Wen] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Fu, Wen] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. RP Fu, W (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. EM Wen.Fu@rice.edu FU NSF [AST-1008245, AST-1211061]; NASA [NNX12AF85G]; Laboratory Directed Research and Development Program at LANL FX We thank the careful review and valuable comments from an anonymous referee. This work has been supported in part by the NSF grants AST-1008245, AST-1211061 and the NASA grant NNX12AF85G. WF also acknowledges the support from the Laboratory Directed Research and Development Program at LANL. NR 47 TC 3 Z9 3 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2013 VL 431 IS 4 BP 3697 EP 3704 DI 10.1093/mnras/stt463 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 151RX UT WOS:000319479000060 ER PT J AU Koven, CD AF Koven, Charles D. TI Boreal carbon loss due to poleward shift in low-carbon ecosystems SO NATURE GEOSCIENCE LA English DT Article ID CLIMATE-CHANGE; TERRESTRIAL ECOSYSTEM; RESPONSES; FEEDBACK; CMIP5 AB Climate change can be thought of in terms of geographical shifts in climate properties. Examples include assessments of shifts in habitat distributions(1), of the movement needed to maintain constant temperature or precipitation(2), and of the emergence and disappearance of climate zones(3). Here I track the movement of analogue climates within climate models. From the model simulations, I define a set of vectors that link a historical reference climate for each location to the location in a changed climate whose seasonal temperature and precipitation cycles best match the reference climate. I use these vectors to calculate the change in vegetation carbon storage with climate change due to ecosystems following climate analogues. Comparing the derived carbon content change to direct carbon projections by coupled carbon-climate models reveals two regions of divergence. In the tropical forests, vector projections are fundamentally uncertain because of a lack of close climatic analogues. In the southern boreal forest, carbon losses are projected in the vector perspective because low-carbon ecosystems shift polewards. However, the majority of carbon-climate models-typically without explicit simulation of the disturbance and mortality processes behind such shifts-instead project vegetation carbon gains throughout the boreal region. Southern boreal carbon loss as a result of ecosystem shift is likely to offset carbon gains from northern boreal forest expansion. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Koven, CD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cdkoven@lbl.gov RI Koven, Charles/N-8888-2014 OI Koven, Charles/0000-0002-3367-0065 FU Office of Science, Office of Biological and Environmental Research of the US Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under Contract No. DE-AC02-05CH11231 as part of their Climate and Earth System Modelling Program. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Tables 1 and 2 of this paper) for producing and making available their model output. Thanks to W. Collins, M. Torn, J. Chambers, W. Riley, P. Friedlingstein and I. Fung for helpful discussions, and to D. Ackerly and C. Jones for a critical review that improved the manuscript. NR 27 TC 20 Z9 20 U1 3 U2 63 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD JUN PY 2013 VL 6 IS 6 BP 452 EP 456 DI 10.1038/NGEO1801 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 154ET UT WOS:000319655200016 ER PT J AU Kelton, KF AF Kelton, K. F. TI GLASS-FORMING ALLOYS Order at the interface SO NATURE MATERIALS LA English DT News Item C1 [Kelton, K. F.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Kelton, K. F.] Washington Univ, Inst Mat Sci & Engn, St Louis, MO 63130 USA. [Kelton, K. F.] UT ORNL Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. RP Kelton, KF (reprint author), Washington Univ, Dept Phys, St Louis, MO 63130 USA. EM kfk@wustl.edu NR 11 TC 6 Z9 6 U1 2 U2 60 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD JUN PY 2013 VL 12 IS 6 BP 473 EP 474 DI 10.1038/nmat3662 PG 2 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 150PC UT WOS:000319402200010 PM 23695739 ER PT J AU Esposito, DV Levin, I Moffat, TP Talin, AA AF Esposito, Daniel V. Levin, Igor Moffat, Thomas P. Talin, A. Alec TI H-2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover SO NATURE MATERIALS LA English DT Article ID SOLAR-CELLS; HYDROGEN-PRODUCTION; THERMAL-OXIDATION; SURFACE; ENERGY; PHOTOCATHODES; MICROSCOPY AB Photoelectrochemical (PEC) water splitting represents a promising route for renewable production of hydrogen, but trade-offs between photoelectrode stability and efficiency have greatly limited the performance of PEC devices. In this work, we employ a metal-insulator-semiconductor (MIS) photoelectrode architecture that allows for stable and efficient water splitting using narrow bandgap semiconductors. Substantial improvement in the performance of Si-based MIS photocathodes is demonstrated through a combination of a high-quality thermal SiO2 layer and the use of bilayer metal catalysts. Scanning probe techniques were used to simultaneously map the photovoltaic and catalytic properties of the MIS surface and reveal the spillover-assisted evolution of hydrogen off the SiO2 surface and lateral photovoltage driven minority carrier transport over distances that can exceed 2 cm. The latter finding is explained by the photo- and electrolyte-induced formation of an inversion channel immediately beneath the SiO2/Si interface. These findings have important implications for further development of MIS photoelectrodes and offer the possibility of highly efficient PEC water splitting. C1 [Esposito, Daniel V.; Levin, Igor; Moffat, Thomas P.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Talin, A. Alec] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Talin, A. Alec] Sandia Natl Labs, Livermore, CA 94551 USA. RP Moffat, TP (reprint author), NIST, Mat Measurement Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM thomas.moffat@nist.gov; aatalin@sandia.gov FU National Research Council; Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160] FX We acknowledge the NIST Nanofab and its staff for support in sample fabrication, Sandra Claggett for assistance in TEM sample preparation, and the NIST glass shop (J. Anderson and A. Kirchhoff). D.V.E. acknowledges the National Research Council Research Associateship Programs for funding. A.A.T. was supported in part by the Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award DESC0001160. NR 39 TC 81 Z9 82 U1 19 U2 239 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD JUN PY 2013 VL 12 IS 6 BP 562 EP 568 DI 10.1038/NMAT3626 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 150PC UT WOS:000319402200027 PM 23644521 ER PT J AU Hura, GL Budworth, H Dyer, KN Rambo, RP Hammel, M McMurray, CT Tainer, JA AF Hura, Greg L. Budworth, Helen Dyer, Kevin N. Rambo, Robert P. Hammel, Michal McMurray, Cynthia T. Tainer, John A. TI Comprehensive macromolecular conformations mapped by quantitative SAXS analyses SO NATURE METHODS LA English DT Letter ID SCATTERING; RECOGNITION; BINDING C1 [Hura, Greg L.; Dyer, Kevin N.; Rambo, Robert P.; Hammel, Michal] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Budworth, Helen; McMurray, Cynthia T.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, Dept Integrat Struct & Computat Biol, La Jolla, CA 92037 USA. RP Hura, GL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM ctmcmurray@lbl.gov; jatainer@lbl.gov FU NCI NIH HHS [CA092584, P01 CA092584]; NIEHS NIH HHS [R01 ES020766]; NIGMS NIH HHS [F32 GM066559, GM066359, GM105404, R01 GM066359, R01 GM105404]; NINDS NIH HHS [NS060115, R01 NS060115] NR 9 TC 44 Z9 44 U1 2 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 J9 NAT METHODS JI Nat. Methods PD JUN PY 2013 VL 10 IS 6 BP 453 EP 454 DI 10.1038/nmeth.2453 PG 2 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 154IR UT WOS:000319668700004 PM 23624664 ER PT J AU Glaeser, RM AF Glaeser, Robert M. TI Stroboscopic imaging of macromolecular complexes SO NATURE METHODS LA English DT Editorial Material ID BEAM-INDUCED MOTION; PARTICLE CRYO-EM; MICROSCOPY C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Glaeser, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM rmglaeser@lbl.gov NR 9 TC 6 Z9 6 U1 0 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 EI 1548-7105 J9 NAT METHODS JI Nat. Methods PD JUN PY 2013 VL 10 IS 6 BP 475 EP 476 PG 2 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 154IR UT WOS:000319668700014 PM 23722205 ER PT J AU Chin, CS Alexander, DH Marks, P Klammer, AA Drake, J Heiner, C Clum, A Copeland, A Huddleston, J Eichler, EE Turner, SW Korlach, J AF Chin, Chen-Shan Alexander, David H. Marks, Patrick Klammer, Aaron A. Drake, James Heiner, Cheryl Clum, Alicia Copeland, Alex Huddleston, John Eichler, Evan E. Turner, Stephen W. Korlach, Jonas TI Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data SO NATURE METHODS LA English DT Article ID SINGLE POLYMERASE MOLECULES; PROKARYOTIC GENOMES; BACTERIAL GENOMES; HIGH-THROUGHPUT; DE-NOVO; ALIGNMENT; ACCURACY; BIOLOGY; SCALE; ERA AB We present a hierarchical genome-assembly process (HGAP) for high-quality de novo microbial genome assemblies using only a single, long-insert shotgun DNA library in conjunction with Single Molecule, Real-Time (SMRT) DNA sequencing. Our method uses the longest reads as seeds to recruit all other reads for construction of highly accurate preassembled reads through a directed acyclic graph-based consensus procedure, which we follow with assembly using off-the-shelf long-read assemblers. In contrast to hybrid approaches, HGAP does not require highly accurate raw reads for error correction. We demonstrate efficient genome assembly for several microorganisms using as few as three SMRT Cell zero-mode waveguide arrays of sequencing and for BACs using just one SMRT Cell. Long repeat regions can be successfully resolved with this workflow. We also describe a consensus algorithm that incorporates SMRT sequencing primary quality values to produce de novo genome sequence exceeding 99.999% accuracy. C1 [Chin, Chen-Shan; Alexander, David H.; Marks, Patrick; Klammer, Aaron A.; Drake, James; Heiner, Cheryl; Turner, Stephen W.; Korlach, Jonas] Pacific Biosci, Menlo Pk, CA USA. [Copeland, Alex; Huddleston, John] Joint Genome Inst, Walnut Creek, CA USA. [Huddleston, John; Eichler, Evan E.] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA. RP Korlach, J (reprint author), Pacific Biosci, Menlo Pk, CA USA. EM jkorlach@pacificbiosciences.com FU Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We thank S. Clingenpeel (Joint Genome Institute) for growing cultures and performing DNA extraction for M. ruber and P. heparinus; B. Munson and F. Antonacci for assistance with the BAC library construction; and K. Travers, S. McCalmon, M. Wang, U. Nguyen, S. Ranade, M. Ashby, L. Hon and L. Hickey (Pacific Biosciences) for assistance in sample preparation, sequencing and data analysis. The authors acknowledge the ATCC for providing the E. coli K-12 MG1655 strain. We thank S. Koren and A. Phillippy for pointing out to us the SMRT sequencing-based gap-filling functionality development in the Celera Assembler. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 44 TC 461 Z9 466 U1 15 U2 123 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 J9 NAT METHODS JI Nat. Methods PD JUN PY 2013 VL 10 IS 6 BP 563 EP + DI 10.1038/NMETH.2474 PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 154IR UT WOS:000319668700028 PM 23644548 ER PT J AU Liu, M Zhang, X AF Liu, Ming Zhang, Xiang TI Plasmon-boosted magneto-optics SO NATURE PHOTONICS LA English DT News Item ID FARADAY-ROTATION; ENHANCEMENT C1 [Liu, Ming; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Liu, Ming; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Liu, M (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011 NR 10 TC 9 Z9 10 U1 5 U2 56 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD JUN PY 2013 VL 7 IS 6 BP 430 EP 431 DI 10.1038/nphoton.2013.134 PG 2 WC Optics; Physics, Applied SC Optics; Physics GA 154EE UT WOS:000319653500005 ER PT J AU Huang, JS Goh, T Li, XK Sfeir, MY Bielinski, EA Tomasulo, S Lee, ML Hazari, N Taylor, AD AF Huang, Jing-Shun Goh, Tenghooi Li, Xiaokai Sfeir, Matthew Y. Bielinski, Elizabeth A. Tomasulo, Stephanie Lee, Minjoo L. Hazari, Nilay Taylor, Andre D. TI Polymer bulk heterojunction solar cells employing Forster resonance energy transfer SO NATURE PHOTONICS LA English DT Article ID ORGANIC PHOTOVOLTAICS; SPECTRAL RESPONSE; CHARGE-TRANSFER; ACTIVE LAYER; EFFICIENCY; PERFORMANCE; MORPHOLOGY; ADDITIVES; SENSITIZATION; OPTIMIZATION AB There are two crucial tasks for realizing high-efficiency polymer solar cells (PSCs): increasing the range of the spectral absorption of light and efficiently harvesting photogenerated excitons. Here, we describe Forster resonance energy transfer-based heterojunction polymer solar cells that incorporate squaraine dye. The high absorbance of squaraine in the near-infrared region broadens the spectral absorption of the solar cells and assists in developing an ordered nanomorphology for enhanced charge transport. Femtosecond spectroscopic studies reveal highly efficient (up to 96%) excitation energy transfer from poly(3-hexylthiophene) to squaraine occurring on a picosecond timescale. We demonstrate a 38% increase in power conversion efficiency to reach 4.5%, and suggest that this system has improved exciton migration over long distances. This architecture transcends traditional multiblend systems, allowing multiple donor materials with separate spectral responses to work synergistically, thereby enabling an improvement in light absorption and conversion. This opens up a new avenue for the development of high-efficiency polymer solar cells. C1 [Huang, Jing-Shun; Goh, Tenghooi; Li, Xiaokai; Taylor, Andre D.] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06511 USA. [Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Bielinski, Elizabeth A.; Hazari, Nilay] Yale Univ, Dept Chem, New Haven, CT 06511 USA. [Tomasulo, Stephanie; Lee, Minjoo L.] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA. RP Taylor, AD (reprint author), Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06511 USA. EM andre.taylor@yale.edu RI Lee, Minjoo/A-9720-2008; Huang, Jing-Shun/C-7997-2013; Li, Xiaokai/D-4978-2014; OI Lee, Minjoo/0000-0002-3151-3808; Huang, Jing-Shun/0000-0002-7531-4691; Li, Xiaokai/0000-0002-0986-6682; Sfeir, Matthew/0000-0001-5619-5722 FU SOLAR program of the National Science Foundation (NSF) [DMR-0934520]; Yale Climate and Energy Institute; NSF-CAREER [CBET-0954985]; NASA (CT Space Grant Consortium); US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported primarily by the SOLAR program of the National Science Foundation (NSF; DMR-0934520) and the Yale Climate and Energy Institute. A.D.T. acknowledges support from a NSF-CAREER award (CBET-0954985) and NASA (CT Space Grant Consortium). Research was carried out in part at the Centre for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences (contract no. DE-AC02-98CH10886). The authors thank C. Schmuttenmaer, E. Yan and S. Wang for informative discussions. NR 42 TC 139 Z9 140 U1 11 U2 187 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD JUN PY 2013 VL 7 IS 6 BP 480 EP 486 DI 10.1038/NPHOTON.2013.82 PG 7 WC Optics; Physics, Applied SC Optics; Physics GA 154EE UT WOS:000319653500016 ER PT J AU Smith, C Mandelli, D AF Smith, Curtis Mandelli, Diego TI A risk-informed approach to safety margins analysis SO NUCLEAR ENGINEERING INTERNATIONAL LA English DT Article C1 [Smith, Curtis; Mandelli, Diego] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Smith, C (reprint author), Idaho Natl Lab, 2525 Freemont Ave, Idaho Falls, ID 83415 USA. EM curtis.smith@inl.gov; diego.mandelli@inl.gov NR 0 TC 0 Z9 0 U1 0 U2 5 PU WILMINGTON PUBL PI SIDCUP PA WILMINGTON HOUSE, MAIDSTONE RD, FOOTS CRAY, SIDCUP DA14 SHZ, KENT, ENGLAND SN 0029-5507 J9 NUCL ENG INT JI Nucl. Eng. Int. PD JUN PY 2013 VL 58 IS 707 BP 38 EP 40 PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 161TI UT WOS:000320215800011 ER PT J AU Borovikov, V Tang, XZ Perez, D Bai, XM Uberuaga, BP Voter, AF AF Borovikov, Valery Tang, Xian-Zhu Perez, Danny Bai, Xian-Ming Uberuaga, Blas P. Voter, Arthur F. TI Coupled motion of grain boundaries in bcc tungsten as a possible radiation-damage healing mechanism under fusion reactor conditions SO NUCLEAR FUSION LA English DT Article ID MOLECULAR-DYNAMICS; MIGRATION; IRRADIATION; SIMULATION; METALS; ROTATION; HELIUM; ITER; IRON AB As a potential first-wall fusion reactor material, tungsten will be subjected to high radiation flux and extreme mechanical stress. We propose that under these conditions, coupled grain boundary ( GB) motion, in some cases enhanced by interstitial loading, can lead to a radiation-damage healing mechanism, in which a large stress activates coupled GB motion, and the GB sweeps up the defects, such as voids and vacancies, as it passes through the material. The stress-induced mobility characteristics of a number of GBs in tungsten are examined to investigate the likelihood of this scenario. C1 [Borovikov, Valery; Tang, Xian-Zhu; Perez, Danny; Voter, Arthur F.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Bai, Xian-Ming] Idaho Natl Lab, Fuels Modeling & Simulat Dept, Idaho Falls, ID 83415 USA. [Uberuaga, Blas P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Borovikov, V (reprint author), Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM valery@ameslab.gov RI Bai, Xianming/E-2376-2017 OI Bai, Xianming/0000-0002-4609-6576 FU United States Department of Energy (US DOE) through the Office of Fusion Energy Science; Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division; DOE/BES; National Nuclear Security Administration of the US DOE [DE-AC52-O6NA25396] FX The authors are grateful to S. I. Golubov, R. J. Kurtz and Y. Mishin for helpful discussions. This work at Los Alamos National Laboratory (LANL) was supported by the United States Department of Energy (US DOE), through the Office of Fusion Energy Science (VB and XZT), the Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division (DP and AFV), and DOE/BES-funded Energy Frontier Research Center at LANL (XMB and BPU). LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE, under contract DE-AC52-O6NA25396. NR 39 TC 10 Z9 10 U1 1 U2 53 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2013 VL 53 IS 6 AR 063001 DI 10.1088/0029-5515/53/6/063001 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 150WI UT WOS:000319421800001 ER PT J AU Dinklage, A Yokoyama, M Tanaka, K Velasco, JL Lopez-Bruna, D Beidler, CD Satake, S Ascasibar, E Arevalo, J Baldzuhn, J Feng, Y Gates, D Geiger, J Ida, K Isaev, M Jakubowski, M Lopez-Fraguas, A Maassberg, H Miyazawa, J Morisaki, T Murakami, S Pablant, N Kobayashi, S Seki, R Suzuki, C Suzuki, Y Turkin, Y Wakasa, A Wolf, R Yamada, H Yoshinuma, M AF Dinklage, A. Yokoyama, M. Tanaka, K. Velasco, J. L. Lopez-Bruna, D. Beidler, C. D. Satake, S. Ascasibar, E. Arevalo, J. Baldzuhn, J. Feng, Y. Gates, D. Geiger, J. Ida, K. Isaev, M. Jakubowski, M. Lopez-Fraguas, A. Maassberg, H. Miyazawa, J. Morisaki, T. Murakami, S. Pablant, N. Kobayashi, S. Seki, R. Suzuki, C. Suzuki, Y. Turkin, Yu. Wakasa, A. Wolf, R. Yamada, H. Yoshinuma, M. CA LHD Exp Grp TJ-II Team W7-AS Team TI Inter-machine validation study of neoclassical transport modelling in medium- to high-density stellarator-heliotron plasmas SO NUCLEAR FUSION LA English DT Article ID ENERGY CONFINEMENT; HELICAL PLASMAS; LHD AB A comparative study of energy transport for medium-to high-density discharges in the stellarator-heliotrons TJ-II, W7-AS and LHD is carried out. The specific discharge parameters are chosen to apply a recently concluded benchmarking study of neoclassical (NC) transport coefficients (Beidler et al 2011 Nucl. Fusion 51 076001) to perform this validation study. In contrast to previous experiments at low densities for which electron transport was predominant (Yokoyama et al 2007 Nucl. Fusion 47 1213), the current discharges also exhibit significant ion energy transport. As it affects the energy transport in 3D devices, the ambipolar radial electric field is addressed as well. For the discharges described, ion-root conditions, i. e. a small negative radial electric field were found. The energy transport in the peripheral region cannot be explained by NC theory. Within a 'core region' (r/a < 1/2 similar to 2/3), the predicted NC energy fluxes comply with experimental findings for W7-AS. For TJ-II, compliance in the core region is found for the particle transport and the electron energy transport. For the specific LHD discharges, the core energy transport complied with NC theory except for the electron energy transport in the inward-shifted magnetic configuration. The NC radial electric field tends to agree with experimental results for all devices but is measured to be more negative in the core of both LHD and TJ-II. As a general observation, the energy confinement time approaches the gyro-Bohm-type confinement scaling ISS04 (Yamada et al 2005 Nucl. Fusion 45 1684). This work is carried out within the International Stellarator-Heliotron Profile Database (www.ipp.mpg.de/ISS and http://ishpdb.nifs.ac.jp/index.html). C1 [Dinklage, A.; Beidler, C. D.; Baldzuhn, J.; Feng, Y.; Geiger, J.; Jakubowski, M.; Maassberg, H.; Turkin, Yu.; Wolf, R.; W7-AS Team] EURATOM, Max Planck Inst Plasmaphys, Greifswald, Germany. [Yokoyama, M.; Tanaka, K.; Satake, S.; Ida, K.; Miyazawa, J.; Morisaki, T.; Kobayashi, S.; Seki, R.; Suzuki, C.; Suzuki, Y.; Yamada, H.; Yoshinuma, M.; LHD Exp Grp] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Velasco, J. L.; Lopez-Bruna, D.; Ascasibar, E.; Arevalo, J.; Lopez-Fraguas, A.; TJ-II Team] EURATOM, CIEMAT, Natl Fus Lab, Madrid, Spain. [Gates, D.; Pablant, N.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Isaev, M.] Kurchatov Inst, Natl Res Ctr, Moscow, Russia. [Murakami, S.; Wakasa, A.] Kyoto Univ, Dept Nucl Engn, Kyoto 606, Japan. RP Dinklage, A (reprint author), EURATOM, Max Planck Inst Plasmaphys, Greifswald, Germany. EM dinklage@ipp.mpg.de RI Lopez-Fraguas, Antonio/L-8104-2014; Murakami, Sadayoshi/A-2191-2016; Lopez Bruna, Daniel/L-6539-2014; Ida, Katsumi/E-4731-2016; Velasco, Jose/F-9486-2012; Ascasibar, Enrique/B-7498-2014; Isaev, Maxim/A-7910-2012 OI Lopez-Fraguas, Antonio/0000-0002-0277-8137; Murakami, Sadayoshi/0000-0002-2526-7137; Ida, Katsumi/0000-0002-0585-4561; Velasco, Jose/0000-0001-8510-1422; Ascasibar, Enrique/0000-0001-8124-0994; Isaev, Maxim/0000-0002-8492-0650 FU National Institute for Fusion Science (NIFS)/National Institutes of Natural Sciences (NINS) under project 'Promotion of the International Collaborative Research Network Formation' [NIFSKEIN1107]; NIFS [NIFSKNTT008, NIFSKLPT001] FX The authors would like to thank the LHD experiment group and the technical staff of LHD, the TJ-II Team (with special thanks to the HIBP group) and the W7-AS Team for their support of this work. The joint experiment conducted in LHD was supported by National Institute for Fusion Science (NIFS)/National Institutes of Natural Sciences (NINS) under the project, 'Promotion of the International Collaborative Research Network Formation' (NIFSKEIN1107). This work is also partly supported under the auspices of the NIFS Collaboration Research program (NIFSKNTT008 and NIFSKLPT001). NR 30 TC 16 Z9 16 U1 2 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2013 VL 53 IS 6 AR UNSP 063022 DI 10.1088/0029-5515/53/6/063022 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 150WI UT WOS:000319421800022 ER PT J AU Dorf, MA Cohen, RH Dorr, M Rognlien, T Hittinger, J Compton, J Colella, P Martin, D McCorquodale, P AF Dorf, M. A. Cohen, R. H. Dorr, M. Rognlien, T. Hittinger, J. Compton, J. Colella, P. Martin, D. McCorquodale, P. TI Numerical modelling of geodesic acoustic mode relaxation in a tokamak edge SO NUCLEAR FUSION LA English DT Article ID ZONAL FLOWS; SYSTEMS; PLASMA AB Geodesic acoustic modes (GAMs) are an important phenomenon in a tokamak edge plasma. They regulate turbulence in a low confinement (L-mode) regime and can play an important role in the low to high (L-H) mode transition. It is therefore of considerable importance to develop a detailed theoretical understanding of their dynamics and relaxation processes. The present work reports on the numerical modelling of collisionless GAM relaxation, including the effects of a strong radial electric field characteristic of a tokamak pedestal in a high confinement (H-mode) regime. The simulations demonstrate that the presence of a strong radial electric field enhances the GAM decay rate, and heuristic arguments elucidating this finding are provided. The numerical modelling is performed by making use of the continuum gyrokinetic code COGENT. C1 [Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Colella, P.; Martin, D.; McCorquodale, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Dorf, MA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy [DE-AC52-07NA27344] FX This research was supported by the U.S. Department of Energy under contract DE-AC52-07NA27344. NR 23 TC 5 Z9 6 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2013 VL 53 IS 6 AR 063015 DI 10.1088/0029-5515/53/6/063015 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 150WI UT WOS:000319421800015 ER PT J AU Gates, DA Delgado-Aparicio, L White, RB AF Gates, D. A. Delgado-Aparicio, L. White, R. B. TI Physics of radiation-driven islands near the tokamak density limit SO NUCLEAR FUSION LA English DT Article ID TEARING MODE; ALCATOR-C; DISRUPTIONS AB In previous work (Gates and Delgado-Aparicio 2012 Phys. Rev. Lett. 108 165004), the onset criterion for radiationdriven islands (Rebut et al 1985 Proc. 10th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research 1984 (London, UK, 1984) vol 2 (Vienna: IAEA) p 197) in combination with a simple cylindrical model of tokamak current channel behaviour was shown to be consistent with the empirical scaling of the tokamak density limit (Greenwald et al 1988 Nucl. Fusion 28 2199). A number of the unexplained phenomena at the density limit are consistent with this novel physics mechanism. In this work, a more formal theoretical underpinning, consistent with cylindrical tearing mode theory, is developed for the onset criteria of these modes. The appropriate derivation of the radiation-driven addition to the modified Rutherford equation (MRE) is discussed. Additionally, the ordering of the terms in the MRE is examined in a regime near the density limit. It is hoped that, given the apparent success of this simple model in explaining the observed global scalings, it will lead to a more comprehensive analysis of the possibility that radiation-driven islands are the physics mechanism responsible for the density limit. In particular, with modern diagnostic capabilities detailed measurements of current densities, electron densities and impurity concentrations at rational surfaces should be possible, enabling verification of the concepts described above. C1 [Gates, D. A.; Delgado-Aparicio, L.; White, R. B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Gates, DA (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI White, Roscoe/D-1773-2013 OI White, Roscoe/0000-0002-4239-2685 FU US Department of Energy [DEAC02-76CH03073] FX The authors would like to thank Gianluca Pucella for extremely helpful comments on this paper. This work was supported by the US Department of Energy Grant under Contract No DEAC02-76CH03073. NR 24 TC 5 Z9 5 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2013 VL 53 IS 6 AR UNSP 063008 DI 10.1088/0029-5515/53/6/063008 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 150WI UT WOS:000319421800008 ER PT J AU Gerhardt, SP Darrow, DS Bell, RE LeBlanc, BP Menard, JE Mueller, D Roquemore, AL Sabbagh, SA Yuh, H AF Gerhardt, S. P. Darrow, D. S. Bell, R. E. LeBlanc, B. P. Menard, J. E. Mueller, D. Roquemore, A. L. Sabbagh, S. A. Yuh, H. TI Detection of disruptions in the high-beta spherical torus NSTX SO NUCLEAR FUSION LA English DT Article ID RESISTIVE WALL MODE; DIII-D PLASMAS; TIME EQUILIBRIUM RECONSTRUCTION; RUNAWAY CURRENT TERMINATION; ALCATOR C-MOD; NEURAL-NETWORK; ASDEX UPGRADE; STEADY-STATE; HALO CURRENTS; D TOKAMAK AB This paper describes the prediction of disruptions based on diagnostic data in the high-beta spherical torus NSTX (Ono et al 2000 Nucl. Fusion 40 557). The disruptive threshold values on many signals are examined. In some cases, raw diagnostic data can be used as a signal for disruption prediction. In others, the deviations of the plasma data from simple models provides the information used to determine the proximity to disruption. However, no single signal or calculation and associated threshold value can form the basis for disruption prediction in NSTX; thresholds that produce an acceptable false-positive rate have too large a missed or late-warning rate, while combinations that produce an acceptable rate of missed or latewarnings have an unacceptable false-positive rate. To solve this problem, a novel means of combining multiple threshold tests has been developed. After being properly tuned, this algorithm can produce a false-positive rate of 2.8%, with a late + missed warning rate of 3.7% and thus a total failure rate of 6.5%, when applied to a database of similar to 2000 disruptions during the I-P flat top collected from three run campaigns. Furthermore, many of these false positives are triggered by near-disruptive magnetohydrodynamic (MHD) events that might indeed be disruptive in larger plasmas with more stored energy. However, the algorithm is less efficient at detecting the MHD event that prompts the disruption process. C1 [Gerhardt, S. P.; Darrow, D. S.; Bell, R. E.; LeBlanc, B. P.; Menard, J. E.; Mueller, D.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Sabbagh, S. A.] Columbia Univ, Dept Appl Phys, New York, NY 10002 USA. [Yuh, H.] Nova Photon, Princeton, NJ 08540 USA. RP Gerhardt, SP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Menard, Jonathan/0000-0003-1292-3286 FU United States Department of Energy [DE AC02 09CH11466] FX This work was funded by the United States Department of Energy under contract DE AC02 09CH11466. The authors would like to thank Bill Heidbrink for help with the 0D slowing down model used for predicting the neutron emission. NR 165 TC 10 Z9 10 U1 2 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2013 VL 53 IS 6 AR UNSP 063021 DI 10.1088/0029-5515/53/6/063021 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 150WI UT WOS:000319421800021 ER PT J AU Grierson, BA Burrell, KH Solomon, WM Budny, RV Candy, J AF Grierson, B. A. Burrell, K. H. Solomon, W. M. Budny, R. V. Candy, J. TI Collisionality scaling of main-ion toroidal and poloidal rotation in low torque DIII-D plasmas SO NUCLEAR FUSION LA English DT Article ID EXCHANGE RECOMBINATION SPECTROSCOPY; TOKAMAK PLASMA; NEOCLASSICAL TRANSPORT; ELECTRIC-FIELD; IMPURITY IONS; TURBULENCE; PARTICLE; VELOCITY; SHEAR AB In tokamak plasmas with low levels of toroidal rotation, the radial electric field E-r is a combination of pressure gradient and toroidal and poloidal rotation components, all having similar magnitudes. In order to assess the validity of neoclassical poloidal rotation theory for determining the poloidal rotation contribution to E-r, D-alpha emission from neutral beam heated tokamak discharges in DIII-D (Luxon 2002 Nucl. Fusion 42 614) has been evaluated in a sequence of low torque (electron cyclotron resonance heating and balanced diagnostic neutral beam pulse) discharges to determine the local deuterium toroidal rotation velocity. By invoking the radial force balance relation the deuterium poloidal rotation can be inferred. It is found that the deuterium poloidal flow exceeds the neoclassical value in plasmas with collisionality nu*(i) < 0.1, being more ion diamagnetic, and with a stronger dependence on collisionality than neoclassical theory predicts. At low toroidal rotation, the poloidal rotation contribution to the radial electric field and its shear is significant. The effect of anomalous levels of poloidal rotation on the radial electric field and cross-field heat transport is investigated for ITER parameters. C1 [Grierson, B. A.; Solomon, W. M.; Budny, R. V.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Burrell, K. H.; Candy, J.] Gen Atom Co, San Diego, CA 92186 USA. RP Grierson, BA (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM bgriers@pppl.gov OI Solomon, Wayne/0000-0002-0902-9876 FU U.S. Department of Energy [DE-FC02-04ER54698, DE-AC02-09CH11466] FX This work supported in part by the U.S. Department of Energy under DE-FC02-04ER54698 and DE-AC02-09CH11466. The author gratefully acknowledges discussions with R.E. Bell, E. A. Belli, C. Chrystal, J. S. deGrassie, P.H. Diamond, D. Ernst, R. J. Groebner, T. S. Hahm, C. Holland and G.M. Staebler. NR 53 TC 13 Z9 13 U1 1 U2 11 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2013 VL 53 IS 6 AR UNSP 063010 DI 10.1088/0029-5515/53/6/063010 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 150WI UT WOS:000319421800010 ER PT J AU Kaye, SM Gerhardt, S Guttenfelder, W Maingi, R Bell, RE Diallo, A LeBlanc, BP Podesta, M AF Kaye, S. M. Gerhardt, S. Guttenfelder, W. Maingi, R. Bell, R. E. Diallo, A. LeBlanc, B. P. Podesta, M. TI The dependence of H-mode energy confinement and transport on collisionality in NSTX SO NUCLEAR FUSION LA English DT Article ID TORUS EXPERIMENT NSTX; ASPECT-RATIO; ITER AB Understanding the dependence of confinement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in the present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+ B plasmas indicated a strong increase of normalized confinement with decreasing collisionality. Discharges with lithium conditioning discussed in the present study generally achieved lower collisionality, extending the accessible range of collisionality by a factor of two. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confinement time, B-T tau E, with decreasing collisionality when other dimensionless variables were held as fixed as possible. This increase of confinement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and electron temperature gradient (ETG) modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma. C1 [Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kaye, SM (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM kaye@pppl.gov FU US Department of Energy [DE-AC02-09CH11466, DE-AC05-00OR22725] FX This work has been supported by US Department of Energy contracts DE-AC02-09CH11466 and DE-AC05-00OR22725. NR 33 TC 22 Z9 22 U1 1 U2 11 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2013 VL 53 IS 6 AR 063005 DI 10.1088/0029-5515/53/6/063005 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 150WI UT WOS:000319421800005 ER PT J AU Moradi, S Pusztai, I Guttenfelder, W Fulop, T Mollen, A AF Moradi, S. Pusztai, I. Guttenfelder, W. Fulop, T. Mollen, A. TI Microtearing modes in spherical and conventional tokamaks SO NUCLEAR FUSION LA English DT Article ID KINETIC-THEORY; TEARING MODES; INSTABILITY AB The onset and characteristics of microtearing modes (MTM) in the core of spherical (NSTX) and conventional tokamaks (ASDEX Upgrade and JET) are studied through local linear gyrokinetic simulations with GYRO (Candy and Belli 2011 General Atomics Report GA-A26818). For experimentally relevant core plasma parameters in the NSTX and ASDEX Upgrade tokamaks, in agreement with previous works, we find MTMs as the dominant linear instability. Also, for JET-like core parameters considered in our study an MTM is found as the most unstable mode. In all of these plasmas, finite collisionality is needed for MTMs to become unstable and the electron temperature gradient is found to be the fundamental drive. However, a significant difference is observed in the dependence of the linear growth rate of MTMs on electron temperature gradient. While it varies weakly and non-monotonically in JET and ASDEX Upgrade plasmas, in NSTX it increases with the electron temperature gradient. C1 [Moradi, S.; Pusztai, I.; Fulop, T.; Mollen, A.] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. [Moradi, S.; Pusztai, I.; Fulop, T.; Mollen, A.] Euratom VR Assoc, Gothenburg, Sweden. [Guttenfelder, W.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Pusztai, I.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Moradi, S (reprint author), Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. OI Fulop, Tunde/0000-0002-5898-0393; Moradi, Sara/0000-0002-0190-1412 FU European Communities under Association Contract between EURATOM and Vetenskapsradet FX The authors would like to thank F Jenko, J Candy and C Angioni for valuable comments, and J Candy for providing the GYRO code. This work was funded by the European Communities under Association Contract between EURATOM and Vetenskapsradet. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 26 TC 11 Z9 11 U1 0 U2 5 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2013 VL 53 IS 6 AR 063025 DI 10.1088/0029-5515/53/6/063025 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 150WI UT WOS:000319421800025 ER PT J AU Moreau, D Walker, ML Ferron, JR Liu, F Schuster, E Barton, JE Boyer, D Burrell, KH Flanagan, SM Gohil, P Groebner, RJ Holcomb, CT Humphreys, DA Hyatt, AW Johnson, RD La Haye, RJ Lohr, J Luce, TC Park, JM Penaflor, BG Shi, W Turco, F Wehner, W AF Moreau, D. Walker, M. L. Ferron, J. R. Liu, F. Schuster, E. Barton, J. E. Boyer, D. Burrell, K. H. Flanagan, S. M. Gohil, P. Groebner, R. J. Holcomb, C. T. Humphreys, D. A. Hyatt, A. W. Johnson, R. D. La Haye, R. J. Lohr, J. Luce, T. C. Park, J. M. Penaflor, B. G. Shi, W. Turco, F. Wehner, W. CA ITPA-IOS Grp Members Experts TI Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models SO NUCLEAR FUSION LA English DT Article ID PROFILE AB The first real-time profile control experiments integrating magnetic and kinetic variables were performed on DIII-D in view of regulating and extrapolating advanced tokamak scenarios to steady-state devices and burning plasma experiments. Device-specific, control-oriented models were obtained from experimental data using a generic two-time- scale method that was validated on JET, JT-60U and DIII-D under the framework of the International Tokamak Physics Activity for Integrated Operation Scenarios (Moreau et al 2011 Nucl. Fusion 51 063009). On DIII-D, these data-driven models were used to synthesize integrated magnetic and kinetic profile controllers. The neutral beam injection (NBI), electron cyclotron current drive (ECCD) systems and ohmic coil provided the heating and current drive (H& CD) sources. The first control actuator was the plasma surface loop voltage (i. e. the ohmic coil), and the available beamlines and gyrotrons were grouped to form five additional H& CD actuators: co-current on-axis NBI, co-current off-axis NBI, counter-current NBI, balanced NBI and total ECCD power from all gyrotrons (with off-axis current deposition). Successful closed-loop experiments showing the control of (a) the poloidal flux profile, Psi(x), (b) the poloidal flux profile together with the normalized pressure parameter, beta(N), and (c) the inverse of the safety factor profile, (i) over bar (x) = 1/q(x), are described. C1 [Moreau, D.; Liu, F.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Walker, M. L.; Ferron, J. R.; Burrell, K. H.; Flanagan, S. M.; Gohil, P.; Groebner, R. J.; Humphreys, D. A.; Hyatt, A. W.; Johnson, R. D.; La Haye, R. J.; Lohr, J.; Luce, T. C.; Penaflor, B. G.] Gen Atom Co, San Diego, CA 92186 USA. [Schuster, E.; Barton, J. E.; Boyer, D.; Shi, W.; Wehner, W.] Lehigh Univ, Bethlehem, PA 18015 USA. [Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Turco, F.] Columbia Univ, New York, NY 10027 USA. RP Moreau, D (reprint author), CEA, IRFM, F-13108 St Paul Les Durance, France. EM didier.moreau@cea.fr OI Walker, Michael/0000-0002-4341-994X FU European Communities under Association between EURATOM and CEA; US Department of Energy [DE-FC02-04ER54698, DE-FG02-09ER55064, DE-FG02-92ER54141, DE-AC52-07NA27344, DE-AC05-00OR22725, DE-FG02-04ER54761] FX This work was supported by the European Communities under contract of Association between EURATOM and CEA, was carried out within the framework of the European Fusion Development Agreement, and of the US Department of Energy under DE-FC02-04ER54698, DE-FG02-09ER55064, DE-FG02-92ER54141, DE-AC52-07NA27344, DE-AC05-00OR22725, and DE-FG02-04ER54761. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The first author is very grateful to the DIII-D Team for their support, help and hospitality. NR 18 TC 10 Z9 10 U1 2 U2 13 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2013 VL 53 IS 6 AR 063020 DI 10.1088/0029-5515/53/6/063020 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 150WI UT WOS:000319421800020 ER PT J AU Park, JK Bell, RE Kaye, SM Solomon, WM LeBlanc, BP Diallo, A Menard, JE Kubota, S AF Park, Jong-Kyu Bell, Ronald E. Kaye, Stanley M. Solomon, Wayne M. LeBlanc, Benoit P. Diallo, Ahmed Menard, Jonathan E. Kubota, Shigeyuki CA NSTX Res Team TI Intrinsic rotation generation in NSTX ohmic H-mode plasmas SO NUCLEAR FUSION LA English DT Article ID IMPURITY TOROIDAL ROTATION; NEOCLASSICAL TRANSPORT; DIII-D; TOKAMAK; DISCHARGES AB Intrinsic rotation generation was observed and investigated in NSTX ohmic plasmas, by utilizing passive views of charge exchange recombination diagnostics. Focus was placed on ohmic L-H transitions to minimize the effects by other momentum exchange and sources such as the NTV torque by intrinsic error fields. Results indicated that intrinsic rotation generation in the edge is well correlated with ion temperature gradient change, compared with much weaker correlations with electron temperature gradient or density gradient change. This is consistent with a corresponding theory of residual stress, and the measured torque could be directly compared with the theoretical prediction using chi(i) as a free parameter. However, an uncertainty on the order of diamagnetic rotation exists in many places across measurement and theory, as will be discussed in detail in this paper. C1 [Park, Jong-Kyu; Bell, Ronald E.; Kaye, Stanley M.; Solomon, Wayne M.; LeBlanc, Benoit P.; Diallo, Ahmed; Menard, Jonathan E.; NSTX Res Team] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Kubota, Shigeyuki] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Park, JK (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Menard, Jonathan/0000-0003-1292-3286; Solomon, Wayne/0000-0002-0902-9876 FU DOE [DE-AC02-09CH11466 (PPPL)] FX We would like to acknowledge useful discussions with Y. Ren, W. Guttenfelder, W. X. Wang, S. Ku and J. A. Krommes on this topic. Also we thank R. G. Andre, C. A. Ludescher-Furth, S. P. Gerhardt for helping TRANSP and NCLASS simulations. This work was supported by DOE contract DE-AC02-09CH11466 (PPPL). NR 47 TC 3 Z9 3 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2013 VL 53 IS 6 AR 063012 DI 10.1088/0029-5515/53/6/063012 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 150WI UT WOS:000319421800012 ER PT J AU Simonen, TC Moir, RW Molvik, AW Ryutov, DD AF Simonen, T. C. Moir, R. W. Molvik, A. W. Ryutov, D. D. TI A 14MeV fusion neutron source for material and blanket development and fission fuel production SO NUCLEAR FUSION LA English DT Article ID THORIUM; BREEDER; HYBRID AB Fusion development will require materials capable of withstanding extensive harsh bombardment by energetic neutrons and plasma. The plasma-based gas dynamic trap neutron source concept is capable of testing and qualifying materials and fusion blanket sub-modules for eventual deployment in fusion energy systems. In this paper we describe the suitability of this source to assess thermal fatigue in fusion blanket components caused by the small normal variability of neutron flux inherent in fusion energy concepts. A second part of the paper considers the requirements for a fusion-fission hybrid suitable for producing fissile fuel. Both solid and molten salt fuel from blanket designs are described which emphasize non-proliferation and passive safety. C1 [Moir, R. W.] Vallecitos Molten Salt Res, Livermore, CA USA. [Molvik, A. W.; Ryutov, D. D.] LLNL, Livermore, CA USA. RP Simonen, TC (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM simonen42@yahoo.com FU DoE [DE-AC52-07NA27344, LLNL-CONF-568500] FX Work at LLNL performed under DoE Contract DE-AC52-07NA27344. LLNL-CONF-568500. NR 20 TC 9 Z9 9 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2013 VL 53 IS 6 AR 063002 DI 10.1088/0029-5515/53/6/063002 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 150WI UT WOS:000319421800002 ER PT J AU Tillack, MS Turnbull, AD Kessel, CE Asakura, N Garofalo, AM Holland, C Koch, F Linsmeier, C Lisgo, S Maingi, R Majeski, R Menard, J Najmabadi, F Nygren, R Rognlien, TD Ryutov, DD Stambaugh, RD Stangeby, PC Stotler, DP AF Tillack, M. S. Turnbull, A. D. Kessel, C. E. Asakura, N. Garofalo, A. M. Holland, C. Koch, F. Linsmeier, Ch. Lisgo, S. Maingi, R. Majeski, R. Menard, J. Najmabadi, F. Nygren, R. Rognlien, T. D. Ryutov, D. D. Stambaugh, R. D. Stangeby, P. C. Stotler, D. P. TI Summary of the ARIES Town Meeting: 'Edge Plasma Physics and Plasma Material Interactions in the Fusion Power Plant Regime' (vol 53, 027003, 2013) SO NUCLEAR FUSION LA English DT Correction C1 [Tillack, M. S.; Holland, C.; Najmabadi, F.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Turnbull, A. D.; Garofalo, A. M.; Stambaugh, R. D.] Gen Atom Co, La Jolla, CA USA. [Kessel, C. E.; Majeski, R.; Menard, J.; Stotler, D. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Asakura, N.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Koch, F.; Linsmeier, Ch.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Lisgo, S.] ITER Org, F-13067 St Paul Les Durance, France. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Nygren, R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Rognlien, T. D.; Ryutov, D. D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Stangeby, P. C.] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 5T6, Canada. RP Tillack, MS (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. RI Linsmeier, Christian/H-7653-2013; Stotler, Daren/J-9494-2015 OI Linsmeier, Christian/0000-0003-0404-7191; Stotler, Daren/0000-0001-5521-8718 NR 1 TC 0 Z9 0 U1 0 U2 5 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUN PY 2013 VL 53 IS 6 AR 069501 DI 10.1088/0029-5515/53/6/069501 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 150WI UT WOS:000319421800029 ER PT J AU Kim, SJ Hu, LW Dunn, F AF Kim, Sung Joong Hu, Lin-Wen Dunn, Floyd TI THERMAL-HYDRAULIC ANALYSIS FOR HEU AND LEU TRANSITIONAL CORE CONVERSION OF THE MIT RESEARCH REACTOR SO NUCLEAR TECHNOLOGY LA English DT Article AB The Massachusetts Institute of Technology Research Reactor (MITR) is evaluating a transitional core conversion strategy for converting from high-enrichment uranium (HEU) to low-enrichment uranium (LEU) fuel. The objective of this study is to analyze steady-state operational safety margins and loss of primary flow (LOF) accidents for the postulated HEU-LEU transitional core configurations. The thermal-hydraulic calculation was performed using the RELAP5 MOD 3.3 code based on 7.40-MW reactor power, which is the limiting safety system settings of the current licensed reactor power of 6 MW. A lumped average and a single hot channel were modeled in each core configuration with radial peaking factors of 2.0 and 1.76 for HEU and LEU fuel elements, respectively. Four natural convection valves and two antisiphon valves were modeled for natural convective heat removal during the LOF transient. Two different hot-channel configurations and full- and side-channel geometries were evaluated because the unique design of the MITRfuel element canform these two types of geometries. RELAP5 calculation results suggest that the transitional core conversion strategy is feasible and that sufficient thermal-hydraulic safety margins can be maintained. C1 [Kim, Sung Joong; Hu, Lin-Wen] MIT, Nucl Reactor Lab, Cambridge, MA 02139 USA. [Dunn, Floyd] Argonne Natl Lab, Argonne, IL 60439 USA. [Kim, Sung Joong] Hanyang Univ, Dept Nucl Engn, Seoul 133791, South Korea. RP Kim, SJ (reprint author), MIT, Nucl Reactor Lab, Cambridge, MA 02139 USA. EM lwhu@mit.edu FU U.S. Department of Energy, Basic Energy Sciences, Office of Science [DE-ACO2-06CH11357] FX The authors gratefully acknowledge the ANL/RERTR program for funding support of this project. The authors also thank T. Newton of MIT for his assistance in neutronics analysis and E. Wilson of ANL for providing the schematics of the LEU fuel element. Part of this work was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract DE-ACO2-06CH11357. NR 27 TC 2 Z9 2 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUN PY 2013 VL 182 IS 3 BP 315 EP 334 PG 20 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 153YI UT WOS:000319638300006 ER PT J AU Pope, CL Lineberry, MJ AF Pope, Chad L. Lineberry, Michael J. TI COMPARISON OF MEASURED AND MONTE CARLO RESULTS FOR NEUTRON BEAM TRANSMISSION THROUGH AN IRRADIATED NUCLEAR FUEL ASSEMBLY SO NUCLEAR TECHNOLOGY LA English DT Article AB This paper compares measured results with simulation results of neutron beam transmission through an irradiated fuel assembly. The main objective of the comparison is to establish the technical foundation for using Monte Carlo simulation to evaluate the feasibility of using neutron computed tomography for irradiated fuel assembly inspection. The measured results were obtained from an irradiated fuel assembly from the Experimental Breeder Reactor II (EBR-II), and the neutron beam was produced by the Argonne National Laboratory Neutron Radiography Reactor (NRAD). The measurements consist of a projection profile representing the relative neutron beam attenuation at a specific fuel assembly axial elevation obtained from digitized neutron radiography fun. Simu-lation of the neutron beam and fuel assembly was performed using the Monte Carlo code MCNP5. Results presented include the measured beam attenuation projection profile, simulated neutron beam attenuation projection profiles, parametric study of simulation results, and comparison of the projection results. Comparison of the radiography-based measurement with the simulation results shows good agreement, thereby confirming that Monte Carlo simulation of neutron transmission through an irradiated fuel assembly using MCNP5 is a reliable method for evaluating the use of neutron computed tomography as a means of inspecting irradiated fuel assemblies. C1 [Pope, Chad L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Lineberry, Michael J.] Idaho State Univ, Ctr Adv Energy Studies, Idaho Falls, ID 83402 USA. RP Pope, CL (reprint author), Idaho Natl Lab, POB 1625,MS 6108, Idaho Falls, ID 83415 USA. EM chad.pope@inl.gov FU U.S. Department of Energy (DOE) [DE-AC07-051D14517] FX This work was supported by the U.S. Department of Energy (DOE), Office of Nuclear Energy, under DOE Idaho Operations Office contract DE-AC07-051D14517. NR 13 TC 2 Z9 2 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUN PY 2013 VL 182 IS 3 BP 335 EP 348 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 153YI UT WOS:000319638300007 ER PT J AU Groat, MM Edwards, B Horey, J He, WB Forrest, S AF Groat, Michael M. Edwards, Benjamin Horey, James He, Wenbo Forrest, Stephanie TI Application and analysis of multidimensional negative surveys in participatory sensing applications SO PERVASIVE AND MOBILE COMPUTING LA English DT Article; Proceedings Paper CT 10th IEEE International Conference on Pervasive Computing and Communications (PerCom) CY MAR 19-23, 2012 CL Univ Appl Sci & Arts So Switzerland (SUPSI), Lugano, SWITZERLAND SP IEEE, IEEE Comp Soc, Univ Texas Arlington (UTA), Univ Lugano, Natl Sci Fdn (NSF), European off Aerosp Res & Dev (EOARD), NOKIA, IBM HO Univ Appl Sci & Arts So Switzerland (SUPSI) DE Multidimensional data; Negative surveys; Privacy; Participatory sensing applications ID PRESERVING DATA AGGREGATION; WIRELESS SENSOR NETWORKS; RANDOMIZED-RESPONSE; PRIVACY AB Participatory sensing applications rely on individuals to share personal data to produce aggregated models and knowledge. In this setting, privacy concerns can discourage widespread adoption of new applications. We present a privacy-preserving participatory sensing scheme based on negative surveys for both continuous and multivariate categorical data. Without relying on encryption, our algorithms enhance the privacy of sensed data in an energy and computation efficient manner. Simulations and implementation on Android smart phones illustrate how multidimensional data can be aggregated in a useful and privacy-enhancing manner. (C) 2013 Elsevier B.V. All rights reserved. C1 [Groat, Michael M.; Edwards, Benjamin; Forrest, Stephanie] Univ New Mexico, Albuquerque, NM 87131 USA. [Horey, James] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [He, Wenbo] McGill Univ, Montreal, PQ H3A 2T5, Canada. [Forrest, Stephanie] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Groat, MM (reprint author), Univ New Mexico, Albuquerque, NM 87131 USA. EM mgroat@cs.unm.edu; bedwards@cs.unm.edu; horeyjl@ornl.gov; wenbohe@cs.mgill.ca; forrest@cs.unm.edu RI chen, zhu/K-5923-2013 NR 55 TC 4 Z9 4 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1192 J9 PERVASIVE MOB COMPUT JI Pervasive Mob. Comput. PD JUN PY 2013 VL 9 IS 3 SI SI BP 372 EP 391 DI 10.1016/j.pmcj.2012.12.004 PG 20 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 146IZ UT WOS:000319086100004 ER PT J AU Miller, DC Muller, MT Kempe, MD Araki, K Kennedy, CE Kurtz, SR AF Miller, David C. Muller, Matthew T. Kempe, Michael D. Araki, Kenji Kennedy, Cheryl E. Kurtz, Sarah R. TI Durability of polymeric encapsulation materials for concentrating photovoltaic systems SO PROGRESS IN PHOTOVOLTAICS LA English DT Review DE weathering; UV degradation; reliability ID VINYL ACETATE COPOLYMER; THERMAL-DEGRADATION; EVA ENCAPSULANT; PV MODULES; POLY(ETHYLENE-CO-VINYL ACETATE); WEATHERING DEGRADATION; OPERATING TEMPERATURE; POLY(VINYL ACETATE); POLYVINYL ESTERS); SOLAR-CELLS AB The durability of polymeric encapsulation materials was examined using outdoor exposure at the nominal optical concentration of 500suns. The results for 12months' cumulative field deployment are presented for materials including ethylene-co-vinyl acetate, polyvinyl butyral (PVB), ionomer, polyethylene/polyoctene copolymer, thermoplastic polyurethane, poly(dimethylsiloxane), and poly(phenyl-methyl siloxane). Measurements during the experiment included optical transmittance (direct and hemispherical), mass, visual appearance, and fluorescence spectroscopy in addition to the initial thermogravimetry of the materials. Measurements of the field conditions and ultraviolet dose at the test site were facilitated by numerous laboratory instruments; characterization of the specimen temperature was performed using thermography. Discovery experiments identified the importance of a secondary homogenizer optic and the importance of contamination control. To date, the formal experiment verified a thermal-runaway-motivated combustion failure mechanism for one of the PVB formulations and identified densification, cracking, and haze-formation behaviors in some of the silicone specimens. The behaviors observed for the silicone specimens may be facilitated by their greater thickness. Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Miller, David C.; Muller, Matthew T.; Kempe, Michael D.; Kennedy, Cheryl E.; Kurtz, Sarah R.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. [Araki, Kenji] Daido Steel Co Ltd, Minami Ku, Nagoya, Aichi 4578545, Japan. RP Miller, DC (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. EM David.Miller@nrel.gov FU US Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX The authors are grateful to Afshin M. Andreas, Keith Emery, Aron Habte, Daryl R. Myers, John Pern, Ibrahim Reda, Matt Beach, Christa Loux, Tom Moricone, Marc Oddo, Bryan Price, Kent Terwilliger, and Robert Tirawat for their discussion/help with optical sources, the solar spectrum, experimental methods, and/or optical measurements. This work was supported by the US Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 118 TC 11 Z9 11 U1 4 U2 85 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD JUN PY 2013 VL 21 IS 4 BP 631 EP 651 DI 10.1002/pip.1241 PG 21 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 150XW UT WOS:000319425900024 ER PT J AU Davis, KO Kurtz, SR Jordan, DC Wohlgemuth, JH Sorloaica-Hickman, N AF Davis, K. O. Kurtz, S. R. Jordan, D. C. Wohlgemuth, J. H. Sorloaica-Hickman, N. TI Multi-pronged analysis of degradation rates of photovoltaic modules and arrays deployed in Florida SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE degradation rate; energy yield; archived data; Performance Ratio ID FIELD EXPOSURE; PERFORMANCE AB The long-term performance and reliability of photovoltaic (PV) modules and systems are critical metrics for the economic viability of PV as a power source. In this study, the power degradation rates of two identical PV systems deployed in Florida are quantified using the Performance Ratio analytical technique and the translation of power output to an alternative reporting condition of 1000Wm2 irradiance and cell temperature of 50 degrees C. We introduce a multi-pronged strategy for quantifying the degradation rates of PV modules and arrays using archived data. This multi-pronged approach utilizes nearby weather stations to validate and, if needed, correct suspect environmental data that can be a problem when sensor calibrations may have drifted. Recent field measurements, including I-V curve measurements of the arrays, visual inspection, and infrared imaging, are then used to further investigate the performance of these systems. Finally, the degradation rates and calculated uncertainties are reported for both systems using the methods described previously. Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Davis, K. O.; Sorloaica-Hickman, N.] Univ Cent Florida, Florida Solar Energy Ctr, Cocoa, FL 32922 USA. [Kurtz, S. R.; Jordan, D. C.; Wohlgemuth, J. H.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Davis, KO (reprint author), Florida Solar Energy Ctr, 1679 Clearlake Rd, Cocoa, FL 32922 USA. EM kdavis@fsec.ucf.edu; nhickman@fsec.ucf.edu OI Davis, Kristopher/0000-0002-5772-6254 FU NREL [NFE99901501]; U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX The authors would like to acknowledge the many researchers that spent time installing and maintaining the FSEC PV system database, including William Wilson, Stephen Barkaszi, Donard Metzger, Jim Dunlop, and Kevin Lynn, as well as the Florida Automated Weather Network at the University of Florida for providing public access to high-quality environmental data. The authors would also like to acknowledge NREL for funding this research effort through subcontract number NFE99901501. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 26 TC 7 Z9 7 U1 6 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD JUN PY 2013 VL 21 IS 4 BP 702 EP 712 DI 10.1002/pip.2154 PG 11 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 150XW UT WOS:000319425900031 ER PT J AU Sun, JG AF Sun, Jiangang TI Analysis of data processing methods for pulsed thermal imaging characterisation of delaminations SO QUANTITATIVE INFRARED THERMOGRAPHY JOURNAL LA English DT Article DE pulsed thermal imaging; delamination; data processing method; detection sensitivity; data interpretation ID PHASE THERMOGRAPHY; DIFFUSIVITY; ENHANCEMENT; COMPOSITES; COATINGS; NDE AB Pulsed thermal imaging is a commonly used infrared thermal imaging technology for non-destructive evaluation of engineering materials. It provides a complete interrogation and, therefore, a potentially complete quantification of the thermal properties and structures of a test material. The quantity and quality of material parameters that can be extracted depend mostly on the data processing methods. Although thermal property measurement is one important area for thermal imaging, this study is focused on the methods used mainly for subsurface flaw detections, including pulsed phase thermography, principal component thermography, derivative and a recently developed thermal tomography method. The characteristics of these methods were analysed and compared based on theoretical solutions and experimental data from a ceramic matrix composite plate with simulated delaminations. It was identified that although all methods have similar detection sensitivity and accuracy for delamination characterisation, there is a clear advantage in the interpretation of detailed flaw configurations when using spatially-resolved three-dimensional (3D) results from thermal tomography. C1 Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Sun, JG (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sun@anl.gov FU US Department of Energy, Office of Fossil Energy and Advanced Research and Technology Development/Materials Program FX This work was sponsored by the US Department of Energy, Office of Fossil Energy and Advanced Research and Technology Development/Materials Program. NR 29 TC 8 Z9 8 U1 1 U2 11 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1768-6733 J9 QUANT INFR THERM J JI Quant. Infrared Thermogr. J. PD JUN 1 PY 2013 VL 10 IS 1 BP 9 EP 25 DI 10.1080/17686733.2012.757860 PG 17 WC Instruments & Instrumentation; Materials Science, Characterization & Testing; Physics, Applied SC Instruments & Instrumentation; Materials Science; Physics GA 151YQ UT WOS:000319496700002 ER PT J AU Vick, BD Moss, TA AF Vick, Brian D. Moss, Tim A. TI Adding concentrated solar power plants to wind farms to achieve a good utility electrical load match SO SOLAR ENERGY LA English DT Article DE Wind farm; Utility electrical loading; Concentrating solar; Hybrid; Solar thermal storage AB Texas has the greatest installed wind turbine capacity of any state in the United States, but as the percentage of wind generation approaches 10% of the utilities total electrical generation (in 2012, the total wind generated electricity in Texas was 7.4%), it becomes increasingly difficult for the utility to balance the electrical load due to the mismatch between the wind farm (WF) generated electricity and the utility electrical loading. In this paper WF output was shown to be diurnally and seasonally mismatched with the utility electrical loading in the Texas Panhandle (e.g. Texas Panhandle has the highest wind energy resource in Texas). In addition, the wind farm output in the Texas Panhandle does not normally contribute significantly at the peak hourly electrical load, and the peak hourly electrical load is a major deciding factor for a utility to add new power plants. A financial analysis was also performed on all the renewable energy systems analyzed. Various ratios of wind farm output to concentrating solar power (CSP) parabolic trough plant output (with 6 h of thermal storage) were calculated for the Texas Panhandle and compared to the utility electrical loading on an annual and peak monthly basis (each renewable energy system was analyzed at a 100 MW rating). The 67 MW wind farm and the 33 MW CSP plant with 6 h of thermal storage was approximately the best match to the utility electrical loading. The utility electrical load was also compared to: a 100 MW WF, a 100 MW CSP plant (with and without 6 h thermal storage), and finally the 67 MW WF with 33 MW CSP plant (with 6 h of thermal storage) on an annual, monthly, and peak hourly load basis. Typically for each month, the wind farm did not match the utility electrical loading except in the evening while the CSP plant (without storage) matched the utility electrical loading with the exception of in the evening. For the peak utility electrical loading months (July and August) and the days with the peak electrical loadings during those months, the 100 MW CSP plant with 6 h of thermal storage performed best in terms of supporting the utility electrical load (e.g. no wind farm). For the Texas Panhandle the estimated levelized cost of energy (LCOE) of a hybrid WF/CSP plant was in the range of $108/MW h to $129/MW h while the WF only system was estimated to be $64/MW h, but the benefits of adding CSP may justify the additional cost. Although the Texas Panhandle was the only location analyzed for combining CSP plants with WFs, the analysis described in this paper can be used for other regions, states, or countries. Published by Elsevier Ltd. C1 [Vick, Brian D.] ARS, USDA, Bushland, TX 79012 USA. [Moss, Tim A.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Vick, BD (reprint author), ARS, USDA, PO Drawer 10, Bushland, TX 79012 USA. EM brian.vick@ars.usda.gov NR 24 TC 9 Z9 9 U1 2 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD JUN PY 2013 VL 92 BP 298 EP 312 DI 10.1016/j.solener.2013.03.007 PG 15 WC Energy & Fuels SC Energy & Fuels GA 154AS UT WOS:000319644500029 ER PT J AU Thompson, RL Damodaran, K Luebke, D Nulwala, H AF Thompson, Robert L. Damodaran, Krishnan Luebke, David Nulwala, Hunaid TI Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction SO SYNLETT LA English DT Article DE ionic liquids; triazoles; triazolides; aprotic heterocyclic anions; CO2 capture; click chemistry ID CLICK-CHEMISTRY; CO2 CAPTURE; TERMINAL ALKYNES; AZIDES; SEPARATION; MEMBRANES; LIGATION; SOLVENTS; PHASE AB The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H-4- substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis. C1 [Thompson, Robert L.; Luebke, David; Nulwala, Hunaid] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Thompson, Robert L.] URS Corp, South Park, PA 15129 USA. [Damodaran, Krishnan] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. [Nulwala, Hunaid] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. RP Thompson, RL (reprint author), Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM Robert.thompson@contr.netl.doe.gov; Hnulwala@andrew.cmu.edu RI Nulwala, Hunaid/G-8126-2012 OI Nulwala, Hunaid/0000-0001-7481-3723 FU National Energy Technology Laboratory [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000. The authors would like to acknowledge Dr. Erik Albenze for assistance in performing CO2 absorption experiments and Dr. Brian Kail and Kimberly Carter for their support in providing TG and MS analyses. NR 34 TC 3 Z9 4 U1 1 U2 41 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0936-5214 J9 SYNLETT JI Synlett PD JUN PY 2013 VL 24 IS 9 BP 1093 EP 1096 DI 10.1055/s-0033-1338435 PG 4 WC Chemistry, Organic SC Chemistry GA 151YH UT WOS:000319495800008 ER PT J AU Villeneuve, DL Breen, M Bencic, DC Cavallin, JE Jensen, KM Makynen, EA Thomas, LM Wehmas, LC Conolly, RB Ankley, GT AF Villeneuve, Daniel L. Breen, Miyuki Bencic, David C. Cavallin, Jenna E. Jensen, Kathleen M. Makynen, Elizabeth A. Thomas, Linnea M. Wehmas, Leah C. Conolly, Rory B. Ankley, Gerald T. TI Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition: I. Data Generation in a Small Fish Model SO TOXICOLOGICAL SCIENCES LA English DT Article DE steroidogenesis; endocrine disruption; reproduction; alternative species; compensation; time course ID MINNOW PIMEPHALES-PROMELAS; ZEBRAFISH DANIO-RERIO; FATHEAD MINNOW; MESSENGER-RNA; VITELLOGENIN; EXPRESSION; LETROZOLE; TOXICITY; EXPOSURE; ECOTOXICOLOGY AB Adaptive or compensatory responses to chemical exposure can significantly influence in vivo concentration-duration-response relationships. This study provided data to support development of a computational dynamic model of the hypothalamic-pituitary-gonadal axis of a model vertebrate and its response to aromatase inhibitors as a class of endocrine active chemicals. Fathead minnows (Pimephales promelas) were either exposed to the aromatase inhibitor fadrozole (0.5 or 30 g/l) continuously for 1, 8, 12, 16, 20, 24, or 28 days or exposed for 8 days and then held in control water (no fadrozole) for an additional 4, 8, 12, 16, or 20 days. The time course of effects on ovarian steroid production, circulating 17-estradiol (E2) and vitellogenin (VTG) concentrations, and expression of steroidogenesis-related genes in the ovary was measured. Exposure to 30 g fadrozole/l significantly reduced plasma E2 and VTG concentrations after just 1 day and those effects persisted throughout 28 days of exposure. In contrast, ex vivo E2 production was similar to that of controls on day 828 of exposure, whereas transcripts coding for aromatase and follicle-stimulating hormone receptor were elevated, suggesting a compensatory response. Following cessation of fadrozole exposure, ex vivo E2 and plasma E2 concentrations exceeded and then recovered to control levels, but plasma VTG concentrations did not, even after 20 days of depuration. Collectively these data provide several new insights into the nature and time course of adaptive responses to an aromatase inhibitor that support development of a computational model (see companion article). C1 [Villeneuve, Daniel L.; Cavallin, Jenna E.; Jensen, Kathleen M.; Makynen, Elizabeth A.; Thomas, Linnea M.; Wehmas, Leah C.; Ankley, Gerald T.] US EPA, Midcontinent Ecol Div, Duluth, MN 55804 USA. [Breen, Miyuki] N Carolina State Univ, Dept Stat, Biomath Program, Raleigh, NC 27695 USA. [Bencic, David C.] US EPA, Ecol Exposure Res Div, Cincinnati, OH 45268 USA. [Cavallin, Jenna E.] US EPA, ORISE Res Participat Program, Midcontinent Ecol Div, Duluth, MN 55804 USA. [Conolly, Rory B.] US EPA, Integrated Syst Toxicol Div, Res Triangle Pk, NC 27711 USA. RP Villeneuve, DL (reprint author), US EPA, Midcontinent Ecol Div, 6201 Congdon Blvd, Duluth, MN 55804 USA. EM villeneuve.dan@epa.gov FU United States Environmental Protection Agency, Office of Research and Development; National Health and Environmental Effects Research Laboratory; National Exposure Research Laboratory; National Center for Computational Toxicology FX United States Environmental Protection Agency, Office of Research and Development; National Health and Environmental Effects Research Laboratory; National Exposure Research Laboratory; National Center for Computational Toxicology. NR 38 TC 15 Z9 15 U1 1 U2 26 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD JUN PY 2013 VL 133 IS 2 BP 225 EP 233 DI 10.1093/toxsci/kft068 PG 9 WC Toxicology SC Toxicology GA 151AA UT WOS:000319431800005 PM 23492810 ER PT J AU Margiolaki, I Giannopoulou, AE Wright, JP Knight, L Norrman, M Schluckebier, G Fitch, AN Von Dreele, RB AF Margiolaki, Irene Giannopoulou, Anastasia E. Wright, Jonathan P. Knight, Lisa Norrman, Mathias Schluckebier, Gerd Fitch, Andrew N. Von Dreele, Robert B. TI High-resolution powder X-ray data reveal the T-6 hexameric form of bovine insulin SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID PROTEIN CRYSTAL-STRUCTURE; EGG-WHITE LYSOZYME; DIFFRACTION DATA; N-ACETYLGLUCOSAMINE; RADIATION-DAMAGE; REFINEMENT; BINDING; PHENOL; ZINC; PH AB A series of bovine insulin samples were obtained as 14 polycrystalline precipitates at room temperature in the pH range 5.0-7.6. High-resolution powder X-ray diffraction data were collected to reveal the T-6 hexameric insulin form. Sample homogeneity and reproducibility were verified by additional synchrotron measurements using an area detector. Pawley analyses of the powder patterns displayed pH- and radiation-induced anisotropic lattice modifications. The pronounced anisotropic lattice variations observed for T-6 insulin were exploited in a 14-data-set Rietveld refinement to obtain an average crystal structure over the pH range investigated. Only the protein atoms of the known structure with PDB code 2a3g were employed in our starting model. A novel approach for refining protein structures using powder diffraction data is presented. In this approach, each amino acid is represented by a flexible rigid body (FRB). The FRB model requires a significantly smaller number of refinable parameters and restraints than a fully free-atom refinement. A total of 1542 stereochemical restraints were imposed in order to refine the positions of 800 protein atoms, two Zn atoms and 44 water molecules in the asymmetric unit using experimental data in the resolution range 18.2-2.7 angstrom for all profiles. C1 [Margiolaki, Irene; Giannopoulou, Anastasia E.] Univ Patras, Dept Biol, Sect Genet Cell Biol & Dev, GR-26500 Patras, Greece. [Wright, Jonathan P.; Knight, Lisa; Fitch, Andrew N.] European Synchrotron Radiat Facil, F-38043 Grenoble 9, France. [Norrman, Mathias; Schluckebier, Gerd] Novo Nordisk AS, Diabet Prot Engn, DK-2760 Malov, Denmark. [Von Dreele, Robert B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Margiolaki, I (reprint author), Univ Patras, Dept Biol, Sect Genet Cell Biol & Dev, GR-26500 Patras, Greece. EM imargiola@upatras.gr; wright@esrf.fr RI Schluckebier, Gerd/A-5045-2009; Wright, Jonathan/A-4321-2010 OI Wright, Jonathan/0000-0002-8217-0884 FU European Union (European Regional Development Fund - ERDF); Greek national funds through the Operational Program 'Regional Operational Programme' of the National Strategic Reference Framework (NSRF); Research Funding Program; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC0206CH11357] FX We would like to thank the ESRF for the provision of beam time at the ID31 and ID11 beamlines. We thank Gavin C. Fox for his valuable suggestions related to the crystallization experiments presented here and Spyros Chatziefthimiou for useful advice. We thank both reviewers for their constructive suggestions. IM is grateful to the UNESCO-L'Oreal foundations for the award of the International Fellowship for Women in Life Sciences (2010-2012). This research has been co-financed by the European Union (European Regional Development Fund - ERDF) and Greek national funds through the Operational Program 'Regional Operational Programme' of the National Strategic Reference Framework (NSRF) - Research Funding Program: Support for Research, Technology and Innovation Actions in Region of Western Greece. Work at the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC0206CH11357. Finally, the EU FP7 REGPOT CT-2011-285950 'SEEDRUG' project and the NanoMEGAS company supported this work. NR 62 TC 7 Z9 7 U1 0 U2 22 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD JUN PY 2013 VL 69 BP 978 EP 990 DI 10.1107/S0907444913003867 PN 6 PG 13 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 148BA UT WOS:000319215900006 PM 23695242 ER PT J AU Wyatt, NB O'Hern, TJ Shelden, B AF Wyatt, Nicholas B. O'Hern, Timothy J. Shelden, Bion TI Drop-size distributions and spatial distributions in an annular centrifugal contactor SO AICHE JOURNAL LA English DT Article DE annular centrifugal contactor; drop diameter; multiphase mixing ID EXTRACTION; FLOW; SEPARATORS; ZONE; CFD AB Annular centrifugal contactors were developed as single, compact units utilized to transfer desired species between immiscible fluid phases. Critical to understanding the mass-transfer characteristics in the annular mixing region is a clear picture of the distribution of droplet sizes of the fluids involved. To date, very little experimental data appears in the literature. We fill that void by using laser fluorescence and optical methods to directly observe and measure drop-size distributions for a silicone oil/water system in a centrifugal contactor. The shape and characteristics of the log-normal distributions, including the Sauter mean diameter and distribution means, are elucidated in terms of rotor speed and organic phase fraction. The size distribution of entrained air bubbles is also examined. The results presented here will be invaluable in validating and expanding the predictive capacity of the many models that have been developed to describe the flow within these devices. Published 2013 American Institute of Chemical Engineers AIChE J, 59: 22192226, 2013 C1 [Wyatt, Nicholas B.; O'Hern, Timothy J.; Shelden, Bion] Sandia Natl Labs, Engn Sci Ctr, Thermal Fluid Expt Sci Dept, Albuquerque, NM 87185 USA. RP Wyatt, NB (reprint author), Sandia Natl Labs, Engn Sci Ctr, Thermal Fluid Expt Sci Dept, POB 5800, Albuquerque, NM 87185 USA. EM nbwyatt@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 25 TC 6 Z9 6 U1 4 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-1541 EI 1547-5905 J9 AICHE J JI AICHE J. PD JUN PY 2013 VL 59 IS 6 BP 2219 EP 2226 DI 10.1002/aic.14109 PG 8 WC Engineering, Chemical SC Engineering GA 149DA UT WOS:000319297000031 ER PT J AU Martin, F Malagnoux, L Violet, F Jakoncic, J Jouanneau, Y AF Martin, Florence Malagnoux, Laure Violet, Fabien Jakoncic, Jean Jouanneau, Yves TI Diversity and catalytic potential of PAH-specific ring-hydroxylating dioxygenases from a hydrocarbon-contaminated soil SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Dioxygenases; Metagenomic DNA; Catalytic domain; Hybrid enzymes; Bioremediation ID POLYCYCLIC AROMATIC-HYDROCARBONS; NAPHTHALENE DIOXYGENASE; SUBSTRATE-SPECIFICITY; CLASSIFICATION-SYSTEM; BIPHENYL DIOXYGENASE; MANGROVE SEDIMENTS; SPHINGOMONAS CHY-1; GENE-CLUSTER; STRAIN; IDENTIFICATION AB Ring-hydroxylating dioxygenases (RHDs) catalyze the initial oxidation step of a range of aromatic hydrocarbons including polycyclic aromatic hydrocarbons (PAHs). As such, they play a key role in the bacterial degradation of these pollutants in soil. Several polymerase chain reaction (PCR)-based methods have been implemented to assess the diversity of RHDs in soil, allowing limited sequence-based predictions on RHD function. In the present study, we developed a method for the isolation of PAH-specific RHD gene sequences of Gram-negative bacteria, and for analysis of their catalytic function. The genomic DNA of soil PAH degraders was labeled in situ by stable isotope probing, then used to PCR amplify sequences specifying the catalytic domain of RHDs. Sequences obtained fell into five clusters phylogenetically linked to RHDs from either Sphingomonadales or Burkholderiales. However, two clusters comprised sequences distantly related to known RHDs. Some of these sequences were cloned in-frame in place of the corresponding region of the phnAIa gene from Sphingomonas CHY-1 to generate hybrid genes, which were expressed in Escherichia. coli as chimerical enzyme complexes. Some of the RHD chimeras were found to be competent in the oxidation of two- and three-ring PAHs, but other appeared unstable. Our data are interpreted in structural terms based on 3D modeling of the catalytic subunit of hybrid RHDs. The strategy described herein might be useful for exploring the catalytic potential of the soil metagenome and recruit RHDs with new activities from uncultured soil bacteria. C1 [Martin, Florence; Malagnoux, Laure; Violet, Fabien; Jouanneau, Yves] CEA, Lab Chim & Biol Metaux, DSV, F-38054 Grenoble 9, France. [Martin, Florence; Malagnoux, Laure; Violet, Fabien; Jakoncic, Jean] CNRS, UMR 5249, Grenoble, France. [Jakoncic, Jean] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Jouanneau, Yves] UJF, CEA, CNRS, LCBM,iRTSV,UMR 5249, F-38054 Grenoble 9, France. RP Jouanneau, Y (reprint author), UJF, CEA, CNRS, LCBM,iRTSV,UMR 5249, F-38054 Grenoble 9, France. EM Yves.jouanneau@cea.fr FU Rhone-Alpes region; Centre National de la Recherche Scientifique; University of Grenoble I FX F. Martin received a grant from the Rhone-Alpes region. This work was supported by grants from the Centre National de la Recherche Scientifique and the University of Grenoble I. NR 45 TC 9 Z9 9 U1 6 U2 106 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD JUN PY 2013 VL 97 IS 11 BP 5125 EP 5135 DI 10.1007/s00253-012-4335-2 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 147AA UT WOS:000319136300040 PM 22903320 ER PT J AU Youngquist, JT Rose, JP Pfleger, BF AF Youngquist, J. Tyler Rose, Josh P. Pfleger, Brian F. TI Free fatty acid production in Escherichia coli under phosphate-limited conditions SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Biofuel; Chemostat; Escherichia coli; Fatty acid; Kinetic model; Thioesterase ID MICROBIAL-GROWTH; CONTINUOUS-CULTURE; BIODIESEL PRODUCTION; GLOBAL REGULATORS; BATCH CULTURE; BACTERIA; OVERPRODUCTION; STRAIN; ENERGY; MODEL AB Microbially synthesized fatty acids are an attractive platform for producing renewable alternatives to petrochemically derived transportation fuels and oleochemicals. Free fatty acids (FFA) are a direct precursor to many high-value compounds that can be made via biochemical and ex vivo catalytic pathways. To be competitive with current petrochemicals, flux through these pathways must be optimized to approach theoretical yields. Using a plasmid-free, FFA-producing strain of Escherichia coli, a set of chemostat experiments were conducted to gather data for FFA production under phosphate limitation. A prior study focused on carbon-limited conditions strongly implicated non-carbon limitations as a preferred media formulation for maximizing FFA yield. Here, additional data were collected to expand an established kinetic model of FFA production and identify targets for further metabolic engineering. The updated model was able to successfully predict the strain's behavior and FFA production in a batch culture. The highest yield observed under phosphate-limiting conditions (0.1 g FFA/g glucose) was obtained at a dilution rate of 0.1 h(-1), and the highest biomass-specific productivity (0.068 g FFA/gDCW/h) was observed at a dilution rate of 0.25 h(-1). Phosphate limitation increased yield (similar to 45 %) and biomass-specific productivity (similar to 300 %) relative to carbon-limited cultivations using the same strain. FFA production under phosphate limitation also led to a cellular maintenance energy similar to 400 % higher (0.28 g/gDCW/h) than that seen under carbon limitation. C1 [Youngquist, J. Tyler; Rose, Josh P.; Pfleger, Brian F.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Youngquist, J. Tyler; Pfleger, Brian F.] Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Pfleger, BF (reprint author), Great Lakes Bioenergy Res Ctr, 3629 Engn Hall,1415 Engn Dr, Madison, WI 53706 USA. EM pfleger@engr.wisc.edu FU DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). The authors are grateful to William Bothfeld, Alan Higbee, Alex Lareau, Haibo Li, Michael Luc, Mick McGee, Daniel Mendez-Perez, and Yaoping Zhang for their contributions. NR 54 TC 10 Z9 12 U1 2 U2 53 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD JUN PY 2013 VL 97 IS 11 BP 5149 EP 5159 DI 10.1007/s00253-013-4911-0 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 147AA UT WOS:000319136300042 PM 23619909 ER PT J AU Charnvanichborikarn, S Worsley, MA Shin, SJ Kucheyev, SO AF Charnvanichborikarn, S. Worsley, M. A. Shin, S. J. Kucheyev, S. O. TI Heavy-ion-induced modification of structural and mechanical properties of carbon-nanotube aerogels SO CARBON LA English DT Article ID ELECTRICAL-PROPERTIES; SENSING INDENTATION; ORGANIC AEROGELS; FORMALDEHYDE; IRRADIATION; RESORCINOL; FILMS AB We study the effect of 2 MeV Xe ion bombardment at room temperature on the microstructure and mechanical properties of cross-linked carbon-nanotube-based nanoporous carbons. Irradiation causes a gradual densification and a decrease in the surface roughness of monoliths, an increase in Young's modulus and failure stress, a decrease in the failure strain, and smoothening of nanoligament surfaces. Our results demonstrate a potential of heavy-ion bombardment for a controlled modification of nanoporous carbons. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Charnvanichborikarn, S.; Worsley, M. A.; Shin, S. J.; Kucheyev, S. O.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Charnvanichborikarn, S (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM charnvanichb1@llnl.gov RI Worsley, Marcus/G-2382-2014; Foundry, Molecular/G-9968-2014 OI Worsley, Marcus/0000-0002-8012-7727; FU U.S. DOE by LLNL [DE-AC52-07NA27344]; U.S. DOE [DE-AC02-05CH11231] FX This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. Transmission electron microscopy experiments were conducted at the National Center for Electron Microscopy, LBNL, which is supported by the U.S. DOE under Contract DE-AC02-05CH11231. NR 37 TC 3 Z9 3 U1 0 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD JUN PY 2013 VL 57 BP 310 EP 316 DI 10.1016/j.carbon.2013.01.078 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 145PT UT WOS:000319030000035 ER PT J AU Lee, CM Mittal, A Barnette, AL Kafle, K Park, YB Shin, H Johnson, DK Park, S Kim, SH AF Lee, Christopher M. Mittal, Ashutosh Barnette, Anna L. Kafle, Kabindra Park, Yong Bum Shin, Heenae Johnson, David K. Park, Sunkyu Kim, Seong H. TI Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation SO CELLULOSE LA English DT Article DE Biomass; Crystal structure; Vibrational spectroscopy; Sum-frequency-generation ID NEUTRON FIBER DIFFRACTION; SYNCHROTRON X-RAY; PLANT-CELL WALLS; MERCERIZED CELLULOSE; MOLECULAR DIRECTIONALITY; 2ND-HARMONIC GENERATION; CRYSTALLINE CELLULOSE; SELECTIVE DETECTION; NATIVE CELLULOSES; WATER INTERFACE AB Sum-frequency-generation (SFG) vibration spectroscopy is a technique only sensitive to functional groups arranged without centrosymmetry. For crystalline cellulose, SFG can detect the C6H(2) and intra-chain hydrogen-bonded OH groups in the crystal. The geometries of these groups are sensitive to the hydrogen bonding network that stabilizes each cellulose polymorph. Therefore, SFG can distinguish cellulose polymorphs (I-beta, II, IIII and IIIII) which have different conformations of the exocyclic hydroxymethylene group or directionalities of glucan chains. The C6H(2) asymmetric stretching peaks at 2,944 cm(-1) for cellulose I-beta and 2,960 cm(-1) for cellulose II, IIII and IIIII corresponds to the trans-gauche (tg) and gauche-trans (gt) conformation, respectively. The SFG intensity of the stretch peak of intra-chain hydrogen-bonded O-H group implies that the chain arrangement in cellulose crystal is parallel in I-beta and IIII, and antiparallel in II and IIIII. C1 [Lee, Christopher M.; Barnette, Anna L.; Kafle, Kabindra; Kim, Seong H.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. [Lee, Christopher M.; Barnette, Anna L.; Kafle, Kabindra; Kim, Seong H.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Mittal, Ashutosh; Johnson, David K.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Park, Yong Bum] Penn State Univ, Dept Biol, University Pk, PA 16802 USA. [Shin, Heenae; Park, Sunkyu] N Carolina State Univ, Dept Forest Biomat, Raleigh, NC 27695 USA. RP Kim, SH (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. EM shkim@engr.psu.edu FU National Renewable Energy Laboratory [XGB-1-11444-01]; US Department of Energy [DE-AC36-08-GO28308] FX This work was supported by Subcontract No. XGB-1-11444-01 with the National Renewable Energy Laboratory, under Contract No. DE-AC36-08-GO28308 with the US Department of Energy. NR 52 TC 24 Z9 24 U1 1 U2 44 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0969-0239 J9 CELLULOSE JI Cellulose PD JUN PY 2013 VL 20 IS 3 BP 991 EP 1000 DI 10.1007/s10570-013-9917-3 PG 10 WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA 143MB UT WOS:000318870500003 ER PT J AU Finnerty, CC Jeschke, MG Qian, WJ Kaushal, A Xiao, WZ Liu, T Gritsenko, MA Moore, RJ Camp, DG Moldawer, LL Elson, C Schoenfeld, D Gamelli, R Gibran, N Klein, M Arnoldo, B Remick, D Smith, RD Davis, R Tompkins, RG Herndon, DN AF Finnerty, Celeste C. Jeschke, Marc G. Qian, Wei-Jun Kaushal, Amit Xiao, Wenzhong Liu, Tao Gritsenko, Marina A. Moore, Ronald J. Camp, David G., II Moldawer, Lyle L. Elson, Constance Schoenfeld, David Gamelli, Richard Gibran, Nicole Klein, Matthew Arnoldo, Brett Remick, Daniel Smith, Richard D. Davis, Ronald Tompkins, Ronald G. Herndon, David N. CA Investigators Inflammation & Host TI Determination of Burn Patient Outcome by Large-Scale Quantitative Discovery Proteomics SO CRITICAL CARE MEDICINE LA English DT Article DE biomarker; burn; inflammation; liquid chromatography-mass spectrometry; plasma proteins; proteomic profiling ID ACTIVATED PROTEIN-C; MASS-SPECTROMETRY; INSULIN THERAPY; SEVERE SEPSIS; INJURY; INFLAMMATION; MANAGEMENT; SUPPORT; TRAUMA; TIME AB Objectives: Emerging proteomics techniques can be used to establish proteomic outcome signatures and to identify candidate biomarkers for survival following traumatic injury. We applied high-resolution liquid chromatography-mass spectrometry and multiplex cytokine analysis to profile the plasma proteome of survivors and nonsurvivors of massive burn injury to determine the proteomic survival signature following a major burn injury. Design: Proteomic discovery study. Setting: Five burn hospitals across the United States. Patients: Thirty-two burn patients (16 nonsurvivors and 16 survivors), 19-89 years old, were admitted within 96 hours of injury to the participating hospitals with burns covering more than 20% of the total body surface area and required at least one surgical intervention. Interventions: None. Measurements and Main Results: We found differences in circulating levels of 43 proteins involved in the acute-phase response, hepatic signaling, the complement cascade, inflammation, and insulin resistance. Thirty-two of the proteins identified were not previously known to play a role in the response to burn. Interleukin-4, interleukin-8, granulocyte macrophage colony-stimulating factor, monocyte chemotactic protein-1, and beta 2-microglobulin correlated well with survival and may serve as clinical biomarkers. Conclusions: These results demonstrate the utility of these techniques for establishing proteomic survival signatures and for use as a discovery tool to identify candidate biomarkers for survival. This is the first clinical application of a high-throughput, large-scale liquid chromatography-mass spectrometry-based quantitative plasma proteomic approach for biomarker discovery for the prediction of patient outcome following burn, trauma, or critical illness. (Crit Care Med 2013; 41: 1421-1434) C1 [Finnerty, Celeste C.; Herndon, David N.] Univ Texas Med Branch, Dept Surg, Galveston, TX 77555 USA. [Finnerty, Celeste C.; Herndon, David N.] Shriners Hosp Children, Galveston, TX 77550 USA. [Finnerty, Celeste C.] Univ Texas Med Branch, Sealy Ctr Mol Med, Inst Translat Sci, Galveston, TX 77555 USA. [Jeschke, Marc G.] Univ Toronto, Sunnybrook Hlth Sci Ctr, Ross Tilley Burn Ctr, Toronto, ON, Canada. [Jeschke, Marc G.] Univ Toronto, Div Plast Surg, Toronto, ON, Canada. [Qian, Wei-Jun; Liu, Tao; Gritsenko, Marina A.; Moore, Ronald J.; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Qian, Wei-Jun; Liu, Tao; Gritsenko, Marina A.; Moore, Ronald J.; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Kaushal, Amit; Xiao, Wenzhong; Davis, Ronald] Stanford Univ, Sch Med, Stanford Genome Technol Ctr, Stanford, CA 94305 USA. [Moldawer, Lyle L.] Univ Florida, Coll Med, Dept Surg, Gainesville, FL USA. [Elson, Constance; Schoenfeld, David; Tompkins, Ronald G.] Shriners Hosp Children, Massachusetts Gen Hosp, Dept Surg, Boston, MA USA. [Elson, Constance; Schoenfeld, David; Tompkins, Ronald G.] Harvard Univ, Sch Med, Boston, MA USA. [Gamelli, Richard] Loyola Univ, Stritch Sch Med, Dept Surg, Maywood, IL 60153 USA. [Gibran, Nicole; Klein, Matthew] Univ Washington, Harborview Med Ctr, Sch Med, Dept Surg, Seattle, WA 98104 USA. [Arnoldo, Brett] Univ Texas SW Med Ctr Dallas, Dept Surg, Dallas, TX 75390 USA. [Remick, Daniel] Boston Univ, Sch Med, Boston, MA 02118 USA. RP Finnerty, CC (reprint author), Univ Texas Med Branch, Dept Surg, Galveston, TX 77555 USA. EM ccfinner@utmb.edu RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Remick, Daniel/0000-0002-2615-3713 FU National Institute of General Medical Sciences [U54 GM-62119-04, P50 GM-60338, R01 GM-56687, T32 GM-008256, 8 P41 GM103493-10]; National Institutes of Health National Center for Research Resources [RR018522, 5P41RR018522-10]; NIH [KL2RR029875, UL1RR029876]; U.S. Department of Energy [DE-AC05-76RL01830] FX Supported, in part, by a Large Scale Collaborative Research Grant from the National Institute of General Medical Sciences (U54 GM-62119-04) awarded to Dr. Tompkins at the Massachusetts General Hospital, Boston, MA and in part, by research grants awarded to Dr. Herndon at the University of Texas Medical Branch, Galveston, TX, by the National Institute of General Medical Sciences (P50 GM-60338, R01 GM-56687, T32 GM-008256). Portions of the research were supported by a grant from the National Institutes of Health National Center for Research Resources (RR018522 and 5P41RR018522-10) and National Institute of General Medical Sciences (8 P41 GM103493-10). Dr. Finnerty is an ITS Career Development Scholar supported, in part, by NIH KL2RR029875 and NIH UL1RR029876. LC-MS proteomic analyses were performed in the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy national scientific user facility located at the Pacific Northwest National Laboratory in Richland, WA. The Pacific Northwest National Laboratory is a multiprogram national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 27 TC 19 Z9 20 U1 1 U2 15 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0090-3493 J9 CRIT CARE MED JI Crit. Care Med. PD JUN PY 2013 VL 41 IS 6 BP 1421 EP 1434 DI 10.1097/CCM.0b013e31827c072e PG 14 WC Critical Care Medicine SC General & Internal Medicine GA 148TC UT WOS:000319269400024 PM 23507713 ER PT J AU Rong, G Peng, J Zhou, CB AF Rong Guan Peng Jun Zhou Chuangbing TI Influence of Water Pressure on Crack Propagation of Sandstone under Compression SO DISASTER ADVANCES LA English DT Article DE Water pressure; Progressive failure of rocks; Crack propagation; Crack initiation stress; Crack damage stress ID BONNET GRANITE; FRACTURE; ROCK; LAC; STRENGTH; DAMAGE AB Cracks propagate under compression of rocks and these cracks are mainly tensile. Shear band can be formed as the result of interaction of tensile cracks and shear failure finally occurs with propagation and interaction of cracks in the rock. It has been found that progressive failure process of rocks is affected by mineralogical composition, grain size, texture and foliation etc. External factors such as the confinement and excavation disturbance also have great effect on progressive failure process of rocks. The influence of water pressure on progressive failure process of sandstone was studied based on the experiment. It was indicated that with increase of water pressure at both ends of the rock sample, crack initiation stress sigma(ci) had a tendency to increase and crack damage stress sigma(cd) and peak strength sigma(f) decreased gradually. With increase of the confinement, stress thresholds during progressive failure process of sandstone decreased gradually. C1 [Rong Guan; Peng Jun; Zhou Chuangbing] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Hubei, Peoples R China. [Rong Guan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Peng Jun; Zhou Chuangbing] Minist Educ, Key Lab Rock Mech Hydraul Struct Engn, Wuhan 430072, Hubei, Peoples R China. RP Rong, G (reprint author), Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Hubei, Peoples R China. EM rg_mail@163.com RI Zhou, Chuangbing/A-6964-2015; Zhou, Chuang-Bing/B-4254-2017 OI Zhou, Chuangbing/0000-0002-0114-735X; FU National Basic Research Program of China ("973" Program) [2011CB013501, 2010CB732005]; National Natural Science Foundation of China [50979081]; Program for New Century Excellent Talents in University [NCET-11-0406]; Fundamental Research Funds for the Central Universities [2012206020215] FX The research work presented in this paper is sponsored by the National Basic Research Program of China ("973" Program) (Grant Nos. 2011CB013501 and 2010CB732005), the National Natural Science Foundation of China (Grant No. 50979081), Program for New Century Excellent Talents in University (Grant No. NCET-11-0406) and the Fundamental Research Funds for the Central Universities (Grant No. 2012206020215). The authors wish to thank for the financial support. NR 22 TC 1 Z9 1 U1 2 U2 13 PU DISASTER ADVANCES PI INDORE PA SECTOR AG-80, SCHEME NO 54, VIJAY NAGAR, A B RD, INDORE, 452010, INDIA SN 0974-262X J9 DISASTER ADV JI Disaster Adv. PD JUN PY 2013 VL 6 IS 6 BP 28 EP 36 PG 9 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA 150RN UT WOS:000319408700006 ER PT J AU Ye, CY Yang, XH Xia, XL Yin, WL AF Ye, Chu-Yu Yang, Xiaohan Xia, Xinli Yin, Weilun TI Comparative analysis of cation/proton antiporter superfamily in plants SO GENE LA English DT Article DE Cation/proton antiporter; Gene family; Evolution ID VACUOLAR NA+/H+ ANTIPORTER; ARABIDOPSIS-THALIANA; SALT TOLERANCE; SEQUENCE ALIGNMENTS; MAXIMUM-LIKELIHOOD; GENE-EXPRESSION; K+ HOMEOSTASIS; FAMILY; ROLES; TRANSPORTERS AB The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant species was reported. We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240 members are separated into three families, i.e., Na+/H+ exchangers, K+ efflux antiporters, and cation/H+ exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H+ exchangers in the examined angiosperm species. Sliding window analysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and found most motifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants. (C) 2013 Elsevier B.V. All rights reserved. C1 [Ye, Chu-Yu; Xia, Xinli; Yin, Weilun] Beijing Forestry Univ, Coll Biol Sci & Biotechnol, Beijing 100083, Peoples R China. [Ye, Chu-Yu; Yin, Weilun] Beijing Forestry Univ, Coll Forestry, Beijing 100083, Peoples R China. [Ye, Chu-Yu; Xia, Xinli; Yin, Weilun] Beijing Forestry Univ, Natl Engn Lab Tree Breeding, Beijing 100083, Peoples R China. [Yang, Xiaohan] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Yang, Xiaohan] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Xia, XL (reprint author), Beijing Forestry Univ, Natl Engn Lab Tree Breeding, 35 Tsinghua East Rd, Beijing 100083, Peoples R China. EM xiaxl@bjfu.edu.cn; yinwl@bjfu.edu.cn RI Yang, Xiaohan/A-6975-2011 OI Yang, Xiaohan/0000-0001-5207-4210 FU Ministry of Science and Technology of China [2011BAD38801, 2009CB119101]; National Natural Science Foundation of China [31070597, 31270656, 31100492]; Beijing Scientific Research and Graduate Student Training Joint Project (Molecular Regulation of WUE in Forest Trees, Stress Resistance Mechanism of Poplar) [BLYJ200904]; Beijing Forestry University Technology Innovation Program FX This work was supported by grants from the Ministry of Science and Technology of China (2011BAD38801, 2009CB119101), the National Natural Science Foundation of China (31070597, 31270656 and 31100492), the Beijing Scientific Research and Graduate Student Training Joint Project (Molecular Regulation of WUE in Forest Trees, Stress Resistance Mechanism of Poplar) and Beijing Forestry University Technology Innovation Program (BLYJ200904). NR 41 TC 8 Z9 9 U1 1 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1119 J9 GENE JI Gene PD JUN 1 PY 2013 VL 521 IS 2 BP 245 EP 251 DI 10.1016/j.gene.2013.03.104 PG 7 WC Genetics & Heredity SC Genetics & Heredity GA 147QF UT WOS:000319181400007 PM 23562718 ER PT J AU Barzi, E Andreev, N Apollinari, G Bucciarelli, F Lombardo, V Nobrega, F Turrioni, D Yamada, R Zlobin, AV AF Barzi, E. Andreev, N. Apollinari, G. Bucciarelli, F. Lombardo, V. Nobrega, F. Turrioni, D. Yamada, R. Zlobin, A. V. TI Superconducting Strand and Cable Development for the LHC Upgrades and Beyond SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Accelerator magnet; Nb3Sn wires; Rutherford cable; subelement ID FIELD ACCELERATOR MAGNETS; NB3SN STRANDS; TRANSFORMER; COIL AB Fermilab and CERN have started the development of 11 T Nb3Sn dipoles to replace a number of Large Hadron Collider (LHC) NbTi dipole magnets and free space for the additional collimators anticipated for the LHC luminosity upgrades. An essential step in the design of these magnets is the development of the 40-strand, high aspect ratio cable needed to achieve the nominal field of 11 T at the LHC operating current of 11.85 kA. To investigate conductors suited for this and other high-field magnet applications, a larger Superconducting Strand and Cable R&D lab was established at FNAL's Technical Division. Keystoned cables with and without a stainless steel core were developed and produced using 0.7 mm Nb3Sn strands made by Oxford Superconducting Technology with 127 (baseline) and 169 (advanced) restacks using the Restacked-Rod-Process. The electrical performance of these two strands is compared in cables made with different processes and geometries. Some of the effects of a cross-over in the cable were measured. Finally, it is shown how finite element modeling can be used as an aid in Rutherford-type cable design. C1 [Barzi, E.; Andreev, N.; Apollinari, G.; Lombardo, V.; Nobrega, F.; Turrioni, D.; Yamada, R.; Zlobin, A. V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bucciarelli, F.] Scuola Super Sant Anna, I-56127 Pisa, Italy. RP Barzi, E (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM barzi@fnal.gov FU Fermi Research Alliance, LLC; U.S. Department of Energy [DE-AC02-07CH11359] FX This work was supported in part by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. Department of Energy. NR 36 TC 7 Z9 7 U1 0 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 6001112 DI 10.1109/TASC.2013.2240038 PN 3 PG 12 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 145EK UT WOS:000318997100006 ER PT J AU Kikuchi, A Tsuchiya, K Yamada, R Barzi, E Zlobin, AV Yoshida, M Tomita, K Takao, T Nakamoto, T Takeuchi, T AF Kikuchi, A. Tsuchiya, K. Yamada, R. Barzi, E. Zlobin, A. V. Yoshida, M. Tomita, K. Takao, T. Nakamoto, T. Takeuchi, T. TI Feasibility Studies of 0.7 mm Nb3Al Strands and Rutherford Cable SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Critical current density; magnetization; Nb3Al strand; n-value; Rutherford cable; vickers hardness AB We are planning to demonstrate a quadrupole magnet with magnetic mirror structure by using 0.7-mm Nb3Al strands. As feasibility studies for this program, we investigated an influence of the diameter reduction of Cu-stabilized Nb3Al strands from 1.0 to 0.7 mm. Wire breakages and Cu separations did not happen with applying the cold die-drawing. The non-Cu J(c) and n-values of the 0.7 mm strands did not degrade and could keep the same performance of the 1.0 mm strands. Although irregular deformations of Nb-Al filaments slightly occurred, magnetization properties of the 0.7 mm strands are almost the same as those of the 1.0 mm strands. Ta interfilament matrix of the 0.7 mm strands was also effective to improve the low field instability at 4.2 K. In addition, 27 strands Rutherford cable has been made by using the 0.7 mm F1 strand without any troubles. All of 27 extracted strands taken from the F1 cable showed very uniform I-c performance at 4.2 K. C1 [Kikuchi, A.; Takeuchi, T.] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. [Tsuchiya, K.; Nakamoto, T.] High Energy Accelerator Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Yamada, R.; Barzi, E.; Zlobin, A. V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Yoshida, M.; Tomita, K.; Takao, T.] Sophia Univ, Dept Engn & Appl Sci, Fac Sci & Technol, Tokyo 1028554, Japan. RP Kikuchi, A (reprint author), Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. EM KIKUCHI.Akihiro@nims.go.jp; kiyosumi.tsuchiya@kek.jp; yamada@fnal.gov; barzi@fnal.gov; zlobin@fnal.gov; n902i0421@yahoo.co.jp; k_tomita3939@yahoo.co.jp; takao@eco.ee.sophia.ac.jp; nakamoto@post.kek.jp; TAKEUCHI.Takao@nims.go.jp FU Ministry of Education, Culture, Sports, Science and Technology, Japan [23340079, 20340065, 20025008]; budget of the U.S. Department of Energy; CERN for "R&D of advanced superconducting magnets for the LHC upgrade"; [2303] FX This study was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (23340079, 20340065, 20025008) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, the budget of the U.S. Department of Energy, and Grant-in-Aid for Scientific Research on Innovative Areas (2303), and by CERN for "R&D of advanced superconducting magnets for the LHC upgrade." NR 14 TC 0 Z9 0 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2013 VL 23 IS 3 AR 6001404 DI 10.1109/TASC.2012.2237217 PN 3 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 145EK UT WOS:000318997100008 ER EF