FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Aad, G
Abajyan, T
Abbott, B
Abdallah, J
Khalek, SA
Abdelalim, AA
Abdinov, O
Aben, R
Abi, B
Abolins, M
AbouZeid, OS
Abramowicz, H
Abreu, H
Ochoa, MI
Acharya, BS
Adamczyk, L
Adams, DL
Addy, TN
Adelman, J
Adomeit, S
Adragna, P
Adye, T
Aefsky, S
Aguilar-Saavedra, JA
Agustoni, M
Ahlen, SP
Ahles, F
Ahmad, A
Ahsan, M
Aielli, G
Akesson, TPA
Akimoto, G
Akimov, AV
Alam, MA
Albert, J
Albrand, S
Aleksa, M
Aleksandrov, IN
Alessandria, F
Alexa, C
Alexander, G
Alexandre, G
Alexopoulos, T
Alhroob, M
Aliev, M
Alimonti, G
Alison, J
Allbrooke, BMM
Allison, LJ
Allport, PP
Allwood-Spiers, SE
Almond, J
Aloisio, A
Alon, R
Alonso, A
Alonso, F
Altheimer, A
Gonzalez, BA
Alviggi, MG
Amako, K
Amelung, C
Ammosov, VV
Dos Santos, SPA
Amorim, A
Amoroso, S
Amram, N
Anastopoulos, C
Ancu, LS
Andari, N
Andeen, T
Anders, CF
Anders, G
Anderson, KJ
Andreazza, A
Andrei, V
Anduaga, XS
Angelidakis, S
Anger, P
Angerami, A
Anghinolfi, F
Anisenkov, A
Anjos, N
Annovi, A
Antonaki, A
Antonelli, M
Antonov, A
Antos, J
Anulli, F
Aoki, M
Aoun, S
Bella, LA
Apolle, R
Arabidze, G
Aracena, I
Arai, Y
Arce, ATH
Arfaoui, S
Arguin, JF
Argyropoulos, S
Arik, E
Arik, M
Armbruster, AJ
Arnaez, O
Arnal, V
Artamonov, A
Artoni, G
Arutinov, D
Asai, S
Ask, S
Asman, B
Asquith, L
Assamagan, K
Astalos, R
Astbury, A
Atkinson, M
Auerbach, B
Auge, E
Augsten, K
Aurousseau, M
Avolio, G
Axen, D
Azuelos, G
Azuma, Y
Baak, MA
Baccaglioni, G
Bacci, C
Bach, AM
Bachacou, H
Bachas, K
Backes, M
Backhaus, M
Mayes, JB
Badescu, E
Bagnaia, P
Bai, Y
Bailey, DC
Bain, T
Baines, JT
Baker, OK
Baker, S
Balek, P
Balli, F
Banas, E
Banerjee, P
Banerjee, S
Banfi, D
Bangert, A
Bansal, V
Bansil, HS
Barak, L
Baranov, SP
Barber, T
Barberio, EL
Barberis, D
Barbero, M
Bardin, DY
Barillari, T
Barisonzi, M
Barklow, T
Barlow, N
Barnett, BM
Barnett, RM
Baroncelli, A
Barone, G
Barr, AJ
Barreiro, F
da Costa, JBG
Bartoldus, R
Barton, AE
Bartsch, V
Basye, A
Bates, RL
Batkova, L
Batley, JR
Battaglia, A
Battistin, M
Bauer, F
Bawa, HS
Beale, S
Beau, T
Beauchemin, PH
Beccherle, R
Bechtle, P
Beck, HP
Becker, K
Becker, S
Beckingham, M
Becks, KH
Beddall, AJ
Beddall, A
Bedikian, S
Bednyako, VA
Bee, CP
Beemster, LJ
Begel, M
Harpaz, SB
Belanger-Champagne, C
Bell, PJ
Bell, WH
Bella, G
Bellagamba, L
Bellomo, M
Belloni, A
Beloborodova, O
Belotskiy, K
Beltramello, O
Benary, O
Benchekroun, D
Bendtz, K
Benekos, N
Benhammou, Y
Noccioli, EB
Garcia, JAB
Benjamin, DP
Benoit, M
Bensinger, JR
Benslama, K
Bentvelsen, S
Berge, D
Kuutmann, EB
Berger, N
Berghaus, F
Berglund, E
Beringer, J
Bernat, P
Bernhard, R
Bernius, C
Bernlochner, FU
Berry, T
Bertella, C
Bertin, A
Bertolucci, F
Besana, MI
Besjes, GJ
Besson, N
Bethke, S
Bhimji, W
Bianchi, RM
Bianchini, L
Bianco, M
Biebel, O
Bieniek, SP
Bierwagen, K
Biesiada, J
Biglietti, M
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Biscarat, C
Bittner, B
Black, CW
Black, JE
Black, KM
Blair, RE
Blanchard, JB
Blazek, T
Bloch, I
Blocker, C
Blocki, J
Blum, W
Blumenschein, U
Bobbink, GJ
Bobrovnikov, VS
Bocchetta, SS
Bocci, A
Boddy, CR
Boehler, M
Boek, J
Boek, TT
Boelaert, N
Bogaerts, JA
Bogdanchikov, A
Bogouch, A
Bohm, C
Bohm, J
Boisvert, V
Bold, T
Boldea, V
Bolnet, NM
Bomben, M
Bona, M
Boonekamp, M
Bordoni, S
Borer, C
Borisov, A
Borissov, G
Borjanovic, I
Borri, M
Borroni, S
Bortfeldt, J
Bortolotto, V
Bos, K
Boscherini, D
Bosman, M
Boterenbrood, H
Bouchami, J
Boudreau, J
Bouhova-Thacker, EV
Boumediene, D
Bourdarios, C
Bousson, N
Boutouil, S
Boveia, A
Boyd, J
Boyko, IR
Bozovic-Jelisavcic, I
Bracinik, J
Branchini, P
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Brazzale, SF
Brelier, B
Bremer, J
Brendlinger, K
Brenner, R
Bressler, S
Bristow, TM
Britton, D
Brochu, FM
Brock, I
Brock, R
Broggi, F
Bromberg, C
Bronner, J
Brooijmans, G
Brooks, T
Brooks, WK
Brown, G
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Brunet, S
Bruni, A
Bruni, G
Bruschi, M
Bryngemark, L
Buanes, T
Buat, Q
Bucci, F
Buchanan, J
Buchholz, P
Buckingham, RM
Buckley, AG
Buda, SI
Budagov, IA
Budick, B
Buscher, V
Bugge, L
Bulekov, O
Bundock, AC
Bunse, M
Buran, T
Burckhart, H
Burdin, S
Burgess, T
Burke, S
Busato, E
Bussey, P
Buszello, CP
Butler, B
Butler, JM
Buttar, CM
Butterworth, JM
Buttinger, W
Byszewski, M
Urban, SC
Caforio, D
Cakir, O
Calafiura, P
Calderini, G
Calfayan, P
Calkins, R
Caloba, LP
Caloi, R
Calvet, D
Calvet, S
Toro, RC
Camarri, P
Cameron, D
Caminada, LM
Armadans, RC
Campana, S
Campanelli, M
Canale, V
Canelli, F
Canepa, A
Cantero, J
Cantrill, R
Cao, T
Garrido, MDMC
Caprini, I
Caprini, M
Capriotti, D
Capua, M
Caputo, R
Cardarelli, R
Carli, T
Carlino, G
Carminati, L
Caron, S
Carquin, E
Carrillo-Montoya, GD
Carter, AA
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Cascella, M
Caso, C
Castaneda-Miranda, E
Gimenez, VC
Castro, NF
Cataldi, G
Catastini, P
Catinaccio, A
Catmore, JR
Cattai, A
Cattani, G
Caughron, S
Cavaliere, V
Cavalleri, P
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Ceradini, F
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cetin, SA
Chafaq, A
Chakraborty, D
Chalupkova, I
Chan, K
Chang, P
Chapleau, B
Chapman, JD
Chapman, JW
Charlton, DG
Chavda, V
Barajas, CAC
Cheatham, S
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, S
Chen, X
Chen, Y
Cheng, Y
Cheplakov, A
El Moursli, RC
Chernyatin, V
Cheu, E
Cheung, SL
Chevalier, L
Chiefari, G
Chikovani, L
Childers, JT
Chilingarov, A
Chiodini, G
Chisholm, AS
Chislett, RT
Chitan, A
Chizhov, MV
Choudalakis, G
Chouridou, S
Chow, BKB
Christidi, IA
Christov, A
Chromek-Burckhart, D
Chu, ML
Chudoba, J
Ciapetti, G
Ciftci, AK
Ciftci, R
Cinca, D
Cindro, V
Ciocio, A
Cirilli, M
Cirkovic, P
Citron, ZH
Citterio, M
Ciubancan, M
Clark, A
Clark, PJ
Clarke, RN
Cleland, W
Clemens, JC
Clement, B
Clement, C
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coffey, L
Cogan, JG
Coggeshall, J
Colas, J
Cole, S
Colijn, AP
Collins, NJ
Collins-Tooth, C
Collot, J
Colombo, T
Colon, G
Compostella, G
Muino, PC
Coniavitis, E
Conidi, MC
Consonni, SM
Consorti, V
Constantinescu, S
Conta, C
Conti, G
Conventi, F
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Copic, K
Cornelissen, T
Corradi, M
Corriveau, F
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Cote, D
Cottin, G
Courneyea, L
Cowan, G
Cox, BE
Cranmer, K
Crescioli, F
Cristinziani, M
Crosetti, G
Crepe-Renaudin, S
Cuciuc, CM
Almenar, CC
Donszelmann, TC
Cummings, J
Curatolo, M
Curtis, CJ
Cuthbert, C
Cwetanski, P
Czirr, H
Czodrowski, P
Czyczula, Z
D'Auria, S
D'Onofrio, M
D'Orazio, A
De Sousa, MJDS
Da Via, C
Dabrowski, W
Dafinca, A
Dai, T
Dallaire, F
Dallapiccola, C
Dam, M
Damiani, DS
Danielsson, HO
Dao, V
Darbo, G
Darlea, GL
Dassoulas, JA
Davey, W
Davidek, T
Davidson, N
Davidson, R
Davies, E
Davies, M
Davignon, O
Davison, AR
Davygora, Y
Dawe, E
Dawson, I
Daya-Ishmukhametova, RK
De, K
de Asmundis, R
De Castro, S
De Cecco, S
de Graat, J
De Groot, N
de Jong, P
De La Taille, C
De la Torre, H
De Lorenzi, F
De Nooij, L
De Pedis, D
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBDV
De Zorzi, G
Dearnaley, WJ
Debbe, R
Debenedetti, C
Dechenaux, B
Dedovich, DV
Degenhardt, J
Del Peso, J
Del Prete, T
Delemontex, T
Deliyergiyev, M
Dell'Acqua, A
Dell'Asta, L
Della Pietra, M
della Volpe, D
Delmastro, M
Delsart, PA
Deluca, C
Demers, S
Demichev, M
Demirkoz, B
Denisov, SP
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Deviveiros, PO
Dewhurst, A
DeWilde, B
Dhaliwal, S
Dhullipudi, R
Di Ciaccio, A
Di Ciaccio, L
Di Donato, C
Di Girolamo, A
Di Girolamo, B
Di Luise, S
Di Mattia, A
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Diaz, MA
Diehl, EB
Dietrich, J
Dietzsch, TA
Diglio, S
Yagci, KD
Dingfelder, J
Dinut, F
Dionisi, C
Dita, P
Dita, S
Dittus, F
Djama, F
Djobava, T
do Vale, MAB
do Valle Wemans, A
Doan, TKO
Dobbs, M
Dobos, D
Dobson, E
Dodd, J
Doglioni, C
Doherty, T
Doi, Y
Dolejsi, J
Dolezal, Z
Dolgoshein, BA
Dohmae, T
Donadelli, M
Donini, J
Dopke, J
Doria, A
Dos Anjos, A
Dotti, A
Dova, MT
Doxiadis, AD
Doyle, AT
Dressnandt, N
Dris, M
Dubbert, J
Dube, S
Dubreuil, E
Duchovni, E
Duckeck, G
Duda, D
Dudarev, A
Dudziak, F
Duhrssen, M
Duerdoth, IP
Duflot, L
Dufour, MA
Duguid, L
Dunford, M
Yildiz, HD
Duxfield, R
Dwuznik, M
Duren, M
Ebenstein, WL
Ebke, J
Eckweiler, S
Edson, W
Edwards, CA
Edwards, NC
Ehrenfeld, W
Eifert, T
Eigen, G
Einsweiler, K
Eisenhandler, E
Ekelof, T
El Kacimi, M
Ellert, M
Elles, S
Ellinghaus, F
Ellis, K
Ellis, N
Elmsheuser, J
Elsing, M
Emeliyanov, D
Engelmann, R
Engl, A
Epp, B
Erdmann, J
Ereditato, A
Eriksson, D
Ernst, J
Ernst, M
Ernwein, J
Errede, D
Errede, S
Ertel, E
Escalier, M
Esch, H
Escobar, C
Curull, XE
Esposito, B
Etienne, F
Etienvre, AI
Etzion, E
Evangelakou, D
Evans, H
Fabbri, L
Fabre, C
Fakhrutdinov, RM
Falciano, S
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farley, J
Farooque, T
Farrell, S
Farrington, SM
Farthouat, P
Fassi, F
Fassnacht, P
Fassouliotis, D
Fatholahzadeh, B
Favareto, A
Fayard, L
Federic, P
Fedin, OL
Fedorko, W
Fehling-Kaschek, M
Feligioni, L
Feng, C
Feng, EJ
Fenyuk, AB
Ferencei, J
Fernando, W
Ferrag, S
Ferrando, J
Ferrara, V
Ferrari, A
Ferrari, P
Ferrari, R
de Lima, DEF
Ferrer, A
Ferrere, D
Ferretti, C
Parodi, AF
Fiascaris, M
Fiedler, F
Filipcic, A
Filthaut, F
Fincke-Keeler, M
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, G
Fisher, MJ
Fitzgerald, EA
Flechl, M
Fleck, I
Fleischmann, P
Fleischmann, S
Fletcher, GT
Fletcher, G
Flick, T
Floderus, A
Castillo, LRF
Bustos, ACF
Flowerdew, MJ
Martin, TF
Formica, A
Forti, A
Fortin, D
Fournier, D
Fowler, AJ
Fox, H
Francavilla, P
Franchini, M
Franchino, S
Francis, D
Frank, T
Franklin, M
Franz, S
Fraternali, M
Fratina, S
French, ST
Friedrich, C
Friedrich, F
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fulsom, BG
Fuster, J
Gabaldon, C
Gabizon, O
Gadatsch, S
Gadfort, T
Gadomski, S
Gagliardi, G
Gagnon, P
Galea, C
Galhardo, B
Gallas, EJ
Gallo, V
Gallop, BJ
Gallus, P
Gan, KK
Gao, YS
Gaponenko, A
Walls, FMG
Garberson, F
Garcia-Sciveres, M
Garcia, C
Navarro, JEG
Gardner, RW
Garelli, N
Garonne, V
Gatti, C
Gaudio, G
Gaur, B
Gauthier, L
Gauzzi, P
Gavrilenko, IL
Gay, C
Gaycken, G
Gazis, EN
Ge, P
Gecse, Z
Gee, CNP
Geerts, DAA
Geich-Gimbel, C
Gellerstedt, K
Gemme, C
Gemmell, A
Genest, MH
Gentile, S
George, M
George, S
Gerbaudo, D
Gerlach, P
Gershon, A
Geweniger, C
Ghazlane, H
Ghodbane, N
Giacobbe, B
Giagu, S
Giangiobbe, V
Gianotti, F
Gibbard, B
Gibson, A
Gibson, SM
Gilchriese, M
Gillam, TPS
Gillberg, D
Gillman, AR
Gingrich, DM
Ginzburg, J
Giokaris, N
Giordani, MP
Giordano, R
Giorgi, FM
Giovannini, P
Giraud, PF
Giugni, D
Giunta, M
Gjelsten, BK
Gladilin, LK
Glasman, C
Glatzer, J
Glazov, A
Glonti, GL
Goddard, JR
Godfrey, J
Godlewski, J
Goebel, M
Gopfert, T
Goeringer, C
Gossling, C
Goldfarb, S
Golling, T
Golubkov, D
Gomes, A
Fajardo, LSG
Goncalo, R
Da Costa, JGPF
Gonella, L
de la Hoz, SG
Parra, GG
Silva, MLG
Gonzalez-Sevilla, S
Goodson, JJ
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorfine, G
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Goshaw, AT
Gosselink, M
Gostkin, MI
Eschrich, IG
Gouighri, M
Goujdami, D
Goulette, MP
Goussiou, AG
Goy, C
Gozpinar, S
Grabowska-Bold, I
Grafstrom, P
Grahn, KJ
Gramstad, E
Grancagnolo, F
Grancagnolo, S
Grassi, V
Gratchev, V
Gray, HM
Gray, JA
Graziani, E
Grebenyuk, OG
Greenshaw, T
Greenwood, ZD
Gregersen, K
Gregor, IM
Grenier, P
Griffiths, J
Grigalashvili, N
Grillo, AA
Grimm, K
Grinstein, S
Gris, P
Grishkevich, YV
Grivaz, JF
Grohsjean, A
Gross, E
Grosse-Knetter, J
Groth-Jensen, J
Grybel, K
Guest, D
Gueta, O
Guicheney, C
Guido, E
Guillemin, T
Guindon, S
Gul, U
Gunther, J
Guo, B
Guo, J
Gutierrez, P
Guttman, N
Gutzwiller, O
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haas, S
Haber, C
Hadavand, HK
Hadley, DR
Haefner, P
Hajduk, Z
Hakobyan, H
Hall, D
Halladjian, G
Hamacher, K
Hamal, P
Hamano, K
Hamer, M
Hamilton, A
Hamilton, S
Han, L
Hanagaki, K
Hanawa, K
Hance, M
Handel, C
Hanke, P
Hansen, JR
Hansen, JB
Hansen, JD
Hansen, PH
Hansson, P
Hara, K
Harenberg, T
Harkusha, S
Harper, D
Harrington, RD
Harris, OM
Hartert, J
Hartjes, F
Haruyama, T
Harvey, A
Hasegawa, S
Hasegawa, Y
Hassani, S
Haug, S
Hauschild, M
Hauser, R
Havranek, M
Hawkes, CM
Hawkings, RJ
Hawkins, AD
Hayakawa, T
Hayashi, T
Hayden, D
Hays, CP
Hayward, HS
Haywood, SJ
Head, SJ
Heck, T
Hedberg, V
Heelan, L
Heim, S
Heinemann, B
Heisterkamp, S
Helary, L
Heller, C
Heller, M
Hellman, S
Hellmich, D
Helsens, C
Henderson, RCW
Henke, M
Henrichs, A
Correia, AMH
Henrot-Versille, S
Hensel, C
Hernandez, CM
Jimenez, YH
Herrberg, R
Herten, G
Hertenberger, R
Hervas, L
Hesketh, GG
Hessey, NP
Hickling, R
Higon-Rodriguez, E
Hill, JC
Hiller, KH
Hillert, S
Hillier, SJ
Hinchliffe, I
Hines, E
Hirose, M
Hirsch, F
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoffman, J
Hoffmann, D
Hohlfeld, M
Holmgren, SO
Holy, T
Holzbauer, JL
Hong, TM
van Huysduynen, LH
Horner, S
Hostachy, JY
Hou, S
Hoummada, A
Howard, J
Howarth, J
Hrabovsky, M
Hristova, I
Hrivnac, J
Hryn'ova, T
Hsu, PJ
Hsu, SC
Hu, D
Hubacek, Z
Hubaut, F
Huegging, F
Hulsing, TA
Huettmann, A
Huffman, TB
Hughes, EW
Hughes, G
Huhtinen, M
Hurwitz, M
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibbotson, M
Ibragimov, I
Iconomidou-Fayard, L
Idarraga, J
Iengo, P
Igonkina, O
Ikegami, Y
Ikematsu, K
Ikeno, M
Iliadis, D
Ilic, N
Ince, T
Ioannou, P
Iodice, M
Iordanidou, K
Ippolito, V
Quiles, AI
Isaksson, C
Ishino, M
Ishitsuka, M
Ishmukhametov, R
Issever, C
Istin, S
Ivashin, AV
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jackson, B
Jackson, JN
Jackson, P
Jaekel, MR
Jain, V
Jakobs, K
Jakobsen, S
Jakoubek, T
Jakubek, J
Jamin, DO
Jana, DK
Jansen, E
Jansen, H
Janssen, J
Jantsch, A
Janus, M
Jared, RC
Jarlskog, G
Jeanty, L
Plante, IJL
Jeng, GY
Jennens, D
Jenni, P
Loevschall-Jensen, AE
Jez, P
Jezequel, S
Jha, MK
Ji, H
Ji, W
Jia, J
Jiang, Y
Belenguer, MJ
Jin, S
Jinnouchi, O
Joergensen, MD
Joffe, D
Johansen, M
Johansson, KE
Johansson, P
Johnert, S
Johns, KA
Jon-And, K
Jones, G
Jones, RWL
Jones, TJ
Joram, C
Jorge, PM
Joshi, KD
Jovicevic, J
Jovin, T
Ju, X
Jung, CA
Jungst, RM
Juranek, V
Jussel, P
Rozas, AJ
Kabana, S
Kaci, M
Kaczmarska, A
Kadlecik, P
Kado, M
Kagan, H
Kagan, M
Kajomovitz, E
Kalinin, S
Kalinovskaya, LV
Kama, S
Kanaya, N
Kaneda, M
Kaneti, S
Kanno, T
Kantserov, VA
Kanzaki, J
Kaplan, B
Kapliy, A
Kar, D
Karagounis, M
Karakostas, K
Karnevskiy, M
Kartvelishvili, V
Karyukhin, AN
Kashif, L
Kasieczka, G
Kass, RD
Kastanas, A
Kataoka, Y
Katzy, J
Kaushik, V
Kawagoe, K
Kawamoto, T
Kawamura, G
Kazama, S
Kazanin, VF
Kazarinov, MY
Keeler, R
Keener, PT
Kehoe, R
Keil, M
Keller, JS
Kenyon, M
Keoshkerian, H
Kepka, O
Kerschen, N
Kersevan, BP
Kersten, S
Kessoku, K
Keung, J
Khalil-Zada, F
Khandanyan, H
Khanov, A
Kharchenko, D
Khodinov, A
Khomich, A
Khoo, TJ
Khoriauli, G
Khoroshilov, A
Khovanskiy, V
Khramov, E
Khubua, J
Kim, H
Kim, SH
Kimura, N
Kind, O
King, BT
King, M
King, RSB
Kirk, J
Kiryunin, AE
Kishimoto, T
Kisielewska, D
Kitamura, T
Kittelmann, T
Kiuchi, K
Kladiva, E
Klein, M
Klein, U
Kleinknecht, K
Klemetti, M
Klier, A
Klimek, P
Klimentov, A
Klingenberg, R
Klinger, JA
Klinkby, EB
Klioutchnikova, T
Klok, PF
Klous, S
Kluge, EE
Kluge, T
Kluit, P
Kluth, S
Kneringer, E
Knoops, EBFG
Knue, A
Ko, BR
Kobayashi, T
Kobel, M
Kocian, M
Kodys, P
Koneke, K
Konig, AC
Koenig, S
Kopke, L
Koetsveld, F
Koevesarki, P
Koffas, T
Koffeman, E
Kogan, LA
Kohlmann, S
Kohn, F
Kohout, Z
Kohriki, T
Koi, T
Kolanoski, H
Kolesnikov, V
Koletsou, I
Koll, J
Komar, AA
Komori, Y
Kondo, T
Kono, T
Kononov, AI
Konoplich, R
Konstantinidis, N
Kopeliansky, R
Koperny, S
Kopp, AK
Korcyl, K
Kordas, K
Korn, A
Korol, A
Korolkov, I
Korolkova, EV
Korotkov, VA
Kortner, O
Kortner, S
Kostyukhin, VV
Kotov, S
Kotov, VM
Kotwal, A
Kourkoumelis, C
Kouskoura, V
Koutsman, A
Kowalewski, R
Kowalski, TZ
Kozanecki, W
Kozhin, AS
Kral, V
Kramarenko, VA
Kramberger, G
Krasny, MW
Krasznahorkay, A
Kraus, JK
Krauss, F
Kravchenko, A
Kreiss, S
Krejci, F
Kretzschmar, J
Kreutzfeldt, K
Krieger, N
Krieger, P
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Kruger, H
Kruker, T
Krumnack, N
Krumshteyn, ZV
Kruse, MK
Kubota, T
Kuday, S
Kuehn, S
Kugel, A
Kuhl, T
Kukhtin, V
Kulchitsky, Y
Kuleshov, S
Kuna, M
Kunkle, J
Kupco, A
Kurashige, H
Kurata, M
Kurochkin, YA
Kus, V
Kuwertz, ES
Kuze, M
Kvita, J
Kwee, R
La Rosa, A
La Rotonda, L
Labarga, L
Lablak, S
Lacasta, C
Lacava, F
Lacey, J
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Laisne, E
Lambourne, L
Lampen, CL
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Lang, VS
Lange, C
Lankford, AJ
Lanni, F
Lantzsch, K
Lanza, A
Laplace, S
Lapoire, C
Laporte, JF
Lari, T
Larner, A
Lassnig, M
Laurelli, P
Lavorini, V
Lavrijsen, W
Laycock, P
Le Dortz, O
Le Guirriec, E
Le Menedeu, E
LeCompte, T
Ledroit-Guillon, F
Lee, H
Lee, JSH
Lee, SC
Lee, L
Lefebvre, M
Legendre, M
Legger, F
Leggett, C
Lehmacher, M
Miotto, GL
Leister, AG
Leite, ML
Leitner, R
Lellouch, D
Lemmer, B
Lendermann, V
Leney, KJC
Lenz, T
Lenzen, G
Lenzi, B
Leonhardt, K
Leontsinis, S
Lepold, F
Leroy, C
Lessard, JR
Lester, CG
Lester, CM
Leveque, J
Levin, D
Levinson, LJ
Lewis, A
Lewis, GH
Leyko, AM
Leyton, M
Li, B
Li, B
Li, H
Li, HL
Li, S
Li, X
Liang, Z
Liao, H
Liberti, B
Lichard, P
Lie, K
Liebig, W
Limbach, C
Limosani, A
Limper, M
Lin, SC
Linde, F
Linnemann, JT
Lipeles, E
Lipniacka, A
Liss, TM
Lissauer, D
Lister, A
Litke, AM
Liu, D
Liu, JB
Liu, L
Liu, M
Liu, Y
Livan, M
Livermore, SSA
Lleres, A
Merino, JL
Lloyd, SL
Lobodzinska, E
Loch, P
Lockman, WS
Loddenkoetter, T
Loebinger, FK
Loginov, A
Loh, CW
Lohse, T
Lohwasser, K
Lokajicek, M
Lombardo, VP
Long, RE
Lopes, L
Mateos, DL
Lorenz, J
Martinez, NL
Losada, M
Loscutoff, P
Lo Sterzo, F
Losty, MJ
Lou, X
Lounis, A
Loureiro, KF
Love, J
Love, PA
Lowe, AJ
Lu, F
Lubatti, HJ
Luci, C
Lucotte, A
Ludwig, D
Ludwig, I
Ludwig, J
Luehring, F
Lukas, W
Luminari, L
Lund, E
Lund-Jensen, B
Lundberg, B
Lundberg, J
Lundberg, O
Lundquist, J
Lungwitz, M
Lynn, D
Lytken, E
Ma, H
Ma, LL
Maccarrone, G
Macchiolo, A
Macek, B
Miguens, JM
Macina, D
Mackeprang, R
Madar, R
Madaras, RJ
Maddocks, HJ
Mader, WF
Madsen, AK
Maeno, M
Maeno, T
Mattig, P
Mattig, S
Magnoni, L
Magradze, E
Mahboubi, K
Mahlstedt, J
Mahmoud, S
Mahout, G
Maiani, C
Maidantchik, C
Maidantchik, C
Majewski, S
Makida, Y
Makovec, N
Mal, P
Malaescu, B
Malecki, P
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Malone, C
Maltezos, S
Malyshev, V
Malyukov, S
Mamuzic, J
Manabe, A
Mandelli, L
Mandic, I
Mandrysch, R
Maneira, J
Manfredini, A
de Andrade, LM
Ramos, JAM
Mann, A
Manning, PM
Manousakis-Katsikakis, A
Mansoulie, B
Mantifel, R
Mapelli, A
Mapelli, L
March, L
Marchand, JF
Marchese, F
Marchiori, G
Marcisovsky, M
Marino, CP
Marroquim, F
Marshall, Z
Marti, LF
Marti-Garcia, S
Martin, B
Martin, B
Martin, JP
Martin, TA
Martin, VJ
Latour, BMD
Martin-Haugh, S
Martinez, H
Martinez, M
Outschoorn, VM
Martyniuk, AC
Marx, M
Marzano, F
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Massa, I
Massol, N
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Matsunaga, H
Matsushita, T
Mattravers, C
Maurer, J
Maxfield, SJ
Maximov, DA
Mazini, R
Mazur, M
Mazzaferro, L
Mazzanti, M
Mc Donald, J
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
McCubbin, NA
McFarlane, KW
Mcfayden, JA
Mchedlidze, G
Mclaughlan, T
McMahon, SJ
McPherson, RA
Meade, A
Mechnich, J
Mechtel, M
Medinnis, M
Meehan, S
Meera-Lebbai, R
Meguro, T
Mehlhase, S
Mehta, A
Meier, K
Meineck, C
Meirose, B
Melachrinos, C
Garcia, BRM
Meloni, F
Navas, LM
Meng, Z
Mengarelli, A
Menke, S
Meoni, E
Mercurio, KM
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Merritt, H
Messina, A
Metcalfe, J
Mete, AS
Meyer, C
Meyer, C
Meyer, JP
Meyer, J
Meyer, J
Michal, S
Micu, L
Middleton, RP
Migas, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Miller, DW
Miller, RJ
Mills, WJ
Mills, C
Milov, A
Milstead, DA
Milstein, D
Milutinovic-Dumbelovic, G
Minaenko, AA
Moya, MM
Minashvili, IA
Mincer, AI
Mindur, B
Mineev, M
Ming, Y
Mir, LM
Mirabelli, G
Mitrevski, J
Mitsou, VA
Mitsui, S
Miyagawa, PS
Mjornmark, JU
Moa, T
Moeller, V
Monig, K
Moser, N
Mohapatra, S
Mohr, W
Moles-Valls, R
Molfetas, A
Monk, J
Monnier, E
Berlingen, JM
Monticelli, F
Monzani, S
Moore, RW
Herrera, CM
Moraes, A
Morange, N
Morel, J
Moreno, D
Llacer, MM
Morettini, P
Morgenstern, M
Morii, M
Morley, AK
Mornacchi, G
Morris, JD
Morvaj, L
Moser, HG
Mosidze, M
Moss, J
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Mueller, F
Mueller, J
Mueller, K
Muller, TA
Mueller, T
Muenstermann, D
Munwes, Y
Murray, WJ
Mussche, I
Musto, E
Myagkov, AG
Myska, M
Nackenhorst, O
Nadal, J
Nagai, K
Nagai, R
Nagai, Y
Nagano, K
Nagarkar, A
Nagasaka, Y
Nagel, M
Nairz, AM
Nakahama, Y
Nakamura, K
Nakamura, T
Nakano, I
Namasivayam, H
Nanava, G
Napier, A
Narayan, R
Nash, M
Nattermann, T
Naumann, T
Navarro, G
Neal, HA
Nechaeva, PY
Neep, TJ
Negri, A
Negri, G
Negrini, M
Nektarijevic, S
Nelson, A
Nelson, TK
Nemecek, S
Nemethy, P
Nepomuceno, AA
Nessi, M
Neubauer, MS
Neumann, M
Neusiedl, A
Neves, RM
Nevski, P
Newcomer, FM
Newman, PR
Nguyen, DH
Hong, VNT
Nickerson, RB
Nicolaidou, R
Nicquevert, B
Niedercorn, F
Nielsen, J
Nikiforou, N
Nikiforov, A
Nikolaenko, V
Nikolic-Audit, I
Nikolics, K
Nikolopoulos, K
Nilsen, H
Nilsson, P
Ninomiya, Y
Nisati, A
Nisius, R
Nobe, T
Nodulman, L
Nomachi, M
Nomidis, I
Norberg, S
Nordberg, M
Novakova, J
Nozaki, M
Nozka, L
Nuncio-Quiroz, AE
Hanninger, GN
Nunnemann, T
Nurse, E
O'Brien, BJ
O'Neil, DC
O'Shea, V
Oakes, LB
Oakham, FG
Oberlack, H
Ocariz, J
Ochi, A
Oda, S
Odaka, S
Odier, J
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohshima, T
Okamura, W
Okawa, H
Okumura, Y
Okuyama, T
Olariu, A
Olchevski, AG
Pino, SAO
Oliveira, M
Damazio, DO
Garcia, EO
Olivito, D
Olszewski, A
Olszowska, J
Onofre, A
Onyisi, PUE
Oram, CJ
Oreglia, M
Oren, Y
Orestano, D
Orlando, N
Barrera, CO
Orr, RS
Osculati, B
Ospanov, R
Osuna, C
Garzon, GOY
Ottersbach, JP
Ouchrif, M
Ouellette, EA
Ould-Saada, F
Ouraou, A
Ouyang, Q
Ovcharova, A
Owen, M
Owen, S
Ozcan, VE
Ozturk, N
Pages, AP
Aranda, CP
Griso, SP
Paganis, E
Pahl, C
Paige, F
Pais, P
Pajchel, K
Palacino, G
Paleari, CP
Palestini, S
Pallin, D
Palma, A
Palmer, JD
Pan, YB
Panagiotopoulou, E
Vazquez, JGP
Pani, P
Panikashvili, N
Panitkin, S
Pantea, D
Papadelis, A
Papadopoulou, TD
Paramonov, A
Hernandez, DP
Park, W
Parker, MA
Parodi, F
Parsons, JA
Parzefall, U
Pashapour, S
Pasqualucci, E
Passaggio, S
Passeri, A
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Patel, ND
Pater, JR
Patricelli, S
Pauly, T
Pearce, J
Pedersen, M
Lopez, SP
Morales, MIP
Peleganchuk, SV
Pelikan, D
Peng, H
Penning, B
Penson, A
Penwell, J
Cavalcanti, TP
Codina, EP
Garcia-Estan, MTP
Reale, VP
Perini, L
Pernegger, H
Perrino, R
Perrodo, P
Peshekhonov, VD
Peters, K
Peters, RFY
Petersen, BA
Petersen, J
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petrolo, E
Petrucci, F
Petschull, D
Petteni, M
Pezoa, R
Phan, A
Phillips, PW
Piacquadio, G
Picazio, A
Piccaro, E
Piccinini, M
Piec, SM
Piegaia, R
Pignotti, DT
Pilcher, JE
Pilkington, AD
Pina, J
Pinamonti, M
Pinder, A
Pinfold, JL
Pingel, A
Pinto, B
Pizio, C
Pleier, MA
Pleskot, V
Plotnikova, E
Plucinski, P
Poblaguev, A
Poddar, S
Podlyski, F
Poettgen, R
Poggioli, L
Pohl, D
Pohl, M
Polesello, G
Policicchio, A
Polifka, R
Polini, A
Poll, J
Polychronakos, V
Pomeroy, D
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovic, DS
Poppleton, A
Bueso, XP
Pospelov, GE
Pospisil, S
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Pozdnyakov, V
Prabhu, R
Pralavorio, P
Pranko, A
Prasad, S
Pravahan, R
Prell, S
Pretzl, K
Price, D
Price, J
Price, LE
Prieur, D
Primavera, M
Proissl, M
Prokofiev, K
Prokoshin, F
Protopopescu, S
Proudfoot, J
Prudent, X
Przybycien, M
Przysiezniak, H
Psoroulas, S
Ptacek, E
Pueschel, E
Puldon, D
Purohit, M
Puzo, P
Pylypchenko, Y
Qian, J
Quadt, A
Quarrie, DR
Quayle, WB
Raas, M
Radeka, V
Radescu, V
Radloff, P
Ragusa, F
Rahal, G
Rahimi, AM
Rajagopalan, S
Rammensee, M
Rammes, M
Randle-Conde, AS
Randrianarivony, K
Rangel-Smith, C
Rao, K
Rauscher, F
Rave, TC
Raymond, M
Read, AL
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Reinsch, A
Reisinger, I
Relich, M
Rembser, C
Ren, ZL
Renaud, A
Rescigno, M
Resconi, S
Resende, B
Reznicek, P
Rezvani, R
Richter, R
Richter-Was, E
Ridel, M
Rieck, P
Rijssenbeek, M
Rimoldi, A
Rinaldi, L
Rios, RR
Ritsch, E
Riu, I
Rivoltella, G
Rizatdinova, F
Rizvi, E
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
EMRobinson, J
Robson, A
de Lima, JGR
Roda, C
Dos Santos, DR
Roe, A
Roe, S
Rohne, O
Rolli, S
Romaniouk, A
Romano, M
Romeo, G
Adam, ER
Rompotis, N
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, A
Rose, M
Rosenbaum, GA
Rosendahl, PL
Rosenthal, O
Rosselet, L
Rossetti, V
Rossi, E
Rossi, LP
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubbo, F
Rubinskiy, I
Ruckstuhl, N
Rud, VI
Rudolph, C
Rudolph, MS
Ruhr, F
Ruiz-Martinez, A
Rumyantsev, L
Rurikova, Z
Rusakovich, NA
Ruschke, A
Rutherfoord, JP
Ruthmann, N
Ruzicka, P
Ryabov, YF
Rybar, M
Rybkin, G
Ryder, NC
Saavedra, AF
Sadeh, I
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Sakamoto, H
Salamanna, G
Salamon, A
Saleem, M
Salek, D
Salihagic, D
Salnikov, A
Salt, J
Ferrando, BMS
Salvatore, D
Salvatore, F
Salvucci, A
Salzburger, A
Sampsonidis, D
Sanchez, A
Martinez, VS
Sandaker, H
Sander, HG
Sanders, MP
Sandhoff, M
Sandoval, T
Sandoval, C
Sandstroem, R
Sankey, DPC
Sansoni, A
Rios, CS
Santoni, C
Santonico, R
Santos, H
Castillo, IS
Sapp, K
Saraiva, JG
Sarangi, T
Sarkisyan-Grinbaum, E
Sarrazin, B
Sarri, F
Sartisohn, G
Sasaki, O
Sasaki, Y
Sasao, N
Satsounkevitch, I
Sauvage, G
Sauvan, E
Sauvan, JB
Savard, P
Savinov, V
Savu, DO
Sawyer, L
Saxon, DH
Saxon, J
Sbarra, C
Sbrizzi, A
Scannicchio, DA
Scarcella, M
Schaarschmidt, J
Schacht, P
Schaefer, D
Schafer, U
Schaelicke, A
Schaepe, S
Schaetzel, S
Schaffer, AC
Schaile, D
Schamberger, RD
Scharf, V
Schegelsky, VA
Scheirich, D
Schernau, M
Scherzer, MI
Schiavi, C
Schieck, J
Schioppa, M
Schlenker, S
Schmidt, E
Schmieden, K
Schmitt, C
Schmitt, C
Schmitt, S
Schneider, B
Schnellbach, YJ
Schnoor, U
Schoeffel, L
Schoening, A
Schorlemmer, ALS
Schott, M
Schouten, D
Schovancova, J
Schram, M
Schroeder, C
Schroer, N
Schultens, MJ
Schultes, J
Schultz-Coulon, HC
Schulz, H
Schumacher, M
Schumm, BA
Schune, P
Schwartzman, A
Schwegler, P
Schwemling, P
Schwienhorst, R
Schwindling, J
Schwindt, T
Schwoerer, M
Sciacca, FG
Scifo, E
Sciolla, G
Scott, WG
Searcy, J
Sedov, G
Sedykh, E
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidze, G
Sekula, SJ
Selbach, KE
Seliverstov, DM
Sellden, B
Sellers, G
Seman, M
Semprini-Cesari, N
Serfon, C
Serin, L
Serkin, L
Serre, T
Seuster, R
Severini, H
Sfyrla, A
Shabalina, E
Shamim, M
Shan, LY
Shank, JT
Shao, QT
Shapiro, M
Shatalov, PB
Shaw, K
Sherwood, P
Shimizu, S
Shimojima, M
Shin, T
Shiyakova, M
Shmeleva, A
Shochet, MJ
Short, D
Shrestha, S
Shulga, E
Shupe, MA
Sicho, P
Sidoti, A
Siegert, F
Sijacki, D
Silbert, O
Silva, J
Silver, Y
Silverstein, D
Silverstein, SB
Simak, V
Simard, O
Simic, L
Simion, S
Simioni, E
Simmons, B
Simoniello, R
Simonyan, M
Sinervo, P
Sinev, NB
Sipica, V
Siragusa, G
Sircar, A
Sisakyan, AN
Sivoklokov, SY
Sjolin, J
Sjursen, TB
Skinnari, LA
Skottowe, HP
Skovpen, K
Skubic, P
Slater, M
Slavicek, T
Sliwa, K
Smakhtin, V
Smart, BH
Smestad, L
Smirnov, SY
Smirnov, Y
Smirnova, LN
Smirnova, O
Smith, BC
Smith, KM
Smizanska, M
Smolek, K
Snesarev, AA
Snidero, G
Snow, SW
Snow, J
Snyder, S
Sobie, R
Sodomka, J
Soffer, A
Solans, CA
Solar, M
Solc, J
Soldatov, EY
Soldevila, U
Camillocci, ES
Solodkov, AA
Solovyanov, OV
Solovyev, V
Soni, N
Sood, A
Sopko, V
Sopko, B
Sosebee, M
Soualah, R
Soueid, P
Soukharev, A
South, D
Spagnolo, S
Spano, F
Spighi, R
Spigo, G
Spiwoks, R
Spousta, M
Spreitzer, T
Spurlock, B
St Denis, RD
Stahlman, J
Stamen, R
Stanecka, E
Stanek, RW
Stanescu, C
Stanescu-Bellu, M
Stanitzki, MM
Stapnes, S
Starchenko, EA
Stark, J
Staroba, P
Starovoitov, P
Staszewski, R
Staude, A
Stavina, P
Steele, G
Steinbach, P
Steinberg, P
Stekl, I
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stern, S
Stewart, GA
Stillings, JA
Stockton, MC
Stoebe, M
Stoerig, K
Stoicea, G
Stonjek, S
Strachota, P
Stradling, AR
Straessner, A
Strandberg, J
Strandberg, S
Strandlie, A
Strang, M
Strauss, E
Strauss, M
Strizenec, P
Strohmer, R
Strom, DM
Strong, JA
Stroynowski, R
Stugu, B
Stumer, I
Stupak, J
Sturm, P
Styles, NA
Soh, DA
Su, D
Subramania, HS
Subramaniam, R
Succurro, A
Sugaya, Y
Suhr, C
Suk, M
Sulin, VV
Sultansoy, S
Sumida, T
Sun, X
Sundermann, JE
Suruliz, K
Susinno, G
Sutton, MR
Suzuki, Y
Suzuki, Y
Svatos, M
Swedish, S
Swiatlowski, M
Sykora, I
Sykora, T
Sanchez, J
Ta, D
Tackmann, K
Taffard, A
Tafirout, R
Taiblum, N
Takahashi, Y
Takai, H
Takashima, R
Takeda, H
Takeshita, T
Takubo, Y
Talby, M
Talyshev, A
Tam, JYC
Tamsett, MC
Tan, KG
Tanaka, J
Tanaka, R
Tanaka, S
Tanaka, S
Tanasijczuk, AJ
Tani, K
Tannoury, N
Tapprogge, S
Tardif, D
Tarem, S
Tarrade, F
Tartarelli, GF
Tas, P
Tasevsky, M
Tassi, E
Tayalati, Y
Taylor, C
Taylor, FE
Taylor, GN
Taylor, W
Teinturier, M
Teischinger, FA
Castanheira, MTD
Teixeira-Dias, P
Temming, KK
Ten Kate, H
Teng, PK
Terada, S
Terashi, K
Terron, J
Testa, M
Teuscher, RJ
Therhaag, J
Theveneaux-Pelzer, T
Thoma, S
Thomas, JP
Thompson, EN
Thompson, PD
Thompson, PD
Thompson, AS
Thomsen, LA
Thomson, E
Thomson, M
Thong, WM
Thun, RP
Tian, F
Tibbetts, MJ
Tic, T
Tikhomirov, VO
Tikhonov, YA
Timoshenko, S
Tiouchichine, E
Tipton, P
Tisserant, S
Todorov, T
Todorova-Nova, S
Toggerson, B
Tojo, J
Tokar, S
Tokushuku, K
Tollefson, K
Tomlinson, L
Tomoto, M
Tompkins, L
Toms, K
Tonoyan, A
Topfel, C
Topilin, ND
Torrence, E
Torres, H
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Trefzger, T
Tremblet, L
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Tripiana, MF
Triplett, N
Trischuk, W
Trocme, B
Troncon, C
Trottier-McDonald, M
Trovatelli, M
True, P
Trzebinski, M
Trzupek, A
Tsarouchas, C
Tseng, JCL
Tsiakiris, M
Tsiareshka, PV
Tsionou, D
Tsipolitis, G
Tsiskaridze, S
Tsiskaridze, V
Tskhadadze, EG
Tsukerman, II
Tsulaia, V
Tsung, JW
Tsuno, S
Tsybychev, D
Tua, A
Tudorache, A
Tudorache, V
Tuggle, JM
Turala, M
Turecek, D
Cakir, IT
Turra, R
Tuts, PM
Tykhonov, A
Tylmad, M
Tyndel, M
Tzanakos, G
Uchida, K
Ueda, I
Ueno, R
Ughetto, M
Ugland, M
Uhlenbrock, M
Ukegawa, F
Unal, G
Undrus, A
Unel, G
Ungaro, FC
Unno, Y
Urbaniec, D
Urquijo, P
Usai, G
Vacavant, L
Vacek, V
Vachon, B
Vahsen, S
Valencic, N
Valentinetti, S
Valero, A
Valery, L
Valkar, S
Gallego, EV
Vallecorsa, S
Ferrer, JAV
Van Berg, R
Van der Deijl, PC
van der Geer, R
van der Graaf, H
Van der Leeuw, R
van der Poel, E
van der Ster, D
van Eldik, N
van Gemmeren, P
Van Nieuwkoop, J
van Vulpen, I
Vanadia, M
Vandelli, W
Vaniachine, A
Vankov, P
Vannucci, F
Vari, R
Varnes, EW
Varol, T
Varouchas, D
Vartapetian, A
Varvell, KE
Vassilakopoulos, VI
Vazeille, F
Schroeder, TV
Veloso, F
Veneziano, S
Ventura, A
Ventura, D
Venturi, M
Venturi, N
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Vichou, I
Vickey, T
Boeriu, OEV
Viehhauser, GHA
Viel, S
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinek, E
Vinogradov, VB
Virzi, J
Vitells, O
Viti, M
Vivarelli, I
Vaque, FV
Vlachos, S
Vladoiu, D
Vlasak, M
Vogel, A
Vokac, P
Volpi, G
Volpi, M
Volpini, G
Von der Schmitt, H
von Radziewski, H
von Toerne, E
Vorobel, V
Vorwerk, V
Vos, M
Voss, R
Vossebeld, JH
Vranjes, N
Milosavljevic, MV
Vrba, V
Vreeswijk, M
Anh, TV
Vuillermet, R
Vukotic, I
Vykydal, Z
Wagner, W
Wagner, P
Wahlen, H
Wahrmund, S
Wakabayashi, J
Walch, S
Walder, J
Walker, R
Walkowiak, W
Wall, R
Waller, P
Walsh, B
Wang, C
Wang, H
Wang, H
Wang, J
Wang, J
Wang, K
Wang, R
Wang, SM
Wang, T
Wang, X
Warburton, A
Ward, CP
Wardrope, DR
Warsinsky, M
Washbrook, A
Wasicki, C
Watanabe, I
Watkins, PM
Watson, AT
Watson, IJ
Watson, MF
Watts, G
Watts, S
Waugh, AT
Waugh, BM
Weber, MS
Webster, JS
Weidberg, AR
Weigell, P
Weingarten, J
Weiser, C
Wells, PS
Wenaus, T
Wendland, D
Weng, Z
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, P
Werth, M
Wessels, M
Wetter, J
Weydert, C
Whalen, K
White, A
White, MJ
White, S
Whitehead, SR
Whiteson, D
Whittington, D
Wicke, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik-Fuchs, LAM
Wijeratne, PA
Wildauer, A
Wildt, MA
Wilhelm, I
Wilkens, HG
Will, JZ
Williams, E
Williams, HH
Williams, S
Willis, W
Willocq, S
Wilson, JA
Wilson, MG
Wilson, A
Wingerter-Seez, I
Winkelmann, S
Winklmeier, F
Wittgen, M
Wittig, T
Wittkowski, J
Wollstadt, SJ
Wolter, MW
Wolters, H
Wong, WC
Wooden, G
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wozniak, KW
Wraight, K
Wright, M
Wrona, B
Wu, SL
Wu, X
Wu, Y
Wulf, E
Wynne, BM
Xella, S
Xiao, M
Xie, S
Xu, C
Xu, D
Xu, L
Yabsley, B
Yacoob, S
Yamada, M
Yamaguchi, H
Yamamoto, A
Yamamoto, K
Yamamoto, S
Yamamura, T
Yamanaka, T
Yamauchi, K
Yamazaki, T
Yamazaki, Y
Yan, Z
Yang, H
Yang, H
Yang, UK
Yang, Y
Yang, Z
Yanush, S
Yao, L
Yasu, Y
Yatsenko, E
Ye, J
Ye, S
Yen, AL
Yilmaz, M
Yoosoofmiya, R
Yorita, K
Yoshida, R
Yoshihara, K
Young, C
Young, CJ
Youssef, S
Yu, D
Yu, DR
Yu, J
Yu, J
Yuan, L
Yurkewicz, A
Zabinski, B
Zaidan, R
Zaitsev, AM
Zambito, S
Zanello, L
Zanzi, D
Zaytsev, A
Zeitnitz, C
Zeman, M
Zemla, A
Zenin, O
Zenis, T
Zinonos, Z
Zerwas, D
della Porta, GZ
Zhang, D
Zhang, H
Zhang, J
Zhang, L
Zhang, X
Zhang, Z
Zhao, L
Zhao, Z
Zhemchugov, A
Zhong, J
Zhou, B
Zhou, N
Zhou, Y
Zhu, CG
Zhu, H
Zhu, J
Zhu, Y
Zhuang, X
Zhuravlov, V
Zibell, A
Zieminska, D
Zimin, NI
Zimmermann, R
Zimmermann, S
Zimmermann, S
Ziolkowski, M
Zitoun, R
Zivkovic, L
Zmouchko, VV
Zobernig, G
Zoccoli, A
Nedden, MZ
Zutshi, V
Zwalinski, L
AF Aad, G.
Abajyan, T.
Abbott, B.
Abdallah, J.
Khalek, S. Abdel
Abdelalim, A. A.
Abdinov, O.
Aben, R.
Abi, B.
Abolins, M.
AbouZeid, O. S.
Abramowicz, H.
Abreu, H.
Ochoa, M. I.
Acharya, B. S.
Adamczyk, L.
Adams, D. L.
Addy, T. N.
Adelman, J.
Adomeit, S.
Adragna, P.
Adye, T.
Aefsky, S.
Aguilar-Saavedra, J. A.
Agustoni, M.
Ahlen, S. P.
Ahles, F.
Ahmad, A.
Ahsan, M.
Aielli, G.
Akesson, T. P. A.
Akimoto, G.
Akimov, A. V.
Alam, M. A.
Albert, J.
Albrand, S.
Aleksa, M.
Aleksandrov, I. N.
Alessandria, F.
Alexa, C.
Alexander, G.
Alexandre, G.
Alexopoulos, T.
Alhroob, M.
Aliev, M.
Alimonti, G.
Alison, J.
Allbrooke, B. M. M.
Allison, L. J.
Allport, P. P.
Allwood-Spiers, S. E.
Almond, J.
Aloisio, A.
Alon, R.
Alonso, A.
Alonso, F.
Altheimer, A.
Gonzalez, B. Alvarez
Alviggi, M. G.
Amako, K.
Amelung, C.
Ammosov, V. V.
Dos Santos, S. P. Amor
Amorim, A.
Amoroso, S.
Amram, N.
Anastopoulos, C.
Ancu, L. S.
Andari, N.
Andeen, T.
Anders, C. F.
Anders, G.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Anduaga, X. S.
Angelidakis, S.
Anger, P.
Angerami, A.
Anghinolfi, F.
Anisenkov, A.
Anjos, N.
Annovi, A.
Antonaki, A.
Antonelli, M.
Antonov, A.
Antos, J.
Anulli, F.
Aoki, M.
Aoun, S.
Bella, L. Aperio
Apolle, R.
Arabidze, G.
Aracena, I.
Arai, Y.
Arce, A. T. H.
Arfaoui, S.
Arguin, J-F
Argyropoulos, S.
Arik, E.
Arik, M.
Armbruster, A. J.
Arnaez, O.
Arnal, V.
Artamonov, A.
Artoni, G.
Arutinov, D.
Asai, S.
Ask, S.
Asman, B.
Asquith, L.
Assamagan, K.
Astalos, R.
Astbury, A.
Atkinson, M.
Auerbach, B.
Auge, E.
Augsten, K.
Aurousseau, M.
Avolio, G.
Axen, D.
Azuelos, G.
Azuma, Y.
Baak, M. A.
Baccaglioni, G.
Bacci, C.
Bach, A. M.
Bachacou, H.
Bachas, K.
Backes, M.
Backhaus, M.
Mayes, J. Backus
Badescu, E.
Bagnaia, P.
Bai, Y.
Bailey, D. C.
Bain, T.
Baines, J. T.
Baker, O. K.
Baker, S.
Balek, P.
Balli, F.
Banas, E.
Banerjee, P.
Banerjee, Sw
Banfi, D.
Bangert, A.
Bansal, V.
Bansil, H. S.
Barak, L.
Baranov, S. P.
Barber, T.
Barberio, E. L.
Barberis, D.
Barbero, M.
Bardin, D. Y.
Barillari, T.
Barisonzi, M.
Barklow, T.
Barlow, N.
Barnett, B. M.
Barnett, R. M.
Baroncelli, A.
Barone, G.
Barr, A. J.
Barreiro, F.
da Costa, J. Barreiro Guimaraes
Bartoldus, R.
Barton, A. E.
Bartsch, V.
Basye, A.
Bates, R. L.
Batkova, L.
Batley, J. R.
Battaglia, A.
Battistin, M.
Bauer, F.
Bawa, H. S.
Beale, S.
Beau, T.
Beauchemin, P. H.
Beccherle, R.
Bechtle, P.
Beck, H. P.
Becker, K.
Becker, S.
Beckingham, M.
Becks, K. H.
Beddall, A. J.
Beddall, A.
Bedikian, S.
Bednyako, V. A.
Bee, C. P.
Beemster, L. J.
Begel, M.
Harpaz, S. Behar
Belanger-Champagne, C.
Bell, P. J.
Bell, W. H.
Bella, G.
Bellagamba, L.
Bellomo, M.
Belloni, A.
Beloborodova, O.
Belotskiy, K.
Beltramello, O.
Benary, O.
Benchekroun, D.
Bendtz, K.
Benekos, N.
Benhammou, Y.
Noccioli, E. Benhar
Garcia, J. A. Benitez
Benjamin, D. P.
Benoit, M.
Bensinger, J. R.
Benslama, K.
Bentvelsen, S.
Berge, D.
Kuutmann, E. Bergeaas
Berger, N.
Berghaus, F.
Berglund, E.
Beringer, J.
Bernat, P.
Bernhard, R.
Bernius, C.
Bernlochner, F. U.
Berry, T.
Bertella, C.
Bertin, A.
Bertolucci, F.
Besana, M. I.
Besjes, G. J.
Besson, N.
Bethke, S.
Bhimji, W.
Bianchi, R. M.
Bianchini, L.
Bianco, M.
Biebel, O.
Bieniek, S. P.
Bierwagen, K.
Biesiada, J.
Biglietti, M.
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Biscarat, C.
Bittner, B.
Black, C. W.
Black, J. E.
Black, K. M.
Blair, R. E.
Blanchard, J-B
Blazek, T.
Bloch, I.
Blocker, C.
Blocki, J.
Blum, W.
Blumenschein, U.
Bobbink, G. J.
Bobrovnikov, V. S.
Bocchetta, S. S.
Bocci, A.
Boddy, C. R.
Boehler, M.
Boek, J.
Boek, T. T.
Boelaert, N.
Bogaerts, J. A.
Bogdanchikov, A.
Bogouch, A.
Bohm, C.
Bohm, J.
Boisvert, V.
Bold, T.
Boldea, V.
Bolnet, N. M.
Bomben, M.
Bona, M.
Boonekamp, M.
Bordoni, S.
Borer, C.
Borisov, A.
Borissov, G.
Borjanovic, I.
Borri, M.
Borroni, S.
Bortfeldt, J.
Bortolotto, V.
Bos, K.
Boscherini, D.
Bosman, M.
Boterenbrood, H.
Bouchami, J.
Boudreau, J.
Bouhova-Thacker, E. V.
Boumediene, D.
Bourdarios, C.
Bousson, N.
Boutouil, S.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bozovic-Jelisavcic, I.
Bracinik, J.
Branchini, P.
Brandt, A.
Brandt, G.
Brandt, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Brazzale, S. F.
Brelier, B.
Bremer, J.
Brendlinger, K.
Brenner, R.
Bressler, S.
Bristow, T. M.
Britton, D.
Brochu, F. M.
Brock, I.
Brock, R.
Broggi, F.
Bromberg, C.
Bronner, J.
Brooijmans, G.
Brooks, T.
Brooks, W. K.
Brown, G.
de Renstrom, P. A. Bruckman
Bruncko, D.
Bruneliere, R.
Brunet, S.
Bruni, A.
Bruni, G.
Bruschi, M.
Bryngemark, L.
Buanes, T.
Buat, Q.
Bucci, F.
Buchanan, J.
Buchholz, P.
Buckingham, R. M.
Buckley, A. G.
Buda, S. I.
Budagov, I. A.
Budick, B.
Buescher, V.
Bugge, L.
Bulekov, O.
Bundock, A. C.
Bunse, M.
Buran, T.
Burckhart, H.
Burdin, S.
Burgess, T.
Burke, S.
Busato, E.
Bussey, P.
Buszello, C. P.
Butler, B.
Butler, J. M.
Buttar, C. M.
Butterworth, J. M.
Buttinger, W.
Byszewski, M.
Cabrera Urban, S.
Caforio, D.
Cakir, O.
Calafiura, P.
Calderini, G.
Calfayan, P.
Calkins, R.
Caloba, L. P.
Caloi, R.
Calvet, D.
Calvet, S.
Toro, R. Camacho
Camarri, P.
Cameron, D.
Caminada, L. M.
Caminal Armadans, R.
Campana, S.
Campanelli, M.
Canale, V.
Canelli, F.
Canepa, A.
Cantero, J.
Cantrill, R.
Cao, T.
Garrido, M. D. M. Capeans
Caprini, I.
Caprini, M.
Capriotti, D.
Capua, M.
Caputo, R.
Cardarelli, R.
Carli, T.
Carlino, G.
Carminati, L.
Caron, S.
Carquin, E.
Carrillo-Montoya, G. D.
Carter, A. A.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Cascella, M.
Caso, C.
Castaneda-Miranda, E.
Castillo Gimenez, V.
Castro, N. F.
Cataldi, G.
Catastini, P.
Catinaccio, A.
Catmore, J. R.
Cattai, A.
Cattani, G.
Caughron, S.
Cavaliere, V.
Cavalleri, P.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinni, V.
Ceradini, F.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cetin, S. A.
Chafaq, A.
Chakraborty, D.
Chalupkova, I.
Chan, K.
Chang, P.
Chapleau, B.
Chapman, J. D.
Chapman, J. W.
Charlton, D. G.
Chavda, V.
Barajas, C. A. Chavez
Cheatham, S.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Chen, S.
Chen, X.
Chen, Y.
Cheng, Y.
Cheplakov, A.
El Moursli, R. Cherkaoui
Chernyatin, V.
Cheu, E.
Cheung, S. L.
Chevalier, L.
Chiefari, G.
Chikovani, L.
Childers, J. T.
Chilingarov, A.
Chiodini, G.
Chisholm, A. S.
Chislett, R. T.
Chitan, A.
Chizhov, M. V.
Choudalakis, G.
Chouridou, S.
Chow, B. K. B.
Christidi, I. A.
Christov, A.
Chromek-Burckhart, D.
Chu, M. L.
Chudoba, J.
Ciapetti, G.
Ciftci, A. K.
Ciftci, R.
Cinca, D.
Cindro, V.
Ciocio, A.
Cirilli, M.
Cirkovic, P.
Citron, Z. H.
Citterio, M.
Ciubancan, M.
Clark, A.
Clark, P. J.
Clarke, R. N.
Cleland, W.
Clemens, J. C.
Clement, B.
Clement, C.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Coffey, L.
Cogan, J. G.
Coggeshall, J.
Colas, J.
Cole, S.
Colijn, A. P.
Collins, N. J.
Collins-Tooth, C.
Collot, J.
Colombo, T.
Colon, G.
Compostella, G.
Conde Muino, P.
Coniavitis, E.
Conidi, M. C.
Consonni, S. M.
Consorti, V.
Constantinescu, S.
Conta, C.
Conti, G.
Conventi, F.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Copic, K.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Cortes-Gonzalez, A.
Cortiana, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Cote, D.
Cottin, G.
Courneyea, L.
Cowan, G.
Cox, B. E.
Cranmer, K.
Crescioli, F.
Cristinziani, M.
Crosetti, G.
Crepe-Renaudin, S.
Cuciuc, C-M
Almenar, C. Cuenca
Donszelmann, T. Cuhadar
Cummings, J.
Curatolo, M.
Curtis, C. J.
Cuthbert, C.
Cwetanski, P.
Czirr, H.
Czodrowski, P.
Czyczula, Z.
D'Auria, S.
D'Onofrio, M.
D'Orazio, A.
Da Cunha Sargedas De Sousa, M. J.
Da Via, C.
Dabrowski, W.
Dafinca, A.
Dai, T.
Dallaire, F.
Dallapiccola, C.
Dam, M.
Damiani, D. S.
Danielsson, H. O.
Dao, V.
Darbo, G.
Darlea, G. L.
Dassoulas, J. A.
Davey, W.
Davidek, T.
Davidson, N.
Davidson, R.
Davies, E.
Davies, M.
Davignon, O.
Davison, A. R.
Davygora, Y.
Dawe, E.
Dawson, I.
Daya-Ishmukhametova, R. K.
De, K.
de Asmundis, R.
De Castro, S.
De Cecco, S.
de Graat, J.
De Groot, N.
de Jong, P.
De La Taille, C.
De la Torre, H.
De Lorenzi, F.
De Nooij, L.
De Pedis, D.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Regie, J. B. De Vivie
De Zorzi, G.
Dearnaley, W. J.
Debbe, R.
Debenedetti, C.
Dechenaux, B.
Dedovich, D. V.
Degenhardt, J.
Del Peso, J.
Del Prete, T.
Delemontex, T.
Deliyergiyev, M.
Dell'Acqua, A.
Dell'Asta, L.
Della Pietra, M.
della Volpe, D.
Delmastro, M.
Delsart, P. A.
Deluca, C.
Demers, S.
Demichev, M.
Demirkoz, B.
Denisov, S. P.
Derendarz, D.
Derkaoui, J. E.
Derue, F.
Dervan, P.
Desch, K.
Deviveiros, P. O.
Dewhurst, A.
DeWilde, B.
Dhaliwal, S.
Dhullipudi, R.
Di Ciaccio, A.
Di Ciaccio, L.
Di Donato, C.
Di Girolamo, A.
Di Girolamo, B.
Di Luise, S.
Di Mattia, A.
Di Micco, B.
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Diaz, M. A.
Diehl, E. B.
Dietrich, J.
Dietzsch, T. A.
Diglio, S.
Yagci, K. Dindar
Dingfelder, J.
Dinut, F.
Dionisi, C.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djobava, T.
do Vale, M. A. B.
do Valle Wemans, A.
Doan, T. K. O.
Dobbs, M.
Dobos, D.
Dobson, E.
Dodd, J.
Doglioni, C.
Doherty, T.
Doi, Y.
Dolejsi, J.
Dolezal, Z.
Dolgoshein, B. A.
Dohmae, T.
Donadelli, M.
Donini, J.
Dopke, J.
Doria, A.
Dos Anjos, A.
Dotti, A.
Dova, M. T.
Doxiadis, A. D.
Doyle, A. T.
Dressnandt, N.
Dris, M.
Dubbert, J.
Dube, S.
Dubreuil, E.
Duchovni, E.
Duckeck, G.
Duda, D.
Dudarev, A.
Dudziak, F.
Duehrssen, M.
Duerdoth, I. P.
Duflot, L.
Dufour, M-A
Duguid, L.
Dunford, M.
Yildiz, H. Duran
Duxfield, R.
Dwuznik, M.
Dueren, M.
Ebenstein, W. L.
Ebke, J.
Eckweiler, S.
Edson, W.
Edwards, C. A.
Edwards, N. C.
Ehrenfeld, W.
Eifert, T.
Eigen, G.
Einsweiler, K.
Eisenhandler, E.
Ekelof, T.
El Kacimi, M.
Ellert, M.
Elles, S.
Ellinghaus, F.
Ellis, K.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Emeliyanov, D.
Engelmann, R.
Engl, A.
Epp, B.
Erdmann, J.
Ereditato, A.
Eriksson, D.
Ernst, J.
Ernst, M.
Ernwein, J.
Errede, D.
Errede, S.
Ertel, E.
Escalier, M.
Esch, H.
Escobar, C.
Espinal Curull, X.
Esposito, B.
Etienne, F.
Etienvre, A. I.
Etzion, E.
Evangelakou, D.
Evans, H.
Fabbri, L.
Fabre, C.
Fakhrutdinov, R. M.
Falciano, S.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farley, J.
Farooque, T.
Farrell, S.
Farrington, S. M.
Farthouat, P.
Fassi, F.
Fassnacht, P.
Fassouliotis, D.
Fatholahzadeh, B.
Favareto, A.
Fayard, L.
Federic, P.
Fedin, O. L.
Fedorko, W.
Fehling-Kaschek, M.
Feligioni, L.
Feng, C.
Feng, E. J.
Fenyuk, A. B.
Ferencei, J.
Fernando, W.
Ferrag, S.
Ferrando, J.
Ferrara, V.
Ferrari, A.
Ferrari, P.
Ferrari, R.
de Lima, D. E. Ferreira
Ferrer, A.
Ferrere, D.
Ferretti, C.
Parodi, A. Ferretto
Fiascaris, M.
Fiedler, F.
Filipcic, A.
Filthaut, F.
Fincke-Keeler, M.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, G.
Fisher, M. J.
Fitzgerald, E. A.
Flechl, M.
Fleck, I.
Fleischmann, P.
Fleischmann, S.
Fletcher, G. T.
Fletcher, G.
Flick, T.
Floderus, A.
Castillo, L. R. Flores
Bustos, A. C. Florez
Flowerdew, M. J.
Martin, T. Fonseca
Formica, A.
Forti, A.
Fortin, D.
Fournier, D.
Fowler, A. J.
Fox, H.
Francavilla, P.
Franchini, M.
Franchino, S.
Francis, D.
Frank, T.
Franklin, M.
Franz, S.
Fraternali, M.
Fratina, S.
French, S. T.
Friedrich, C.
Friedrich, F.
Froidevaux, D.
Frost, J. A.
Fukunaga, C.
Torregrosa, E. Fullana
Fulsom, B. G.
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gadatsch, S.
Gadfort, T.
Gadomski, S.
Gagliardi, G.
Gagnon, P.
Galea, C.
Galhardo, B.
Gallas, E. J.
Gallo, V.
Gallop, B. J.
Gallus, P.
Gan, K. K.
Gao, Y. S.
Gaponenko, A.
Walls, F. M. Garay
Garberson, F.
Garcia-Sciveres, M.
Garcia, C.
Garcia Navarro, J. E.
Gardner, R. W.
Garelli, N.
Garonne, V.
Gatti, C.
Gaudio, G.
Gaur, B.
Gauthier, L.
Gauzzi, P.
Gavrilenko, I. L.
Gay, C.
Gaycken, G.
Gazis, E. N.
Ge, P.
Gecse, Z.
Gee, C. N. P.
Geerts, D. A. A.
Geich-Gimbel, Ch
Gellerstedt, K.
Gemme, C.
Gemmell, A.
Genest, M. H.
Gentile, S.
George, M.
George, S.
Gerbaudo, D.
Gerlach, P.
Gershon, A.
Geweniger, C.
Ghazlane, H.
Ghodbane, N.
Giacobbe, B.
Giagu, S.
Giangiobbe, V.
Gianotti, F.
Gibbard, B.
Gibson, A.
Gibson, S. M.
Gilchriese, M.
Gillam, T. P. S.
Gillberg, D.
Gillman, A. R.
Gingrich, D. M.
Ginzburg, J.
Giokaris, N.
Giordani, M. P.
Giordano, R.
Giorgi, F. M.
Giovannini, P.
Giraud, P. F.
Giugni, D.
Giunta, M.
Gjelsten, B. K.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glazov, A.
Glonti, G. L.
Goddard, J. R.
Godfrey, J.
Godlewski, J.
Goebel, M.
Goepfert, T.
Goeringer, C.
Goessling, C.
Goldfarb, S.
Golling, T.
Golubkov, D.
Gomes, A.
Fajardo, L. S. Gomez
Goncalo, R.
Da Costa, J. Goncalves Pinto Firmino
Gonella, L.
Gonzalez de la Hoz, S.
Gonzalez Parra, G.
Gonzalez Silva, M. L.
Gonzalez-Sevilla, S.
Goodson, J. J.
Goossens, L.
Gorbounov, P. A.
Gordon, H. A.
Gorelov, I.
Gorfine, G.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Goshaw, A. T.
Gosselink, M.
Gostkin, M. I.
Eschrich, I. Gough
Gouighri, M.
Goujdami, D.
Goulette, M. P.
Goussiou, A. G.
Goy, C.
Gozpinar, S.
Grabowska-Bold, I.
Grafstroem, P.
Grahn, K-J
Gramstad, E.
Grancagnolo, F.
Grancagnolo, S.
Grassi, V.
Gratchev, V.
Gray, H. M.
Gray, J. A.
Graziani, E.
Grebenyuk, O. G.
Greenshaw, T.
Greenwood, Z. D.
Gregersen, K.
Gregor, I. M.
Grenier, P.
Griffiths, J.
Grigalashvili, N.
Grillo, A. A.
Grimm, K.
Grinstein, S.
Gris, Ph
Grishkevich, Y. V.
Grivaz, J-F
Grohsjean, A.
Gross, E.
Grosse-Knetter, J.
Groth-Jensen, J.
Grybel, K.
Guest, D.
Gueta, O.
Guicheney, C.
Guido, E.
Guillemin, T.
Guindon, S.
Gul, U.
Gunther, J.
Guo, B.
Guo, J.
Gutierrez, P.
Guttman, N.
Gutzwiller, O.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haas, S.
Haber, C.
Hadavand, H. K.
Hadley, D. R.
Haefner, P.
Hajduk, Z.
Hakobyan, H.
Hall, D.
Halladjian, G.
Hamacher, K.
Hamal, P.
Hamano, K.
Hamer, M.
Hamilton, A.
Hamilton, S.
Han, L.
Hanagaki, K.
Hanawa, K.
Hance, M.
Handel, C.
Hanke, P.
Hansen, J. R.
Hansen, J. B.
Hansen, J. D.
Hansen, P. H.
Hansson, P.
Hara, K.
Harenberg, T.
Harkusha, S.
Harper, D.
Harrington, R. D.
Harris, O. M.
Hartert, J.
Hartjes, F.
Haruyama, T.
Harvey, A.
Hasegawa, S.
Hasegawa, Y.
Hassani, S.
Haug, S.
Hauschild, M.
Hauser, R.
Havranek, M.
Hawkes, C. M.
Hawkings, R. J.
Hawkins, A. D.
Hayakawa, T.
Hayashi, T.
Hayden, D.
Hays, C. P.
Hayward, H. S.
Haywood, S. J.
Head, S. J.
Heck, T.
Hedberg, V.
Heelan, L.
Heim, S.
Heinemann, B.
Heisterkamp, S.
Helary, L.
Heller, C.
Heller, M.
Hellman, S.
Hellmich, D.
Helsens, C.
Henderson, R. C. W.
Henke, M.
Henrichs, A.
Correia, A. M. Henriques
Henrot-Versille, S.
Hensel, C.
Hernandez, C. M.
Hernandez Jimenez, Y.
Herrberg, R.
Herten, G.
Hertenberger, R.
Hervas, L.
Hesketh, G. G.
Hessey, N. P.
Hickling, R.
Higon-Rodriguez, E.
Hill, J. C.
Hiller, K. H.
Hillert, S.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hirose, M.
Hirsch, F.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoffman, J.
Hoffmann, D.
Hohlfeld, M.
Holmgren, S. O.
Holy, T.
Holzbauer, J. L.
Hong, T. M.
van Huysduynen, L. Hooft
Horner, S.
Hostachy, J-Y
Hou, S.
Hoummada, A.
Howard, J.
Howarth, J.
Hrabovsky, M.
Hristova, I.
Hrivnac, J.
Hryn'ova, T.
Hsu, P. J.
Hsu, S-C
Hu, D.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huelsing, T. A.
Huettmann, A.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Huhtinen, M.
Hurwitz, M.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibbotson, M.
Ibragimov, I.
Iconomidou-Fayard, L.
Idarraga, J.
Iengo, P.
Igonkina, O.
Ikegami, Y.
Ikematsu, K.
Ikeno, M.
Iliadis, D.
Ilic, N.
Ince, T.
Ioannou, P.
Iodice, M.
Iordanidou, K.
Ippolito, V.
Irles Quiles, A.
Isaksson, C.
Ishino, M.
Ishitsuka, M.
Ishmukhametov, R.
Issever, C.
Istin, S.
Ivashin, A. V.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jackson, B.
Jackson, J. N.
Jackson, P.
Jaekel, M. R.
Jain, V.
Jakobs, K.
Jakobsen, S.
Jakoubek, T.
Jakubek, J.
Jamin, D. O.
Jana, D. K.
Jansen, E.
Jansen, H.
Janssen, J.
Jantsch, A.
Janus, M.
Jared, R. C.
Jarlskog, G.
Jeanty, L.
Plante, I. Jen-La
Jeng, G-Y
Jennens, D.
Jenni, P.
Loevschall-Jensen, A. E.
Jez, P.
Jezequel, S.
Jha, M. K.
Ji, H.
Ji, W.
Jia, J.
Jiang, Y.
Belenguer, M. Jimenez
Jin, S.
Jinnouchi, O.
Joergensen, M. D.
Joffe, D.
Johansen, M.
Johansson, K. E.
Johansson, P.
Johnert, S.
Johns, K. A.
Jon-And, K.
Jones, G.
Jones, R. W. L.
Jones, T. J.
Joram, C.
Jorge, P. M.
Joshi, K. D.
Jovicevic, J.
Jovin, T.
Ju, X.
Jung, C. A.
Jungst, R. M.
Juranek, V.
Jussel, P.
Juste Rozas, A.
Kabana, S.
Kaci, M.
Kaczmarska, A.
Kadlecik, P.
Kado, M.
Kagan, H.
Kagan, M.
Kajomovitz, E.
Kalinin, S.
Kalinovskaya, L. V.
Kama, S.
Kanaya, N.
Kaneda, M.
Kaneti, S.
Kanno, T.
Kantserov, V. A.
Kanzaki, J.
Kaplan, B.
Kapliy, A.
Kar, D.
Karagounis, M.
Karakostas, K.
Karnevskiy, M.
Kartvelishvili, V.
Karyukhin, A. N.
Kashif, L.
Kasieczka, G.
Kass, R. D.
Kastanas, A.
Kataoka, Y.
Katzy, J.
Kaushik, V.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kazama, S.
Kazanin, V. F.
Kazarinov, M. Y.
Keeler, R.
Keener, P. T.
Kehoe, R.
Keil, M.
Keller, J. S.
Kenyon, M.
Keoshkerian, H.
Kepka, O.
Kerschen, N.
Kersevan, B. P.
Kersten, S.
Kessoku, K.
Keung, J.
Khalil-zada, F.
Khandanyan, H.
Khanov, A.
Kharchenko, D.
Khodinov, A.
Khomich, A.
Khoo, T. J.
Khoriauli, G.
Khoroshilov, A.
Khovanskiy, V.
Khramov, E.
Khubua, J.
Kim, H.
Kim, S. H.
Kimura, N.
Kind, O.
King, B. T.
King, M.
King, R. S. B.
Kirk, J.
Kiryunin, A. E.
Kishimoto, T.
Kisielewska, D.
Kitamura, T.
Kittelmann, T.
Kiuchi, K.
Kladiva, E.
Klein, M.
Klein, U.
Kleinknecht, K.
Klemetti, M.
Klier, A.
Klimek, P.
Klimentov, A.
Klingenberg, R.
Klinger, J. A.
Klinkby, E. B.
Klioutchnikova, T.
Klok, P. F.
Klous, S.
Kluge, E-E
Kluge, T.
Kluit, P.
Kluth, S.
Kneringer, E.
Knoops, E. B. F. G.
Knue, A.
Ko, B. R.
Kobayashi, T.
Kobel, M.
Kocian, M.
Kodys, P.
Koeneke, K.
Koenig, A. C.
Koenig, S.
Koepke, L.
Koetsveld, F.
Koevesarki, P.
Koffas, T.
Koffeman, E.
Kogan, L. A.
Kohlmann, S.
Kohn, F.
Kohout, Z.
Kohriki, T.
Koi, T.
Kolanoski, H.
Kolesnikov, V.
Koletsou, I.
Koll, J.
Komar, A. A.
Komori, Y.
Kondo, T.
Kono, T.
Kononov, A. I.
Konoplich, R.
Konstantinidis, N.
Kopeliansky, R.
Koperny, S.
Kopp, A. K.
Korcyl, K.
Kordas, K.
Korn, A.
Korol, A.
Korolkov, I.
Korolkova, E. V.
Korotkov, V. A.
Kortner, O.
Kortner, S.
Kostyukhin, V. V.
Kotov, S.
Kotov, V. M.
Kotwal, A.
Kourkoumelis, C.
Kouskoura, V.
Koutsman, A.
Kowalewski, R.
Kowalski, T. Z.
Kozanecki, W.
Kozhin, A. S.
Kral, V.
Kramarenko, V. A.
Kramberger, G.
Krasny, M. W.
Krasznahorkay, A.
Kraus, J. K.
Krauss, F.
Kravchenko, A.
Kreiss, S.
Krejci, F.
Kretzschmar, J.
Kreutzfeldt, K.
Krieger, N.
Krieger, P.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Krueger, H.
Kruker, T.
Krumnack, N.
Krumshteyn, Z. V.
Kruse, M. K.
Kubota, T.
Kuday, S.
Kuehn, S.
Kugel, A.
Kuhl, T.
Kukhtin, V.
Kulchitsky, Y.
Kuleshov, S.
Kuna, M.
Kunkle, J.
Kupco, A.
Kurashige, H.
Kurata, M.
Kurochkin, Y. A.
Kus, V.
Kuwertz, E. S.
Kuze, M.
Kvita, J.
Kwee, R.
La Rosa, A.
La Rotonda, L.
Labarga, L.
Lablak, S.
Lacasta, C.
Lacava, F.
Lacey, J.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Laisne, E.
Lambourne, L.
Lampen, C. L.
Lampl, W.
Lancon, E.
Landgraf, U.
Landon, M. P. J.
Lang, V. S.
Lange, C.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
Lanza, A.
Laplace, S.
Lapoire, C.
Laporte, J. F.
Lari, T.
Larner, A.
Lassnig, M.
Laurelli, P.
Lavorini, V.
Lavrijsen, W.
Laycock, P.
Le Dortz, O.
Le Guirriec, E.
Le Menedeu, E.
LeCompte, T.
Ledroit-Guillon, F.
Lee, H.
Lee, J. S. H.
Lee, S. C.
Lee, L.
Lefebvre, M.
Legendre, M.
Legger, F.
Leggett, C.
Lehmacher, M.
Miotto, G. Lehmann
Leister, A. G.
Leite, Ma L.
Leitner, R.
Lellouch, D.
Lemmer, B.
Lendermann, V.
Leney, K. J. C.
Lenz, T.
Lenzen, G.
Lenzi, B.
Leonhardt, K.
Leontsinis, S.
Lepold, F.
Leroy, C.
Lessard, J-R
Lester, C. G.
Lester, C. M.
Leveque, J.
Levin, D.
Levinson, L. J.
Lewis, A.
Lewis, G. H.
Leyko, A. M.
Leyton, M.
Li, B.
Li, B.
Li, H.
Li, H. L.
Li, S.
Li, X.
Liang, Z.
Liao, H.
Liberti, B.
Lichard, P.
Lie, K.
Liebig, W.
Limbach, C.
Limosani, A.
Limper, M.
Lin, S. C.
Linde, F.
Linnemann, J. T.
Lipeles, E.
Lipniacka, A.
Liss, T. M.
Lissauer, D.
Lister, A.
Litke, A. M.
Liu, D.
Liu, J. B.
Liu, L.
Liu, M.
Liu, Y.
Livan, M.
Livermore, S. S. A.
Lleres, A.
Llorente Merino, J.
Lloyd, S. L.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Loddenkoetter, T.
Loebinger, F. K.
Loginov, A.
Loh, C. W.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Lombardo, V. P.
Long, R. E.
Lopes, L.
Mateos, D. Lopez
Lorenz, J.
Martinez, N. Lorenzo
Losada, M.
Loscutoff, P.
Lo Sterzo, F.
Losty, M. J.
Lou, X.
Lounis, A.
Loureiro, K. F.
Love, J.
Love, P. A.
Lowe, A. J.
Lu, F.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Ludwig, D.
Ludwig, I.
Ludwig, J.
Luehring, F.
Lukas, W.
Luminari, L.
Lund, E.
Lund-Jensen, B.
Lundberg, B.
Lundberg, J.
Lundberg, O.
Lundquist, J.
Lungwitz, M.
Lynn, D.
Lytken, E.
Ma, H.
Ma, L. L.
Maccarrone, G.
Macchiolo, A.
Macek, B.
Machado Miguens, J.
Macina, D.
Mackeprang, R.
Madar, R.
Madaras, R. J.
Maddocks, H. J.
Mader, W. F.
Madsen, A. K.
Maeno, M.
Maeno, T.
Maettig, P.
Maettig, S.
Magnoni, L.
Magradze, E.
Mahboubi, K.
Mahlstedt, J.
Mahmoud, S.
Mahout, G.
Maiani, C.
Maidantchik, C.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Mal, P.
Malaescu, B.
Malecki, Pa
Malecki, P.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Malone, C.
Maltezos, S.
Malyshev, V.
Malyukov, S.
Mamuzic, J.
Manabe, A.
Mandelli, L.
Mandic, I.
Mandrysch, R.
Maneira, J.
Manfredini, A.
Manhaes de Andrade Filho, L.
Ramos, J. A. Manjarres
Mann, A.
Manning, P. M.
Manousakis-Katsikakis, A.
Mansoulie, B.
Mantifel, R.
Mapelli, A.
Mapelli, L.
March, L.
Marchand, J. F.
Marchese, F.
Marchiori, G.
Marcisovsky, M.
Marino, C. P.
Marroquim, F.
Marshall, Z.
Marti, L. F.
Marti-Garcia, S.
Martin, B.
Martin, B.
Martin, J. P.
Martin, T. A.
Martin, V. J.
Latour, B. Martin Dit
Martin-Haugh, S.
Martinez, H.
Martinez, M.
Outschoorn, V. Martinez
Martyniuk, A. C.
Marx, M.
Marzano, F.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Massa, I.
Massol, N.
Mastrandrea, P.
Mastroberardino, A.
Masubuchi, T.
Matsunaga, H.
Matsushita, T.
Mattravers, C.
Maurer, J.
Maxfield, S. J.
Maximov, D. A.
Mazini, R.
Mazur, M.
Mazzaferro, L.
Mazzanti, M.
Mc Donald, J.
Mc Kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
McCubbin, N. A.
McFarlane, K. W.
Mcfayden, J. A.
Mchedlidze, G.
Mclaughlan, T.
McMahon, S. J.
McPherson, R. A.
Meade, A.
Mechnich, J.
Mechtel, M.
Medinnis, M.
Meehan, S.
Meera-Lebbai, R.
Meguro, T.
Mehlhase, S.
Mehta, A.
Meier, K.
Meineck, C.
Meirose, B.
Melachrinos, C.
Garcia, B. R. Mellado
Meloni, F.
Navas, L. Mendoza
Meng, Z.
Mengarelli, A.
Menke, S.
Meoni, E.
Mercurio, K. M.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Merritt, H.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meyer, C.
Meyer, C.
Meyer, J-P
Meyer, J.
Meyer, J.
Michal, S.
Micu, L.
Middleton, R. P.
Migas, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikuz, M.
Miller, D. W.
Miller, R. J.
Mills, W. J.
Mills, C.
Milov, A.
Milstead, D. A.
Milstein, D.
Milutinovic-Dumbelovic, G.
Minaenko, A. A.
Minano Moya, M.
Minashvili, I. A.
Mincer, A. I.
Mindur, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mirabelli, G.
Mitrevski, J.
Mitsou, V. A.
Mitsui, S.
Miyagawa, P. S.
Mjornmark, J. U.
Moa, T.
Moeller, V.
Moenig, K.
Moeser, N.
Mohapatra, S.
Mohr, W.
Moles-Valls, R.
Molfetas, A.
Monk, J.
Monnier, E.
Montejo Berlingen, J.
Monticelli, F.
Monzani, S.
Moore, R. W.
Herrera, C. Mora
Moraes, A.
Morange, N.
Morel, J.
Moreno, D.
Moreno Llacer, M.
Morettini, P.
Morgenstern, M.
Morii, M.
Morley, A. K.
Mornacchi, G.
Morris, J. D.
Morvaj, L.
Moser, H. G.
Mosidze, M.
Moss, J.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Mueller, F.
Mueller, J.
Mueller, K.
Mueller, T. A.
Mueller, T.
Muenstermann, D.
Munwes, Y.
Murray, W. J.
Mussche, I.
Musto, E.
Myagkov, A. G.
Myska, M.
Nackenhorst, O.
Nadal, J.
Nagai, K.
Nagai, R.
Nagai, Y.
Nagano, K.
Nagarkar, A.
Nagasaka, Y.
Nagel, M.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakamura, T.
Nakano, I.
Namasivayam, H.
Nanava, G.
Napier, A.
Narayan, R.
Nash, M.
Nattermann, T.
Naumann, T.
Navarro, G.
Neal, H. A.
Nechaeva, P. Yu
Neep, T. J.
Negri, A.
Negri, G.
Negrini, M.
Nektarijevic, S.
Nelson, A.
Nelson, T. K.
Nemecek, S.
Nemethy, P.
Nepomuceno, A. A.
Nessi, M.
Neubauer, M. S.
Neumann, M.
Neusiedl, A.
Neves, R. M.
Nevski, P.
Newcomer, F. M.
Newman, P. R.
Nguyen, D. H.
Nguyen Thi Hong, V.
Nickerson, R. B.
Nicolaidou, R.
Nicquevert, B.
Niedercorn, F.
Nielsen, J.
Nikiforou, N.
Nikiforov, A.
Nikolaenko, V.
Nikolic-Audit, I.
Nikolics, K.
Nikolopoulos, K.
Nilsen, H.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nisius, R.
Nobe, T.
Nodulman, L.
Nomachi, M.
Nomidis, I.
Norberg, S.
Nordberg, M.
Novakova, J.
Nozaki, M.
Nozka, L.
Nuncio-Quiroz, A-E
Hanninger, G. Nunes
Nunnemann, T.
Nurse, E.
O'Brien, B. J.
O'Neil, D. C.
O'Shea, V.
Oakes, L. B.
Oakham, F. G.
Oberlack, H.
Ocariz, J.
Ochi, A.
Oda, S.
Odaka, S.
Odier, J.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohshima, T.
Okamura, W.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olariu, A.
Olchevski, A. G.
Pino, S. A. Olivares
Oliveira, M.
Damazio, D. Oliveira
Oliver Garcia, E.
Olivito, D.
Olszewski, A.
Olszowska, J.
Onofre, A.
Onyisi, P. U. E.
Oram, C. J.
Oreglia, Mj
Oren, Y.
Orestano, D.
Orlando, N.
Barrera, C. Oropeza
Orr, R. S.
Osculati, B.
Ospanov, R.
Osuna, C.
Otero y Garzon, G.
Ottersbach, J. P.
Ouchrif, M.
Ouellette, E. A.
Ould-Saada, F.
Ouraou, A.
Ouyang, Q.
Ovcharova, A.
Owen, M.
Owen, S.
Ozcan, V. E.
Ozturk, N.
Pacheco Pages, A.
Padilla Aranda, C.
Griso, S. Pagan
Paganis, E.
Pahl, C.
Paige, F.
Pais, P.
Pajchel, K.
Palacino, G.
Paleari, C. P.
Palestini, S.
Pallin, D.
Palma, A.
Palmer, J. D.
Pan, Y. B.
Panagiotopoulou, E.
Vazquez, J. G. Panduro
Pani, P.
Panikashvili, N.
Panitkin, S.
Pantea, D.
Papadelis, A.
Papadopoulou, Th D.
Paramonov, A.
Hernandez, D. Paredes
Park, W.
Parker, M. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pashapour, S.
Pasqualucci, E.
Passaggio, S.
Passeri, A.
Pastore, F.
Pastore, Fr
Pasztor, G.
Pataraia, S.
Patel, N. D.
Pater, J. R.
Patricelli, S.
Pauly, T.
Pearce, J.
Pedersen, M.
Pedraza Lopez, S.
Morales, M. I. Pedraza
Peleganchuk, S. V.
Pelikan, D.
Peng, H.
Penning, B.
Penson, A.
Penwell, J.
Cavalcanti, T. Perez
Codina, E. Perez
Perez Garcia-Estan, M. T.
Reale, V. Perez
Perini, L.
Pernegger, H.
Perrino, R.
Perrodo, P.
Peshekhonov, V. D.
Peters, K.
Peters, R. F. Y.
Petersen, B. A.
Petersen, J.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petrolo, E.
Petrucci, F.
Petschull, D.
Petteni, M.
Pezoa, R.
Phan, A.
Phillips, P. W.
Piacquadio, G.
Picazio, A.
Piccaro, E.
Piccinini, M.
Piec, S. M.
Piegaia, R.
Pignotti, D. T.
Pilcher, J. E.
Pilkington, A. D.
Pina, J.
Pinamonti, M.
Pinder, A.
Pinfold, J. L.
Pingel, A.
Pinto, B.
Pizio, C.
Pleier, M-A
Pleskot, V.
Plotnikova, E.
Plucinski, P.
Poblaguev, A.
Poddar, S.
Podlyski, F.
Poettgen, R.
Poggioli, L.
Pohl, D.
Pohl, M.
Polesello, G.
Policicchio, A.
Polifka, R.
Polini, A.
Poll, J.
Polychronakos, V.
Pomeroy, D.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciu, G. A.
Popovic, D. S.
Poppleton, A.
Bueso, X. Portell
Pospelov, G. E.
Pospisil, S.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Pozdnyakov, V.
Prabhu, R.
Pralavorio, P.
Pranko, A.
Prasad, S.
Pravahan, R.
Prell, S.
Pretzl, K.
Price, D.
Price, J.
Price, L. E.
Prieur, D.
Primavera, M.
Proissl, M.
Prokofiev, K.
Prokoshin, F.
Protopopescu, S.
Proudfoot, J.
Prudent, X.
Przybycien, M.
Przysiezniak, H.
Psoroulas, S.
Ptacek, E.
Pueschel, E.
Puldon, D.
Purohit, M.
Puzo, P.
Pylypchenko, Y.
Qian, J.
Quadt, A.
Quarrie, D. R.
Quayle, W. B.
Raas, M.
Radeka, V.
Radescu, V.
Radloff, P.
Ragusa, F.
Rahal, G.
Rahimi, A. M.
Rajagopalan, S.
Rammensee, M.
Rammes, M.
Randle-Conde, A. S.
Randrianarivony, K.
Rangel-Smith, C.
Rao, K.
Rauscher, F.
Rave, T. C.
Raymond, M.
Read, A. L.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Reinsch, A.
Reisinger, I.
Relich, M.
Rembser, C.
Ren, Z. L.
Renaud, A.
Rescigno, M.
Resconi, S.
Resende, B.
Reznicek, P.
Rezvani, R.
Richter, R.
Richter-Was, E.
Ridel, M.
Rieck, P.
Rijssenbeek, M.
Rimoldi, A.
Rinaldi, L.
Rios, R. R.
Ritsch, E.
Riu, I.
Rivoltella, G.
Rizatdinova, F.
Rizvi, E.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
EMRobinson, J.
Robson, A.
de Lima, J. G. Rocha
Roda, C.
Dos Santos, D. Roda
Roe, A.
Roe, S.
Rohne, O.
Rolli, S.
Romaniouk, A.
Romano, M.
Romeo, G.
Romero Adam, E.
Rompotis, N.
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, A.
Rose, M.
Rosenbaum, G. A.
Rosendahl, P. L.
Rosenthal, O.
Rosselet, L.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubbo, F.
Rubinskiy, I.
Ruckstuhl, N.
Rud, V. I.
Rudolph, C.
Rudolph, M. S.
Ruehr, F.
Ruiz-Martinez, A.
Rumyantsev, L.
Rurikova, Z.
Rusakovich, N. A.
Ruschke, A.
Rutherfoord, J. P.
Ruthmann, N.
Ruzicka, P.
Ryabov, Y. F.
Rybar, M.
Rybkin, G.
Ryder, N. C.
Saavedra, A. F.
Sadeh, I.
Sadrozinski, H. F-W
Sadykov, R.
Tehrani, F. Safai
Sakamoto, H.
Salamanna, G.
Salamon, A.
Saleem, M.
Salek, D.
Salihagic, D.
Salnikov, A.
Salt, J.
Ferrando, B. M. Salvachua
Salvatore, D.
Salvatore, F.
Salvucci, A.
Salzburger, A.
Sampsonidis, D.
Sanchez, A.
Sanchez Martinez, V.
Sandaker, H.
Sander, H. G.
Sanders, M. P.
Sandhoff, M.
Sandoval, T.
Sandoval, C.
Sandstroem, R.
Sankey, D. P. C.
Sansoni, A.
Rios, C. Santamarina
Santoni, C.
Santonico, R.
Santos, H.
Castillo, I. Santoyo
Sapp, K.
Saraiva, J. G.
Sarangi, T.
Sarkisyan-Grinbaum, E.
Sarrazin, B.
Sarri, F.
Sartisohn, G.
Sasaki, O.
Sasaki, Y.
Sasao, N.
Satsounkevitch, I.
Sauvage, G.
Sauvan, E.
Sauvan, J. B.
Savard, P.
Savinov, V.
Savu, D. O.
Sawyer, L.
Saxon, D. H.
Saxon, J.
Sbarra, C.
Sbrizzi, A.
Scannicchio, D. A.
Scarcella, M.
Schaarschmidt, J.
Schacht, P.
Schaefer, D.
Schaefer, U.
Schaelicke, A.
Schaepe, S.
Schaetzel, S.
Schaffer, A. C.
Schaile, D.
Schamberger, R. D.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Schernau, M.
Scherzer, M. I.
Schiavi, C.
Schieck, J.
Schioppa, M.
Schlenker, S.
Schmidt, E.
Schmieden, K.
Schmitt, C.
Schmitt, C.
Schmitt, S.
Schneider, B.
Schnellbach, Y. J.
Schnoor, U.
Schoeffel, L.
Schoening, A.
Schorlemmer, A. L. S.
Schott, M.
Schouten, D.
Schovancova, J.
Schram, M.
Schroeder, C.
Schroer, N.
Schultens, M. J.
Schultes, J.
Schultz-Coulon, H-C
Schulz, H.
Schumacher, M.
Schumm, B. A.
Schune, Ph
Schwartzman, A.
Schwegler, Ph
Schwemling, Ph
Schwienhorst, R.
Schwindling, J.
Schwindt, T.
Schwoerer, M.
Sciacca, F. G.
Scifo, E.
Sciolla, G.
Scott, W. G.
Searcy, J.
Sedov, G.
Sedykh, E.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidze, G.
Sekula, S. J.
Selbach, K. E.
Seliverstov, D. M.
Sellden, B.
Sellers, G.
Seman, M.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Serkin, L.
Serre, T.
Seuster, R.
Severini, H.
Sfyrla, A.
Shabalina, E.
Shamim, M.
Shan, L. Y.
Shank, J. T.
Shao, Q. T.
Shapiro, M.
Shatalov, P. B.
Shaw, K.
Sherwood, P.
Shimizu, S.
Shimojima, M.
Shin, T.
Shiyakova, M.
Shmeleva, A.
Shochet, M. J.
Short, D.
Shrestha, S.
Shulga, E.
Shupe, M. A.
Sicho, P.
Sidoti, A.
Siegert, F.
Sijacki, Dj
Silbert, O.
Silva, J.
Silver, Y.
Silverstein, D.
Silverstein, S. B.
Simak, V.
Simard, O.
Simic, Lj
Simion, S.
Simioni, E.
Simmons, B.
Simoniello, R.
Simonyan, M.
Sinervo, P.
Sinev, N. B.
Sipica, V.
Siragusa, G.
Sircar, A.
Sisakyan, A. N.
Sivoklokov, S. Yu
Sjolin, J.
Sjursen, T. B.
Skinnari, L. A.
Skottowe, H. P.
Skovpen, K.
Skubic, P.
Slater, M.
Slavicek, T.
Sliwa, K.
Smakhtin, V.
Smart, B. H.
Smestad, L.
Smirnov, S. Yu
Smirnov, Y.
Smirnova, L. N.
Smirnova, O.
Smith, B. C.
Smith, K. M.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snidero, G.
Snow, S. W.
Snow, J.
Snyder, S.
Sobie, R.
Sodomka, J.
Soffer, A.
Solans, C. A.
Solar, M.
Solc, J.
Soldatov, E. Yu
Soldevila, U.
Camillocci, E. Solfaroli
Solodkov, A. A.
Solovyanov, O. V.
Solovyev, V.
Soni, N.
Sood, A.
Sopko, V.
Sopko, B.
Sosebee, M.
Soualah, R.
Soueid, P.
Soukharev, A.
South, D.
Spagnolo, S.
Spano, F.
Spighi, R.
Spigo, G.
Spiwoks, R.
Spousta, M.
Spreitzer, T.
Spurlock, B.
St Denis, R. D.
Stahlman, J.
Stamen, R.
Stanecka, E.
Stanek, R. W.
Stanescu, C.
Stanescu-Bellu, M.
Stanitzki, M. M.
Stapnes, S.
Starchenko, E. A.
Stark, J.
Staroba, P.
Starovoitov, P.
Staszewski, R.
Staude, A.
Stavina, P.
Steele, G.
Steinbach, P.
Steinberg, P.
Stekl, I.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stern, S.
Stewart, G. A.
Stillings, J. A.
Stockton, M. C.
Stoebe, M.
Stoerig, K.
Stoicea, G.
Stonjek, S.
Strachota, P.
Stradling, A. R.
Straessner, A.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strang, M.
Strauss, E.
Strauss, M.
Strizenec, P.
Stroehmer, R.
Strom, D. M.
Strong, J. A.
Stroynowski, R.
Stugu, B.
Stumer, I.
Stupak, J.
Sturm, P.
Styles, N. A.
Soh, D. A.
Su, D.
Subramania, H. S.
Subramaniam, R.
Succurro, A.
Sugaya, Y.
Suhr, C.
Suk, M.
Sulin, V. V.
Sultansoy, S.
Sumida, T.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Susinno, G.
Sutton, M. R.
Suzuki, Y.
Suzuki, Y.
Svatos, M.
Swedish, S.
Swiatlowski, M.
Sykora, I.
Sykora, T.
Sanchez, J.
Ta, D.
Tackmann, K.
Taffard, A.
Tafirout, R.
Taiblum, N.
Takahashi, Y.
Takai, H.
Takashima, R.
Takeda, H.
Takeshita, T.
Takubo, Y.
Talby, M.
Talyshev, A.
Tam, J. Y. C.
Tamsett, M. C.
Tan, K. G.
Tanaka, J.
Tanaka, R.
Tanaka, S.
Tanaka, S.
Tanasijczuk, A. J.
Tani, K.
Tannoury, N.
Tapprogge, S.
Tardif, D.
Tarem, S.
Tarrade, F.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tassi, E.
Tayalati, Y.
Taylor, C.
Taylor, F. E.
Taylor, G. N.
Taylor, W.
Teinturier, M.
Teischinger, F. A.
Castanheira, M. Teixeira Dias
Teixeira-Dias, P.
Temming, K. K.
Ten Kate, H.
Teng, P. K.
Terada, S.
Terashi, K.
Terron, J.
Testa, M.
Teuscher, R. J.
Therhaag, J.
Theveneaux-Pelzer, T.
Thoma, S.
Thomas, J. P.
Thompson, E. N.
Thompson, P. D.
Thompson, P. D.
Thompson, A. S.
Thomsen, L. A.
Thomson, E.
Thomson, M.
Thong, W. M.
Thun, R. P.
Tian, F.
Tibbetts, M. J.
Tic, T.
Tikhomirov, V. O.
Tikhonov, Y. A.
Timoshenko, S.
Tiouchichine, E.
Tipton, P.
Tisserant, S.
Todorov, T.
Todorova-Nova, S.
Toggerson, B.
Tojo, J.
Tokar, S.
Tokushuku, K.
Tollefson, K.
Tomlinson, L.
Tomoto, M.
Tompkins, L.
Toms, K.
Tonoyan, A.
Topfel, C.
Topilin, N. D.
Torrence, E.
Torres, H.
Torro Pastor, E.
Toth, J.
Touchard, F.
Tovey, D. R.
Trefzger, T.
Tremblet, L.
Tricoli, A.
Trigger, I. M.
Trincaz-Duvoid, S.
Tripiana, M. F.
Triplett, N.
Trischuk, W.
Trocme, B.
Troncon, C.
Trottier-McDonald, M.
Trovatelli, M.
True, P.
Trzebinski, M.
Trzupek, A.
Tsarouchas, C.
Tseng, J. C-L
Tsiakiris, M.
Tsiareshka, P. V.
Tsionou, D.
Tsipolitis, G.
Tsiskaridze, S.
Tsiskaridze, V.
Tskhadadze, E. G.
Tsukerman, I. I.
Tsulaia, V.
Tsung, J-W
Tsuno, S.
Tsybychev, D.
Tua, A.
Tudorache, A.
Tudorache, V.
Tuggle, J. M.
Turala, M.
Turecek, D.
Cakir, I. Turk
Turra, R.
Tuts, P. M.
Tykhonov, A.
Tylmad, M.
Tyndel, M.
Tzanakos, G.
Uchida, K.
Ueda, I.
Ueno, R.
Ughetto, M.
Ugland, M.
Uhlenbrock, M.
Ukegawa, F.
Unal, G.
Undrus, A.
Unel, G.
Ungaro, F. C.
Unno, Y.
Urbaniec, D.
Urquijo, P.
Usai, G.
Vacavant, L.
Vacek, V.
Vachon, B.
Vahsen, S.
Valencic, N.
Valentinetti, S.
Valero, A.
Valery, L.
Valkar, S.
Valladolid Gallego, E.
Vallecorsa, S.
Valls Ferrer, J. A.
Van Berg, R.
Van der Deijl, P. C.
van der Geer, R.
van der Graaf, H.
Van der Leeuw, R.
van der Poel, E.
van der Ster, D.
van Eldik, N.
van Gemmeren, P.
Van Nieuwkoop, J.
van Vulpen, I.
Vanadia, M.
Vandelli, W.
Vaniachine, A.
Vankov, P.
Vannucci, F.
Vari, R.
Varnes, E. W.
Varol, T.
Varouchas, D.
Vartapetian, A.
Varvell, K. E.
Vassilakopoulos, V. I.
Vazeille, F.
Schroeder, T. Vazquez
Veloso, F.
Veneziano, S.
Ventura, A.
Ventura, D.
Venturi, M.
Venturi, N.
Vercesi, V.
Verducci, M.
Verkerke, W.
Vermeulen, J. C.
Vest, A.
Vetterli, M. C.
Vichou, I.
Vickey, T.
Boeriu, O. E. Vickey
Viehhauser, G. H. A.
Viel, S.
Villa, M.
Villaplana Perez, M.
Vilucchi, E.
Vincter, M. G.
Vinek, E.
Vinogradov, V. B.
Virzi, J.
Vitells, O.
Viti, M.
Vivarelli, I.
Vaque, F. Vives
Vlachos, S.
Vladoiu, D.
Vlasak, M.
Vogel, A.
Vokac, P.
Volpi, G.
Volpi, M.
Volpini, G.
Von der Schmitt, H.
von Radziewski, H.
von Toerne, E.
Vorobel, V.
Vorwerk, V.
Vos, M.
Voss, R.
Vossebeld, J. H.
Vranjes, N.
Milosavljevic, M. Vranjes
Vrba, V.
Vreeswijk, M.
Anh, T. Vu
Vuillermet, R.
Vukotic, I.
Vykydal, Z.
Wagner, W.
Wagner, P.
Wahlen, H.
Wahrmund, S.
Wakabayashi, J.
Walch, S.
Walder, J.
Walker, R.
Walkowiak, W.
Wall, R.
Waller, P.
Walsh, B.
Wang, C.
Wang, H.
Wang, H.
Wang, J.
Wang, J.
Wang, K.
Wang, R.
Wang, S. M.
Wang, T.
Wang, X.
Warburton, A.
Ward, C. P.
Wardrope, D. R.
Warsinsky, M.
Washbrook, A.
Wasicki, C.
Watanabe, I.
Watkins, P. M.
Watson, A. T.
Watson, I. J.
Watson, M. F.
Watts, G.
Watts, S.
Waugh, A. T.
Waugh, B. M.
Weber, M. S.
Webster, J. S.
Weidberg, A. R.
Weigell, P.
Weingarten, J.
Weiser, C.
Wells, P. S.
Wenaus, T.
Wendland, D.
Weng, Z.
Wengler, T.
Wenig, S.
Wermes, N.
Werner, M.
Werner, P.
Werth, M.
Wessels, M.
Wetter, J.
Weydert, C.
Whalen, K.
White, A.
White, M. J.
White, S.
Whitehead, S. R.
Whiteson, D.
Whittington, D.
Wicke, D.
Wickens, F. J.
Wiedenmann, W.
Wielers, M.
Wienemann, P.
Wiglesworth, C.
Wiik-Fuchs, L. A. M.
Wijeratne, P. A.
Wildauer, A.
Wildt, M. A.
Wilhelm, I.
Wilkens, H. G.
Will, J. Z.
Williams, E.
Williams, H. H.
Williams, S.
Willis, W.
Willocq, S.
Wilson, J. A.
Wilson, M. G.
Wilson, A.
Wingerter-Seez, I.
Winkelmann, S.
Winklmeier, F.
Wittgen, M.
Wittig, T.
Wittkowski, J.
Wollstadt, S. J.
Wolter, M. W.
Wolters, H.
Wong, W. C.
Wooden, G.
Wosiek, B. K.
Wotschack, J.
Woudstra, M. J.
Wozniak, K. W.
Wraight, K.
Wright, M.
Wrona, B.
Wu, S. L.
Wu, X.
Wu, Y.
Wulf, E.
Wynne, B. M.
Xella, S.
Xiao, M.
Xie, S.
Xu, C.
Xu, D.
Xu, L.
Yabsley, B.
Yacoob, S.
Yamada, M.
Yamaguchi, H.
Yamamoto, A.
Yamamoto, K.
Yamamoto, S.
Yamamura, T.
Yamanaka, T.
Yamauchi, K.
Yamazaki, T.
Yamazaki, Y.
Yan, Z.
Yang, H.
Yang, H.
Yang, U. K.
Yang, Y.
Yang, Z.
Yanush, S.
Yao, L.
Yasu, Y.
Yatsenko, E.
Ye, J.
Ye, S.
Yen, A. L.
Yilmaz, M.
Yoosoofmiya, R.
Yorita, K.
Yoshida, R.
Yoshihara, K.
Young, C.
Young, C. J.
Youssef, S.
Yu, D.
Yu, D. R.
Yu, J.
Yu, J.
Yuan, L.
Yurkewicz, A.
Zabinski, B.
Zaidan, R.
Zaitsev, A. M.
Zambito, S.
Zanello, L.
Zanzi, D.
Zaytsev, A.
Zeitnitz, C.
Zeman, M.
Zemla, A.
Zenin, O.
Zenis, T.
Zinonos, Z.
Zerwas, D.
della Porta, G. Zevi
Zhang, D.
Zhang, H.
Zhang, J.
Zhang, L.
Zhang, X.
Zhang, Z.
Zhao, L.
Zhao, Z.
Zhemchugov, A.
Zhong, J.
Zhou, B.
Zhou, N.
Zhou, Y.
Zhu, C. G.
Zhu, H.
Zhu, J.
Zhu, Y.
Zhuang, X.
Zhuravlov, V.
Zibell, A.
Zieminska, D.
Zimin, N. I.
Zimmermann, R.
Zimmermann, S.
Zimmermann, S.
Ziolkowski, M.
Zitoun, R.
Zivkovic, L.
Zmouchko, V. V.
Zobernig, G.
Zoccoli, A.
Nedden, M. zur
Zutshi, V.
Zwalinski, L.
CA ATLAS Collaboration
TI Measurement of hard double-parton interactions in W(-> lv) plus 2-jet
events at root s=7 TeV with the ATLAS detector
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID MULTIPARTON INTERACTIONS; 4-JET EVENTS; HADRONIC COLLISIONS; SCATTERING;
LHC; QCD; CALORIMETER; COLLIDER; PROBE
AB The production of W bosons in association with two jets in proton-proton collisions at a centre-of-mass energy of root s = 7 TeV has been analysed for the presence of double-parton interactions using data corresponding to an integrated luminosity of 36 pb(-1), collected with the ATLAS detector at the Large Hadron Collider. The fraction of events arising from double-parton interactions, f(DP)((D)), has been measured through the p(T) balance between the two jets and amounts to f(DP)((D)) = 0.08 +/- 0.01 (stat.) +/- 0.02 (sys.) for jets with transverse momentum p(T) > 20 GeV and rapidity vertical bar y vertical bar < 2.8. This corresponds to a measurement of the effective area parameter for hard double-parton interactions of sigma(eff) = 15 +/- 3 (stat.)(-3)(+5) (sys.) mb.
C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia.
[Edson, W.; Ernst, J.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA.
[Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey.
[Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey.
[Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey.
[Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey.
[Bella, L. Aperio; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, CNRS IN2P3, LAPP, Annecy Le Vieux, France.
[Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Brandt, A.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece.
[Alexopoulos, T.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece.
[Abdinov, O.; Huseynov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain.
[Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain.
[Borjanovic, I.; Krstic, J.; Milutinovic-Dumbelovic, G.; Popovic, D. S.; Sijacki, Dj; Simic, Lj] Univ Belgrade, Inst Phys, Belgrade, Serbia.
[Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia.
[Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hanawa, K.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Nikiforov, A.; Rieck, P.; Schulz, H.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany.
[Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland.
[Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey.
[Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey.
Istanbul Tech Univ, Dept Phys, Istanbul, Turkey.
[Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Grafstroem, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy.
[Bertin, A.; Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy.
[Abajyan, T.; Arutinov, D.; Backhaus, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A-E; Pohl, D.; Psoroulas, S.; Sarrazin, B.; Schaepe, S.; Schmieden, K.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J-W; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany.
[Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.; Zambito, S.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA.
[Caloba, L. P.; Leite, Ma L.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil.
[Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz Fora UFJF, Juiz De Fora, Brazil.
[do Vale, M. A. B.] Fed Univ Sao Joao Rei UFSJ, Sao Joao Del Rei, Brazil.
[Donadelli, M.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
[Adams, D. L.; Assamagan, K.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M-A; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Subramaniam, R.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C-M; Dinut, F.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania.
West Univ Timisoara, Timisoara, Romania.
[Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina.
[Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Franchino, S.; Franz, S.; Froidevaux, D.; Gabaldon, C.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Gillberg, D.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Meyer, J.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zwalinski, L.] CERN, Geneva, Switzerland.
[Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Plante, I. Jen-La; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, Mj; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Cottin, G.; Diaz, M. A.; Shan, L. Y.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile.
[Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile.
[Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Wang, J.; Xu, D.; Yao, L.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Han, L.; Jiang, Y.; Li, B.; Li, S.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Wu, Y.; Xu, C.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China.
[Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Feng, C.; Ge, P.; Meng, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Shandong, Peoples R China.
[Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France.
[Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Dodd, J.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Reale, V. Perez; Scherzer, M. I.; Spousta, M.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Alonso, A.; Blanchard, J-B; Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Loevschall-Jensen, A. E.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
[Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, INFN Grp Collegato Cosenza, I-87036 Arcavacata Di Rende, Italy.
[Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy.
[Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Cao, T.; Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA.
[Ahsan, M.; Izen, J. M.; Lou, X.; Namasivayam, H.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA.
[Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Hamburg, Germany.
[Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Zeuthen, Germany.
[Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany.
[Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany.
[Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Harrington, R. D.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Walls, F. M. Garay; Korn, A.; Martin, V. J.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland.
[Annovi, A.; Antonelli, M.; Bilokon, H.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Aad, G.; Ahles, F.; Amoroso, S.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Madar, R.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany.
[Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Bucci, F.; Clark, A.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Barberis, D.; Beccherle, R.; Caso, C.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy.
[Barberis, D.; Caso, C.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Chikovani, L.; Tskhadadze, E. G.] Ivane Javakhishvili Tbilisi State Univ, Elepter Andronikashvili Inst Phys, Tbilisi, Rep of Georgia.
[Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia.
[Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany.
[Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland.
[Bierwagen, K.; Blumenschein, U.; Brandt, O.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Hamer, M.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Peters, R. F. Y.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subat & Cosmol, Grenoble, France.
[Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS, IN2P3, Grenoble, France.
[Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France.
[Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[Addy, T. N.; Belloni, A.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA.
[Anders, G.; Dunford, M.; Geweniger, C.; Khomich, A.; Kluge, E-E; Lepold, F.; Meier, K.; Mueller, F.; Schultz-Coulon, H-C] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Anders, C. F.; Karnevskiy, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany.
[Kugel, A.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany.
[Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan.
[Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Epp, B.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria.
[Cinca, D.; Halladjian, G.; Limper, M.; Mallik, U.; Mandrysch, R.; Morange, N.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA.
[Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA.
[Aleksandrov, I. N.; Bardin, D. Y.; Bednyako, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia.
[Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan.
[Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan.
[Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan.
[Takashima, R.] Kyoto Univ, Kyoto 612, Japan.
[Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan.
[Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina.
[Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England.
[Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy.
[Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy.
[Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England.
[Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia.
[Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia.
[Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Snidero, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England.
[Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Vazquez, J. G. Panduro; Pastore, Fr; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England.
[Ochoa, M. I.; Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England.
[Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Schwemling, Ph; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Schwemling, Ph; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France.
[Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Schwemling, Ph; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS, IN2P3, Paris, France.
[Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden.
[Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain.
[Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Goeringer, C.; Hance, M.; Handel, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
[Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; EMRobinson, J.; Snow, S. W.; Tomlinson, L.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England.
[Aoun, S.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France.
[Aoun, S.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France.
[Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A; Klemetti, M.; Mantifel, R.; Mc Donald, J.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada.
[Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Qian, J.; Scheirich, D.; Thun, R. P.; Wilson, A.; Wooden, G.; Wu, Y.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Hauser, R.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Volpini, G.] Univ Milan, Ist Nazl Fis Nucl, Sez Milano, Milan, Italy.
[Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus.
[Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Arguin, J-F; Azuelos, G.; Banerjee, P.; Bouchami, J.; Dallaire, F.; Davies, M.; Gauthier, L.; Giunta, M.; Leroy, C.; Martin, J. P.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia.
[Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia.
[Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu; Smirnov, Y.; Soldatov, E. Yu; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia.
[Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany.
[Barillari, T.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Ince, T.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph; Stern, S.; Stonjek, S.; Vanadia, M.; Von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany.
[Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan.
[Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan.
[Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Univ Naples Federico II, Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy.
[Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Besjes, G. J.; Caron, S.; Chelstowska, M. A.; Dao, V.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands.
[Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands.
[Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands.
[Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA.
[Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. S.; Bogdanchikov, A.; Kazanin, V. F.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia.
[Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA.
[Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Lin, S. C.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan.
[Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Hamal, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic.
[Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA.
[Khalek, S. Abdel; Andari, N.; Auge, E.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J-F; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France.
[Khalek, S. Abdel; Andari, N.; Auge, E.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J-F; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France.
[Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway.
[Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England.
[Colombo, T.; Conta, C.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Colombo, T.; Conta, C.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy.
[Alison, J.; Brendlinger, K.; Degenhardt, J.; Dressnandt, N.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy.
[Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, I-56100 Pisa, Italy.
[Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal.
[Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain.
[Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain.
[Bohm, J.; Chudoba, J.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Augsten, K.; Gallus, P.; Holy, T.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Torregrosa, E. Fullana; Kodys, P.; Leitner, R.; Novakova, J.; Pleskot, V.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia.
[Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada.
[Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan.
[Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy.
[Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Messina, A.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] Univ Roma Tre, Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy.
[Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Fis, Rome, Italy.
[Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco.
[Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco.
[El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA Marrakech, Marrakech, Morocco.
[Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco.
[Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco.
[El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco.
[Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Ramos, J. A. Manjarres; Mansoulie, B.; Martinez, H.; Meyer, J-P; Mijovic, L.; Mountricha, E.; Nguyen Thi Hong, V.; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph; Schwindling, J.; Vranjes, N.; Xiao, M.] CEA Saclay Commissariat Energie Atom & Energ Alte, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France.
[Damiani, D. S.; Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S-C; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tsionou, D.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan.
[Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany.
[Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Sakamoto, H.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA.
[Astalos, R.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia.
[Assamagan, K.; Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa.
[Bristow, T. M.; Carrillo-Montoya, G. D.; Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa.
[Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Minano Moya, M.; Moa, T.; Papadelis, A.; Plucinski, P.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden.
[Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Minano Moya, M.; Moa, T.; Plucinski, P.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden.
[Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden.
[Ahmad, A.; Arfaoui, S.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Ahmad, A.; Arfaoui, S.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England.
[Bangert, A.; Black, C. W.; Cuthbert, C.; Jeng, G-Y; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, L.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Harpaz, S. Behar; Di Mattia, A.; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
[Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Ginzburg, J.; Gueta, O.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Bachas, K.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan.
[Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Krieger, P.; Orr, R. S.; Polifka, R.; Rezvani, R.; Rosenbaum, G. A.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Losty, M. J.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] York Univ, Toronto, ON M3J 2R7, Canada.
[Garcia, J. A. Benitez; Bustos, A. C. Florez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada.
[Hanagaki, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan.
[Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA.
[Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Farrell, S.; Eschrich, I. Gough; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Ist Nazl Fis Nucl, Grp Collegato Udine, I-33100 Udine, Italy.
[Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy.
[Acharya, B. S.] Univ Udine, I-33100 Udine, Italy.
[Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis Ambiente, I-33100 Udine, Italy.
[Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A. K.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain.
[Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain.
[Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain.
[Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain.
[Axen, D.; Fedorko, W.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada.
[Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada.
[Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan.
[Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
[Banerjee, Sw; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Castillo, L. R. Flores; Gutzwiller, O.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Fleischmann, P.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany.
[Barisonzi, M.; Becker, K.; Becks, K. H.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fleischmann, S.; Flick, T.; Gerlach, P.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany.
[Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Walch, S.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA.
[Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Biscarat, C.; Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France.
[Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England.
[Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal.
[Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, Lisbon, Portugal.
[Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
[Beloborodova, O.; Maximov, D. A.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal.
[Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy.
[Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey.
[Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dep Fis, Caparica, Portugal.
[do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal.
[Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa.
[Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany.
[Konoplich, R.] Manhattan Coll, New York, NY USA.
[Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China.
[Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan.
[Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal.
[Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary.
[Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy.
[Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland.
[Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia.
[Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa.
[Krauss, F.] Univ Durham, IPPP, Durham, England.
RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany.
RI Monzani, Simone/D-6328-2017; Nechaeva, Polina/N-1148-2015; Vykydal,
Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Vanadia,
Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria
Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; KHODINOV,
ALEKSANDR/D-6269-2015; Gauzzi, Paolo/D-2615-2009; Gerbaudo,
Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev,
Alexandre/B-8989-2017; Chekulaev, Sergey/O-1145-2015; Gorelov,
Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho,
Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Gonzalez de la Hoz,
Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan
Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones,
Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN,
VLADIMIR/N-2793-2015; Garcia, Jose /H-6339-2015; Della Pietra,
Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Negrini,
Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Prokoshin,
Fedor/E-2795-2012; Hansen, John/B-9058-2015; Grancagnolo,
Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva,
Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko,
Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Bosman,
Martine/J-9917-2014; Castro, Nuno/D-5260-2011; Wemans,
Andre/A-6738-2012; Demirkoz, Bilge/C-8179-2014; Gutierrez,
Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan,
Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen,
Morten/E-6847-2015; Mir, Lluisa-Maria/G-7212-2015; Riu,
Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Jakoubek,
Tomas/G-8644-2014; Lokajicek, Milos/G-7800-2014; Staroba,
Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Marcisovsky,
Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Kuday,
Sinan/C-8528-2014; Snesarev, Andrey/H-5090-2013; Tomasek,
Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba,
Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios,
Cibran/K-4686-2014; Tudorache, Valentina/D-2743-2012; Marti-Garcia,
Salvador/F-3085-2011; Shabalina, Elizaveta/M-2227-2013; Wolters,
Helmut/M-4154-2013; De, Kaushik/N-1953-2013; Warburton,
Andreas/N-8028-2013; Sukharev, Andrey/A-6470-2014; Lee,
Jason/B-9701-2014; Smirnova, Oxana/A-4401-2013; Fabbri,
Laura/H-3442-2012; Villa, Mauro/C-9883-2009; Nemecek,
Stanislav/G-5931-2014; Kepka, Oldrich/G-6375-2014; Moraes,
Arthur/F-6478-2010; Smirnov, Sergei/F-1014-2011; Conde Muino,
Patricia/F-7696-2011; Andreazza, Attilio/E-5642-2011; Boyko,
Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013;
Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli
Camillocci, Elena/J-1596-2012; Ferrando, James/A-9192-2012; Tudorache,
Alexandra/L-3557-2013; Alexa, Calin/F-6345-2010; Petrucci,
Fabrizio/G-8348-2012; Annovi, Alberto/G-6028-2012; Stoicea,
Gabriel/B-6717-2011; de Groot, Nicolo/A-2675-2009; Veneziano,
Stefano/J-1610-2012; Doyle, Anthony/C-5889-2009; Pina, Joao
/C-4391-2012; Brooks, William/C-8636-2013; Amorim, Antonio/C-8460-2013;
Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa,
Alessandro/I-1856-2013
OI Monzani, Simone/0000-0002-0479-2207; Vykydal,
Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793;
Vanadia, Marco/0000-0003-2684-276X; Ippolito,
Valerio/0000-0001-5126-1620; Mora Herrera, Maria
Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738;
KHODINOV, ALEKSANDR/0000-0003-3551-5808; Gauzzi,
Paolo/0000-0003-4841-5822; Gerbaudo, Davide/0000-0002-4463-0878;
Solodkov, Alexander/0000-0002-2737-8674; Zaitsev,
Alexandre/0000-0002-4961-8368; Gorelov, Igor/0000-0001-5570-0133;
Gladilin, Leonid/0000-0001-9422-8636; Carvalho,
Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676;
Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo,
Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan
Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones,
Roger/0000-0002-6427-3513; Vranjes Milosavljevic,
Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Della
Pietra, Massimo/0000-0003-4446-3368; Negrini,
Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X;
Prokoshin, Fedor/0000-0001-6389-5399; Hansen, John/0000-0002-8422-5543;
Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo,
stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645;
Tikhomirov, Vladimir/0000-0002-9634-0581; Bosman,
Martine/0000-0002-7290-643X; Castro, Nuno/0000-0001-8491-4376; Wemans,
Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan,
Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886;
Joergensen, Morten/0000-0002-6790-9361; Mir,
Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582;
Mikestikova, Marcela/0000-0003-1277-2596; Kuday,
Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos,
Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592;
Santamarina Rios, Cibran/0000-0002-9810-1816; Wolters,
Helmut/0000-0002-9588-1773; De, Kaushik/0000-0002-5647-4489; Warburton,
Andreas/0000-0002-2298-7315; Lee, Jason/0000-0002-2153-1519; Smirnova,
Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Villa,
Mauro/0000-0002-9181-8048; Moraes, Arthur/0000-0002-5157-5686; Smirnov,
Sergei/0000-0002-6778-073X; Conde Muino, Patricia/0000-0002-9187-7478;
Andreazza, Attilio/0000-0001-5161-5759; Boyko, Igor/0000-0002-3355-4662;
Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci,
Elena/0000-0002-5347-7764; Ferrando, James/0000-0002-1007-7816;
Petrucci, Fabrizio/0000-0002-5278-2206; Annovi,
Alberto/0000-0002-4649-4398; Stoicea, Gabriel/0000-0002-7511-4614;
Veneziano, Stefano/0000-0002-2598-2659; Doyle,
Anthony/0000-0001-6322-6195; Pina, Joao /0000-0001-8959-5044; Brooks,
William/0000-0001-6161-3570; Vanyashin, Aleksandr/0000-0002-0367-5666;
La Rosa, Alessandro/0000-0001-6291-2142
FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF,
Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil;
NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS,
China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT, Czech
Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark;
DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union;
ERC, European Union; NSRF, European Union; IN2P3-CNRS, France;
CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF,
Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF,
Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo
Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco;
FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW,
Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of
Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia;
ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain;
SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF,
Switzerland; Canton of Bern, Switzerland; NSC, Taiwan; TAEK, Turkey;
STFC, UK; Royal Society, UK; Leverhulme Trust, UK; DOE, USA; NSF, USA;
Canton of Geneva, Switzerland
FX We thank CERN for the very successful operation of the LHC, as well as
the support staff from our institutions without whom ATLAS could not be
operated efficiently. We acknowledge the support of ANPCyT, Argentina;
YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS,
Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI,
Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS,
Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and
Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union;
IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and
AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP
and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST,
Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland;
GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and
ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS
and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and
Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva,
Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and
Leverhulme Trust, UK; DOE and NSF, USA. The crucial computing support
from all WLCG partners is acknowledged gratefully, in particular from
CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark,
Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFNCNAF
(Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and
BNL (USA) and in the Tier-2 facilities worldwide.
NR 54
TC 58
Z9 58
U1 6
U2 180
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD MAR 25
PY 2013
VL 15
AR 033038
DI 10.1088/1367-2630/15/3/033038
PG 39
WC Physics, Multidisciplinary
SC Physics
GA 115HL
UT WOS:000316803100002
ER
PT J
AU Zhao, HC
Mello, B
Fu, BL
Chowdhury, H
Szalda, DJ
Tsai, MK
Grills, DC
Rochford, J
AF Zhao, Helen C.
Mello, Barbara
Fu, Bi-Li
Chowdhury, Hara
Szalda, David J.
Tsai, Ming-Kang
Grills, David C.
Rochford, Jonathan
TI Investigation of Monomeric versus Dimeric fac-Rhenium(I) Tricarbonyl
Systems Containing the Noninnocent 8-Oxyquinolate Ligand
SO ORGANOMETALLICS
LA English
DT Article
ID TRANSITION-METAL-COMPLEXES; ELECTROCATALYTIC REDUCTION; QUINONE
COMPLEXES; REDOX BEHAVIOR; EXCITED-STATES; CARBON-DIOXIDE; OXIDATION;
SEMIQUINONE; BOND; CO2
AB Synthesis and characterization of the dimeric [fac-Re(R-OQN)(CO)(3)](2) and monomeric fac-Re(R-OQN)(CO)(3)(CH3CN) complexes are reported where R = unsubstituted, 2-methyl, 5,7-dimethyl, or 5-fluoro and OQN = 8-oxyquinolate. Facile solvolysis of the dimeric systems is observed in coordinating media quantitatively yielding the monomer complexes in situ. Due to poor synthetic yields of the dimeric precursors, a direct synthetic strategy for isolation of the acetonitrile monomer complexes with an improved yield was developed. The fac-Re(CH3CN)(2)(CO)(3)Cl complex was easily generated in situ as a convenient intermediate to give the desired products in quantitative yield via reaction with the appropriately substituted 8-hydroxyquinoline and tetramethylammonium hydroxide base. Key to the success of this reaction is the precipitation of the product with triflic acid, whose conjugate triflate base is here noncoordinating. Furthermore, isolation of the solvated single crystal [fac-Re(FOQN)(CO)(3)](mu-Cl)[fac-Re(FHOQN)(CO)(3)]center dot CH3C6H5 has allowed a unique opportunity to access a possible reaction intermediate, giving insight into the formation of the [fac-Re(R-OQN)(CO)(3)](2) dimeric systems. Spectroscopic features (UV-vis, FTIR, and H-1 NMR) of both monomeric and dimeric structures are discussed in terms of the pi-electron-donating ability of the oxyquinolate ligand. Interpretation of these electronic effects and the associated steric properties is aided by single-crystal X-ray diffraction, electrochemical, and DFT/TD-DFT computational studies.
C1 [Zhao, Helen C.; Mello, Barbara; Chowdhury, Hara; Rochford, Jonathan] Univ Massachusetts, Dept Chem, Boston, MA 02125 USA.
[Szalda, David J.; Grills, David C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11793 USA.
[Fu, Bi-Li; Tsai, Ming-Kang] Natl Taiwan Normal Univ, Dept Chem, Taipei, Taiwan.
[Szalda, David J.] Baruch Coll, Dept Nat Sci, New York, NY 10010 USA.
RP Rochford, J (reprint author), Univ Massachusetts, Dept Chem, 100 Morrissey Blvd, Boston, MA 02125 USA.
EM Jonathan.Rochford@umb.edu
RI Grills, David/F-7196-2016;
OI Grills, David/0000-0001-8349-9158; Tsai, Ming-Kang/0000-0001-9189-5572
FU DOE, Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences [DE-AC02-98CH10886]; National Science
Council of Taiwan [99-2113-M-003-007-MY2, 101-2113-M-003-003-MY2]
FX J.R. thanks UMass Boston for financial support. The authors would like
to acknowledge Ken White and Noel Blackburn from the Office of
Educational Programs at BNL for their support through the U.S.
Department of Energy (DOE) Faculty and Student Team (FaST) program.
D.C.G. is supported by the DOE, Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences, under
contract #DE-AC02-98CH10886. B.L.F. and M.K.T. are supported by the
National Science Council of Taiwan (Grants 99-2113-M-003-007-MY2 and
101-2113-M-003-003-MY2) and are grateful to the National Center for
High-Performance Computing for computer time and facilities.
NR 62
TC 9
Z9 9
U1 0
U2 30
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD MAR 25
PY 2013
VL 32
IS 6
BP 1832
EP 1841
DI 10.1021/om301250v
PG 10
WC Chemistry, Inorganic & Nuclear; Chemistry, Organic
SC Chemistry
GA 114WN
UT WOS:000316773800035
ER
PT J
AU Mendenhall, MP
Pattie, RW
Bagdasarova, Y
Berguno, DB
Broussard, LJ
Carr, R
Currie, S
Ding, X
Filippone, BW
Garcia, A
Geltenbort, P
Hickerson, KP
Hoagland, J
Holley, AT
Hong, R
Ito, TM
Knecht, A
Liu, CY
Liu, JL
Makela, M
Mammei, RR
Martin, JW
Melconian, D
Moore, SD
Morris, CL
Galvan, AP
Picker, R
Pitt, ML
Plaster, B
Ramsey, JC
Rios, R
Saunders, A
Seestrom, SJ
Sharapov, EI
Sondheim, WE
Tatar, E
Vogelaar, RB
VornDick, B
Wrede, C
Young, AR
Zeck, BA
AF Mendenhall, M. P.
Pattie, R. W., Jr.
Bagdasarova, Y.
Berguno, D. B.
Broussard, L. J.
Carr, R.
Currie, S.
Ding, X.
Filippone, B. W.
Garcia, A.
Geltenbort, P.
Hickerson, K. P.
Hoagland, J.
Holley, A. T.
Hong, R.
Ito, T. M.
Knecht, A.
Liu, C. -Y.
Liu, J. L.
Makela, M.
Mammei, R. R.
Martin, J. W.
Melconian, D.
Moore, S. D.
Morris, C. L.
Galvan, A. Perez
Picker, R.
Pitt, M. L.
Plaster, B.
Ramsey, J. C.
Rios, R.
Saunders, A.
Seestrom, S. J.
Sharapov, E. I.
Sondheim, W. E.
Tatar, E.
Vogelaar, R. B.
VornDick, B.
Wrede, C.
Young, A. R.
Zeck, B. A.
CA UCNA Collaboration
TI Precision measurement of the neutron beta-decay asymmetry
SO PHYSICAL REVIEW C
LA English
DT Article
ID MULTIWIRE PROPORTIONAL CHAMBER; POLARIZED NEUTRONS; LOW-ENERGY;
SPECTROMETER; SIMULATION; TESTS
AB A new measurement of the neutron beta-decay asymmetry A(0) has been carried out by the UCNA Collaboration using polarized ultracold neutrons (UCNs) from the solid deuterium UCN source at the Los Alamos Neutron Science Center. Improvements in the experiment have led to reductions in both statistical and systematic uncertainties leading to A(0) = -0.11954(55)(stat)(98)(syst), corresponding to the ratio of axial-vector to vector coupling lambda = g(A)/g(V) = -1.2756(30). DOI: 10.1103/PhysRevC.87.032501
C1 [Mendenhall, M. P.; Carr, R.; Filippone, B. W.; Hickerson, K. P.; Liu, J. L.; Galvan, A. Perez; Picker, R.] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA.
[Pattie, R. W., Jr.; Hoagland, J.; Holley, A. T.; Moore, S. D.; VornDick, B.; Young, A. R.; Zeck, B. A.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Bagdasarova, Y.; Currie, S.; Hickerson, K. P.; Ito, T. M.; Makela, M.; Morris, C. L.; Ramsey, J. C.; Rios, R.; Saunders, A.; Seestrom, S. J.; Sondheim, W. E.; Zeck, B. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Bagdasarova, Y.; Garcia, A.; Hong, R.; Knecht, A.; Wrede, C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Berguno, D. B.; Ding, X.; Mammei, R. R.; Pitt, M. L.; Vogelaar, R. B.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA.
[Broussard, L. J.] Duke Univ, Dept Phys, Durham, NC 27708 USA.
[Geltenbort, P.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France.
[Holley, A. T.; Liu, C. -Y.] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA.
[Liu, J. L.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China.
[Martin, J. W.] Univ Winnipeg, Dept Phys, Winnipeg, MB R3B 2E9, Canada.
[Melconian, D.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA.
[Plaster, B.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA.
[Rios, R.; Tatar, E.] Idaho State Univ, Dept Phys, Pocatello, ID 83209 USA.
[Sharapov, E. I.] Joint Inst Nucl Res, Dubna 141980, Russia.
RP Mendenhall, MP (reprint author), CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA.
RI Melconian, Dan/A-1331-2011; Liu, Jianglai/P-2587-2015;
OI Melconian, Dan/0000-0002-0142-5428; Liu, Jianglai/0000-0002-4563-3157;
Makela, Mark/0000-0003-0592-3683; Currie, Scott/0000-0002-6164-7321;
Morris, Christopher/0000-0003-2141-0255; Ito,
Takeyasu/0000-0003-3494-6796
FU US Department of Energy, Office of Nuclear Physics [DE-FG02-08ER41557];
National Science Foundation [NSF-0855538, NSF-1205977, NSF-0653222]; Los
Alamos National Laboratory LDRD program; LANSCE division of Los Alamos
National Laboratory; AOT division of Los Alamos National Laboratory
FX This work was supported in part by the US Department of Energy, Office
of Nuclear Physics (DE-FG02-08ER41557), National Science Foundation
(NSF-0855538, NSF-1205977, NSF-0653222), and the Los Alamos National
Laboratory LDRD program. We gratefully acknowledge the support of LANSCE
and AOT divisions of Los Alamos National Laboratory.
NR 38
TC 33
Z9 33
U1 2
U2 29
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD MAR 25
PY 2013
VL 87
IS 3
AR 032501
DI 10.1103/PhysRevC.87.032501
PG 6
WC Physics, Nuclear
SC Physics
GA 113MW
UT WOS:000316673100002
ER
PT J
AU Pastore, S
Pieper, SC
Schiavilla, R
Wiringa, RB
AF Pastore, S.
Pieper, Steven C.
Schiavilla, R.
Wiringa, R. B.
TI Quantum Monte Carlo calculations of electromagnetic moments and
transitions in A <= 9 nuclei with meson-exchange currents derived from
chiral effective field theory
SO PHYSICAL REVIEW C
LA English
DT Article
ID FEW-BODY NUCLEI; LIGHT-NUCLEI; ENERGY-LEVELS; FORM-FACTORS; HE-3
AB Quantum Monte Carlo calculations of electromagnetic moments and transitions are reported for A <= 9 nuclei. The realistic Argonne upsilon(18) two-nucleon and Illinois-7 three-nucleon potentials are used to generate the nuclear wave functions. Contributions of two-body meson-exchange current (MEC) operators are included for magnetic moments and M1 transitions. The MEC operators have been derived in both a standard nuclear physics approach and a chiral effective field theory formulation with pions and nucleons including up to one-loop corrections. The two-body MEC contributions provide significant corrections and lead to very good agreement with experiment. Their effect is particularly pronounced in the A = 9, T = 3/2 systems, in which they provide up to similar to 20% (similar to 40%) of the total predicted value for the Li-9 (C-9) magnetic moment. DOI: 10.1103/PhysRevC.87.035503
C1 [Pastore, S.; Pieper, Steven C.; Wiringa, R. B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Schiavilla, R.] Jefferson Lab, Theory Ctr, Newport News, VA 23606 USA.
[Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA.
RP Pastore, S (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
EM pastore@anl.gov; spieper@anl.gov; schiavil@jlab.org; wiringa@anl.gov
RI Wiringa, Robert/M-4970-2015
FU Argonne Leadership Computing Facility (ALCF) via an INCITE grant; US
Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357,
DE-AC05-06OR23177]; NUCLEI [SciDAC-3]
FX R.S. would like to thank the T-2 group in the Theoretical Division at
LANL, and especially J. Carlson and S. Gandolfi, for the support and
warm hospitality extended to him during a sabbatical visit in Fall 2012,
during which part of this work was completed. The many-body calculations
were performed on the parallel computers of the Laboratory Computing
Resource Center, Argonne National Laboratory, the computers of the
Argonne Leadership Computing Facility (ALCF) via an INCITE grant, and
computers of the National Energy Research Scientific Computing Center
(NERSC) at Livermore. This work is supported by the US Department of
Energy, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357
(S.P., S.C.P., and R.B.W.) and No. DE-AC05-06OR23177 (R.S.) and under
the NUCLEI SciDAC-3 grant.
NR 50
TC 38
Z9 38
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD MAR 25
PY 2013
VL 87
IS 3
AR 035503
DI 10.1103/PhysRevC.87.035503
PG 15
WC Physics, Nuclear
SC Physics
GA 113MW
UT WOS:000316673100009
ER
PT J
AU Zhang, JL
Papenbrock, T
AF Zhang, Jialin
Papenbrock, T.
TI Rotational constants of multi-phonon bands in an effective theory for
deformed nuclei
SO PHYSICAL REVIEW C
LA English
DT Article
ID EFFECTIVE-FIELD THEORY; GAMMA-VIBRATIONAL STATES; EVEN-EVEN NUCLEI;
CHIRAL LAGRANGIANS; COLLECTIVE EXCITATIONS; INTRINSIC STRUCTURES;
ER-168; FORCES; INERTIA; SYSTEMS
AB We consider deformed nuclei within an effective theory that exploits the small ratio between rotational and vibrational excitations. For even-even nuclei, the effective theory predicts small changes in the rotational constants of bands built on multi-phonon excitations that are linear in the number of excited phonons. In Er-166,Er-168, this explains the main variations of the rotational constants of the two-phonon gamma vibrational bands. In Th-232, the effective theory correctly explains the trend that the rotational constants decrease with increasing spin of the bandhead. We also study the effective theory for deformed odd nuclei. Here, time-odd terms enter the Lagrangian and generate effective magnetic forces that yield the high level densities observed in such nuclei. DOI: 10.1103/PhysRevC.87.034323
C1 [Zhang, Jialin; Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Papenbrock, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RP Zhang, JL (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
OI Papenbrock, Thomas/0000-0001-8733-2849
FU US Department of Energy [DE-FG02-96ER40963, DE-AC05-00OR22725];
UT-Battelle, LLC (Oak Ridge National Laboratory)
FX The authors thank M. Caprio, W. Nazarewicz, and N. Pietralla for
discussions. This work has been supported by the US Department of Energy
under Grants No. DE-FG02-96ER40963 (University of Tennessee) and No.
DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory).
NR 65
TC 5
Z9 5
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD MAR 25
PY 2013
VL 87
IS 3
AR 034323
DI 10.1103/PhysRevC.87.034323
PG 8
WC Physics, Nuclear
SC Physics
GA 113MW
UT WOS:000316673100005
ER
PT J
AU Abelev, B
Adam, J
Adamova, D
Adare, AM
Aggarwal, MM
Rinella, GA
Agnello, M
Agocs, AG
Agostinelli, A
Ahammed, Z
Ahmad, N
Masoodi, AA
Ahn, SU
Ahn, SA
Ajaz, M
Akindinov, A
Aleksandrov, D
Alessandro, B
Alici, A
Alkin, A
Avina, EA
Alme, J
Alt, T
Altini, V
Altinpinar, S
Altsybeev, I
Andrei, C
Andronic, A
Anguelov, V
Anielski, J
Anson, C
Anticic, T
Antinori, F
Antonioli, P
Aphecetche, L
Appelshauser, H
Arbor, N
Arcelli, S
Arend, A
Armesto, N
Arnaldi, R
Aronsson, T
Arsene, IC
Arslandok, M
Asryan, A
Augustinus, A
Averbeck, R
Awes, TC
Aysto, J
Azmi, MD
Bach, M
Badala, A
Baek, YW
Bailhache, R
Bala, R
Ferroli, RB
Baldisseri, A
Pedrosa, FBD
Ban, J
Baral, RC
Barbera, R
Barile, F
Barnafoldi, GG
Barnby, LS
Barret, V
Bartke, J
Basile, M
Bastid, N
Basu, S
Bathen, B
Batigne, G
Batyunya, B
Baumann, C
Bearden, IG
Beck, H
Behera, NK
Belikov, I
Bellini, F
Bellwied, R
Belmont-Moreno, E
Bencedi, G
Beole, S
Berceanu, I
Bercuci, A
Berdnikov, Y
Berenyi, D
Bergognon, AAE
Berzano, D
Betev, L
Bhasin, A
Bhati, AK
Bhom, J
Bianchi, L
Bianchi, N
Bielcik, J
Bielcikova, J
Bilandzic, A
Bjelogrlic, S
Blanco, F
Blanco, F
Blau, D
Blume, C
Boccioli, M
Bottger, S
Bogdanov, A
Boggild, H
Bogolyubsky, M
Boldizsar, L
Bombara, M
Book, J
Borel, H
Borissov, A
Bossu, F
Botje, M
Botta, E
Braidot, E
Braun-Munzinger, P
Bregant, M
Breitner, T
Browning, TA
Broz, M
Brun, R
Bruna, E
Bruno, GE
Budnikov, D
Buesching, H
Bufalino, S
Buncic, P
Busch, O
Buthelezi, Z
Caffarri, D
Cai, X
Caines, H
Villar, EC
Camerini, P
Roman, VC
Romeo, GC
Carena, F
Carena, W
Carlin, N
Carminati, F
Diaz, AC
Castellanos, JC
Hernandez, JFC
Casula, EAR
Catanescu, V
Cavicchioli, C
Sanchez, CC
Cepila, J
Cerello, P
Chang, B
Chapeland, S
Charvet, JL
Chattopadhyay, S
Chattopadhyay, S
Chawla, I
Cherney, M
Cheshkov, C
Cheynis, B
Barroso, VC
Chinellato, DD
Chochula, P
Chojnacki, M
Choudhury, S
Christakoglou, P
Christensen, CH
Christiansen, P
Chujo, T
Chung, SU
Cicalo, C
Cifarelli, L
Cindolo, F
Cleymans, J
Coccetti, F
Colamaria, F
Colella, D
Collu, A
Balbastre, GC
del Valle, ZC
Connors, ME
Contin, G
Contreras, JG
Cormier, TM
Morales, YC
Cortese, P
Maldonado, IC
Cosentino, MR
Costa, F
Cotallo, ME
Crescio, E
Crochet, P
Alaniz, EC
Cuautle, E
Cunqueiro, L
Dainese, A
Dalsgaard, HH
Danu, A
Das, S
Das, I
Das, D
Das, K
Dash, A
Dash, S
De, S
de Barros, GOV
De Caro, A
de Cataldo, G
de Cuveland, J
De Falco, A
De Gruttola, D
Delagrange, H
Deloff, A
De Marco, N
Denes, E
De Pasquale, S
Deppman, A
Erasmo, GD
de Rooij, R
Corchero, MAD
Di Bari, D
Dietel, T
Di Giglio, C
Di Liberto, S
Di Mauro, A
Di Nezza, P
Divia, R
Djuvsland, O
Dobrin, A
Dobrowolski, T
Donigus, B
Dordic, O
Driga, O
Dubey, AK
Dubla, A
Ducroux, L
Dupieux, P
Majumdar, AKD
Majumdar, MRD
Elia, D
Emschermann, D
Engel, H
Erazmus, B
Erdal, HA
Espagnon, B
Estienne, M
Esumi, S
Evans, D
Eyyubova, G
Fabris, D
Faivre, J
Falchieri, D
Fantoni, A
Fasel, M
Fearick, R
Fehlker, D
Feldkamp, L
Felea, D
Feliciello, A
Fenton-Olsen, B
Feofilov, G
Tellez, AF
Ferretti, A
Festanti, A
Figiel, J
Figueredo, MAS
Filchagin, S
Finogeev, D
Fionda, FM
Fiore, EM
Floratos, E
Floris, M
Foertsch, S
Foka, P
Fokin, S
Fragiacomo, E
Francescon, A
Frankenfeld, U
Fuchs, U
Furget, C
Girard, MF
Gaardhoje, JJ
Gagliardi, M
Gago, A
Gallio, M
Gangadharan, DR
Ganoti, P
Garabatos, C
Garcia-Solis, E
Garishvili, I
Gerhard, J
Germain, M
Geuna, C
Gheata, M
Gheata, A
Ghosh, P
Gianotti, P
Girard, MR
Giubellino, P
Gladysz-Dziadus, E
Glassel, P
Gomez, R
Ferreiro, EG
Gonzalez-Trueba, LH
Gonzalez-Zamora, P
Gorbunov, S
Goswami, A
Gotovac, S
Graczykowski, LK
Grajcarek, R
Grelli, A
Grigoras, C
Grigoras, A
Grigoriev, V
Grigoryan, S
Grigoryan, A
Grinyov, B
Grion, N
Gros, P
Grosse-Oetringhaus, JF
Grossiord, JY
Grosso, R
Guber, F
Guernane, R
Guerzoni, B
Guilbaud, M
Gulbrandsen, K
Gulkanyan, H
Gunji, T
Gupta, A
Gupta, R
Haaland, O
Hadjidakis, C
Haiduc, M
Hamagaki, H
Hamar, G
Han, BH
Hanratty, LD
Hansen, A
Harmanova-Tothova, Z
Harris, JW
Hartig, M
Harton, A
Hasegan, D
Hatzifotiadou, D
Hayashi, S
Hayrapetyan, A
Heckel, ST
Heide, M
Helstrup, H
Herghelegiu, A
Corral, GH
Herrmann, N
Hess, BA
Hetland, KF
Hicks, B
Hippolyte, B
Hori, Y
Hristov, P
Hrivnacova, I
Huang, M
Humanic, TJ
Hwang, DS
Ichou, R
Ilkaev, R
Ilkiv, I
Inaba, M
Incani, E
Innocenti, GM
Innocenti, PG
Ippolitov, M
Irfan, M
Ivan, C
Ivanov, V
Ivanov, A
Ivanov, M
Ivanytskyi, O
Jacholkowski, A
Jacobs, PM
Jang, HJ
Janik, MA
Janik, R
Jayarathna, PHSY
Jena, S
Jha, DM
Bustamante, RTJ
Jones, PG
Jung, H
Jusko, A
Kaidalov, AB
Kalcher, S
Kalinak, P
Kalliokoski, T
Kalweit, A
Kang, JH
Kaplin, V
Uysal, AK
Karavichev, O
Karavicheva, T
Karpechev, E
Kazantsev, A
Kebschull, U
Keidel, R
Khan, MM
Khan, P
Khan, KH
Khan, SA
Khanzadeev, A
Kharlov, Y
Kileng, B
Kim, S
Kim, M
Kim, M
Kim, JS
Kim, JH
Kim, DW
Kim, B
Kim, DJ
Kim, T
Kirsch, S
Kisel, I
Kiselev, S
Kisiel, A
Klay, JL
Klein, J
Klein-Bosing, C
Kliemant, M
Kluge, A
Knichel, ML
Knospe, AG
Kohler, MK
Kollegger, T
Kolojvari, A
Kompaniets, M
Kondratiev, V
Kondratyeva, N
Konevskikh, A
Kour, R
Kovalenko, V
Kowalski, M
Kox, S
Meethaleveedu, GK
Kral, J
Kralik, I
Kramer, F
Kravcakova, A
Krawutschke, T
Krelina, M
Kretz, M
Krivda, M
Krizek, F
Krus, M
Kryshen, E
Krzewicki, M
Kucheriaev, Y
Kugathasan, T
Kuhn, C
Kuijer, PG
Kulakov, I
Kumar, J
Kurashvili, P
Kurepin, AB
Kurepin, A
Kuryakin, A
Kushpil, V
Kushpil, S
Kvaerno, H
Kweon, MJ
Kwon, Y
de Guevara, PL
Lakomov, I
Langoy, R
La Pointe, SL
Lara, C
Lardeux, A
La Rocca, P
Lea, R
Lechman, M
Lee, GR
Lee, KS
Lee, SC
Legrand, I
Lehnert, J
Lenhardt, M
Lenti, V
Leon, H
Monzon, IL
Vargas, HL
Levai, P
Li, S
Lien, J
Lietava, R
Lindal, S
Lindenstruth, V
Lippmann, C
Lisa, MA
Ljunggren, HM
Loenne, PI
Loggins, VR
Loginov, V
Lohner, D
Loizides, C
Loo, KK
Lopez, X
Torres, EL
Lovhoiden, G
Lu, XG
Luettig, P
Lunardon, M
Luo, J
Luparello, G
Luzzi, C
Ma, K
Ma, R
Madagodahettige-Don, DM
Maevskaya, A
Mager, M
Mahapatra, DP
Maire, A
Malaev, M
Cervantes, IM
Malinina, L
Mal'Kevich, D
Malzacher, P
Mamonov, A
Manceau, L
Mangotra, L
Manko, V
Manso, F
Manzari, V
Mao, Y
Marchisone, M
Mares, J
Margagliotti, GV
Margotti, A
Marin, A
Markert, C
Marquard, M
Martashvili, I
Martin, NA
Martinengo, P
Martinez, MI
Davalos, AM
Garcia, GM
Martynov, Y
Mas, A
Masciocchi, S
Masera, M
Masoni, A
Massacrier, L
Mastroserio, A
Matthews, ZL
Matyja, A
Mayer, C
Mazer, J
Mazzoni, MA
Meddi, F
Menchaca-Rocha, A
Perez, JM
Meres, M
Miake, Y
Mikhailov, K
Milano, L
Milosevic, J
Mischke, A
Mishra, AN
Miskowiec, D
Mitu, C
Mizuno, S
Mlynarz, J
Mohanty, B
Molnar, L
Zetina, LM
Monteno, M
Montes, E
Moon, T
Morando, M
De Godoy, DAM
Moretto, S
Morreale, A
Morsch, A
Muccifora, V
Mudnic, E
Muhuri, S
Mukherjee, M
Muller, H
Munhoz, MG
Musa, L
Musinsky, J
Musso, A
Nandi, BK
Nania, R
Nappi, E
Nattrass, C
Navin, S
Nayak, TK
Nazarenko, S
Nedosekin, A
Nicassio, M
Niculescu, M
Nielsen, BS
Niida, T
Nikolaev, S
Nikolic, V
Nikulin, S
Nikulin, V
Nilsen, BS
Nilsson, MS
Noferini, F
Nomokonov, P
Nooren, G
Novitzky, N
Nyanin, A
Nyatha, A
Nygaard, C
Nystrand, J
Ochirov, A
Oeschler, H
Oh, SK
Oh, S
Oleniacz, J
Da Silva, ACO
Oppedisano, C
Velasquez, AO
Oskarsson, A
Ostrowski, P
Otwinowski, J
Oyama, K
Ozawa, K
Pachmayer, Y
Pachr, M
Padilla, F
Pagano, P
Paic, G
Painke, F
Pajares, C
Pal, SK
Palaha, A
Palmeri, A
Papikyan, V
Pappalardo, GS
Park, WJ
Passfeld, A
Patalakha, DI
Paticchio, V
Paul, B
Pavlinov, A
Pawlak, T
Peitzmann, T
Da Costa, HP
De Oliveira, EP
Peresunko, D
Lara, CEP
Perini, D
Perrino, D
Peryt, W
Pesci, A
Peskov, V
Pestov, Y
Petracek, V
Petran, M
Petris, M
Petrov, P
Petrovici, M
Petta, C
Piano, S
Piccotti, A
Pikna, M
Pillot, P
Pinazza, O
Pinsky, L
Pitz, N
Piyarathna, DB
Planinic, M
Ploskon, M
Pluta, J
Pocheptsov, T
Pochybova, S
Podesta-Lerma, PLM
Poghosyan, MG
Polak, K
Polichtchouk, B
Pop, A
Porteboeuf-Houssais, S
Pospisil, V
Potukuchi, B
Prasad, SK
Preghenella, R
Prino, F
Pruneau, CA
Pshenichnov, I
Puddu, G
Punin, V
Putis, M
Putschke, J
Quercigh, E
Qvigstad, H
Rachevski, A
Rademakers, A
Raiha, TS
Rak, J
Rakotozafindrabe, A
Ramello, L
Reyes, AR
Raniwala, R
Raniwala, S
Rasanen, SS
Rascanu, BT
Rathee, D
Read, KF
Real, JS
Redlich, K
Reed, RJ
Rehman, A
Reichelt, P
Reicher, M
Renfordt, R
Reolon, AR
Reshetin, A
Rettig, F
Revol, JP
Reygers, K
Riccati, L
Ricci, RA
Richert, T
Richter, M
Riedler, P
Riegler, W
Riggi, F
Cahuantzi, MR
Manso, AR
Roed, K
Rohr, D
Rohrich, D
Romita, R
Ronchetti, F
Rosnet, P
Rossegger, S
Rossi, A
Roy, P
Roy, C
Montero, AJR
Rui, R
Russo, R
Ryabinkin, E
Rybicki, A
Sadovsky, S
Safarik, K
Sahoo, R
Sahu, PK
Saini, J
Sakaguchi, H
Sakai, S
Sakata, D
Salgado, CA
Salzwedel, J
Sambyal, S
Samsonov, V
Castro, XS
Sandor, L
Sandoval, A
Sano, M
Santagati, G
Santoro, R
Sarkamo, J
Scapparone, E
Scarlassara, F
Scharenberg, RP
Schiaua, C
Schicker, R
Schmidt, HR
Schmidt, C
Schuchmann, S
Schukraft, J
Schuster, T
Schutz, Y
Schwarz, K
Schweda, K
Scioli, G
Scomparin, E
Scott, PA
Scott, R
Segato, G
Selyuzhenkov, I
Senyukov, S
Seo, J
Serci, S
Serradilla, E
Sevcenco, A
Shabetai, A
Shabratova, G
Shahoyan, R
Sharma, S
Sharma, N
Rohni, S
Shigaki, K
Shtejer, K
Sibiriak, Y
Sicking, E
Siddhanta, S
Siemiarczuk, T
Silvermyr, D
Silvestre, C
Simatovic, G
Simonetti, G
Singaraju, R
Singh, R
Singha, S
Singhal, V
Sinha, T
Sinha, BC
Sitar, B
Sitta, M
Skaali, TB
Skjerdal, K
Smakal, R
Smirnov, N
Snellings, RJM
Sogaard, C
Soltz, R
Son, H
Song, M
Song, J
Soos, C
Soramel, F
Sputowska, I
Spyropoulou-Stassinaki, M
Srivastava, BK
Stachel, J
Stan, I
Stefanek, G
Steinpreis, M
Stenlund, E
Steyn, G
Stiller, JH
Stocco, D
Stolpovskiy, M
Strmen, P
Suaide, AAP
Vasquez, MAS
Sugitate, T
Suire, C
Sultanov, R
Sultanov, R
Susa, T
Symons, TJM
de Toledo, AS
Szarka, I
Szczepankiewicz, A
Szostak, A
Szymanski, M
Takahashi, J
Takaki, JDT
Peloni, AT
Martinez, AT
Tauro, A
Munoz, GT
Telesca, A
Terrevoli, C
Thader, J
Thomas, D
Tieulent, R
Timmins, AR
Tlusty, D
Toia, A
Torii, H
Toscano, L
Trubnikov, V
Truesdale, D
Trzaska, WH
Tsuji, T
Tumkin, A
Turrisi, R
Tveter, TS
Ulery, J
Ullaland, K
Ulrich, J
Uras, A
Urban, J
Urciuoli, GM
Usai, GL
Vajzer, M
Vala, M
Palomo, LV
Vallero, S
Vyvre, PV
van Leeuwen, M
Vannucci, L
Vargas, A
Varma, R
Vasileiou, M
Vasiliev, A
Vechernin, V
Veldhoen, M
Venaruzzo, M
Vercellin, E
Vergara, S
Vernet, R
Verweij, M
Vickovic, L
Viesti, G
Vilakazi, Z
Baillie, OV
Vinogradov, Y
Vinogradov, L
Vinogradov, A
Virgili, T
Viyogi, YP
Vodopyanov, A
Voloshin, K
Voloshin, S
Volpe, G
von Haller, B
Vorobyev, I
Vranic, D
Vrlakova, J
Vrlakova, J
Vyushin, A
Wagner, V
Wagner, B
Wan, R
Wang, D
Wang, M
Wang, Y
Wang, Y
Watanabe, K
Weber, M
Wessels, JP
Westerhoff, U
Wiechula, J
Wikne, J
Wilde, M
Wilk, A
Wilk, G
Williams, MCS
Windelband, B
Karampatsos, LX
Yaldo, CG
Yamaguchi, Y
Yang, H
Yang, S
Yasnopolskiy, S
Yi, J
Yin, Z
Yoo, IK
Yoon, J
Yu, W
Yuan, X
Yushmanov, I
Zaccolo, V
Zach, C
Zampolli, C
Zaporozhets, S
Zarochentsev, A
Zavada, P
Zaviyalov, N
Zbroszczyk, H
Zelnicek, P
Zgura, IS
Zhalov, M
Zhang, H
Zhang, X
Zhou, D
Zhou, Y
Zhou, F
Zhu, J
Zhu, H
Zhu, J
Zhu, X
Zichichi, A
Zimmermann, A
Zinovjev, G
Zoccarato, Y
Zynovyev, M
Zyzak, M
AF Abelev, B.
Adam, J.
Adamova, D.
Adare, A. M.
Aggarwal, M. M.
Rinella, G. Aglieri
Agnello, M.
Agocs, A. G.
Agostinelli, A.
Ahammed, Z.
Ahmad, N.
Masoodi, A. Ahmad
Ahn, S. U.
Ahn, S. A.
Ajaz, M.
Akindinov, A.
Aleksandrov, D.
Alessandro, B.
Alici, A.
Alkin, A.
Almaraz Avina, E.
Alme, J.
Alt, T.
Altini, V.
Altinpinar, S.
Altsybeev, I.
Andrei, C.
Andronic, A.
Anguelov, V.
Anielski, J.
Anson, C.
Anticic, T.
Antinori, F.
Antonioli, P.
Aphecetche, L.
Appelshaeuser, H.
Arbor, N.
Arcelli, S.
Arend, A.
Armesto, N.
Arnaldi, R.
Aronsson, T.
Arsene, I. C.
Arslandok, M.
Asryan, A.
Augustinus, A.
Averbeck, R.
Awes, T. C.
Aysto, J.
Azmi, M. D.
Bach, M.
Badala, A.
Baek, Y. W.
Bailhache, R.
Bala, R.
Ferroli, R. Baldini
Baldisseri, A.
Pedrosa, F. Baltasar Dos Santos
Ban, J.
Baral, R. C.
Barbera, R.
Barile, F.
Barnafoedi, G. G.
Barnby, L. S.
Barret, V.
Bartke, J.
Basile, M.
Bastid, N.
Basu, S.
Bathen, B.
Batigne, G.
Batyunya, B.
Baumann, C.
Bearden, I. G.
Beck, H.
Behera, N. K.
Belikov, I.
Bellini, F.
Bellwied, R.
Belmont-Moreno, E.
Bencedi, G.
Beole, S.
Berceanu, I.
Bercuci, A.
Berdnikov, Y.
Berenyi, D.
Bergognon, A. A. E.
Berzano, D.
Betev, L.
Bhasin, A.
Bhati, A. K.
Bhom, J.
Bianchi, L.
Bianchi, N.
Bielcik, J.
Bielcikova, J.
Bilandzic, A.
Bjelogrlic, S.
Blanco, F.
Blanco, F.
Blau, D.
Blume, C.
Boccioli, M.
Boettger, S.
Bogdanov, A.
Boggild, H.
Bogolyubsky, M.
Boldizsar, L.
Bombara, M.
Book, J.
Borel, H.
Borissov, A.
Bossu, F.
Botje, M.
Botta, E.
Braidot, E.
Braun-Munzinger, P.
Bregant, M.
Breitner, T.
Browning, T. A.
Broz, M.
Brun, R.
Bruna, E.
Bruno, G. E.
Budnikov, D.
Buesching, H.
Bufalino, S.
Buncic, P.
Busch, O.
Buthelezi, Z.
Caffarri, D.
Cai, X.
Caines, H.
Calvo Villar, E.
Camerini, P.
Canoa Roman, V.
Romeo, G. Cara
Carena, F.
Carena, W.
Carlin Filho, N.
Carminati, F.
Diaz, A. Casanova
Castellanos, J. Castillo
Hernandez, J. F. Castillo
Casula, E. A. R.
Catanescu, V.
Cavicchioli, C.
Ceballos Sanchez, C.
Cepila, J.
Cerello, P.
Chang, B.
Chapeland, S.
Charvet, J. L.
Chattopadhyay, S.
Chattopadhyay, S.
Chawla, I.
Cherney, M.
Cheshkov, C.
Cheynis, B.
Barroso, V. Chibante
Chinellato, D. D.
Chochula, P.
Chojnacki, M.
Choudhury, S.
Christakoglou, P.
Christensen, C. H.
Christiansen, P.
Chujo, T.
Chung, S. U.
Cicalo, C.
Cifarelli, L.
Cindolo, F.
Cleymans, J.
Coccetti, F.
Colamaria, F.
Colella, D.
Collu, A.
Balbastre, G. Conesa
del Valle, Z. Conesa
Connors, M. E.
Contin, G.
Contreras, J. G.
Cormier, T. M.
Morales, Y. Corrales
Cortese, P.
Cortes Maldonado, I.
Cosentino, M. R.
Costa, F.
Cotallo, M. E.
Crescio, E.
Crochet, P.
Cruz Alaniz, E.
Cuautle, E.
Cunqueiro, L.
Dainese, A.
Dalsgaard, H. H.
Danu, A.
Das, S.
Das, I.
Das, D.
Das, K.
Dash, A.
Dash, S.
De, S.
de Barros, G. O. V.
De Caro, A.
de Cataldo, G.
de Cuveland, J.
De Falco, A.
De Gruttola, D.
Delagrange, H.
Deloff, A.
De Marco, N.
Denes, E.
De Pasquale, S.
Deppman, A.
Erasmo, G. D.
de Rooij, R.
Diaz Corchero, M. A.
Di Bari, D.
Dietel, T.
Di Giglio, C.
Di Liberto, S.
Di Mauro, A.
Di Nezza, P.
Divia, R.
Djuvsland, O.
Dobrin, A.
Dobrowolski, T.
Doenigus, B.
Dordic, O.
Driga, O.
Dubey, A. K.
Dubla, A.
Ducroux, L.
Dupieux, P.
Majumdar, A. K. Dutta
Majumdar, M. R. Dutta
Elia, D.
Emschermann, D.
Engel, H.
Erazmus, B.
Erdal, H. A.
Espagnon, B.
Estienne, M.
Esumi, S.
Evans, D.
Eyyubova, G.
Fabris, D.
Faivre, J.
Falchieri, D.
Fantoni, A.
Fasel, M.
Fearick, R.
Fehlker, D.
Feldkamp, L.
Felea, D.
Feliciello, A.
Fenton-Olsen, B.
Feofilov, G.
Fernandez Tellez, A.
Ferretti, A.
Festanti, A.
Figiel, J.
Figueredo, M. A. S.
Filchagin, S.
Finogeev, D.
Fionda, F. M.
Fiore, E. M.
Floratos, E.
Floris, M.
Foertsch, S.
Foka, P.
Fokin, S.
Fragiacomo, E.
Francescon, A.
Frankenfeld, U.
Fuchs, U.
Furget, C.
Girard, M. Fusco
Gaardhoje, J. J.
Gagliardi, M.
Gago, A.
Gallio, M.
Gangadharan, D. R.
Ganoti, P.
Garabatos, C.
Garcia-Solis, E.
Garishvili, I.
Gerhard, J.
Germain, M.
Geuna, C.
Gheata, M.
Gheata, A.
Ghosh, P.
Gianotti, P.
Girard, M. R.
Giubellino, P.
Gladysz-Dziadus, E.
Glaessel, P.
Gomez, R.
Ferreiro, E. G.
Gonzalez-Trueba, L. H.
Gonzalez-Zamora, P.
Gorbunov, S.
Goswami, A.
Gotovac, S.
Graczykowski, L. K.
Grajcarek, R.
Grelli, A.
Grigoras, C.
Grigoras, A.
Grigoriev, V.
Grigoryan, S.
Grigoryan, A.
Grinyov, B.
Grion, N.
Gros, P.
Grosse-Oetringhaus, J. F.
Grossiord, J. -Y.
Grosso, R.
Guber, F.
Guernane, R.
Guerzoni, B.
Guilbaud, M.
Gulbrandsen, K.
Gulkanyan, H.
Gunji, T.
Gupta, A.
Gupta, R.
Haaland, O.
Hadjidakis, C.
Haiduc, M.
Hamagaki, H.
Hamar, G.
Han, B. H.
Hanratty, L. D.
Hansen, A.
Harmanova-Tothova, Z.
Harris, J. W.
Hartig, M.
Harton, A.
Hasegan, D.
Hatzifotiadou, D.
Hayashi, S.
Hayrapetyan, A.
Heckel, S. T.
Heide, M.
Helstrup, H.
Herghelegiu, A.
Herrera Corral, G.
Herrmann, N.
Hess, B. A.
Hetland, K. F.
Hicks, B.
Hippolyte, B.
Hori, Y.
Hristov, P.
Hrivnacova, I.
Huang, M.
Humanic, T. J.
Hwang, D. S.
Ichou, R.
Ilkaev, R.
Ilkiv, I.
Inaba, M.
Incani, E.
Innocenti, G. M.
Innocenti, P. G.
Ippolitov, M.
Irfan, M.
Ivan, C.
Ivanov, V.
Ivanov, A.
Ivanov, M.
Ivanytskyi, O.
Jacholkowski, A.
Jacobs, P. M.
Jang, H. J.
Janik, M. A.
Janik, R.
Jayarathna, P. H. S. Y.
Jena, S.
Jha, D. M.
Jimenez Bustamante, R. T.
Jones, P. G.
Jung, H.
Jusko, A.
Kaidalov, A. B.
Kalcher, S.
Kalinak, P.
Kalliokoski, T.
Kalweit, A.
Kang, J. H.
Kaplin, V.
Uysal, A. Karasu
Karavichev, O.
Karavicheva, T.
Karpechev, E.
Kazantsev, A.
Kebschull, U.
Keidel, R.
Khan, M. M.
Khan, P.
Khan, K. H.
Khan, S. A.
Khanzadeev, A.
Kharlov, Y.
Kileng, B.
Kim, S.
Kim, M.
Kim, M.
Kim, J. S.
Kim, J. H.
Kim, D. W.
Kim, B.
Kim, D. J.
Kim, T.
Kirsch, S.
Kisel, I.
Kiselev, S.
Kisiel, A.
Klay, J. L.
Klein, J.
Klein-Boehing, C.
Kliemant, M.
Kluge, A.
Knichel, M. L.
Knospe, A. G.
Koehler, M. K.
Kollegger, T.
Kolojvari, A.
Kompaniets, M.
Kondratiev, V.
Kondratyeva, N.
Konevskikh, A.
Kour, R.
Kovalenko, V.
Kowalski, M.
Kox, S.
Meethaleveedu, G. Koyithatta
Kral, J.
Kralik, I.
Kramer, F.
Kravcakova, A.
Krawutschke, T.
Krelina, M.
Kretz, M.
Krivda, M.
Krizek, F.
Krus, M.
Kryshen, E.
Krzewicki, M.
Kucheriaev, Y.
Kugathasan, T.
Kuhn, C.
Kuijer, P. G.
Kulakov, I.
Kumar, J.
Kurashvili, P.
Kurepin, A. B.
Kurepin, A.
Kuryakin, A.
Kushpil, V.
Kushpil, S.
Kvaerno, H.
Kweon, M. J.
Kwon, Y.
Ladron de Guevara, P.
Lakomov, I.
Langoy, R.
La Pointe, S. L.
Lara, C.
Lardeux, A.
La Rocca, P.
Lea, R.
Lechman, M.
Lee, G. R.
Lee, K. S.
Lee, S. C.
Legrand, I.
Lehnert, J.
Lenhardt, M.
Lenti, V.
Leon, H.
Leon Monzon, I.
Vargas, H. Leon
Levai, P.
Li, S.
Lien, J.
Lietava, R.
Lindal, S.
Lindenstruth, V.
Lippmann, C.
Lisa, M. A.
Ljunggren, H. M.
Loenne, P. I.
Loggins, V. R.
Loginov, V.
Lohner, D.
Loizides, C.
Loo, K. K.
Lopez, X.
Lopez Torres, E.
Lovhoiden, G.
Lu, X. -G.
Luettig, P.
Lunardon, M.
Luo, J.
Luparello, G.
Luzzi, C.
Ma, K.
Ma, R.
Madagodahettige-Don, D. M.
Maevskaya, A.
Mager, M.
Mahapatra, D. P.
Maire, A.
Malaev, M.
Maldonado Cervantes, I.
Malinina, L.
Mal'Kevich, D.
Malzacher, P.
Mamonov, A.
Manceau, L.
Mangotra, L.
Manko, V.
Manso, F.
Manzari, V.
Mao, Y.
Marchisone, M.
Mares, J.
Margagliotti, G. V.
Margotti, A.
Marin, A.
Markert, C.
Marquard, M.
Martashvili, I.
Martin, N. A.
Martinengo, P.
Martinez, M. I.
Martinez Davalos, A.
Garcia, G. Martinez
Martynov, Y.
Mas, A.
Masciocchi, S.
Masera, M.
Masoni, A.
Massacrier, L.
Mastroserio, A.
Matthews, Z. L.
Matyja, A.
Mayer, C.
Mazer, J.
Mazzoni, M. A.
Meddi, F.
Menchaca-Rocha, A.
Perez, J. Mercado
Meres, M.
Miake, Y.
Mikhailov, K.
Milano, L.
Milosevic, J.
Mischke, A.
Mishra, A. N.
Miskowiec, D.
Mitu, C.
Mizuno, S.
Mlynarz, J.
Mohanty, B.
Molnar, L.
Montano Zetina, L.
Monteno, M.
Montes, E.
Moon, T.
Morando, M.
Moreira De Godoy, D. A.
Moretto, S.
Morreale, A.
Morsch, A.
Muccifora, V.
Mudnic, E.
Muhuri, S.
Mukherjee, M.
Mueller, H.
Munhoz, M. G.
Musa, L.
Musinsky, J.
Musso, A.
Nandi, B. K.
Nania, R.
Nappi, E.
Nattrass, C.
Navin, S.
Nayak, T. K.
Nazarenko, S.
Nedosekin, A.
Nicassio, M.
Niculescu, M.
Nielsen, B. S.
Niida, T.
Nikolaev, S.
Nikolic, V.
Nikulin, S.
Nikulin, V.
Nilsen, B. S.
Nilsson, M. S.
Noferini, F.
Nomokonov, P.
Nooren, G.
Novitzky, N.
Nyanin, A.
Nyatha, A.
Nygaard, C.
Nystrand, J.
Ochirov, A.
Oeschler, H.
Oh, S. K.
Oh, S.
Oleniacz, J.
Oliveira Da Silva, A. C.
Oppedisano, C.
Ortiz Velasquez, A.
Oskarsson, A.
Ostrowski, P.
Otwinowski, J.
Oyama, K.
Ozawa, K.
Pachmayer, Y.
Pachr, M.
Padilla, F.
Pagano, P.
Paic, G.
Painke, F.
Pajares, C.
Pal, S. K.
Palaha, A.
Palmeri, A.
Papikyan, V.
Pappalardo, G. S.
Park, W. J.
Passfeld, A.
Patalakha, D. I.
Paticchio, V.
Paul, B.
Pavlinov, A.
Pawlak, T.
Peitzmann, T.
Da Costa, H. Pereira
Pereira De Oliveira Filho, E.
Peresunko, D.
Lara, C. E. Perez
Perini, D.
Perrino, D.
Peryt, W.
Pesci, A.
Peskov, V.
Pestov, Y.
Petracek, V.
Petran, M.
Petris, M.
Petrov, P.
Petrovici, M.
Petta, C.
Piano, S.
Piccotti, A.
Pikna, M.
Pillot, P.
Pinazza, O.
Pinsky, L.
Pitz, N.
Piyarathna, D. B.
Planinic, M.
Ploskon, M.
Pluta, J.
Pocheptsov, T.
Pochybova, S.
Podesta-Lerma, P. L. M.
Poghosyan, M. G.
Polak, K.
Polichtchouk, B.
Pop, A.
Porteboeuf-Houssais, S.
Pospisil, V.
Potukuchi, B.
Prasad, S. K.
Preghenella, R.
Prino, F.
Pruneau, C. A.
Pshenichnov, I.
Puddu, G.
Punin, V.
Putis, M.
Putschke, J.
Quercigh, E.
Qvigstad, H.
Rachevski, A.
Rademakers, A.
Raiha, T. S.
Rak, J.
Rakotozafindrabe, A.
Ramello, L.
Ramirez Reyes, A.
Raniwala, R.
Raniwala, S.
Rasanen, S. S.
Rascanu, B. T.
Rathee, D.
Read, K. F.
Real, J. S.
Redlich, K.
Reed, R. J.
Rehman, A.
Reichelt, P.
Reicher, M.
Renfordt, R.
Reolon, A. R.
Reshetin, A.
Rettig, F.
Revol, J. -P.
Reygers, K.
Riccati, L.
Ricci, R. A.
Richert, T.
Richter, M.
Riedler, P.
Riegler, W.
Riggi, F.
Rodriguez Cahuantzi, M.
Manso, A. Rodriguez
Roed, K.
Rohr, D.
Rohrich, D.
Romita, R.
Ronchetti, F.
Rosnet, P.
Rossegger, S.
Rossi, A.
Roy, P.
Roy, C.
Rubio Montero, A. J.
Rui, R.
Russo, R.
Ryabinkin, E.
Rybicki, A.
Sadovsky, S.
Safarik, K.
Sahoo, R.
Sahu, P. K.
Saini, J.
Sakaguchi, H.
Sakai, S.
Sakata, D.
Salgado, C. A.
Salzwedel, J.
Sambyal, S.
Samsonov, V.
Castro, X. Sanchez
Sandor, L.
Sandoval, A.
Sano, M.
Santagati, G.
Santoro, R.
Sarkamo, J.
Scapparone, E.
Scarlassara, F.
Scharenberg, R. P.
Schiaua, C.
Schicker, R.
Schmidt, H. R.
Schmidt, C.
Schuchmann, S.
Schukraft, J.
Schuster, T.
Schutz, Y.
Schwarz, K.
Schweda, K.
Scioli, G.
Scomparin, E.
Scott, P. A.
Scott, R.
Segato, G.
Selyuzhenkov, I.
Senyukov, S.
Seo, J.
Serci, S.
Serradilla, E.
Sevcenco, A.
Shabetai, A.
Shabratova, G.
Shahoyan, R.
Sharma, S.
Sharm, N.
Rohni, S.
Shigaki, K.
Shtejer, K.
Sibiriak, Y.
Sicking, E.
Siddhanta, S.
Siemiarczuk, T.
Silvermyr, D.
Silvestre, C.
Simatovic, G.
Simonetti, G.
Singaraju, R.
Singh, R.
Singha, S.
Singhal, V.
Sinha, T.
Sinha, B. C.
Sitar, B.
Sitta, M.
Skaali, T. B.
Skjerdal, K.
Smakal, R.
Smirnov, N.
Snellings, R. J. M.
Sogaard, C.
Soltz, R.
Son, H.
Song, M.
Song, J.
Soos, C.
Soramel, F.
Sputowska, I.
Spyropoulou-Stassinaki, M.
Srivastava, B. K.
Stachel, J.
Stan, I.
Stefanek, G.
Steinpreis, M.
Stenlund, E.
Steyn, G.
Stiller, J. H.
Stocco, D.
Stolpovskiy, M.
Strmen, P.
Suaide, A. A. P.
Vasquez, M. A. Subieta
Sugitate, T.
Suire, C.
Sultanov, R.
Sumbera, M.
Susa, T.
Symons, T. J. M.
Szanto de Toledo, A.
Szarka, I.
Szczepankiewicz, A.
Szostak, A.
Szymanski, M.
Takahashi, J.
Takaki, J. D. Tapia
Peloni, A. Tarantola
Martinez, A. Tarazona
Tauro, A.
Tejeda Munoz, G.
Telesca, A.
Terrevoli, C.
Thaeder, J.
Thomas, D.
Tieulent, R.
Timmins, A. R.
Tlusty, D.
Toia, A.
Torii, H.
Toscano, L.
Trubnikov, V.
Truesdale, D.
Trzaska, W. H.
Tsuji, T.
Tumkin, A.
Turrisi, R.
Tveter, T. S.
Ulery, J.
Ullaland, K.
Ulrich, J.
Uras, A.
Urban, J.
Urciuoli, G. M.
Usai, G. L.
Vajzer, M.
Vala, M.
Palomo, L. Valencia
Vallero, S.
Vyvre, P. Vande
van Leeuwen, M.
Vannucci, L.
Vargas, A.
Varma, R.
Vasileiou, M.
Vasiliev, A.
Vechernin, V.
Veldhoen, M.
Venaruzzo, M.
Vercellin, E.
Vergara, S.
Vernet, R.
Verweij, M.
Vickovic, L.
Viesti, G.
Vilakazi, Z.
Baillie, O. Villalobos
Vinogradov, Y.
Vinogradov, L.
Vinogradov, A.
Virgili, T.
Viyogi, Y. P.
Vodopyanov, A.
Voloshin, K.
Voloshin, S.
Volpe, G.
von Haller, B.
Vorobyev, I.
Vranic, D.
Vrlakova, J.
Vulpescu, B.
Vyushin, A.
Wagner, V.
Wagner, B.
Wan, R.
Wang, D.
Wang, M.
Wang, Y.
Wang, Y.
Watanabe, K.
Weber, M.
Wessels, J. P.
Westerhoff, U.
Wiechula, J.
Wikne, J.
Wilde, M.
Wilk, A.
Wilk, G.
Williams, M. C. S.
Windelband, B.
Karampatsos, L. Xaplanteris
Yaldo, C. G.
Yamaguchi, Y.
Yang, H.
Yang, S.
Yasnopolskiy, S.
Yi, J.
Yin, Z.
Yoo, I. -K.
Yoon, J.
Yu, W.
Yuan, X.
Yushmanov, I.
Zaccolo, V.
Zach, C.
Zampolli, C.
Zaporozhets, S.
Zarochentsev, A.
Zavada, P.
Zaviyalov, N.
Zbroszczyk, H.
Zelnicek, P.
Zgura, I. S.
Zhalov, M.
Zhang, H.
Zhang, X.
Zhou, D.
Zhou, Y.
Zhou, F.
Zhu, J.
Zhu, H.
Zhu, J.
Zhu, X.
Zichichi, A.
Zimmermann, A.
Zinovjev, G.
Zoccarato, Y.
Zynovyev, M.
Zyzak, M.
CA ALICE Collaboration
TI Charged kaon femtoscopic correlations in pp collisions at root s=7 TeV
SO PHYSICAL REVIEW D
LA English
DT Article
ID BOSE-EINSTEIN CORRELATIONS; COULOMB CORRECTIONS; INTERFEROMETRY;
INTERFERENCE; DECAYS; Z(0)
AB Correlations of two charged identical kaons (KchKch) are measured in pp collisions at root s = 7 TeV by the ALICE experiment at the Large Hadron Collider (LHC). One-dimensional (KKch)-K-ch correlation functions are constructed in three multiplicity and four transverse momentum ranges. The (KKch)-K-ch femtoscopic source parameters R and lambda are extracted. The (KKch)-K-ch correlations show a slight increase of femtoscopic radii with increasing multiplicity and a slight decrease of radii with increasing transverse momentum. These trends are similar to the ones observed for pi pi and K-s(0) K-s(0) correlations in pp and heavy-ion collisions. However at high multiplicities, there is an indication that the one-dimensional correlation radii for charged kaons are larger than those for pions in contrast to what was observed in heavy-ion collisions at the Relativistic Heavy-Ion Collider. DOI:10.1103/PhysRevD.87.052016
C1 [Abelev, B.; Garishvili, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Adam, J.; Bielcik, J.; Cepila, J.; Krelina, M.; Krus, M.; Pachr, M.; Petracek, V.; Petran, M.; Pospisil, V.; Smakal, R.; Tlusty, D.; Vajzer, M.; Wagner, V.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic.
[Adamova, D.; Bielcikova, J.; Kushpil, V.; Kushpil, S.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Nucl Phys, Prague, Czech Republic.
[Adare, A. M.; Aronsson, T.; Caines, H.; Connors, M. E.; Harris, J. W.; Hicks, B.; Ma, R.; Oh, S.; Reed, R. J.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA.
[Aggarwal, M. M.; Bhati, A. K.; Chawla, I.; Rathee, D.; Sharm, N.] Panjab Univ, Dept Phys, Chandigarh 160014, India.
[Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Betev, L.; Boccioli, M.; Brun, R.; Buncic, P.; Carena, F.; Carena, W.; Carminati, F.; Cavicchioli, C.; Chapeland, S.; Cheshkov, C.; Barroso, V. Chibante; Chochula, P.; Cifarelli, L.; del Valle, Z. Conesa; Costa, F.; Di Mauro, A.; Divia, R.; Erazmus, B.; Floris, M.; Francescon, A.; Fuchs, U.; Gheata, M.; Gheata, A.; Giubellino, P.; Grigoras, C.; Grigoras, A.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hayrapetyan, A.; Hristov, P.; Innocenti, P. G.; Kalweit, A.; Uysal, A. Karasu; Kluge, A.; Kugathasan, T.; Lechman, M.; Legrand, I.; Lippmann, C.; Luzzi, C.; Mager, M.; Martinengo, P.; Miskowiec, D.; Molnar, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Oeschler, H.; Perini, D.; Peskov, V.; Pinazza, O.; Poghosyan, M. G.; Quercigh, E.; Rademakers, A.; Revol, J. -P.; Riedler, P.; Riegler, W.; Rossegger, S.; Rossi, A.; Safarik, K.; Santoro, R.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Simonetti, G.; Soos, C.; Szczepankiewicz, A.; Martinez, A. Tarazona; Tauro, A.; Telesca, A.; Vyvre, P. Vande; Volpe, G.; von Haller, B.; Wessels, J. P.] European Org Nucl Res CERN, Geneva, Switzerland.
[Agnello, M.; Alessandro, B.; Arnaldi, R.; Bala, R.; Berzano, D.; Bruna, E.; Bufalino, S.; Cerello, P.; De Marco, N.; Feliciello, A.; Manceau, L.; Monteno, M.; Musso, A.; Oppedisano, C.; Piccotti, A.; Prino, F.; Riccati, L.; Scomparin, E.; Toscano, L.] Sezione Ist Nazl Fis Nucl, Turin, Italy.
[Agnello, M.] Politecn Torino, Turin, Italy.
[Agocs, A. G.; Barnafoedi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Cifarelli, L.; Denes, E.; Hamar, G.; Levai, P.; Molnar, L.; Pochybova, S.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary.
[Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Kalweit, A.; Scioli, G.; Zichichi, A.] Univ & Sez INFN, Dipartimento Fis & Astron, Bologna, Italy.
[Ahammed, Z.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; De, S.; Dubey, A. K.; Majumdar, M. R. Dutta; Ghosh, P.; Khan, S. A.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Saini, J.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.] Ctr Variable Energy Cyclotron, Kolkata, India.
[Ahmad, N.; Masoodi, A. Ahmad; Azmi, M. D.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India.
[Ahn, S. U.; Baek, Y. W.; Jung, H.; Kim, M.; Kim, J. S.; Kim, D. W.; Lee, K. S.; Lee, S. C.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea.
[Ahn, S. U.; Ahn, S. A.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Taejon, South Korea.
[Ajaz, M.; Khan, K. H.] COMSATS Inst Informat Technol CIIT, Islamabad, Pakistan.
[Akindinov, A.; Kaidalov, A. B.; Kiselev, S.; Mal'Kevich, D.; Mikhailov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia.
[Alici, A.; Antonioli, P.; Romeo, G. Cara; Cindolo, F.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Preghenella, R.; Scapparone, E.; Williams, M. C. S.; Zampolli, C.] Sezione Ist Nazl Fis Nucl, Bologna, Italy.
[Alici, A.; Ferroli, R. Baldini; Coccetti, F.; De Caro, A.; Noferini, F.; Preghenella, R.; Santoro, R.; Zichichi, A.] Museo Stor Fis, Ctr Fermi, Rome, Italy.
[Alici, A.; Ferroli, R. Baldini; Coccetti, F.; De Caro, A.; Noferini, F.; Preghenella, R.; Santoro, R.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy.
[Alkin, A.; Grinyov, B.; Ivanytskyi, O.; Martynov, Y.; Trubnikov, V.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine.
[Almaraz Avina, E.; Belmont-Moreno, E.; Cruz Alaniz, E.; Gonzalez-Trueba, L. H.; Leon, H.; Martinez Davalos, A.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico.
[Alme, J.; Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway.
[Alt, T.; Bach, M.; de Cuveland, J.; Gerhard, J.; Gorbunov, S.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Lindenstruth, V.; Painke, F.; Rettig, F.; Rohr, D.; Toia, A.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany.
[Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Mastroserio, A.; Nicassio, M.; Perrino, D.; Terrevoli, C.] Dipartimento Interateneo Fis M Merlin, Bari, Italy.
[Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; de Cataldo, G.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Elia, D.; Fionda, F. M.; Fiore, E. M.; Lenti, V.; Manzari, V.; Mastroserio, A.; Nappi, E.; Nicassio, M.; Paticchio, V.; Perrino, D.; Terrevoli, C.] Sezione Ist Nazl Fis Nucl, Bari, Italy.
[Altinpinar, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Langoy, R.; Lien, J.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Roed, K.; Rohrich, D.; Skjerdal, K.; Szostak, A.; Ullaland, K.; Wagner, B.; Yang, S.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Altsybeev, I.; Asryan, A.; Feofilov, G.; Ivanov, A.; Kolojvari, A.; Kompaniets, M.; Kondratiev, V.; Kovalenko, V.; Ochirov, A.; Vechernin, V.; Vinogradov, L.; Vorobyev, I.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg, Russia.
[Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Krzewicki, M.; Lenhardt, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany.
[Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Krzewicki, M.; Lenhardt, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany.
[Anguelov, V.; Busch, O.; Fasel, M.; Glaessel, P.; Grajcarek, R.; Herrmann, N.; Klein, J.; Krawutschke, T.; Kweon, M. J.; Lohner, D.; Lu, X. -G.; Maire, A.; Perez, J. Mercado; Oyama, K.; Pachmayer, Y.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Vallero, S.; Wang, Y.; Windelband, B.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany.
[Anielski, J.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany.
[Anson, C.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.; Truesdale, D.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Anticic, T.; Nikolic, V.; Planinic, M.; Simatovic, G.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia.
[Antinori, F.; Caffarri, D.; Dainese, A.; Fabris, D.; Toia, A.; Turrisi, R.] Sezione Ist Nazl Fis Nucl, Padua, Italy.
[Aphecetche, L.; Batigne, G.; Bergognon, A. A. E.; Bregant, M.; Delagrange, H.; Driga, O.; Erazmus, B.; Estienne, M.; Germain, M.; Lardeux, A.; Garcia, G. Martinez; Mas, A.; Massacrier, L.; Matyja, A.; Pillot, P.; Schutz, Y.; Shabetai, A.; Stocco, D.] Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS IN2P3, Nantes, France.
[Appelshaeuser, H.; Arend, A.; Arslandok, M.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Buesching, H.; Hartig, M.; Heckel, S. T.; Kliemant, M.; Kramer, F.; Kulakov, I.; Lehnert, J.; Vargas, H. Leon; Luettig, P.; Marquard, M.; Pitz, N.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Schuchmann, S.; Peloni, A. Tarantola; Ulery, J.; Yu, W.; Zyzak, M.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany.
[Arbor, N.; Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.] Univ Grenoble 1, LPSC, CNRS IN2P3, Inst Polytech Grenoble, Grenoble, France.
[Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain.
[Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain.
[Awes, T. C.; Ganoti, P.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Morreale, A.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] HIP, Jyvaskyla, Finland.
[Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Morreale, A.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] Univ Jyvaskyla, Jyvaskyla, Finland.
[Azmi, M. D.; Bossu, F.; Buthelezi, Z.; Cleymans, J.; Fearick, R.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Univ Cape Town, Dept Phys, Somerset West, South Africa.
[Azmi, M. D.; Bossu, F.; Buthelezi, Z.; Cleymans, J.; Fearick, R.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Natl Hellen Res Fdn, iThemba LABS, Somerset West, South Africa.
[Badala, A.; Palmeri, A.; Pappalardo, G. S.; Riggi, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy.
[Baek, Y. W.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P.; Ichou, R.; Lopez, X.; Manso, F.; Marchisone, M.; Porteboeuf-Houssais, S.; Rosnet, P.; Vulpescu, B.; Zhang, X.] Univ Clermont Ferrand, Univ Clermont Ferrand 2, LPC, CNRS IN2P3, Clermont Ferrand, France.
[Bala, R.; Bhasin, A.; Gupta, A.; Gupta, R.; Mangotra, L.; Potukuchi, B.; Sambyal, S.; Sharma, S.; Rohni, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India.
[Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Geuna, C.; Da Costa, H. Pereira; Rakotozafindrabe, A.; Yang, H.] IRFU, Commissariat Energie Atom, Saclay, France.
[Ban, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia.
[Baral, R. C.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India.
[Barbera, R.; Jacholkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Univ & Sez INFN, Dipartimento Fis & Astron, Catania, Italy.
[Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Kour, R.; Krivda, M.; Lee, G. R.; Lietava, R.; Matthews, Z. L.; Navin, S.; Palaha, A.; Petrov, P.; Scott, P. A.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Kowalski, M.; Matyja, A.; Mayer, C.; Rybicki, A.; Sputowska, I.; Szczepankiewicz, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Batyunya, B.; Grigoryan, S.; Malinina, L.; Mikhailov, K.; Nomokonov, P.; Pocheptsov, T.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res Dubna, Dubna, Russia.
[Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Dalsgaard, H. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Nygaard, C.; Sogaard, C.; Zaccolo, V.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Behera, N. K.; Dash, S.; Jena, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Milosevic, J.; Nandi, B. K.; Nyatha, A.; Varma, R.] Indian Inst Technol Bombay IIT, Bombay, Maharashtra, India.
[Belikov, I.; Hippolyte, B.; Kuhn, C.; Molnar, L.; Roy, C.; Castro, X. Sanchez; Senyukov, S.] Univ Strasbourg, IPHC, CNRS IN2P3, Strasbourg, France.
[Bellwied, R.; Blanco, F.; Chinellato, D. D.; Jayarathna, P. H. S. Y.; Madagodahettige-Don, D. M.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.; Weber, M.] Univ Houston, Houston, TX USA.
[Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Bruna, E.; Bufalino, S.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Marchisone, M.; Masera, M.; Milano, L.; Padilla, F.; Russo, R.; Vasquez, M. A. Subieta; Vercellin, E.] Univ & Sez INFN, Dipartimento Fis, Turin, Italy.
[Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Bhom, J.; Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Mizuno, S.; Niida, T.; Sakata, D.; Sano, M.; Watanabe, K.] Univ Tsukuba, Tsukuba, Ibaraki, Japan.
[Bianchi, N.; Diaz, A. Casanova; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ricci, R. A.; Ronchetti, F.; Vannucci, L.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Bjelogrlic, S.; Chojnacki, M.; de Rooij, R.; Dubla, A.; Grelli, A.; La Pointe, S. L.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Snellings, R. J. M.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Yang, H.; Zhou, Y.] Univ Utrecht, Natl Inst Subat Phys, Nikhef, Utrecht, Netherlands.
[Bjelogrlic, S.; Chojnacki, M.; de Rooij, R.; Dubla, A.; Grelli, A.; La Pointe, S. L.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Snellings, R. J. M.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands.
[Blanco, F.; Cotallo, M. E.; Diaz Corchero, M. A.; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain.
[Boettger, S.; Breitner, T.; Engel, H.; Kebschull, U.; Lara, C.; Ulrich, J.; Zelnicek, P.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany.
[Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia.
[Bogolyubsky, M.; Kharlov, Y.; Patalakha, D. I.; Polichtchouk, B.; Sadovsky, S.; Stolpovskiy, M.] Inst High Energy Phys, Protvino, Russia.
[Bombara, M.; Harmanova-Tothova, Z.; Kravcakova, A.; Putis, M.; Urban, J.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia.
[Borissov, A.; Cormier, T. M.; Dobrin, A.; Jha, D. M.; Loggins, V. R.; Mlynarz, J.; Pavlinov, A.; Prasad, S. K.; Pruneau, C. A.; Putschke, J.; Voloshin, S.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA.
[Botje, M.; Christakoglou, P.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] Natl Inst Subat Phys, Nikhef, Amsterdam, Netherlands.
[Braidot, E.; Cosentino, M. R.; Fenton-Olsen, B.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Sakai, S.; Symons, T. J. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA.
[Broz, M.; Janik, R.; Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia.
[Caffarri, D.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Segato, G.; Soramel, F.; Toia, A.; Viesti, G.] Univ & Sez INFN, Dipartimento Fis & Astron, Padua, Italy.
[Cai, X.; Li, S.; Luo, J.; Ma, K.; Mao, Y.; Wan, R.; Wang, D.; Wang, M.; Wang, Y.; Yin, Z.; Yuan, X.; Zhang, H.; Zhang, X.; Zhou, D.; Zhou, F.; Zhu, J.; Zhu, H.; Zhu, X.] Cent China Normal Univ, Wuhan, Peoples R China.
[Calvo Villar, E.; Gago, A.] Pontificia Univ Catolica Peru, Secc Fis, Dept Ciencias, Lima, Peru.
[Camerini, P.; Contin, G.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ & Sez INFN, Dipartimento Fis, Trieste, Italy.
[Canoa Roman, V.; Contreras, J. G.; Crescio, E.; Gomez, R.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest & Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico.
[Canoa Roman, V.; Contreras, J. G.; Crescio, E.; Gomez, R.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest & Estudios Avanzados CINVESTAV, Merida, Mexico.
[Carlin Filho, N.; de Barros, G. O. V.; Deppman, A.; Figueredo, M. A. S.; Moreira De Godoy, D. A.; Munhoz, M. G.; Oliveira Da Silva, A. C.; Pereira De Oliveira Filho, E.; Suaide, A. A. P.; Szanto de Toledo, A.] Univ Sao Paulo, Sao Paulo, Brazil.
[Casula, E. A. R.; Collu, A.; De Falco, A.; Incani, E.; Puddu, G.; Serci, S.; Usai, G. L.] Univ & Sez INFN, Dipartimento Fis, Cagliari, Italy.
[Ceballos Sanchez, C.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba.
[Chang, B.; Kang, J. H.; Kim, M.; Kim, B.; Kim, T.; Kwon, Y.; Moon, T.; Song, M.; Yoon, J.] Yonsei Univ, Seoul 120749, South Korea.
[Chattopadhyay, S.; Das, D.; Das, K.; Majumdar, A. K. Dutta; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India.
[Cherney, M.; Nilsen, B. S.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA.
[Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Guilbaud, M.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, CNRS IN2P3, IPN Lyon, F-69622 Villeurbanne, France.
[Christiansen, P.; Dobrin, A.; Gros, P.; Ljunggren, H. M.; Ortiz Velasquez, A.; Oskarsson, A.; Richert, T.; Sogaard, C.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden.
[Chung, S. U.; Seo, J.; Song, J.; Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea.
[Cicalo, C.; Masoni, A.; Siddhanta, S.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy.
[Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy.
[Cortese, P.; Ramello, L.; Sitta, M.] Grp Collegato INFN, Alessandria, Italy.
[Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico.
[Cuautle, E.; Jimenez Bustamante, R. T.; Ladron de Guevara, P.; Maldonado Cervantes, I.; Ortiz Velasquez, A.; Paic, G.; Peskov, V.; Simatovic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico.
[Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Hasegan, D.; Mitu, C.; Niculescu, M.; Sevcenco, A.; Stan, I.; Zgura, I. S.] ISS, Bucharest, Romania.
[Das, S.] Bose Inst, Dept Phys, Kolkata, India.
[Das, S.] CAPSS, Kolkata, India.
[Das, I.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia; Palomo, L. Valencia] Univ Paris 11, IPNO, CNRS IN2P3, Orsay, France.
[Dash, A.; Takahashi, J.] Univ Estadual Campinas UNICAMP, Campinas, SP, Brazil.
[De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Univ & Grp Collegato INFN, Dipartimento Fis ER Caianiello, Salerno, Italy.
[Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland.
[Di Liberto, S.; Mazzoni, M. A.; Meddi, F.; Urciuoli, G. M.] Sezione Ist Nazl Fis Nucl, Rome, Italy.
[Dordic, O.; Eyyubova, G.; Kvaerno, H.; Lindal, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.] Univ Oslo, Dept Phys, Oslo, Norway.
[Finogeev, D.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A. B.; Kurepin, A.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia.
[Floratos, E.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece.
[Fragiacomo, E.; Grion, N.; Margagliotti, G. V.; Piano, S.; Rachevski, A.] Sezione Ist Nazl Fis Nucl, Trieste, Italy.
[Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA.
[Girard, M. R.; Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Ostrowski, P.; Pawlak, T.; Peryt, W.; Pluta, J.; Szymanski, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland.
[Gomez, R.; Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico.
[Goswami, A.; Mishra, A. N.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India.
[Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia.
[Grigoryan, A.; Gulkanyan, H.; Hayrapetyan, A.; Papikyan, V.] Yerevan Phys Inst, AI Alikhanyan Natl Sci Lab Fdn, Yerevan 375036, Armenia.
[Gunji, T.; Hamagaki, H.; Hayashi, S.; Hori, Y.; Ozawa, K.; Torii, H.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan.
[Han, B. H.; Hwang, D. S.; Kim, S.; Kim, J. H.; Son, H.] Sejong Univ, Dept Phys, Seoul, South Korea.
[Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany.
[Kalweit, A.; Mager, M.; Oeschler, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany.
[Uysal, A. Karasu] Yildiz Tech Univ, Istanbul, Turkey.
[Uysal, A. Karasu] KTO Karatay Univ, Konya, Turkey.
[Keidel, R.] Fachhsch Worms, ZTT, Worms, Germany.
[Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA.
[Knospe, A. G.; Markert, C.; Karampatsos, L. Xaplanteris] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Krawutschke, T.] Fachhsch Koln, Cologne, Germany.
[Malinina, L.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Mares, J.; Polak, K.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Martashvili, I.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharm, N.] Univ Tennessee, Knoxville, TN USA.
[Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Mishra, A. N.; Sahoo, R.] Indian Inst Technol Indore, Indore, Madhya Pradesh, India.
[Mohanty, B.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India.
[Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Redlich, K.] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland.
[Romita, R.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, England.
[Sakaguchi, H.; Shigaki, K.; Sugitate, T.] Hiroshima Univ, Hiroshima, Japan.
[Ulrich, J.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Vernet, R.] Ctr Calcul IN2P3, Villeurbanne, France.
RP Abelev, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RI Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena,
Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Nattrass,
Christine/J-6752-2016; Cosentino, Mauro/L-2418-2014; Suaide,
Alexandre/L-6239-2016; Deppman, Airton/J-5787-2014; Inst. of Physics,
Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto,
Nestor/C-4341-2017; Karasu Uysal, Ayben/K-3981-2015; HAMAGAKI,
HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Altsybeev,
Igor/K-6687-2013; Vinogradov, Leonid/K-3047-2013; Janik,
Malgorzata/O-7520-2015; Graczykowski, Lukasz/O-7522-2015; Adamova,
Dagmar/G-9789-2014; Christensen, Christian/D-6461-2012; De Pasquale,
Salvatore/B-9165-2008; de Cuveland, Jan/H-6454-2016; Bielcikova,
Jana/G-9342-2014; Barnby, Lee/G-2135-2010; Blau, Dmitry/H-4523-2012;
Yang, Hongyan/J-9826-2014; Turrisi, Rosario/H-4933-2012; Bearden,
Ian/M-4504-2014; Sumbera, Michal/O-7497-2014; Peitzmann,
Thomas/K-2206-2012; Kharlov, Yuri/D-2700-2015; Mitu,
Ciprian/E-6733-2011; Usai, Gianluca/E-9604-2015; Salgado, Carlos
A./G-2168-2015; Bruna, Elena/C-4939-2014; Felea, Daniel/C-1885-2012;
Christensen, Christian Holm/A-4901-2010; Chinellato, David/D-3092-2012;
feofilov, grigory/A-2549-2013; Castillo Castellanos, Javier/G-8915-2013;
Levai, Peter/A-1544-2014; Takahashi, Jun/B-2946-2012; Guber,
Fedor/I-4271-2013; Martinez Davalos, Arnulfo/F-3498-2013; Wagner,
Vladimir/G-5650-2014; Vajzer, Michal/G-8469-2014; Krizek,
Filip/G-8967-2014; Ferretti, Alessandro/F-4856-2013; Martinez Hernandez,
Mario Ivan/F-4083-2010; Vickovic, Linda/F-3517-2017; Fernandez Tellez,
Arturo/E-9700-2017; Bregant, Marco/I-7663-2012; Kovalenko,
Vladimir/C-5709-2013; Sevcenco, Adrian/C-1832-2012; Voloshin,
Sergei/I-4122-2013; Vechernin, Vladimir/J-5832-2013; Zarochentsev,
Andrey/J-6253-2013; Kompaniets, Mikhail/F-5025-2013; Mischke,
Andre/D-3614-2011; Kondratiev, Valery/J-8574-2013; Vorobyev,
Ivan/K-2304-2013; Barnafoldi, Gergely Gabor/L-3486-2013; Ramello,
Luciano/F-9357-2013
OI Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311;
Jena, Satyajit/0000-0002-6220-6982; Akindinov,
Alexander/0000-0002-7388-3022; Nattrass, Christine/0000-0002-8768-6468;
Cosentino, Mauro/0000-0002-7880-8611; Suaide,
Alexandre/0000-0003-2847-6556; Deppman, Airton/0000-0001-9179-6363;
Ferreiro, Elena/0000-0002-4449-2356; Armesto,
Nestor/0000-0003-0940-0783; Karasu Uysal, Ayben/0000-0001-6297-2532;
Pshenichnov, Igor/0000-0003-1752-4524; Altsybeev,
Igor/0000-0002-8079-7026; Vinogradov, Leonid/0000-0001-9247-6230; Janik,
Malgorzata/0000-0002-3356-3438; Christensen,
Christian/0000-0002-1850-0121; De Pasquale,
Salvatore/0000-0001-9236-0748; de Cuveland, Jan/0000-0003-0455-1398;
Barnby, Lee/0000-0001-7357-9904; Bearden, Ian/0000-0003-2784-3094;
Sumbera, Michal/0000-0002-0639-7323; Peitzmann,
Thomas/0000-0002-7116-899X; Usai, Gianluca/0000-0002-8659-8378; Salgado,
Carlos A./0000-0003-4586-2758; Bruna, Elena/0000-0001-5427-1461; Felea,
Daniel/0000-0002-3734-9439; Christensen, Christian
Holm/0000-0002-1850-0121; Chinellato, David/0000-0002-9982-9577;
feofilov, grigory/0000-0003-3700-8623; Castillo Castellanos,
Javier/0000-0002-5187-2779; Takahashi, Jun/0000-0002-4091-1779; Guber,
Fedor/0000-0001-8790-3218; Martinez Davalos,
Arnulfo/0000-0002-9481-9548; Bhasin, Anju/0000-0002-3687-8179; SANTORO,
ROMUALDO/0000-0002-4360-4600; Scarlassara, Fernando/0000-0002-4663-8216;
Turrisi, Rosario/0000-0002-5272-337X; Beole',
Stefania/0000-0003-4673-8038; Ferretti, Alessandro/0000-0001-9084-5784;
Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Vickovic,
Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220;
Coccetti, Fabrizio/0000-0001-7041-3394; Mohanty,
Bedangadas/0000-0001-9610-2914; Gago Medina, Alberto
Martin/0000-0002-0019-9692; Riggi, Francesco/0000-0002-0030-8377;
Dainese, Andrea/0000-0002-2166-1874; Paticchio,
Vincenzo/0000-0002-2916-1671; Monteno, Marco/0000-0002-3521-6333;
Kovalenko, Vladimir/0000-0001-6012-6615; Sevcenco,
Adrian/0000-0002-4151-1056; Vechernin, Vladimir/0000-0003-1458-8055;
Zarochentsev, Andrey/0000-0002-3502-8084; Kompaniets,
Mikhail/0000-0001-8831-0553; Kondratiev, Valery/0000-0002-0031-0741;
Vorobyev, Ivan/0000-0002-2218-6905;
FU State Committee of Science; Calouste Gulbenkian Foundation from Lisbon
and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos
(FINEP); Fundacao de Amparoa` Pesquisa do Estado de Sao Paulo (FAPESP);
National Natural Science Foundation of China (NSFC); Chinese Ministry of
Education (CMOE); Ministry of Science and Technology of China (MSTC);
Ministry of Education and Youth of the Czech Republic; Danish Natural
Science Research Council; Carlsberg Foundation and the Danish National
Research Foundation; European Research Council under the European
Community's Seventh Framework Programme; Helsinki Institute of Physics
and the Academy of Finland; French CNRS-IN2P3; Region Pays de Loire,
Region Alsace, Region Auvergne and CEA, France; German BMBF and the
Helmholtz Association; General Secretariat for Research and Technology,
Ministry of Development, Greece; Hungarian OTKA and National Office for
Research and Technology (NKTH); Department of Atomic Energy and
Department of Science and Technology of the Government of India;
Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi-Museo Storico
della Fisica e Centro Studi e Ricerche Enrico Fermi, Italy; Specially
Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna;
National Research Foundation of Korea (NRF); CONACYT; DGAPA; Mexico;
ALFA-EC; HELEN; Stichting voor Fundamenteel Onderzoek der Materie (FOM);
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO),
Netherlands; Research Council of Norway (NFR); Polish Ministry of
Science and Higher Education; National Authority for Scientific
Research-NASR (Autoritatea Nationala pentru Cercetare Stiintifica
-ANCS); Ministry of Education and Science of Russian Federation;
International Science and Technology Center; Russian Academy of
Sciences; Russian Federal Agency of Atomic Energy; Russian Federal
Agency for Science and Innovations; CERN-INTAS; Ministry of Education of
Slovakia; Department of Science and Technology, South Africa; CIEMAT;
EELA; Ministerio de Educacion y Ciencia of Spain; Xunta de Galicia
(Conselleria de Educacion); CEADEN; Cubaenergia; Cuba; IAEA
(International Atomic Energy Agency); Swedish Research Council (VR);
Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education
and Science; United Kingdom Science and Technology Facilities Council
(STFC); United States Department of Energy; United States National
Science Foundation; State of Texas; State of Ohio
FX The ALICE Collaboration would like to thank all its engineers and
technicians for their invaluable contributions to the construction of
the experiment and the CERN accelerator teams for the outstanding
performance of the LHC complex. The ALICE Collaboration acknowledges the
following funding agencies for their support in building and running the
ALICE detector: State Committee of Science, Calouste Gulbenkian
Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho
Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq),
Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparoa`
Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science
Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and
the Ministry of Science and Technology of China (MSTC); Ministry of
Education and Youth of the Czech Republic; Danish Natural Science
Research Council, the Carlsberg Foundation and the Danish National
Research Foundation; The European Research Council under the European
Community's Seventh Framework Programme; Helsinki Institute of Physics
and the Academy of Finland; French CNRS-IN2P3, the Region Pays de Loire,
Region Alsace, Region Auvergne and CEA, France; German BMBF and the
Helmholtz Association; General Secretariat for Research and Technology,
Ministry of Development, Greece; Hungarian OTKA and National Office for
Research and Technology (NKTH); Department of Atomic Energy and
Department of Science and Technology of the Government of India;
Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi-Museo
Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Italy; MEXT
Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for
Nuclear Research, Dubna; National Research Foundation of Korea (NRF);
CONACYT, DGAPA, Mexico, ALFA-EC and the HELEN Program (High-Energy
Physics Latin American-European Network); Stichting voor Fundamenteel
Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of
Norway (NFR); Polish Ministry of Science and Higher Education; National
Authority for Scientific Research-NASR (Autoritatea Nationala pentru
Cercetare Stiintifica -ANCS); Ministry of Education and Science of
Russian Federation, International Science and Technology Center, Russian
Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian
Federal Agency for Science and Innovations and CERN-INTAS; Ministry of
Education of Slovakia; Department of Science and Technology, South
Africa; CIEMAT, EELA, Ministerio de Educacion y Ciencia of Spain, Xunta
de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and
IAEA (International Atomic Energy Agency); Swedish Research Council (VR)
and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of
Education and Science; United Kingdom Science and Technology Facilities
Council (STFC); The United States Department of Energy, the United
States National Science Foundation, the State of Texas, and the State of
Ohio.
NR 29
TC 8
Z9 8
U1 0
U2 84
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD MAR 25
PY 2013
VL 87
IS 5
AR 052016
DI 10.1103/PhysRevD.87.052016
PG 12
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 113NL
UT WOS:000316674600001
ER
PT J
AU Fox, PJ
Williams, C
AF Fox, Patrick J.
Williams, Ciaran
TI Next-to-leading order predictions for dark matter production at hadron
colliders
SO PHYSICAL REVIEW D
LA English
DT Article
ID ONE-LOOP AMPLITUDES; JET CROSS-SECTIONS; QCD
AB We provide next-to-leading order (NLO) predictions for dark matter (DM) production in association with either a jet or a photon at hadron colliders. In particular we study the production of a pair of fermionic DM particles through a mediator which couples to Standard Model via either a vector, axial-vector, scalar, pseudo-scalar, or gluon-induced coupling. Experimental constraints on the scale of new physics associated with these operators are limited by systematics, highlighting the need for NLO signal modeling. We factorize the NLO QCD and the DM parts of the calculation, allowing the possibility of using the results presented here for a large variety of searches in monojet and monophoton final states. Our results are implemented into the Monte Carlo program MCFM. DOI:10.1103/PhysRevD.87.054030
C1 [Fox, Patrick J.; Williams, Ciaran] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA.
RP Fox, PJ (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA.
EM pjfox@fnal.gov; ciaran@fnal.gov
FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States
Department of Energy
FX We thank John Campbell, Keith Ellis, Roni Harnik and Lian-Tao Wang for
useful discussions. Fermilab is operated by Fermi Research Alliance, LLC
under Contract No. DE-AC02-07CH11359 with the United States Department
of Energy.
NR 48
TC 40
Z9 40
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD MAR 25
PY 2013
VL 87
IS 5
AR 054030
DI 10.1103/PhysRevD.87.054030
PG 16
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 113NL
UT WOS:000316674600007
ER
PT J
AU Tiburzi, BC
Vayl, SO
AF Tiburzi, B. C.
Vayl, S. O.
TI Method to extract charged hadron properties from lattice QCD in magnetic
fields
SO PHYSICAL REVIEW D
LA English
DT Article
ID INDEX THEOREM; MOMENTS; MASSES
AB By analyzing the external field dependence of correlation functions, the magnetic properties of hadrons can be determined using lattice QCD in magnetic fields. To compute the magnetic moments and polarizabilities of charged hadrons, for example, one requires sufficiently weak magnetic fields. Such field strengths, however, lead to closely spaced Landau levels that are not straightforwardly resolved using standard lattice spectroscopy. Focusing on charged spinless hadrons, we introduce a simple projection technique that can be used to isolate the lowest Landau level. As the technique requires the explicit coordinate-space wave function, we investigate the extent to which the continuum, infinite volume wave function can be employed. We find that, in practice, the effects of discretization can be handled using a perturbative expansion about the continuum. Finite volume corrections are taken into account by using the discrete magnetic translational invariance of the torus. We show that quantized magnetic fields can lead to pernicious volume effects, which depend on the magnetic flux quantum, rather than on the lattice volume. DOI:10.1103/PhysRevD.87.054507
C1 [Tiburzi, B. C.; Vayl, S. O.] CUNY City Coll, Dept Phys, New York, NY 10031 USA.
[Tiburzi, B. C.; Vayl, S. O.] CUNY Grad Sch & Univ Ctr, New York, NY 10016 USA.
[Tiburzi, B. C.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
RP Tiburzi, BC (reprint author), CUNY City Coll, Dept Phys, New York, NY 10031 USA.
EM btiburzi@ccny.cuny.edu; stevenvayl43@gmail.com
OI Tiburzi, Brian/0000-0001-8696-2902
FU CCNY-RBRC fellowship; PSC-CUNY award; U.S. National Science Foundation
[PHY12-05778]
FX Work supported in part by a joint CCNY-RBRC fellowship, a PSC-CUNY
award, and by the U.S. National Science Foundation, under Grant No.
PHY12-05778.
NR 37
TC 8
Z9 8
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD MAR 25
PY 2013
VL 87
IS 5
AR 054507
DI 10.1103/PhysRevD.87.054507
PG 13
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 113NL
UT WOS:000316674600009
ER
PT J
AU Marino, R
Mininni, PD
Rosenberg, D
Pouquet, A
AF Marino, Raffaele
Mininni, Pablo D.
Rosenberg, Duane
Pouquet, Annick
TI Emergence of helicity in rotating stratified turbulence
SO PHYSICAL REVIEW E
LA English
DT Article
ID HOMOGENEOUS TURBULENCE; NONLINEAR EVOLUTION; MAGNETIC-FIELDS; WAVE
TURBULENCE; DYNAMICS; ENERGY; FLOWS; FLUID; DISSIPATION; SCALES
AB We perform numerical simulations of decaying rotating stratified turbulence and show, in the Boussinesq framework, that helicity (velocity-vorticity correlation), as observed in supercell storms and hurricanes, is spontaneously created due to an interplay between buoyancy and rotation common to large-scale atmospheric and oceanic flows. Helicity emerges from the joint action of eddies and of inertia-gravity waves (with inertia and gravity with respective associated frequencies f and N), and it occurs when the waves are sufficiently strong. For N/f < 3 the amount of helicity produced is correctly predicted by a quasilinear balance equation. Outside this regime, and up to the highest Reynolds number obtained in this study, namely Re approximate to 10 000, helicity production is found to be persistent for N/f as large as approximate to 17, and for ReFr2 and ReRo(2), respectively, as large as approximate to 100 and approximate to 24 000. DOI: 10.1103/PhysRevE.87.033016
C1 [Marino, Raffaele; Mininni, Pablo D.; Pouquet, Annick] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Mininni, Pablo D.] Univ Buenos Aires, Dept Fis, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina.
[Mininni, Pablo D.] Consejo Nacl Invest Cient & Tecn, IFIBA, RA-1428 Buenos Aires, DF, Argentina.
[Rosenberg, Duane] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA.
[Pouquet, Annick] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA.
RP Marino, R (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA.
RI Marino, Raffaele/M-5130-2015
OI Marino, Raffaele/0000-0002-7372-8620
FU NSF/CMG [1025183]; NSF cooperative agreement through the University
Corporation for Atmospheric Research on behalf of the National Center
for Atmospheric Research (NCAR); NCAR
FX We thank an anonymous referee for remarks that led to clarifications and
improvements of the paper. This work was sponsored by an NSF/CMG Grant
No. 1025183 and by an NSF cooperative agreement through the University
Corporation for Atmospheric Research on behalf of the National Center
for Atmospheric Research (NCAR). Computer time was provided by NSF under
the sponsorship of NCAR. For useful discussions we also acknowledge
Alain Pumir, Alain Noullez, and Cecilia Rorai.
NR 70
TC 17
Z9 17
U1 3
U2 20
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
EI 1550-2376
J9 PHYS REV E
JI Phys. Rev. E
PD MAR 25
PY 2013
VL 87
IS 3
AR 033016
DI 10.1103/PhysRevE.87.033016
PG 9
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 113PM
UT WOS:000316680000020
ER
PT J
AU Cheng, S
Lee, SY
Li, L
Lei, CH
Almer, J
Wang, XL
Ungar, T
Wang, YM
Liaw, PK
AF Cheng, Sheng
Lee, Soo Yeol
Li, Li
Lei, Changhui
Almer, Jon
Wang, Xun-Li
Ungar, Tamas
Wang, Yinmin
Liaw, Peter K.
TI Uncommon Deformation Mechanisms during Fatigue-Crack Propagation in
Nanocrystalline Alloys
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DUCTILE; METALS; TEMPERATURE; PLASTICITY; GROWTH; MODEL; CU
AB The irreversible damage at cracks during the fatigue of crystalline solids is well known. Here we report on in situ high-energy x-ray evidence of reversible fatigue behavior in a nanocrystalline NiFe alloy both in the plastic zone and around the crack tip. In the plastic zone, the deformation is fully recoverable as the crack propagates, and the plastic deformation invokes reversible interactions of dislocation and twinning in the nanograins. But around the crack tip lies a regime with reversible grain lattice reorientation promoted by a change of local stress state. These observations suggest unprecedented fatigue deformation mechanisms in nanostructured systems that are not addressed theoretically. DOI: 10.1103/PhysRevLett.110.135501
C1 [Cheng, Sheng; Li, Li; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Lee, Soo Yeol] Chungnam Natl Univ, Dept Mat Sci & Engn, Taejon 305764, South Korea.
[Lei, Changhui] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
[Almer, Jon] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Wang, Xun-Li] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China.
[Ungar, Tamas] Eotvos Lorand Univ, Dept Mat Phys, H-1518 Budapest, Pob, Hungary.
[Wang, Yinmin] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
RP Cheng, S (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
EM scheng.msg@gmail.com; ymwang@llnl.gov
RI Wang, Xun-Li/C-9636-2010; Wang, Yinmin (Morris)/F-2249-2010
OI Wang, Xun-Li/0000-0003-4060-8777; Wang, Yinmin
(Morris)/0000-0002-7161-2034
FU NSF [DMR-0421219, DMR-0231320]; U.S. DOE [DE-AC0206CH11357,
DE-AC52-07NA27344]
FX The authors thank Professor J.R. Weertman for her helpful comments.
Financial support was by the NSF Grants No. DMR-0421219 and No.
DMR-0231320. The APS was supported by the U.S. DOE (DE-AC0206CH11357).
The work at LLNL was supported by the U.S. DOE (DE-AC52-07NA27344).
NR 25
TC 9
Z9 9
U1 6
U2 88
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 25
PY 2013
VL 110
IS 13
AR 135501
DI 10.1103/PhysRevLett.110.135501
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 113QU
UT WOS:000316683500010
PM 23581334
ER
PT J
AU Hara, K
Horii, Y
Iijima, T
Adachi, I
Aihara, H
Asner, DM
Aushev, T
Aziz, T
Bakich, AM
Barrett, M
Bhardwaj, V
Bhuyan, B
Bondar, A
Bonvicini, G
Bozek, A
Bracko, M
Browder, TE
Chekelian, V
Chen, A
Chen, P
Cheon, BG
Chilikin, K
Cho, IS
Cho, K
Choi, Y
Cinabro, D
Dalseno, J
Dingfelder, J
Dolezal, Z
Drasal, Z
Drutskoy, A
Dutta, D
Eidelman, S
Epifanov, D
Esen, S
Farhat, H
Frey, A
Gaur, V
Gabyshev, N
Ganguly, S
Gillard, R
Goh, YM
Golob, B
Haba, J
Hara, T
Hayasaka, K
Hayashii, H
Higuchi, T
Hoshi, Y
Inami, K
Ishikawa, A
Itoh, R
Iwasaki, Y
Iwashita, T
Julius, T
Kang, JH
Kawasaki, T
Kiesling, C
Kim, HO
Kim, JB
Kim, JH
Kim, KT
Kim, MJ
Kim, YJ
Kinoshita, K
Klucar, J
Ko, BR
Kodys, P
Korpar, S
Kouzes, RT
Krizan, P
Krokovny, P
Kronenbitter, B
Kuhr, T
Kumita, T
Kuzmin, A
Kwon, YJ
Lange, JS
Lee, SH
Li, J
Li, Y
Libby, J
Liu, C
Liu, Y
Liu, ZQ
Liventsev, D
Matvienko, D
Miyabayashi, K
Miyata, H
Mizuk, R
Mohanty, GB
Moll, A
Mori, T
Muramatsu, N
Nakano, E
Nakao, M
Nakazawa, H
Natkaniec, Z
Nayak, M
Ng, C
Nisar, NK
Nishida, S
Nishimura, K
Nitoh, O
Nozaki, T
Ohshima, T
Okuno, S
Olsen, SL
Oswald, C
Ozaki, H
Pakhlov, P
Pakhlova, G
Park, CW
Park, HK
Pedlar, TK
Pestotnik, R
Petric, M
Piilonen, LE
Prim, M
Rohrken, M
Ryu, S
Sahoo, H
Sakai, K
Sakai, Y
Sandilya, S
Santel, D
Sanuki, T
Sato, Y
Schneider, O
Schnell, G
Schwanda, C
Schwartz, AJ
Senyo, K
Seon, O
Sevior, ME
Shapkin, M
Shen, CP
Shibata, TA
Shiu, JG
Shwartz, B
Sibidanov, A
Simon, F
Smerkol, P
Sohn, YS
Sokolov, A
Solovieva, E
Staric, M
Sumihama, M
Sumiyoshi, T
Tatishvili, G
Teramoto, Y
Trabelsi, K
Tsuboyama, T
Uchida, M
Uehara, S
Unno, Y
Uno, S
Urquijo, P
Ushiroda, Y
Usov, Y
Van Hulse, C
Vanhoefer, P
Varner, G
Varvell, KE
Vorobyev, V
Wagner, MN
Wang, CH
Wang, MZ
Wang, P
Watanabe, M
Watanabe, Y
Williams, KM
Won, E
Yabsley, BD
Yamamoto, H
Yamashita, Y
Yusa, Y
Zhang, ZP
Zhilich, V
Zhulanov, V
Zupanc, A
AF Hara, K.
Horii, Y.
Iijima, T.
Adachi, I.
Aihara, H.
Asner, D. M.
Aushev, T.
Aziz, T.
Bakich, A. M.
Barrett, M.
Bhardwaj, V.
Bhuyan, B.
Bondar, A.
Bonvicini, G.
Bozek, A.
Bracko, M.
Browder, T. E.
Chekelian, V.
Chen, A.
Chen, P.
Cheon, B. G.
Chilikin, K.
Cho, I. -S.
Cho, K.
Choi, Y.
Cinabro, D.
Dalseno, J.
Dingfelder, J.
Dolezal, Z.
Drasal, Z.
Drutskoy, A.
Dutta, D.
Eidelman, S.
Epifanov, D.
Esen, S.
Farhat, H.
Frey, A.
Gaur, V.
Gabyshev, N.
Ganguly, S.
Gillard, R.
Goh, Y. M.
Golob, B.
Haba, J.
Hara, T.
Hayasaka, K.
Hayashii, H.
Higuchi, T.
Hoshi, Y.
Inami, K.
Ishikawa, A.
Itoh, R.
Iwasaki, Y.
Iwashita, T.
Julius, T.
Kang, J. H.
Kawasaki, T.
Kiesling, C.
Kim, H. O.
Kim, J. B.
Kim, J. H.
Kim, K. T.
Kim, M. J.
Kim, Y. J.
Kinoshita, K.
Klucar, J.
Ko, B. R.
Kodys, P.
Korpar, S.
Kouzes, R. T.
Krizan, P.
Krokovny, P.
Kronenbitter, B.
Kuhr, T.
Kumita, T.
Kuzmin, A.
Kwon, Y. -J.
Lange, J. S.
Lee, S. -H.
Li, J.
Li, Y.
Libby, J.
Liu, C.
Liu, Y.
Liu, Z. Q.
Liventsev, D.
Matvienko, D.
Miyabayashi, K.
Miyata, H.
Mizuk, R.
Mohanty, G. B.
Moll, A.
Mori, T.
Muramatsu, N.
Nakano, E.
Nakao, M.
Nakazawa, H.
Natkaniec, Z.
Nayak, M.
Ng, C.
Nisar, N. K.
Nishida, S.
Nishimura, K.
Nitoh, O.
Nozaki, T.
Ohshima, T.
Okuno, S.
Olsen, S. L.
Oswald, C.
Ozaki, H.
Pakhlov, P.
Pakhlova, G.
Park, C. W.
Park, H. K.
Pedlar, T. K.
Pestotnik, R.
Petric, M.
Piilonen, L. E.
Prim, M.
Roehrken, M.
Ryu, S.
Sahoo, H.
Sakai, K.
Sakai, Y.
Sandilya, S.
Santel, D.
Sanuki, T.
Sato, Y.
Schneider, O.
Schnell, G.
Schwanda, C.
Schwartz, A. J.
Senyo, K.
Seon, O.
Sevior, M. E.
Shapkin, M.
Shen, C. P.
Shibata, T. -A.
Shiu, J. -G.
Shwartz, B.
Sibidanov, A.
Simon, F.
Smerkol, P.
Sohn, Y. -S.
Sokolov, A.
Solovieva, E.
Staric, M.
Sumihama, M.
Sumiyoshi, T.
Tatishvili, G.
Teramoto, Y.
Trabelsi, K.
Tsuboyama, T.
Uchida, M.
Uehara, S.
Unno, Y.
Uno, S.
Urquijo, P.
Ushiroda, Y.
Usov, Y.
Van Hulse, C.
Vanhoefer, P.
Varner, G.
Varvell, K. E.
Vorobyev, V.
Wagner, M. N.
Wang, C. H.
Wang, M. -Z.
Wang, P.
Watanabe, M.
Watanabe, Y.
Williams, K. M.
Won, E.
Yabsley, B. D.
Yamamoto, H.
Yamashita, Y.
Yusa, Y.
Zhang, Z. P.
Zhilich, V.
Zhulanov, V.
Zupanc, A.
CA Belle Collaboration
TI Evidence for B- -> t(-)(v)over-bar(t) with a Hadronic Tagging Method
Using the Full Data Sample of Belle
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID CP-VIOLATION
AB We measure the branching fraction of B- -> t(-)(v) over bar (t) using the full Y(4S) data sample containing 772 x 10(6) B (B) over bar pairs collected with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. Events with B (B) over bar pairs are tagged by reconstructing one of the B mesons decaying into hadronic final states, and B- -> t(-)(v) over bar (t) candidates are detected in the recoil. We find evidence for B- -> t(-)(v) over bar (t) with a significance of 3.0 standard deviations including systematic errors and measure a branching fraction B(B- -> t(-)(v) over bar (t)) = [0: 72(-0.25)(+0.27)(stat) +/- 0.11(syst)x10(-4). DOI: 10.1103/PhysRevLett.110.131801
C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country, UPV EHU, Bilbao 48080, Spain.
[Dingfelder, J.; Oswald, C.; Urquijo, P.] Univ Bonn, D-53115 Bonn, Germany.
[Bondar, A.; Eidelman, S.; Epifanov, D.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Matvienko, D.; Shwartz, B.; Usov, Y.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia.
[Bondar, A.; Eidelman, S.; Epifanov, D.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Matvienko, D.; Shwartz, B.; Usov, Y.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic.
[Esen, S.; Kinoshita, K.; Liu, Y.; Santel, D.; Schwartz, A. J.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Lange, J. S.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany.
[Sumihama, M.] Gifu Univ, Gifu 5011193, Japan.
[Frey, A.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany.
[Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea.
[Barrett, M.; Browder, T. E.; Nishimura, K.; Sahoo, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA.
[Hara, K.; Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Iwasaki, Y.; Nakao, M.; Nishida, S.; Nozaki, T.; Ozaki, H.; Sakai, K.; Sakai, Y.; Trabelsi, K.; Tsuboyama, T.; Uehara, S.; Uno, S.; Ushiroda, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan.
[Schnell, G.] Ikerbasque, Bilbao 48011, Spain.
[Bhuyan, B.; Dutta, D.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India.
[Libby, J.; Nayak, M.] Indian Inst Technol, Madras 600036, Tamil Nadu, India.
[Liu, Z. Q.; Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.
[Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria.
[Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia.
[Aushev, T.; Chilikin, K.; Drutskoy, A.; Liventsev, D.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Solovieva, E.] Inst Theoret & Expt Phys, Moscow 117218, Russia.
[Bracko, M.; Golob, B.; Klucar, J.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Smerkol, P.; Staric, M.] Jozef Stefan Inst, Ljubljana 1000, Slovenia.
[Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan.
[Kronenbitter, B.; Kuhr, T.; Prim, M.; Roehrken, M.; Zupanc, A.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany.
[Higuchi, T.] Univ Tokyo, Kavli Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan.
[Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Kim, J. B.; Kim, K. T.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul 136713, South Korea.
[Kim, H. O.; Kim, M. J.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea.
[Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland.
[Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA.
[Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia.
[Chekelian, V.; Dalseno, J.; Kiesling, C.; Moll, A.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Drutskoy, A.; Mizuk, R.; Pakhlov, P.] Moscow Phys Engn Inst, Moscow 115409, Russia.
[Iijima, T.; Inami, K.; Mori, T.; Ohshima, T.; Seon, O.; Shen, C. P.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan.
[Horii, Y.; Iijima, T.; Hayasaka, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan.
[Bhardwaj, V.; Hayashii, H.; Iwashita, T.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan.
[Chen, A.; Nakazawa, H.] Natl Cent Univ, Chungli 32054, Taiwan.
[Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan.
[Chen, P.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan.
[Bozek, A.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland.
[Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan.
[Kawasaki, T.; Miyata, H.; Watanabe, M.; Yusa, Y.] Niigata Univ, Niigata 9502181, Japan.
[Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan.
[Asner, D. M.; Kouzes, R. T.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Muramatsu, N.] Tohoku Univ, Res Ctr Electron Photon Sci, Sendai, Miyagi 9808578, Japan.
[Liu, C.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Li, J.; Olsen, S. L.; Ryu, S.] Seoul Natl Univ, Seoul 151742, South Korea.
[Choi, Y.; Park, C. W.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Bakich, A. M.; Sibidanov, A.; Varvell, K. E.; Yabsley, B. D.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Aziz, T.; Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, D-85748 Garching, Germany.
[Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan.
[Ishikawa, A.; Sanuki, T.; Sato, Y.; Yamamoto, H.] Tohoku Univ, Sendai, Miyagi 9808578, Japan.
[Aihara, H.; Ng, C.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan.
[Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan.
[Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan.
[Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo 1848588, Japan.
[Li, Y.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA.
[Bonvicini, G.; Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA.
[Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan.
[Cho, I. -S.; Kang, J. H.; Kwon, Y. -J.; Sohn, Y. -S.] Yonsei Univ, Seoul 120749, South Korea.
[Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia.
RP Hara, K (reprint author), KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan.
RI Aihara, Hiroaki/F-3854-2010; Ishikawa, Akimasa/G-6916-2012; Nitoh,
Osamu/C-3522-2013; Pakhlov, Pavel/K-2158-2013; Mizuk, Roman/B-3751-2014;
Krokovny, Pavel/G-4421-2016; Chilikin, Kirill/B-4402-2014; Drutskoy,
Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014; Solovieva,
Elena/B-2449-2014
OI Aihara, Hiroaki/0000-0002-1907-5964; Pakhlov, Pavel/0000-0001-7426-4824;
Krokovny, Pavel/0000-0002-1236-4667; Chilikin,
Kirill/0000-0001-7620-2053; Drutskoy, Alexey/0000-0003-4524-0422;
Pakhlova, Galina/0000-0001-7518-3022; Solovieva,
Elena/0000-0002-5735-4059
FU MEXT, JSPS, and Nagoya's TLPRC (Japan); ARC and DIISR (Australia); NSFC
(China); MSMT (Czechia); DST (India); INFN (Italy); MEST, NRF, GSDC of
KISTI, and WCU (Korea); MNiSW (Poland); MES and RFAAE (Russia); ARRS
(Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); DOE and NSF (USA);
JSPS KAKENHI [24740157]
FX We thank the KEKB group for excellent operation of the accelerator; the
KEK cryogenics group for efficient solenoid operations; and the KEK
computer group, the NII, and PNNL/EMSL for valuable computing and SINET4
network support. We acknowledge support from MEXT, JSPS, and Nagoya's
TLPRC (Japan); ARC and DIISR (Australia); NSFC (China); MSMT (Czechia);
DST (India); INFN (Italy); MEST, NRF, GSDC of KISTI, and WCU (Korea);
MNiSW (Poland); MES and RFAAE (Russia); ARRS (Slovenia); SNSF
(Switzerland); NSC and MOE (Taiwan); and DOE and NSF (USA). We are
grateful for the support of JSPS KAKENHI Grant No. 24740157.
NR 16
TC 18
Z9 18
U1 0
U2 17
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 25
PY 2013
VL 110
IS 13
AR 131801
DI 10.1103/PhysRevLett.110.131801
PG 6
WC Physics, Multidisciplinary
SC Physics
GA 113QU
UT WOS:000316683500005
PM 23581309
ER
PT J
AU Wu, S
Li, WP
Lin, MR
Burlingame, Q
Chen, Q
Payzant, A
Xiao, K
Zhang, QM
AF Wu, Shan
Li, Weiping
Lin, Minren
Burlingame, Quinn
Chen, Qin
Payzant, Andrew
Xiao, Kai
Zhang, Q. M.
TI Aromatic Polythiourea Dielectrics with Ultrahigh Breakdown Field
Strength, Low Dielectric Loss, and High Electric Energy Density
SO ADVANCED MATERIALS
LA English
DT Article
DE energy storage; polymers; energy density; dielectric loss; dielectric
strength
ID POLAR MOLECULES; THIOUREA; POLYMER; UREA
AB The promise of aromatic, amorphous, polar polymers containing high dipolar moments with very low defect levels is demonstrated for future dielectric materials with ultrahigh electric-energy density, low loss at high applied fields, and ultrahigh breakdown strengths. Specifically, aromatic polythiourea films exhibit an ultrahigh breakdown field (>1 GV m(-1)), which results in an energy density of approximate to 22 J cm(-3), as well as a low loss.
C1 [Wu, Shan; Li, Weiping; Lin, Minren; Burlingame, Quinn; Zhang, Q. M.] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA.
[Wu, Shan; Li, Weiping; Lin, Minren; Burlingame, Quinn; Zhang, Q. M.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
[Chen, Qin] GE Global Res Ctr, Niskayuna, NY 12309 USA.
[Payzant, Andrew; Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Zhang, QM (reprint author), Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA.
EM qxz1@psu.edu
RI Payzant, Edward/B-5449-2009
OI Payzant, Edward/0000-0002-3447-2060
FU Office of Naval Research [N00014-11-1-0192]; Oak Ridge National
Laboratory by the Scientific User Facilities Division, Office of Basic
Energy Sciences, US Department of Energy [CNMS2011-229]
FX We thank S. Boggs for discussion of this work. This work was supported
by the Office of Naval Research under grant No. N00014-11-1-0192, and a
portion of research was conducted under CNMS2011-229 user proposal at
the Center for Nanophase Materials Sciences, which is sponsored at Oak
Ridge National Laboratory by the Scientific User Facilities Division,
Office of Basic Energy Sciences, US Department of Energy.
NR 25
TC 72
Z9 72
U1 15
U2 150
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0935-9648
J9 ADV MATER
JI Adv. Mater.
PD MAR 25
PY 2013
VL 25
IS 12
BP 1734
EP 1738
DI 10.1002/adma.201204072
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 108UV
UT WOS:000316322600011
PM 23315675
ER
PT J
AU Akgul, G
Akgul, FA
Attenkofer, K
Winterer, M
AF Akgul, Guvenc
Akgul, Funda Aksoy
Attenkofer, Klaus
Winterer, Markus
TI Structural properties of zinc oxide and titanium dioxide nanoparticles
prepared by chemical vapor synthesis
SO JOURNAL OF ALLOYS AND COMPOUNDS
LA English
DT Article
DE Nanostructured materials; Vapor deposition; Crystal structure; EXAFS;
X-ray diffraction
ID RAY-ABSORPTION SPECTRA; MULTIPLE-SCATTERING CALCULATIONS; TIO2 FILMS;
ZNO; SIZE; PHOTOCHEMISTRY; PHOTOCATALYSIS; DEPOSITION; PARTICLES;
CHEMISTRY
AB Transition metal (TM) oxides provide a wide range of functional materials especially when nanostructured. Titanium dioxide (TiO2) and wurtzite type zinc oxide (ZnO) nanostructured materials were fabricated by chemical vapor synthesis (CVS). Crystal and local structures of the prepared nanosamples were ascertained using X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), and extended Xray absorption fine structure (EXAFS) techniques. Based on the XRD data, a second phase(s) was not found in both samples. A single wurtzite and anatase type structures were observed in ZnO and TiO2 nanosamples, respectively. Ti K pre-edge features of XANES spectrum indicated the presence of sixfold coordinated Ti in TiO2 nanosamples. The results showed that CVS is quite useful method to produce high crystalline nanoparticles. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Akgul, Guvenc] Nigde Univ, Bor Vocat Sch, TR-51700 Nigde, Turkey.
[Akgul, Guvenc; Attenkofer, Klaus] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Akgul, Funda Aksoy] Nigde Univ, Dept Phys, TR-51240 Nigde, Turkey.
[Winterer, Markus] Univ Duisburg Essen, Dept Engn Sci, Duisburg, Germany.
[Winterer, Markus] Univ Duisburg Essen, Ctr NanoIntegrat Duisburg Essen, CeNIDE, Duisburg, Germany.
RP Akgul, G (reprint author), Nigde Univ, Bor Vocat Sch, TR-51700 Nigde, Turkey.
EM guvencakgul@gmail.com
RI Winterer, Markus/N-2069-2015
FU German Research Foundation (DFG) through the Collaborative Research
Center [SFB 445]
FX The financial support by the German Research Foundation (DFG) through
the Collaborative Research Center SFB 445 is gratefully acknowledged.
The authors thank Dr. Nadia Leyarovska from APS, Argonne National
Laboratory, IL, USA for help at the EXAFS beamline.
NR 42
TC 16
Z9 16
U1 3
U2 111
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-8388
J9 J ALLOY COMPD
JI J. Alloy. Compd.
PD MAR 25
PY 2013
VL 554
BP 177
EP 181
DI 10.1016/j.jallcom.2012.11.158
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA 085VK
UT WOS:000314642200029
ER
PT J
AU Polat, BD
Sezgin, N
Keles, O
Kazmanli, K
Abouimrane, A
Amine, K
AF Polat, B. D.
Sezgin, N.
Keles, O.
Kazmanli, K.
Abouimrane, A.
Amine, K.
TI A nano-architectured porous electrode assembly of copper rich Cu6Sn5
thin film for rechargeable lithium batteries
SO JOURNAL OF ALLOYS AND COMPOUNDS
LA English
DT Article
DE Thin films; Vapor deposition; Nanostructured materials; Lithium ion
batteries
ID LI-ION BATTERIES; X-RAY-DIFFRACTION; ANODE MATERIALS; ELECTROCHEMICAL
PROPERTIES; ALLOY ANODES; TIN; PERFORMANCE; EVOLUTION; CARBON; OXIDE
AB Cu and Sn are codeposited on a copper substrate via electron beam evaporation deposition method to form a nano porous thin film anode. The galvanostatic charge-discharge results show that the nano porous Cu6.26Sn5 thin film performs 784 mAh g(-1) as first discharge capacity. A capacity fade is observed during the first three cycles, this sharp capacity decay has disappeared and a progressive increase in the capacity is observed up to 40th cycles. Then, a steady state regime has begun and continued up to 60th cycles. The enhanced electrochemical properties of the nano porous, structured Cu-Sn composite thin film is attributed to its particular composition, morphology and structure. (C) 2012 Published by Elsevier B.V.
C1 [Polat, B. D.; Sezgin, N.; Keles, O.; Kazmanli, K.] Istanbul Tech Univ, Dept Met & Mat Engn, TR-34469 Istanbul, Turkey.
[Abouimrane, A.; Amine, K.] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Technol Program, Argonne, IL 60439 USA.
RP Keles, O (reprint author), Istanbul Tech Univ, Dept Met & Mat Engn, TR-34469 Istanbul, Turkey.
EM ozgulkeles@itu.edu.tr
FU Scientific and Technological Research Council of Turkey (TUBITAK)
[110M148]
FX This work is a part of the research project 110M148 approved by The
Scientific and Technological Research Council of Turkey (TUBITAK). The
research grant is gratefully acknowledged.
NR 37
TC 0
Z9 0
U1 5
U2 141
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-8388
J9 J ALLOY COMPD
JI J. Alloy. Compd.
PD MAR 25
PY 2013
VL 554
BP 204
EP 207
DI 10.1016/j.jallcom.2012.11.145
PG 4
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA 085VK
UT WOS:000314642200033
ER
PT J
AU Lin, X
Straszheim, WE
Bud'ko, SL
Canfield, PC
AF Lin, Xiao
Straszheim, Warren E.
Bud'ko, Sergey L.
Canfield, Paul C.
TI Anisotropic magnetization and resistivity of single crystalline
RNi1-xBi2 +/- y (R = La-Nd, Sm, Gd-Dy)
SO JOURNAL OF ALLOYS AND COMPOUNDS
LA English
DT Article
DE Rare-earth compounds; Single crystals; Magnetization; Resistivity
ID SERIES; LU
AB We present a detailed study of RNi1-xBi2+/-y (R = La-Nd, Sm, Gd-Dy) single crystals by measurements of stoichiometry and temperature dependent magnetic susceptibility, magnetization, and electrical resistivity. This series forms with partial Ni occupancy, 0.72 <= (1-x) <= 0.84, as well as a variable Bi occupancy, 1.76 <= (2+/-y) <= 2.14. For R = Ce-Nd, Gd-Dy, the RNi1-xBi2+/-y compounds show local-moment like behavior and order antiferromagnetically at low temperatures. Determination of anisotropies as well as antiferromagnetic ordering temperatures for RNi1-xBi2+/-y (R = Ce-Nd, Sm, Gd-Dy) have been made. Crystalline samples from this family exhibit minority, second phase superconductivity at low temperatures, which can be associated with Ni-Bi and Bi contamination. No evidence of bulk superconductivity has been observed. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Lin, Xiao; Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Straszheim, Warren E.; Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
RP Lin, X (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
EM xiaolin@iastate.edu
RI Canfield, Paul/H-2698-2014
FU AFOSR-MURI [FA9550-09-1-0603]; U.S. Department of Energy, Office of
Basic Energy Science, Division of Materials Sciences and Engineering; US
DOE [DE-AC02-07CH11358]
FX This work was carried out at the Iowa State University and supported by
the AFOSR-MURI Grant No. FA9550-09-1-0603 (X. Lin and P. C. Canfield).
S. L. Bud'ko was supported by the U.S. Department of Energy, Office of
Basic Energy Science, Division of Materials Sciences and Engineering.
Part of this work was performed at Ames Laboratory, US DOE, under
Contract No. DE-AC02-07CH11358.
NR 27
TC 10
Z9 10
U1 0
U2 25
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-8388
J9 J ALLOY COMPD
JI J. Alloy. Compd.
PD MAR 25
PY 2013
VL 554
BP 304
EP 311
DI 10.1016/j.jallcom.2012.11.138
PG 8
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA 085VK
UT WOS:000314642200049
ER
PT J
AU Wang, R
Yang, CX
Fan, M
Wu, MM
Wang, CH
Yu, XH
Zhu, JL
Zhang, JR
Li, GB
Huang, QZ
Chen, DF
Jin, TN
Kamiyama, T
Liao, FH
Lin, JH
AF Wang, Rong
Yang, Chengxu
Fan, Min
Wu, Meimei
Wang, Chunhai
Yu, Xiaohui
Zhu, Jinlong
Zhang, Junrong
Li, Guobao
Huang, Qingzhen
Chen, Dongfeng
Jin, Tounan
Kamiyama, Takashi
Liao, Fuhui
Lin, Jianhua
TI Phase relationship of the TbO1.81-Mn3O4-Fe2O3 system synthesized at 1200
degrees C
SO JOURNAL OF ALLOYS AND COMPOUNDS
LA English
DT Article
DE TbMnO3; Phase diagram; Solid-state reaction; Multiferroic; Powder X-ray
diffraction
ID MULTIFERROIC MATERIAL; MANGANESE OXIDE; POLARIZATION; FE3O4-MN3O4;
SPINELS; TBMNO3
AB The phase relationship of the TbO1.81-Mn3O4-Fe2O3 pseudo-ternary system synthesized at 1200 degrees C was determined using X-ray and neutron diffraction method. Four solid solutions, Mn3-3xFe3xO4 (0.00 <= x <= 0.278), Mn3-3xFe3xO4 (0.291 <= x <= 0.667), Mn2-2xFe2xO3 (0.89 <= x <= 1.00), and (Tb1-yMnzFex) (FewMn1-w)O-3 (1-y + x + z <= 1, 0.00 <= w <= 1.00) were found along with six two-phase regions and three three-phase regions. The boundaries were determined by several different methods such as phase disappearing, the Vigard's law, and the lever rule. (C) 2012 Elsevier B. V. All rights reserved.
C1 [Yang, Chengxu; Li, Guobao; Liao, Fuhui; Lin, Jianhua] Peking Univ, Beijing Natl Lab Mol Sci, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China.
[Wang, Rong; Fan, Min; Jin, Tounan] Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100022, Peoples R China.
[Wu, Meimei; Chen, Dongfeng] China Inst Atom Energy, Dept Nucl Phys, Neutron Scattering Lab, Beijing 102413, Peoples R China.
[Wang, Chunhai] Peking Univ, Sch Phys, Beijing 100871, Peoples R China.
[Yu, Xiaohui; Zhu, Jinlong] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA.
[Zhang, Junrong; Kamiyama, Takashi] Res Org KEK, Inst Mat Struct Sci, Tokai, Ibaraki 3191106, Japan.
[Huang, Qingzhen] NIST, Gaithersburg, MD 20899 USA.
RP Li, GB (reprint author), Peking Univ, Beijing Natl Lab Mol Sci, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China.
EM liguobao@pku.edu.cn; qing.huang@nist.gov; tnjinkim@bjut.edu.cn;
jhlin@pku.edu.cn
RI Lujan Center, LANL/G-4896-2012; Wang, Chun-Hai/J-2814-2014; Li,
Guobao/F-3690-2016
OI Wang, Chun-Hai/0000-0001-5527-199X; Li, Guobao/0000-0003-3061-193X
FU National Key Basic Research Project of China [2010CB833103]; National
Natural Science Foundation of China [11075220]; Beijing Municipal
Commission of Education [KM20101000 5019]
FX This work is supported by a National Key Basic Research Project of China
(2010CB833103), the National Natural Science Foundation of China (Grants
11075220), and Scientific Research Key Program of Beijing Municipal
Commission of Education (KM20101000 5019). We thank Dr. M. Avdeev for
assistance collecting the neutron power diffraction data at the OPAL
facility.
NR 42
TC 6
Z9 6
U1 1
U2 36
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-8388
J9 J ALLOY COMPD
JI J. Alloy. Compd.
PD MAR 25
PY 2013
VL 554
BP 385
EP 394
DI 10.1016/j.jallcom.2012.12.011
PG 10
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA 085VK
UT WOS:000314642200060
ER
PT J
AU Wang, GS
Chen, SL
AF Wang, Gangsheng
Chen, Shulin
TI Evaluation of a soil greenhouse gas emission model based on Bayesian
inference and MCMC: Model uncertainty
SO ECOLOGICAL MODELLING
LA English
DT Article
DE Bayesian inference; Greenhouse gas (GHG); Markov Chain Monte Carlo
(MCMC); Metropolis-Hastings algorithm; Model uncertainty
ID METROPOLIS-HASTINGS ALGORITHM; NITROUS-OXIDE EVOLUTION; HYDROLOGIC
CONTROLS; RAINFALL EVENTS; ORGANIC-MATTER; MONTE-CARLO; CARBON;
SENSITIVITY; SIMULATION; DYNAMICS
AB We combined the Bayesian inference and the Markov Chain Monte Carlo (MCMC) technique to quantify uncertainties in the process-based soil greenhouse gas (GHG) emission models. The Metropolis-Hastings sampling was examined by comparing four univariate proposal distributions (UPDs: symmetric/asymmetric uniform and symmetric/asymmetric normal) and one multinormal proposal distribution (MPD). Almost all the posterior parameter ranges from the MPD could be reduced to 1 order of magnitude. The simulation errors in CO2 fluxes were much greater than those in N2O fluxes, which resulted in a greater importance in model structure than in model parameters for CO2 simulations. We suggested deriving the covariance matrix of parameters for MPD from the sampling results of a UPD; and generating a Markov chain by updating a single parameter rather than updating all parameters at each time. The method addressed in this paper can be used to evaluate uncertainties in other GHG emission models. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Wang, Gangsheng; Chen, Shulin] Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA.
[Wang, Gangsheng] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
RP Wang, GS (reprint author), Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA.
EM wangg@ornl.gov; chens@wsu.edu
FU Paul Allen Family Foundation; Climate Friendly Farm project
FX The authors thank the Paul Allen Family Foundation and Climate Friendly
Farm project for providing funding for this research, and the excellent
editorial comments of Dr. Joan Wu. Thanks also go to the two anonymous
reviewers for their constructive comments.
NR 48
TC 6
Z9 7
U1 1
U2 40
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3800
J9 ECOL MODEL
JI Ecol. Model.
PD MAR 24
PY 2013
VL 253
BP 97
EP 106
DI 10.1016/j.ecolmodel.2012.09.010
PG 10
WC Ecology
SC Environmental Sciences & Ecology
GA 115TJ
UT WOS:000316834500010
ER
PT J
AU Wang, GS
Chen, SL
AF Wang, Gangsheng
Chen, Shulin
TI Evaluation of a soil greenhouse gas emission model based on Bayesian
inference and MCMC: Parameter identifiability and equifinality
SO ECOLOGICAL MODELLING
LA English
DT Article
DE Bayesian inference; Condition number; Equifinality; Markov Chain Monte
Carlo (MCMC); Identifiability
ID MAXIMUM-LIKELIHOOD-ESTIMATION; ERROR COVARIANCE PARAMETERS;
RAINFALL-RUNOFF MODELS; HYDROLOGICAL MODELS; NUMERICAL APPROACH;
NITROGEN CYCLES; METHODOLOGY; CARBON; UNCERTAINTY; FORECAST
AB Identifiability and equifinality are two interrelated concepts in mathematical modeling. The derivation of the Hessian matrix becomes crucial when the condition number is used as a diagnostic indicator for identifiability. The covariance-inverse (CI) method was proposed to derive the Hessian matrix via the inverse matrix of covariance. The covariance matrix is calculated directly from the posterior parameter samples. Compared with two existing methods, i.e., difference quotients (DQ) and quasi-analytical (QA), CI is more efficient and reliable. The CI method was then used for identifiability diagnosis on a soil greenhouse gas emission (SoilGHG) model. The model as a whole was poorly identified, but a reduced model with fewer parameters could become identifiable, which is called "conditionally identifiable" in this paper. The geometric mean condition numbers in terms of sorted singular values of the full Hessian matrix could be adopted as criteria to determine at most how many undetermined parameters might be included in an identifiable or weakly identifiable model. The combinations of parameters that made the model identifiable were also determined by the proposed diagnosis method. We addressed the importance of understanding both identifiability and equifinality in ecosystem modeling. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Wang, Gangsheng; Chen, Shulin] Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA.
[Wang, Gangsheng] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
RP Wang, GS (reprint author), Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA.
EM wangg@ornl.gov; chens@wsu.edu
FU Paul Allen Family Foundation; Climate Friendly Farm project
FX The authors thank the Paul Allen Family Foundation and Climate Friendly
Farm project for providing funding for this research, and the excellent
editorial comments of Dr. Joan Wu and Dr. Jim Ofallon. Thanks also go to
the three anonymous reviewers for their constructive comments.
NR 37
TC 3
Z9 3
U1 2
U2 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3800
J9 ECOL MODEL
JI Ecol. Model.
PD MAR 24
PY 2013
VL 253
BP 107
EP 116
DI 10.1016/j.ecolmodel.2012.09.011
PG 10
WC Ecology
SC Environmental Sciences & Ecology
GA 115TJ
UT WOS:000316834500011
ER
PT J
AU Poineau, F
Burton-Pye, BP
Maruk, A
Kirakosyan, G
Denden, I
Rego, DB
Johnstone, EV
Sattelberger, AP
Fattahi, M
Francesconi, LC
German, KE
Czerwinski, KR
AF Poineau, Frederic
Burton-Pye, Benjamin P.
Maruk, Alesya
Kirakosyan, Gayane
Denden, Ibthihel
Rego, Daniel B.
Johnstone, Erik V.
Sattelberger, Alfred P.
Fattahi, Massoud
Francesconi, Lynn C.
German, Konstantin E.
Czerwinski, Kenneth R.
TI On the nature of heptavalent technetium in concentrated nitric and
perchloric acid
SO INORGANICA CHIMICA ACTA
LA English
DT Article
DE Technetium; Speciation; Perchloric acid; Nitric acid
ID CHEMISTRY; OXIDATION
AB The speciation of Tc(+ 7) was performed in HClO4 and HNO3 by 99-Tc NMR, UV-Vis and XAFS spectroscopy. The speciation of Tc(+ 7) depends on the concentration and strength of the acid. Pertechnetic acid, HTcO4, forms above 8 M HClO4 while in concentrated HNO3, [TcO4] is still the predominant species. EXAFS spectroscopy shows that the structure of HTcO4 in HClO4 is similar to the one in H2SO4. The reactivity of Tc(+ 7) was analyzed in the frame of the partial charge model. The partial charge calculated on the Tc atoms (triangle Tc) indicates that HTcO4 (triangle Tc = + 057) is more electrophilic than [TcO4] (triangle Tc = + 0.52). The difference in the oxidizing properties between [TcO4] and HTcO4 is given from the reaction of these species with 12 M HCl(aq). In 13 M sulfuric acid HTcO4 is reduced to Tc(+ 5) while [TcO4] is not reduced in 6M H2SO4. (C) 2012 Elsevier B. V. All rights reserved.
C1 [Poineau, Frederic; Rego, Daniel B.; Johnstone, Erik V.; Czerwinski, Kenneth R.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA.
[Burton-Pye, Benjamin P.; Francesconi, Lynn C.] CUNY Hunter Coll, Dept Chem, New York, NY 10021 USA.
[Maruk, Alesya; Kirakosyan, Gayane; German, Konstantin E.] Russian Acad Sci, AN Frumkin Inst Phys Chem & Electrochem, Moscow, Russia.
[Denden, Ibthihel; Fattahi, Massoud] Ecole Mines, Lab Subatech, Nantes, France.
[Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Lemont, IL USA.
RP Poineau, F (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA.
EM poineauf@unlv.nevada.edu
RI Kirakosyan, Gayana/N-7251-2015; German, Konstantin/B-7694-2011;
OI Kirakosyan, Gayana/0000-0002-5801-2827; German,
Konstantin/0000-0003-2368-4081; Maruk, Alesya/0000-0003-2576-2338
FU NEUP [89445]; U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences [DE-AC0206CH11357]; NSF [CHE 0750118,
DE-FG02-09ER16097]; [NSF-CHE-0959617]
FX Funding for this research was provided by an NEUP grant "Development of
Alternative Technetium Waste Forms'' from the US Department of Energy,
Office of Nuclear Energy, through INL/BEA, LLC, 89445. Use of the
Advanced Photon Source at Argonne was supported by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC0206CH11357. The work conducted at Hunter College was
supported by NSF-CHE-0959617 (for purchase of the 400 MHz NMR
spectrometer), NSF-. CHE 0750118, and DE-FG02-09ER16097 (SISGR, Heavy
Element Chemistry, Office of Science, Department of Energy). The authors
thank Trevor Low, and Julie Bertoia for outstanding health physics
support and Dr. Sungsik Lee at the APS for support during EXAFS
experiment.
NR 22
TC 3
Z9 3
U1 2
U2 27
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0020-1693
J9 INORG CHIM ACTA
JI Inorg. Chim. Acta
PD MAR 24
PY 2013
VL 398
BP 147
EP 150
DI 10.1016/j.ica.2012.12.028
PG 4
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 114LJ
UT WOS:000316742500021
ER
PT J
AU Esteban, J
Escuer, A
Font-Bardia, M
Roubeau, O
Teat, SJ
AF Esteban, Jordi
Escuer, Albert
Font-Bardia, Merce
Roubeau, Olivier
Teat, Simon J.
TI Polynuclear pyridyldioximato-nickel(II) clusters: Synthesis, structure
and magnetic study
SO POLYHEDRON
LA English
DT Article
DE Crystal structures; Pyridyl dioximato ligands; Magnetic properties;
Nickel(II); Sulfato ligand
ID MANGANESE CARBOXYLATE CHEMISTRY; 2-PYRIDYL KETONE OXIME;
HIGH-NUCLEARITY; 2,6-DIACETYLPYRIDINE DIOXIME; CRYSTAL-STRUCTURE; LIGAND
2-PYRIDINEALDOXIME; INORGANIC ANION; PYRIDYL OXIMES; GROUND-STATES;
INITIAL USE
AB In the present work, new polynuclear complexes with nuclearities ranging from Ni-3 to Ni-10, have been obtained by reaction of a variety of nickel salts and dapdoH(2) ligand, (dapdoH(2) = 2,6-diacetylpyridine dioxime). Depending on the precursors and reaction conditions the compounds with formula [Ni-3(3-Cl-BzO)(dapdo)(dapdoH)OH(dapdoH(2))(3-Cl-BzO) (1), (Et2NH2)(6)[Ni-8(dapdoH)(4)(SO4)(H2O)(2)] (2) and (Et3NH)(2)[Ni-10(dapdoH)(8)(MeOH)(4)](BF4)(6) (3) were achieved and structurally characterized. The octanuclear compound 2 provides an unprecedented sulfato cluster with a new topology and connectivity. Dc magnetic measurements were carried out in the 2-300 K range revealing antiferromagnetic interactions for all compounds. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Esteban, Jordi; Escuer, Albert] IN2UB, Dept Quim Inorgan, Barcelona 08028, Spain.
[Font-Bardia, Merce] Univ Barcelona, Dept Mineral Cristallog 1, E-08028 Barcelona, Spain.
[Roubeau, Olivier] Univ Zaragoza, CSIC, ICMA, E-50009 Zaragoza, Spain.
[Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Esteban, J (reprint author), IN2UB, Dept Quim Inorgan, Av Diagonal 645, Barcelona 08028, Spain.
EM albert.escuer@qi.ub.es
RI Escuer, Albert/L-4706-2014; Roubeau, Olivier/A-6839-2010
OI Escuer, Albert/0000-0002-6274-6866; Roubeau, Olivier/0000-0003-2095-5843
FU CICYT [CTQ2009-07264]; excellence in research ICREA-Academia award;
Director, Office of Science, Office of Basic Energy Sciences of the US
Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the CICYT Project CTQ2009-07264. A.E. thanks
financial support from excellence in research ICREA-Academia award. The
Advanced Light Source is supported by the Director, Office of Science,
Office of Basic Energy Sciences of the US Department of Energy under
Contract No. DE-AC02-05CH11231.
NR 48
TC 5
Z9 5
U1 0
U2 19
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0277-5387
J9 POLYHEDRON
JI Polyhedron
PD MAR 22
PY 2013
VL 52
SI SI
BP 339
EP 345
DI 10.1016/j.poly.2012.09.008
PG 7
WC Chemistry, Inorganic & Nuclear; Crystallography
SC Chemistry; Crystallography
GA 141SP
UT WOS:000318747100041
ER
PT J
AU Manson, JL
Brown, CM
Huang, Q
Schlueter, JA
Lancaster, T
Blundell, SJ
Singleton, J
Lynn, JW
Pratt, FL
AF Manson, Jamie L.
Brown, Craig M.
Huang, Qing
Schlueter, John A.
Lancaster, Tom
Blundell, Stephen J.
Singleton, John
Lynn, Jeffrey W.
Pratt, Francis L.
TI Mn(dca)(2)(o-phen) {dca = dicyanamide; o-phen=1,10-phenanthroline}:
Long-range magnetic order in a low-dimensional Mn-dca polymer
SO POLYHEDRON
LA English
DT Article
DE Dicyanamide; Coordination polymer; Magnetic properties; Neutron
diffraction; Muon-spin relaxation
ID 1-D COORDINATION POLYMERS; MOLECULE-BASED MAGNET; CRYSTAL-STRUCTURE;
STRUCTURAL ISOMERISM; EXTENDED NETWORKS; SPIN EXCITATIONS; N(CN)(2)(-);
PYRAZINE; PYZ; NI
AB The crystal structure, phonon density-of-states, and magnetic properties of Mn(dca)(2)(o-phen) (dca = dicyanamide, N(CN)(2)(-): o-phen = 1,10-phenanthroline) have been studied using several methods including magnetization, muon-spin relaxation, and neutron and X-ray scattering. From X-ray crystallography the structure was shown to consist of octahedral MnN6 sites that are connected via four mu(1,5)-bridging dca ligands while the two remaining cis-positions are occupied by N-donors of the o-phen ligand. Two Mn2+ ions are bridged together by two dca anions to afford [Mn-2(dca)(2)(o-phen)(2)](2+) "dimers." These dimers are linked in 2D via mu(1,5)-dca ligands to afford a polymeric structure whereas the o-phen ligands act as spacers. Bulk magnetic susceptibility data show a characteristic broad maximum at 2.65 K while neutron scattering and muon-spin relaxation data establish T-N = 1.85 K. For T << T-N, the magnetization, as obtained in pulsed-fields, saturates at 5.75 T and reaches a moment typical of an isotropic S = 5/2 ion. The magnetic structure was determined and found to consist of antiferromagnetically ordered Mn2+ moments oriented in the ac-plane with no spin-canting being evident. The magnetic space group symmetry for the Mn2+ moments is P2'(1)/c with each Mn2+ ion carrying a magnetic moment of 4.7(1)mu(B), in good agreement with the value of 5.0 mu(B) expected for an isotropic, high-spin S = 5/2 ion. The fact that LRO is observed in Mn(dca)(2)(o-phen) is unusual among low-dimensional dicyanamide complexes especially since only mu(1,5)-dca modes are involved. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Manson, Jamie L.] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA.
[Brown, Craig M.; Huang, Qing; Lynn, Jeffrey W.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Schlueter, John A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Lancaster, Tom] Univ Durham, Ctr Phys Mat, Durham DH1 3LE, England.
[Lancaster, Tom; Blundell, Stephen J.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England.
[Singleton, John] Natl High Magnet Field Lab, Pulsed Field Facil, Los Alamos, NM 87545 USA.
[Pratt, Francis L.] Rutherford Appleton Lab, ISIS Pulsed Muon Facil, Didcot OX11 0QX, Oxon, England.
RP Manson, JL (reprint author), Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA.
EM jmanson@ewu.edu
RI Brown, Craig/B-5430-2009
OI Brown, Craig/0000-0002-9637-9355
FU National Science Foundation [DMR-1005825]; UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"); Argonne, a U.S.
Department of Energy Office of Science laboratory [DE-AC02-06CH11357];
NSF [DMR-0654118]; State of Florida; U.S. DoE BES program "Science in
100 T"
FX The work at EWU was supported in part by the National Science Foundation
under Grant No. DMR-1005825. Work supported by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. A portion of this work was performed at
the National High Magnetic Field Laboratory, which is supported by NSF
Cooperative Agreement No. DMR-0654118, the State of Florida, and the
U.S. DoE BES program "Science in 100 T." Part of this work was performed
at the Swiss Muon Source, Paul Scherrer Institut, Villigen, Switzerland.
We are grateful to Alex Amato for technical assistance. Identification
of commercial equipment in the text is not intended to imply any
recommendation or endorsement by the National Institute of Standards and
Technology.
NR 60
TC 3
Z9 3
U1 0
U2 20
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0277-5387
J9 POLYHEDRON
JI Polyhedron
PD MAR 22
PY 2013
VL 52
SI SI
BP 679
EP 688
DI 10.1016/j.poly.2012.07.087
PG 10
WC Chemistry, Inorganic & Nuclear; Crystallography
SC Chemistry; Crystallography
GA 141SP
UT WOS:000318747100084
ER
PT J
AU Pons-Balague, A
Ojea, MJH
Ledezma-Gairaud, M
Maneru, DR
Teat, SJ
Costa, JS
Aromi, G
Sanudo, EC
AF Pons-Balague, Alba
Heras Ojea, Maria Jose
Ledezma-Gairaud, Marisol
Reta Maneru, Daniel
Teat, Simon J.
Sanchez Costa, Jose
Aromi, Guillem
Carolina Sanudo, E.
TI Microwave assisted synthesis in coordination chemistry
SO POLYHEDRON
LA English
DT Article
DE Microwave assisted synthesis; Coordination chemistry; Magnetism
ID MAGNETIC-PROPERTIES; COMPLEXES; CLUSTER; OCTANUCLEAR; TRIANGLES;
MANGANESE; LIGAND; METAL; STATE; CAGE
AB Microwave assisted synthesis is presented as a very useful tool in coordination chemistry. The synthesis assisted by microwave radiation has proven to be an excellent tool for the achievement of new structural types of polynuclear transition metal complexes. Several reaction conditions are studied and the results reported here. New examples of complexes of Mn, Co and Ni are reported along with their characterization. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Pons-Balague, Alba; Heras Ojea, Maria Jose; Reta Maneru, Daniel; Sanchez Costa, Jose; Aromi, Guillem; Carolina Sanudo, E.] Univ Barcelona, Dept Quim Inorgan, Barcelona 08028, Spain.
[Ledezma-Gairaud, Marisol] Univ Costa Rica, Escuela Quim, San Jose, Costa Rica.
[Ledezma-Gairaud, Marisol] Univ Costa Rica, CELEQ, Ctr Electroquim & Energia Quim, San Jose, Costa Rica.
[Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Sanudo, EC (reprint author), Univ Barcelona, Dept Quim Inorgan, Diagonal 645, Barcelona 08028, Spain.
EM esanudo@ub.edu
RI Sanudo, E. Carolina/A-8384-2014; Aromi, Guillem/I-2483-2015; Sanchez
Costa, Jose/N-9085-2014; Reta, Daniel/H-6853-2015
OI Sanudo, E. Carolina/0000-0001-9647-6406; Aromi,
Guillem/0000-0002-0997-9484; Sanchez Costa, Jose/0000-0001-5426-7956;
Reta, Daniel/0000-0003-0000-9892
FU Spanish Government (MCINN) [CTQ2009-06959]; Spanish Government (Ramon y
Cajal contract); ALS [ALS-04280]; U.S. Department of Energy
[DE-AC02-05CH11231]; Oficina de Asuntos Internacionales, Universidad de
Costa Rica
FX E.C.S., J.S.C. and G.A. acknowledge the financial support of the Spanish
Government (MCINN Grant No. CTQ2009-06959 and Ramon y Cajal contract to
E.C.S.). J.S.C. and S.J.T. acknowledge the financial support from ALS
(Grant ALS-04280 to J.S.C. and financial support to S.J.T. by the U.S.
Department of Energy (DE-AC02-05CH11231). M.L.G. acknowledges the
support from Oficina de Asuntos Internacionales, Universidad de Costa
Rica for financing a short stage at the Universitat de Barcelona.
NR 34
TC 7
Z9 7
U1 4
U2 26
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0277-5387
J9 POLYHEDRON
JI Polyhedron
PD MAR 22
PY 2013
VL 52
SI SI
BP 781
EP 787
DI 10.1016/j.poly.2012.07.051
PG 7
WC Chemistry, Inorganic & Nuclear; Crystallography
SC Chemistry; Crystallography
GA 141SP
UT WOS:000318747100096
ER
PT J
AU Craig, GA
Roubeau, O
Ribas-Arino, J
Teat, SJ
Aromi, G
AF Craig, Gavin A.
Roubeau, Olivier
Ribas-Arino, Jordi
Teat, Simon J.
Aromi, Guillem
TI Two isosceles coordination [Ni-3] triangles strongly interacting via
hydrogen bonds
SO POLYHEDRON
LA English
DT Article
DE Coordination chemistry; Ligand synthesis; Nickel; Magnetic exchange; DFT
calculations; Hydrogen bonds
ID GAUSSIAN-BASIS SETS; MAGNETIC-PROPERTIES; COPPER(II) COMPLEXES;
NICKEL(II) COMPLEX; II COMPLEX; CRYSTAL-STRUCTURE; CARBONATO BRIDGE;
ENERGY-LEVELS; GROUND-STATE; CO2 FIXATION
AB A ligand containing two 2-hydroxyphenylpyrazolyl groups around a pyridine core (H4L) reacts with Ni(II) in basic and aerobic conditions to produce a rare scalene triangular complex with formula [Ni-3(L)(CO3) (H2O)(PY)71 (1). This complex crystallizes in the form of pairs of molecules linked to each other through strong H-bonding interactions. The magnetic exchange interactions in this system have been studied, leading to intramolecular coupling constants J(1)= -15.5 cm(-1), J(2) = -0.4 cm(-1), J(3) = -3.1 cm(-1) (in agreement with the values calculated by OFT) and presumably a very unusually strong intermolecular coupling of J(4) = -19.8 cm(-1). All the above constants in the convention of H = -2 Sigma J(ij)(SiSj) for the exchange Hamiltonian. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Craig, Gavin A.; Aromi, Guillem] Univ Barcelona, Dept Quim Inorgan, E-08028 Barcelona, Spain.
[Roubeau, Olivier] CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain.
[Roubeau, Olivier] Univ Zaragoza, E-50009 Zaragoza, Spain.
[Ribas-Arino, Jordi] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain.
[Ribas-Arino, Jordi] Univ Barcelona, IQTCUB, E-08028 Barcelona, Spain.
[Teat, Simon J.] Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Aromi, G (reprint author), Univ Barcelona, Dept Quim Inorgan, Diagonal 645, E-08028 Barcelona, Spain.
EM guillem.aromi@qi.ub.es
RI Ribas, Jordi/G-8076-2011; Aromi, Guillem/I-2483-2015; Roubeau,
Olivier/A-6839-2010;
OI Ribas, Jordi/0000-0003-4088-6187; Aromi, Guillem/0000-0002-0997-9484;
Roubeau, Olivier/0000-0003-2095-5843; Craig, Gavin/0000-0003-3542-4850
FU ERC [258060 Func-MolQIP]; Spanish MCI [CTQ2009-06959, MAT2011-24284];
"Ramon y Cajal" Fellowship; Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
FX G.A. thanks the Generalitat de Catalunya for the prize ICREA Academia
2008 and the ERC for a Starting Grant (258060 Func-MolQIP). The authors
thank the Spanish MCI through CTQ2009-06959 (G.A.C. and G.A.),
MAT2011-24284 (O.R.) and a "Ramon y Cajal" Fellowship (J.R.-A.). The
Advanced Light Source (S.J.T.) is supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 47
TC 6
Z9 6
U1 3
U2 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0277-5387
J9 POLYHEDRON
JI Polyhedron
PD MAR 22
PY 2013
VL 52
SI SI
BP 1369
EP 1374
DI 10.1016/j.poly.2012.05.027
PG 6
WC Chemistry, Inorganic & Nuclear; Crystallography
SC Chemistry; Crystallography
GA 141SP
UT WOS:000318747100170
ER
PT J
AU Bud'ko, SL
Sturza, M
Chung, DY
Kanatzidis, MG
Canfield, PC
AF Bud'ko, Sergey L.
Sturza, Mihai
Chung, Duck Young
Kanatzidis, Mercouri G.
Canfield, Paul C.
TI Heat capacity jump at T-c and pressure derivatives of superconducting
transition temperature in the Ba1-xKxFe2As2 (0.2 <= x <= 1.0) series
SO PHYSICAL REVIEW B
LA English
DT Article
ID UNCONVENTIONAL SUPERCONDUCTIVITY; BAFE2AS2; BA0.6K0.4FE2AS2; STATE
AB We present the evolution of the initial (up to similar to 10 kbar) hydrostatic pressure dependencies of T-c and of the ambient pressure jump in the heat capacity associated with the superconducting transition as a function of K doping in the Ba1-xKxFe2As2 family of iron-based superconductors. The pressure derivatives show a weak but distinct anomaly near x similar to 0.7. In the same concentration region, Delta C-p vertical bar(Tc) deviates from the Delta C-p proportional to T-3 scaling found for most BaFe2As2-based superconductors. These results are consistent with a possible significant modification of the superconducting state, occurring near x similar to 0.7. DOI: 10.1103/PhysRevB.87.100509
C1 [Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
[Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Sturza, Mihai; Chung, Duck Young; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
RP Bud'ko, SL (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
RI Canfield, Paul/H-2698-2014
FU US Department of Energy, Basic Energy Sciences, Division of Materials
Sciences and Engineering [DE-AC02-07CH11358]; US Department of Energy,
Office of Basic Energy Sciences [DE-AC02-06CH11357]; State of Iowa
through Iowa State University
FX Work at the Ames Laboratory was supported by the US Department of
Energy, Basic Energy Sciences, Division of Materials Sciences and
Engineering under Contract No. DE-AC02-07CH11358. Work at the Argonne
National Laboratory supported by the US Department of Energy, Office of
Basic Energy Sciences under contract No. DE-AC02-06CH11357. S.L.B.
acknowledges partial support from the State of Iowa through Iowa State
University.
NR 47
TC 27
Z9 27
U1 4
U2 40
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 22
PY 2013
VL 87
IS 10
AR 100509
DI 10.1103/PhysRevB.87.100509
PG 5
WC Physics, Condensed Matter
SC Physics
GA 113KB
UT WOS:000316664800001
ER
PT J
AU Ji, YC
Ding, XD
Lookman, T
Otsuka, K
Ren, XB
AF Ji, Yuanchao
Ding, Xiangdong
Lookman, Turab
Otsuka, Kazuhiro
Ren, Xiaobing
TI Heterogeneities and strain glass behavior: Role of nanoscale
precipitates in low-temperature-aged Ti48.7Ni51.3 alloys
SO PHYSICAL REVIEW B
LA English
DT Article
ID SHAPE-MEMORY ALLOYS; TI-NI ALLOYS; RELAXOR FERROELECTRICS;
TRANSFORMATION
AB A frozen short-range, strain-ordered state has been observed in several doped ferroelastic/martensitic alloys. The reported strain glass behavior has been attributed to atomic-scale point defects such as dopant atoms. We report here how nanoscale precipitates can also lead to such glassy behavior. Nanosized, randomly distributed Ti3Ni4-like precipitates, produced by aging/annealing at 473 K for 3 h, prohibit the B2 -> B19' martensitic transition that occurs in a precipitate-free state. The strain glass transition is characterized by a mechanical susceptibility/modulus anomaly with Vogel-Fulcher type frequency-dependence, ergodicity-breaking, invariance in average structure and nanosized strain domains. Our work emphasizes that heterogeneities or in general disordering effects in ferroelastics will also give rise to signatures characteristic of strain glass behavior. DOI: 10.1103/PhysRevB.87.104110
C1 [Ji, Yuanchao; Ding, Xiangdong; Ren, Xiaobing] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Multidisciplinary Mat Res Ctr, Xian 710049, Peoples R China.
[Ji, Yuanchao; Ding, Xiangdong; Ren, Xiaobing] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.
[Ji, Yuanchao; Otsuka, Kazuhiro; Ren, Xiaobing] Natl Inst Mat Sci, Ferro Phys Grp, Tsukuba, Ibaraki 3050047, Japan.
[Ding, Xiangdong; Lookman, Turab] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Ji, YC (reprint author), Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Multidisciplinary Mat Res Ctr, Xian 710049, Peoples R China.
EM Ji.Yuanchao@nims.go.jp; REN.Xiaobing@nims.go.jp
RI Ren, Xiaobing/B-6072-2009; Ji, Yuanchao/F-6536-2013; Ding,
Xiangdong/K-4971-2013
OI Ren, Xiaobing/0000-0002-4973-2486; Ji, Yuanchao/0000-0002-3267-1605;
Ding, Xiangdong/0000-0002-1220-3097
FU [2012CB619401]; [2010CB631003]; [51171140]; [51231008]; [22360278];
[2010628055]
FX The present work was supported by the following grants: No.
2012CB619401, No. 2010CB631003, No. 51171140, No. 51231008, No.
22360278, and No. 2010628055. We thank S. W. Guo, Z. Zhang, D. Wang, J.
H. Gao, S. Yang, Y. Wang, and Y. M. Zhou for technical support and
helpful discussion.
NR 29
TC 19
Z9 20
U1 2
U2 60
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 22
PY 2013
VL 87
IS 10
AR 104110
DI 10.1103/PhysRevB.87.104110
PG 5
WC Physics, Condensed Matter
SC Physics
GA 113KB
UT WOS:000316664800002
ER
PT J
AU Qin, L
Zhang, K
Peng, RW
Xiong, X
Zhang, W
Huang, XR
Wang, M
AF Qin, Ling
Zhang, Kun
Peng, Ru-Wen
Xiong, Xiang
Zhang, Wei
Huang, Xian-Rong
Wang, Mu
TI Optical-magnetism-induced transparency in a metamaterial
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTROMAGNETICALLY INDUCED TRANSPARENCY; NEGATIVE PERMEABILITY;
FREQUENCIES; RESONANCES
AB In this paper, we theoretically demonstrate that electromagnetic transparency can be induced by optical magnetism in a metamaterial, which is composed of metamolecules. Each metamolecule consists of a metallic split-ring resonator, as one bright meta-atom (which is optically magnetic), and also a cut-wire pair, as one dark meta-atom (which is optically nonmagnetic). It is found that magnetic resonances occur at optical frequencies due to the local magnetic interaction between "bright" meta-atoms and "dark" meta-atoms; thereafter, a transparency window emerges upon the original absorption background. The phenomenon is similar to the electromagnetically induced transparency (EIT) in atomic three-level systems, and a microscopic picture is given to compare it with the EIT. Furthermore, low loss and slow light in this metamaterial have also been verified. The investigations may achieve potential applications on integrated optical circuits. DOI: 10.1103/PhysRevB.87.125136
C1 [Qin, Ling; Zhang, Kun; Peng, Ru-Wen; Xiong, Xiang; Zhang, Wei; Wang, Mu] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China.
[Qin, Ling; Zhang, Kun; Peng, Ru-Wen; Xiong, Xiang; Zhang, Wei; Wang, Mu] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China.
[Huang, Xian-Rong] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Qin, L (reprint author), Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China.
EM rwpeng@nju.du.cn; muwang@nju.edu.cn
FU Ministry of Science and Technology of China [2012CB921502,
2010CB630705]; National Science Foundation of China [11034005, 61077023,
11204127, 11021403]; Jiangsu Province [BK2008012]; Ministry of Education
of China [20100091110029]; US Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-AC02-06CH11357]
FX This work was supported by the Ministry of Science and Technology of
China (Grants No. 2012CB921502 and No. 2010CB630705), the National
Science Foundation of China (Grants No. 11034005, No. 61077023, No.
11204127, and No. 11021403), and partly by the Jiangsu Province (No.
BK2008012) and the Ministry of Education of China (No. 20100091110029).
XRH was supported by the US Department of Energy, Office of Science,
Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.
NR 29
TC 19
Z9 19
U1 4
U2 38
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 22
PY 2013
VL 87
IS 12
AR 125136
DI 10.1103/PhysRevB.87.125136
PG 6
WC Physics, Condensed Matter
SC Physics
GA 113LU
UT WOS:000316670100003
ER
PT J
AU Chyzh, A
Wu, CY
Kwan, E
Henderson, RA
Gostic, JM
Bredeweg, TA
Couture, A
Haight, RC
Hayes-Sterbenz, AC
Jandel, M
Lee, HY
O'Donnell, JM
Ullmann, JL
AF Chyzh, A.
Wu, C. Y.
Kwan, E.
Henderson, R. A.
Gostic, J. M.
Bredeweg, T. A.
Couture, A.
Haight, R. C.
Hayes-Sterbenz, A. C.
Jandel, M.
Lee, H. Y.
O'Donnell, J. M.
Ullmann, J. L.
TI Systematics of prompt gamma-ray emission in fission
SO PHYSICAL REVIEW C
LA English
DT Article
ID DANCE ARRAY; CF-252; SPECTRUM; DETECTOR
AB The prompt gamma-ray energy and multiplicity distributions were measured for the neutron-induced fission in U-235 and Pu-239,Pu-241 by using a highly segmented 4 pi gamma-ray calorimeter in coincidence with the detection of fission fragments by a gas-filled parallel-plate avalanche counter. Both distributions were unfolded according to the detector response, which was simulated numerically by using a model validated with the gamma-ray calibration sources. The mean value and the width of the gamma-ray multiplicity distribution show a systematic increase with increasing mass of fissile nucleus, whereas, the energy distribution shows the dependence of gamma-ray energy above 5 MeV on the species of fissile nuclei. The correlations between gamma-ray energy and multiplicity were studied by comparing the mean value and the width of the total gamma-ray energy between measurement and simulation by using an assembly with elements selected by random sampling of their unfolded distributions. The detector response was taken into account in the simulation. These results together with the detailed description of the experiment and analysis are presented. DOI: 10.1103/PhysRevC.87.034620
C1 [Chyzh, A.; Wu, C. Y.; Kwan, E.; Henderson, R. A.; Gostic, J. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Bredeweg, T. A.; Couture, A.; Haight, R. C.; Hayes-Sterbenz, A. C.; Jandel, M.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Chyzh, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
FU U.S. Department of Energy by Lawrence Livermore National Security, LLC
[DE-AC52-07NA27344]; Los Alamos National Security, LLC
[DE-AC52-06NA25396]
FX This work benefited from the use of the LANSCE accelerator facility as
performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Security, LLC under Contract No.
DE-AC52-07NA27344 and by Los Alamos National Security, LLC under
Contract No. DE-AC52-06NA25396. All isotopes used in the measurements
were provided by Oak Ridge National Laboratory.
NR 30
TC 16
Z9 16
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD MAR 22
PY 2013
VL 87
IS 3
AR 034620
DI 10.1103/PhysRevC.87.034620
PG 10
WC Physics, Nuclear
SC Physics
GA 113MS
UT WOS:000316672700004
ER
PT J
AU Edwards, RG
Mathur, N
Richards, DG
Wallace, SJ
AF Edwards, Robert G.
Mathur, Nilmani
Richards, David G.
Wallace, Stephen J.
CA Hadron Spectrum Collaboration
TI Flavor structure of the excited baryon spectra from lattice QCD
SO PHYSICAL REVIEW D
LA English
DT Article
ID MODEL
AB Excited state spectra are calculated using lattice QCD for baryons that can be formed from u, d and s quarks, namely the N, Delta, Lambda, Sigma, Xi and Omega families of baryons. Baryonic operators are constructed from continuum operators that transform as irreducible representations of SU(3)(F) symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Covariant derivatives are used to realize orbital angular momenta. Using the operators, we calculate matrices of correlation functions in order to extract excited states. The resulting lattice spectra have bands of baryonic states with well-defined total spins up to J = 7/2. Each state can be assigned a dominant flavor symmetry and the counting of states of each flavor and spin reflects SU(6) x O(3) symmetry for the lowest negative-parity and positive-parity bands. States with strong hybrid content are identified through the dominance of chromomagnetic operators.
C1 [Edwards, Robert G.; Richards, David G.] Jefferson Lab, Newport News, VA 23606 USA.
[Mathur, Nilmani] Tata Inst Fundamental Res, Dept Theoret Phys, Bombay 400005, Maharashtra, India.
[Wallace, Stephen J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
RP Edwards, RG (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA.
EM edwards@jlab.org; nilmani@theory.tifr.res.in; dgr@jlab.org;
stevewal@umd.edu
FU U.S. Department of Energy INCITE program at Oak Ridge National Lab; NSF
Teragrid at the Texas Advanced Computer Center; Pittsburgh Supercomputer
Center; Jefferson Lab; U.S. Department of Energy [DE-FG02-93ER-40762,
DE-AC05-06OR23177]; Department of Science and Technology, India
[DST-SR/S2/RJN-19/2007]
FX We thank our colleagues within the Hadron Spectrum Collaboration.
Particular thanks go to C. Shultz for his updates to our variational
fitting code. Chroma [20] and QUDA [21,22] were used to perform this
work on clusters at Jefferson Laboratory under the USQCD Initiative and
the LQCD ARRA project. Gauge configurations were generated using
resources awarded from the U.S. Department of Energy INCITE program at
Oak Ridge National Lab, the NSF Teragrid at the Texas Advanced Computer
Center and the Pittsburgh Supercomputer Center, as well as at Jefferson
Lab. S. J. W. acknowledges support from U. S. Department of Energy
Contract No. DE-FG02-93ER-40762. R. G. E. and D. G. R. acknowledge
support from U. S. Department of Energy Contract No. DE-AC05-06OR23177,
under which Jefferson Science Associates, LLC, manages and operates
Jefferson Laboratory. N. M. acknowledges support from the Department of
Science and Technology, India, under Grant No. DST-SR/S2/RJN-19/2007.
NR 22
TC 52
Z9 52
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD MAR 22
PY 2013
VL 87
IS 5
AR 054506
DI 10.1103/PhysRevD.87.054506
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 113NI
UT WOS:000316674300005
ER
PT J
AU Lees, JP
Poireau, V
Tisserand, V
Grauges, E
Palano, A
Eigen, G
Stugu, B
Brown, DN
Kerth, LT
Kolomensky, YG
Lynch, G
Koch, H
Schroeder, T
Asgeirsson, DJ
Hearty, C
Mattison, TS
McKenna, JA
So, RY
Khan, A
Blinov, VE
Buzykaev, AR
Druzhinin, VP
Golubev, VB
Kravchenko, EA
Onuchin, AP
Serednyakov, SI
Skovpen, YI
Solodov, EP
Todyshev, KY
Yushkov, AN
Kirkby, D
Lankford, AJ
Mandelkern, M
Atmacan, H
Gary, JW
Long, O
Vitug, GM
Campagnari, C
Hong, TM
Kovalskyi, D
Richman, JD
West, CA
Eisner, AM
Kroseberg, J
Lockman, WS
Martinez, AJ
Schumm, BA
Seiden, A
Chao, DS
Cheng, CH
Echenard, B
Flood, KT
Hitlin, DG
Ongmongkolkul, P
Porter, FC
Rakitin, AY
Andreassen, R
Huard, Z
Meadows, BT
Sokoloff, MD
Sun, L
Bloom, PC
Ford, WT
Gaz, A
Nauenberg, U
Smith, JG
Wagner, SR
Ayad, R
Toki, WH
Karbach, TM
Spaan, B
Schubert, KR
Schwierz, R
Bernard, D
Verderi, M
Clark, PJ
Playfer, S
Bettoni, D
Bozzi, C
Calabrese, R
Cibinetto, G
Fioravanti, E
Garzia, I
Luppi, E
Piemontese, L
Santoro, V
Baldini-Ferroli, R
Calcaterra, A
de Sangro, R
Finocchiaro, G
Patteri, P
Peruzzi, IM
Piccolo, M
Rama, M
Zallo, A
Contri, R
Guido, E
Lo Vetere, M
Monge, MR
Passaggio, S
Patrignani, C
Robutti, E
Bhuyan, B
Prasad, V
Morii, M
Adametz, A
Uwer, U
Lacker, HM
Lueck, T
Dauncey, PD
Mallik, U
Chen, C
Cochran, J
Meyer, WT
Prell, S
Rubin, AE
Gritsan, AV
Arnaud, N
Davier, M
Derkach, D
Grosdidier, G
Le Diberder, F
Lutz, AM
Malaescu, B
Roudeau, P
Schune, MH
Stocchi, A
Wormser, G
Lange, DJ
Wright, DM
Chavez, CA
Coleman, JP
Fry, JR
Gabathuler, E
Hutchcroft, DE
Payne, DJ
Touramanis, C
Bevan, AJ
Di Lodovico, F
Sacco, R
Sigamani, M
Cowan, G
Brown, DN
Davis, CL
Denig, AG
Fritsch, M
Gradl, W
Griessinger, K
Hafner, A
Prencipe, E
Barlow, RJ
Jackson, G
Lafferty, GD
Behn, E
Cenci, R
Hamilton, B
Jawahery, A
Roberts, DA
Dallapiccola, C
Cowan, R
Dujmic, D
Sciolla, G
Cheaib, R
Lindemann, D
Patel, PM
Robertson, SH
Biassoni, P
Neri, N
Palombo, F
Stracka, S
Cremaldi, L
Godang, R
Kroeger, R
Sonnek, P
Summers, DJ
Nguyen, X
Simard, M
Taras, P
De Nardo, G
Monorchio, D
Onorato, G
Sciacca, C
Martinelli, M
Raven, G
Jessop, CP
LoSecco, JM
Wang, WF
Honscheid, K
Kass, R
Brau, J
Frey, R
Sinev, NB
Strom, D
Torrence, E
Feltresi, E
Gagliardi, N
Margoni, M
Morandin, M
Posocco, M
Rotondo, M
Simi, G
Simonetto, F
Stroili, R
Akar, S
Ben-Haim, E
Bomben, M
Bonneaud, GR
Briand, H
Calderini, G
Chauveau, J
Hamon, O
Leruste, P
Marchiori, G
Ocariz, J
Sitt, S
Biasini, M
Manoni, E
Pacetti, S
Rossi, A
Angelini, C
Batignani, G
Bettarini, S
Carpinelli, M
Casarosa, G
Cervelli, A
Forti, F
Giorgi, MA
Lusiani, A
Oberhof, B
Perez, A
Rizzo, G
Walsh, JJ
Pegna, DL
Olsen, J
Smith, AJS
Anulli, F
Faccini, R
Ferrarotto, F
Ferroni, F
Gaspero, M
Gioi, LL
Mazzoni, MA
Piredda, G
Bunger, C
Grunberg, O
Hartmann, T
Leddig, T
Voss, C
Waldi, R
Adye, T
Olaiya, EO
Wilson, FF
Emery, S
de Monchenault, GH
Vasseur, G
Yeche, C
Aston, D
Bartoldus, R
Benitez, JF
Cartaro, C
Convery, MR
Dorfan, J
Dubois-Felsmann, GP
Dunwoodie, W
Ebert, M
Field, RC
Sevilla, MF
Fulsom, BG
Gabareen, AM
Graham, MT
Grenier, P
Hast, C
Innes, WR
Kelsey, MH
Kim, P
Kocian, ML
Leith, DWGS
Lewis, P
Lindquist, B
Luitz, S
Luth, V
Lynch, HL
MacFarlane, DB
Muller, DR
Neal, H
Nelson, S
Perl, M
Pulliam, T
Ratcliff, BN
Roodman, A
Salnikov, AA
Schindler, RH
Snyder, A
Su, D
Sullivan, MK
Va'vra, J
Wagner, AP
Wisniewski, WJ
Wittgen, M
Wright, DH
Wulsin, HW
Young, CC
Ziegler, V
Park, W
Purohit, MV
White, RM
Wilson, JR
Randle-Conde, A
Sekula, SJ
Bellis, M
Burchat, PR
Miyashita, TS
Puccio, EMT
Alam, MS
Ernst, JA
Gorodeisky, R
Guttman, N
Peimer, DR
Soffer, A
Spanier, SM
Ritchie, JL
Ruland, AM
Schwitters, RF
Wray, BC
Izen, JM
Lou, XC
Bianchi, F
Gamba, D
Zambito, S
Lanceri, L
Vitale, L
Martinez-Vidal, F
Oyanguren, A
Villanueva-Perez, P
Ahmed, H
Albert, J
Banerjee, S
Bernlochner, FU
Choi, HHF
King, GJ
Kowalewski, R
Lewczuk, MJ
Nugent, IM
Roney, JM
Sobie, RJ
Tasneem, N
Gershon, TJ
Harrison, PF
Latham, TE
Band, HR
Dasu, S
Pan, Y
Prepost, R
Wu, SL
AF Lees, J. P.
Poireau, V.
Tisserand, V.
Grauges, E.
Palano, A.
Eigen, G.
Stugu, B.
Brown, D. N.
Kerth, L. T.
Kolomensky, Yu G.
Lynch, G.
Koch, H.
Schroeder, T.
Asgeirsson, D. J.
Hearty, C.
Mattison, T. S.
McKenna, J. A.
So, R. Y.
Khan, A.
Blinov, V. E.
Buzykaev, A. R.
Druzhinin, V. P.
Golubev, V. B.
Kravchenko, E. A.
Onuchin, A. P.
Serednyakov, S. I.
Skovpen, Yu I.
Solodov, E. P.
Todyshev, K. Yu
Yushkov, A. N.
Kirkby, D.
Lankford, A. J.
Mandelkern, M.
Atmacan, H.
Gary, J. W.
Long, O.
Vitug, G. M.
Campagnari, C.
Hong, T. M.
Kovalskyi, D.
Richman, J. D.
West, C. A.
Eisner, A. M.
Kroseberg, J.
Lockman, W. S.
Martinez, A. J.
Schumm, B. A.
Seiden, A.
Chao, D. S.
Cheng, C. H.
Echenard, B.
Flood, K. T.
Hitlin, D. G.
Ongmongkolkul, P.
Porter, F. C.
Rakitin, A. Y.
Andreassen, R.
Huard, Z.
Meadows, B. T.
Sokoloff, M. D.
Sun, L.
Bloom, P. C.
Ford, W. T.
Gaz, A.
Nauenberg, U.
Smith, J. G.
Wagner, S. R.
Ayad, R.
Toki, W. H.
Karbach, T. M.
Spaan, B.
Schubert, K. R.
Schwierz, R.
Bernard, D.
Verderi, M.
Clark, P. J.
Playfer, S.
Bettoni, D.
Bozzi, C.
Calabrese, R.
Cibinetto, G.
Fioravanti, E.
Garzia, I.
Luppi, E.
Piemontese, L.
Santoro, V.
Baldini-Ferroli, R.
Calcaterra, A.
de Sangro, R.
Finocchiaro, G.
Patteri, P.
Peruzzi, I. M.
Piccolo, M.
Rama, M.
Zallo, A.
Contri, R.
Guido, E.
Lo Vetere, M.
Monge, M. R.
Passaggio, S.
Patrignani, C.
Robutti, E.
Bhuyan, B.
Prasad, V.
Morii, M.
Adametz, A.
Uwer, U.
Lacker, H. M.
Lueck, T.
Dauncey, P. D.
Mallik, U.
Chen, C.
Cochran, J.
Meyer, W. T.
Prell, S.
Rubin, A. E.
Gritsan, A. V.
Arnaud, N.
Davier, M.
Derkach, D.
Grosdidier, G.
Le Diberder, F.
Lutz, A. M.
Malaescu, B.
Roudeau, P.
Schune, M. H.
Stocchi, A.
Wormser, G.
Lange, D. J.
Wright, D. M.
Chavez, C. A.
Coleman, J. P.
Fry, J. R.
Gabathuler, E.
Hutchcroft, D. E.
Payne, D. J.
Touramanis, C.
Bevan, A. J.
Di Lodovico, F.
Sacco, R.
Sigamani, M.
Cowan, G.
Brown, D. N.
Davis, C. L.
Denig, A. G.
Fritsch, M.
Gradl, W.
Griessinger, K.
Hafner, A.
Prencipe, E.
Barlow, R. J.
Jackson, G.
Lafferty, G. D.
Behn, E.
Cenci, R.
Hamilton, B.
Jawahery, A.
Roberts, D. A.
Dallapiccola, C.
Cowan, R.
Dujmic, D.
Sciolla, G.
Cheaib, R.
Lindemann, D.
Patel, P. M.
Robertson, S. H.
Biassoni, P.
Neri, N.
Palombo, F.
Stracka, S.
Cremaldi, L.
Godang, R.
Kroeger, R.
Sonnek, P.
Summers, D. J.
Nguyen, X.
Simard, M.
Taras, P.
De Nardo, G.
Monorchio, D.
Onorato, G.
Sciacca, C.
Martinelli, M.
Raven, G.
Jessop, C. P.
LoSecco, J. M.
Wang, W. F.
Honscheid, K.
Kass, R.
Brau, J.
Frey, R.
Sinev, N. B.
Strom, D.
Torrence, E.
Feltresi, E.
Gagliardi, N.
Margoni, M.
Morandin, M.
Posocco, M.
Rotondo, M.
Simi, G.
Simonetto, F.
Stroili, R.
Akar, S.
Ben-Haim, E.
Bomben, M.
Bonneaud, G. R.
Briand, H.
Calderini, G.
Chauveau, J.
Hamon, O.
Leruste, Ph
Marchiori, G.
Ocariz, J.
Sitt, S.
Biasini, M.
Manoni, E.
Pacetti, S.
Rossi, A.
Angelini, C.
Batignani, G.
Bettarini, S.
Carpinelli, M.
Casarosa, G.
Cervelli, A.
Forti, F.
Giorgi, M. A.
Lusiani, A.
Oberhof, B.
Perez, A.
Rizzo, G.
Walsh, J. J.
Pegna, D. Lopes
Olsen, J.
Smith, A. J. S.
Anulli, F.
Faccini, R.
Ferrarotto, F.
Ferroni, F.
Gaspero, M.
Gioi, L. Li
Mazzoni, M. A.
Piredda, G.
Buenger, C.
Gruenberg, O.
Hartmann, T.
Leddig, T.
Voss, C.
Waldi, R.
Adye, T.
Olaiya, E. O.
Wilson, F. F.
Emery, S.
de Monchenault, G. Hamel
Vasseur, G.
Yeche, Ch
Aston, D.
Bartoldus, R.
Benitez, J. F.
Cartaro, C.
Convery, M. R.
Dorfan, J.
Dubois-Felsmann, G. P.
Dunwoodie, W.
Ebert, M.
Field, R. C.
Sevilla, M. Franco
Fulsom, B. G.
Gabareen, A. M.
Graham, M. T.
Grenier, P.
Hast, C.
Innes, W. R.
Kelsey, M. H.
Kim, P.
Kocian, M. L.
Leith, D. W. G. S.
Lewis, P.
Lindquist, B.
Luitz, S.
Luth, V.
Lynch, H. L.
MacFarlane, D. B.
Muller, D. R.
Neal, H.
Nelson, S.
Perl, M.
Pulliam, T.
Ratcliff, B. N.
Roodman, A.
Salnikov, A. A.
Schindler, R. H.
Snyder, A.
Su, D.
Sullivan, M. K.
Va'vra, J.
Wagner, A. P.
Wisniewski, W. J.
Wittgen, M.
Wright, D. H.
Wulsin, H. W.
Young, C. C.
Ziegler, V.
Park, W.
Purohit, M. V.
White, R. M.
Wilson, J. R.
Randle-Conde, A.
Sekula, S. J.
Bellis, M.
Burchat, P. R.
Miyashita, T. S.
Puccio, E. M. T.
Alam, M. S.
Ernst, J. A.
Gorodeisky, R.
Guttman, N.
Peimer, D. R.
Soffer, A.
Spanier, S. M.
Ritchie, J. L.
Ruland, A. M.
Schwitters, R. F.
Wray, B. C.
Izen, J. M.
Lou, X. C.
Bianchi, F.
Gamba, D.
Zambito, S.
Lanceri, L.
Vitale, L.
Martinez-Vidal, F.
Oyanguren, A.
Villanueva-Perez, P.
Ahmed, H.
Albert, J.
Banerjee, Sw
Bernlochner, F. U.
Choi, H. H. F.
King, G. J.
Kowalewski, R.
Lewczuk, M. J.
Nugent, I. M.
Roney, J. M.
Sobie, R. J.
Tasneem, N.
Gershon, T. J.
Harrison, P. F.
Latham, T. E.
Band, H. R.
Dasu, S.
Pan, Y.
Prepost, R.
Wu, S. L.
CA BaBar Collaboration
TI Observation of direct CP violation in the measurement of the
Cabibbo-Kobayashi-Maskawa angle gamma with B-+/- -> Dd(()*()) K-(*()+/-)
decays
SO PHYSICAL REVIEW D
LA English
DT Article
AB We report the determination of the Cabibbo-Kobayashi-Maskawa CP-violating angle gamma through the combination of various measurements involving B-+/- -> DK +/-, B-+/- -> D*K-+/-, and B-+/- -> DK*(+/-) decays performed by the BABAR experiment at the PEP-II e(+)e(-) collider at SLAC National Accelerator Laboratory. Using up to 474 million B (B) over bar pairs, we obtain gamma = (69(-16)(+17))degrees modulo 180 degrees. The total uncertainty is dominated by the statistical component, with the experimental and amplitude-model systematic uncertainties amounting to +/- 4 degrees. The corresponding two-standard-deviation region is 41 degrees < gamma < 102 degrees. This result is inconsistent with gamma = 0 with a significance of 5.9 standard deviations.
C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, Lab Annecy le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France.
[Grauges, E.] Univ Barcelona, Dept ECM, Fac Fis, E-08028 Barcelona, Spain.
[Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy.
[Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway.
[Brown, D. N.; Kerth, L. T.; Kolomensky, Yu G.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Brown, D. N.; Kerth, L. T.; Kolomensky, Yu G.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany.
[Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada.
[Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu I.; Solodov, E. P.; Todyshev, K. Yu; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Kirkby, D.; Lankford, A. J.; Mandelkern, M.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Atmacan, H.; Gary, J. W.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA.
[Andreassen, R.; Huard, Z.; Meadows, B. T.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA.
[Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA.
[Karbach, T. M.; Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany.
[Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Bernard, D.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France.
[Clark, P. J.; Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy.
[Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy.
[Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy.
[Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India.
[Morii, M.] Harvard Univ, Cambridge, MA 02138 USA.
[Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany.
[Lacker, H. M.; Lueck, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Dauncey, P. D.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA.
[Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA.
[Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France.
[Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] Univ Paris 11, F-91898 Orsay, France.
[Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England.
[Cowan, G.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England.
[Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA.
[Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
[Barlow, R. J.; Jackson, G.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA.
[Dallapiccola, C.] Univ Massachusetts, Amherst, MA 01003 USA.
[Cowan, R.; Dujmic, D.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA.
[Cheaib, R.; Lindemann, D.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada.
[Biassoni, P.; Neri, N.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Biassoni, P.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA.
[Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada.
[De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy.
[De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy.
[Martinelli, M.; Raven, G.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands.
[Jessop, C. P.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA.
[Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA.
[Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy.
[Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph; Marchiori, G.; Ocariz, J.; Sitt, S.] Univ Paris 07, Lab Phys Nucl & Hautes Energies, IN2P3, Univ Paris 06,CNRS, F-75252 Paris, France.
[Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Peruzzi, I. M.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Perez, A.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Angelini, C.; Batignani, G.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy.
[Bettarini, S.; Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA.
[Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Buenger, C.; Gruenberg, O.; Hartmann, T.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany.
[Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch] CEA, SPP, Ctr Saclay, Irfu, F-91191 Gif Sur Yvette, France.
[Aston, D.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA.
[Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA.
[Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA.
[Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA.
[Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA.
[Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA.
[Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA.
[Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA.
[Bianchi, F.; Gamba, D.; Zambito, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Gamba, D.; Zambito, S.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy.
[Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain.
[Ahmed, H.; Albert, J.; Banerjee, Sw; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada.
[Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA.
[Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy.
RP Lees, JP (reprint author), Univ Savoie, Lab Annecy le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France.
RI Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka,
Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Calcaterra,
Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Patrignani,
Claudia/C-5223-2009; Lusiani, Alberto/N-2976-2015; Monge, Maria
Roberta/G-9127-2012; Forti, Francesco/H-3035-2011; Oyanguren,
Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White,
Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese,
Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky,
Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012
OI Lusiani, Alberto/0000-0002-6876-3288; Morandin,
Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Di
Lodovico, Francesca/0000-0003-3952-2175; Calcaterra,
Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636;
Patrignani, Claudia/0000-0002-5882-1747; Lusiani,
Alberto/0000-0002-6876-3288; Monge, Maria Roberta/0000-0003-1633-3195;
Forti, Francesco/0000-0001-6535-7965; Oyanguren,
Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White,
Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400;
Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky,
Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480
FU US Department of Energy; National Science Foundation; Natural Sciences
and Engineering Research Council (Canada); Commissariat a l'Energie
Atomique; Institut National de Physique Nucleaire et de Physique des
Particules (France); Bundesministerium fur Bildung und Forschung and
Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica
Nucleare (Italy); Foundation for Fundamental Research on Matter (The
Netherlands); Research Council of Norway; Ministry of Education and
Science of the Russian Federation; Ministerio de Economia y
Competitividad (Spain); Science and Technology Facilities Council
(United Kingdom); Marie-Curie IEF program (European Union); A. P. Sloan
Foundation (USA)
FX We are grateful for the extraordinary contributions of our PEP-II
colleagues in achieving the excellent luminosity and machine conditions
that have made this work possible. The success of this project also
relies critically on the expertise and dedication of the computing
organizations that support BABAR. The collaborating institutions wish to
thank SLAC for its support and the kind hospitality extended to them.
This work is supported by the US Department of Energy and National
Science Foundation, the Natural Sciences and Engineering Research
Council (Canada), the Commissariat a l'Energie Atomique and Institut
National de Physique Nucleaire et de Physique des Particules (France),
the Bundesministerium fur Bildung und Forschung and Deutsche
Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica
Nucleare (Italy), the Foundation for Fundamental Research on Matter (The
Netherlands), the Research Council of Norway, the Ministry of Education
and Science of the Russian Federation, Ministerio de Economia y
Competitividad (Spain), and the Science and Technology Facilities
Council (United Kingdom). Individuals have received support from the
Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation
(USA).
NR 51
TC 23
Z9 23
U1 1
U2 25
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
EI 1550-2368
J9 PHYS REV D
JI Phys. Rev. D
PD MAR 22
PY 2013
VL 87
IS 5
AR 052015
DI 10.1103/PhysRevD.87.052015
PG 12
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 113NI
UT WOS:000316674300001
ER
PT J
AU Mikaelian, KO
AF Mikaelian, Karnig O.
TI Shock-induced interface instability in viscous fluids and metals
SO PHYSICAL REVIEW E
LA English
DT Article
ID RICHTMYER-MESHKOV INSTABILITY; RAYLEIGH-TAYLOR; VISCOSITY; SOLIDS;
GROWTH
AB We present analytic expressions for the amplitude of perturbations at the interface of two viscous fluids or two metals subjected to a shock. We derive a scaling law by collapsing this eight-parameter problem into two (three) nondimensional variables in the linear (nonlinear) regime. We propose a correspondence principle between viscosity and strength, and a method for measuring viscosity at high pressure and temperature as an alternative to the "Sakharov method." DOI: 10.1103/PhysRevE.87.031003
C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Mikaelian, KO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the US Department of
Energy by Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344.
NR 31
TC 6
Z9 6
U1 0
U2 33
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
J9 PHYS REV E
JI Phys. Rev. E
PD MAR 22
PY 2013
VL 87
IS 3
AR 031003
DI 10.1103/PhysRevE.87.031003
PG 5
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 113PD
UT WOS:000316679100001
ER
PT J
AU Diaconescu, B
Padilha, LA
Nagpal, P
Swartzentruber, BS
Klimov, VI
AF Diaconescu, Bogdan
Padilha, Lazaro A.
Nagpal, Prashant
Swartzentruber, Brian S.
Klimov, Victor I.
TI Measurement of Electronic States of PbS Nanocrystal Quantum Dots Using
Scanning Tunneling Spectroscopy: The Role of Parity Selection Rules in
Optical Absorption
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PERMANENT DIPOLE-MOMENT; TRANSITIONS; ANISOTROPY
AB We study the structure of electronic states in individual PbS nanocrystal quantum dots by scanning tunneling spectroscopy (STS) using one-to-two monolayer nanocrystal films treated with 1, 2-ethanedithiols (EDT). Up to six individual valence and conduction band states are resolved for a range of quantum dot sizes. The measured states' energies are in good agreement with calculations using the k . p four-band envelope function formalism. A comparison of STS and optical absorption spectra indicates that some of the absorption features can only be explained by asymmetric transitions involving the states of different symmetries (e. g., S and P or P and D), which points towards the relaxation of the parity selection rules in these nanostructures. STS measurements also reveal a midgap feature, which is likely similar to one observed in previous charge transport studies of EDT-treated quantum dot films. DOI: 10.1103/PhysRevLett.110.127406
C1 [Diaconescu, Bogdan; Padilha, Lazaro A.; Nagpal, Prashant; Klimov, Victor I.] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA.
[Diaconescu, Bogdan; Padilha, Lazaro A.; Nagpal, Prashant; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Swartzentruber, Brian S.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA.
RP Diaconescu, B (reprint author), Los Alamos Natl Lab, Ctr Adv Solar Photophys, POB 1663, Los Alamos, NM 87545 USA.
EM klimov@lanl.gov
RI Nagpal, Prashant/G-7802-2012; Padilha, Lazaro/G-1523-2013;
OI Klimov, Victor/0000-0003-1158-3179
FU Center for Advanced Solar Photophysics, an Energy Frontier Research
Center; U.S. Department of Energy (DOE), Office of Science (OS), Office
of Basic Energy Sciences (OBES)
FX This work was supported by the Center for Advanced Solar Photophysics,
an Energy Frontier Research Center funded by the U.S. Department of
Energy (DOE), Office of Science (OS), Office of Basic Energy Sciences
(OBES). The STM measurements were conducted at the Sandia site of the
Center for Integrated Nanotechnologies, a user facility of U.S. DOE,
OBES.
NR 28
TC 37
Z9 37
U1 0
U2 91
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 22
PY 2013
VL 110
IS 12
AR 127406
DI 10.1103/PhysRevLett.110.127406
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 113QL
UT WOS:000316682600009
PM 25166850
ER
PT J
AU Schlenk, T
Bianchi, M
Koleini, M
Eich, A
Pietzsch, O
Wehling, TO
Frauenheim, T
Balatsky, A
Mi, JL
Iversen, BB
Wiebe, J
Khajetoorians, AA
Hofmann, P
Wiesendanger, R
AF Schlenk, T.
Bianchi, M.
Koleini, M.
Eich, A.
Pietzsch, O.
Wehling, T. O.
Frauenheim, T.
Balatsky, A.
Mi, J. -L.
Iversen, B. B.
Wiebe, J.
Khajetoorians, A. A.
Hofmann, Ph.
Wiesendanger, R.
TI Controllable Magnetic Doping of the Surface State of a Topological
Insulator
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID BI2SE3
AB A combined experimental and theoretical study of doping individual Fe atoms into Bi2Se3 is presented. It is shown through a scanning tunneling microscopy study that single Fe atoms initially located at hollow sites on top of the surface (adatoms) can be incorporated into subsurface layers by thermally activated diffusion. Angle-resolved photoemission spectroscopy in combination with ab initio calculations suggest that the doping behavior changes from electron donation for the Fe adatom to neutral or electron acceptance for Fe incorporated into substitutional Bi sites. According to first principles calculations within density functional theory, these Fe substitutional impurities retain a large magnetic moment, thus presenting an alternative scheme for magnetically doping the topological surface state. For both types of Fe doping, we see no indication of a gap at the Dirac point. DOI: 10.1103/PhysRevLett.110.126804
C1 [Schlenk, T.; Eich, A.; Pietzsch, O.; Wiebe, J.; Khajetoorians, A. A.; Wiesendanger, R.] Univ Hamburg, Inst Appl Phys, D-20355 Hamburg, Germany.
[Bianchi, M.; Hofmann, Ph.] Aarhus Univ, Interdisciplinary Nanosci Ctr, Dept Phys & Astron, DK-8000 Aarhus C, Denmark.
[Koleini, M.; Wehling, T. O.; Frauenheim, T.] Univ Bremen, Bremen Ctr Computat Mat Sci, D-28359 Bremen, Germany.
[Wehling, T. O.] Univ Bremen, Inst Theoret Phys, D-28359 Bremen, Germany.
[Balatsky, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Balatsky, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Balatsky, A.] Nord Inst Theoret Phys NORDITA, S-10691 Stockholm, Sweden.
[Mi, J. -L.; Iversen, B. B.] Aarhus Univ, Interdisciplinary Nanosci Ctr, Dept Chem, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark.
RP Khajetoorians, AA (reprint author), Univ Hamburg, Inst Appl Phys, D-20355 Hamburg, Germany.
EM jwiebe@physnet.uni-hamburg.de; akhajeto@physnet.uni-hamburg.de
RI Hofmann, Philip/B-5938-2008; Wehling, Tim/O-4642-2014; Frauenheim,
Thomas/C-5653-2015; Khajetoorians, Alexander/F-9698-2015; Bianchi,
Marco/O-4544-2015; Wiesendanger, Roland/P-9726-2016
OI Hofmann, Philip/0000-0002-7367-5821; Wehling, Tim/0000-0002-5579-2231;
Frauenheim, Thomas/0000-0002-3073-0616; Bianchi,
Marco/0000-0002-0122-9443; Wiesendanger, Roland/0000-0002-0472-4183
FU DFG [SFB 668]; ERC; city of Hamburg via the cluster of excellence
"Nanospintronics"; VILLUM foundation; Danish Council for Independent
Research; Danish National Research Foundation [DNRF93]
FX We acknowledge financial support from the DFG via SFB 668, by the ERC
Advanced Grant "FURORE," by the city of Hamburg via the cluster of
excellence "Nanospintronics," by the VILLUM foundation, the Danish
Council for Independent Research, and the Danish National Research
Foundation (DNRF93).
NR 27
TC 49
Z9 49
U1 7
U2 149
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 22
PY 2013
VL 110
IS 12
AR 126804
DI 10.1103/PhysRevLett.110.126804
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 113QL
UT WOS:000316682600006
PM 25166834
ER
PT J
AU Konopacky, QM
Barman, TS
Macintosh, BA
Marois, C
AF Konopacky, Quinn M.
Barman, Travis S.
Macintosh, Bruce A.
Marois, Christian
TI Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet
Atmosphere
SO SCIENCE
LA English
DT Article
ID ORBITING HR 8799; MU-M; PLANETARY-ATMOSPHERES; FIELD SPECTROGRAPH;
LAMBDA-BOOTIS; GIANT PLANETS; BROWN DWARFS; T DWARFS; SPECTRA; SYSTEM
AB Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging-spatially resolving the planet from its parent star-which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation.
C1 [Konopacky, Quinn M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada.
[Barman, Travis S.] Lowell Observ, Flagstaff, AZ 86001 USA.
[Konopacky, Quinn M.; Macintosh, Bruce A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Marois, Christian] Natl Res Council Canada, Dominion Astrophys Observ, Victoria, BC V9E 2E7, Canada.
RP Konopacky, QM (reprint author), Univ Toronto, Dunlap Inst Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada.
EM konopacky@di.utoronto.ca
FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344]; NASA; Keck
Principal Investigator Data Analysis Fund; NASA High-End Computing
Program through the NASA Advanced Supercomputing Division at Ames
Research Center; David Dunlap family; University of Toronto; W. M. Keck
Foundation
FX We thank A. Conrad, S. Dahm, J. Lyke, H. Tran, H. Hershley, J. McIlroy,
J. Rivera, and the entire Keck staff for maximizing our observing
efficiency; J. Larkin and S. Wright for their assistance with OSIRIS
data reduction; and R. Murray-Clay and K. Oberg for assistance with
abundance values. Portions of this work were performed under the
auspices of the U.S. Department of Energy by LLNL under contract no.
DE-AC52-07NA27344. Support for this work was provided by NASA Origins of
the Solar System grants to LLNL and Lowell Observatory and from the Keck
Principal Investigator Data Analysis Fund, managed by NExScI on behalf
of NASA. Support was also provided by the NASA High-End Computing
Program through the NASA Advanced Supercomputing Division at Ames
Research Center. Q.M.K. is a Dunlap Fellow at the Dunlap Institute for
Astronomy and Astrophysics, University of Toronto. The Dunlap Institute
is funded through an endowment established by the David Dunlap family
and the University of Toronto. The W. M. Keck Observatory is operated as
a scientific partnership among the California Institute of Technology,
the University of California, and NASA. The Keck Observatory was made
possible by the generous financial support of the W. M. Keck Foundation.
We also wish to recognize the very important cultural role and reverence
that the summit of Mauna Kea has always had within the indigenous
Hawaiian community. We are most fortunate to have the opportunity to
conduct observations from this mountain. All authors contributed equally
to this work.
NR 38
TC 103
Z9 103
U1 3
U2 38
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD MAR 22
PY 2013
VL 339
IS 6126
BP 1398
EP 1401
DI 10.1126/science.1232003
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 114KU
UT WOS:000316740700033
PM 23493423
ER
PT J
AU Yin, XB
Ye, ZL
Rho, J
Wang, Y
Zhang, X
AF Yin, Xiaobo
Ye, Ziliang
Rho, Junsuk
Wang, Yuan
Zhang, Xiang
TI Photonic Spin Hall Effect at Metasurfaces
SO SCIENCE
LA English
DT Article
ID LIGHT; REFRACTION; BIREFRINGENCE; INDEX; PHASE
AB The spin Hall effect (SHE) of light is very weak because of the extremely small photon momentum and spin-orbit interaction. Here, we report a strong photonic SHE resulting in a measured large splitting of polarized light at metasurfaces. The rapidly varying phase discontinuities along a metasurface, breaking the axial symmetry of the system, enable the direct observation of large transverse motion of circularly polarized light, even at normal incidence. The strong spin-orbit interaction deviates the polarized light from the trajectory prescribed by the ordinary Fermat principle. Such a strong and broadband photonic SHE may provide a route for exploiting the spin and orbit angular momentum of light for information processing and communication.
C1 [Yin, Xiaobo; Ye, Ziliang; Rho, Junsuk; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, Natl Sci Fdn, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA.
[Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Zhang, X (reprint author), Univ Calif Berkeley, Natl Sci Fdn, Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA.
EM xiang@berkeley.edu
RI Yin, Xiaobo/A-4142-2011; Wang, Yuan/F-7211-2011; Zhang,
Xiang/F-6905-2011; Ye, Ziliang/A-2104-2011; Foundry,
Molecular/G-9968-2014
FU U.S. Department of Energy, Office of Basic Energy Sciences through the
Materials Sciences Division of LBNL [DE-AC02-05CH11231]; Samsung
Scholarship Foundation, Republic of Korea
FX This research is supported by the U.S. Department of Energy, Office of
Basic Energy Sciences under contract no. DE-AC02-05CH11231 through the
Materials Sciences Division of LBNL. J.R. acknowledges a fellowship from
the Samsung Scholarship Foundation, Republic of Korea. We thank S. Dhuey
and S. Cabrini of the Molecular Foundry at LBNL for their help on
electron beam lithography over large areas.
NR 29
TC 250
Z9 256
U1 26
U2 256
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
EI 1095-9203
J9 SCIENCE
JI Science
PD MAR 22
PY 2013
VL 339
IS 6126
BP 1405
EP 1407
DI 10.1126/science.1231758
PG 3
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 114KU
UT WOS:000316740700035
PM 23520105
ER
PT J
AU Beloglazova, N
Flick, R
Tchigvintsev, A
Brown, G
Popovic, A
Nocek, B
Yakunin, AF
AF Beloglazova, Natalia
Flick, Robert
Tchigvintsev, Anatoli
Brown, Greg
Popovic, Ana
Nocek, Boguslaw
Yakunin, Alexander F.
TI Nuclease Activity of the Human SAMHD1 Protein Implicated in the
Aicardi-Goutieres Syndrome and HIV-1 Restriction
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID IMMUNODEFICIENCY-VIRUS TYPE-1; INNATE IMMUNE-RESPONSE; GENE 1.2 PROTEIN;
ESCHERICHIA-COLI; TRIPHOSPHATE TRIPHOSPHOHYDROLASE; HD-DOMAIN;
DEOXYGUANOSINE TRIPHOSPHATE; INFECTION; TREX1; ACID
AB The human HD domain protein SAMHD1 is implicated in the Aicardi-Goutieres autoimmune syndrome and in the restriction of HIV-1 replication in myeloid cells. Recently, this protein has been shown to possess dNTP triphosphatase activity, which is proposed to inhibit HIV-1 replication and the autoimmune response by hydrolyzing cellular dNTPs. Here, we show that the purified full-length human SAMHD1 protein also possesses metal-dependent 3' -> 5' exonuclease activity against single-stranded DNAs and RNAs in vitro. In double-stranded substrates, this protein preferentially cleaved 3'-overhangs and RNA in blunt-ended DNA/RNA duplexes. Full-length SAMHD1 also exhibited strong DNA and RNA binding to substrates with complex secondary structures. Both nuclease and dNTP triphosphatase activities of SAMHD1 are associated with its HD domain, but the SAM domain is required for maximal activity and nucleic acid binding. The nuclease activity of SAMHD1 could represent an additional mechanism contributing to HIV-1 restriction and suppression of the autoimmune response through direct cleavage of viral and endogenous nucleic acids. In addition, we demonstrated the presence of dGTP triphosphohydrolase and nuclease activities in several microbial HD domain proteins, suggesting that these proteins might contribute to anti-viral defense in prokaryotes.
C1 [Beloglazova, Natalia; Flick, Robert; Tchigvintsev, Anatoli; Brown, Greg; Popovic, Ana; Yakunin, Alexander F.] Univ Toronto, Dept Chem Engn & Appl Chem, Banting & Best Dept Med Res, Toronto, ON M5S 3E5, Canada.
[Nocek, Boguslaw] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
RP Yakunin, AF (reprint author), Univ Toronto, Dept Chem Engn & Appl Chem, Banting & Best Dept Med Res, Toronto, ON M5S 3E5, Canada.
EM a.iakounine@utoronto.ca
RI Yakunin, Alexander/J-1519-2014;
OI Yakunin, Alexander/0000-0003-0813-6490
FU Government of Canada through Genome Canada; Ontario Genomics Institute
[2009-OGI-ABC-1405]; Ontario Research Fund Grant [ORF-GL2-01-004];
Natural Sciences and Engineering Research Council (NSERC)
FX This work was supported by the Government of Canada through Genome
Canada and Ontario Genomics Institute Grant 2009-OGI-ABC-1405, Ontario
Research Fund Grant ORF-GL2-01-004, and a Natural Sciences and
Engineering Research Council (NSERC) Discovery team grant (to A.F.Y.).
NR 39
TC 83
Z9 86
U1 1
U2 12
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
J9 J BIOL CHEM
JI J. Biol. Chem.
PD MAR 22
PY 2013
VL 288
IS 12
BP 8101
EP 8110
DI 10.1074/jbc.M112.431148
PG 10
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 112AS
UT WOS:000316564500011
PM 23364794
ER
PT J
AU Tsutakawa, SE
Shin, DS
Mol, CD
Izumi, T
Arvai, AS
Mantha, AK
Szczesny, B
Ivanov, IN
Hosfield, DJ
Maiti, B
Pique, ME
Frankel, KA
Hitomi, K
Cunningham, RP
Mitra, S
Tainer, JA
AF Tsutakawa, Susan E.
Shin, David S.
Mol, Clifford D.
Izumi, Tadahide
Arvai, Andrew S.
Mantha, Anil K.
Szczesny, Bartosz
Ivanov, Ivaylo N.
Hosfield, David J.
Maiti, Buddhadev
Pique, Mike E.
Frankel, Kenneth A.
Hitomi, Kenichi
Cunningham, Richard P.
Mitra, Sankar
Tainer, John A.
TI Conserved Structural Chemistry for Incision Activity in Structurally
Non-homologous Apurinic/Apyrimidinic Endonuclease APE1 and Endonuclease
IV DNA Repair Enzymes
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID HUMAN APURINIC ENDONUCLEASE; NUCLEOTIDE EXCISION-REPAIR; DIVALENT
METAL-IONS; ESCHERICHIA-COLI; THERMOTOGA-MARITIMA; MOLECULAR-DYNAMICS;
SUBSTRATE-BINDING; EXONUCLEASE-III; SACCHAROMYCES-CEREVISIAE;
PERIPLASMIC NUCLEASE
AB Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, APsites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 angstrom resolution APE1-DNA product complex with Mg2+ and a 0.92 angstrom Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize keyAPE1catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg2+. Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.
C1 [Tsutakawa, Susan E.; Frankel, Kenneth A.; Hitomi, Kenichi; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Shin, David S.; Mol, Clifford D.; Arvai, Andrew S.; Hosfield, David J.; Pique, Mike E.; Hitomi, Kenichi; Tainer, John A.] Scripps Res Inst, La Jolla, CA 92037 USA.
[Izumi, Tadahide] Univ Kentucky, Lexington, KY 40536 USA.
[Izumi, Tadahide; Mantha, Anil K.; Szczesny, Bartosz; Mitra, Sankar] Univ Texas Med Branch, Galveston, TX 77555 USA.
[Ivanov, Ivaylo N.; Maiti, Buddhadev] Georgia State Univ, Atlanta, GA 30302 USA.
[Hitomi, Kenichi] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan.
[Cunningham, Richard P.] SUNY Albany, Albany, NY 12222 USA.
RP Tainer, JA (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA USA.
EM JATainer@lbl.gov
RI Ivanov, Ivaylo/A-7613-2013
OI Ivanov, Ivaylo/0000-0002-5306-1005
FU National Institutes of Health (NIH), NCI [P01 CA92584]; NIH, NIGMS
[GM046312, CA053791]; National Science Foundation Career Award
[MCB-1149521]; Howard Hughes Medical Institute; Department of Energy
[DE-AC02-05CH11231]; Department of Energy (Office of Biological and
Environmental Research); NIH (National Center for Research Resources),
Biomedical Technology Program; NIH (NIGMS); Japan Society for the
Promotion of Science fellowship; Skaggs Institute for Chemical Biology
FX This work was supported, in whole or in part, by National Institutes of
Health (NIH), NCI, Grant P01 CA92584 and NIH, NIGMS, Grants GM046312 and
CA053791 (for work on APE1 and Nfo). Work on APE1 and Nfo was also
supported by National Science Foundation Career Award MCB-1149521. The
Berkeley Center for Structural Biology is supported in part by NIH,
NIGMS, and the Howard Hughes Medical Institute none of the authors are
hhmi. The Advanced Light Source is supported under Department of Energy
Contract DE-AC02-05CH11231. The Stanford Synchrotron Radiation
Laboratory is supported by the Department of Energy (Office of
Biological and Environmental Research), NIH (National Center for
Research Resources), Biomedical Technology Program, and NIH (NIGMS).;
Supported in part by a Japan Society for the Promotion of Science
fellowship and by the Skaggs Institute for Chemical Biology.
NR 87
TC 31
Z9 32
U1 3
U2 18
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
J9 J BIOL CHEM
JI J. Biol. Chem.
PD MAR 22
PY 2013
VL 288
IS 12
BP 8445
EP 8455
DI 10.1074/jbc.M112.422774
PG 11
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 112AS
UT WOS:000316564500042
PM 23355472
ER
PT J
AU Harmon, B
Kozina, C
Maar, D
Carpenter, TS
Branda, CS
Negrete, OA
Carson, BD
AF Harmon, Brooke
Kozina, Carol
Maar, Dianna
Carpenter, Timothy S.
Branda, Catherine S.
Negrete, Oscar A.
Carson, Bryan D.
TI Identification of Critical Amino Acids within the Nucleoprotein of
Tacaribe Virus Important for Anti-interferon Activity
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID LYMPHOCYTIC CHORIOMENINGITIS VIRUS; I INTERFERON INDUCTION; RIG-I;
ARENAVIRUS INFECTION; INHIBITION; FEVER; HOST; RNA
AB The arenavirus nucleoprotein (NP) can suppress induction of type I interferon (IFN). This anti-IFN activity is thought to be shared by all arenaviruses with the exception of Tacaribe virus (TCRV). To identify the TCRV NP amino acid residues that prevent its IFN-countering ability, we created a series of NP chimeras between residues of TCRV NP and Pichinde virus (PICV) NP, an arenavirus NP with potent anti-IFN function. Chimera NP analysis revealed that a minimal four amino acid stretch derived from PICV NP could impart efficient anti-IFN activity to TCRV NP. Strikingly, the TCRV NP gene cloned and sequenced from viral stocks obtained through National Institutes of Health Biodefense and Emerging Infections (BEI) resources deviated from the reference sequence at this particular four-amino acid region, GPPT (GenBank KC329849) versus DLQL (GenBank NC004293), respectively at residues 389-392. When efficiently expressed in cells through codon-optimization, TCRV NP containing the GPPT residues rescued the antagonistic IFN function. Consistent with cell expression results, TCRV infection did not stimulate an IFN beta response early in infection in multiple cells types (e.g. A549, P388D1), and IRF-3 was not translocated to the nucleus in TCRV-infected A549 cells. Collectively, these data suggest that certain TCRV strain variants contain the important NP amino acids necessary for anti-IFN activity.
C1 [Harmon, Brooke; Kozina, Carol; Maar, Dianna; Branda, Catherine S.; Negrete, Oscar A.] Sandia Natl Labs, Livermore, CA 94550 USA.
[Carpenter, Timothy S.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA.
[Carson, Bryan D.] Sandia Natl Labs, Albuquerque, NM 87123 USA.
RP Negrete, OA (reprint author), Sandia Natl Labs, POB 969,MS9292, Livermore, CA 94551 USA.
EM onegret@sandia.gov
FU Laboratory Directed Research and Development Grants; United States
Department of Energy National Nuclear Security Administration
[DE-AC04-94AL85000]
FX This work was supported by Laboratory Directed Research and Development
Grants (to B. D. C. and O. A. N.).; Sandia National Laboratories is a
multiprogram laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the United
States Department of Energy National Nuclear Security Administration
under contract DE-AC04-94AL85000.
NR 30
TC 9
Z9 9
U1 0
U2 7
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
J9 J BIOL CHEM
JI J. Biol. Chem.
PD MAR 22
PY 2013
VL 288
IS 12
BP 8702
EP 8711
DI 10.1074/jbc.M112.444760
PG 10
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 112AS
UT WOS:000316564500070
PM 23382389
ER
PT J
AU Bailey, DH
Borwein, JM
Crandall, RE
Zucker, IJ
AF Bailey, D. H.
Borwein, J. M.
Crandall, R. E.
Zucker, I. J.
TI Lattice sums arising from the Poisson equation
SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL
LA English
DT Article
ID INFINITE SERIES; PRODUCTS
AB In recent times, attention has been directed to the problem of solving the Poisson equation, either in engineering scenarios (computational) or in regard to crystal structure (theoretical). Herein we study a class of lattice sums that amount to Poisson solutions, namely the n-dimensional forms
phi(n)(r(1), ... , r(n)) = 1/pi(2) Sigma(m1, ... , mn odd) e(i pi(m1r1+ ... + mnrn))/m(1)(2) + ... + m(n)(2).
By virtue of striking connections with Jacobi theta-function values, we are able to develop new closed forms for certain values of the coordinates r(k), and extend such analysis to similar lattice sums. A primary result is that for rational x, y, the natural potential phi(2)(x, y) is 1/pi log A where A is an algebraic number. Various extensions and explicit evaluations are given. Such work is made possible by number-theoretical analysis, symbolic computation and experimental mathematics, including extensive numerical computations using up to 20 000-digit arithmetic.
C1 [Bailey, D. H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Bailey, D. H.] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA.
[Borwein, J. M.] Univ Newcastle, Ctr Comp Assisted Res Math & Its Applicat CARMA, Callaghan, NSW 2308, Australia.
[Crandall, R. E.] Reed Coll, Ctr Adv Computat, Portland, OR 97202 USA.
[Zucker, I. J.] Kings Coll London, Dept Phys, London WC2R 2LS, England.
RP Bailey, DH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM david@davidhbailey.com; jonathan.borwein@newcastle.edu.au;
jzucker@btinternet.com
OI Borwein, Jonathan/0000-0002-1263-0646
FU Office of Computational and Technology Research, Division of
Mathematical, Information, and Computational Sciences of the US
Department of Energy [DE-AC02-05CH11231]
FX The authors thank many colleagues, but especially Wadim Zudilin, for
fruitful discussions about lattice sums and theta functions. DHB was
supported in part by the Director, Office of Computational and
Technology Research, Division of Mathematical, Information, and
Computational Sciences of the US Department of Energy, under contract
number DE-AC02-05CH11231.
NR 22
TC 3
Z9 3
U1 0
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1751-8113
J9 J PHYS A-MATH THEOR
JI J. Phys. A-Math. Theor.
PD MAR 22
PY 2013
VL 46
IS 11
AR 115201
DI 10.1088/1751-8113/46/11/115201
PG 31
WC Physics, Multidisciplinary; Physics, Mathematical
SC Physics
GA 103AB
UT WOS:000315885100007
ER
PT J
AU He, K
Cho, JH
Jung, Y
Picraux, ST
Cumings, J
AF He, Kai
Cho, Jeong-Hyun
Jung, Yeonwoong
Picraux, S. Tom
Cumings, John
TI Silicon nanowires: electron holography studies of doped p-n junctions
and biased Schottky barriers
SO NANOTECHNOLOGY
LA English
DT Article
ID SEMICONDUCTOR NANOWIRES; POTENTIAL DISTRIBUTION
AB We report an in situ examination of individual Si p-n junction nanowires (NWs) using off-axis electron holography (EH) during transmission electron microscopy. The SiNWs were synthesized by chemical vapor deposition with an axial dopant profile from n- to p-type, and then placed inside the transmission electron microscope as a cantilever geometry in contact with a movable Pt probe for in situ biasing measurements during simultaneous EH observations. The phase shift from EH indicates the potential shift between the p-and n-segments to be 1.03 +/- 0.17 V due to the built-in voltage. The I-V characteristics of a single SiNW indicate the formation of a Schottky barrier between the NW tip and the movable Pt contact. EH observations show a strong concentration of electric field at this contact, preventing a change in the Si energy bands in the p-n junction region due to the applied bias.
C1 [He, Kai; Cumings, John] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
[Cho, Jeong-Hyun; Picraux, S. Tom] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Jung, Yeonwoong] Yale Univ, Dept Elect Engn & Appl Phys, New Haven, CT 06520 USA.
RP He, K (reprint author), Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
EM cumings@umd.edu
RI He, Kai/B-9535-2011; Cumings, John/A-3595-2012
OI He, Kai/0000-0003-4666-1800;
FU Science of Nanostructures for Electrical Energy Storage, an Energy
Frontier Research Center; US Department of Energy, Office of Science,
Office of Basic Energy Sciences [DESC0001160]; NSF MRSEC [DMR 05-20471];
US Department of Energy [DE-AC52-06NA25396]
FX This work was supported as part of the Science of Nanostructures for
Electrical Energy Storage, an Energy Frontier Research Center funded by
the US Department of Energy, Office of Science, Office of Basic Energy
Sciences under Award Number DESC0001160. We also acknowledge the use of
facilities in Maryland NanoCenter and its NispLab, supported in part by
the NSF MRSEC under grant DMR 05-20471. Work at Los Alamos National
Laboratory was performed under US Department of Energy contract
DE-AC52-06NA25396. This research was performed in part at the Center for
Integrated Nanotechnologies (CINT), a US Department of Energy, Office of
Basic Energy Sciences user facility. We are also grateful for the
valuable discussion from Professor Mark Reed at Yale University, and
Professors M R McCartney and D J Smith at Arizona State University.
NR 23
TC 10
Z9 10
U1 6
U2 62
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
J9 NANOTECHNOLOGY
JI Nanotechnology
PD MAR 22
PY 2013
VL 24
IS 11
AR 115703
DI 10.1088/0957-4484/24/11/115703
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 100QG
UT WOS:000315715300018
PM 23455354
ER
PT J
AU Timilsina, R
Smith, DA
Rack, PD
AF Timilsina, Rajendra
Smith, Daryl A.
Rack, Philip D.
TI A comparison of neon versus helium ion beam induced deposition via Monte
Carlo simulations
SO NANOTECHNOLOGY
LA English
DT Article
ID MICROSCOPE
AB The ion beam induced nanoscale synthesis of PtCx (where x similar to 5) using the trimethyl (methylcyclopentadienyl) platinum(IV) ((MeCpPtMe3)-Me-IV) precursor is investigated by performing Monte Carlo simulations of helium and neon ions. The helium beam leads to more lateral growth relative to the neon beam because of its larger interaction volume. The lateral growth of the nanopillars is dominated by molecules deposited via secondary electrons in both the simulations. Notably, the helium pillars are dominated by SE-I electrons whereas the neon pillars are dominated by SE-II electrons. Using a low precursor residence time of 70 mu s, resulting in an equilibrium coverage of similar to 4%, the neon simulation has a lower deposition efficiency (3.5%) compared to that of the helium simulation (6.5%). At larger residence time (10 ms) and consequently larger equilibrium coverage (85%) the deposition efficiencies of helium and neon increased to 49% and 21%, respectively; which is dominated by increased lateral growth rates leading to broader pillars. The nanoscale growth is further studied by varying the ion beam diameter at 10 ms precursor residence time. The study shows that total SE yield decreases with increasing beam diameters for both the ion types. However, helium has the larger SE yield as compared to that of neon in both the low and high precursor residence time, and thus pillars are wider in all the simulations studied.
C1 [Timilsina, Rajendra; Smith, Daryl A.; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Timilsina, R (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
EM prack@utk.edu
RI Smith, Daryl/K-2379-2014;
OI Rack, Philip/0000-0002-9964-3254
FU Semiconductor Research Corporation; Division of Scientific User
Facilities, US Department of Energy
FX The authors would like to acknowledge the support of the Semiconductor
Research Corporation (Bob Havemann program manager). PDR also
acknowledges useful discussions with Huimeng Wu and Lewis Stern at Carl
Zeiss NTS, LLC. PDR also acknowledges that part of the original
algorithms for the secondary electron and gas handling were developed at
the Center for Nanophase Materials Sciences, which is sponsored at Oak
Ridge National Laboratory by the Division of Scientific User Facilities,
US Department of Energy.
NR 26
TC 7
Z9 7
U1 1
U2 24
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
J9 NANOTECHNOLOGY
JI Nanotechnology
PD MAR 22
PY 2013
VL 24
IS 11
AR 115302
DI 10.1088/0957-4484/24/11/115302
PG 9
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 100QG
UT WOS:000315715300005
PM 23449368
ER
PT J
AU Kanouff, MP
Gharagozloo, PE
Salloum, M
Shugard, AD
AF Kanouff, Michael P.
Gharagozloo, Patricia E.
Salloum, Maher
Shugard, Andrew D.
TI A multiphysics numerical model of oxidation and decomposition in a
uranium hydride bed
SO CHEMICAL ENGINEERING SCIENCE
LA English
DT Article
DE Uranium hydride; Oxidation; Decomposition; Porous media; Heat transfer;
Kinetics
ID TRITIUM-STORAGE BED; CORROSION PRODUCTS; METAL; TEMPERATURES; FACILITY;
KINETICS; SYSTEMS
AB The reaction of uranium hydride and oxygen gas in a hydrogen storage bed has been studied with multiphysics finite element modeling. The model considers rates of chemical reaction, heat transport, and mass transport within a hydride bed. Three scenarios of oxygen gas injection have been considered and the model predictions are in good agreement with experimental measurements. We find that, under the conditions studied, uranium hydride and oxygen react quickly, forming U3O8 and hydrogen gas. We also find that oxidation of uranium hydride to U3O8 produces significant material swelling which, in the reactor studied, reduces the bed porosity from 0.60 to 0.39, and decreases the permeability by a factor of almost 20. A simple, yet reasonably general, description of the process is proposed which accounts for the major changes in global bed flow properties. This model may be used to better anticipate the effects of air-ingress accidents on uranium hydride storage beds and possibly also to explore design options for uranium hydride based hydrogen generation systems. (c) 2012 Elsevier Ltd. All rights reserved.
C1 [Kanouff, Michael P.; Gharagozloo, Patricia E.; Salloum, Maher; Shugard, Andrew D.] Sandia Natl Labs, Livermore, CA 94550 USA.
RP Salloum, M (reprint author), Sandia Natl Labs, 7011 East Ave,MS 9409, Livermore, CA 94550 USA.
EM mnsallo@sandia.gov
FU Laboratory Directed Research and Development (LDRD) program at Sandia
National Laboratories; Advanced Simulation and Computing Physics and
Engineering Models (ASC-PEM) program at Sandia National Laboratories;
U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX This work was supported by the Laboratory Directed Research and
Development (LDRD) and Advanced Simulation and Computing Physics and
Engineering Models (ASC-PEM) programs at Sandia National Laboratories.;
Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.
NR 43
TC 7
Z9 8
U1 1
U2 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0009-2509
J9 CHEM ENG SCI
JI Chem. Eng. Sci.
PD MAR 22
PY 2013
VL 91
BP 212
EP 225
DI 10.1016/j.ces.2012.05.005
PG 14
WC Engineering, Chemical
SC Engineering
GA 098EZ
UT WOS:000315531000024
ER
PT J
AU Yang, RL
Jarvis, DE
Chen, H
Beilstein, MA
Grimwood, J
Jenkins, J
Shu, SQ
Prochnik, S
Xin, MM
Ma, C
Schmutz, J
Wing, RA
Mitchell-Olds, T
Schumaker, KS
Wang, XF
AF Yang, Ruolin
Jarvis, David E.
Chen, Hao
Beilstein, Mark A.
Grimwood, Jane
Jenkins, Jerry
Shu, Sheng Qiang
Prochnik, Simon
Xin, Mingming
Ma, Chuang
Schmutz, Jeremy
Wing, Rod A.
Mitchell-Olds, Thomas
Schumaker, Karen S.
Wang, Xiangfeng
TI The reference genome of the halophytic plant Eutrema salsugineum
SO FRONTIERS IN PLANT SCIENCE
LA English
DT Article
DE whole-genome sequencing; genome annotation; Brassicaceae; Eutrema
salsugineum; Arabidopsis thaliana; halophyte
ID ARABIDOPSIS-THALIANA; ABIOTIC STRESS; THELLUNGIELLA-SALSUGINEA; SEQUENCE
ORGANIZATION; CENTROMERIC REGION; ADAPTIVE EVOLUTION; SALT TOLERANCE;
BRASSICACEAE; GENES; ALIGNMENT
AB Halophytes are plants that can naturally tolerate high concentrations of salt in the soil, and their tolerance to salt stress may occur through various evolutionary and molecular mechanisms. Eutrema salsugineum is a halophytic species in the Brassicaceae that can naturally tolerate multiple types of abiotic stresses that typically limit crop productivity, including extreme salinity and cold. It has been widely used as a laboratorial model for stress biology research in plants. Here, we present the reference genome sequence (241 Mb) of E. salsugineum at 8x coverage sequenced using the traditional Sanger sequencing-based approach with comparison to its close relative Arabidopsis thaliana. The E. Salsugineum genome contains 26,531 protein-coding genes and 51.4% of its genome is composed of repectitive sequences that mostly reside in pericentromeric regions. Comparative analyses of the genome structures, protein-coding genes, microRNAs, stress related pathways, and estimated translation efficiency of proteins between E. salsugineum and A. thaliana suggest that halophyte adaptation to environmental stresses may occur via a global network adjustment of multiple regulatory mechanisms. The E. salsugineum genome provides a resource to identify naturally occuring genetic alterations contributing to the adaptation of halophytic plants to salinity and that might be bioengineered in related crop species.
C1 [Yang, Ruolin; Jarvis, David E.; Chen, Hao; Beilstein, Mark A.; Xin, Mingming; Ma, Chuang; Wing, Rod A.; Schumaker, Karen S.; Wang, Xiangfeng] Univ Arizona, Sch Plant Sci, Tucson, AZ 85721 USA.
[Grimwood, Jane; Jenkins, Jerry; Shu, Sheng Qiang; Prochnik, Simon; Schmutz, Jeremy] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA.
[Jenkins, Jerry; Shu, Sheng Qiang; Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL USA.
[Mitchell-Olds, Thomas] Duke Univ, Dept Biol, Durham, NC USA.
RP Schumaker, KS (reprint author), Univ Arizona, Sch Plant Sci, 303 Forbes Hall,1140 E South Campus Dr, Tucson, AZ 85721 USA.
EM schumake@ag.arizona.edu; xwang1@cals.arizona.edu
RI Mitchell-Olds, Thomas/K-8121-2012;
OI Mitchell-Olds, Thomas/0000-0003-3439-9921; Ma,
Chuang/0000-0001-9612-7898; Beilstein, Mark/0000-0002-3392-1389; Wing,
Rod/0000-0001-6633-6226
FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231];
JGI; NIH [R01GM086496]
FX The genome sequencing, assembly, and annotation conducted by the U.S.
Department of Energy Joint Genome Institute is supported by the Office
of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. We thank Kerrie Barry for project management and
support at the JGI. Thomas Mitchell-Olds was supported by NIH grant
R01GM086496. We are also grateful to Dr. Stephen Wright for helpful
comments on the manuscript.
NR 61
TC 76
Z9 77
U1 2
U2 31
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015,
SWITZERLAND
SN 1664-462X
J9 FRONT PLANT SCI
JI Front. Plant Sci.
PD MAR 21
PY 2013
VL 4
AR 46
DI 10.3389/fpls.2013.00046
PG 14
WC Plant Sciences
SC Plant Sciences
GA 288AK
UT WOS:000329583700001
PM 23518688
ER
PT J
AU Harun, S
Balan, V
Takriff, MS
Hassan, O
Jahim, J
Dale, BE
AF Harun, Shuhaida
Balan, Venkatesh
Takriff, Mohd Sobri
Hassan, Osman
Jahim, Jamaliah
Dale, Bruce E.
TI Performance of AFEX (TM) pretreated rice straw as source of fermentable
sugars: the influence of particle size
SO BIOTECHNOLOGY FOR BIOFUELS
LA English
DT Article
DE Lignocellulosic biomass; Rice straw; Particle size; AFEX pretreatment;
Compositional analysis; Large particle; Enzymatic hydrolysis;
Conversion; Yield; Ethanol production
ID ENZYMATIC-HYDROLYSIS; ETHANOL-PRODUCTION; LIGNOCELLULOSIC MATERIALS;
SACCHAROMYCES-CEREVISIAE; CELLULOSE HYDROLYSIS; CORN STOVER; BIOMASS;
HEMICELLULOSES; BIOETHANOL; EXPLOSION
AB Background: It is widely believed that reducing the lignocellulosic biomass particle size would improve the biomass digestibility by increasing the total surface area and eliminating mass and heat transfer limitation during hydrolysis reactions. However, past studies demonstrate that particle size influences biomass digestibility to a limited extent. Thus, this paper studies the effect of particle size (milled: 2 mm, 5 mm, cut: 2 cm and 5 cm) on rice straw conversion. Two different Ammonia Fiber Expansion (AFEX) pretreament conditions, AFEX C1 (low severity) and AFEX C2 (high severity) are used to pretreat the rice straw (named as AC1RS and AC2RS substrates respectively) at different particle size.
Results: Hydrolysis of AC1RS substrates showed declining sugar conversion trends as the size of milled and cut substrates increased. Hydrolysis of AC2RS substrates demonstrated opposite conversion trends between milled and cut substrates. Increasing the glucan loading to 6% during hydrolysis reduced the sugar conversions significantly in most of AC1RS and AC2RS except for AC1RS-2 mm and AC2RS-5 cm. Both AC1RS-2 mm and AC2RS-5 cm indicated gradual decreasing trends in sugar conversion at high glucan loading. Analysis of SEM imaging for URS and AFEX pretreated rice straw also indicated qualitative agreement with the experimental data of hydrolysis. The largest particle size, AC2RS-5 cm produced the highest sugar yield of 486.12 g/kg of rice straw during hydrolysis at 6% glucan loading equivalent to 76.0% of total theoretical maximum sugar yield, with an average conversion of 85.9% from total glucan and xylan. In contrast, AC1RS-5 cm gave the lowest sugar yield with only 107.6 g/kg of rice straw, about 16.8% of total theoretical maximum sugar yield, and equivalent to one-quarter of AC2RS-5 cm sugar yield.
Conclusions: The larger cut rice straw particles (5 cm) significantly demonstrated higher sugar conversion when compared to small particles during enzymatic hydrolysis when treated using high severity AFEX conditions. Analysis of SEM imaging positively supported the interpretation of the experimental hydrolysis trend and kinetic data.
C1 [Harun, Shuhaida; Takriff, Mohd Sobri; Jahim, Jamaliah] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Dept Chem & Proc Engn, Bangi 43600, Ukm, Malaysia.
[Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Dept Chem Engn & Mat Sci, DOE Great Lakes Bioenergy Res Ctr, Lansing, MI 48823 USA.
[Hassan, Osman] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Chem Sci & Food Technol, Bangi 43600, Ukm, Malaysia.
RP Harun, S (reprint author), Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Dept Chem & Proc Engn, Bangi 43600, Ukm, Malaysia.
EM harun.shuhaida@gmail.com; balan@msu.edu
RI Takriff, Mohd Sobri/P-4149-2014; Harun, Shuhaida/M-1979-2016
OI Takriff, Mohd Sobri/0000-0003-4193-7281; Harun,
Shuhaida/0000-0003-1281-6077
FU Department of Energy through the Great Lakes Bioenergy Research Center
(GLBRC) grant [DE-FC02-07ER64494]; Universiti Kebangsaan Malaysia
[UKM-OUP-NBT-27-120/2009, UKM-OUP-KPB-31-152/2009, UKM-OUP-FKAB-2009,
UKM-OUP-KPB-31-157/2009, UKM-OUP-TK-16-77/2009, UKM-KK-02-FRGS0128-2009]
FX Funding for this project was provided by the Department of Energy
through the Great Lakes Bioenergy Research Center (GLBRC) grant
DE-FC02-07ER64494 and Universiti Kebangsaan Malaysia (Grant No:
UKM-OUP-NBT-27-120/2009, UKM-OUP-KPB-31-152/2009, UKM-OUP-FKAB-2009,
UKM-OUP-KPB-31-157/2009, UKM-OUP-TK-16-77/2009, UKM-KK-02-FRGS0128-2009
and Training Unit Fund). The primary author would like to especially
thank Christa Gunawan, MingJie Jin and other lab members of the BCRL for
the assistance and support given during this research study. Also, the
author would like to thank En. Razif from Department of Agriculture,
Selangor for generously providing the author with the rice straw.
NR 55
TC 23
Z9 23
U1 3
U2 43
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1754-6834
J9 BIOTECHNOL BIOFUELS
JI Biotechnol. Biofuels
PD MAR 21
PY 2013
VL 6
AR 40
DI 10.1186/1754-6834-6-40
PG 17
WC Biotechnology & Applied Microbiology; Energy & Fuels
SC Biotechnology & Applied Microbiology; Energy & Fuels
GA 140QT
UT WOS:000318670700001
PM 23514037
ER
PT J
AU Berkelbach, TC
Hybertsen, MS
Reichman, DR
AF Berkelbach, Timothy C.
Hybertsen, Mark S.
Reichman, David R.
TI Microscopic theory of singlet exciton fission. I. General formulation
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; DETAILED BALANCE LIMIT; PHASE QUANTUM
DYNAMICS; SOLAR-CELLS; EXCITATION TRANSFER; RATE EXPRESSIONS;
VIBRATIONAL-RELAXATION; RESONANCE INTERACTIONS; CRYSTALLINE TETRACENE;
CHARGE SEPARATION
AB Singlet fission, a spin-allowed energy transfer process generating two triplet excitons from one singlet exciton, has the potential to dramatically increase the efficiency of organic solar cells. However, the dynamical mechanism of this phenomenon is not fully understood and a complete, microscopic theory of singlet fission is lacking. In this work, we assemble the components of a comprehensive microscopic theory of singlet fission that connects excited state quantum chemistry calculations with finite-temperature quantum relaxation theory. We elaborate on the distinction between localized diabatic and delocalized exciton bases for the interpretation of singlet fission experiments in both the time and frequency domains. We discuss various approximations to the exact density matrix dynamics and propose Redfield theory as an ideal compromise between speed and accuracy for the detailed investigation of singlet fission in dimers, clusters, and crystals. Investigations of small model systems based on parameters typical of singlet fission demonstrate the numerical accuracy and practical utility of this approach. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794425]
C1 [Berkelbach, Timothy C.; Reichman, David R.] Columbia Univ, Dept Chem, New York, NY 10027 USA.
[Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Berkelbach, TC (reprint author), Columbia Univ, Dept Chem, 3000 Broadway, New York, NY 10027 USA.
EM tcb2112@columbia.edu; mhyberts@bnl.gov; drr2103@columbia.edu
OI Hybertsen, Mark S/0000-0003-3596-9754
FU Center for Re-Defining Photovoltaic Efficiency through Molecule Scale
Control; Energy Frontier Research Center; U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences [DE-SC0001085]; U.S.
Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]; Department of Energy Office of Science Graduate
Fellowship Program (DOE SCGF)
FX This work was supported in part by the Center for Re-Defining
Photovoltaic Efficiency through Molecule Scale Control, an Energy
Frontier Research Center funded by the U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences (Award No. DE-SC0001085).
This work was carried out in part at the Center for Functional
Nanomaterials, Brookhaven National Laboratory, which is supported by the
U.S. Department of Energy, Office of Basic Energy Sciences (Contract No.
DE-AC02-98CH10886) (M.S.H). T.C.B. was supported in part by the
Department of Energy Office of Science Graduate Fellowship Program (DOE
SCGF), made possible in part by the American Recovery and Reinvestment
Act of 2009, administered by ORISE-ORAU (Contract No.
DE-AC05-06OR23100).
NR 112
TC 79
Z9 79
U1 10
U2 115
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAR 21
PY 2013
VL 138
IS 11
AR 114102
DI 10.1063/1.4794425
PG 16
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 111TU
UT WOS:000316544500004
PM 23534622
ER
PT J
AU Berkelbach, TC
Hybertsen, MS
Reichman, DR
AF Berkelbach, Timothy C.
Hybertsen, Mark S.
Reichman, David R.
TI Microscopic theory of singlet exciton fission. II. Application to
pentacene dimers and the role of superexchange
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID SENSITIZED SOLAR-CELLS; EXCITATION TRANSFER; RATE EXPRESSIONS; RESONANCE
INTERACTIONS; CHARGE SEPARATION; ELECTRON-TRANSFER; TETRACENE;
SPECTROSCOPY; MOLECULES; DYNAMICS
AB We apply our theoretical formalism for singlet exciton fission, introduced in the previous paper [T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, J. Chem. Phys. 138, 114102 (2013)] to molecular dimers of pentacene, a widely studied material that exhibits singlet fission in the crystal phase. We address a longstanding theoretical issue, namely whether singlet fission proceeds via two sequential electron transfer steps mediated by charge-transfer states or via a direct two-electron transfer process. We find evidence for a superexchange mediated mechanism, whereby the fission process proceeds through virtual charge-transfer states which may be very high in energy. In particular, this mechanism predicts efficient singlet fission on the sub-picosecond timescale, in reasonable agreement with experiment. We investigate the role played by molecular vibrations in mediating relaxation and decoherence, finding that different physically reasonable forms for the bath relaxation function give similar results. We also examine the competing direct coupling mechanism and find it to yield fission rates slower in comparison with the superexchange mechanism for the dimer. We discuss implications for crystalline pentacene, including the limitations of the dimer model. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794427]
C1 [Berkelbach, Timothy C.; Reichman, David R.] Columbia Univ, Dept Chem, New York, NY 10027 USA.
[Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Berkelbach, TC (reprint author), Columbia Univ, Dept Chem, 3000 Broadway, New York, NY 10027 USA.
EM tcb2112@columbia.edu; mhyberts@bnl.gov; drr2103@columbia.edu
OI Hybertsen, Mark S/0000-0003-3596-9754
FU Center for Re-Defining Photovoltaic Efficiency through Molecule Scale
Control; Energy Frontier Research Center; U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences [DE-SC0001085]; U.S.
Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]; Department of Energy Office of Science Graduate
Fellowship Program (DOE SCGF); ORISE-ORAU [DE-AC05-06OR23100]
FX After this work was submitted, we became aware of the work of Havenith
et al.,55 which, as we acknowledged above, provides a picture
in qualitative agreement with that presented here. We thank Josef Michl
for bringing this work to our attention, as well as for sharing a draft
of Ref. 59 before publication. We also thank Eran Rabani for the use of
his two-electron integral FFT code. This work was supported in part by
the Center for Re-Defining Photovoltaic Efficiency through Molecule
Scale Control, an Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
under Award No. DE-SC0001085. This work was carried out in part at the
Center for Functional Nanomaterials, Brookhaven National Laboratory,
which is supported by the U.S. Department of Energy, Office of Basic
Energy Sciences under Contract No. DE-AC02-98CH10886 (M.S.H). T.C.B. was
supported in part by the Department of Energy Office of Science Graduate
Fellowship Program (DOE SCGF), made possible in part by the American
Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under
Contract No. DE-AC05-06OR23100.
NR 60
TC 85
Z9 86
U1 10
U2 113
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAR 21
PY 2013
VL 138
IS 11
AR 114103
DI 10.1063/1.4794427
PG 12
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 111TU
UT WOS:000316544500005
PM 23534623
ER
PT J
AU Stern, AC
Baer, MD
Mundy, CJ
Tobias, DJ
AF Stern, Abraham C.
Baer, Marcel D.
Mundy, Christopher J.
Tobias, Douglas J.
TI Thermodynamics of iodide adsorption at the instantaneous air-water
interface
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; LIQUID-VAPOR INTERFACE; SODIUM-HALIDE
INTERFACES; AIR/WATER INTERFACE; SURFACE-TENSION; BULK WATER;
VIBRATIONAL SPECTROSCOPY; HETEROGENEOUS REACTION; WATER/VAPOR INTERFACE;
ORIENTED THIOCYANATE
AB We performed molecular dynamics simulations using both polarizable and non-polarizable force fields to study the adsorption of iodide to the air-water interface. A novel aspect of our analysis is that the progress of ion adsorption is measured as the distance from the instantaneous interface, which is defined by a coarse-graining scheme proposed recently by Willard and Chandler ["Instantaneous liquid interfaces," J. Phys. Chem. B 114, 1954-1958 (2010)]. Referring structural and thermodynamic quantities to the instantaneous interface unmasks molecular-scale details that are obscured by thermal fluctuations when the same quantities are referred to an average measure of the position of the interface, such as the Gibbs dividing surface. Our results suggest that an ion adsorbed at the interface resides primarily in the topmost water layer, and the interfacial location of the ion is favored by enthalpy and opposed by entropy. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794688]
C1 [Stern, Abraham C.; Tobias, Douglas J.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.
[Baer, Marcel D.; Mundy, Christopher J.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA.
RP Stern, AC (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.
EM acstern@uci.edu; marcel.baer@pnnl.gov; chris.mundy@pnnl.gov;
dtobias@uci.edu
RI Baer, Marcel/K-7664-2012; Tobias, Douglas/B-6799-2015
FU AirUCI collaborative through National Science Foundation [CHE-0431312];
U.S. Department of Energy's Office of Basic Energy of Sciences, Division
of Chemical of Sciences, Geosciences, and Biosciences; Linus Pauling
Distinguished Postdoctoral Fellowship at PNNL
FX The authors thank Greg Schenter, Phillip Geissler, and Thomas Beck for
illuminating discussions. This work was supported by the AirUCI
collaborative through National Science Foundation grant CHE-0431312, and
by the U.S. Department of Energy's Office of Basic Energy of Sciences,
Division of Chemical of Sciences, Geosciences, and Biosciences. Pacific
Northwest National Laboratory (PNNL) is operated for the Department of
Energy by Battelle. M. D. B. is grateful for support from a Linus
Pauling Distinguished Postdoctoral Fellowship at PNNL. The computations
were carried out on theMPC cluster at UC Irvine and on the Thresher
cluster at the San Diego Supercomputing Center via an allocation from
the University of California Shared Research Computing Services (ShaRCS)
pilot project.
NR 80
TC 23
Z9 23
U1 4
U2 98
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAR 21
PY 2013
VL 138
IS 11
AR 114709
DI 10.1063/1.4794688
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 111TU
UT WOS:000316544500037
PM 23534655
ER
PT J
AU Lomont, JP
Nguyen, SC
Harris, CB
AF Lomont, Justin P.
Nguyen, Son C.
Harris, Charles B.
TI Direct Observation of a Bent Carbonyl Ligand in a 19-Electron Transition
Metal Complex
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID RESOLVED INFRARED-SPECTROSCOPY; DENSITY-FUNCTIONAL THEORY;
MOLECULAR-ORBITAL METHODS; FE-C-O; CORRELATION-ENERGY; ELECTRON-DENSITY;
PHOTOCHEMICAL DISPROPORTIONATION; SEMIBRIDGING CARBONYL;
CRYSTAL-STRUCTURES; CENTERED RADICALS
AB The photochemistry of [CpRu(CO)(2)](2) in P(OMe)(3)/CH2Cl2 solution has been studied using picosecond time-resolved infrared (TRIR) spectroscopy. Photolysis at 400 nm leads to the formation of 17-electron CpRu(CO)(2)(center dot) radicals, which react on the picosecond time scale to form 19-electron CpRu(CO)(2)P(OMe)(3)(center dot) adducts. The TRIR spectra of this adduct display an unusually low CO stretching frequency for the antisymmetric CO stretching mode, suggesting that one carbonyl ligand adopts a bent configuration to avoid a 19-electron count at the metal center. This spectral assignment is supported by analogous experiments on [CpFe(CO)(2)](2) in the same solvent, combined with DFT studies on the structures of the 19-electron adducts. The DFT results predict a bent CO ligand in CpRu(CO)(2)P(OMe)(3)(center dot), whereas approximately linear Fe-C-O bond angles are predicted for CpFe(CO)(2)P(OMe)(3)(center dot). The observation of a bent CO ligand in the 19-electron ruthenium adduct is a surprising result, and it provides new insight into the solution-phase behavior of 19-electron complexes. TRIR spectra were also collected for [CpRu(CO)(2)](2) in neat CH2Cl2, and it is interesting to note that no singly bridged [CpRu(CO)](2)(mu-CO) photoproduct was observed to form following 400- or 267-nm excitation, despite previous observations of this species on longer time scales.
C1 [Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM cbharris@berkeley.edu
FU National Science Foundation [CHE-0909632, CHE-1213135]; Molecular
Graphcis and Computation Facility at UC-Berkeley [CHE-0840505,
CHE-0233882]; Office of Science of the U.S. Department of Energy
[DE-AC02-05CH11231]; VIED fellowship; NSF
FX This work was supported by the National Science Foundation (CHE-0909632
and CHE-1213135). The authors acknowledge use of the Molecular Graphcis
and Computation Facility at UC-Berkeley (Grants CHE-0840505 and
CHE-0233882). This research used resources of the National Energy
Research Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
DE-AC02-05CH11231. S.C.N acknowledges support through a VIED fellowship.
J.P.L. acknowledges support through an NSF graduate research fellowship.
NR 74
TC 4
Z9 4
U1 1
U2 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAR 21
PY 2013
VL 117
IS 11
BP 2317
EP 2324
DI 10.1021/jp311732t
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 114WH
UT WOS:000316773200005
PM 23448247
ER
PT J
AU Tarasevich, BJ
Perez-Salas, U
Masica, DL
Philo, J
Kienzle, P
Krueger, S
Majkrzak, CF
Gray, JL
Shaw, WJ
AF Tarasevich, Barbara J.
Perez-Salas, Ursula
Masica, David L.
Philo, John
Kienzle, Paul
Krueger, Susan
Majkrzak, Charles F.
Gray, Jeffrey L.
Shaw, Wendy J.
TI Neutron Reflectometry Studies of the Adsorbed Structure of the
Amelogenin, LRAP
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID DYNAMIC LIGHT-SCATTERING; FORMATION IN-VITRO; RECOMBINANT AMELOGENIN;
PROTEIN HYDRATION; MASS-SPECTROMETRY; ENAMEL FORMATION; HYDROXYAPATITE;
ADSORPTION; MACROMOLECULES; ORIENTATION
AB Amelogenins make up over 90% of the protein present during enamel formation and have been demonstrated to be critical in proper enamel development, but the mechanism governing this control is not well understood. Leucine-rich amelogenin peptide (LRAP) is a 59-residue splice variant of amelogenin and contains the charged regions from the full protein thought to control crystal regulation. In this work, we utilized neutron reflectivity (NR) to investigate the structure and orientation of LRAP adsorbed from solutions onto molecularly smooth COOH-terminated self-assembled monolayer (SAM) surfaces. Sedimentation velocity (SV) experiments revealed that LRAP is primarily a monomer in saturated calcium phosphate (SCP) solutions (0.15 M NaC1) at pH 7.4. LRAP adsorbed as similar to 32 angstrom thick layers at similar to 70% coverage as determined by NR. Rosetta simulations of the dimensions of LRAP in solution (37 angstrom diameter) indicate that the NR determined z dimension is consistent with an LRAP monomer. SV experiments and Rosetta simulations show that the LRAP monomer has an extended, asymmetric shape in solution. The NR data suggests that the protein is not completely extended on the surface, having some degree of structure away from the surface. A protein orientation with the Cterminal and inner N-terminal regions (residues similar to 8-24) located near the surface is consistent with the higher scattering length density (SLD) found near the surface by NR. This work presents new information on the tertiary and quaternary structure of LRAP in solution and adsorbed onto surfaces. It also presents further evidence that the monomeric species may be an important functional form of amelogenin proteins.
C1 [Tarasevich, Barbara J.; Shaw, Wendy J.] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Perez-Salas, Ursula] Univ Illinois, Dept Phys, Chicago, IL 60607 USA.
[Masica, David L.; Gray, Jeffrey L.] Johns Hopkins Univ, Baltimore, MD 21205 USA.
[Philo, John] Alliance Prot Labs Inc, San Diego, CA 92121 USA.
[Kienzle, Paul; Krueger, Susan; Majkrzak, Charles F.] NIST, Gaithersburg, MD 20899 USA.
RP Tarasevich, BJ (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA.
EM barbara.tarasevich@pnnl.gov; wendy.shaw@pnnl.gov
RI Gray, Jeffrey/B-5682-2008
OI Gray, Jeffrey/0000-0001-6380-2324
FU NIH-NIDCR [DE-015347]; US-DOE; National Science Foundation [DMR-0454672]
FX This work was supported by NIH-NIDCR Grant DE-015347 (PNNL) and was
performed in part at Pacific Northwest National Laboratory, operated by
Battelle for the US-DOE. This work was supported in part by the National
Science Foundation under Agreement No. DMR-0454672 and was performed in
part at NIST. We would like to thank Andrew Rockwell, who helped collect
the initial NR data. We thank Robert Latour and Nadeem Vellore for
providing coordinates for the COOH SAM surface.
NR 68
TC 14
Z9 14
U1 1
U2 30
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD MAR 21
PY 2013
VL 117
IS 11
BP 3098
EP 3109
DI 10.1021/jp311936j
PG 12
WC Chemistry, Physical
SC Chemistry
GA 114WI
UT WOS:000316773300005
PM 23477285
ER
PT J
AU Glass, DC
Krishnan, M
Smith, JC
Baudry, J
AF Glass, Dennis C.
Krishnan, Marimuthu
Smith, Jeremy C.
Baudry, Jerome
TI Three Entropic Classes of Side Chain in a Globular Protein
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; MAGNETIC-RESONANCE RELAXATION;
METHYL-GROUP DYNAMICS; MODEL-FREE APPROACH; FREE HIV PROTEASE;
CONFORMATIONAL ENTROPY; ORDER PARAMETERS; PEPTIDE BINDING; FREE-ENERGY;
NMR
AB The relationship between the NMR methyl group axial order parameter and the side chain conformational entropy is investigated in inhibitor-bound and apo human HIV protease using molecular dynamics simulation. Three distinct entropic classes of methyl-bearing side chains, determined by the topological distance of the methyl group from the protein backbone (i.e., the number of chi-bonds between the C-alpha and the carbon of the CH3 group), are revealed by atomistic trajectory analyses performed in the local frame of reference of individual methyl probes. The results demonstrate that topologically equivalent methyl groups experience similar nonbonded microenvironments regardless of the type of residues to which they are attached. Similarly, methyl groups that belong to the same side chain but that are not topologically equivalent exhibit different thermodynamic and dynamic properties. The two-parameter classification (based upon entropy and methyl axial order parameter) of side chains described here permits improved estimates of the conformational entropies of proteins from NMR motional parameters.
C1 [Glass, Dennis C.; Smith, Jeremy C.; Baudry, Jerome] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37831 USA.
[Glass, Dennis C.] Univ Tennessee, Genome Sci & Technol Program, Knoxville, TN 37996 USA.
[Krishnan, Marimuthu] Int Inst Informat Technol, Ctr Computat Nat Sci & Bioinformat, Hyderabad 500032, Andhra Pradesh, India.
[Smith, Jeremy C.; Baudry, Jerome] Univ Tennessee, Dept Biochem & Mol & Cellular Biol, Knoxville, TN USA.
RP Baudry, J (reprint author), Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, POB 2008, Oak Ridge, TN 37831 USA.
EM jbaudry@utk.edu
RI smith, jeremy/B-7287-2012
OI smith, jeremy/0000-0002-2978-3227
FU Graduate School of Genome Science and Technology at the University of
Tennessee, Knoxville; University of Tennessee, Knoxville; National
Science Foundation; Department of Science and Technology (DST), New
Delhi
FX D.C.G. is supported in part by the Graduate School of Genome Science and
Technology at the University of Tennessee, Knoxville. J.B. acknowledges
a start-up grant from the University of Tennessee, Knoxville. J.C.S.
acknowledges support from the National Science Foundation. M.K.
acknowledges support from the Department of Science and Technology
(DST), New Delhi.
NR 45
TC 5
Z9 5
U1 0
U2 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD MAR 21
PY 2013
VL 117
IS 11
BP 3127
EP 3134
DI 10.1021/jp400564q
PG 8
WC Chemistry, Physical
SC Chemistry
GA 114WI
UT WOS:000316773300008
PM 23421556
ER
PT J
AU Li, Y
Wei, ZH
Sun, JM
Gao, F
Peden, CHF
Wang, Y
AF Li, Yan
Wei, Zhehao
Sun, Junming
Gao, Feng
Peden, Charles H. F.
Wang, Yong
TI Effect of Sodium on the Catalytic Properties of VOx/CeO2 Catalysts for
Oxidative Dehydrogenation of Methanol
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID VANADIUM-OXIDE CATALYSTS; UV-VIS DRS; SUPPORTED VANADIA;
SURFACE-STRUCTURES; TITANIA CATALYSTS; CO OXIDATION; CERIA;
SPECTROSCOPY; POTASSIUM; PROPANE
AB A series of VOx/CeO2 catalysts with various sodium loadings (Na/V ratio from 0 to 1) have been studied for oxidative dehydrogenation (ODH) of methanol. The effect of sodium on the surface structure, redox properties, and surface acidity/basicity of VOx/CeO2 was investigated using hydrogen temperature-programmed reduction (H-2-TPR), Raman spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The experimental results indicate that the effect of sodium on VOx/CeO2 is highly dependent on the Na/V ratio. At a low Na/V ratio (Na/V < 0.25), sodium addition only slightly decreases the redox ability of VOx/CeO2 and has little effect on its activity and selectivity to formaldehyde, even though the Bronsted acidity is almost completely eliminated at a Na/V ratio of 0.25. At a high Na/V ratio (Na/V > 0.25), sodium addition greatly alters the nature of the active sites by V-O-Ce bond cleavage and V-O-Na bond formation, leading to significantly reduced activity of the VOx/CeO2 catalysts. At Na/V > 0.25, the selectivity to formaldehyde also decreases with increasing Na/V ratio due to (1) the suppressed reducibility of VOx and (2) increased basicity leading to increased CO2.
C1 [Li, Yan; Wei, Zhehao; Sun, Junming; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.
[Gao, Feng; Peden, Charles H. F.; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA.
RP Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.
EM yongwang@pnl.gov
RI Sun, Junming/B-3019-2011; Wei, Zhehao/L-2801-2013;
OI Sun, Junming/0000-0002-0071-9635; Wei, Zhehao/0000-0002-9670-4752;
Peden, Charles/0000-0001-6754-9928
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences; Biosciences. Pacific
Northwest National Laboratory (PNNL)
FX We gratefully acknowledge the financial support from the U.S. Department
of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical
Sciences, Geosciences, and Biosciences. Pacific Northwest National
Laboratory (PNNL) is a multiprogram national laboratory operated for DOE
by Battelle.
NR 63
TC 17
Z9 17
U1 6
U2 85
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD MAR 21
PY 2013
VL 117
IS 11
BP 5722
EP 5729
DI 10.1021/jp310512m
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 114WF
UT WOS:000316773000024
ER
PT J
AU Henderson, MA
Shen, MM
Wang, ZT
Lyubinetsky, I
AF Henderson, Michael A.
Shen, Mingmin
Wang, Zhi-Tao
Lyubinetsky, Igor
TI Characterization of the Active Surface Species Responsible for
UV-Induced Desorption of O-2 from the Rutile TiO2(110) Surface
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID FINAL-STATE DISTRIBUTIONS; ELECTRON-ENERGY-LOSS; MOLECULAR-OXYGEN;
REDUCED TIO2(110); PEROXO COMPLEXES; METAL-COMPLEXES; HYDROGEN-PEROXIDE;
VACANCY DIFFUSION; AQUEOUS-SOLUTIONS; TITANIUM-DIOXIDE
AB We have examined the chemical and photochemical properties of molecular oxygen on the (110) surface of rutile TiO2 at 100 K using electron energy loss spectroscopy (EELS), photon stimulated desorption (PSD), and scanning tunneling microscopy (STM). Oxygen chemisorbs on the TiO2(110) surface at 100 K through charge transfer from surface Ti3+ sites. The charge-transfer process is evident in EELS by a decrease in the intensity of the Ti3+ d-to-d transition at similar to 0.9 eV and formation of a new loss at similar to 2.8 eV. On the basis of comparisons with the available homogeneous and heterogeneous literature for complexed/adsorbed O-2, the species responsible for the 2.8 eV peak can be assigned to a surface peroxo (O-2(2-)) state of O-2. This species was identified as the active form of adsorbed O-2 on TiO2(110) for PSD. The adsorption site of this peroxo species was assigned to that of a regular five-coordinated Ti4+. (Ti-Sc) site based on comparisons between the UV exposure-dependent behavior of O-2 in STM, PSD, and EELS data. Assignment of the active form of adsorbed O-2 to a peroxo species at normal Ti-Sc, sites necessitates reevaluation of the simple mechanism in which a single valence band hole neutralizes a singly charged O-2 species (superoxo or O-2-), leading to desorption of O-2 from a physisorbed potential energy surface.
C1 [Henderson, Michael A.; Shen, Mingmin] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Phys Sci, Richland, WA 99352 USA.
[Wang, Zhi-Tao; Lyubinetsky, Igor] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Henderson, MA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Phys Sci, Richland, WA 99352 USA.
EM ma.henderson@pnnl.gov
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences; Chemical
Imaging Initiative at Pacific Northwest National Laboratory (PNNL);
DOE's Office of Biological and Environmental Research and located at
PNNL
FX This work was supported by the U.S. Department of Energy (DOE), Office
of Basic Energy Sciences, Division of Chemical Sciences, Geosciences,
and Biosciences, and the Chemical Imaging Initiative at Pacific
Northwest National Laboratory (PNNL), and was performed in the
Environmental Molecular Sciences Laboratory (EMSL), a national
scientific user facility sponsored by the DOE's Office of Biological and
Environmental Research and located at PNNL.
NR 111
TC 16
Z9 16
U1 3
U2 114
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD MAR 21
PY 2013
VL 117
IS 11
BP 5774
EP 5784
DI 10.1021/jp312161y
PG 11
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 114WF
UT WOS:000316773000031
ER
PT J
AU Williams, PD
Reuter, MG
AF Williams, Patrick D.
Reuter, Matthew G.
TI Level Alignments and Coupling Strengths in Conductance Histograms: The
Information Content of a Single Channel Peak
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID MOLECULE JUNCTION CONDUCTANCE; ELECTRICAL CONDUCTANCE;
STATISTICAL-ANALYSIS; CHARGE-TRANSPORT; POINT CONTACTS; CONDUCTIVITY;
TRANSITION; DEPENDENCE; RESISTANCE; CIRCUITS
AB We develop a theory for describing single channel peaks in conductance histograms by applying probability theory to electron transport. This produces analytical forms for fitting experimental conductance data, where the fitting parameters have physical significance. Depending on the transport mechanism (resonant vs non-resonant tunneling), the peak's line shape contains information on the level alignment of the channel and the channel-electrode coupling(s). We additionally discuss the reliability of fitting data to these forms and present examples. Ultimately, this work provides tools for extracting additional information from experimental data, helping us better understand electron transport processes.
C1 [Williams, Patrick D.] Oak Ridge High Sch, Oak Ridge, TN 37830 USA.
[Williams, Patrick D.; Reuter, Matthew G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
[Reuter, Matthew G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Reuter, MG (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
EM reutermg@ornl.gov
OI Williams, Patrick/0000-0001-7088-5084
FU Eugene P. Wigner Fellowship at the Oak Ridge National Laboratory;
UT-Battelle, LLC, for the U.S. Department of Energy [DE-AC05-00OR22725]
FX We thank Latha Venkataraman, Mark Ratner, and Bobby Sumpter for helpful
conversations and Latha Venkataraman for providing the experimental data
presented in Figure 1. P.D.W. performed this research as part of a
Math-Science Senior Thesis at the Oak Ridge High School. M.G.R. was
supported by a Eugene P. Wigner Fellowship at the Oak Ridge National
Laboratory, which is managed by UT-Battelle, LLC, for the U.S.
Department of Energy under contract DE-AC05-00OR22725. The fittinig
software was built using the GNU Scientific Library (GSL)51
and the figures were prepared with the Level Scheme
package.52
NR 50
TC 13
Z9 13
U1 1
U2 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD MAR 21
PY 2013
VL 117
IS 11
BP 5937
EP 5942
DI 10.1021/jp310180s
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 114WF
UT WOS:000316773000049
ER
PT J
AU French, WR
Iacovella, CR
Rungger, I
Souza, AM
Sanvito, S
Cummings, PT
AF French, William R.
Iacovella, Christopher R.
Rungger, Ivan
Souza, Amaury Melo
Sanvito, Stefano
Cummings, Peter T.
TI Structural Origins of Conductance Fluctuations in Gold-Thiolate
Molecular Transport Junctions
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID LARGE SYSTEMS; BENZENEDITHIOL; DYNAMICS; SIMULATIONS; MECHANICS; DESIGN
AB We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior.
C1 [French, William R.; Iacovella, Christopher R.; Cummings, Peter T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA.
[Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland.
[Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano] Trinity Coll Dublin, CRANN, Dublin 2, Ireland.
[Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Cummings, PT (reprint author), Vanderbilt Univ, Dept Chem & Biomol Engn, 221 Kirkland Hall, Nashville, TN 37235 USA.
EM peter.cummings@vanderbilt.edu
RI Iacovella, Christopher/D-2050-2011; French, William/D-4164-2013; Souza,
Amaury/H-9474-2014
OI French, William/0000-0003-2927-0234;
FU U.S. Department of Education for a Graduate Assistance in Areas of
National Need (GAANN) Fellowship [P200A090323]; National Science
Foundation [CBET-1028374]; King Abdullah University of Science and
Technology (ACRAB project); Office of Science of the U.S. Department of
Energy [DE-AC02-05CH11231]
FX W.R.F. acknowledges partial support from the U.S. Department of
Education for a Graduate Assistance in Areas of National Need (GAANN)
Fellowship under Grant Number P200A090323; W.R.F., C.R.I., and P.T.C.
acknowledge partial support from the National Science Foundation through
Grant CBET-1028374. I.R, A.M.S., and S.S. thank the King Abdullah
University of Science and Technology (ACRAB project) for financial
support. This research used resources of the National Energy Research
Scientific Computing Center (NERSC), which is supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231; specifically, the conductance calculations were
performed on NERSC's Carver.
NR 43
TC 19
Z9 19
U1 1
U2 36
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD MAR 21
PY 2013
VL 4
IS 6
BP 887
EP 891
DI 10.1021/jz4001104
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 114WE
UT WOS:000316772900008
PM 26291351
ER
PT J
AU Chu, XQ
Mamontov, E
O'Neill, H
Zhang, Q
AF Chu, Xiang-qiang
Mamontov, Eugene
O'Neill, Hugh
Zhang, Qiu
TI Temperature Dependence of Logarithmic-like Relaxational Dynamics of
Hydrated tRNA
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID INELASTIC NEUTRON-SCATTERING; GLOBULAR PROTEIN; ANOMALOUS DIFFUSION; MD
SIMULATIONS; TRANSITION; WATER; SOLVENT; MOTIONS; FLUCTUATIONS;
MYOGLOBIN
AB The dynamics of RNA within the beta-relaxation region of 10 ps to 1 ns is crucial to its biological function. Because of its simpler chemical building blocks and the lack of the side methyl groups, faster relaxational dynamics of RNA compared to proteins can be expected. However, the situation is actually opposite. In this work, the relaxational dynamics of tRNA is measured by quasielastic neutron scattering and analyzed using the mode coupling theory, originally developed for glass-forming liquids. Our results reveal that the dynamics of tRNA follows a log-decay within the beta-relaxation region, which is an important trait demonstrated by the dynamics of proteins. The dynamics of hydrated tRNA and lysozyme compared in the time domain further demonstrate that the slower dynamics of tRNA relative to proteins originates from the difference in the folded states of tRNA and proteins, as well as the influence of their hydration water.
C1 [Chu, Xiang-qiang] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA.
[Chu, Xiang-qiang; O'Neill, Hugh; Zhang, Qiu] Oak Ridge Natl Lab, Biol & Soft Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA.
[Mamontov, Eugene] Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA.
RP Chu, XQ (reprint author), Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA.
RI Chu, Xiangqiang/A-1572-2011; Mamontov, Eugene/Q-1003-2015;
OI Mamontov, Eugene/0000-0002-5684-2675; Chu,
Xiang-qiang/0000-0003-4320-5316; O'Neill, Hugh/0000-0003-2966-5527
FU Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy; Office of Biological and Environmental
Research, US DOE [ERKP291]; US Department of Energy (DOE) [DE-AC05-
00OR22725]
FX The neutron scattering experiment at Oak Ridge National Laboratory's
(ORNL) Spallation Neutron Source was sponsored by the Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy. The authors also acknowledge ORNL's Center for Structural
Molecular Biology (Project ERKP291) supported by the Office of
Biological and Environmental Research, US DOE. ORNL is managed by
UT-Battelle, LLC, for the US Department of Energy (DOE) under contract
no. DE-AC05- 00OR22725.
NR 51
TC 14
Z9 14
U1 1
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD MAR 21
PY 2013
VL 4
IS 6
BP 936
EP 942
DI 10.1021/jz400128u
PG 7
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 114WE
UT WOS:000316772900016
PM 26291359
ER
PT J
AU Sau, JD
Crochet, JJ
Doorn, SK
Cohen, ML
AF Sau, Jay D.
Crochet, Jared J.
Doorn, Stephen K.
Cohen, Marvin L.
TI Multiparticle Exciton Ionization in Shallow Doped Carbon Nanotubes
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID QUANTUM YIELD; PHOTOLUMINESCENCE; SEMICONDUCTORS; TRANSPORT
AB Shallow hole doping in small-diameter semiconducting carbon nanotubes with a valley degeneracy is predicted to result in the resonant ionization of excitons into free electron hole pairs. This mechanism, which relies on the chirality of the electronic states, causes excitons to decay with high efficiencies where the rate scales as the square of the dopant density. Moreover, multiparticle exciton ionization can account for delocalized fluorescence quenching when a few holes per micrometer of tube length are present.
C1 [Sau, Jay D.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Crochet, Jared J.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Doorn, Stephen K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM USA.
[Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Sau, JD (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
EM jaydsau@physics.harvard.edu; jcrochet@lanl.gov
OI Crochet, Jared/0000-0002-9570-2173
FU NSF [DMR07-05941]; Office of Science, Basic Energy Sciences, Materials
Sciences and Engineering Division of the U.S. Department of Energy
[DE-AC02-05CH11231]; LANL LDRD program; National Nuclear Security
Administration of the U.S. Department of Energy [DE-AC52-06NA25396]
FX J.S. thanks the Harvard Quantum Optics Center, JQI-NSF-PFC, DARPA-QUEST,
and LPS-NSA, and M.L.C. acknowledges the NSF Grant DMR07-05941 and the
Director, Office of Science, Basic Energy Sciences, Materials Sciences
and Engineering Division of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. This work was performed, in part, at the Center
for Integrated Nanotechnologies, a U.S. Department of Energy, Office of
Basic Energy Sciences user facility and was partially supported by the
LANL LDRD program. Los Alamos National Laboratory is operated by Los
Alamos National Security, LLC, for the National Nuclear Security
Administration of the U.S. Department of Energy under Contract No.
DE-AC52-06NA25396.
NR 30
TC 0
Z9 0
U1 1
U2 22
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD MAR 21
PY 2013
VL 4
IS 6
BP 982
EP 986
DI 10.1021/jz400049c
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 114WE
UT WOS:000316772900022
PM 26291364
ER
PT J
AU Devaraj, A
Colby, R
Hess, WP
Perea, DE
Thevuthasan, S
AF Devaraj, A.
Colby, R.
Hess, W. P.
Perea, D. E.
Thevuthasan, S.
TI Role of Photoexcitation and Field Ionization in the Measurement of
Accurate Oxide Stoichiometry by Laser-Assisted Atom Probe Tomography
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID SEMICONDUCTOR NANOWIRES; ELECTRONIC-PROPERTIES; PULSED-LASER; CO
OXIDATION; METAL-OXIDES; MGO; SURFACE; DESORPTION; EVAPORATION;
CATALYSIS
AB The addition of pulsed lasers to atom probe tomography (APT) extends its high spatial and mass resolution capability to nonconducting materials, such as oxides. For a prototypical metal oxide, MgO, the measured stoichiometry depends strongly on the laser pulse energy and applied voltage. Very low laser energies (0.02 pJ) and high electric fields yield optimal stoichiometric accuracy. Correlated APT and aberration-corrected transmission electron microscopy (TEM) are used to establish the high density of corner and terrace sites on MgO sample surfaces before and after APT. For MgO, long-lifetime photoexcited holes localized at oxygen corner sites can assist in the creation of oxygen neutrals that may spontaneously desorb either as atomic O or as molecular O-2. The observed trends are best explained by the relative field-dependent ionization of photodesorbed O or O-2 neutrals. These results emphasize the importance of considering electronic excitations in APT analysis of oxide materials.
C1 [Devaraj, A.; Colby, R.; Perea, D. E.; Thevuthasan, S.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Hess, W. P.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA.
RP Devaraj, A (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA.
EM arun.devaraj@pnnl.gov
RI Perea, Daniel/A-5345-2010
FU Department of Energy's Office of Biological and Environmental Research;
Chemical Imaging Initiative; U.S. Department of Energy
[DE-AC05-76RL01830]; EMSL William R Wiley postdoctoral fellowship
FX The research described here was performed using EMSL, a national
scientific user facility sponsored by the Department of Energy's Office
of Biological and Environmental Research, and is part of the Chemical
Imaging Initiative conducted under the Laboratory Directed Research and
Development Program at Pacific Northwest National Laboratory (PNNL).
EMSL is located at PNNL, a multiprogram national laboratory operated by
Battelle Memorial Institute under Contract No. DE-AC05-76RL01830 for the
U.S. Department of Energy. R.C. would like to acknowledge the EMSL
William R Wiley postdoctoral fellowship. We would also like to thank G.
D. W. Smith, T. F. Kelly, D. J. Larson, and D. K. Schreiber for useful
discussions.
NR 60
TC 38
Z9 38
U1 3
U2 44
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD MAR 21
PY 2013
VL 4
IS 6
BP 993
EP 998
DI 10.1021/jz400015h
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 114WE
UT WOS:000316772900024
PM 26291366
ER
PT J
AU Gajdos, F
Oberhofer, H
Dupuis, M
Blumberger, J
AF Gajdos, Fruzsina
Oberhofer, Harald
Dupuis, Michel
Blumberger, Jochen
TI On the Inapplicability of Electron-Hopping Models for the Organic
Semiconductor Phenyl-C61-butyric Acid Methyl Ester (PCBM)
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID CHARGE-TRANSPORT; SINGLE-CRYSTAL; MOBILITY; C-60; FILMS; PHOTOVOLTAICS;
MORPHOLOGY
AB Phenyl-C61-butyric acid methyl ester (PCBM) is one of the most popular semiconductors in organic photovoltaic cells, but the electron-transport mechanism in the microcrystalline domains of this material as well as its preferred packing structure remain unclear. Here we use density functional theory to calculate electronic-coupling matrix elements, reorganization energies, and activation energies for available experimental and model crystal structures. We find that the picture of an excess electron hopping from one fullerene to another does not apply for any of the crystalline phases, rendering traditional rate equations inappropriate. We also find that the cohesive energy increases in the order body-centered-cubic < hexagonal < simple cubic < monoclinic < triclinic, independently of the type of dispersion correction used. Our results indicate that the coupled electron-ion dynamics needs to be solved explicitly to obtain a realistic description of charge transfer in this material.
C1 [Gajdos, Fruzsina; Blumberger, Jochen] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Oberhofer, Harald] Tech Univ Munich, D-85747 Garching, Germany.
[Dupuis, Michel] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Blumberger, J (reprint author), UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England.
EM j.blumberger@ucl.ac.uk
RI Blumberger, Jochen/L-5949-2013;
OI Oberhofer, Harald/0000-0002-5791-6736
FU IMPACT Ph.D. studentship; University College London; Pacific Northwest
National Laboratory (PNNL); Humboldt Society Research Fellowship; Royal
Society University Research Fellowship; U.S. Department of Energy (DOE),
Office of Basic Energy Sciences (BES), Division of Chemical Sciences,
Geosciences and Biosciences; Engineering and Physical Sciences Research
Council [EP/F067496]
FX F.G. is supported by an IMPACT Ph.D. studentship cosponsored by
University College London and Pacific Northwest National Laboratory
(PNNL), H.O. is supported by a Humboldt Society Research Fellowship, and
J.B. is supported by a Royal Society University Research Fellowship.
M.D. was supported by the U.S. Department of Energy (DOE), Office of
Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences
and Biosciences. PNNL is a multiprogram national laboratory operated for
DOE by Battelle. We acknowledge that the results in this paper have been
achieved using the PRACE Research Infrastructure resource JUGENE based
in Germany at Juelich and the United Kingdom's High Performance
Computing Materials Chemistry Consortium (funded by Engineering and
Physical Sciences Research Council, EP/F067496) for access to the
high-performance computing facility HECToR.
NR 37
TC 27
Z9 27
U1 0
U2 46
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD MAR 21
PY 2013
VL 4
IS 6
BP 1012
EP 1017
DI 10.1021/jz400227c
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 114WE
UT WOS:000316772900027
PM 26291369
ER
PT J
AU Cadien, A
Hu, QY
Meng, Y
Cheng, YQ
Chen, MW
Shu, JF
Mao, HK
Sheng, HW
AF Cadien, A.
Hu, Q. Y.
Meng, Y.
Cheng, Y. Q.
Chen, M. W.
Shu, J. F.
Mao, H. K.
Sheng, H. W.
TI First-Order Liquid-Liquid Phase Transition in Cerium
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SUPERCOOLED SILICON; METALLIC-GLASS; HIGH-PRESSURE; PHOSPHORUS;
BEHAVIOR; WATER
AB We report the first experimental observation of a liquid-liquid phase transition in the monatomic liquid metal cerium, by means of in situ high-pressure high-temperature x-ray diffraction experiments. At 13 GPa, upon increasing temperature from 1550 to 1900 K high-density liquid transforms to a low-density liquid, with a density difference of 14%. Theoretic models based on ab initio calculations are built to investigate the observed phase behavior of the liquids at various pressures. The results suggest that the transition primarily originates from the delocalization of f electrons and is deemed to be of the first order that terminates at a critical point. DOI: 10.1103/PhysRevLett.110.125503
C1 [Cadien, A.; Hu, Q. Y.; Sheng, H. W.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA.
[Meng, Y.; Mao, H. K.] Carnegie Inst Sci, Geophys Lab, High Pressure Collaborat Access Team, Argonne, IL 60439 USA.
[Cheng, Y. Q.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
[Chen, M. W.] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan.
[Shu, J. F.; Mao, H. K.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA.
[Sheng, H. W.] George Mason Univ, Ctr Computat Mat Sci, Fairfax, VA 22030 USA.
RP Cadien, A (reprint author), George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA.
EM acadien@gmu.edu; hsheng@gmu.edu
RI Cheng, Yongqiang/F-6567-2010; Chen, Mingwei/A-4855-2010
OI Chen, Mingwei/0000-0002-2850-8872
FU U.S. NSF [DMR-0907325]; ONR [N00014-091-1025A]; EFree, an Energy
Frontier Research Center; U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-SC0001057]; ORNL by Scientific User
Facilities Division, DOE-BES; DOE-NNSA; DOE-BES; NSF; Institute for
Materials Research, Tohoku University [SR10000-K1/52]
FX The work was supported by U.S. NSF under Grant No. DMR-0907325 and ONR
under Grant No. N00014-091-1025A. H. K. M. was supported as part of
EFree, an Energy Frontier Research Center funded by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences under
Award No. DE-SC0001057. Y. Q. C. was supported at ORNL by Scientific
User Facilities Division, DOE-BES. The authors thank E. Ma and T. Frolov
for their assistance at the early stage of the project, and thank T.
Fujita for his help with the computational work. HPCAT operations are
supported by CIW, CDAC, UNLV, and LLNL through funding from DOE-NNSA and
DOE-BES, with partial instrumentation funding by NSF. The computational
work was conducted on the SR10000-K1/52 supercomputing facilities of the
Institute for Materials Research, Tohoku University.
NR 40
TC 32
Z9 34
U1 13
U2 102
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 21
PY 2013
VL 110
IS 12
AR 125503
DI 10.1103/PhysRevLett.110.125503
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 109ZR
UT WOS:000316411500010
PM 25166820
ER
PT J
AU Kim, G
Dominguez-Caballero, JA
Lee, H
Friedman, DJ
Menon, R
AF Kim, Ganghun
Dominguez-Caballero, Jose A.
Lee, Howard
Friedman, Daniel J.
Menon, Rajesh
TI Increased Photovoltaic Power Output via Diffractive Spectrum Separation
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SOLAR-CELLS; EFFICIENCY; LITHOGRAPHY
AB In this Letter, we report the preliminary demonstration of a new paradigm for photovoltaic power generation that utilizes a broadband diffractive-optical element (BDOE) to efficiently separate sunlight into laterally spaced spectral bands. These bands are then absorbed by single-junction photovoltaic cells, whose band gaps correspond to the incident spectral bands. We designed such BDOEs by utilizing a modified version of the direct-binary-search algorithm. Gray scale lithography was used to fabricate these multilevel optics. They were experimentally characterized with an overall optical efficiency of 70% over a wavelength range of 350-1100 nm, which was in excellent agreement with simulation predictions. Finally, two prototype devices were assembled: one with a pair of copper indium gallium selenide based photovoltaic devices, and another with GaAs and c-Si photovoltaic devices. These devices demonstrated an increase in output peak electrical power of similar to 42% and similar to 22%, respectively, under white-light illumination. Because of the optical versatility and manufacturability of the proposed BDOEs, the reported spectrum-splitting approach provides a new approach toward low-cost solar power. DOI: 10.1103/PhysRevLett.110.123901
C1 [Kim, Ganghun; Menon, Rajesh] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA.
[Dominguez-Caballero, Jose A.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
[Lee, Howard] Stion Corp, San Jose, CA 95119 USA.
[Friedman, Daniel J.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Menon, R (reprint author), Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA.
EM rmenon@eng.utah.edu
FU University of Utah Research Foundation; Utah Science Technology and
Research (USTAR) Initiative; US DOE [DE-AC36-08GO28308]; NREL
FX We thank Jim Daley, Brian Van Devener, Kevin Hensley, and Brian Baker
for assistance with microfabrication and imaging. We thank Sarah Kurtz
for assistance with the development of the GaAs cells. We acknowledge
assistance during electrical measurements from Ye Zhang. We thank Keith
Emery for useful discussion of the results. G. K. was partially
supported by a Technology Commercialization Grant from the University of
Utah Research Foundation. R. M. acknowledges funding from the Utah
Science Technology and Research (USTAR) Initiative. D.F. was supported
by the US DOE under Contract No. DE-AC36-08GO28308 with NREL.
NR 10
TC 27
Z9 27
U1 3
U2 34
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 21
PY 2013
VL 110
IS 12
AR 123901
DI 10.1103/PhysRevLett.110.123901
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 109ZR
UT WOS:000316411500005
PM 25166805
ER
PT J
AU Argibay, N
Brumbach, MT
Dugger, MT
Kotula, PG
AF Argibay, N.
Brumbach, M. T.
Dugger, M. T.
Kotula, P. G.
TI Grain boundary diffusivity of Ni in Au thin films and the associated
degradation in electrical contact resistance due to surface oxide film
formation
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID SIMS SPECTRUM-IMAGES; LOW-TEMPERATURE; ACCUMULATION METHOD; HARD GOLD;
NICKEL; ELECTRODEPOSITION; MICROSCOPY; MECHANISM; METALS; COPPER
AB The low temperature diffusion from a nickel strike layer through varying thickness films of gold, a common electrical contact overlayer, was characterized and correlated to changes in electrical contact resistance (ECR). The diffusivity of Ni in Au was determined by the surface accumulation method (type C kinetics) for Au film thicknesses of 280 and 994 nm at an annealing temperature of 150 degrees C over a 32 day period. X-ray photoelectron spectroscopy (XPS) was used to determine the rate of Ni surface accumulation. The average product of grain boundary width and diffusivity for Ni in polycrystalline Au was calculated to be delta D-b(b) similar or equal to 2.0 x 10(-22) cm(3)/s using the Hwang-Balluffi model, and delta D-b(b) congruent to 2.5 x 10(-22) cm(3)/s using the Ma-Balluffi model. ECR measurements were made in parallel to surface accumulation measurements, revealing a correlation between ECR and Ni-O surface concentration; ECR values for both film thicknesses increased by 1 to 2 orders of magnitude at saturation coverage. Film cross-sections were extracted using focused ion beam milling and analyzed via scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy after 32 days of annealing, enabling a direct observation of the composition and thickness of the accumulated Ni-O layer, which was approximately 3 nm thick. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795768]
C1 [Argibay, N.; Brumbach, M. T.; Dugger, M. T.; Kotula, P. G.] Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87123 USA.
RP Argibay, N (reprint author), Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87123 USA.
RI Kotula, Paul/A-7657-2011
OI Kotula, Paul/0000-0002-7521-2759
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04- 94AL85000]
FX The authors thank Ronald S. Goeke (Materials Science and Engineering
Center, Sandia National Laboratories) for depositing the multilayer
films and for enlightening technical discussions regarding the fine
points of physical vapor deposition, and Michael J. Rye and Garry L.
Bryant for FIB specimen preparation for TEM. Sandia National
Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under Contract No. DE-AC04- 94AL85000.
NR 31
TC 5
Z9 5
U1 2
U2 42
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 21
PY 2013
VL 113
IS 11
AR 114906
DI 10.1063/1.4795768
PG 8
WC Physics, Applied
SC Physics
GA 111UA
UT WOS:000316545200070
ER
PT J
AU Chen, SS
Chen, HC
Wang, WC
Lee, CY
Lin, IN
Guo, JH
Chang, CL
AF Chen, Shih-Show
Chen, Huang-Chin
Wang, Wei-Cheng
Lee, Chi-Young
Lin, I-Nan
Guo, Jinghua
Chang, Ching-Lin
TI Effects of high energy Au-ion irradiation on the microstructure of
diamond films
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID X-RAY-ABSORPTION; DOPED ULTRANANOCRYSTALLINE DIAMOND; FIELD-EMISSION
CHARACTERISTICS; RADIATION DETECTION DEVICES; CVD DIAMOND;
POLYCRYSTALLINE DIAMOND; NANOCRYSTALLINE DIAMOND; CARBON-FILMS;
THIN-FILMS; BONDING STRUCTURE
AB The effects of 2.245 GeV Au-ion irradiation and subsequent annealing processes on the evolution of microstructure of diamond films with microcrystalline (MCD) or ultra-nanocrystalline (UNCD) granular structure were investigated, using near edge x-ray absorption fine structure and electron energy loss spectroscopy in transmission electron microscopy. For MCD films, the Au-ion irradiation disintegrated some of the diamond grains, resulting in the formation of nano-sized carbon clusters embedded in a matrix of amorphous carbon (a-C). The annealing process recrystallized the diamond grains and converted the a-C into nano-sized graphite particulates and, at the same time, induced the formation of nano-sized i-carbon clusters, the bcc structured carbon with a(0) = 0.432 nm. In contrast, for UNCD films, the Au-ion irradiation transformed the grain boundary phase into nano-sized graphite, but insignificantly altered the crystallinity of the grains of the UNCD films. The annealing process recrystallized the materials. In some of the regions, the residual a-C phases were transformed into nano-sized graphites, whereas in other regions i-carbon nanoclusters were formed. The difference in irradiation-induced microstructural transformation behavior between the MCD and the UNCD films is ascribed to the different granular structures of the two types of films. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795507]
C1 [Chen, Shih-Show; Chen, Huang-Chin; Wang, Wei-Cheng; Lin, I-Nan; Chang, Ching-Lin] Tamkang Univ, Dept Phys, Tamsui 251, New Taipei, Taiwan.
[Chen, Shih-Show] Taipei Coll Maritime Technol, Dept Informat Technol & Mobile Commun, Tamsui 251, New Taipei, Taiwan.
[Chen, Huang-Chin; Lee, Chi-Young] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan.
[Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Chang, CL (reprint author), Tamkang Univ, Dept Phys, Tamsui 251, New Taipei, Taiwan.
EM clchang@mail.tku.edu.tw
OI Chang, Ching-Lin/0000-0001-8547-371X
FU Materials Research Group of GSI, Darmstadt; National Science Council of
Republic of China [NSC 100-2112 -M-032-004, NSC 101-2112 -M-032-002]
FX We acknowledge Dr. Balakrishnan Sundaravel, Dr. Sankarakumar
Amirthapandian, Dr. Christina Trautmann, and the Materials Research
Group of GSI, Darmstadt for their support during GeV irradiation at the
XO beamline of the UNILAC. Financial support granted by the National
Science Council of Republic of China through Project Nos. NSC 100-2112
-M-032-004 and NSC 101-2112 -M-032-002 is gratefully acknowledged by the
authors.
NR 48
TC 19
Z9 19
U1 2
U2 31
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 21
PY 2013
VL 113
IS 11
AR 113704
DI 10.1063/1.4795507
PG 10
WC Physics, Applied
SC Physics
GA 111UA
UT WOS:000316545200029
ER
PT J
AU Maurya, D
Murayama, M
Pramanick, A
Reynolds, WT
An, K
Priya, S
AF Maurya, Deepam
Murayama, M.
Pramanick, A.
Reynolds, W. T., Jr.
An, Ke
Priya, Shashank
TI Origin of high piezoelectric response in A-site disordered morphotropic
phase boundary composition of lead-free piezoelectric
0.93(Na0.5Bi0.5)TiO3-0.07BaTiO(3)
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID POLYCRYSTALLINE FERROELECTRIC CERAMICS; SOLID-SOLUTION; PZT CERAMICS;
PART I; NA0.5BI0.5TIO3; TRANSITIONS; FIELD; TEM; MICROSTRUCTURE;
NA1/2BI1/2TIO3
AB Perovskite piezoelectric compositions near the morphotropic phase boundary (MPB) are known to exhibit high piezoelectric response. In lead-based ABO(3) compound with B-site disorder, the origin of this enhancement has been associated with the presence of an intermediate monoclinic/orthorhombic state that bridges the adjacent ferroelectric rhombohedral and tetragonal phases. However, the origin of high piezoelectric response in lead-free ABO(3) compounds with A-site disorder has not been conclusively established. We describe a microscopic model derived from comparative analyses of high resolution transmission electron microscopy and neutron diffraction that explains the origin of high piezoelectric response in lead-free MPB compositions of 0.93(Na0.5Bi0.5)TiO3-0.07BaTiO3. Direct observation of nanotwins with monoclinic symmetry confirmed the presence of an intermediate bridging phase that facilitates a pathway for polarization reorientation. Monoclinic distortions of an average rhombohedral phase are attributed to localized displacements of atoms along the non-polar directions. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792729]
C1 [Maurya, Deepam; Priya, Shashank] Virginia Tech, BMDL, CEHMS, Blacksburg, VA 24061 USA.
[Murayama, M.; Reynolds, W. T., Jr.] Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA.
[Murayama, M.] Virginia Tech, Inst Crit Technol & Appl Sci, Blacksburg, VA 24061 USA.
[Pramanick, A.; An, Ke] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
RP Maurya, D (reprint author), Virginia Tech, BMDL, CEHMS, Blacksburg, VA 24061 USA.
EM mauryad@vt.edu; spriya@vt.edu
RI An, Ke/G-5226-2011; Pramanick, Abhijit/D-9578-2011
OI An, Ke/0000-0002-6093-429X; Pramanick, Abhijit/0000-0003-0687-4967
FU National Science Foundation (Nano whisker Synthesis and Property
measurements); Office of Basic Energy Sciences, U.S. Department of
Energy [DE-FG02-07ER46480]; Scientific User Facilities Division, Office
of Basic Energy Sciences, U.S. Department of Energy
FX The authors gratefully acknowledge the financial support from National
Science Foundation (Nano whisker Synthesis and Property measurements)
and Office of Basic Energy Sciences, U.S. Department of Energy
#DE-FG02-07ER46480 (Microscopy analysis). The authors would also like to
thank the Nanoscale Characterization and Fabrication Laboratory, ICTAS,
VT for their help in characterization (HR-TEM). Neutron diffraction
measurements at Oak Ridge National Laboratory's Spallation Neutron
Source were sponsored by the Scientific User Facilities Division, Office
of Basic Energy Sciences, U.S. Department of Energy.
NR 64
TC 29
Z9 29
U1 4
U2 79
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 21
PY 2013
VL 113
IS 11
AR 114101
DI 10.1063/1.4792729
PG 9
WC Physics, Applied
SC Physics
GA 111UA
UT WOS:000316545200043
ER
PT J
AU Vieira, JD
Marrone, DP
Chapman, SC
De Breuck, C
Hezaveh, YD
Weiss, A
Aguirre, JE
Aird, KA
Aravena, M
Ashby, MLN
Bayliss, M
Benson, BA
Biggs, AD
Bleem, LE
Bock, JJ
Bothwell, M
Bradford, CM
Brodwin, M
Carlstrom, JE
Chang, CL
Crawford, TM
Crites, AT
de Haan, T
Dobbs, MA
Fomalont, EB
Fassnacht, CD
George, EM
Gladders, MD
Gonzalez, AH
Greve, TR
Gullberg, B
Halverson, NW
High, FW
Holder, GP
Holzapfel, WL
Hoover, S
Hrubes, JD
Hunter, TR
Keisler, R
Lee, AT
Leitch, EM
Lueker, M
Luong-Van, D
Malkan, M
McIntyre, V
McMahon, JJ
Mehl, J
Menten, KM
Meyer, SS
Mocanu, LM
Murphy, EJ
Natoli, T
Padin, S
Plagge, T
Reichardt, CL
Rest, A
Ruel, J
Ruhl, JE
Sharon, K
Schaffer, KK
Shaw, L
Shirokoff, E
Spilker, JS
Stalder, B
Staniszewski, Z
Stark, AA
Story, K
Vanderlinde, K
Welikala, N
Williamson, R
AF Vieira, J. D.
Marrone, D. P.
Chapman, S. C.
De Breuck, C.
Hezaveh, Y. D.
Weiss, A.
Aguirre, J. E.
Aird, K. A.
Aravena, M.
Ashby, M. L. N.
Bayliss, M.
Benson, B. A.
Biggs, A. D.
Bleem, L. E.
Bock, J. J.
Bothwell, M.
Bradford, C. M.
Brodwin, M.
Carlstrom, J. E.
Chang, C. L.
Crawford, T. M.
Crites, A. T.
de Haan, T.
Dobbs, M. A.
Fomalont, E. B.
Fassnacht, C. D.
George, E. M.
Gladders, M. D.
Gonzalez, A. H.
Greve, T. R.
Gullberg, B.
Halverson, N. W.
High, F. W.
Holder, G. P.
Holzapfel, W. L.
Hoover, S.
Hrubes, J. D.
Hunter, T. R.
Keisler, R.
Lee, A. T.
Leitch, E. M.
Lueker, M.
Luong-Van, D.
Malkan, M.
McIntyre, V.
McMahon, J. J.
Mehl, J.
Menten, K. M.
Meyer, S. S.
Mocanu, L. M.
Murphy, E. J.
Natoli, T.
Padin, S.
Plagge, T.
Reichardt, C. L.
Rest, A.
Ruel, J.
Ruhl, J. E.
Sharon, K.
Schaffer, K. K.
Shaw, L.
Shirokoff, E.
Spilker, J. S.
Stalder, B.
Staniszewski, Z.
Stark, A. A.
Story, K.
Vanderlinde, K.
Welikala, N.
Williamson, R.
TI Dusty starburst galaxies in the early Universe as revealed by
gravitational lensing
SO NATURE
LA English
DT Article
ID SOUTH-POLE TELESCOPE; SUBMILLIMETER GALAXY; MOLECULAR GAS; DEEP-FIELD;
REDSHIFT; COUNTS; MODEL
AB In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present(1,2). It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z>4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.
C1 [Vieira, J. D.; Bock, J. J.; Lueker, M.; Padin, S.; Shirokoff, E.; Staniszewski, Z.] CALTECH, Pasadena, CA 91125 USA.
[Marrone, D. P.; Bothwell, M.; Spilker, J. S.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[Chapman, S. C.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada.
[Chapman, S. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[De Breuck, C.; Aravena, M.; Biggs, A. D.; Gullberg, B.] European So Observ, D-85748 Garching, Germany.
[Hezaveh, Y. D.; de Haan, T.; Dobbs, M. A.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Weiss, A.; Menten, K. M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany.
[Aguirre, J. E.] Univ Penn, Philadelphia, PA 19104 USA.
[Aird, K. A.; Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA.
[Ashby, M. L. N.; Stalder, B.; Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Bayliss, M.; Ruel, J.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Hoover, S.; Keisler, R.; Leitch, E. M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L. M.; Natoli, T.; Padin, S.; Plagge, T.; Sharon, K.; Schaffer, K. K.; Story, K.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Hoover, S.; McMahon, J. J.; Meyer, S. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Natoli, T.; Story, K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
[Bock, J. J.; Bradford, C. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Brodwin, M.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA.
[Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Mocanu, L. M.; Padin, S.; Plagge, T.; Sharon, K.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Fomalont, E. B.; Hunter, T. R.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA.
[Fassnacht, C. D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[George, E. M.; Holzapfel, W. L.; Lee, A. T.; Reichardt, C. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA.
[Greve, T. R.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
[Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA.
[Lee, A. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Phys, Berkeley, CA 94720 USA.
[Malkan, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[McIntyre, V.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia.
[McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Murphy, E. J.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA.
[Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA.
[Sharon, K.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA.
[Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Welikala, N.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France.
[Welikala, N.] CNRS, F-91405 Orsay, France.
RP Vieira, JD (reprint author), CALTECH, 1200 East Calif Blvd, Pasadena, CA 91125 USA.
EM vieira@caltech.edu
RI Holzapfel, William/I-4836-2015; Williamson, Ross/H-1734-2015;
OI Williamson, Ross/0000-0002-6945-2975; Marrone,
Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518;
Reichardt, Christian/0000-0003-2226-9169; De Breuck,
Carlos/0000-0002-6637-3315; Hunter, Todd/0000-0001-6492-0090; Stark,
Antony/0000-0002-2718-9996
FU National Science Foundation; Kavli Foundation; Gordon and Betty Moore
Foundation; NASA from the Space Telescope Science Institute; NSERC; CRC;
ClfAR
FX The SPT is supported by the National Science Foundation, the Kavli
Foundation and the Gordon and Betty Moore Foundation. ALMA is a
partnership of ESO (representing its member states), NSF (USA) and NINS
(Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in
cooperation with Chile. The Joint ALMA Observatory is operated by ESO,
AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a
facility of the NSF operated under cooperative agreement by Associated
Universities, Inc. Partial support for this work was provided by NASA
from the Space Telescope Science Institute. This work is based in part
on observations made with Herschel, a European Space Agency Cornerstone
Mission with significant participation by NASA. Work at McGill
University is supported by NSERC, the CRC programme and ClfAR.
NR 27
TC 109
Z9 109
U1 1
U2 16
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD MAR 21
PY 2013
VL 495
IS 7441
BP 344
EP 347
DI 10.1038/nature12001
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 113EY
UT WOS:000316650500037
PM 23485967
ER
PT J
AU Chandra, V
Huang, PX
Potluri, N
Wu, DL
Kim, YC
Rastinejad, F
AF Chandra, Vikas
Huang, Pengxiang
Potluri, Nalini
Wu, Dalei
Kim, Youngchang
Rastinejad, Fraydoon
TI Multidomain integration in the structure of the HNF-4 alpha nuclear
receptor complex
SO NATURE
LA English
DT Article
ID LIGAND-BINDING DOMAIN; PPAR-GAMMA-RXR; TRANSCRIPTION FACTORS;
DNA-BINDING; HYPERINSULINEMIC HYPOGLYCEMIA; PHOSPHORYLATION;
IDENTIFICATION; MUTATIONS; ELEMENTS; HNF4A
AB The hepatocyte nuclear factor 4 alpha (HNF-4 alpha; also known as NR2A1) is a member of the nuclear receptor (NR) family of transcription factors, which have conserved DNA-binding domains and ligand-binding domains(1,2). HNF-4 alpha is the most abundant DNA-binding protein in the liver, where some 40% of the actively transcribed genes have a HNF-4 alpha response element(1,3,4). These regulated genes are largely involved in the hepatic gluconeogenic program and lipid metabolism(3,5,6). In the pancreas HNF-4 alpha is also a master regulator, controlling an estimated 11% of islet genes(7). HNF-4 alpha protein mutations are linked to maturity-onset diabetes of the young, type 1 (MODY1) and hyperinsulinaemic hypoglycaemia(8-11). Previous structural analyses of NRs, although productive in elucidating the structure of individual domains, have lagged behind in revealing the connectivity patterns of NR domains. Here we describe the 2.9 angstrom crystal structure of the multidomain human HNF-4 alpha homodimer bound to its DNA response element and coactivatorderived peptides. A convergence zone connects multiple receptor domains in an asymmetric fashion, joining distinct elements from each monomer. An arginine target of PRMT1 methylation protrudes directly into this convergence zone and sustains its integrity. A serine target of protein kinase C is also responsible for maintaining domain-domain interactions. These post-translational modifications lead to changes in DNA binding by communicating through the tightly connected surfaces of the quaternary fold. We find that some MODY1 mutations, positioned on the ligand-binding domain and hinge regions of the receptor, compromise DNA binding at a distance by communicating through the interjunctional surfaces of the complex. The overall domain representation of the HNF-4 alpha homodimer is different from that of the PPAR-gamma-RXR-alpha heterodimer, even when both NR complexes are assembled on the same DNA element. Our findings suggest that unique quaternary folds and interdomain connections in NRs could be exploited by small-molecule allosteric modulators that affect distal functions in these polypeptides.
C1 [Chandra, Vikas; Huang, Pengxiang; Potluri, Nalini; Wu, Dalei; Rastinejad, Fraydoon] Sanford Burnham Med Res Inst, Metab Signaling & Dis Program, Orlando, FL 32827 USA.
[Kim, Youngchang] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA.
RP Rastinejad, F (reprint author), Sanford Burnham Med Res Inst, Metab Signaling & Dis Program, Orlando, FL 32827 USA.
EM frastinejad@sanfordburnham.org
FU National Institutes of Health [R01 DK094147, R01 DK097475]
FX This work was supported by National Institutes of Health grants R01
DK094147 and R01 DK097475.
NR 28
TC 55
Z9 57
U1 3
U2 37
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD MAR 21
PY 2013
VL 495
IS 7441
BP 394
EP 398
DI 10.1038/nature11966
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 113EY
UT WOS:000316650500048
PM 23485969
ER
PT J
AU Riedel, CJ
Zurek, WH
Zwolak, M
AF Riedel, C. Jess
Zurek, Wojciech H.
Zwolak, Michael
TI The rise and fall of redundancy in decoherence and quantum Darwinism
(vol 14, 083010, 2012)
SO NEW JOURNAL OF PHYSICS
LA English
DT Correction
C1 [Riedel, C. Jess; Zurek, Wojciech H.; Zwolak, Michael] LANL, Div Theoret, Los Alamos, NM 87545 USA.
[Riedel, C. Jess] IBM Watson Res Ctr, Yorktown Hts, NY USA.
[Zurek, Wojciech H.] Santa Fe Inst, Santa Fe, NM 87501 USA.
[Zwolak, Michael] Oregon State Univ, Dept Phys, Corvallis, OR 97331 USA.
RP Riedel, CJ (reprint author), LANL, Div Theoret, Los Alamos, NM 87545 USA.
EM cjriedel@us.ibm.com
RI Zwolak, Michael/G-2932-2013;
OI Zwolak, Michael/0000-0001-6443-7816; Riedel, C. Jess/0000-0002-0151-9926
NR 1
TC 0
Z9 0
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD MAR 21
PY 2013
VL 15
AR 039503
DI 10.1088/1367-2630/15/3/039503
PG 2
WC Physics, Multidisciplinary
SC Physics
GA 115HW
UT WOS:000316804200002
ER
PT J
AU Deng, HX
Wei, SH
Li, SS
Li, JB
Walsh, A
AF Deng, Hui-Xiong
Wei, Su-Huai
Li, Shu-Shen
Li, Jingbo
Walsh, Aron
TI Electronic origin of the conductivity imbalance between covalent and
ionic amorphous semiconductors
SO PHYSICAL REVIEW B
LA English
DT Article
ID INITIO MOLECULAR-DYNAMICS; ROOM-TEMPERATURE; SILICON; OXIDE; METALS;
SOLIDS
AB Amorphous semiconductors are known to give rise to greatly reduced conductivity relative to their crystalline counterparts, which makes the recent development of amorphous oxide semiconductors with high electron mobility unexpected. Using first-principles molecular dynamics and electronic structure simulations, we have analyzed the electronic and optical properties of covalent and ionic oxide amorphous semiconductors. We observe that in covalent systems, amorphization introduces deep defect states inside the gap, resulting in a substantial deterioration of electrical conductivity. In contrast, in ionic systems, such as the transparent conducting oxide ZnO, amorphization does not create deep carrier-recombination centers, so the oxides still exhibit good conductivity and visible transparency relative to the crystalline phases. The origin of the conductivity imbalance between covalent and ionic amorphous semiconductors can be explained using a band coupling mechanism. DOI: 10.1103/PhysRevB.87.125203
C1 [Deng, Hui-Xiong; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Li, Shu-Shen; Li, Jingbo] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China.
[Walsh, Aron] Univ Bath, Ctr Sustainable Chem Technol, Bath BA2 7AY, Avon, England.
[Walsh, Aron] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England.
RP Deng, HX (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
RI Walsh, Aron/A-7843-2008
OI Walsh, Aron/0000-0001-5460-7033
FU U.S. Department of Energy [DE-AC36-08GO28308]; National Basic Research
Program of China (973 Program) [G2009CB929300]; National Natural Science
Foundation of China [61121491, 11104264]
FX The work at National Renewable Energy Laboratory was supported by the
U.S. Department of Energy under Contract No. DE-AC36-08GO28308. The work
at Institute of Semiconductors, Chinese Academy of Sciences, was
supported by the National Basic Research Program of China (973 Program)
Grant No. G2009CB929300, and the National Natural Science Foundation of
China under Grants No. 61121491, and No. 11104264.
NR 33
TC 11
Z9 11
U1 0
U2 30
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 21
PY 2013
VL 87
IS 12
AR 125203
DI 10.1103/PhysRevB.87.125203
PG 5
WC Physics, Condensed Matter
SC Physics
GA 110AY
UT WOS:000316415500006
ER
PT J
AU Godwal, BK
Stackhouse, S
Yan, J
Speziale, S
Militzer, B
Jeanloz, R
AF Godwal, B. K.
Stackhouse, S.
Yan, J.
Speziale, S.
Militzer, Burkhard
Jeanloz, R.
TI Codetermination of crystal structures at high pressure: Combined
application of theory and experiment to the intermetallic compound AuGa2
SO PHYSICAL REVIEW B
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET;
TRANSITIONS; EQUATION; STATE
AB A combination of x-ray diffraction at high pressures and first-principles calculations reveals the sequence of crystal-structural phase transitions in AuGa2 from cubic (Fm (3) over barm) to orthorhombic (Pnma) at 10 (+/- 4) GPa and then to monoclinic (P2(1)/n) at 33 (+/- 6) GPa. Neither theory nor experiment would have been adequate, on their own, in documenting this sequence of phases, but together they confirm a sequence differing from the Fm (3) over barm -> Pnma -> P6(3)/mmc transitions predicted for CaF2 and Pnma -> P112(1)/a transition reported for PbCl2 and SnCl2. The combined results from theory and experiment also allow us to constrain the equations of state of the three phases of AuGa2. Calculations on the analog PbCl2 predict a transition to the P2(1)/n phase seen in AuGa2 that could, therefore, be a common high-pressure phase for PbCl2-structured compounds. DOI: 10.1103/PhysRevB.87.100101
C1 [Godwal, B. K.; Militzer, Burkhard; Jeanloz, R.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Stackhouse, S.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England.
[Yan, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Speziale, S.] Deutsch GeoForschungsZentrum, Sect 3 3, D-14473 Potsdam, Germany.
[Militzer, Burkhard; Jeanloz, R.] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA.
[Militzer, Burkhard; Jeanloz, R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
RP Godwal, BK (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
FU US Department of Energy; University of California; Miller Institute;
Office of Science and Technology through EPSRC's High End Computing
Programme
FX The present work was funded by the US Department of Energy, University
of California, and the Miller Institute. We also acknowledge the use of
high performance computing provided by Advanced Research Computing at
the University of Leeds and HECToR, the UK's national high-performance
computing service, which is provided by UoE HPCx Ltd at the University
of Edinburgh, Cray Inc and NAG Ltd, and funded by the Office of Science
and Technology through EPSRC's High End Computing Programme.
NR 32
TC 3
Z9 3
U1 2
U2 25
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 21
PY 2013
VL 87
IS 10
AR 100101
DI 10.1103/PhysRevB.87.100101
PG 5
WC Physics, Condensed Matter
SC Physics
GA 110AL
UT WOS:000316413900001
ER
PT J
AU Laverock, J
Chen, B
Preston, ARH
Smith, KE
Wilson, NR
Balakrishnan, G
Glans, PA
Guo, JH
AF Laverock, J.
Chen, B.
Preston, A. R. H.
Smith, K. E.
Wilson, N. R.
Balakrishnan, G.
Glans, P. -A.
Guo, J. -H.
TI Electronic structure of the kagome staircase compounds Ni3V2O8 and
Co3V2O8
SO PHYSICAL REVIEW B
LA English
DT Article
ID TRANSITION-METAL MONOXIDES; X-RAY-SCATTERING; BAND THEORY; SPECTROSCOPY;
EXCITATIONS
AB The electronic structure of the kagome staircase compounds, Ni3V2O8 and Co3V2O8, has been investigated using soft x-ray absorption, soft x-ray emission, and resonant inelastic x-ray scattering. Comparison between the two compounds, and with first-principles band structure calculations and crystal-field multiplet models, provides unique insight into the electronic structure of the two materials. Whereas the location of the narrow (Ni, Co) d bands is predicted to be close to E-F, we experimentally find they lie deeper in the occupied O 2p and unoccupied V 3d manifolds, and determine their energy via measured charge-transfer excitations. Additionally, we find evidence for a dd excitation at 1.5 eV in Ni3V2O8, suggesting the V d states may be weakly occupied in this compound, contrary to Co3V2O8. Good agreement is found between the crystal-field dd excitations observed in the experiment and those predicted by atomic multiplet theory. DOI: 10.1103/PhysRevB.87.125133
C1 [Laverock, J.; Chen, B.; Preston, A. R. H.; Smith, K. E.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Wilson, N. R.; Balakrishnan, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Glans, P. -A.; Guo, J. -H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Laverock, J (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA.
RI Laverock, Jude/G-4537-2010; Chen, Bo/C-5428-2017; Glans,
Per-Anders/G-8674-2016; Balakrishnan, Geetha/P-5977-2016
OI Laverock, Jude/0000-0003-3653-8171; Chen, Bo/0000-0002-9263-5171;
Balakrishnan, Geetha/0000-0002-5890-1149
FU Department of Energy [DE-FG02-98ER45680]; US Department of Energy
[DE-AC02-05CH11231, DE-AC02-98CH10886]; EPSRC, UK [EP/I007210/1]
FX The Boston University program is supported in part by the Department of
Energy under Grant No. DE-FG02-98ER45680. The ALS, Berkeley, is
supported by the US Department of Energy under Contract No.
DE-AC02-05CH11231. The NSLS, Brookhaven, is supported by the US
Department of Energy under Contract No. DE-AC02-98CH10886. The research
program at the University of Warwick is supported by EPSRC, UK
(EP/I007210/1).
NR 31
TC 10
Z9 10
U1 5
U2 63
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 21
PY 2013
VL 87
IS 12
AR 125133
DI 10.1103/PhysRevB.87.125133
PG 10
WC Physics, Condensed Matter
SC Physics
GA 110AY
UT WOS:000316415500003
ER
PT J
AU Lin, SZ
Reichhardt, C
AF Lin, Shi-Zeng
Reichhardt, Charles
TI Stabilizing fractional vortices in multiband superconductors with
periodic pinning arrays
SO PHYSICAL REVIEW B
LA English
DT Article
ID METALLIC HYDROGEN; DEFECTS; FILMS
AB Multiband superconductors support the excitation of vortices with fractional quantum flux, known as fractional vortices. In the ground state, the fractional vortices in different bands bond together to form a composite vortex with the standard flux quantum Phi(0); thus it is difficult to stabilize the fractional vortices. Here we show that fractional vortex lattices can be stabilized in multiband superconductors with a periodic pinning array at the half-matching field of the composite system, when full matching of the fractionalized vortices occurs. In the presence of a high current, the fractional vortices in different bands decouple and move at different velocities. When the current is turned off suddenly, the fractional vortices in different bands may be trapped at different pinning sites. This system also exhibits rich dynamic behavior, and for fractional vortices in two-band superconductors we find phases where the vortices in one band are pinned and the vortices in the other band are moving. These different phases can be observed in transport measurements and produce a new type of self-induced Shapiro steps that can arise under the application of only a dc drive. DOI: 10.1103/PhysRevB.87.100508
C1 [Lin, Shi-Zeng; Reichhardt, Charles] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Lin, SZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RI Lin, Shi-Zeng/B-2906-2008
OI Lin, Shi-Zeng/0000-0002-4368-5244
FU US Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering
FX The authors are grateful to Lev N. Bulaevskii, Ulrich Welp, and Cynthia
Olson Reichhardt for useful discussions. This work was supported by the
US Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering.
NR 45
TC 4
Z9 4
U1 3
U2 16
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 21
PY 2013
VL 87
IS 10
AR 100508
DI 10.1103/PhysRevB.87.100508
PG 5
WC Physics, Condensed Matter
SC Physics
GA 110AL
UT WOS:000316413900002
ER
PT J
AU Bhatia, C
Gooden, ME
Tornow, W
Tonchev, AP
AF Bhatia, C.
Gooden, M. E.
Tornow, W.
Tonchev, A. P.
TI Ground-state and isomeric-state cross sections for Ta-181(n, 2n)Ta-180
between 8 and 15 MeV
SO PHYSICAL REVIEW C
LA English
DT Article
ID N,2N EXCITATION FUNCTIONS; HEAVY-NUCLEI; NEUTRON; TECHNOLOGY;
SCATTERING; TUNGSTEN; DECAY
AB Using the activation technique, the cross section for the reaction Ta-181(n,2n)Ta-180(g) was measured from 8 to 15 MeV in small energy steps to resolve inconsistencies in the existing database. The 93.4 keV gamma ray from the decay of the Ta-180(g) ground state was recorded with a high-purity germanium (HPGe) detector. The monitor reactions Al-27(n, alpha)Na-24 and Au-197(n,2n)Au-196 were used for neutron fluence determination. The ENDF VII.1 and TENDL 2011 evaluations are in considerable disagreement with the present data, which in turn agree very well with the majority of the existing data in the 14 MeV energy region. A detailed analysis using the code TALYS was performed to describe the present data and to predict the (n, 2n) cross section to the isomeric state of Ta-180. DOI: 10.1103/PhysRevC.87.031601
C1 [Bhatia, C.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27708 USA.
[Bhatia, C.; Gooden, M. E.; Tornow, W.] Triangle Univ Nucl Lab, Durham, NC 27708 USA.
[Gooden, M. E.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Tonchev, A. P.] Lawrence Livermore Natl Lab, Dept Phys, Livermore, CA 94550 USA.
RP Bhatia, C (reprint author), McMaster Univ, 1280 Main St West,Gen Sci Bldg, Hamilton, ON L8S 4K1, Canada.
EM chitra@tunl.duke.edu
FU National Nuclear Security Administration under the Stewardship Science
Academic Alliance Program through the US Department of Energy
[DE-FG52-09NA29465]
FX The authors acknowledge valuable contributions from M. Bhike, S. W.
Finch, C. R. Howell, J. H. Kelley, J. B. Wilhelmy, and D. J. Vieira.
Fruitful discussions with S. Goriely are gratefully acknowledged. This
work was supported in part by the National Nuclear Security
Administration under the Stewardship Science Academic Alliance Program
through the US Department of Energy Grant No. DE-FG52-09NA29465.
NR 40
TC 2
Z9 2
U1 1
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD MAR 21
PY 2013
VL 87
IS 3
AR 031601
DI 10.1103/PhysRevC.87.031601
PG 6
WC Physics, Nuclear
SC Physics
GA 110BC
UT WOS:000316416000001
ER
PT J
AU Akula, B
Andrews, MJ
Ranjan, D
AF Akula, Bhanesh
Andrews, Malcolm J.
Ranjan, Devesh
TI Effect of shear on Rayleigh-Taylor mixing at small Atwood number
SO PHYSICAL REVIEW E
LA English
DT Article
ID UNSTABLE THERMAL STRATIFICATION; NUMERICAL-SIMULATION; HOT-WIRE;
INSTABILITY; LAYER; TURBULENCE; DRIVEN; FLOW; TEMPERATURE; VELOCITY
AB The effect of shear on the development of Rayleigh-Taylor instability (RTI) is studied at an Atwood number of 0.035 using the gas tunnel at Texas A&M University. Two types of diagnostics, imaging and simultaneous hot wire and cold wire anemometry, are used to measure mix widths, pointwise instantaneous velocities, and density. Image analysis has shown that the superposition of shear on RTI development increases the mixing width and growth rate at early times (tau = x/U root A(t)g/H << 1). In particular, the mixing region shows distinct characteristics of shear (Kelvin-Helmholtz instability) and buoyancy (RTI). The Kelvin-Helmholtz (KHI) instability is observed to be dominant at early times, and the RTI at late times (tau > 1). In the late-time self-similar regime (tau > 1), the mix width growth rate coefficient obtained using digital image analysis converges to a value between 0.06 and 0.07 for the compound buoyancy and shear (KH + RT) driven flows. Vertical velocity fluctuation rms values at the mixing layer centerline are measured using a hot-wire technique. These rms values are correlated to the centerline mixing width growth rate, and this growth rate coefficient is found to lie between 0.06 and 0.07 at tau > 1 for the KH + RT flows. The transition in flow dominance from shear instability to RTI is observed to correspond with Richardson numbers (Ri = -2hg Delta rho/rho Delta U-2) of - 1.5 to - 2.5. Molecular mixing between the fluids is examined by looking at the probability density function distribution of the density fluctuations. A different type of mixing behavior is observed over time for the compound cases compared with the transient development of Rayleigh-Taylor driven mixing. DOI: 10.1103/PhysRevE.87.033013
C1 [Akula, Bhanesh; Ranjan, Devesh] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
[Andrews, Malcolm J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Ranjan, D (reprint author), Texas A&M Univ, Dept Mech Engn, 3123 TAMU, College Stn, TX 77843 USA.
EM dranjan@tamu.edu
OI Ranjan, Devesh/0000-0002-1231-9313
FU US DOE-NNSA [DE-FG52-09NA29462]
FX This paper is based upon the work supported by the US DOE-NNSA under
Contract No. DE-FG52-09NA29462. The authors would like to thank Jacob
McFarland and others for their help in setting up the experimental
facility. The authors would like to thank the reviewers for their
valuable comments and suggestions to improve the quality of the paper.
NR 47
TC 4
Z9 4
U1 0
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
EI 1550-2376
J9 PHYS REV E
JI Phys. Rev. E
PD MAR 21
PY 2013
VL 87
IS 3
AR 033013
DI 10.1103/PhysRevE.87.033013
PG 14
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 110CM
UT WOS:000316419700003
ER
PT J
AU Farley, DR
Izumi, N
Landen, OL
AF Farley, D. R.
Izumi, N.
Landen, O. L.
TI Improved modeling of microchannel plate response to hard X-rays
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Microchannel plate; Quantum efficiency; Response; X-ray
ID DETECTORS
AB An improved model for microchannel platequantum efficiency and response at higher X-ray energies (up to 100's keV) is described, which builds on previous models by incorporating a more detailed consideration of photoelectron energies released in the MCP bulk. The contribution of multiple channel walls is included in the total response calculation. This model shows that MCP quantum efficiency and response decay as power law functions with energy, for photon energies > 140 keV. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Farley, D. R.; Izumi, N.; Landen, O. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Farley, DR (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA.
EM farley2@llnl.gov
RI IZUMI, Nobuhiko/J-8487-2016
OI IZUMI, Nobuhiko/0000-0003-1114-597X
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work performed under the auspices of the US Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NR 17
TC 2
Z9 2
U1 0
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD MAR 21
PY 2013
VL 705
BP 17
EP 23
DI 10.1016/j.nima.2012.12.078
PG 7
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 088HX
UT WOS:000314826000004
ER
PT J
AU Groom, DE
AF Groom, Donald E.
TI Degradation of resolution in a homogeneous dual-readout hadronic
calorimeter
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Hadronic calorimetry; Hadron cascades; Sampling calorimetry
ID FIBER CALORIMETER; URANIUM; ELECTRON; LIGHT; SCINTILLATION; PERFORMANCE;
CHERENKOV; SIGNALS; ARGON; PION
AB If the scintillator response to a hadronic shower in a semi-infinite uniform calorimeter structure is S relative to the electronic response, then S/E = [f(em) +(1 - f(em))(h/e)], where E is the incident hadron energy, f(em) is the electronic shower fraction, and h/e is the hadron/electron response ratio. If there is also a simultaneous readout with a different h/e, say a Cherenkov signal C, then a linear combination of the two signals provides an estimator of E that is proportional to the incident energy and whose distribution is nearly Gaussian-even though the S and C distributions are non-linear in E, wide, and skewed. Since an estimator of f(em) is also obtained, it is no longer a stochastic variable. Much of the remaining resolution variance is due to sampling fluctuations. These can be avoided in a homogeneous calorimeter. The energy resolution depends upon the contrast in h/e between the two channels. h/e is small in the Cherenkov channel. Mechanisms that increase h/e in sampling calorimeters with organic scintillator readout are not available in a homogeneous inorganic scintillator calorimeter. The h/e contrast is very likely too small to provide the needed energy resolution. (C) 2012 Elsevier B.V. All rights reserved.
C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Groom, DE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 50R6008, Berkeley, CA 94720 USA.
EM degroom@lbl.gov
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.
NR 51
TC 3
Z9 3
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD MAR 21
PY 2013
VL 705
BP 24
EP 31
DI 10.1016/j.nima.2012.12.080
PG 8
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 088HX
UT WOS:000314826000005
ER
PT J
AU Elagin, A
Murat, P
Pranko, A
Safonov, A
AF Elagin, A.
Murat, P.
Pranko, A.
Safonov, A.
TI Probabilistic particle flow algorithm for high occupancy environment
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Event reconstruction; Hadronically decayong tau; Jet energy measurement;
Particle flow; Hadron collider experiments
AB Algorithms based on the particle flow approach are becoming increasingly utilized in collider experiments due to their superior jet energy and missing energy resolution compared to the traditional calorimeter-based measurements. Such methods have been shown to work well in environments with low occupancy of particles per unit of calorimeter granularity. However, at higher instantaneous luminosity or in detectors with coarse calorimeter segmentation, the overlaps of calorimeter energy deposits from charged and neutral particles significantly complicate particle energy reconstruction, reducing the overall energy resolution of the method. We present a technique designed to resolve overlapping energy depositions of spatially close particles using a statistically consistent probabilistic procedure. The technique is nearly free of ad-hoc corrections, improves energy resolution, and provides new important handles that can improve the sensitivity of physics analyses: the uncertainty of the jet energy on an event-by-event basis and the estimate of the probability of a given particle hypothesis for a given detector response. When applied to the reconstruction of hadronic jets produced in the decays of tau leptons using the CDF-II detector at Fermilab, the method has demonstrated reliable and robust performance. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Elagin, A.; Safonov, A.] Texas A&M Univ, College Stn, TX 77843 USA.
[Murat, P.] Fermilab Natl Accelerator Lab, Batavia, IL 60506 USA.
[Pranko, A.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Safonov, A (reprint author), Texas A&M Univ, College Stn, TX 77843 USA.
EM safonov@tamu.edu
FU U.S. Department of Energy; DOE OJI program; State of Texas
FX We thank Anthony K. Rose, Robert M. Roser, and Jeffrey K. Roe for
carefully reading the manuscript and their useful suggestions. We thank
our CDF collaborators for their support and the Fermi National
Accelerator Laboratory, where a part of the work on the paper has been
performed. This work would not be possible without the funding support
of the U.S. Department of Energy, the DOE OJI program, and the State of
Texas.
NR 14
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD MAR 21
PY 2013
VL 705
BP 93
EP 105
DI 10.1016/j.nima.2012.12.094
PG 13
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 088HX
UT WOS:000314826000014
ER
PT J
AU Stieh, DJ
Phillips, JL
Rogers, PM
King, DF
Cianci, GC
Jeffs, SA
Gnanakaran, S
Shattock, RJ
AF Stieh, Daniel J.
Phillips, Joshua L.
Rogers, Paul M.
King, Deborah F.
Cianci, Gianguido C.
Jeffs, Simon A.
Gnanakaran, Sandrasegaram
Shattock, Robin J.
TI Dynamic electrophoretic fingerprinting of the HIV-1 envelope
glycoprotein
SO RETROVIROLOGY
LA English
DT Article
ID HUMAN-IMMUNODEFICIENCY-VIRUS; CD4+T-CELL MODEL SYSTEMS; VIRAL
MEMBRANE-FUSION; NEUTRALIZING ANTIBODIES; GP120 CORE; TRANSMEMBRANE
GLYCOPROTEIN; VARIABLE LOOPS; EFFICACY TRIAL; AIDS PATIENTS; HUMAN CD4
AB Background: Interactions between the HIV-1 envelope glycoprotein (Env) and its primary receptor CD4 are influenced by the physiological setting in which these events take place. In this study, we explored the surface chemistry of HIV-1 Env constructs at a range of pH and salinities relevant to mucosal and systemic compartments through electrophoretic mobility (EM) measurements. Sexual transmission events provide a more acidic environment for HIV-1 compared to dissemination and spread of infection occurring in blood or lymph node. We hypothesize functional, trimeric Env behaves differently than monomeric forms.
Results: The dynamic electrophoretic fingerprint of trimeric gp140 revealed a change in EM from strongly negative to strongly positive as pH increased from that of the lower female genital tract (pHx) to that of the blood (pHy). Similar findings were observed using a trimeric influenza Haemagglutinin (HA) glycoprotein, indicating that this may be a general attribute of trimeric viral envelope glycoproteins. These findings were supported by computationally modeling the surface charge of various gp120 and HA crystal structures. To identify the behavior of the infectious agent and its target cells, EM measurements were made on purified whole HIV-1 virions and primary T-lymphocytes. Viral particles had a largely negative surface charge, and lacked the regions of positivity near neutral pH that were observed with trimeric Env. T cells changed their surface chemistry as a function of activation state, becoming more negative over a wider range of pH after activation. Soluble recombinant CD4 (sCD4) was found to be positively charged under a wide range of conditions. Binding studies between sCD4 and gp140 show that the affinity of CD4-gp140 interactions depends on pH.
Conclusions: Taken together, these findings allow a more complete model of the electrochemical forces involved in HIV-1 Env functionality. These results indicate that the influence of the localized environment on the interactions of HIV with target cells are more pronounced than previously appreciated. There is differential chemistry of trimeric, but not monomeric, Env under conditions which mimic the mucosa compared to those found systemically. This should be taken into consideration during design of immunogens which targets virus at mucosal portals of entry.
C1 [Stieh, Daniel J.] Univ London, Ctr Infect, Dept Cellular & Mol Med, London SW17 0RE, England.
[Phillips, Joshua L.; Gnanakaran, Sandrasegaram] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA.
[Rogers, Paul M.; King, Deborah F.; Jeffs, Simon A.; Shattock, Robin J.] Univ London Imperial Coll Sci Technol & Med, Infect Dis Sect, Mucosal Infect & Immun Grp, London W2 1PG, England.
[Cianci, Gianguido C.] Northwestern Univ, Feinberg Sch Med, Dept Cell & Mol Biol, Chicago, IL 60611 USA.
RP Shattock, RJ (reprint author), Univ London Imperial Coll Sci Technol & Med, Infect Dis Sect, Mucosal Infect & Immun Grp, St Marys Campus, London W2 1PG, England.
EM r.shattock@imperial.ac.uk
OI Gnanakaran, S/0000-0002-9368-3044
FU National Institute of Allergy and Infectious Diseases (NIAID), National
Institutes of Health (NIH), Division of AIDS (DAIDS), U.S. Department of
Health and Human Services (HHS); Center for HIV/AIDS Vaccine Immunology
(CHAVI) [U19 AI067854-05]; Center for HIV/AIDS Vaccine Immunology and
Immunogen Discovery [UM1-AI100645-01]; International Partnership for
Microbicides (IPM); Dormeur Investment Service Ltd
FX Research in this publication was supported by the National Institute of
Allergy and Infectious Diseases (NIAID), National Institutes of Health
(NIH), Division of AIDS (DAIDS), U.S. Department of Health and Human
Services (HHS), the Center for HIV/AIDS Vaccine Immunology (CHAVI) # U19
AI067854-05 and the Center for HIV/AIDS Vaccine Immunology and Immunogen
Discovery, grant number UM1-AI100645-01. The content is solely the
responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health. Initial manufacture
of gp120/140 protein was supported by funding from the International
Partnership for Microbicides (IPM). We gratefully acknowledge an
equipment grant from Dormeur Investment Service Ltd that provided
funding to purchase the Rap-ID 4 acoustic biosensor, plate reader and
washer used in these studies. We would also like to acknowledge Dr. Asna
Siddiqui who acted as project manager for this study, Amelia Fuertes who
purified the BX08gp140, and Sueli Vieira for the BX08gp120 purification.
We are grateful for the generous contribution of additional gp120 and
gp140 Env constructs provided by Hua-Xin Liao and Barton F Haynes. We
further acknowledge the contributions of Jianhui Tian for building the
models for glycosylations and Anurag Sethi for adding loops and running
simulations of gp120 monomer. We are also grateful to Dr. David
Fairhurst for encouraging the initiation of these studies.
NR 83
TC 2
Z9 2
U1 2
U2 15
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1742-4690
J9 RETROVIROLOGY
JI Retrovirology
PD MAR 20
PY 2013
VL 10
AR 33
DI 10.1186/1742-4690-10-33
PG 22
WC Virology
SC Virology
GA 143MT
UT WOS:000318872300001
PM 23514633
ER
PT J
AU Beasley, JC
Olson, ZH
Beatty, WS
Dharmarajan, G
Rhodes, OE
AF Beasley, James C.
Olson, Zachary H.
Beatty, William S.
Dharmarajan, Guha
Rhodes, Olin E., Jr.
TI Effects of Culling on Mesopredator Population Dynamics
SO PLOS ONE
LA English
DT Article
ID ORAL RABIES VACCINATION; BOVINE TUBERCULOSIS; MELES-MELES;
METAPOPULATION DYNAMICS; FRAGMENTED LANDSCAPES; BRUSHTAIL POSSUMS;
PREDATOR REMOVAL; NORTHERN INDIANA; RACCOON RABIES; UNITED-STATES
AB Anthropogenic changes in land use and the extirpation of apex predators have facilitated explosive growth of mesopredator populations. Consequently, many species have been subjected to extensive control throughout portions of their range due to their integral role as generalist predators and reservoirs of zoonotic disease. Yet, few studies have monitored the effects of landscape composition or configuration on the demographic or behavioral response of mesopredators to population manipulation. During 2007 we removed 382 raccoons (Procyon lotor) from 30 forest patches throughout a fragmented agricultural ecosystem to test hypotheses regarding the effects of habitat isolation on population recovery and role of range expansion and dispersal in patch colonization of mesopredators in heterogeneous landscapes. Patches were allowed to recolonize naturally and demographic restructuring of patches was monitored from 2008-2010 using mark-recapture. An additional 25 control patches were monitored as a baseline measure of demography. After 3 years only 40% of experimental patches had returned to pre-removal densities. This stagnant recovery was driven by low colonization rates of females, resulting in little to no within-patch recruitment. Colonizing raccoons were predominantly young males, suggesting that dispersal, rather than range expansion, was the primary mechanism driving population recovery. Contrary to our prediction, neither landscape connectivity nor measured local habitat attributes influenced colonization rates, likely due to the high dispersal capability of raccoons and limited role of range expansion in patch colonization. Although culling is commonly used to control local populations of many mesopredators, we demonstrate that such practices create severe disruptions in population demography that may be counterproductive to disease management in fragmented landscapes due to an influx of dispersing males into depopulated areas. However, given the slow repopulation rates observed in our study, localized depopulation may be effective at reducing negative ecological impacts of mesopredators in fragmented landscapes at limited spatial and temporal scales.
C1 [Beasley, James C.; Olson, Zachary H.; Beatty, William S.; Dharmarajan, Guha; Rhodes, Olin E., Jr.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
RP Beasley, JC (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
EM beasley@srel.edu
OI Beatty, William/0000-0003-0013-3113
FU Department of Forestry and Natural Resources at Purdue University;
USDA-APHIS National Wildlife Research Center
FX Funding was provided by the Department of Forestry and Natural Resources
at Purdue University and the USDA-APHIS National Wildlife Research
Center (http://www.aphis.usda.gov/wildlife_damage/nwrc). The funders had
no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.
NR 54
TC 8
Z9 9
U1 4
U2 60
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD MAR 20
PY 2013
VL 8
IS 3
AR e58982
DI 10.1371/journal.pone.0058982
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 125SW
UT WOS:000317562600050
PM 23527065
ER
PT J
AU Ding, GC
Piceno, YM
Heuer, H
Weinert, N
Dohrmann, AB
Carrillo, A
Andersen, GL
Castellanos, T
Tebbe, CC
Smalla, K
AF Ding, Guo-Chun
Piceno, Yvette M.
Heuer, Holger
Weinert, Nicole
Dohrmann, Anja B.
Carrillo, Angel
Andersen, Gary L.
Castellanos, Thelma
Tebbe, Christoph C.
Smalla, Kornelia
TI Changes of Soil Bacterial Diversity as a Consequence of Agricultural
Land Use in a Semi-Arid Ecosystem
SO PLOS ONE
LA English
DT Article
ID MICROBIAL COMMUNITY STRUCTURE; 16S RIBOSOMAL-RNA; GRADIENT
GEL-ELECTROPHORESIS; DIFFERENT POTATO CULTIVARS; PLANT DIVERSITY;
SPECIES RICHNESS; RHIZOSPHERE; NITROGEN; DESERT; GENES
AB Natural scrublands in semi-arid deserts are increasingly being converted into fields. This results in losses of characteristic flora and fauna, and may also affect microbial diversity. In the present study, the long-term effect (50 years) of such a transition on soil bacterial communities was explored at two sites typical of semi-arid deserts. Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods based on 16S rRNA gene fragments amplified from total community DNA. Denaturing gradient gel electrophoresis (DGGE) analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha-and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta-and Gammaproteo-bacteria, Bacteroidetes and Actinobacteria increased in abundance. Redundancy analysis suggested that the community composition of phyla responding to agricultural use (except for Spirochaetes) correlated with soil parameters that were significantly different between the agricultural and scrubland soil. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. The variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses, suggesting reduced beta diversity due to agricultural practices. The long-term use for agriculture resulted in profound changes in the bacterial community and physicochemical characteristics of former scrublands, which may irreversibly affect the natural soil ecosystem.
C1 [Ding, Guo-Chun; Heuer, Holger; Weinert, Nicole; Smalla, Kornelia] Fed Res Ctr Cultivated Plants JKI, Inst Epidemiol & Pathogen Diagnost, Braunschweig, Germany.
[Piceno, Yvette M.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Berkeley, CA 94720 USA.
[Dohrmann, Anja B.; Tebbe, Christoph C.] Johann Heinrich von Thunen Inst TI, Inst Biodivers, Braunschweig, Germany.
[Carrillo, Angel; Castellanos, Thelma] Ctr Invest Biol Noroeste, Sc La Paz, Mexico.
RP Smalla, K (reprint author), Fed Res Ctr Cultivated Plants JKI, Inst Epidemiol & Pathogen Diagnost, Braunschweig, Germany.
EM kornelia.smalla@jki.bund.de
RI ding, guo-chun/A-6821-2012; Heuer, Holger/B-9329-2008; Smalla,
Kornelia/H-4002-2011; Andersen, Gary/G-2792-2015; Piceno,
Yvette/I-6738-2016
OI ding, guo-chun/0000-0001-6702-3782; Heuer, Holger/0000-0001-6044-8171;
Andersen, Gary/0000-0002-1618-9827; Piceno, Yvette/0000-0002-7915-4699
FU German Federal Ministry for Education and Research, Projekttrager DLR
[MEX 06/003, 01DN12067]; CONACYT (Concejo Nacional de Ciencia Y
Tecnologia) [J110.394]; BMBF project MAQNU [03MS642H]
FX This study was financially supported by the German Federal Ministry for
Education and Research, Projekttrager DLR (projects MEX 06/003 and
01DN12067) and CONACYT (Concejo Nacional de Ciencia Y Tecnologia)
J110.394 and the BMBF project MAQNU 03MS642H. The funders had no role in
study design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 76
TC 22
Z9 25
U1 2
U2 97
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD MAR 20
PY 2013
VL 8
IS 3
AR e59497
DI 10.1371/journal.pone.0059497
PG 10
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 125SW
UT WOS:000317562600076
PM 23527207
ER
PT J
AU Sun, N
Liu, HB
Sathitsuksanoh, N
Stavila, V
Sawant, M
Bonito, A
Tran, K
George, A
Sale, KL
Singh, S
Simmons, BA
Holmes, BM
AF Sun, Ning
Liu, Hanbin
Sathitsuksanoh, Noppadon
Stavila, Vitalie
Sawant, Manali
Bonito, Anaise
Tran, Kim
George, Anthe
Sale, Kenneth L.
Singh, Seema
Simmons, Blake A.
Holmes, Bradley M.
TI Production and extraction of sugars from switchgrass hydrolyzed in ionic
liquids
SO BIOTECHNOLOGY FOR BIOFUELS
LA English
DT Article
DE Sugar extraction; Ionic liquids; Acidolysis; Aqueous biphasic system
ID AQUEOUS BIPHASIC SYSTEMS; LIGNOCELLULOSIC BIOMASS; 2-PHASE SYSTEMS;
DILUTE-ACID; LIGNIN; WOOD; PRETREATMENT; DISSOLUTION; RECALCITRANCE;
SIMULATIONS
AB Background: The use of Ionic liquids (ILs) as biomass solvents is considered to be an attractive alternative for the pretreatment of lignocellulosic biomass. Acid catalysts have been used previously to hydrolyze polysaccharides into fermentable sugars during IL pretreatment. This could potentially provide a means of liberating fermentable sugars from biomass without the use of costly enzymes. However, the separation of the sugars from the aqueous IL and recovery of IL is challenging and imperative to make this process viable.
Results: Aqueous alkaline solutions are used to induce the formation of a biphasic system to recover sugars produced from the acid catalyzed hydrolysis of switchgrass in imidazolium-based ILs. The amount of sugar produced from this process was proportional to the extent of biomass solubilized. Pretreatment at high temperatures (e. g., 160 degrees C, 1.5 h) was more effective in producing glucose. Sugar extraction into the alkali phase was dependent on both the amount of sugar produced by acidolysis and the alkali concentration in the aqueous extractant phase. Maximum yields of 53% glucose and 88% xylose are recovered in the alkali phase, based on the amounts present in the initial biomass. The partition coefficients of glucose and xylose between the IL and alkali phases can be accurately predicted using molecular dynamics simulations.
Conclusions: This biphasic system may enable the facile recycling of IL and rapid recovery of the sugars, and provides an alternative route to the production of monomeric sugars from biomass that eliminates the need for enzymatic saccharification and also reduces the amount of water required.
C1 [Sun, Ning; Liu, Hanbin; Sathitsuksanoh, Noppadon; Sawant, Manali; Bonito, Anaise; Tran, Kim; George, Anthe; Sale, Kenneth L.; Singh, Seema; Simmons, Blake A.; Holmes, Bradley M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Deconstruct Div, Berkeley, CA 94720 USA.
[Liu, Hanbin; Stavila, Vitalie; Tran, Kim; Sale, Kenneth L.; Singh, Seema; Simmons, Blake A.; Holmes, Bradley M.] Sandia Natl Labs, Biol & Mat Sci Ctr, Livermore, CA USA.
[George, Anthe] Sandia Natl Labs, Hydrogen & Combust Technol Dept, Livermore, CA USA.
RP Simmons, BA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Deconstruct Div, Berkeley, CA 94720 USA.
EM basimmons@lbl.gov
RI Stavila, Vitalie/B-6464-2008; Sun, Ning/D-6709-2012; sathitsuksanoh,
noppadon/O-6305-2014
OI Stavila, Vitalie/0000-0003-0981-0432; sathitsuksanoh,
noppadon/0000-0003-1521-9155
FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231];
Office of Science, Office of Biological and Environmental Research, of
the U.S. Department of Energy [DE-AC02-05CH11231]
FX The authors thank Prof. Harvey W. Blanch for his thoughtful and valuable
comments and review of this manuscript. This research used resources of
the National Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231. The work conducted by the Joint
BioEnergy Institute was supported by the Office of Science, Office of
Biological and Environmental Research, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.
NR 43
TC 26
Z9 28
U1 4
U2 94
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1754-6834
J9 BIOTECHNOL BIOFUELS
JI Biotechnol. Biofuels
PD MAR 20
PY 2013
VL 6
AR 39
DI 10.1186/1754-6834-6-39
PG 14
WC Biotechnology & Applied Microbiology; Energy & Fuels
SC Biotechnology & Applied Microbiology; Energy & Fuels
GA 121HJ
UT WOS:000317233400001
PM 23514699
ER
PT J
AU He, HK
Zhong, MJ
Adzima, B
Luebke, D
Nulwala, H
Matyjaszewski, K
AF He, Hongkun
Zhong, Mingjiang
Adzima, Brian
Luebke, David
Nulwala, Hunaid
Matyjaszewski, Krzysztof
TI A Simple and Universal Gel Permeation Chromatography Technique for
Precise Molecular Weight Characterization of Well-Defined Poly(ionic
liquid)s
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID TRANSFER RADICAL POLYMERIZATION; TEMPERATURE IONIC LIQUIDS; CARBOXYLATED
POLYURETHANES; MASS-SPECTROMETRY; BLOCK-COPOLYMERS; CO2 CAPTURE;
SOLVENTS; POLYMERS; FUTURE; PERSPECTIVES
AB Poly(ionic liquid)s (PILs) are an important class of technologically relevant materials. However, characterization of well-defined polyionic materials remains a challenge. Herein, we have developed a simple and versatile gel permeation chromatography (GPC) methodology for molecular weight (MW) characterization of PILs with a variety of anions. PILs with narrow MW distributions were synthesized via atom transfer radical polymerization, and the MWs obtained from GPC were further confirmed via nuclear magnetic resonance end group analysis.
C1 [He, Hongkun; Zhong, Mingjiang; Adzima, Brian; Nulwala, Hunaid; Matyjaszewski, Krzysztof] Carnegie Mellon Univ, Dept Chem, Ctr Macromol Engn, Pittsburgh, PA 15213 USA.
[He, Hongkun; Adzima, Brian; Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
RP Nulwala, H (reprint author), Carnegie Mellon Univ, Dept Chem, Ctr Macromol Engn, 4400 5th Ave, Pittsburgh, PA 15213 USA.
EM hnulwala@andrew.cmu.edu; km3b@andrew.cmu.edu
RI Nulwala, Hunaid/G-8126-2012; He, Hongkun/B-4759-2011; Paquette,
Joseph/O-4271-2015; Zhong, Mingjiang/F-3470-2011; Matyjaszewski,
Krzysztof/A-2508-2008
OI Nulwala, Hunaid/0000-0001-7481-3723; He, Hongkun/0000-0002-7214-3313;
Paquette, Joseph/0000-0001-6023-5125; Zhong,
Mingjiang/0000-0001-7533-4708; Matyjaszewski,
Krzysztof/0000-0003-1960-3402
FU National Science Foundation [DMR 09-69301]; CRP Consortium at Carnegie
Mellon University; U.S. Department of Energy's National Energy
Technology Laboratory [DE-FE0004000]; NSF [CHE-1039870]
FX Financial support was provided by the National Science Foundation (DMR
09-69301) and CRP Consortium at Carnegie Mellon University. This
technical effort was also performed in support of the U.S. Department of
Energy's National Energy Technology Laboratory's ongoing research on
CO2 capture under the contract DE-FE0004000. NMR
instrumentation at CMU was partially supported by NSF (CHE-1039870).
NR 52
TC 60
Z9 61
U1 10
U2 155
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD MAR 20
PY 2013
VL 135
IS 11
BP 4227
EP 4230
DI 10.1021/ja4012645
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA 114WQ
UT WOS:000316774100017
PM 23458293
ER
PT J
AU Mikosch, J
Zhang, JX
Trippel, S
Eichhorn, C
Otto, R
Sun, R
de Jong, WA
Weidemuller, M
Hase, WL
Wester, R
AF Mikosch, Jochen
Zhang, Jiaxu
Trippel, Sebastian
Eichhorn, Christoph
Otto, Rico
Sun, Rui
de Jong, Wibe A.
Weidemueller, Matthias
Hase, William L.
Wester, Roland
TI Indirect Dynamics in a Highly Exoergic Substitution Reaction
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID GAS-PHASE S(N)2; NUCLEOPHILIC DISPLACEMENT-REACTIONS; CORRELATED
MOLECULAR CALCULATIONS; CLASSICAL TRAJECTORY SIMULATIONS; GAUSSIAN-BASIS
SETS; KINETIC-ENERGY; VIBRATIONAL-EXCITATION; CHEMICAL-REACTIONS; METHYL
HALIDES; CHLORIDE-ION
AB The highly exoergic nucleophilic substitution reaction F- + CH3I shows reaction dynamics strikingly different from that of substitution reactions of larger halogen anions. Over a wide range of collision energies, a large fraction of indirect scattering via a long-lived hydrogen-bonded complex is found both in crossed-beam imaging experiments and in direct chemical dynamics simulations. Our measured differential scattering cross sections show large- angle scattering and low product velocities for all collision energies, resulting from efficient transfer of the collision energy to internal energy of the CH3F reaction product. Both findings are in strong contrast to the previously studied substitution reaction of Cl- + CH3I [ Science 2008, 319, 183-186] at all but the lowest collision energies, a discrepancy that was not captured in a subsequent study at only a low collision energy [ J. Phys. Chem. Lett. 2010, 1, 2747-2752]. Our direct chemical dynamics simulations at the DFT/B97-1 level of theory show that the reaction is dominated by three atomic-level mechanisms, an indirect reaction proceeding via an F--HCH2I hydrogen-bonded complex, a direct rebound, and a direct stripping reaction. The indirect mechanism is found to contribute about one-half of the overall substitution reaction rate at both low and high collision energies. This large fraction of indirect scattering at high collision energy is particularly surprising, because the barrier for the F--HCH2I complex to form products is only 0.10 eV. Overall, experiment and simulation agree very favorably in both the scattering angle and the product internal energy distributions.
C1 [Mikosch, Jochen] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada.
[Zhang, Jiaxu; Sun, Rui; Hase, William L.] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA.
[Trippel, Sebastian] DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany.
[Eichhorn, Christoph] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany.
[Otto, Rico; Wester, Roland] Univ Innsbruck, Inst Ionenphys & Angew Phys, A-6020 Innsbruck, Austria.
[de Jong, Wibe A.] Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA.
[Weidemueller, Matthias] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany.
[Otto, Rico] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA.
RP Wester, R (reprint author), Univ Innsbruck, Inst Ionenphys & Angew Phys, Technikerstr 25-3, A-6020 Innsbruck, Austria.
EM roland.wester@uibk.ac.at
RI DE JONG, WIBE/A-5443-2008; Wester, Roland/J-6293-2012; Weidemuller,
Matthias/N-2232-2014; Trippel, Sebastian/J-7825-2015
OI DE JONG, WIBE/0000-0002-7114-8315; Wester, Roland/0000-0001-7935-6066;
Weidemuller, Matthias/0000-0001-5639-5126; Trippel,
Sebastian/0000-0002-1895-3868
FU Deutsche Forschungsgemeinschaft [WE 2592/3-2];
Landesgraduiertenforderung Baden-Wurttemberg; University of Freiburg;
National Science Foundation [CHE-0615321, CHE-0957521]; Robert A. Welch
Foundation [D-0005]; High-Performance Computing Center (HPCC) at Texas
Tech University; Texas Advanced Computing Center (TACC) at the
University of Texas at Austin; U.S. Department of Energy's Office of
Biological and Environmental Research and located at the Pacific
Northwest National Laboratory
FX This work has been supported by the Deutsche Forschungsgemeinschaft
under contract no. WE 2592/3-2. R.O. acknowledges support by the
Landesgraduiertenforderung Baden-Wurttemberg. We thank the University of
Freiburg, where the measurements presented here have been carried out,
for supporting this research. The direct chemical dynamics simulations
reported here are based upon work supported by the National Science
Foundation under grants nos. CHE-0615321 and CHE-0957521, and the Robert
A. Welch Foundation under grant no. D-0005. Support was also provided by
the High-Performance Computing Center (HPCC) at Texas Tech University,
under the direction of Philip W. Smith and the Texas Advanced Computing
Center (TACC) at the University of Texas at Austin. Part of this
research was performed at the Environmental Molecular Sciences
Laboratory (EMSL), a national scientific user facility sponsored by the
U.S. Department of Energy's Office of Biological and Environmental
Research and located at the Pacific Northwest National Laboratory,
operated for the Department of Energy by Battelle.
NR 68
TC 31
Z9 31
U1 4
U2 49
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD MAR 20
PY 2013
VL 135
IS 11
BP 4250
EP 4259
DI 10.1021/ja308042v
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA 114WQ
UT WOS:000316774100020
PM 23324058
ER
PT J
AU Bao, XG
Hrovat, DA
Borden, WT
Wang, XB
AF Bao, Xiaoguang
Hrovat, David A.
Borden, Weston Thatcher
Wang, Xue-Bin
TI Negative Ion Photoelectron Spectroscopy Confirms the Prediction that
(CO)(5) and (CO)(6) Each Has a Singlet Ground State
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AB-INITIO; POLYATOMIC-MOLECULES; ELECTRONIC STATES; CARBON-MONOXIDE;
WAVE-FUNCTIONS; HUNDS RULE; BASIS-SETS; STABILITY; DENSITY; C2O2
AB Cyclobutane-1,2,3,4-tetraone has been both predicted and found to have a triplet ground state, in which a b(2g) sigma molecular orbital (MO) and an a(2u) pi MO are each singly occupied. In contrast, (CO)(5) and (CO)(6) have each been predicted to have a singlet ground state. These predictions have been tested by generating the (CO)(5)(center dot-) and (CO)(6)(center dot-) radical anions in the gas phase, using electrospray vaporization of solutions of, respectively, the croconate (CO)(5)(2-) and rhodizonate (CO)(6)(2-) dianions. The negative ion photoelectron (NIPE) spectrum of the (CO)(5)(center dot-) radical anion gives an electron affinity of EA = 3.830 eV for formation of the singlet ground state of (CO)(5). The triplet is found to be higher in energy by 0.850 eV (19.6 kcal/mol). The NIPE spectrum of the (CO)(6)(center dot-) radical anion gives EA = 3785 eV for forming the singlet ground state of (CO)(6), with the triplet state higher in energy by 0.915 eV (21.1 kcal/mol). (RO)CCSD(T)/aug-cc-pVTZ//(U)B3LYP/6-311+G(2df) calculations give EA values that are only approximately 1 kcal/mol lower than those measured and Delta E-ST values that are 2-3 kcal/mol higher than those obtained from the NIPE spectra. Calculations of the Franck-Condon factors for transitions from the ground state of each radical anion, (CO)(n)(center dot-) to the lowest singlet and triplet states of the n = 4-6 neutrals, nicely reproduce all of the observed vibrational features in the low binding energy regions of all three NIPE spectra. Thus, the calculations of both the energies and vibrational structures of the two lowest energy bands in each of the NIPE spectra support the interpretation of the spectra in terms of a singlet ground state for (CO)(5) and (CO)(6) but a triplet ground state for (CO)(4).
C1 [Bao, Xiaoguang; Hrovat, David A.; Borden, Weston Thatcher] Univ N Texas, Dept Chem, Denton, TX 76203 USA.
[Bao, Xiaoguang; Hrovat, David A.; Borden, Weston Thatcher] Univ N Texas, Ctr Adv Sci Comp & Modeling, Denton, TX 76203 USA.
[Wang, Xue-Bin] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA.
RP Borden, WT (reprint author), Univ N Texas, Dept Chem, 1155 Union Circle,305070, Denton, TX 76203 USA.
EM borden@unt.edu; xuebin.wang@pnnl.gov
FU National Science Foundation [CHE-0910527]; Robert A. Welch Foundation
[B0027]; Division of Chemical Sciences, Geosciences, and Biosciences,
Office of Basic Energy Sciences, U.S. Department of Energy (DOE); DOE's
Office of Biological and Environmental Research
FX We thank Professor Laura Gagliardi for suggesting that we perform RASPT2
calculations on (CO)5- and Professor Paul Wenthold
for suggesting the use of ezSpectrum18 for simulating the
NIPE spectra. The calculations at UNT were supported by a grant
CHE-0910527 from the National Science Foundation and by grant B0027 from
the Robert A. Welch Foundation to W.T.B. The NIPES experiments at PNNL
were supported by the Division of Chemical Sciences, Geosciences, and
Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy
(DOE) and were performed using EMSL, a national scientific user facility
sponsored by DOE's Office of Biological and Environmental Research and
located at PNNL, which is operated by Battelle for DOE. X.B.W. would
like to thank Professors Lai-Sheng Wang (Brown University, USA) and
Si-Dian Li (Shanxi University, China) for discussions at the early stage
of the experiments.
NR 47
TC 19
Z9 19
U1 1
U2 35
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD MAR 20
PY 2013
VL 135
IS 11
BP 4291
EP 4298
DI 10.1021/ja4005128
PG 8
WC Chemistry, Multidisciplinary
SC Chemistry
GA 114WQ
UT WOS:000316774100024
PM 23445075
ER
PT J
AU Mugridge, JS
Zahl, A
van Eldik, R
Bergman, RG
Raymond, KN
AF Mugridge, Jeffrey S.
Zahl, Achim
van Eldik, Rudi
Bergman, Robert G.
Raymond, Kenneth N.
TI Solvent and Pressure Effects on the Motions of Encapsulated Guests:
Tuning the Flexibility of a Supramolecular Host
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AZA-COPE REARRANGEMENT; INTERNAL-PRESSURE; BASIC SOLUTION;
MOLECULAR-CONFORMATIONS; ORTHOFORMATE HYDROLYSIS; REACTION VOLUMES;
ANIONIC HOST; DYNAMICS; ACTIVATION; CATALYSIS
AB The supramolecular host assembly [Ga4L6](12-) [1; L = 1,5-bis(2,3-dihydroxybenzamido)naphthalene] contains a flexible, hydrophobic interior cavity that can encapsulate cationic guest molecules and catalyze a variety of chemical transformations. The Ar-CH2 bond rotational barrier for encapsulated ortho-substituted benzyl phosphonium guest molecules is sensitive to the size and shape of the host interior space. Here we examine how changes in bulk solvent (water, methanol, or DMF) or applied pressure (up to 150 MPa) affect the rotational dynamics of encapsulated benzyl phosphonium guests, as a way to probe changes in host cavity size or flexibility. When host 1 is dissolved in organic solvents with large solvent internal pressures (partial derivative U/partial derivative V)(T), we find that the free energy barrier to Ar-CH2 bond rotation increases by 1-2 kcal/naol, compared with that in aqueous solution. Likewise, when external pressure is applied to the host-guest complex in solution, the bond rotational rates for the encapsulated guests decrease. The magnitude of these rate changes and the volumes of activation obtained using either solvent internal pressure or applied external pressure are very similar. NOE distance measurements reveal shorter average host-guest distances (similar to 0.3 angstrom) in organic versus aqueous solution. These experiments demonstrate that increasing solvent internal pressure or applied external pressure reduces the host cavity size or flexibility, resulting in more restricted motions for encapsulated guest molecules. Changing bulk solvent or external pressure might therefore be used to tune the physical properties or reactivity of guest molecules encapsulated in a flexible supramolecular host.
C1 [Mugridge, Jeffrey S.; Bergman, Robert G.; Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Mugridge, Jeffrey S.; Bergman, Robert G.; Raymond, Kenneth N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Zahl, Achim; van Eldik, Rudi] Univ Erlangen Nurnberg, Dept Chem & Pharm, D-91058 Erlangen, Germany.
RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM rbergman@berkeley.edu; raymond@socrates.berkeley.edu
FU Office of Science, Office of Basic Energy Sciences, and the Division of
Chemical Sciences, Geosciences, and Biosciences of the U.S. Department
of Energy at LBNL [DE-AC02-05CH11231]; NSF; Bavaria California
Technology Center
FX This work has been supported by the Director, Office of Science, Office
of Basic Energy Sciences, and the Division of Chemical Sciences,
Geosciences, and Biosciences of the U.S. Department of Energy at LBNL
under Contract No. DE-AC02-05CH11231 and an NSF predoctoral fellowship
to J.S.M. The authors also gratefully acknowledge financial support from
the Bavaria California Technology Center.
NR 64
TC 26
Z9 26
U1 4
U2 88
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD MAR 20
PY 2013
VL 135
IS 11
BP 4299
EP 4306
DI 10.1021/ja309949q
PG 8
WC Chemistry, Multidisciplinary
SC Chemistry
GA 114WQ
UT WOS:000316774100025
PM 23391095
ER
PT J
AU Seefeld, S
Limpinsel, M
Liu, Y
Farhi, N
Weber, A
Zhang, YN
Berry, N
Kwon, YJ
Perkins, CL
Hemminger, JC
Wu, RQ
Law, M
AF Seefeld, Sean
Limpinsel, Moritz
Liu, Yu
Farhi, Nima
Weber, Amanda
Zhang, Yanning
Berry, Nicholas
Kwon, Yon Joo
Perkins, Craig L.
Hemminger, John C.
Wu, Ruqian
Law, Matt
TI Iron Pyrite Thin Films Synthesized from an Fe(acac)(3) Ink
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; SOL-GEL METHOD; FES2 FILMS;
OPTICAL-PROPERTIES; LOW-PRESSURE; ELECTRICAL-PROPERTIES;
PHOTOELECTRON-SPECTROSCOPY; ENERGY-CONVERSION; SPRAY-PYROLYSIS; N-FES2
PYRITE
AB Iron pyrite (cubic FeS2) is a promising candidate absorber material for earth-abundant thin-film solar cells. Here, we report on phase-pure, large-grain, and uniform polycrystalline pyrite films that are fabricated by solution-phase deposition of an iron(III) acetylacetonate molecular ink followed by sequential annealing in air, H2S, and sulfur gas at temperatures up to 550 degrees C. Phase and elemental compositions of the films are characterized by conventional and synchrotron X-ray diffraction, Raman spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, and X-ray photoelectron spectroscopy (XPS). These solution deposited films have more oxygen and alkalis, less carbon and hydrogen, and smaller optical band gaps (E-g = 0.87 +/- 0.05 eV) than similar films made by chemical vapor deposition. XPS is used to assess the chemical composition of the film surface before and after exposure to air and immersion in water to remove surface contaminants. Optical measurements of films rich in marcasite (orthorhombic FeS2) show that marcasite has a band gap at least as large as pyrite and that the two polymorphs share similar absorptivity spectra, in excellent agreement with density functional theory models. Regardless of the marcasite and elemental impurity contents, all films show p-type, weakly activated transport with curved Arrhenius plots, a room-temperature resistivity of similar to 1 Omega cm, and a hole mobility that is too small to measure by Hall effect. This universal electrical behavior strongly suggests that a common defect or a hole-rich surface layer governs the electrical properties of most FeS2 thin films.
C1 [Seefeld, Sean; Limpinsel, Moritz; Weber, Amanda; Kwon, Yon Joo; Hemminger, John C.; Law, Matt] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.
[Liu, Yu; Zhang, Yanning; Berry, Nicholas; Wu, Ruqian] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Farhi, Nima; Law, Matt] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA.
[Perkins, Craig L.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Law, M (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.
EM matt.law@uci.edu
RI ZHANG, YANNING/A-3316-2013; Limpinsel, Moritz/J-8981-2013; Wei,
Zhanhua/D-7544-2013; Wu, Ruqian/C-1395-2013
OI Limpinsel, Moritz/0000-0002-8413-4991; Wei, Zhanhua/0000-0003-2687-0293;
Wu, Ruqian/0000-0002-6156-7874
FU NSF SOLAR Program [CHE-1035218]; U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S.
Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy
Laboratory
FX We acknowledge the NSF SOLAR Program (Award CHE-1035218) for support of
this work. We thank Zachary Fisk for the use of his quartz tube sealing
setup and Mohammed El Makkaoui for assistance with UV-vis spectroscopy.
Use of the Advanced Photon Source at Argonne National Laboratory was
supported by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Density
functional calculations were performed on NSF-XSEDE supercomputers.
C.L.P. acknowledges support by the U.S. Department of Energy under
contract no. DE-AC36-08-GO28308 with the National Renewable Energy
Laboratory.
NR 86
TC 65
Z9 65
U1 3
U2 169
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD MAR 20
PY 2013
VL 135
IS 11
BP 4412
EP 4424
DI 10.1021/ja311974n
PG 13
WC Chemistry, Multidisciplinary
SC Chemistry
GA 114WQ
UT WOS:000316774100036
PM 23398377
ER
PT J
AU Ding, F
Xu, W
Graff, GL
Zhang, J
Sushko, ML
Chen, XL
Shao, YY
Engelhard, MH
Nie, ZM
Xiao, J
Liu, XJ
Sushko, PV
Liu, J
Zhang, JG
AF Ding, Fei
Xu, Wu
Graff, Gordon L.
Zhang, Jian
Sushko, Maria L.
Chen, Xilin
Shao, Yuyan
Engelhard, Mark H.
Nie, Zimin
Xiao, Jie
Liu, Xingjiang
Sushko, Peter V.
Liu, Jun
Zhang, Ji-Guang
TI Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield
Mechanism
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID VIBRATING ELECTRODE TECHNIQUE; IN-SITU; ORGANIC ELECTROLYTE; CYCLING
EFFICIENCY; SURFACE-FILMS; METAL-ANODE; HIGH-ENERGY; BATTERIES;
MORPHOLOGY; CARBONATE
AB Rechargeable lithium metal batteries are considered the "Holy Grail" of energy storage systems. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) has prevented their practical application over the past 40 years. We show a novel mechanism that can fundamentally alter dendrite formation. At low concentrations, selected cations (such as cesium or rubidium ions) exhibit an effective reduction potential below the standard reduction potential of lithium ions. During lithium deposition, these additive cations form a positively charged electrostatic shield around the initial growth tip of the protuberances without reduction and deposition of the additives. This forces further deposition of lithium to adjacent regions of the anode and eliminates dendrite formation in lithium metal batteries. This strategy may also prevent dendrite growth in lithium-ion batteries as well as other metal batteries and transform the surface uniformity of coatings deposited in many general electrodeposition processes.
C1 [Ding, Fei; Xu, Wu; Graff, Gordon L.; Zhang, Jian; Chen, Xilin; Nie, Zimin; Xiao, Jie; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA.
[Sushko, Maria L.; Shao, Yuyan; Sushko, Peter V.; Liu, Jun] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA.
[Engelhard, Mark H.] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99354 USA.
[Ding, Fei; Liu, Xingjiang] Tianjin Inst Power Sources, Natl Key Lab Power Sources, Tianjin 300381, Peoples R China.
[Sushko, Peter V.] UCL, London WC1E 6BT, England.
RP Xu, W (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA.
EM wu.xu@pnnl.gov; jiguang.zhang@pnnl.gov
RI Shao, Yuyan/A-9911-2008; Chen, Xilin/A-1409-2012; Sushko,
Peter/F-5171-2013; Sushko, Maria/C-8285-2014;
OI Shao, Yuyan/0000-0001-5735-2670; Sushko, Peter/0000-0001-7338-4146;
Sushko, Maria/0000-0002-7229-7072; Xu, Wu/0000-0002-2685-8684;
Engelhard, Mark/0000-0002-5543-0812
FU DOE's Office of Biological and Environmental Research; DOE Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering;
PNNL
FX We thank Mr. Honghao Chen, Dr. Jianming Zheng, and Dr. Eduard Nasybulin
of Pacific Northwest National Laboratory (PNNL) for assistance in the
experimental work of substrate preparation; Dr. Jarrod Crum of PNNL for
help with the SEM measurement; and Prof. Chunlin Zhou and Prof. Haojie
Liu of Tianjin Institute of Power Sources for help with material
preparation. This work was supported by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Office of Vehicle Technology of
the U.S. Department of Energy (DOE), and the Laboratory Directed
Research and Development fund of PNNL. The XPS work was performed at the
Environmental Molecular Sciences Laboratory, a national scientific user
facility sponsored by the DOE's Office of Biological and Environmental
Research and located at PNNL. The modeling work is supported by the DOE
Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering.
NR 38
TC 210
Z9 212
U1 71
U2 487
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD MAR 20
PY 2013
VL 135
IS 11
BP 4450
EP 4456
DI 10.1021/ja312241y
PG 7
WC Chemistry, Multidisciplinary
SC Chemistry
GA 114WQ
UT WOS:000316774100039
PM 23448508
ER
PT J
AU Yin, PC
Zhang, J
Li, T
Zuo, XB
Hao, J
Warner, AM
Chattopadhyay, S
Shibata, T
Wei, YG
Liu, TB
AF Yin, Panchao
Zhang, Jin
Li, Tao
Zuo, Xiaobin
Hao, Jian
Warner, Anna Marie
Chattopadhyay, Soma
Shibata, Tomohiro
Wei, Yongge
Liu, Tianbo
TI Self-Recognition of Structurally Identical, Rod-Shaped Macroions with
Different Central Metal Atoms during Their Assembly Process
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID MOLECULAR RECOGNITION; AQUEOUS-SOLUTION; SUPRAMOLECULAR STRUCTURES;
COUNTERION CONDENSATION; ZINC CHLORIDE; SURFACTANT; ACETONITRILE;
ORGANIZATION; TRANSITION; SCATTERING
AB Two rod-shaped macroanions, ((C4H9)(4)N)(7)-[Mo6O18NC(OCH2)(3)XMo6O18(OCH2)(3)CNMo6O18] (X = Mn-III (1), Fe-III (2)), with almost identical charge densities and morphologies except for their different encapsulated central metal atoms were each observed to self-assemble into 'blackberry"-type supramolecular structures in their dilute solution, driven by the counterion-mediated attraction. Amazingly, the two macroions remained self-sorted and self-assembled into homogeneous assemblies in their mixed solutions, demonstrating a self-recognition behavior between two highly similar macroions during their assembly process, as confirmed by DLS, SLS, and TEM/EDS analysis. This self-recognition behavior can be explained by the slightly different charge distributions of the macroanions resulting from their different central atoms (confirmed by theoretical DFT calculations and dissociation experiments) and the high activation energy of the slow assembly process, which suppresses the formation of hybrid oligomers at the beginning of the self-assembly process. This work confirms that the long-range counterion-mediated electrostatic attraction is sensitive to the small difference in macroions and consequently offers the possibility for delicate selectivity and preference among different macroions. This phenomenon might be directly related to (and be the important reason for) some recognition behaviors in biological systems.
C1 [Yin, Panchao; Warner, Anna Marie; Liu, Tianbo] Lehigh Univ, Dept Chem, Bethlehem, PA 18015 USA.
[Zhang, Jin; Hao, Jian; Wei, Yongge] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.
[Li, Tao; Zuo, Xiaobin] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
[Chattopadhyay, Soma; Shibata, Tomohiro] Argonne Natl Lab, MRCAT, CSRRI IIT, Argonne, IL 60439 USA.
[Chattopadhyay, Soma; Shibata, Tomohiro] IIT, Dept Phys, Chicago, IL 60616 USA.
[Liu, Tianbo] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA.
RP Wei, YG (reprint author), Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.
EM yonggewei@tsinghua.edu.cn; tliu@uakron.edu
RI Yin, Panchao/J-3322-2013; li, tao/K-8911-2012; Liu, Tianbo/D-8915-2017;
OI Yin, Panchao/0000-0003-2902-8376; li, tao/0000-0001-5454-1468; Liu,
Tianbo/0000-0002-8181-1790; Zuo, Xiaobing/0000-0002-0134-4804
FU NSF [CHE1026505]; Lehigh University; U.S. DOE [DE-AC02-06CH11357]; NFSC
[21225103, 20921001]; Tsinghua University Initiative Foundation Research
Program [20101081771]; DOE; MRCAT member institutions
FX T. Liu acknowledges support from the NSF (CHE1026505) and Lehigh
University. T. Li, S. Chattopadhyay, T. Shibata, and X. Zuo are thankful
to Dr. Vladislav Zyryanov for designing the sample cells used for
measuring the liquid samples and Dr. J. T. Miller of Argonne National
Laboratory for fruitful discussions and the use of the Advanced Photon
Source. The Advanced Photon Source, an Office of Science User Facility
operated for the U.S. Department of Energy (DOE) Office of Science by
Argonne National Laboratory, is supported by the U.S. DOE under Contract
No. DE-AC02-06CH11357. MRCAT operations are supported by the DOE and the
MRCAT member institutions. Y. Wei acknowledges support from NFSC Nos.
21225103 and 20921001, and Tsinghua University Initiative Foundation
Research Program No. 20101081771.
NR 44
TC 27
Z9 27
U1 9
U2 101
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD MAR 20
PY 2013
VL 135
IS 11
BP 4529
EP 4536
DI 10.1021/ja400656j
PG 8
WC Chemistry, Multidisciplinary
SC Chemistry
GA 114WQ
UT WOS:000316774100049
PM 23444907
ER
PT J
AU Zhu, JX
Wise, A
Nuhfer, T
Holcomb, GR
Jablonski, PD
Sridhar, S
Laughlin, DE
AF Zhu, Jingxi
Wise, Adam
Nuhfer, Thomas
Holcomb, Gordon R.
Jablonski, Paul D.
Sridhar, Seetharaman
Laughlin, David E.
TI High-temperature-oxidation-induced ordered structure in Inconel 939
superalloy exposed to oxy-combustion environments
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Oxy-fuel combustion; High temperature oxidation; Ordered structure;
Inconel 939 superalloy; High-resolution transmission electron microscopy
AB In the integrated oxy-fuel combustion and the turbine power generation system, turbine alloys are exposed to high temperature and an atmosphere comprised of steam, CO2 and O-2. While surface and internal oxidation of the alloy takes place, the microstructure in the subsurface region also changes due to oxidation that results in the loss of the strengthening precipitates. In an earlier study of the oxidation of Inconel 939 Ni-based superalloy exposed to oxy-fuel combustion environment for up to 1000 h, a high-temperature-oxidation-induced phase transformation in the sub-surface region was noticed and a two-phase region formed at the expense of strengthening gamma' phase. While one of the two phases was identified as the Ni-matrix gamma solid solution, face-center-cubic) phase, the other product phase remained unidentified. In this study, the crystal structure of the unknown phase and its orientation relationship with the parent Ni-matrix phase was investigated through electron diffraction and high-resolution transmission electron microscopy. It was determined that the crystal structure of the unknown phase could be modeled as a ternary derivative of the ordered eta-Ni3Ti phase (D0(24)) structure with lattice parameters of a=.5092 nm and c=.8336 nm, alpha=90 degrees, beta=90 degrees and gamma=120 degrees. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Zhu, Jingxi; Sridhar, Seetharaman] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Zhu, Jingxi; Wise, Adam; Nuhfer, Thomas; Sridhar, Seetharaman; Laughlin, David E.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA.
[Holcomb, Gordon R.; Jablonski, Paul D.] Natl Energy Technol Lab, Albany, OR 97321 USA.
RP Zhu, JX (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA.
EM jingxiz@andrew.cmu.edu; adamwise@andrew.cmu.edu; tn06@andrew.cmu.edu;
Gordon.Holcomb@NETL.DOE.GOV; Paul.Jablonski@NETL.DOE.GOV;
sridhars@andrew.cmu.edu; dl0p@andrew.cmu.edu
RI Holcomb, Gordon/G-9070-2013;
OI Holcomb, Gordon/0000-0003-3542-5319; Zhu, Jingxi/0000-0002-0019-0647
FU National Energy Technology Laboratory's ongoing research in advanced
combustion technology under the RES [DE-FE0004000]
FX This technical effort was performed in support of the National Energy
Technology Laboratory's ongoing research in advanced combustion
technology under the RES contract DE-FE0004000.
NR 15
TC 2
Z9 2
U1 2
U2 29
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD MAR 20
PY 2013
VL 566
BP 134
EP 142
DI 10.1016/j.msea.2012.12.074
PG 9
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 111PV
UT WOS:000316534100018
ER
PT J
AU Aaltonen, T
Amerio, S
Amidei, D
Anastassov, A
Annovi, A
Antos, J
Apollinari, G
Appel, JA
Arisawa, T
Artikov, A
Asaadi, J
Ashmanskas, W
Auerbach, B
Aurisano, A
Azfar, F
Badgett, W
Bae, T
Barbaro-Galtieri, A
Barnes, VE
Barnett, BA
Barria, P
Bartos, P
Bauce, M
Bedeschi, F
Behari, S
Bellettini, G
Bellinger, J
Benjamin, D
Beretvas, A
Bhatti, A
Bland, KR
Blumenfeld, B
Bocci, A
Bodek, A
Bortoletto, D
Boudreau, J
Boveia, A
Brigliadori, L
Bromberg, C
Brucken, E
Budagov, J
Budd, HS
Burkett, K
Busetto, G
Bussey, P
Butti, P
Buzatu, A
Calamba, A
Camarda, S
Campanelli, M
Canelli, F
Carls, B
Carlsmith, D
Carosi, R
Carrillo, S
Casal, B
Casarsa, M
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cavalli-Sforza, M
Cerri, A
Cerrito, L
Chen, YC
Chertok, M
Chiarelli, G
Chlachidze, G
Cho, K
Chokheli, D
Ciocci, MA
Clark, A
Clarke, C
Convery, ME
Conway, J
Corbo, M
Cordelli, M
Cox, CA
Cox, DJ
Cremonesi, M
Cruz, D
Cuevas, J
Culbertson, R
d'Ascenzo, N
Datta, M
De Barbaro, P
Demortier, L
Deninno, M
Devoto, F
d'Errico, M
Di Canto, A
Di Ruzza, B
Dittmann, JR
D'Onofrio, M
Donati, S
Dorigo, M
Driutti, A
Ebina, K
Edgar, R
Elagin, A
Erbacher, R
Errede, S
Esham, B
Eusebi, R
Farrington, S
Ramos, JPF
Field, R
Flanagan, G
Forrest, R
Franklin, M
Freeman, JC
Frisch, H
Funakoshi, Y
Garfinkel, AF
Garosi, P
Gerberich, H
Gerchtein, E
Giagu, S
Giakoumopoulou, V
Gibson, K
Ginsburg, CM
Giokaris, N
Giromini, P
Giurgiu, G
Glagolev, V
Glenzinski, D
Gold, M
Goldin, D
Golossanov, A
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Lopez, OG
Gorelov, I
Goshaw, AT
Goulianos, K
Gramellini, E
Grinstein, S
Grosso-Pilcher, C
Group, RC
da Costa, JG
Hahn, SR
Han, JY
Happacher, F
Hara, K
Hare, M
Harr, RF
Harrington-Taber, T
Hatakeyama, K
Hays, C
Heinrich, J
Herndon, M
Hocker, A
Hong, Z
Hopkins, W
Hou, S
Hughes, RE
Husemann, U
Hussein, M
Huston, J
Introzzi, G
Iori, M
Ivanov, A
James, E
Jang, D
Jayatilaka, B
Jeon, EJ
Jindariani, S
Jones, M
Joo, KK
Jun, SY
Junk, TR
Kambeitz, M
Kamon, T
Karchin, PE
Kasmi, A
Kato, Y
Ketchum, W
Keung, J
Kilminster, B
Kim, DH
Kim, HS
Kim, JE
Kim, MJ
Kim, SB
Kim, SH
Kim, YK
Kim, YJ
Kimura, N
Kirby, M
Knoepfel, K
Kondo, K
Kong, DJ
Konigsberg, J
Kotwal, AV
Kreps, M
Kroll, J
Kruse, M
Kuhr, T
Kurata, M
Laasanen, AT
Lammel, S
Lancaster, M
Lannon, K
Latino, G
Lee, HS
Lee, JS
Leo, S
Leone, S
Lewis, JD
Limosani, A
Lipeles, E
Liu, H
Liu, Q
Liu, T
Lockwitz, S
Loginov, A
Lucchesi, D
Lueck, J
Lujan, P
Lukens, P
Lungu, G
Lys, J
Lysak, R
Madrak, R
Maestro, P
Malik, S
Manca, G
Manousakis-Katsikakis, A
Margaroli, F
Marino, P
Martinez, M
Matera, K
Mattson, ME
Mazzacane, A
Mazzanti, P
McNulty, R
Mehta, A
Mehtala, P
Mesropian, C
Miao, T
Mietlicki, D
Mitra, A
Miyake, H
Moed, S
Moggi, N
Moon, CS
Moore, R
Morello, MJ
Mukherjee, A
Muller, T
Murat, P
Mussini, M
Nachtman, J
Nagai, Y
Naganoma, J
Nakano, I
Napier, A
Nett, J
Neu, C
Nigmanov, T
Nodulman, L
Noh, SY
Norniella, O
Oakes, L
Oh, SH
Oh, YD
Oksuzian, I
Okusawa, T
Orava, R
Ortolan, L
Pagliarone, C
Palencia, E
Palni, P
Papadimitriou, V
Parker, W
Pauletta, G
Paulini, M
Paus, C
Phillips, TJ
Piacentino, G
Pianori, E
Pilot, J
Pitts, K
Plager, C
Pondrom, L
Poprocki, S
Potamianos, K
Prokoshin, F
Pranko, A
Ptohos, F
Punzi, G
Ranjan, N
Fernandez, IR
Renton, P
Rescigno, M
Riddick, T
Rimondi, F
Ristori, L
Robson, A
Rodriguez, T
Rolli, S
Ronzani, M
Roser, R
Rosner, JL
Ruffini, F
Ruiz, A
Russ, J
Rusu, V
Safonov, A
Sakumoto, WK
Sakurai, Y
Santi, L
Sato, K
Saveliev, V
Savoy-Navarro, A
Schlabach, P
Schmidt, EE
Schwarz, T
Scodellaro, L
Scuri, F
Seidel, S
Seiya, Y
Semenov, A
Sforza, F
Shalhout, SZ
Shears, T
Shepard, PF
Shimojima, M
Shochet, M
Shreyber-Tecker, I
Simonenko, A
Sinervo, P
Sliwa, K
Smith, JR
Snider, FD
Sorin, V
Song, H
Stancari, M
Denis, RS
Stelzer, B
Stelzer-Chilton, O
Stentz, D
Strologas, J
Sudo, Y
Sukhanov, A
Suslov, I
Takemasa, K
Takeuchi, Y
Tang, J
Tecchio, M
Teng, PK
Thom, J
Thomson, E
Thukral, V
Toback, D
Tokar, S
Tollefson, K
Tomura, T
Tonelli, D
Torre, S
Torretta, D
Totaro, P
Trovato, M
Ukegawa, F
Uozumi, S
Vaazquez, F
Velev, G
Vellidis, C
Vernieri, C
Vidal, M
Vilar, R
Vizan, J
Vogel, M
Volpi, G
Wagner, P
Wallny, R
Wang, SM
Warburton, A
Waters, D
Wester, WC
Whiteson, D
Wicklund, AB
Wilbur, S
Williams, HH
Wilson, JS
Wilson, P
Winer, BL
Wittich, P
Wolbers, S
Wolfe, H
Wright, T
Wu, X
Wu, Z
Yamamoto, K
Yamato, D
Yang, T
Yang, UK
Yang, YC
Yao, WM
Yeh, GP
Yi, K
Yoh, J
Yorita, K
Yoshida, T
Yu, GB
Yu, I
Zanetti, AM
Zeng, Y
Zhou, C
Zucchelli, S
AF Aaltonen, T.
Amerio, S.
Amidei, D.
Anastassov, A.
Annovi, A.
Antos, J.
Apollinari, G.
Appel, J. A.
Arisawa, T.
Artikov, A.
Asaadi, J.
Ashmanskas, W.
Auerbach, B.
Aurisano, A.
Azfar, F.
Badgett, W.
Bae, T.
Barbaro-Galtieri, A.
Barnes, V. E.
Barnett, B. A.
Barria, P.
Bartos, P.
Bauce, M.
Bedeschi, F.
Behari, S.
Bellettini, G.
Bellinger, J.
Benjamin, D.
Beretvas, A.
Bhatti, A.
Bland, K. R.
Blumenfeld, B.
Bocci, A.
Bodek, A.
Bortoletto, D.
Boudreau, J.
Boveia, A.
Brigliadori, L.
Bromberg, C.
Brucken, E.
Budagov, J.
Budd, H. S.
Burkett, K.
Busetto, G.
Bussey, P.
Butti, P.
Buzatu, A.
Calamba, A.
Camarda, S.
Campanelli, M.
Canelli, F.
Carls, B.
Carlsmith, D.
Carosi, R.
Carrillo, S.
Casal, B.
Casarsa, M.
Castro, A.
Catastini, P.
Cauz, D.
Cavaliere, V.
Cavalli-Sforza, M.
Cerri, A.
Cerrito, L.
Chen, Y. C.
Chertok, M.
Chiarelli, G.
Chlachidze, G.
Cho, K.
Chokheli, D.
Ciocci, M. A.
Clark, A.
Clarke, C.
Convery, M. E.
Conway, J.
Corbo, M.
Cordelli, M.
Cox, C. A.
Cox, D. J.
Cremonesi, M.
Cruz, D.
Cuevas, J.
Culbertson, R.
d'Ascenzo, N.
Datta, M.
De Barbaro, P.
Demortier, L.
Deninno, M.
Devoto, F.
d'Errico, M.
Di Canto, A.
Di Ruzza, B.
Dittmann, J. R.
D'Onofrio, M.
Donati, S.
Dorigo, M.
Driutti, A.
Ebina, K.
Edgar, R.
Elagin, A.
Erbacher, R.
Errede, S.
Esham, B.
Eusebi, R.
Farrington, S.
Fernandez Ramos, J. P.
Field, R.
Flanagan, G.
Forrest, R.
Franklin, M.
Freeman, J. C.
Frisch, H.
Funakoshi, Y.
Garfinkel, A. F.
Garosi, P.
Gerberich, H.
Gerchtein, E.
Giagu, S.
Giakoumopoulou, V.
Gibson, K.
Ginsburg, C. M.
Giokaris, N.
Giromini, P.
Giurgiu, G.
Glagolev, V.
Glenzinski, D.
Gold, M.
Goldin, D.
Golossanov, A.
Gomez, G.
Gomez-Ceballos, G.
Goncharov, M.
Gonzalez Lopez, O.
Gorelov, I.
Goshaw, A. T.
Goulianos, K.
Gramellini, E.
Grinstein, S.
Grosso-Pilcher, C.
Group, R. C.
da Costa, J. Guimaraes
Hahn, S. R.
Han, J. Y.
Happacher, F.
Hara, K.
Hare, M.
Harr, R. F.
Harrington-Taber, T.
Hatakeyama, K.
Hays, C.
Heinrich, J.
Herndon, M.
Hocker, A.
Hong, Z.
Hopkins, W.
Hou, S.
Hughes, R. E.
Husemann, U.
Hussein, M.
Huston, J.
Introzzi, G.
Iori, M.
Ivanov, A.
James, E.
Jang, D.
Jayatilaka, B.
Jeon, E. J.
Jindariani, S.
Jones, M.
Joo, K. K.
Jun, S. Y.
Junk, T. R.
Kambeitz, M.
Kamon, T.
Karchin, P. E.
Kasmi, A.
Kato, Y.
Ketchum, W.
Keung, J.
Kilminster, B.
Kim, D. H.
Kim, H. S.
Kim, J. E.
Kim, M. J.
Kim, S. B.
Kim, S. H.
Kim, Y. K.
Kim, Y. J.
Kimura, N.
Kirby, M.
Knoepfel, K.
Kondo, K.
Kong, D. J.
Konigsberg, J.
Kotwal, A. V.
Kreps, M.
Kroll, J.
Kruse, M.
Kuhr, T.
Kurata, M.
Laasanen, A. T.
Lammel, S.
Lancaster, M.
Lannon, K.
Latino, G.
Lee, H. S.
Lee, J. S.
Leo, S.
Leone, S.
Lewis, J. D.
Limosani, A.
Lipeles, E.
Liu, H.
Liu, Q.
Liu, T.
Lockwitz, S.
Loginov, A.
Lucchesi, D.
Lueck, J.
Lujan, P.
Lukens, P.
Lungu, G.
Lys, J.
Lysak, R.
Madrak, R.
Maestro, P.
Malik, S.
Manca, G.
Manousakis-Katsikakis, A.
Margaroli, F.
Marino, P.
Martinez, M.
Matera, K.
Mattson, M. E.
Mazzacane, A.
Mazzanti, P.
McNulty, R.
Mehta, A.
Mehtala, P.
Mesropian, C.
Miao, T.
Mietlicki, D.
Mitra, A.
Miyake, H.
Moed, S.
Moggi, N.
Moon, C. S.
Moore, R.
Morello, M. J.
Mukherjee, A.
Muller, Th.
Murat, P.
Mussini, M.
Nachtman, J.
Nagai, Y.
Naganoma, J.
Nakano, I.
Napier, A.
Nett, J.
Neu, C.
Nigmanov, T.
Nodulman, L.
Noh, S. Y.
Norniella, O.
Oakes, L.
Oh, S. H.
Oh, Y. D.
Oksuzian, I.
Okusawa, T.
Orava, R.
Ortolan, L.
Pagliarone, C.
Palencia, E.
Palni, P.
Papadimitriou, V.
Parker, W.
Pauletta, G.
Paulini, M.
Paus, C.
Phillips, T. J.
Piacentino, G.
Pianori, E.
Pilot, J.
Pitts, K.
Plager, C.
Pondrom, L.
Poprocki, S.
Potamianos, K.
Prokoshin, F.
Pranko, A.
Ptohos, F.
Punzi, G.
Ranjan, N.
Redondo Fernandez, I.
Renton, P.
Rescigno, M.
Riddick, T.
Rimondi, F.
Ristori, L.
Robson, A.
Rodriguez, T.
Rolli, S.
Ronzani, M.
Roser, R.
Rosner, J. L.
Ruffini, F.
Ruiz, A.
Russ, J.
Rusu, V.
Safonov, A.
Sakumoto, W. K.
Sakurai, Y.
Santi, L.
Sato, K.
Saveliev, V.
Savoy-Navarro, A.
Schlabach, P.
Schmidt, E. E.
Schwarz, T.
Scodellaro, L.
Scuri, F.
Seidel, S.
Seiya, Y.
Semenov, A.
Sforza, F.
Shalhout, S. Z.
Shears, T.
Shepard, P. F.
Shimojima, M.
Shochet, M.
Shreyber-Tecker, I.
Simonenko, A.
Sinervo, P.
Sliwa, K.
Smith, J. R.
Snider, F. D.
Sorin, V.
Song, H.
Stancari, M.
Denis, R. St.
Stelzer, B.
Stelzer-Chilton, O.
Stentz, D.
Strologas, J.
Sudo, Y.
Sukhanov, A.
Suslov, I.
Takemasa, K.
Takeuchi, Y.
Tang, J.
Tecchio, M.
Teng, P. K.
Thom, J.
Thomson, E.
Thukral, V.
Toback, D.
Tokar, S.
Tollefson, K.
Tomura, T.
Tonelli, D.
Torre, S.
Torretta, D.
Totaro, P.
Trovato, M.
Ukegawa, F.
Uozumi, S.
Vazquez, F.
Velev, G.
Vellidis, C.
Vernieri, C.
Vidal, M.
Vilar, R.
Vizan, J.
Vogel, M.
Volpi, G.
Wagner, P.
Wallny, R.
Wang, S. M.
Warburton, A.
Waters, D.
Wester, W. C., III
Whiteson, D.
Wicklund, A. B.
Wilbur, S.
Williams, H. H.
Wilson, J. S.
Wilson, P.
Winer, B. L.
Wittich, P.
Wolbers, S.
Wolfe, H.
Wright, T.
Wu, X.
Wu, Z.
Yamamoto, K.
Yamato, D.
Yang, T.
Yang, U. K.
Yang, Y. C.
Yao, W. -M.
Yeh, G. P.
Yi, K.
Yoh, J.
Yorita, K.
Yoshida, T.
Yu, G. B.
Yu, I.
Zanetti, A. M.
Zeng, Y.
Zhou, C.
Zucchelli, S.
CA CDF Collaboration
TI Search for Resonant Top-Antitop Production in the Lepton Plus Jets Decay
Mode Using the Full CDF Data Set
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID P(P)OVER-BAR COLLISIONS; QUARK PRODUCTION; TEV; T(T)OVER-BAR; PHYSICS;
DETECTOR
AB This Letter reports a search for a narrow resonant state decaying into two W bosons and two b quarks where one W boson decays leptonically and the other decays into a quark-antiquark pair. The search is particularly sensitive to top-antitop resonant production. We use the full data sample of proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron, corresponding to an integrated luminosity of 9.45 fb(-1). No evidence for resonant production is found, and upper limits on the production cross section times branching ratio for a narrow resonant state are extracted. Within a specific benchmark model, we exclude a Z' boson with mass, M-Z', below 915 GeV/c(2) decaying into a top-antitop pair at the 95% credibility level assuming a Z' boson decay width of Gamma(Z') = 0.012M(Z'). This is the most sensitive search for a narrow q (q) over bar -initiated t (t) over bar resonance in the mass region below 750 GeV/c(2). DOI: 10.1103/PhysRevLett.110.121802
C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece.
[Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain.
[Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA.
[Brigliadori, L.; Castro, A.; Deninno, M.; Gramellini, E.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy.
[Brigliadori, L.; Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy.
[Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA.
[Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Cuevas, J.; Gomez, G.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander 39005, Spain.
[Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia.
[Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia.
[Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia.
[Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA.
[Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Canelli, F.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hocker, A.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Liu, T.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA.
[Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Clark, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Bussey, P.; Buzatu, A.; Robson, A.; Denis, R. St.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA.
[Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
[Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA.
[Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea.
[Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Campanelli, M.; Cerrito, L.; Lancaster, M.; Riddick, T.; Waters, D.] UCL, London WC1E 6BT, England.
[Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain.
[Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA.
[Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada.
[Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada.
[Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Amidei, D.; Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bromberg, C.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA.
[Shreyber-Tecker, I.] ITEP, Moscow 117259, Russia.
[Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Hughes, R. E.; Lannon, K.; Pilot, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Okayama 7008530, Japan.
[Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka, Japan.
[Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England.
[Amerio, S.; Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy.
[Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.] Univ Padua, Padua, Italy.
[Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA.
[Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Cremonesi, M.; Di Canto, A.; Donati, S.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy.
[Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, Pisa, Italy.
[Barria, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy.
[Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Introzzi, G.] INFN Pavia, I-27100 Pavia, Italy.
[Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy.
[Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA.
[Bodek, A.; Budd, H. S.; De Barbaro, P.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA.
[Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Eusebi, R.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Safonov, A.; Thukral, V.; Toback, D.] Texas A&M Univ, College Stn, TX 77843 USA.
[Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl Trieste Udine, I-33100 Udine, Italy.
[Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy.
[Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy.
[Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan.
[Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA.
[Group, R. C.; Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA.
[Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan.
[Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA.
[Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA.
[Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA.
RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
RI Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; vilar,
rocio/P-8480-2014; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza,
Matteo/H-7102-2015; Prokoshin, Fedor/E-2795-2012; Introzzi,
Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Marino,
Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015;
Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov,
Andrew/A-7982-2013; Punzi, Giovanni/J-4947-2012; Grinstein,
Sebastian/N-3988-2014; Warburton, Andreas/N-8028-2013; Kim,
Soo-Bong/B-7061-2014; Robson, Aidan/G-1087-2011; maestro,
paolo/E-3280-2010; Chiarelli, Giorgio/E-8953-2012; Lysak,
Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro,
Luca/K-9091-2014
OI Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144;
Vidal Marono, Miguel/0000-0002-2590-5987; Hays,
Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271;
Robson, Aidan/0000-0002-1659-8284; Dorigo, Mirco/0000-0002-0681-6946;
Brucken, Jens Erik/0000-0001-6066-8756; Torre,
Stefano/0000-0002-7565-0118; Group, Robert/0000-0002-4097-5254;
Simonenko, Alexander/0000-0001-6580-3638; Lancaster,
Mark/0000-0002-8872-7292; Casarsa, Massimo/0000-0002-1353-8964;
Margaroli, Fabrizio/0000-0002-3869-0153; Latino,
Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380;
Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155;
ciocci, maria agnese /0000-0003-0002-5462; Prokoshin,
Fedor/0000-0001-6389-5399; Introzzi, Gianluca/0000-0002-1314-2580;
Piacentino, Giovanni/0000-0001-9884-2924; Marino,
Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov,
Igor/0000-0001-5570-0133; Annovi, Alberto/0000-0002-4649-4398; Ivanov,
Andrew/0000-0002-9270-5643; Punzi, Giovanni/0000-0002-8346-9052;
Grinstein, Sebastian/0000-0002-6460-8694; Warburton,
Andreas/0000-0002-2298-7315; maestro, paolo/0000-0002-4193-1288;
Chiarelli, Giorgio/0000-0001-9851-4816; Moon,
Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330
FU U.S. Department of Energy and National Science Foundation; Italian
Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture,
Sports, Science and Technology of Japan; Natural Sciences and
Engineering Research Council of Canada; National Science Council of the
Republic of China; Swiss National Science Foundation; A. P. Sloan
Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean
World Class University Program; National Research Foundation of Korea;
Science and Technology Facilities Council; Royal Society, United
Kingdom; Russian Foundation for Basic Research; Ministerio de Ciencia e
Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency;
Academy of Finland; Australian Research Council (ARC)
FX We thank the Fermilab staff and the technical staffs of the
participating institutions for their vital contributions. This work was
supported by the U.S. Department of Energy and National Science
Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the
Ministry of Education, Culture, Sports, Science and Technology of Japan;
the Natural Sciences and Engineering Research Council of Canada; the
National Science Council of the Republic of China; the Swiss National
Science Foundation; the A. P. Sloan Foundation; the Bundesministerium
fur Bildung und Forschung, Germany; the Korean World Class University
Program, the National Research Foundation of Korea; the Science and
Technology Facilities Council and the Royal Society, United Kingdom; the
Russian Foundation for Basic Research; the Ministerio de Ciencia e
Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D
Agency; the Academy of Finland; and the Australian Research Council
(ARC).
NR 44
TC 12
Z9 12
U1 2
U2 38
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 20
PY 2013
VL 110
IS 12
AR 121802
DI 10.1103/PhysRevLett.110.121802
PG 8
WC Physics, Multidisciplinary
SC Physics
GA 109ZO
UT WOS:000316411100004
ER
PT J
AU Alesini, D
Drago, A
Gallo, A
Guiducci, S
Milardi, C
Stella, A
Zobov, M
De Santis, S
Demma, T
Raimondi, P
AF Alesini, D.
Drago, A.
Gallo, A.
Guiducci, S.
Milardi, C.
Stella, A.
Zobov, M.
De Santis, S.
Demma, T.
Raimondi, P.
TI DA Phi NE Operation with Electron-Cloud-Clearing Electrodes
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID INTENSE PHOTON IRRADIATION; SECONDARY-ELECTRON; STORAGE-RINGS; POSITRON
RING; THIN-FILM; YIELD; INSTABILITY; EMISSION; BEAM; TIN
AB The effects of an electron cloud (e-cloud) on beam dynamics are one of the major factors limiting performances of high intensity positron, proton, and ion storage rings. In the electron-positron collider DA Phi NE, namely, a horizontal beam instability due to the electron-cloud effect has been identified as one of the main limitations on the maximum stored positron beam current and as a source of beam quality deterioration. During the last machine shutdown in order to mitigate such instability, special electrodes have been inserted in all dipole and wiggler magnets of the positron ring. It has been the first installation all over the world of this type since long metallic electrodes have been installed in all arcs of the collider positron ring and are currently used during the machine operation in collision. This has allowed a number of unprecedented measurements (e-cloud instabilities growth rate, transverse beam size variation, tune shifts along the bunch train) where the e-cloud contribution is clearly evidenced by turning the electrodes on and off. In this Letter we briefly describe a novel design of the electrodes, while the main focus is on experimental measurements. Here we report all results that clearly indicate the effectiveness of the electrodes for e-cloud suppression. DOI: 10.1103/PhysRevLett.110.124801
C1 [Alesini, D.; Drago, A.; Gallo, A.; Guiducci, S.; Milardi, C.; Stella, A.; Zobov, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[De Santis, S.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Demma, T.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France.
[Raimondi, P.] European Synchrotron Radiat Facil, F-38043 Grenoble 9, France.
RP Alesini, D (reprint author), Ist Nazl Fis Nucl, Lab Nazl Frascati, Via E Fermi 40, I-00044 Frascati, Italy.
FU European Commission under the FP7 project HiLumi LHC, GA [284404]; DOE,
USA; KEK, Japan; European Commission FP7 Program EuCARD, WP11.2 [227579]
FX The authors would like to thank A. Battisti, V. Lollo, and R. Sorchetti
for the technical support in the electrode design and installation, and
O. Coiro for his help in the voltage generator installation. The
research leading to these results has received partial funding from the
European Commission under the FP7 project HiLumi LHC, GA No. 284404,
co-funded by the DOE, USA and KEK, Japan and by the European Commission
FP7 Program EuCARD, WP11.2, Grant Agreement 227579.
NR 72
TC 4
Z9 4
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 20
PY 2013
VL 110
IS 12
AR 124801
DI 10.1103/PhysRevLett.110.124801
PG 6
WC Physics, Multidisciplinary
SC Physics
GA 109ZO
UT WOS:000316411100011
PM 25166811
ER
PT J
AU Chuang, YD
Lee, WS
Kung, YF
Sorini, AP
Moritz, B
Moore, RG
Patthey, L
Trigo, M
Lu, DH
Kirchmann, PS
Yi, M
Krupin, O
Langner, M
Zhu, Y
Zhou, SY
Reis, DA
Huse, N
Robinson, JS
Kaindl, RA
Schoenlein, RW
Johnson, SL
Forst, M
Doering, D
Denes, P
Schlotter, WF
Turner, JJ
Sasagawa, T
Hussain, Z
Shen, ZX
Devereaux, TP
AF Chuang, Y. D.
Lee, W. S.
Kung, Y. F.
Sorini, A. P.
Moritz, B.
Moore, R. G.
Patthey, L.
Trigo, M.
Lu, D. H.
Kirchmann, P. S.
Yi, M.
Krupin, O.
Langner, M.
Zhu, Y.
Zhou, S. Y.
Reis, D. A.
Huse, N.
Robinson, J. S.
Kaindl, R. A.
Schoenlein, R. W.
Johnson, S. L.
Foerst, M.
Doering, D.
Denes, P.
Schlotter, W. F.
Turner, J. J.
Sasagawa, T.
Hussain, Z.
Shen, Z. X.
Devereaux, T. P.
TI Real-Time Manifestation of Strongly Coupled Spin and Charge Order
Parameters in Stripe-Ordered La1.75Sr0.25NiO4 Nickelate Crystals Using
Time-Resolved Resonant X-Ray Diffraction
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID EXCITATIONS; LA2-XSRXNIO4; SCATTERING; SOLIDS
AB We investigate the order parameter dynamics of the stripe-ordered nickelate, La1.75Sr0.25NiO4, using time-resolved resonant x-ray diffraction. In spite of distinct spin and charge energy scales, the two order parameters' amplitude dynamics are found to be linked together due to strong coupling. Additionally, the vector nature of the spin sector introduces a longer reorientation time scale which is absent in the charge sector. These findings demonstrate that the correlation linking the symmetry-broken states does not unbind during the nonequilibrium process, and the time scales are not necessarily associated with the characteristic energy scales of individual degrees of freedom. DOI. 10.1103/PhysRevLett.110.127404
C1 [Chuang, Y. D.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Lee, W. S.; Kung, Y. F.; Sorini, A. P.; Moritz, B.; Moore, R. G.; Patthey, L.; Trigo, M.; Kirchmann, P. S.; Yi, M.; Reis, D. A.; Shen, Z. X.; Devereaux, T. P.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Sorini, A. P.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA.
[Moritz, B.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA.
[Moritz, B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Patthey, L.; Johnson, S. L.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
[Trigo, M.; Reis, D. A.] Stanford PULSE Inst, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Lu, D. H.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Krupin, O.] European XFEL GmbH, D-22607 Hamburg, Germany.
[Krupin, O.; Robinson, J. S.; Schlotter, W. F.; Turner, J. J.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Berkeley, CA 94720 USA.
[Langner, M.; Zhu, Y.; Zhou, S. Y.; Kaindl, R. A.; Schoenlein, R. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Huse, N.; Foerst, M.] Univ Hamburg, Ctr Free Electron Laser Sci, Max Planck Dept Struct Dynam, D-22761 Hamburg, Germany.
[Doering, D.; Denes, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA.
[Sasagawa, T.] Tokyo Inst Technol, Mat & Struct Lab, Kanagawa 2268503, Japan.
RP Chuang, YD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
EM leews@stanford.edu; zxshen@stanford.edu; tpd@stanford.edu
RI Johnson, Steven/B-3252-2008; Forst, Michael/D-8924-2012; Zhou,
Shuyun/A-5750-2009; Schoenlein, Robert/D-1301-2014; Sasagawa,
Takao/E-6666-2014; Kirchmann, Patrick/C-1195-2008; Moritz,
Brian/D-7505-2015; Huse, Nils/A-5712-2017
OI Johnson, Steven/0000-0001-6074-4894; Schoenlein,
Robert/0000-0002-6066-7566; Sasagawa, Takao/0000-0003-0149-6696;
Kirchmann, Patrick/0000-0002-4835-0654; Moritz,
Brian/0000-0002-3747-8484; Huse, Nils/0000-0002-3281-7600
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-AC02-76SF00515]; SLAC National
Accelerator Laboratory (SLAC); Stanford Institute for Materials and
Energy Science; SLAC Stanford Synchrotron Radiation Lightsource; SLAC
Stanford PULSE Institute; Lawrence Berkeley National Laboratory (LBNL)
Advanced Light Source; LBNL Materials Sciences Division; LBNL
Engineering Division; Alexander-von-Humboldt Foundation; Department of
Defense (DoD) through the National Defense Science and Engineering
Graduate (NDSEG) Fellowship; LCLS; Stanford University-SIMES; LBNL;
University of Hamburg through the BMBF Priority Program [FSP 301];
Center for Free Electron Laser Science (CFEL); [DE-AC02-05CH11231]
FX This research was supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering,
under Contract No. DE-AC02-76SF00515, SLAC National Accelerator
Laboratory (SLAC), Stanford Institute for Materials and Energy Science
(W. S. L., R. M., L. P., M. T., D. A. R., Y. F. K., A. P. S., B. M., T.
P. D., and Z. X. S.), SLAC Stanford Synchrotron Radiation Lightsource
(D. H. L.), SLAC Stanford PULSE Institute (M. T. and D. A. R.), and
under Contract No. DE-AC02-05CH11231, Lawrence Berkeley National
Laboratory (LBNL) Advanced Light Source (Y. D. C. and Z. H.), LBNL
Materials Sciences Division (Y. Z., S. Z., R. A. K., and R. W. S.), and
LBNL Engineering Division (D. D. and P. D.). P. S. K. acknowledges
support by the Alexander-von-Humboldt Foundation. Y. F. K. was supported
by the Department of Defense (DoD) through the National Defense Science
and Engineering Graduate (NDSEG) Fellowship. The SXR Instrument at LCLS
is funded by a consortium whose membership includes LCLS, Stanford
University-SIMES, LBNL, University of Hamburg through the BMBF Priority
Program No. FSP 301, and the Center for Free Electron Laser Science
(CFEL). Y. D. Chuang and W. S. Lee led the project and contributed
equally to this work.
NR 25
TC 21
Z9 21
U1 6
U2 93
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 20
PY 2013
VL 110
IS 12
AR 127404
DI 10.1103/PhysRevLett.110.127404
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 109ZO
UT WOS:000316411100019
PM 25166848
ER
PT J
AU Mo, AK
Brown, VL
Rugg, BK
DeVore, TC
Meyer, HM
Hu, XF
Hughes, WC
Augustine, BH
AF Mo, Alan K.
Brown, Victoria L.
Rugg, Brandon K.
DeVore, Thomas C.
Meyer, Harry M.
Hu, Xiaofeng
Hughes, W. Christopher
Augustine, Brian H.
TI Understanding the Mechanism of Solvent-Mediated Adhesion of Vacuum
Deposited Au and Pt Thin Films onto PMMA Substrates
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
DE thin films; surface modification; gold; electrodes; biomedical
applications
ID ALKANETHIOLATE MONOLAYERS; PENETRATION PATHWAYS; PLASMA TREATMENT; BOND
INSERTION; ARGON PLASMA; WATER-VAPOR; GOLD; POLYMERS; COMPLEXATION;
AGGREGATION
AB The adhesion of vapor deposited Au and Pt thin films onto poly(methyl methacrylate) (PMMA) substrates can be significantly enhanced by either spin-casting or vapor-exposure to hydrohalocarbon solvents prior to metal deposition. X-ray photoelectron spectroscopy (XPS) and evolved gas analysis Fourier transform infrared spectroscopy detect residual halogenated solvent at the PMMA surface which chemically activates the surface. Density functional theory (DFT) calculations show that the solvent molecules form a Lewis acid-base adduct with the ester oxygens in PMMA. DFT predicts that the deposited metal atom (M) inserts into the Chalogen (X) bond on either CHCl3 or CHBr3 to form a OMX interaction. This is consistent with MX bonding observed in high resolution XPS. A model is proposed in which the bond energy of the CX bond of the solvent must be weak enough so that it can be cleaved by the metal atom to form a MX bond. A negative control of PMMA exposed to CHF3 is shown to have no effect on Au or Pt adhesion since the bond dissociation energy of the CF bond is stronger than the CCl and CBr bond energy compared to the metal halide bond energies.
C1 [Mo, Alan K.; Brown, Victoria L.; Rugg, Brandon K.; DeVore, Thomas C.; Hu, Xiaofeng; Hughes, W. Christopher; Augustine, Brian H.] James Madison Univ, Ctr Mat Sci, Harrisonburg, VA 22807 USA.
[Meyer, Harry M.] Oak Ridge Natl Lab, Microscopy Grp, Oak Ridge, TN 37813 USA.
RP Mo, AK (reprint author), James Madison Univ, Ctr Mat Sci, MSC 4310, Harrisonburg, VA 22807 USA.
EM augustbh@jmu.edu
FU Division of Materials Research at the National Science Foundation,
NSF-RUI [DMR-1005641]; Department of Defense ASSURE/NSF-REU
[DMR-0851367]; Oak Ridge National Laboratory; Scientific User Facilities
Division, Office of Science, U.S. Department of Energy
FX The authors would like to acknowledge funding through the Polymers
Program at the Division of Materials Research at the National Science
Foundation, NSF-RUI Grant No. DMR-1005641, the Department of Defense
ASSURE/NSF-REU program, Grant No. DMR-0851367 and the Oak Ridge National
Laboratory's SHaRE User Facility, which is sponsored by the Scientific
User Facilities Division, Office of Science, U.S. Department of Energy.
NR 39
TC 2
Z9 2
U1 4
U2 61
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1616-301X
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD MAR 20
PY 2013
VL 23
IS 11
BP 1431
EP 1439
DI 10.1002/adfm.201201955
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 107ZY
UT WOS:000316261400008
ER
PT J
AU Chen, SY
Walsh, A
Gong, XG
Wei, SH
AF Chen, Shiyou
Walsh, Aron
Gong, Xin-Gao
Wei, Su-Huai
TI Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and
Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers
SO ADVANCED MATERIALS
LA English
DT Review
DE defects; kesterite; Cu2ZnSnS4 (CZTS); Cu2ZnSnSe4 (CZTSe);
first-principles calculations
ID PULSED-LASER DEPOSITION; ZN-SN PRECURSORS; THIN-FILMS;
OPTICAL-PROPERTIES; GRAIN-BOUNDARY; NANOCRYSTALS; EFFICIENCY;
SULFURIZATION; FABRICATION; CU
AB The kesterite-structured semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing considerable attention recently as the active layers in earth-abundant low-cost thin-film solar cells. The additional number of elements in these quaternary compounds, relative to binary and ternary semiconductors, results in increased flexibility in the material properties. Conversely, a large variety of intrinsic lattice defects can also be formed, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. Experimental identification of these defects is currently limited due to poor sample quality. Here recent theoretical research on defect formation and ionization in kesterite materials is reviewed based on new systematic calculations, and compared with the better studied chalcopyrite materials CuGaSe2 and CuInSe2. Four features are revealed and highlighted: (i) the strong phase-competition between the kesterites and the coexisting secondary compounds; (ii) the intrinsic p-type conductivity determined by the high population of acceptor CuZn antisites and Cu vacancies, and their dependence on the Cu/(Zn+Sn) and Zn/Sn ratio; (iii) the role of charge-compensated defect clusters such as [2CuZn+SnZn], [VCu+ZnCu] and [ZnSn+2ZnCu] and their contribution to non-stoichiometry; (iv) the electron-trapping effect of the abundant [2CuZn+SnZn] clusters, especially in Cu2ZnSnS4. The calculated properties explain the experimental observation that Cu poor and Zn rich conditions (Cu/(Zn+Sn) approximate to 0.8 and Zn/Sn approximate to 1.2) result in the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells when the S composition is high.
C1 [Chen, Shiyou] E China Normal Univ, Key Lab Polar Mat & Devices MOE, Shanghai 200241, Peoples R China.
[Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Chen, Shiyou; Gong, Xin-Gao] Fudan Univ, Surface Phys Lab, Key Lab Computat Phys Sci MOE, Shanghai 200433, Peoples R China.
[Walsh, Aron] Univ Bath, Dept Chem, Ctr Sustainable Chem Technol, Bath BA2 7AY, Avon, England.
RP Chen, SY (reprint author), E China Normal Univ, Key Lab Polar Mat & Devices MOE, Shanghai 200241, Peoples R China.
EM chensy@ee.ecnu.edu.cn; suhuai.wei@nrel.gov
RI Walsh, Aron/A-7843-2008; gong, xingao/D-6532-2011
OI Walsh, Aron/0000-0001-5460-7033;
FU National Natural Science Foundation [61106087, 10934002, 91233121];
Special Funds for Major State Basic Research [2012CB921401]; Research
Program of Shanghai municipality; MOE; PCSIRT; CC of ECNU; Royal
Society; EPSRC [EP/I01330X/1]; US Department of Energy
[DE-AC36-08GO28308]
FX The work in China is supported by National Natural Science Foundation
(No. 61106087, 10934002 and 91233121), the Special Funds for Major State
Basic Research (No. 2012CB921401), the Research Program of Shanghai
municipality and MOE, PCSIRT and CC of ECNU. A. W. acknowledges support
from the Royal Society for a University Research Fellowship and EPSRC
Grant No. EP/I01330X/1. The work at NREL is funded by the US Department
of Energy, under Contract No. DE-AC36-08GO28308.
NR 138
TC 315
Z9 318
U1 67
U2 737
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0935-9648
EI 1521-4095
J9 ADV MATER
JI Adv. Mater.
PD MAR 20
PY 2013
VL 25
IS 11
BP 1522
EP 1539
DI 10.1002/adma.201203146
PG 18
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 107KM
UT WOS:000316215700001
PM 23401176
ER
PT J
AU Weng, W
Pol, VG
Amine, K
AF Weng, Wei
Pol, Vilas G.
Amine, Khalil
TI Ultrasound Assisted Design of Sulfur/Carbon Cathodes with Partially
Fluorinated Ether Electrolytes for Highly Efficient Li/S Batteries
SO ADVANCED MATERIALS
LA English
DT Article
DE lithium-sulfur battery; ultrasound-assisted synthesis; fluorinated ether
electrolyte
ID LITHIUM-SULFUR BATTERIES; GRAPHENE OXIDE; ION BATTERIES; HIGH-CAPACITY;
ELECTROCHEMICAL PROPERTIES; DISCHARGE PERFORMANCE; LIQUID ELECTROLYTES;
ENCAPSULATED SULFUR; COMPOSITE; CELLS
AB A one-step, eco-friendly ultrasound-assisted process is established for the rapid synthesis of sulfur-carbon composite cathode materials, avoiding the widely used, energy inefficient "melt-down" process for Li-S batteries. It is demonstrated that, without inserting sulfur into pores of carbon, the coulombic efficiency of SC/Li cell in the new DOL/D2 electrolyte is greater than 96% for 100 cycles, which is far superior to the reported numerous electrolyte formulations.
[GRAPHICS]
.
C1 [Weng, Wei; Pol, Vilas G.; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Energy Storage Dept, Argonne, IL 60439 USA.
RP Pol, VG (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Energy Storage Dept, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM pol@anl.gov; amine@anl.gov
RI Amine, Khalil/K-9344-2013
FU Center for Electrical Energy Storage: Tailored Interfaces, an Energy
Frontier Research Center; U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences; U.S. Department of Energy Office of
Science laboratory [DE-AC02-06CH11357]
FX This work was supported by the Center for Electrical Energy Storage:
Tailored Interfaces, an Energy Frontier Research Center funded by the
U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences. Use of the FESEM and TEM facilities at Argonne's Center for
Nanoscale Materials (CNM) is also acknowledged. The authors wish to
thank Ms. Yunting Tao for her assistance with the electrochemical
testing.; The submitted manuscript has been created by UChicago Argonne,
LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a
U.S. Department of Energy Office of Science laboratory, is operated
under Contract No. DE-AC02-06CH11357. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Government.
NR 51
TC 109
Z9 109
U1 24
U2 455
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0935-9648
J9 ADV MATER
JI Adv. Mater.
PD MAR 20
PY 2013
VL 25
IS 11
BP 1608
EP 1615
DI 10.1002/adma.201204051
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 107KM
UT WOS:000316215700014
PM 23335003
ER
PT J
AU Coates, NE
Yee, SK
McCulloch, B
See, KC
Majumdar, A
Segalman, RA
Urban, JJ
AF Coates, Nelson E.
Yee, Shannon K.
McCulloch, Bryan
See, Kevin C.
Majumdar, Arun
Segalman, Rachel A.
Urban, Jeffrey J.
TI Effect of Interfacial Properties on Polymer-Nanocrystal Thermoelectric
Transport
SO ADVANCED MATERIALS
LA English
DT Article
DE nanocomposites; thermoelectrics; PEDOT:PSS; organic-inorganic
interfaces; solution-processing
ID CONDUCTIVITY; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); HETEROJUNCTIONS;
COMPOSITES; NANOWIRES; CELLS
AB The electrical behavior of a conducting-polymer/inorganic-nanowire composite is explained with a model in which carrier transport occurs predominantly through a highly conductive volume of polymer that exists at the polymer-nanowire interface. This result highlights the importance of controlling nanoscale interfaces for thermoelectric materials, and provides a general route for improving carrier transport in organic/inorganic composites.
C1 [Coates, Nelson E.; See, Kevin C.; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Yee, Shannon K.; McCulloch, Bryan; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
[Majumdar, Arun] US DOE, Adv Res Projects Agcy Energy, Washington, DC 20585 USA.
RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
EM segalman@berkeley.edu; jjurban@lbl.gov
RI McCulloch, Bryan/K-6916-2012; Foundry, Molecular/G-9968-2014;
OI McCulloch, Bryan/0000-0002-6635-7374; Segalman,
Rachel/0000-0002-4292-5103
FU Department of Energy BES-LBL Thermoelectrics Program; Office of Science,
Office of Basic Energy Sciences, Scientific User Facilities Division, of
the U. S. Department of Energy [DE-AC02-05CH11231]; John and Fannie
Hertz Foundation
FX We gratefully acknowledge support through the Department of Energy
BES-LBL Thermoelectrics Program. This work was partially performed at
the Molecular Foundry, Lawrence Berkeley National Laboratory, and was
supported by the Office of Science, Office of Basic Energy Sciences,
Scientific User Facilities Division, of the U. S. Department of Energy
under Contract No. DE-AC02-05CH11231. S. K. Yee acknowledges support
from the John and Fannie Hertz Foundation.
NR 34
TC 60
Z9 61
U1 23
U2 331
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0935-9648
J9 ADV MATER
JI Adv. Mater.
PD MAR 20
PY 2013
VL 25
IS 11
BP 1629
EP 1633
DI 10.1002/adma.201203915
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 107KM
UT WOS:000316215700017
PM 23355231
ER
PT J
AU Bhattacharya, S
Habib, S
Heitmann, K
Vikhlinin, A
AF Bhattacharya, Suman
Habib, Salman
Heitmann, Katrin
Vikhlinin, Alexey
TI DARK MATTER HALO PROFILES OF MASSIVE CLUSTERS: THEORY VERSUS
OBSERVATIONS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: clusters: general; galaxies: halos; methods: numerical
ID OBSERVATIONS COSMOLOGICAL INTERPRETATION; RELAXED GALAXY CLUSTERS; WEAK
LENSING ANALYSIS; POWER SPECTRUM; REDSHIFT DEPENDENCE; DENSITY PROFILES;
GAS FRACTION; CHANDRA; SIMULATIONS; EVOLUTION
AB Dark-matter-dominated cluster-scale halos act as an important cosmological probe and provide a key testing ground for structure formation theory. Focusing on their mass profiles, we have carried out (gravity-only) simulations of the concordance.CDM cosmology, covering a mass range of 2 x 10(12) to 2 x 10(15) h(-1) M-circle dot and a redshift range of z = 0-2, while satisfying the associated requirements of resolution and statistical control. When fitting to the Navarro-Frenk-White profile, our concentration-mass (c-M) relation differs in normalization and shape in comparison to previous studies that have limited statistics in the upper end of the mass range. We show that the flattening of the c-M relation with redshift is naturally expressed if c is viewed as a function of the peak height parameter, nu. Unlike the c-M relation, the slope of the c-nu relation is effectively constant over the redshift range z = 0-2, while the amplitude varies by similar to 30% for massive clusters. This relation is, however, not universal: using a simulation suite covering the allowed wCDM parameter space, we show that the c-nu relation varies by about +/- 20% as cosmological parameters are varied. At fixed mass, the c(M) distribution is well fit by a Gaussian with sigma(c)/< c > similar or equal to 1/3, independent of the radius at which the concentration is defined, the halo dynamical state, and the underlying cosmology. We compare the.CDM predictions with observations of halo concentrations from strong lensing, weak lensing, galaxy kinematics, and X-ray data, finding good agreement for massive clusters (M-vir > 4 x 10(14) h(-1) M-circle dot), but with some disagreements at lower masses. Because of uncertainty in observational systematics and modeling of baryonic physics, the significance of these discrepancies remains unclear.
C1 [Bhattacharya, Suman; Habib, Salman; Heitmann, Katrin] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Bhattacharya, Suman; Habib, Salman; Heitmann, Katrin] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Habib, Salman; Heitmann, Katrin] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
[Vikhlinin, Alexey] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Vikhlinin, Alexey] Space Res Inst IKI, Moscow 117997, Russia.
RP Bhattacharya, S (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
FU Los Alamos National Laboratory Institutional Computing initiative; DOE
[W-7405-ENG-36]
FX It is a pleasure to acknowledge discussions and collaborations with
Joanne Cohn, Zarija Lukic, Darren Reed, Alexey Voevodkin, and Martin
White. We acknowledge several motivating conversations with Masahiro
Takada (S.H.) and Mike Gladders (S.H. and K.H.). We thank Volker
Springel for discussions and for making GADGET-2 publicly available. We
are indebted to Patricia Fasel and Adrian Pope for their contributions
to the HACC analysis framework. We thank Anatoly Klypin and Francisco
Prada for pointing out a numerical error in an earlier version of the
Appendix (now corrected) and for discussions of results obtained by our
two groups. A special acknowledgment is due to the resource allocation
awarded to us on the hybrid supercomputer Cerrillos and other clusters
under the Los Alamos National Laboratory Institutional Computing
initiative. Part of this research was supported by the DOE under
contract W-7405-ENG-36. The authors acknowledge support from the LDRD
programs at Los Alamos National Laboratory and Argonne National
Laboratory, where analysis was performed on the Eureka cluster. S.B. and
K.H. were supported in part by NASA.
NR 83
TC 69
Z9 69
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 20
PY 2013
VL 766
IS 1
AR 32
DI 10.1088/0004-637X/766/1/32
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 105GH
UT WOS:000316054000032
ER
PT J
AU Ding, X
Lookman, T
Zhao, Z
Saxena, A
Sun, J
Salje, EKH
AF Ding, X.
Lookman, T.
Zhao, Z.
Saxena, A.
Sun, J.
Salje, E. K. H.
TI Dynamically strained ferroelastics: Statistical behavior in elastic and
plastic regimes
SO PHYSICAL REVIEW B
LA English
DT Article
ID STRETCHED-EXPONENTIAL RELAXATION; HIGH-TC SUPERCONDUCTORS;
DIELECTRIC-RELAXATION; COMPUTER-SIMULATION; SUPERCOOLED LIQUIDS;
PHASE-TRANSITION; CRACKLING NOISE; TWEED TEXTURE; DOMAIN-WALLS;
ISING-MODELS
AB The dynamic evolution in ferroelastic crystals under external shear is explored by computer simulation of a two-dimensional model. The characteristic geometrical patterns obtained during shear deformation include dynamic tweed in the elastic regime as well as interpenetrating needle domains in the plastic regime. As a result, the statistics of jerk energy differ in the elastic and plastic regimes. In the elastic regime the distributions of jerk energy are sensitive to temperature and initial configurations. However, in the plastic regime the jerk distributions are rather robust and do not depend much on the details of the configurations, although the geometrical pattern formed after yield is strongly influenced by the elastic constants of the materials and the configurations we used. Specifically, for all geometrical configurations we studied, the energy distribution of jerks shows a power-law noise pattern P(E) similar to E-(gamma-1) (gamma-1 = 1.3-2) at low temperatures and a Vogel-Fulcher distribution P(E) similar to exp-(E/E-0) at high temperatures. More complex behavior occurs at the crossover between these two regimes where our simulated jerk distributions are very well described by a generalized Poisson distributions P(E) similar to E-(gamma-1) exp-(E/E-0)(n) with n = 0.4-0.5 and gamma-1 approximate to 0 (Kohlrausch law). The geometrical mechanisms for the evolution of the ferroelastic microstructure under strain deformation remain similar in all thermal regimes, whereas their thermodynamic behavior differs dramatically: on heating, from power-law statistics via the Kohlrausch law to a Vogel-Fulcher law. There is hence no simple way to predict the local evolution of the twin microstructure from just the observed statistical behavior of a ferroelastic crystal. It is shown that the Poisson distribution is a convenient way to describe the crossover behavior contained in all the experimental data without recourse to specific scaling functions or temperature-dependent cutoff lengths. DOI: 10.1103/PhysRevB.87.094109
C1 [Ding, X.; Zhao, Z.; Sun, J.] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.
[Ding, X.; Lookman, T.; Saxena, A.; Salje, E. K. H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Ding, X.; Lookman, T.; Saxena, A.; Salje, E. K. H.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Salje, E. K. H.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England.
RP Ding, X (reprint author), Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.
EM dingxd@mail.xjtu.edu.cn; ekhard@esc.cam.ac.uk
RI Ding, Xiangdong/K-4971-2013; Salje, Ekhard/M-2931-2013
OI Ding, Xiangdong/0000-0002-1220-3097; Salje, Ekhard/0000-0002-8781-6154
FU Natural Science Foundation of China [51171140, 51231008]; National Basic
Research program of China [2010CB631003, 2012CB619402]; Program of
Introducing Talents of Discipline to Universities in China [B06025];
Leverhulme Foundation; Engineering and Physical Sciences Research
Council; US Department of Energy at Los Alamos National Laboratory
[DE-AC52-06NA25396]
FX X.D., Z.Z., and J.S. appreciate the support of the Natural Science
Foundation of China (No. 51171140 and No. 51231008), the National Basic
Research program of China (No. 2010CB631003 and No. 2012CB619402), and
the Program of Introducing Talents of Discipline to Universities in
China (No. B06025). E.K.H.S. is grateful to the Leverhulme Foundation
and the Engineering and Physical Sciences Research Council for support.
This work was supported in part by US Department of Energy at Los Alamos
National Laboratory (No. DE-AC52-06NA25396).
NR 57
TC 17
Z9 17
U1 1
U2 45
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 20
PY 2013
VL 87
IS 9
AR 094109
DI 10.1103/PhysRevB.87.094109
PG 11
WC Physics, Condensed Matter
SC Physics
GA 110AD
UT WOS:000316413100001
ER
PT J
AU Aartsen, MG
Abbasi, R
Abdou, Y
Ackermann, M
Adams, J
Aguilar, JA
Ahlers, M
Altmann, D
Andeen, K
Auffenberg, J
Bai, X
Baker, M
Barwick, SW
Baum, V
Bay, R
Beattie, K
Beatty, JJ
Bechet, S
Tjus, JB
Becker, KH
Bell, M
Benabderrahmane, ML
BenZvi, S
Berdermann, J
Berghaus, P
Berley, D
Bernardini, E
Bertrand, D
Besson, DZ
Bindig, D
Bissok, M
Blaufuss, E
Blumenthal, J
Boersma, DJ
Bohaichuk, S
Bohm, C
Bose, D
Boser, S
Botner, O
Brayeur, L
Brown, AM
Bruijn, R
Brunner, J
Buitink, S
Carson, M
Casey, J
Casier, M
Chirkin, D
Christy, B
Clark, K
Clevermann, F
Cohen, S
Cowen, DF
Silva, AHC
Danninger, M
Daughhetee, J
Davis, JC
De Clercq, C
De Ridder, S
Descamps, F
Desiati, P
de Vries-Uiterweerd, G
DeYoung, T
Diaz-Velez, JC
Dreyer, J
Dumm, JP
Dunkman, M
Eagan, R
Eisch, J
Ellsworth, RW
Engdegard, O
Euler, S
Evenson, PA
Fadiran, O
Fazely, AR
Fedynitch, A
Feintzeig, J
Feusels, T
Filimonov, K
Finley, C
Fischer-Wasels, T
Flis, S
Franckowiak, A
Franke, R
Frantzen, K
Fuchs, T
Gaisser, TK
Gallagher, J
Gerhardt, L
Gladstone, L
Glusenkamp, T
Goldschmidt, A
Golup, G
Goodman, JA
Gora, D
Grant, D
Gross, A
Grullon, S
Gurtner, M
Ha, C
Ismail, AH
Hallgren, A
Halzen, F
Hanson, K
Heereman, D
Heimann, P
Heinen, D
Helbing, K
Hellauer, R
Hickford, S
Hill, GC
Hoffman, KD
Hoffmann, R
Homeier, A
Hoshina, K
Huelsnitz, W
Hulth, PO
Hultqvist, K
Hussain, S
Ishihara, A
Jacobi, E
Jacobsen, J
Japaridze, GS
Jlelati, O
Kappes, A
Karg, T
Karle, A
Kiryluk, J
Kislat, F
Klas, J
Klein, SR
Kohne, JH
Kohnen, G
Kolanoski, H
Kopke, L
Kopper, C
Kopper, S
Koskinen, DJ
Kowalski, M
Krasberg, M
Kroll, G
Kunnen, J
Kurahashi, N
Kuwabara, T
Labare, M
Landsman, H
Larson, MJ
Lauer, R
Lesiak-Bzdak, M
Lunemann, J
Madsen, J
Maruyama, R
Mase, K
Matis, HS
McNally, F
Meagher, K
Merck, M
Meszaros, P
Meures, T
Miarecki, S
Middell, E
Milke, N
Miller, J
Mohrmann, L
Montaruli, T
Morse, R
Nahnhauer, R
Naumann, U
Nowicki, SC
Nygren, DR
Obertacke, A
Odrowski, S
Olivas, A
Olivo, M
O'Murchadha, A
Panknin, S
Paul, L
Pepper, JA
de los Heros, CP
Pieloth, D
Pirk, N
Posselt, J
Price, PB
Przybylski, GT
Radel, L
Rawlins, K
Redl, P
Resconi, E
Rhode, W
Ribordy, M
Richman, M
Riedel, B
Rodrigues, JP
Rothmaier, F
Rott, C
Ruhe, T
Ruzybayev, B
Ryckbosch, D
Saba, SM
Salameh, T
Sander, HG
Santander, M
Sarkar, S
Schatto, K
Scheel, M
Scheriau, F
Schmidt, T
Schmitz, M
Schoenen, S
Schoneberg, S
Schonherr, L
Schonwald, A
Schukraft, A
Schulte, L
Schulz, O
Seckel, D
Seo, SH
Sestayo, Y
Seunarine, S
Sheremata, C
Smith, MWE
Soiron, M
Soldin, D
Spiczak, GM
Spiering, C
Stamatikos, M
Stanev, T
Stasik, A
Stezelberger, T
Stokstad, RG
Stossl, A
Strahler, EA
Strom, R
Sullivan, GW
Taavola, H
Taboada, I
Tamburro, A
Ter-Antonyan, S
Tilav, S
Toale, PA
Toscano, S
Usner, M
van der Drift, D
van Eijndhoven, N
Van Overloop, A
van Santen, J
Vehring, M
Voge, M
Vraeghe, M
Walck, C
Waldenmaier, T
Wallraff, M
Walter, M
Wasserman, R
Weaver, C
Wendt, C
Westerhoff, S
Whitehorn, N
Wiebe, K
Wiebusch, CH
Williams, DR
Wissing, H
Wolf, M
Wood, TR
Woschnagg, K
Xu, C
Xu, DL
Xu, XW
Yanez, JP
Yodh, G
Yoshida, S
Zarzhitsky, P
Ziemann, J
Zierke, S
Zilles, A
Zoll, M
AF Aartsen, M. G.
Abbasi, R.
Abdou, Y.
Ackermann, M.
Adams, J.
Aguilar, J. A.
Ahlers, M.
Altmann, D.
Andeen, K.
Auffenberg, J.
Bai, X.
Baker, M.
Barwick, S. W.
Baum, V.
Bay, R.
Beattie, K.
Beatty, J. J.
Bechet, S.
Tjus, J. Becker
Becker, K. -H.
Bell, M.
Benabderrahmane, M. L.
BenZvi, S.
Berdermann, J.
Berghaus, P.
Berley, D.
Bernardini, E.
Bertrand, D.
Besson, D. Z.
Bindig, D.
Bissok, M.
Blaufuss, E.
Blumenthal, J.
Boersma, D. J.
Bohaichuk, S.
Bohm, C.
Bose, D.
Boeser, S.
Botner, O.
Brayeur, L.
Brown, A. M.
Bruijn, R.
Brunner, J.
Buitink, S.
Carson, M.
Casey, J.
Casier, M.
Chirkin, D.
Christy, B.
Clark, K.
Clevermann, F.
Cohen, S.
Cowen, D. F.
Silva, A. H. Cruz
Danninger, M.
Daughhetee, J.
Davis, J. C.
De Clercq, C.
De Ridder, S.
Descamps, F.
Desiati, P.
de Vries-Uiterweerd, G.
DeYoung, T.
Diaz-Velez, J. C.
Dreyer, J.
Dumm, J. P.
Dunkman, M.
Eagan, R.
Eisch, J.
Ellsworth, R. W.
Engdegard, O.
Euler, S.
Evenson, P. A.
Fadiran, O.
Fazely, A. R.
Fedynitch, A.
Feintzeig, J.
Feusels, T.
Filimonov, K.
Finley, C.
Fischer-Wasels, T.
Flis, S.
Franckowiak, A.
Franke, R.
Frantzen, K.
Fuchs, T.
Gaisser, T. K.
Gallagher, J.
Gerhardt, L.
Gladstone, L.
Gluesenkamp, T.
Goldschmidt, A.
Golup, G.
Goodman, J. A.
Gora, D.
Grant, D.
Gross, A.
Grullon, S.
Gurtner, M.
Ha, C.
Ismail, A. Haj
Hallgren, A.
Halzen, F.
Hanson, K.
Heereman, D.
Heimann, P.
Heinen, D.
Helbing, K.
Hellauer, R.
Hickford, S.
Hill, G. C.
Hoffman, K. D.
Hoffmann, R.
Homeier, A.
Hoshina, K.
Huelsnitz, W.
Hulth, P. O.
Hultqvist, K.
Hussain, S.
Ishihara, A.
Jacobi, E.
Jacobsen, J.
Japaridze, G. S.
Jlelati, O.
Kappes, A.
Karg, T.
Karle, A.
Kiryluk, J.
Kislat, F.
Klaes, J.
Klein, S. R.
Koehne, J-H.
Kohnen, G.
Kolanoski, H.
Koepke, L.
Kopper, C.
Kopper, S.
Koskinen, D. J.
Kowalski, M.
Krasberg, M.
Kroll, G.
Kunnen, J.
Kurahashi, N.
Kuwabara, T.
Labare, M.
Landsman, H.
Larson, M. J.
Lauer, R.
Lesiak-Bzdak, M.
Luenemann, J.
Madsen, J.
Maruyama, R.
Mase, K.
Matis, H. S.
McNally, F.
Meagher, K.
Merck, M.
Meszaros, P.
Meures, T.
Miarecki, S.
Middell, E.
Milke, N.
Miller, J.
Mohrmann, L.
Montaruli, T.
Morse, R.
Nahnhauer, R.
Naumann, U.
Nowicki, S. C.
Nygren, D. R.
Obertacke, A.
Odrowski, S.
Olivas, A.
Olivo, M.
O'Murchadha, A.
Panknin, S.
Paul, L.
Pepper, J. A.
de los Heros, C. Perez
Pieloth, D.
Pirk, N.
Posselt, J.
Price, P. B.
Przybylski, G. T.
Raedel, L.
Rawlins, K.
Redl, P.
Resconi, E.
Rhode, W.
Ribordy, M.
Richman, M.
Riedel, B.
Rodrigues, J. P.
Rothmaier, F.
Rott, C.
Ruhe, T.
Ruzybayev, B.
Ryckbosch, D.
Saba, S. M.
Salameh, T.
Sander, H. -G.
Santander, M.
Sarkar, S.
Schatto, K.
Scheel, M.
Scheriau, F.
Schmidt, T.
Schmitz, M.
Schoenen, S.
Schoeneberg, S.
Schoenherr, L.
Schoenwald, A.
Schukraft, A.
Schulte, L.
Schulz, O.
Seckel, D.
Seo, S. H.
Sestayo, Y.
Seunarine, S.
Sheremata, C.
Smith, M. W. E.
Soiron, M.
Soldin, D.
Spiczak, G. M.
Spiering, C.
Stamatikos, M.
Stanev, T.
Stasik, A.
Stezelberger, T.
Stokstad, R. G.
Stoessl, A.
Strahler, E. A.
Strom, R.
Sullivan, G. W.
Taavola, H.
Taboada, I.
Tamburro, A.
Ter-Antonyan, S.
Tilav, S.
Toale, P. A.
Toscano, S.
Usner, M.
van der Drift, D.
van Eijndhoven, N.
Van Overloop, A.
van Santen, J.
Vehring, M.
Voge, M.
Vraeghe, M.
Walck, C.
Waldenmaier, T.
Wallraff, M.
Walter, M.
Wasserman, R.
Weaver, Ch.
Wendt, C.
Westerhoff, S.
Whitehorn, N.
Wiebe, K.
Wiebusch, C. H.
Williams, D. R.
Wissing, H.
Wolf, M.
Wood, T. R.
Woschnagg, K.
Xu, C.
Xu, D. L.
Xu, X. W.
Yanez, J. P.
Yodh, G.
Yoshida, S.
Zarzhitsky, P.
Ziemann, J.
Zierke, S.
Zilles, A.
Zoll, M.
CA IceCube Collaboration
TI Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory
SO PHYSICAL REVIEW D
LA English
DT Article
ID MOLECULAR CLOUDS; HESS; DISCOVERY; EMISSION; TEV; PLANE; TELESCOPE;
RADIATION; MILAGRO
AB Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies above similar to 500 GeV at the surface, which provides an efficient veto system for hadronic air showers with energies above 1 PeV. One year of data from the 40-string IceCube configuration was used to perform a search for point sources and a Galactic diffuse signal. No sources were found, resulting in a 90% C.L. upper limit on the ratio of gamma rays to cosmic rays of 1.2 x 10(-3) for the flux coming from the Galactic plane region (-80 degrees less than or similar to l less than or similar to -30 degrees; -10 degrees less than or similar to b less than or similar to 5 degrees) in the energy range 1.2-6.0 PeV. In the same energy range, point source fluxes with E-2 spectra have been excluded at a level of (E/TeV)(2)d Phi/dE similar to 10(-12)-10(-11) cm(-2) s(-1) TeV-1 depending on source declination. The complete IceCube detector will have a better sensitivity (due to the larger detector size), improved reconstruction, and vetoing techniques. Preliminary data from the nearly final IceCube detector configuration have been used to estimate the 5-yr sensitivity of the full detector. It is found to be more than an order of magnitude better, allowing the search for PeV extensions of known TeV gamma-ray emitters. DOI: 10.1103/PhysRevD.87.062002
C1 [Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Heimann, P.; Heinen, D.; Paul, L.; Raedel, L.; Scheel, M.; Schoenen, S.; Schoenherr, L.; Schukraft, A.; Soiron, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.; Zierke, S.; Zilles, A.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany.
[Aartsen, M. G.; Hill, G. C.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia.
[Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA.
[Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA.
[Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA.
[Bay, R.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; van der Drift, D.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Beattie, K.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; van der Drift, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Altmann, D.; Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Tjus, J. Becker; Dreyer, J.; Fedynitch, A.; Olivo, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany.
[Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Schulte, L.; Stasik, A.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany.
[Bechet, S.; Bertrand, D.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.] Univ Libre Brussels, Sci Fac CP230, B-1050 Brussels, Belgium.
[Bose, D.; Brayeur, L.; Buitink, S.; Casier, M.; De Clercq, C.; Golup, G.; Kunnen, J.; Labare, M.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium.
[Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan.
[Adams, J.; Brown, A. M.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand.
[Berley, D.; Blaufuss, E.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J-H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany.
[Bohaichuk, S.; Grant, D.; Nowicki, S. C.; Sheremata, C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada.
[Aguilar, J. A.; Montaruli, T.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland.
[Abdou, Y.; Carson, M.; De Ridder, S.; de Vries-Uiterweerd, G.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Ryckbosch, D.; Van Overloop, A.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium.
[Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Bruijn, R.; Cohen, S.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland.
[Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
[Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Descamps, F.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Descamps, F.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA.
[Baum, V.; Koepke, L.; Kroll, G.; Luenemann, J.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany.
[Kohnen, G.] Univ Mons, B-7000 Mons, Belgium.
[Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany.
[Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England.
[Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA.
[Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.
[Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden.
[Kiryluk, J.; Lesiak-Bzdak, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Larson, M. J.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Cowen, D. F.; Meszaros, P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Bell, M.; Clark, K.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Koskinen, D. J.; Meszaros, P.; Salameh, T.; Smith, M. W. E.; Wasserman, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Boersma, D. J.; Botner, O.; Engdegard, O.; Hallgren, A.; de los Heros, C. Perez; Strom, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden.
[Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany.
[Ackermann, M.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Bernardini, E.; Brunner, J.; Silva, A. H. Cruz; Franke, R.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kislat, F.; Lauer, R.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Pirk, N.; Schoenwald, A.; Spiering, C.; Stoessl, A.; Walter, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany.
[Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA.
[Buitink, S.] Univ Groningen, KVI, NL-9747 AA Groningen, Netherlands.
[Huelsnitz, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy.
[Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Buitink, S (reprint author), Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium.
EM s.j.buitink@rug.nl
RI Taavola, Henric/B-4497-2011; Brunner, Juergen/G-3540-2015; Aguilar
Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Beatty,
James/D-9310-2011; Sarkar, Subir/G-5978-2011; Tjus, Julia/G-8145-2012;
Wiebusch, Christopher/G-6490-2012; Auffenberg, Jan/D-3954-2014;
Koskinen, David/G-3236-2014
OI Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X;
Carson, Michael/0000-0003-0400-7819; Perez de los Heros,
Carlos/0000-0002-2084-5866; Benabderrahmane, Mohamed
Lotfi/0000-0003-4410-5886; Brunner, Juergen/0000-0002-5052-7236; Aguilar
Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama,
Reina/0000-0003-2794-512X; Beatty, James/0000-0003-0481-4952; Rott,
Carsten/0000-0002-6958-6033; Ter-Antonyan, Samvel/0000-0002-5788-1369;
Schukraft, Anne/0000-0002-9112-5479; Sarkar, Subir/0000-0002-3542-858X;
Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg,
Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917
FU U.S. National Science Foundation-Office of Polar Programs; U.S. National
Science Foundation-Physics Division; University of Wisconsin Alumni
Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid
infrastructure at the University of Wisconsin-Madison; Open Science Grid
(OSG) grid infrastructure; U.S. Department of Energy, and National
Energy Research Scientific Computing Center; Louisiana Optical Network
Initiative (LONI) grid computing resources; National Science and
Engineering Research Council of Canada; Swedish Research Council;
Swedish Polar Research Secretariat; Swedish National Infrastructure for
Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German
Ministry for Education and Research (BMBF); Deutsche
Forschungsgemeinschaft (DFG); Research Department of Plasmas with
Complex Interactions (Bochum), Germany; Fund for Scientific Research
(FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage
scientific and technological research in industry (IWT); Belgian Federal
Science Policy Office (Belspo); University of Oxford, United Kingdom;
Marsden Fund, New Zealand; Australian Research Council; Japan Society
for Promotion of Science (JSPS); Swiss National Science Foundation
(SNSF), Switzerland
FX We acknowledge the support from the following agencies: U.S. National
Science Foundation-Office of Polar Programs, U.S. National Science
Foundation-Physics Division, University of Wisconsin Alumni Research
Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure
at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid
infrastructure; U.S. Department of Energy, and National Energy Research
Scientific Computing Center, the Louisiana Optical Network Initiative
(LONI) grid computing resources; National Science and Engineering
Research Council of Canada; Swedish Research Council, Swedish Polar
Research Secretariat, Swedish National Infrastructure for Computing
(SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German
Ministry for Education and Research (BMBF), Deutsche
Forschungsgemeinschaft (DFG), Research Department of Plasmas with
Complex Interactions (Bochum), Germany; Fund for Scientific Research
(FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage
scientific and technological research in industry (IWT), Belgian Federal
Science Policy Office (Belspo); University of Oxford, United Kingdom;
Marsden Fund, New Zealand; Australian Research Council; Japan Society
for Promotion of Science (JSPS); and the Swiss National Science
Foundation (SNSF), Switzerland.
NR 37
TC 21
Z9 21
U1 1
U2 16
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD MAR 20
PY 2013
VL 87
IS 6
AR 062002
DI 10.1103/PhysRevD.87.062002
PG 15
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 110CB
UT WOS:000316418600002
ER
PT J
AU Abramowicz, H
Abt, I
Adamczyk, L
Adamus, M
Aggarwal, R
Antonelli, S
Antonioli, P
Antonov, A
Arneodo, M
Arslan, O
Aushev, V
Aushev, Y
Bachynska, O
Bamberger, A
Barakbaev, AN
Barbagli, G
Bari, G
Barreiro, F
Bartosik, N
Bartsch, D
Basile, M
Behnke, O
Behr, J
Behrens, U
Bellagamba, L
Bertolin, A
Bhadra, S
Bindi, M
Blohm, C
Bokhonov, V
Bold, T
Bondarenko, K
Boos, EG
Borras, K
Boscherini, D
Bot, D
Brock, I
Brownson, E
Brugnera, R
Brummer, N
Bruni, A
Bruni, G
Brzozowska, B
Bussey, PJ
Bylsma, B
Caldwell, A
Capua, M
Carlin, R
Catterall, CD
Chekanov, S
Chwastowski, J
Ciborowski, J
Ciesielski, R
Cifarelli, L
Cindolo, F
Contin, A
Cooper-Sarkar, AM
Coppola, N
Corradi, M
Corriveau, F
Costa, M
D'Agostini, G
Dal Corso, F
Del Peso, J
Dementiev, RK
De Pasquale, S
Derrick, M
Devenish, RCE
Dobur, D
Dolgoshein, BA
Dolinska, G
Doyle, AT
Drugakov, V
Durkin, LS
Dusini, S
Eisenberg, Y
Ermolov, PF
Eskreys, A
Fang, S
Fazio, S
Ferrando, J
Ferrero, MI
Figiel, J
Foster, B
Gach, G
Galas, A
Gallo, E
Garfagnini, A
Geiser, A
Gialas, I
Gizhko, A
Gladilin, LK
Gladkov, D
Glasman, C
Gogota, O
Golubkov, YA
Gottlicher, P
Grabowska-Bold, I
Grebenyuk, J
Gregor, I
Grigorescu, G
Grzelak, G
Gueta, O
Guzik, M
Gwenlan, C
Haas, T
Hain, W
Hamatsu, R
Hart, JC
Hartmann, H
Hartner, G
Hilger, E
Hochman, D
Hori, R
Huttmann, A
Ibrahim, ZA
Iga, Y
Ingbir, R
Ishitsuka, M
Jakob, HP
Januschek, F
Jones, TW
Juengst, M
Kadenko, I
Kahle, B
Kananov, S
Kanno, T
Karshon, U
Karstens, F
Katkov, II
Kaur, M
Kaur, P
Keramidas, A
Khein, LA
Kim, JY
Kisielewska, D
Kitamura, S
Klanner, R
Klein, U
Koffeman, E
Kondrashova, N
Kononenko, O
Kooijman, P
Korol, I
Korzhavina, IA
Kotanski, A
Kotz, U
Kowalski, H
Kuprash, O
Kuze, M
Lee, A
Levchenko, BB
Levy, A
Libov, V
Limentani, S
Ling, TY
Lisovyi, M
Lobodzinska, E
Lohmann, W
Lohr, B
Lohrmann, E
Long, KR
Longhin, A
Lontkovskyi, D
Lukina, OY
Maeda, J
Magill, S
Makarenko, I
Malka, J
Mankel, R
Margotti, A
Marini, G
Martin, JF
Mastroberardino, A
Mattingly, MCK
Melzer-Pellmann, IA
Mergelmeyer, S
Miglioranzi, S
Idris, FM
Monaco, V
Montanari, A
Morris, JD
Mujkic, K
Musgrave, B
Nagano, K
Namsoo, T
Nania, R
Nigro, A
Ning, Y
Nobe, T
Notz, D
Nowak, RJ
Nuncio-Quiroz, AE
Oh, BY
Okazaki, N
Olkiewicz, K
Onishchuk, Y
Papageorgiu, K
Parenti, A
Paul, E
Pawlak, JM
Pawlik, B
Pelfer, PG
Pellegrino, A
Perlanski, W
Perrey, H
Piotrzkowski, K
Plucinski, P
Pokrovskiy, NS
Polini, A
Proskuryakov, AS
Przybycien, M
Raval, A
Reeder, DD
Reisert, B
Ren, Z
Repond, J
Ri, YD
Robertson, A
Roloff, P
Rubinsky, I
Ruspa, M
Sacchi, R
Samson, U
Sartorelli, G
Savin, AA
Saxon, DH
Schioppa, M
Schlenstedt, S
Schleper, P
Schmidke, WB
Schneekloth, U
Schonberg, V
Schorner-Sadenius, T
Schwartz, J
Sciulli, F
Shcheglova, LM
Shehzadi, R
Shimizu, S
Singh, I
Skillicorn, IO
Slominski, W
Smith, WH
Sola, V
Solano, A
Son, D
Sosnovtsev, V
Spiridonov, A
Stadie, H
Stanco, L
Stefaniuk, N
Stern, A
Stewart, TP
Stifutkin, A
Stopa, P
Suchkov, S
Susinno, G
Suszycki, L
Sztuk-Dambietz, J
Szuba, D
Szuba, J
Tapper, AD
Tassi, E
Terron, J
Theedt, T
Tiecke, H
Tokushuku, K
Tomaszewska, J
Trusov, V
Tsurugai, T
Turcato, M
Turkot, O
Tymieniecka, T
Vazquez, M
Verbytskyi, A
Viazlo, O
Vlasov, NN
Walczak, R
Abdullah, WATW
Whitmore, JJ
Wichmann, K
Wiggers, L
Wing, M
Wlasenko, M
Wolf, G
Wolfe, H
Wrona, K
Yaguees-Molina, AG
Yamada, S
Yamazaki, Y
Yoshida, R
Youngman, C
Zabiegalov, O
Zarnecki, AF
Zawiejski, L
Zenaiev, O
Zeuner, W
Zhautykov, BO
Zhmak, N
Zichichi, A
Zolkapli, Z
Zotkin, DS
AF Abramowicz, H.
Abt, I.
Adamczyk, L.
Adamus, M.
Aggarwal, R.
Antonelli, S.
Antonioli, P.
Antonov, A.
Arneodo, M.
Arslan, O.
Aushev, V.
Aushev, Y.
Bachynska, O.
Bamberger, A.
Barakbaev, A. N.
Barbagli, G.
Bari, G.
Barreiro, F.
Bartosik, N.
Bartsch, D.
Basile, M.
Behnke, O.
Behr, J.
Behrens, U.
Bellagamba, L.
Bertolin, A.
Bhadra, S.
Bindi, M.
Blohm, C.
Bokhonov, V.
Bold, T.
Bondarenko, K.
Boos, E. G.
Borras, K.
Boscherini, D.
Bot, D.
Brock, I.
Brownson, E.
Brugnera, R.
Bruemmer, N.
Bruni, A.
Bruni, G.
Brzozowska, B.
Bussey, P. J.
Bylsma, B.
Caldwell, A.
Capua, M.
Carlin, R.
Catterall, C. D.
Chekanov, S.
Chwastowski, J.
Ciborowski, J.
Ciesielski, R.
Cifarelli, L.
Cindolo, F.
Contin, A.
Cooper-Sarkar, A. M.
Coppola, N.
Corradi, M.
Corriveau, F.
Costa, M.
D'Agostini, G.
Dal Corso, F.
Del Peso, J.
Dementiev, R. K.
De Pasquale, S.
Derrick, M.
Devenish, R. C. E.
Dobur, D.
Dolgoshein, B. A.
Dolinska, G.
Doyle, A. T.
Drugakov, V.
Durkin, L. S.
Dusini, S.
Eisenberg, Y.
Ermolov, P. F.
Eskreys, A.
Fang, S.
Fazio, S.
Ferrando, J.
Ferrero, M. I.
Figiel, J.
Foster, B.
Gach, G.
Galas, A.
Gallo, E.
Garfagnini, A.
Geiser, A.
Gialas, I.
Gizhko, A.
Gladilin, L. K.
Gladkov, D.
Glasman, C.
Gogota, O.
Golubkov, Yu. A.
Goettlicher, P.
Grabowska-Bold, I.
Grebenyuk, J.
Gregor, I.
Grigorescu, G.
Grzelak, G.
Gueta, O.
Guzik, M.
Gwenlan, C.
Haas, T.
Hain, W.
Hamatsu, R.
Hart, J. C.
Hartmann, H.
Hartner, G.
Hilger, E.
Hochman, D.
Hori, R.
Huettmann, A.
Ibrahim, Z. A.
Iga, Y.
Ingbir, R.
Ishitsuka, M.
Jakob, H. -P.
Januschek, F.
Jones, T. W.
Juengst, M.
Kadenko, I.
Kahle, B.
Kananov, S.
Kanno, T.
Karshon, U.
Karstens, F.
Katkov, I. I.
Kaur, M.
Kaur, P.
Keramidas, A.
Khein, L. A.
Kim, J. Y.
Kisielewska, D.
Kitamura, S.
Klanner, R.
Klein, U.
Koffeman, E.
Kondrashova, N.
Kononenko, O.
Kooijman, P.
Korol, Ie.
Korzhavina, I. A.
Kotanski, A.
Koetz, U.
Kowalski, H.
Kuprash, O.
Kuze, M.
Lee, A.
Levchenko, B. B.
Levy, A.
Libov, V.
Limentani, S.
Ling, T. Y.
Lisovyi, M.
Lobodzinska, E.
Lohmann, W.
Loehr, B.
Lohrmann, E.
Long, K. R.
Longhin, A.
Lontkovskyi, D.
Lukina, O. Yu.
Maeda, J.
Magill, S.
Makarenko, I.
Malka, J.
Mankel, R.
Margotti, A.
Marini, G.
Martin, J. F.
Mastroberardino, A.
Mattingly, M. C. K.
Melzer-Pellmann, I. -A.
Mergelmeyer, S.
Miglioranzi, S.
Idris, F. Mohamad
Monaco, V.
Montanari, A.
Morris, J. D.
Mujkic, K.
Musgrave, B.
Nagano, K.
Namsoo, T.
Nania, R.
Nigro, A.
Ning, Y.
Nobe, T.
Notz, D.
Nowak, R. J.
Nuncio-Quiroz, A. E.
Oh, B. Y.
Okazaki, N.
Olkiewicz, K.
Onishchuk, Yu.
Papageorgiu, K.
Parenti, A.
Paul, E.
Pawlak, J. M.
Pawlik, B.
Pelfer, P. G.
Pellegrino, A.
Perlanski, W.
Perrey, H.
Piotrzkowski, K.
Plucinski, P.
Pokrovskiy, N. S.
Polini, A.
Proskuryakov, A. S.
Przybycien, M.
Raval, A.
Reeder, D. D.
Reisert, B.
Ren, Z.
Repond, J.
Ri, Y. D.
Robertson, A.
Roloff, P.
Rubinsky, I.
Ruspa, M.
Sacchi, R.
Samson, U.
Sartorelli, G.
Savin, A. A.
Saxon, D. H.
Schioppa, M.
Schlenstedt, S.
Schleper, P.
Schmidke, W. B.
Schneekloth, U.
Schoenberg, V.
Schoerner-Sadenius, T.
Schwartz, J.
Sciulli, F.
Shcheglova, L. M.
Shehzadi, R.
Shimizu, S.
Singh, I.
Skillicorn, I. O.
Slominski, W.
Smith, W. H.
Sola, V.
Solano, A.
Son, D.
Sosnovtsev, V.
Spiridonov, A.
Stadie, H.
Stanco, L.
Stefaniuk, N.
Stern, A.
Stewart, T. P.
Stifutkin, A.
Stopa, P.
Suchkov, S.
Susinno, G.
Suszycki, L.
Sztuk-Dambietz, J.
Szuba, D.
Szuba, J.
Tapper, A. D.
Tassi, E.
Terron, J.
Theedt, T.
Tiecke, H.
Tokushuku, K.
Tomaszewska, J.
Trusov, V.
Tsurugai, T.
Turcato, M.
Turkot, O.
Tymieniecka, T.
Vazquez, M.
Verbytskyi, A.
Viazlo, O.
Vlasov, N. N.
Walczak, R.
Abdullah, W. A. T. Wan
Whitmore, J. J.
Wichmann, K.
Wiggers, L.
Wing, M.
Wlasenko, M.
Wolf, G.
Wolfe, H.
Wrona, K.
Yaguees-Molina, A. G.
Yamada, S.
Yamazaki, Y.
Yoshida, R.
Youngman, C.
Zabiegalov, O.
Zarnecki, A. F.
Zawiejski, L.
Zenaiev, O.
Zeuner, W.
Zhautykov, B. O.
Zhmak, N.
Zichichi, A.
Zolkapli, Z.
Zotkin, D. S.
CA ZEUS Collaboration
TI Measurement of high-Q(2) neutral current deep inelastic e(+) p
scattering cross sections with a longitudinally polarized positron beam
at HERA
SO PHYSICAL REVIEW D
LA English
DT Article
ID CENTRAL TRACKING DETECTOR; ZEUS BARREL CALORIMETER; PARTON
DISTRIBUTIONS; EVENT GENERATOR; QCD ANALYSIS; DESIGN; CONSTRUCTION;
PERFORMANCE; PHYSICS; SYSTEM
AB Measurements of neutral current cross sections for deep inelastic scattering in e(+)p collisions at HERA with a longitudinally polarized positron beam are presented. The single-differential cross-sections d sigma=dQ(2), d sigma=dx and d sigma=dy and the reduced cross section (sigma) over tilde are measured in the kinematic region Q(2) >185 GeV2 and y<0.9, where Q(2) is the four-momentum transfer squared, x the Bjorken scaling variable and y the inelasticity of the interaction. The measurements are performed separately for positively and negatively polarized positron beams. The measurements are based on an integrated luminosity of 135.5 pb(-1) collected with the ZEUS detector in 2006 and 2007 at a center-of-mass energy of 318 GeV. The structure functions <(F3)over tilde> and F-3(gamma Z) are determined by combining the e(+)p results presented in this paper with previously published e(-)p neutral current results. The asymmetry parameter A(+) is used to demonstrate the parity violation predicted in electroweak interactions. The measurements are well described by the predictions of the Standard Model.
C1 [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA.
[Antonelli, S.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Margotti, A.; Nania, R.; Polini, A.; Sartorelli, G.; Zichichi, A.] INFN Bologna, Bologna, Italy.
[Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy.
[Arslan, O.; Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Mergelmeyer, S.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, Bonn, Germany.
[Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
[Aggarwal, R.; Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India.
[Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy.
[Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Ist Nazl Fis Nucl, I-87036 Cosenza, Italy.
[Kim, J. Y.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea.
[Ibrahim, Z. A.; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Zolkapli, Z.] Univ Malaya, Jabatan Fizik, Kuala Lumpur 50603, Malaysia.
[Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA.
[Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Adamczyk, L.; Bold, T.; Gach, G.; Grabowska-Bold, I.; Guzik, M.; Kisielewska, D.; Przybycien, M.; Suszycki, L.; Szuba, J.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Kotanski, A.; Slominski, W.] Jagellonian Univ, Dept Phys, Krakow, Poland.
[Bachynska, O.; Bartosik, N.; Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Kuprash, O.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Lontkovskyi, D.; Makarenko, I.; Malka, J.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Mujkic, K.; Namsoo, T.; Notz, D.; Parenti, A.; Perrey, H.; Raval, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Schoerner-Sadenius, T.; Spiridonov, A.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Verbytskyi, A.; Wichmann, K.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zenaiev, O.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany.
[Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany.
[Barbagli, G.; Gallo, E.; Pelfer, P. G.] INFN Florence, Florence, Italy.
[Pelfer, P. G.] Univ Florence, Florence, Italy.
[Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, Freiburg, Germany.
[Bussey, P. J.; Doyle, A. T.; Ferrando, J.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland.
[Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Chios, Greece.
[Klanner, R.; Lohrmann, E.; Schleper, P.; Sola, V.; Stadie, H.; Sztuk-Dambietz, J.; Szuba, D.; Tassi, E.; Turcato, M.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany.
[Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England.
[Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] Natl Lab High Energy Phys, KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 305, Japan.
[Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan.
[Aushev, V.; Bokhonov, V.; Zhmak, N.] Natl Acad Sci Ukraine, Inst Nucl Res, Kiev, Ukraine.
[Aushev, V.; Aushev, Y.; Bondarenko, K.; Dolinska, G.; Gizhko, A.; Gogota, O.; Kadenko, I.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Onishchuk, Yu.; Stefaniuk, N.; Trusov, V.; Turkot, O.; Viazlo, O.; Zabiegalov, O.] Natl Taras Shevchenko Univ Kyiv, Dept Nucl Phys, Kiev, Ukraine.
[Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea.
[Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium.
[Barreiro, F.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain.
[Corriveau, F.; Schwartz, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan.
[Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia.
[Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Abramowicz, H.; Abt, I.; Caldwell, A.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands.
[Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands.
[Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Cooper-Sarkar, A. M.; Devenish, R. C. E.; Foster, B.; Gwenlan, C.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England.
[Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Stanco, L.] INFN Padova, Padua, Italy.
[Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy.
[Oh, B. Y.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Iga, Y.] Polytech Univ, Tokyo, Japan.
[D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy.
[Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Abramowicz, H.; Gueta, O.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel.
[Ishitsuka, M.; Kanno, T.; Kuze, M.; Maeda, J.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[Hori, R.; Okazaki, N.; Shimizu, S.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy.
[Arneodo, M.; Costa, M.; Ferrero, M. I.; Monaco, V.; Ruspa, M.; Sacchi, R.; Solano, A.] Ist Nazl Fis Nucl, I-10125 Turin, Italy.
[Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy.
[Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Jones, T. W.; Wing, M.] UCL, Dept Phys & Astron, London, England.
[Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.] Univ Warsaw, Fac Phys, Warsaw, Poland.
[Adamus, M.; Plucinski, P.; Tymieniecka, T.] Natl Ctr Nucl Res, Warsaw, Poland.
[Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel.
[Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Bhadra, S.; Catterall, C. D.; Hartner, G.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada.
[Chwastowski, J.] Cracow Univ Technol, Fac Phys Math & Appl Comp Sci, Krakow, Poland.
[Katkov, I. I.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Mujkic, K.] UCL, London, England.
[Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Tokushuku, K.] Univ Tokyo, Tokyo, Japan.
[Foster, B.] Univ Oxford, Oxford, England.
[Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland.
[Tymieniecka, T.] Cardinal Stefan Wyszynski Univ, Warsaw, Poland.
RP Abramowicz, H (reprint author), Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel.
RI Gladilin, Leonid/B-5226-2011; De Pasquale, Salvatore/B-9165-2008;
dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; Doyle,
Anthony/C-5889-2009; Ferrando, James/A-9192-2012; Barreiro,
Fernando/D-9808-2012; Fazio, Salvatore /G-5156-2010; Levchenko,
B./D-9752-2012; Korzhavina, Irina/D-6848-2012; Wiggers, Leo/B-5218-2015;
Suchkov, Sergey/M-6671-2015
OI Longhin, Andrea/0000-0001-9103-9936; Gladilin,
Leonid/0000-0001-9422-8636; De Pasquale, Salvatore/0000-0001-9236-0748;
dusini, stefano/0000-0002-1128-0664; Capua,
Marcella/0000-0002-2443-6525; Doyle, Anthony/0000-0001-6322-6195;
Ferrando, James/0000-0002-1007-7816; Barreiro,
Fernando/0000-0002-3021-0258; Wiggers, Leo/0000-0003-1060-0520;
FU National Science Foundation; Deutsche Forschungsgemeinschaft (DFG) [SFB
676]; U.S. National Science Foundation; Polish Ministry of Science and
Higher Education as a scientific Project [DPN/N188/DESY/2009]; Polish
Ministry of Science and Higher Education and its grants for scientific
research; German Federal Ministry for Education and Research (BMBF)
[05h09GUF]; Japanese Ministry of Education, Culture, Sports, Science and
Technology (MEXT); Korean Ministry of Education and Korea Science and
Engineering Foundation; FNRS; Inter-University Attraction Poles
Programme; Belgian Federal Science Policy Office; Spanish Ministry of
Education and Science through funds provided by CICYT; Natural Sciences
and Engineering Research Council of Canada (NSERC); German Federal
Ministry for Education and Research (BMBF); Russian Ministry of
Education and Science through its grant for Scientific Research on High
Energy Physics [02.740.11.0244]; Netherlands Foundation for Research on
Matter (FOM); Israel Science Foundation, Max Planck Institute for
Physics, Munich, Germany; Polish National Science Centre
[DEC-2011/01/BST2/03643]; Warsaw University, Poland; DESY, Germany;
Russian Foundation for Basic Research [11-02-91345-DFG_a]; [N
4142.2010.2]
FX We appreciate the contributions to the construction and maintenance of
the ZEUS detector of many people who are not listed as authors. The HERA
machine group and the DESY computing staff are especially acknowledged
for their success in providing excellent operation of the collider and
the data-analysis environment. We thank the DESY directorate for their
strong support and encouragement. C.G. is an STFC Advanced Fellow. This
material was based on work supported by the National Science Foundation,
while J.J.W. worked at the foundation. Support was provided by the
following: U. S. Department of Energy; Italian National Institute for
Nuclear Physics (INFN); German Federal Ministry for Education and
Research (BMBF) under Contract No. 05 H09PDF; the Science and Technology
Facilities Council, UK; a F.R.S. grant from the Malaysian government;
the U.S. National Science Foundation (any opinions, findings and
conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National
Science Foundation); the Polish Ministry of Science and Higher Education
as a scientific Project No. DPN/N188/DESY/2009; the Polish Ministry of
Science and Higher Education and its grants for scientific research; the
German Federal Ministry for Education and Research (BMBF) under Contract
No. 05h09GUF, and the SFB 676 of the Deutsche Forschungsgemeinschaft
(DFG); the Japanese Ministry of Education, Culture, Sports, Science and
Technology (MEXT) and its grants for scientific research; the Korean
Ministry of Education and Korea Science and Engineering Foundation; the
FNRS and its associated funds (IISN and FRIA) and by an Inter-University
Attraction Poles Programme subsidized by the Belgian Federal Science
Policy Office; the Spanish Ministry of Education and Science through
funds provided by CICYT; the Natural Sciences and Engineering Research
Council of Canada (NSERC); the German Federal Ministry for Education and
Research (BMBF); R.F. Presidential Grant No. N 4142.2010.2 for Leading
Scientific Schools, by the Russian Ministry of Education and Science
through its grant for Scientific Research on High Energy Physics and
under Contract No. 02.740.11.0244; the Netherlands Foundation for
Research on Matter (FOM); the Israel Science Foundation, Max Planck
Institute for Physics, Munich, Germany; the Polish National Science
Centre, Project No. DEC-2011/01/BST2/03643; Warsaw University, Poland;
DESY, Germany; and Russian Foundation for Basic Research, Grant No.
11-02-91345-DFG_a.
NR 53
TC 13
Z9 13
U1 1
U2 31
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD MAR 20
PY 2013
VL 87
IS 5
AR 052014
DI 10.1103/PhysRevD.87.052014
PG 29
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 110BH
UT WOS:000316416500002
ER
PT J
AU Wang, XL
Han, YL
Yuan, CZ
Shen, CP
Wang, P
Adachi, I
Aihara, H
Asner, DM
Aulchenko, V
Aushev, T
Aziz, T
Bakich, AM
Ban, Y
Bhuyan, B
Bonvicini, G
Bozek, A
Bracko, M
Brodzicka, J
Brovchenko, O
Browder, TE
Chen, P
Cheon, BG
Cho, K
Choi, SK
Choi, Y
Dalseno, J
Dolezal, Z
Drasal, Z
Eidelman, S
Esen, S
Farhat, H
Fast, JE
Gaur, V
Gillard, R
Goh, YM
Golob, B
Hayashii, H
Hoshi, Y
Hou, WS
Hyun, HJ
Inami, K
Ishikawa, A
Iwabuchi, M
Kang, JH
Kapusta, P
Kim, HJ
Kim, HO
Kim, JB
Kim, JH
Kim, MJ
Kim, YJ
Kinoshita, K
Klucar, J
Ko, BR
Kodys, P
Kouzes, RT
Krizan, P
Krokovny, P
Kumita, T
Lange, JS
Lee, SH
Li, J
Libby, J
Liu, C
Liu, ZQ
Lukin, P
McOnie, S
Miyata, H
Mizuk, R
Mohanty, GB
Moll, A
Muramatsu, N
Mussa, R
Nakao, M
Nishida, S
Nitoh, O
Ogawa, S
Ohshima, T
Okuno, S
Olsen, SL
Pakhlova, G
Park, H
Pedlar, TK
Pestotnik, R
Petric, M
Piilonen, LE
Prothmann, K
Sahoo, H
Sakai, Y
Sandilya, S
Santel, D
Sanuki, T
Schneider, O
Schwanda, C
Senyo, K
Sevior, ME
Shapkin, M
Shibata, TA
Shiu, JG
Sibidanov, A
Simon, F
Smerkol, P
Sohn, YS
Solovieva, E
Stanic, S
Staric, M
Sumiyoshi, T
Tanida, K
Tatishvili, G
Teramoto, Y
Trabelsi, K
Uchida, M
Uehara, S
Unno, Y
Uno, S
Usov, Y
Vanhoefer, P
Varner, G
Wang, CH
Wang, J
Wang, MZ
Williams, KM
Won, E
Yamashita, Y
Zhang, CC
Zhang, ZP
Zhilich, V
Zupanc, A
AF Wang, X. L.
Han, Y. L.
Yuan, C. Z.
Shen, C. P.
Wang, P.
Adachi, I.
Aihara, H.
Asner, D. M.
Aulchenko, V.
Aushev, T.
Aziz, T.
Bakich, A. M.
Ban, Y.
Bhuyan, B.
Bonvicini, G.
Bozek, A.
Bracko, M.
Brodzicka, J.
Brovchenko, O.
Browder, T. E.
Chen, P.
Cheon, B. G.
Cho, K.
Choi, S. -K.
Choi, Y.
Dalseno, J.
Dolezal, Z.
Drasal, Z.
Eidelman, S.
Esen, S.
Farhat, H.
Fast, J. E.
Gaur, V.
Gillard, R.
Goh, Y. M.
Golob, B.
Hayashii, H.
Hoshi, Y.
Hou, W. -S.
Hyun, H. J.
Inami, K.
Ishikawa, A.
Iwabuchi, M.
Kang, J. H.
Kapusta, P.
Kim, H. J.
Kim, H. O.
Kim, J. B.
Kim, J. H.
Kim, M. J.
Kim, Y. J.
Kinoshita, K.
Klucar, J.
Ko, B. R.
Kodys, P.
Kouzes, R. T.
Krizan, P.
Krokovny, P.
Kumita, T.
Lange, J. S.
Lee, S. -H.
Li, J.
Libby, J.
Liu, C.
Liu, Z. Q.
Lukin, P.
McOnie, S.
Miyata, H.
Mizuk, R.
Mohanty, G. B.
Moll, A.
Muramatsu, N.
Mussa, R.
Nakao, M.
Nishida, S.
Nitoh, O.
Ogawa, S.
Ohshima, T.
Okuno, S.
Olsen, S. L.
Pakhlova, G.
Park, H.
Pedlar, T. K.
Pestotnik, R.
Petric, M.
Piilonen, L. E.
Prothmann, K.
Sahoo, H.
Sakai, Y.
Sandilya, S.
Santel, D.
Sanuki, T.
Schneider, O.
Schwanda, C.
Senyo, K.
Sevior, M. E.
Shapkin, M.
Shibata, T. -A.
Shiu, J. -G.
Sibidanov, A.
Simon, F.
Smerkol, P.
Sohn, Y. -S.
Solovieva, E.
Stanic, S.
Staric, M.
Sumiyoshi, T.
Tanida, K.
Tatishvili, G.
Teramoto, Y.
Trabelsi, K.
Uchida, M.
Uehara, S.
Unno, Y.
Uno, S.
Usov, Y.
Vanhoefer, P.
Varner, G.
Wang, C. H.
Wang, J.
Wang, M. -Z.
Williams, K. M.
Won, E.
Yamashita, Y.
Zhang, C. C.
Zhang, Z. P.
Zhilich, V.
Zupanc, A.
CA Belle Collaboration
TI Observation of psi(4040) and psi(4160) decay into eta J/psi
SO PHYSICAL REVIEW D
LA English
DT Article
ID CROSS-SECTION; BELLE; IDENTIFICATION; ANNIHILATION; KEKB
AB The cross section for e(+)e(-) -> eta J=psi between root s=3.8 GeV and 5.3 GeV is measured via initial state radiation using 980 fb(-1) of data on and around the Upsilon(nS)(n=1, 2, 3, 4, 5) resonances collected with the Belle detector at KEKB. Two resonant structures at the psi(4040) and psi(4160) are observed in the (eta)J/psi invariant mass distribution. Fitting the mass spectrum with the coherent sum of two Breit-Wigner functions, one obtains B(psi(4040) -> (eta)J/psi)(.)Gamma(psi(4040))(e+e-) = (4.8 +/- 0.9 +/- 1.5) eV and B(psi(4160) -> (eta)J/psi(.)Gamma(psi(4160))(e+e-) = 4.0 +/- 0.8 +/- 1.4) eV for one solution and B(psi(4040) -> (eta)J/psi)(.)Gamma(psi(4040))(e+e-) = (11.2 +/- 1.3 +/- 2.1) eV and B(psi(4160) -> (eta)J/psi)(.)Gamma(psi(4160))(e+e-) = 13.8 +/- 1.3 +/- 2.1 eV for the other solution, where the first errors are statistical and the second are systematic. This is the first measurement of this hadronic transition mode of these two states, and the partial widths to (eta)J/psi are found to be about 1 MeV. There is no evidence for the Y(4260), Y(4360), psi(4415), or Y(4660) in the (eta)J/psi final state, and upper limits of their production rates in e(+)e(-) annihilation are determined. DOI: 10.1103/PhysRevD.87.051101
C1 [Aulchenko, V.; Eidelman, S.; Krokovny, P.; Lukin, P.; Usov, Y.; Zhilich, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia.
[Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Esen, S.; Kinoshita, K.; Santel, D.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Lange, J. S.] Univ Giessen, D-35390 Giessen, Germany.
[Choi, S. -K.] Gyeongsang Natl Univ, Chinju, South Korea.
[Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea.
[Browder, T. E.; Sahoo, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA.
[Adachi, I.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Uehara, S.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan.
[Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati, India.
[Libby, J.] Indian Inst Technol Madras, Madras, Tamil Nadu, India.
[Wang, X. L.; Han, Y. L.; Yuan, C. Z.; Wang, P.; Liu, Z. Q.; Zhang, C. C.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Schwanda, C.] Inst High Energy Phys, Vienna, Austria.
[Shapkin, M.] Inst High Energy Phys, Protvino, Russia.
[Mussa, R.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Aushev, T.; Mizuk, R.; Pakhlova, G.; Solovieva, E.] Inst Theoret & Expt Phys, Moscow, Russia.
[Bracko, M.; Golob, B.; Klucar, J.; Krizan, P.; Pestotnik, R.; Petric, M.; Smerkol, P.; Staric, M.] Jozef Stefan Inst, Ljubljana, Slovenia.
[Okuno, S.] Kanagawa Univ, Yokohama, Kanagawa, Japan.
[Brovchenko, O.; Zupanc, A.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76021 Karlsruhe, Germany.
[Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon, South Korea.
[Kim, J. B.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul, South Korea.
[Hyun, H. J.; Kim, H. J.; Kim, H. O.; Kim, M. J.; Park, H.] Kyungpook Natl Univ, Taegu 702701, South Korea.
[Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland.
[Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia.
[Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA.
[Bracko, M.] Univ Maribor, SLO-2000 Maribor, Slovenia.
[Dalseno, J.; Moll, A.; Prothmann, K.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Shen, C. P.; Inami, K.; Ohshima, T.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan.
[Hayashii, H.] Nara Womens Univ, Nara 630, Japan.
[Wang, C. H.] Natl United Univ, Miaoli, Taiwan.
[Chen, P.; Hou, W. -S.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan.
[Bozek, A.; Brodzicka, J.; Kapusta, P.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland.
[Yamashita, Y.] Nippon Dent Univ, Niigata, Japan.
[Miyata, H.] Niigata Univ, Niigata, Japan.
[Stanic, S.] Univ Nova Gorica, Nova Gorica, Slovenia.
[Teramoto, Y.] Osaka City Univ, Osaka 558, Japan.
[Asner, D. M.; Fast, J. E.; Kouzes, R. T.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Ban, Y.; Wang, J.] Peking Univ, Beijing 100871, Peoples R China.
[Muramatsu, N.] Tohoku Univ, Res Ctr Electron Photon Sci, Sendai, Miyagi 980, Japan.
[Liu, C.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Li, J.; Olsen, S. L.; Tanida, K.] Seoul Natl Univ, Seoul, South Korea.
[Choi, Y.] Sungkyunkwan Univ, Suwon, South Korea.
[Bakich, A. M.; McOnie, S.; Sibidanov, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Aziz, T.; Gaur, V.; Mohanty, G. B.; Sandilya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Dalseno, J.; Moll, A.; Prothmann, K.; Simon, F.] Tech Univ Munich, Garching, Germany.
[Ogawa, S.] Toho Univ, Funabashi, Chiba 274, Japan.
[Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi, Japan.
[Ishikawa, A.; Sanuki, T.] Tohoku Univ, Sendai, Miyagi 980, Japan.
[Aihara, H.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 152, Japan.
[Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 158, Japan.
[Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo, Japan.
[Wang, X. L.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA.
[Bonvicini, G.; Farhat, H.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA.
[Senyo, K.] Yamagata Univ, Yamagata 990, Japan.
[Iwabuchi, M.; Kang, J. H.; Sohn, Y. -S.] Yonsei Univ, Seoul 120749, South Korea.
RP Wang, XL (reprint author), Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
RI Aihara, Hiroaki/F-3854-2010; Ishikawa, Akimasa/G-6916-2012; Nitoh,
Osamu/C-3522-2013; Mizuk, Roman/B-3751-2014; Krokovny,
Pavel/G-4421-2016; Pakhlova, Galina/C-5378-2014; Solovieva,
Elena/B-2449-2014
OI Aihara, Hiroaki/0000-0002-1907-5964; Krokovny,
Pavel/0000-0002-1236-4667; Pakhlova, Galina/0000-0001-7518-3022;
Solovieva, Elena/0000-0002-5735-4059
NR 20
TC 31
Z9 32
U1 0
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD MAR 20
PY 2013
VL 87
IS 5
AR 051101
DI 10.1103/PhysRevD.87.051101
PG 7
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 110BH
UT WOS:000316416500001
ER
PT J
AU Hannam, M
Brown, DA
Fairhurst, S
Fryer, CL
Harry, IW
AF Hannam, Mark
Brown, Duncan A.
Fairhurst, Stephen
Fryer, Chris L.
Harry, Ian W.
TI WHEN CAN GRAVITATIONAL-WAVE OBSERVATIONS DISTINGUISH BETWEEN BLACK HOLES
AND NEUTRON STARS?
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE black hole physics; gravitational waves; stars: neutron
ID ACCRETION-INDUCED COLLAPSE; COMPACT BINARIES; EXPLOSION MECHANISM;
MASS-DISTRIBUTION; WHITE-DWARFS; SPIN; SUPERNOVA; RADIATION; PARAMETER;
SYSTEMS
AB Gravitational-wave observations of compact binaries have the potential to uncover the distribution of masses and spins of black holes and neutron stars in the universe. The binary components' physical parameters can be inferred from their effect on the phasing of the gravitational-wave signal, but a partial degeneracy between the components' mass ratio and their spins limits our ability to measure the individual component masses. At the typical signal amplitudes expected by the Advanced Laser Interferometer Gravitational-wave Observatory (signal-to-noise ratios between 10 and 20), we show that it will in many cases be difficult to distinguish whether the components are neutron stars or black holes. We identify when the masses of the binary components could be unambiguously measured outside the range of current observations: a system with a chirp mass M <= 0.871 M-circle dot would unambiguously contain the smallest-mass neutron star observed, and a system with M >= 2.786 M-circle dot must contain a black hole. However, additional information would be needed to distinguish between a binary containing two 1.35 M-circle dot neutron stars and an exotic neutron-star-black-hole binary. We also identify those configurations that could be unambiguously identified as black hole binaries, and show how the observation of an electromagnetic counterpart to a neutron-star-black-hole binary could be used to constrain the black hole spin.
C1 [Hannam, Mark; Fairhurst, Stephen] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3AX, S Glam, Wales.
[Hannam, Mark; Brown, Duncan A.; Fairhurst, Stephen; Fryer, Chris L.; Harry, Ian W.] UC Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA USA.
[Brown, Duncan A.; Harry, Ian W.] Syracuse Univ, Dept Phys, Syracuse, NY USA.
[Fryer, Chris L.] Los Alamos Natl Lab, Computat Comp Sci Div, Los Alamos, NM USA.
RP Hannam, M (reprint author), Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3AX, S Glam, Wales.
OI Fairhurst, Stephen/0000-0001-8480-1961
FU NSF [PHY-0847611, PHY-1205835, PHY11-25915]; RCSA Cottrell Scholar
award; Royal Society; STFC [ST/H008438/1, ST/I001085/1]; US Department
of Energy [W-7405-ENG-36]
FX We thank Harald Pfeiffer, Mark Scheel, and Patrick Sutton for helpful
discussions. D.A.B. is supported by NSF award PHY-0847611 and an RCSA
Cottrell Scholar award. S. F. is supported by the Royal Society. M.H. is
supported by STFC grants ST/H008438/1 and ST/I001085/1. I. W. H. is
supported by NSF grants PHY-0847611 and PHY-1205835. This work was
funded in part under the auspices of the US Department of Energy, and
supported by its contract W-7405-ENG-36 to Los Alamos National
Laboratory. We thank the Kavli Institute for Theoretical Physics at
UC-Santa Barbara, supported in part by NSF grant PHY11-25915, where this
work was conceived.
NR 45
TC 48
Z9 48
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD MAR 20
PY 2013
VL 766
IS 1
AR L14
DI 10.1088/2041-8205/766/1/L14
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 103WH
UT WOS:000315949700014
ER
PT J
AU Tarn, D
Ashley, CE
Xue, M
Carnes, EC
Zink, JI
Brinker, CJ
AF Tarn, Derrick
Ashley, Carlee E.
Xue, Min
Carnes, Eric C.
Zink, Jeffrey I.
Brinker, C. Jeffrey
TI Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and
Biocompatibility
SO ACCOUNTS OF CHEMICAL RESEARCH
LA English
DT Review
ID SUPPORTED LIPID-BILAYERS; DRUG-DELIVERY; HEMOLYTIC-ACTIVITY;
CONTROLLED-RELEASE; AMORPHOUS SILICA; CANCER-CELLS; TOXICITY; DESIGN;
SYSTEM; SIZE
AB The study of ordered mesoporous silica materials has exploded since their discovery by Mobil researchers 20 years ago. The ability to make uniformly sized, porous, and dispersible nanoparticles using colloidal chemistry and evaporation-induced self-assembly has led to many applications of mesoporous silica nanoparticles (MSNPs) as "nanocarriers" for delivery of drugs and other cargos to cells. The exceptionally high surface area of MSNPs, often exceeding 1000 m(2)/g, and the ability to independently modify pore size and surface chemistry, enables the loading of diverse cargos and cargo combinations at levels exceeding those of other common drug delivery carriers such as liposomes or polymer conjugates. This is because noncovalent electrostatic hydrogen-bonding, and van der Waals interactions of the cargo with the MSNP internal surface cause preferential adsorption of cargo to the MSNP, allowing loading capacities to surpass the solubility limit of a solution or that achievable by osmotic gradient loading. The ability to independently modify the MSNP surface and interior makes possible engineered biofunctionality and biocompatibility.
In this Account, we detail our recent efforts to develop MSNPs as biocompatible nanocarriers (Figure 1) that simultaneously display multiple functions including (1) high visibility/contrast in multiple imaging modalities, (2) dispersibility, (3) binding specificity to a particular target tissue or cell type, (4) ability to load and deliver large concentrations of diverse cargos, and (5) triggered or controlled release of cargo. Toward function 1, we chemically conjugated fluorescent dyes or incorporated magnetic nanoparticles to enable in vivo optical or magnetic resonance imaging. For function 2, we have made MSNPs with polymer coatings, charged groups, or supported lipid bilayers, which decrease aggregation and improve stability in saline solutions. For functions 3 and 4, we have enhanced passive bioaccumulation via the enhanced permeability and retention effect by modifying the MSNP surfaces with positively charged polymers. We have also chemically attached ligands to MSNPs that selectively bind to receptors overexpressed in cancer cells. We have used encapsulation of MSNPs within reconfigurable supported lipid bilayers to develop new classes of responsive nanocarriers that actively interact with the target cell. Toward function 4, we exploit the high surface area and tailorable surface chemistry of MSNPs to retain hydrophobic drugs. Finally, for function 5, we have engineered dynamic behaviors by incorporating molecular machines within or at the entrances of MSNP pores and by using ligands, polymers, or lipid bilayers. These provide a means to seal-in and retain cargo and to direct MSNP interactions with and internalization by target cells.
Application of MSNPs as nanocarriers requires biocompatibility and low toxicity. Here the intrinsic porosity of the MSNP surface reduces the extent of hydrogen bonding or electrostatic interactions with cell membranes as does surface coating with polymers or lipid bilayers. Furthermore, the high surface area and low extent of condensation of the MSNP siloxane framework promote a high rate of dissolution into soluble silidc add species, which are found to be nontoxic Potential toxicity is further mitigated by the high drug capacity of MSNPs, which greatly reduces needed dosages compared with other nanocarriers. We anticipate that future generations of MSNPs incorporating molecular machines and encapsulated by membrane-like lipid bilayers will achieve a new level of controlled cellular interactions.
C1 [Carnes, Eric C.; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA.
[Carnes, Eric C.; Brinker, C. Jeffrey] Univ New Mexico, Dept Mol Genet & Microbiol, Albuquerque, NM 87131 USA.
[Tarn, Derrick; Xue, Min] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.
[Ashley, Carlee E.] Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94551 USA.
[Brinker, C. Jeffrey] Sandia Natl Labs, Self Assembled Mat Dept, Albuquerque, NM 87185 USA.
[Zink, Jeffrey I.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
RP Zink, JI (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
EM zink@chem.ucla.edu; cjbrink@sandia.gov
RI Xue, Min/I-9276-2014;
OI Xue, Min/0000-0002-8136-6551
FU National Science Foundation; Environmental Protection Agency [EF
0830117]; NCI [U01CA151792-01]; Laboratory Directed Research and
Development program; Truman Fellowship in National Security Science and
Engineering at Sandia National Laboratories; U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering; United States Department of Energy's
National Nuclear Security Administration [DE-AC04-94AL85000]; US Public
Health Service [RO1 ES016746, RO1 CA133697, U19 ES019528]
FX The research described in this Account was supported in part by National
Science Foundation and the Environmental Protection Agency under
Cooperative Agreement Number EF 0830117; the NCI Cancer Nanotechnology
Platform Partnership grant U01CA151792-01; the Laboratory Directed
Research and Development program and the Truman Fellowship in National
Security Science and Engineering at Sandia National Laboratories (CEA);
and the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, Division of Materials Sciences and Engineering. Sandia
is a multiprogram laboratory operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Company, for the United States
Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000. The work at UCLA is supported by the US
Public Health Service Grants (Nos. RO1 ES016746, RO1 CA133697, and U19
ES019528) and by the National Science Foundation and the Environmental
Protection Agency to the UC Center for the Environmental Impact of
Nanotechnology under Cooperative Agreement Number EF 0830117.
NR 52
TC 277
Z9 278
U1 77
U2 842
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0001-4842
J9 ACCOUNTS CHEM RES
JI Accounts Chem. Res.
PD MAR 19
PY 2013
VL 46
IS 3
BP 792
EP 801
DI 10.1021/ar3000986
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA 122KO
UT WOS:000317317200020
PM 23387478
ER
PT J
AU Keys, AS
Garrahan, JP
Chandler, D
AF Keys, Aaron S.
Garrahan, Juan P.
Chandler, David
TI Calorimetric glass transition explained by hierarchical dynamic
facilitation
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
ID KINETIC ISING-MODEL; STRUCTURAL RELAXATION; FICTIVE TEMPERATURE;
ENTHALPY RELAXATION; SUPERCOOLED LIQUID; DEPENDENCE; FRAGILITY;
RECOVERY; FORMERS; WATER
AB The glass transition refers to the nonequilibrium process by which an equilibrium liquid is transformed to a nonequilibrium disordered solid, or vice versa. Associated response functions, such as heat capacities, are markedly different on cooling than on heating, and the response to melting a glass depends markedly on the cooling protocol by which the glass was formed. This paper shows how this irreversible behavior can be interpreted quantitatively in terms of an East-model picture of localized excitations (or soft spots) in which molecules can move with a specific direction, and from which excitations with the same directionality of motion can appear or disappear in adjacent regions. As a result of these facilitated dynamics, excitations become correlated in a hierarchical fashion. These correlations are manifested in the dynamic heterogeneity of the supercooled liquid phase. Although equilibrium thermodynamics is virtually featureless, a nonequilibrium glass phase emerges when the model is driven out of equilibrium with a finite cooling rate. The correlation length of this emergent phase is large and increases with decreasing cooling rate. A spatially and temporally resolved fictive temperature encodes memory of its preparation. Parameters characterizing the model can be determined from reversible transport data, and with these parameters, predictions of the model agree well with irreversible differential scanning calorimetry.
C1 [Keys, Aaron S.; Chandler, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Keys, Aaron S.; Chandler, David] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Garrahan, Juan P.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
RP Chandler, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM chandler@berkeley.edu
OI Garrahan, Juan/0000-0002-0185-3924
FU Division of Chemical Sciences, Geosciences, and Biosciences of the US
Department of Energy at Lawrence Berkeley National Laboratory (LBNL);
Laboratory Directed Research and Development Program at LBNL
[DE-AC02-05CH11231]
FX We thank D. T. Limmer, S. Vaikuntanathan, and Y. J. Jung for insightful
discussions. This work was supported by the Director, Office of Science,
Office of Basic Energy Sciences, and by the Division of Chemical
Sciences, Geosciences, and Biosciences of the US Department of Energy at
Lawrence Berkeley National Laboratory (LBNL); and by the Laboratory
Directed Research and Development Program at LBNL under Contract
DE-AC02-05CH11231.
NR 50
TC 26
Z9 26
U1 1
U2 51
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD MAR 19
PY 2013
VL 110
IS 12
BP 4482
EP 4487
DI 10.1073/pnas.1302665110
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 125EK
UT WOS:000317521600026
ER
PT J
AU Bargar, JR
Williams, KH
Campbell, KM
Long, PE
Stubbs, JE
Suvorova, EI
Lezama-Pacheco, JS
Alessi, DS
Stylo, M
Webb, SM
Davis, JA
Giammar, DE
Blue, LY
Bernier-Latmani, R
AF Bargar, John R.
Williams, Kenneth H.
Campbell, Kate M.
Long, Philip E.
Stubbs, Joanne E.
Suvorova, Elenal I.
Lezama-Pacheco, Juan S.
Alessi, Daniel S.
Stylo, Malgorzata
Webb, Samuel M.
Davis, James A.
Giammar, Daniel E.
Blue, Lisa Y.
Bernier-Latmani, Rizlan
TI Uranium redox transition pathways in acetate-amended sediments
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE metal reduction; roll front; sulfate reduction; sulfide; bioreduction
ID RAY-ABSORPTION SPECTROSCOPY; IN-SITU BIOSTIMULATION; ORE-FORMING
PROCESSES; NW CHINA; U(VI) REDUCTION; OXIDATIVE DISSOLUTION; MICROBIAL
REDUCTION; ORGANIC-MATTER; ISOTOPE RATIOS; U-DEPOSIT
AB Redox transitions of uranium [from U(VI) to U(IV)] in low-temperature sediments govern the mobility of uranium in the environment and the accumulation of uranium in ore bodies, and inform our understanding of Earth's geochemical history. The molecular-scale mechanistic pathways of these transitions determine the U(IV) products formed, thus influencing uranium isotope fractionation, reoxidation, and transport in sediments. Studies that improve our understanding of these pathways have the potential to substantially advance process understanding across a number of earth sciences disciplines. Detailed mechanistic information regarding uranium redox transitions in field sediments is largely nonexistent, owing to the difficulty of directly observing molecular-scale processes in the subsurface and the compositional/physical complexity of subsurface systems. Here, we present results from an in situ study of uranium redox transitions occurring in aquifer sediments under sulfate-reducing conditions. Based on molecular-scale spectroscopic, pore-scale geochemical, and macroscale aqueous evidence, we propose a biotic-abiotic transition pathway in which biomass-hosted mackinawite (FeS) is an electron source to reduce U(VI) to U(IV), which subsequently reacts with biomass to produce monomeric U(IV) species. A species resembling nanoscale uraninite is also present, implying the operation of at least two redox transition pathways. The presence of multiple pathways in low-temperature sediments unifies apparently contrasting prior observations and helps to explain sustained uranium reduction under disparate biogeochemical conditions. These findings have direct implications for our understanding of uranium bioremediation, ore formation, and global geochemical processes.
C1 [Bargar, John R.; Stubbs, Joanne E.; Lezama-Pacheco, Juan S.; Webb, Samuel M.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Chem & Catalysis Div, Menlo Pk, CA 94025 USA.
[Williams, Kenneth H.; Long, Philip E.; Davis, James A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Campbell, Kate M.] US Geol Survey, Boulder, CO 80303 USA.
[Suvorova, Elenal I.; Alessi, Daniel S.; Stylo, Malgorzata; Bernier-Latmani, Rizlan] Ecole Polytech Fed Lausanne, Environm Microbiol Lab, CH-1015 Lausanne, Switzerland.
[Giammar, Daniel E.; Blue, Lisa Y.] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA.
RP Bargar, JR (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Chem & Catalysis Div, Menlo Pk, CA 94025 USA.
EM bargar@slac.stanford.edu
RI Bernier-Latmani, Rizlan/E-4398-2011; Long, Philip/F-5728-2013; Suvorova,
Elena/I-5582-2013; Williams, Kenneth/O-5181-2014; Stubbs,
Joanne/F-9710-2013; Davis, James/G-2788-2015;
OI Bernier-Latmani, Rizlan/0000-0001-6547-722X; Long,
Philip/0000-0003-4152-5682; Williams, Kenneth/0000-0002-3568-1155;
Stubbs, Joanne/0000-0002-8509-2009; Alessi, Daniel/0000-0002-8360-8251
FU Department of Energy Office of Science (DOE-SC), Office of Biological
and Environmental Research (BER); US Geological Survey National Research
Council Fellowship; Swiss National Science Foundation [20021-113784,
200020-126821]; Marie Curie Program Grant [FP7-PEOPLE-2009-IIF-254143];
DOE-SC-BER; National Institutes of Health (NIH)-National Institute of
General Medical Sciences [P41GM103393]; NIH-National Center for Research
Resources [P41RR001209]
FX We thank Kate Maher, Ed Landa, and two anonymous reviewers for helpful
discussions and comments. Work at SLAC (Work Package 10094), the Rifle
Integrated Field Research Challenge, and Lawrence Berkeley National
Laboratory were funded by the Department of Energy Office of Science
(DOE-SC), Office of Biological and Environmental Research (BER).
Additional support was provided by a US Geological Survey National
Research Council Fellowship (to K.M.C.), Swiss National Science
Foundation Grants 20021-113784 and 200020-126821 (to M.S. and D.S.A.),
and Marie Curie Program Grant FP7-PEOPLE-2009-IIF-254143 (to D.S.A.).
Stanford Synchrotron Radiation Lightsource (SSRL) is a DOE Office of
Basic Energy Sciences User Facility operated by Stanford University. The
SSRL Structural Molecular Biology Program is supported by DOE-SC-BER,
and by the National Institutes of Health (NIH)-National Institute of
General Medical Sciences (including Grant P41GM103393) and NIH-National
Center for Research Resources (Grant P41RR001209).
NR 78
TC 67
Z9 72
U1 7
U2 149
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD MAR 19
PY 2013
VL 110
IS 12
BP 4506
EP 4511
DI 10.1073/pnas.1219198110
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 125EK
UT WOS:000317521600030
ER
PT J
AU Gibbons, SM
Caporaso, JG
Pirrung, M
Field, D
Knight, R
Gilbert, JA
AF Gibbons, Sean M.
Caporaso, J. Gregory
Pirrung, Meg
Field, Dawn
Knight, Rob
Gilbert, Jack A.
TI Evidence for a persistent microbial seed bank throughout the global
ocean
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE deep sequencing; microbial ecology; rare biosphere
ID WESTERN ENGLISH-CHANNEL; DIVERSITY; BIOGEOGRAPHY; COMMUNITIES;
GREENGENES; BIOSPHERE; BACTERIA; TAXONOMY; ARCHAEA; SEA
AB Do bacterial taxa demonstrate clear endemism, like macroorganisms, or can one site's bacterial community recapture the total phylogenetic diversity of the world's oceans? Here we compare a deep bacterial community characterization from one site in the English Channel (L4-DeepSeq) with 356 datasets from the International Census of Marine Microbes (ICoMM) taken from around the globe (ranging from marine pelagic and sediment samples to sponge-associated environments). At the L4-DeepSeq site, increasing sequencing depth uncovers greater phylogenetic overlap with the global ICoMM data. This site contained 31.7-66.2% of operational taxonomic units identified in a given ICoMM biome. Extrapolation of this overlap suggests that 1.93 x 10(11) sequences from the L4 site would capture all ICoMM bacterial phylogenetic diversity. Current technology trends suggest this limit may be attainable within 3 y. These results strongly suggest the marine biosphere maintains a previously undetected, persistent microbial seed bank.
C1 [Gibbons, Sean M.; Gilbert, Jack A.] Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA.
[Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA.
[Gibbons, Sean M.; Caporaso, J. Gregory; Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Lemont, IL 60439 USA.
[Caporaso, J. Gregory] No Arizona Univ, Dept Comp Sci, Flagstaff, AZ 86011 USA.
[Pirrung, Meg] Univ Colorado Denver, Dept Pharmacol, Aurora, CO 80303 USA.
[Field, Dawn] NERC, Ctr Ecol & Hydrol, Oxford OX1 3SR, England.
[Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80303 USA.
[Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80303 USA.
RP Gilbert, JA (reprint author), Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA.
EM gilbertjack@anl.gov
RI Knight, Rob/D-1299-2010;
OI Gibbons, Sean/0000-0002-8724-7916
FU Amazon Web Services (AWS); US Department of Energy [DE-AC02-06CH11357];
National Institutes of Health [5T-32EB-009412]
FX We thank Maureen L. Coleman and the two anonymous reviewers for their
constructive comments on this manuscript and Amazon Web Services (AWS)
for the AWS in Education Researcher's Grant to the QIIME development
group. This work was supported in part by the US Department of Energy
under Contract DE-AC02-06CH11357. Funding for S.M.G. was provided by
National Institutes of Health Training Grant 5T-32EB-009412.
NR 31
TC 82
Z9 83
U1 5
U2 113
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD MAR 19
PY 2013
VL 110
IS 12
BP 4651
EP 4655
DI 10.1073/pnas.1217767110
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 125EK
UT WOS:000317521600055
PM 23487761
ER
PT J
AU Dykstra, AB
Rodriguez, M
Raman, B
Cook, KD
Hettich, RL
AF Dykstra, Andrew B.
Rodriguez, Miguel, Jr.
Raman, Babu
Cook, Kelsey D.
Hettich, Robert L.
TI Characterizing the Range of Extracellular Protein Post-Translational
Modifications in a Cellulose-Degrading Bacteria Using a Multiple
Proteolyic Digestion/Peptide Fragmentation Approach
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID ELECTRON-TRANSFER DISSOCIATION; TANDEM MASS-SPECTROMETRY;
CLOSTRIDIUM-THERMOCELLUM; PROTEOMIC ANALYSIS; IDENTIFICATION TECHNOLOGY;
SHOTGUN PROTEOMICS; MEMBRANE-PROTEIN; IN-VIVO; PEPTIDE; OXIDATION
AB Post-translational modifications (PTMs) are known to play a significant role in many biological functions. The focus of this study is to optimize an integrated experimental/informatics approach to more confidently characterize the range of post-translational modifications of the cellulosome protein complex used by the bacterium Clostridium thermocellum to better understand how this protein machine is tuned for enzymatic cellulose solubilization. To enhance comprehensive characterization, the extracellular cellulosome proteins were analyzed using multiple proteolytic digests (trypsin, Lys-C, Glu-C) and multiple fragmentation techniques (collisionally activated dissociation, electron transfer dissociation, decision tree). As expected, peptide and protein identifications were increased by utilizing alternate proteases and fragmentation methods, in addition to the increase in protein sequence coverage. The complementarity of these experiments also allowed for a global exploration of PTMs associated with the cellulosome based upon a set of defined PTMs that included methylation, oxidation, acetylation, phosphorylation, and signal peptide cleavage. In these experiments, 85 modified peptides corresponding to 28 cellulosome proteins were identified. Many of these modifications were located in active cellulolytic or structural domains of the cellulosome proteins, suggesting a level of possible regulatory control of protein function in various cellulotyic conditions. The use of complementary proteolytic digestion/peptide fragmentation processes allowed for independent verification of PTMs in different experiments, thus leading to increased confidence in PTM identifications.
C1 [Dykstra, Andrew B.; Rodriguez, Miguel, Jr.; Hettich, Robert L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Dykstra, Andrew B.; Cook, Kelsey D.] Univ Tennessee, Knoxville, TN 37996 USA.
[Raman, Babu] Dow AgroSci, Indianapolis, IN 46268 USA.
RP Hettich, RL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM hettichrl@ornl.gov
RI Hettich, Robert/N-1458-2016;
OI Hettich, Robert/0000-0001-7708-786X; Cook, Kelsey/0000-0003-2053-3309
FU U.S. DOE BER, Bioenergy Research Program; National Science Foundation;
U.S. Department of Energy
FX Special thanks to Richard Giannone, Rachel Adams, Adriane Lochner, and
Paul Abraham for technical and computational advice. This research was
sponsored by the U.S. DOE BER, Bioenergy Research Program. Oak Ridge
National Laboratory is managed by UT-Battelle, LLC, for the U.S.
Department of Energy. Participation by K.D.C. while at the National
Science Foundation was supported through the NSF Independent Research
and Development program. This manuscript has been authored by
UT-Battelle, LLC, under contract with the U.S. Department of Energy.
NR 68
TC 4
Z9 4
U1 4
U2 43
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
EI 1520-6882
J9 ANAL CHEM
JI Anal. Chem.
PD MAR 19
PY 2013
VL 85
IS 6
BP 3144
EP 3151
DI 10.1021/ac3032838
PG 8
WC Chemistry, Analytical
SC Chemistry
GA 111KP
UT WOS:000316520500016
PM 23406086
ER
PT J
AU Shiel, AE
Laubach, PG
Johnson, TM
Lundstrom, CC
Long, PE
Williams, KH
AF Shiel, Alyssa E.
Laubach, Parker G.
Johnson, Thomas M.
Lundstrom, Craig C.
Long, Philip E.
Williams, Kenneth H.
TI No Measurable Changes in U-238/U-235 due to Desorption-Adsorption of
U(VI) from Groundwater at the Rifle, Colorado, Integrated Field Research
Challenge Site
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID URANIUM-CONTAMINATED AQUIFER; REDUCTION; URANYL; SPECIATION;
IMMOBILIZATION; COMPLEXATION; SEDIMENTS; PRODUCTS; CALCIUM; SURFACE
AB Groundwater samples were collected from the Integrated Field Research Challenge field site in Rifle, Colorado, over the course of a bicarbonate-induced U desorption-adsorption experiment. Uranium concentrations and high precision U isotopic compositions (U-238/U-235) of these groundwater samples were determined and used to assess the impact of bicarbonate-induced U(VI) desorption from contaminated sediments on the U-238/U-235 of groundwater. The U-238/U-235 of groundwater was not significantly impacted by bicarbonate-induced desorption of U(VI) from mineral surfaces or by adsorption of advecting U(VI) from upgradient locations onto those surfaces after the treatment. Assuming this absence of a significant shift in U isotopic composition associated with desorption-adsorption applies to other systems, reduction of U(VI) to U(IV) is expected to be the dominant source of U isotopic fractionation associated with removal of U(VI) from pore water as a result of natural and stimulated reductive pathways. Thus, changes in the U-238/U-235 composition of uranium-bearing fluids should be useful in quantifying the extent of reduction.
C1 [Shiel, Alyssa E.; Laubach, Parker G.; Johnson, Thomas M.; Lundstrom, Craig C.] Univ Illinois, Dept Geol, Urbana, IL 61801 USA.
[Long, Philip E.; Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Shiel, AE (reprint author), Univ Illinois, Dept Geol, 208 Nat Hist Bldg,1301 West Green St, Urbana, IL 61801 USA.
EM ashiel@illinois.edu
RI Johnson, Thomas/A-2740-2008; Long, Philip/F-5728-2013; Williams,
Kenneth/O-5181-2014
OI Johnson, Thomas/0000-0003-1620-1408; Long, Philip/0000-0003-4152-5682;
Williams, Kenneth/0000-0002-3568-1155
FU U.S. Department of Energy (DOE), Office of Science, Office of Biological
and Environmental Research [DE-SC0006755, DE-AC02-05CH11231]
FX We thank Anirban Basu and Gideon Bartov (UIUC) for their help in the
editing process, Alison Montgomery for help collecting groundwater
samples, and Joern Larsen for quantifying dissolved U(VI) concentrations
in groundwater samples. Elena Berman, Manish Gupta, and Susan Fortson
(Los Gatos Research, Inc., Los Gatos, CA) are also gratefully
acknowledged for their help in setting up the liquid water isotope
analyzer, analytical support, and troubleshooting. We are greatly
appreciative of the constructive reviews by three anonymous reviewers
and to Ruben Kretzschmar for editorial handling. Funding was provided
through the U.S. Department of Energy (DOE), Office of Science, Office
of Biological and Environmental Research under contracts DE-SC0006755
(University of Illinois at Urbana-Champaign) and DE-AC02-05CH11231
(Lawrence Berkeley National Laboratory; operated by the University of
California). This material is based upon work equally supported through
the Integrated Field Research Challenge (IFRC) site at Rifle, Colorado,
and the Lawrence Berkeley National Laboratory's Sustainable Systems
Scientific Focus Area.
NR 33
TC 23
Z9 23
U1 1
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD MAR 19
PY 2013
VL 47
IS 6
BP 2535
EP 2541
DI 10.1021/es303913y
PG 7
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 112LP
UT WOS:000316594000014
PM 23379698
ER
PT J
AU Liu, YY
Zhang, CY
Hu, DH
Kuhlenschmidt, MS
Kuhlenschmidt, TB
Mylon, SE
Kong, R
Bhargava, R
Nguyen, TH
AF Liu, Yuanyuan
Zhang, Changyong
Hu, Dehong
Kuhlenschmidt, Mark S.
Kuhlenschmidt, Theresa B.
Mylon, Steven E.
Kong, Rong
Bhargava, Rohit
Nguyen, Thanh H.
TI Role of Collector Alternating Charged Patches on Transport of
Cryptosporidium parvum Oocysts in a Patchwise Charged Heterogeneous
Micromodel
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID MICROMETER-SCALE PARTICLES; SATURATED POROUS-MEDIA; COLLOID TRANSPORT;
PHYSICOCHEMICAL FILTRATION; ESCHERICHIA-COLI; SAND AQUIFER; DEPOSITION;
SURFACES; ADHESION; OUTBREAK
AB The role of collector surface charge heterogeneity on transport of Cryptosporidium parvum oocyst and carboxylate microsphere in 2-dimensional micromodels was studied. The cylindrical silica collectors within the micromodels were coated with 0, 10, 20, 50, and 100% Fe2O3 patches. The experimental values of average removal efficiencies (eta) of the Fe2O3 patches and on the entire collectors were determined. In the presence of significant (>3500 kT) Derjaguin-Landau-Verwey-Overbeek (DLVO) energy barrier between the microspheres and the silica collectors at pH 5.8 and 8.1, eta determined for Fe2O3 patches on the heterogeneous collectors were significantly less (p < 0.05, t test) than those obtained for collectors coated entirely with Fe2O3. However, eta calculated for Fe2O3 patches for microspheres at pH 4.4 and for oocysts at pH 5.8 and 8.1, where the DLVO energy barrier was relatively small (ca. 200-360 kT), were significantly greater (p < 0.05, t test) than those for the collectors coated entirely with Fe2O3. The dependence of eta for Fe2O3 patches on the DLVO energy barrier indicated the importance of periodic favorable and unfavorable electrostatic interactions between colloids and collectors with alternating Fe2O3 and silica patches. Differences between experimentally determined overall eta for charged heterogeneous collectors and those predicted by a patchwise geochemical heterogeneous model were observed. These differences can be explained by the model's lack of consideration for the spatial distribution of charge heterogeneity on the collector surface.
C1 [Liu, Yuanyuan; Nguyen, Thanh H.] Univ Illinois, Ctr Adv Mat Purificat Water Syst, Dept Civil & Environm Engn, Urbana, IL 61801 USA.
[Zhang, Changyong; Hu, Dehong] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA.
[Kuhlenschmidt, Mark S.; Kuhlenschmidt, Theresa B.] Univ Illinois, Dept Pathobiol, Urbana, IL 61801 USA.
[Mylon, Steven E.] Lafayette Coll, Dept Chem, Easton, PA 18042 USA.
[Kong, Rong; Bhargava, Rohit] Univ Illinois, Micro & Nanotechnol Lab, Dept Bioengn, Urbana, IL 61801 USA.
[Kong, Rong; Bhargava, Rohit] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA.
RP Nguyen, TH (reprint author), Univ Illinois, Ctr Adv Mat Purificat Water Syst, Dept Civil & Environm Engn, Urbana, IL 61801 USA.
EM thn@illinois.edu
RI Hu, Dehong/B-4650-2010; Zhang, Changyong/A-8012-2013; Kong,
Rong/K-7241-2015; Liu, Yuanyuan/L-1369-2016;
OI Hu, Dehong/0000-0002-3974-2963; Liu, Yuanyuan/0000-0001-6076-9733;
Kuhlenschmidt, Mark/0000-0003-1196-0763; Bhargava,
Rohit/0000-0001-7360-994X
FU NSF [0954501]; DOE, Office of Biological and Environmental Research at
the Pacific Northwest National Laboratory
FX This work was supported by NSF Career Grant No. 0954501. Part of the
research was performed at the Environmental Molecular Sciences
Laboratory (EMSL), a national scientific user facility sponsored by the
DOE, Office of Biological and Environmental Research located at the
Pacific Northwest National Laboratory.
NR 44
TC 3
Z9 3
U1 1
U2 25
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD MAR 19
PY 2013
VL 47
IS 6
BP 2670
EP 2678
DI 10.1021/es304075j
PG 9
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 112LP
UT WOS:000316594000031
PM 23373745
ER
PT J
AU Metts, BS
Buhlmann, KA
Tuberville, TD
Scott, DE
Hopkins, WA
AF Metts, Brian S.
Buhlmann, Kurt A.
Tuberville, Tracey D.
Scott, David E.
Hopkins, William A.
TI Maternal Transfer of Contaminants and Reduced Reproductive Success of
Southern Toads (Bufo [Anaxyrus] terrestris) Exposed to Coal Combustion
Waste
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID BULLFROGS RANA-CATESBEIANA; COMPLEX LIFE-CYCLES; BURNING POWER-PLANT;
AMPHIBIAN DECLINES; TISSUE CONCENTRATIONS; MERCURY EXPOSURE; ORAL
DEFORMITIES; UNITED-STATES; SELENIUM; EGGS
AB Bioaccumulation of contaminants and subsequent maternal transfer to offspring are important factors that affect the reproductive success of wildlife. However, maternal transfer of contaminants has rarely been investigated in amphibians. We examined maternal transfer of trace elements in southern toads (Bufo[Anaxyrus] terrestris) residing in two locations: (1) an active coal combustion waste (CCW) disposal basin and adjacent 40-ha floodplain contaminated with CCW over 35 years ago and (2) an uncontaminated reference site. Our study is among the few to document tissue concentration-dependent maternal transfer of contaminants and associated adverse effects in amphibians. We found that females collected from the CCW-contaminated area had elevated concentrations of Ni, Se, and Sr; these females also transferred elevated levels of Cu, Pb, Se, and Sr to their eggs compared to females from the reference site. Overall reproductive success, estimated as a function of clutch size and offspring viability, was reduced by 27% in clutches collected from parents from the contaminated site compared to the reference site. Offspring viability negatively correlated with female and/or egg concentrations of Se and Ni. Reproductive success negatively correlated with Se and Cu concentrations in females, and Se concentrations in eggs. Our study highlights how exposure to CCW can negatively affect amphibian reproduction.
C1 [Metts, Brian S.; Buhlmann, Kurt A.; Tuberville, Tracey D.; Scott, David E.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Hopkins, William A.] Virginia Tech, Dept Fish & Wildlife Conservat, Blacksburg, VA 24061 USA.
RP Metts, BS (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
EM metts@srel.edu
FU Savannah River Nuclear Solutions Area Completion Projects; Department of
Energy [DE-FC09-07SR22506]
FX We thank B. DeGregorio, M. Erikson, A. Grosse, B. Harris, G. Mills, T.
Murphy, and O. Ogunyemi for field and laboratory assistance. We thank
Whit Gibbons, Stacey Lance, Jason Unrine, and three anonymous reviewers
for comments on this manuscript. We also thank Stacey Lance for numerous
discussions of maternal effects as well as statistical advice.
Collection of animals was in conformance with appropriate permits (SC
DNR Scientific Collecting Permit No. G-10-02), and sample methods were
in compliance with University of Georgia's animal care and use protocols
(AUP No. A2010 02-029-Y1-A0). Financial support was provided by Savannah
River Nuclear Solutions Area Completion Projects. Manuscript preparation
was partially supported by the Department of Energy under Award No.
DE-FC09-07SR22506 to the University of Georgia Research Foundation.
NR 72
TC 18
Z9 18
U1 1
U2 25
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD MAR 19
PY 2013
VL 47
IS 6
BP 2846
EP 2853
DI 10.1021/es303989u
PG 8
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 112LP
UT WOS:000316594000053
PM 23406432
ER
PT J
AU Yanowitz, J
Knoll, K
Kemper, J
Luecke, J
McCormick, RL
AF Yanowitz, Janet
Knoll, Keith
Kemper, James
Luecke, Jon
McCormick, Robert L.
TI Impact of Adaptation on Flex-Fuel Vehicle Emissions When Fueled with E40
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID LIGHT-DUTY VEHICLES; GASOLINE VEHICLES; E85
AB Nine flex-fuel vehicles meeting Tier 1, light duty vehicle-low emission vehicle (LDV-LEV), light duty truck 2-LEV (LDT2-LEV), and Tier 2 emission standards were tested over hot-start and cold-start three-phase LA92 cycles for nonmethane organic gases, ethanol, acetaldehyde, formaldehyde, acetone, nitrous oxide, nitrogen oxides (NOx), carbon monoxide (CO), and carbon dioxide (CO2), as well as fuel economy. Emissions were measured immediately after refueling with E40. The vehicles had previously been adapted to either E10 or E76. An overall comparison of emissions and fuel economy behavior of vehicles running on E40 showed results generally consistent with adaptation to the blend after the length of the three-phase hot-start LA92 test procedure (1735 s, 11 miles). However, the single LDT2-LEV vehicle, a Dodge Caravan, continued to exhibit statistically significant differences in emissions for most pollutants when tested on E40 depending on whether the vehicle had been previously adapted to E10 or E76. The results were consistent with an overestimate of the amount of ethanol in the fuel when E40 was added immediately after the use of E76. Increasing ethanol concentration in fuel led to reductions in fuel economy, NOx, CO, CO2, and acetone emissions as well as increases in emissions of ethanol, acetaldehyde, and formaldehyde.
C1 [Knoll, Keith; Luecke, Jon; McCormick, Robert L.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Kemper, James] Colorado Dept Publ Hlth & Environm, Denver, CO USA.
[Yanowitz, Janet] Ecoengn Inc, Boulder, CO USA.
RP McCormick, RL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM robert.mccormick@nrel.gov
RI McCormick, Robert/B-7928-2011
FU U.S. Department of Energy [DE-AC36-99GO10337]; National Renewable Energy
Laboratory
FX This work was supported by the U.S. Department of Energy under Contract
No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory. The
authors wish to thank Dennis Smith, Co-director of the Clean Cities
Program.
NR 15
TC 14
Z9 14
U1 3
U2 14
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD MAR 19
PY 2013
VL 47
IS 6
BP 2990
EP 2997
DI 10.1021/es304552b
PG 8
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 112LP
UT WOS:000316594000071
PM 23398464
ER
PT J
AU Xu, C
Yang, J
Veenstra, M
Sudik, A
Purewal, JJ
Ming, Y
Hardy, BJ
Warner, J
Maurer, S
Mueller, U
Siegel, DJ
AF Xu, C.
Yang, J.
Veenstra, M.
Sudik, A.
Purewal, J. J.
Ming, Yang
Hardy, B. J.
Warner, J.
Maurer, S.
Mueeller, U.
Siegel, Donald J.
TI Hydrogen permeation and diffusion in densified MOF-5 pellets
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE Hydrogen storage; MOF-5; Pressure drop; Steady flow state; Darcy
permeability; Fick diffusion
ID FRAMEWORKS; MEMBRANES; DESIGN
AB The metal-organic framework Zn4O (BDC)(3) (BDC = 1,4-bezene dicarboxlate), also known as MOF-5, has demonstrated considerable adsorption of hydrogen, up to 7 excess wt.% at 77 K. Consequently, it has attracted significant attention for vehicular hydrogen storage applications. To improve the volumetric hydrogen density and thermal conductivity of MOF-5, prior studies have examined the hydrogen storage capacities of dense MOF-5 pellets and the impact of thermally conductive additives such as expanded natural graphite (ENG). However, the performance of a storage system based on densified MOF-5 powders will also hinge upon the rate of hydrogen mass transport through the storage medium. In this study, we further characterize MOF-5 compacts by measuring their hydrogen transport properties as a function of pellet density (rho = 0.3-0.5 g cm(-3)) and the presence/absence of ENG additions. More specifically, the Darcy permeability and diffusivity of hydrogen in pellets of neat MOF-5, and composite pellets consisting of MOF-5 with 5 and 10 wt.% ENG additions, have been measured at ambient (296 K) and liquid nitrogen (77 K) temperatures. The experimental data suggest that the H-2 transport in densified MOF-5 is strongly related to the MOP-5 pellet density rho. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
C1 [Xu, C.; Yang, J.; Veenstra, M.; Sudik, A.; Warner, J.] Ford Motor Co, Res & Adv Engn, Dearborn, MI 48121 USA.
[Purewal, J. J.; Ming, Yang; Siegel, Donald J.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA.
[Hardy, B. J.] US DOE, Savannah River Natl Lab, Aiken, SC 29808 USA.
[Maurer, S.; Mueeller, U.] BASF SE Chem Res & Engn, D-67056 Ludwigshafen, Germany.
RP Xu, C (reprint author), Ford Motor Co, Res & Adv Engn, MD 1170 RIC, Dearborn, MI 48121 USA.
EM cxu22@ford.com; jyang27@ford.com
RI Siegel, Donald/B-4048-2013
OI Siegel, Donald/0000-0001-7913-2513
FU US Department of Energy, Office of Energy Efficiency and Renewable
Energy [DE-FC36-GO19002]
FX This work is conducted under US Department of Energy, Office of Energy
Efficiency and Renewable Energy, funding grant No. DE-FC36-GO19002. Mr.
J. Peterson and Dr. Junsheng Wang are acknowledged for helpful
discussions.
NR 17
TC 10
Z9 11
U1 5
U2 64
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
EI 1879-3487
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD MAR 19
PY 2013
VL 38
IS 8
BP 3268
EP 3274
DI 10.1016/j.ijhydene.2012.12.096
PG 7
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 114WV
UT WOS:000316774600018
ER
PT J
AU de Juan, F
AF de Juan, Fernando
TI Non-Abelian gauge fields and quadratic band touching in molecular
graphene
SO PHYSICAL REVIEW B
LA English
DT Article
ID BILAYER GRAPHENE; DIRAC FERMIONS; SPECTRUM; STATES
AB Dirac fermions in graphene can be subjected to non-Abelian gauge fields by implementing certain modulations of the carbon site potentials. Artificial graphene, engineered with a lattice of CO molecules on top of the surface of Cu, offers an ideal arena to study their effects. In this work, we show by symmetry arguments how the underlying CO lattice must be deformed to obtain these gauge fields, and estimate their strength. We also discuss the fundamental differences between Abelian and non-Abelian gauge fields from the Dirac electrons point of view, and show how a constant (non-Abelian) magnetic field gives rise to either a Landau level spectrum or a quadratic band touching, depending on the gauge field that realizes it (a known feature of non-Abelian gauge fields known as the Wu-Yang ambiguity). We finally present the characteristic signatures of these effects in the site-resolved density of states that can be directly measured in the current molecular graphene experiment, and discuss prospects to realize the interaction induced broken symmetry states of a quadratic touching in this system. DOI: 10.1103/PhysRevB.87.125419
C1 [de Juan, Fernando] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[de Juan, Fernando] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP de Juan, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RI de Juan, Fernando/B-9392-2008
OI de Juan, Fernando/0000-0001-6852-1484
FU "Programa Nacional de Movilidad de Recursos Humanos" (Spanish MECD)
FX I would like to thank D. Rastawiki, V. Juricic, H. Ochoa, A. G. Grushin
and H. Manoharan for useful discussions. Funding from the "Programa
Nacional de Movilidad de Recursos Humanos" (Spanish MECD) is
acknowledged.
NR 35
TC 17
Z9 17
U1 2
U2 18
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 19
PY 2013
VL 87
IS 12
AR 125419
DI 10.1103/PhysRevB.87.125419
PG 6
WC Physics, Condensed Matter
SC Physics
GA 109RD
UT WOS:000316385300006
ER
PT J
AU Kim, H
Sung, NH
Cho, BK
Tanatar, MA
Prozorov, R
AF Kim, H.
Sung, N. H.
Cho, B. K.
Tanatar, M. A.
Prozorov, R.
TI Magnetic penetration depth in single crystals of SrPd2Ge2 superconductor
SO PHYSICAL REVIEW B
LA English
DT Article
ID FIELD; DEPENDENCE
AB The in-plane magnetic penetration depth lambda(m)(T) was measured in a single crystal of SrPd2Ge2 superconductor in a dilution refrigerator down to T = 60 mK and in magnetic fields up to H-dc = 1 T by using a tunnel diode resonator. The London penetration depth lambda saturates exponentially approaching T -> 0 indicating fully gapped superconductivity. The thermodynamic Rutgers formula was used to estimate lambda(0) = 426 +/- 60 nm which was used to calculate the superfluid density, rho(s)(T) = lambda(2)(0)/lambda(2)(T). Analysis of rho(s)(T) in the full temperature range shows that it is best described by a single-gap behavior, perhaps with somewhat stronger coupling. In a magnetic field, the measured penetration depth is given by the Campbell penetration depth which was used to calculate the theoretical critical current density j(c). For H <= 0.45 T, the strongest pinning is achieved not at the lowest, but at some intermediate temperature, probably due to matching effect between temperature-dependent coherence length and relevant pinning length scale. Finally, we find compelling evidence for surface superconductivity. Combining all measurements, the entire H-T phase diagram of SrPd2Ge2 is constructed with an estimated H-c2(0) = 0.4817 T. DOI: 10.1103/PhysRevB.87.094515
C1 [Kim, H.; Tanatar, M. A.; Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Kim, H.; Tanatar, M. A.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Sung, N. H.; Cho, B. K.] GIST, Sch Mat Sci & Engn, Kwangju 500712, South Korea.
[Cho, B. K.] GIST, Dept Photon & Appl Phys, Kwangju 500712, South Korea.
RP Prozorov, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM hyunsoo@iastate.edu; nakheon@gmail.com; chobk@gist.ac.kr;
tanatar@ameslab.gov; prozorov@ameslab.gov
FU US Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-AC02-07CH11358]; Ministry of
Education, Science and Technology of the Republic of Korea
[2011-0028736]
FX R.P., M.A.T., and H.K. thank V. G. Kogan for insightful comments and the
suggestion to use the thermodynamic Rutgers formula for analysis of the
superfluid density. H.K. and N.H.S. thank J. Kim for useful discussions.
The work at Ames was supported by the US Department of Energy, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering
under Contract No. DE-AC02-07CH11358. The work at GIST was supported by
the Ministry of Education, Science and Technology of the Republic of
Korea (Grant No. 2011-0028736).
NR 33
TC 9
Z9 9
U1 0
U2 18
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 19
PY 2013
VL 87
IS 9
AR 094515
DI 10.1103/PhysRevB.87.094515
PG 7
WC Physics, Condensed Matter
SC Physics
GA 109OY
UT WOS:000316379100003
ER
PT J
AU Sun, RS
Johnson, DD
AF Sun, Ruoshi
Johnson, D. D.
TI Stability maps to predict anomalous ductility in B2 materials
SO PHYSICAL REVIEW B
LA English
DT Article
ID EARTH INTERMETALLIC COMPOUNDS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY
CALCULATIONS; OPERATIVE SLIP SYSTEMS; AUGMENTED-WAVE METHOD; BINARY
ALLOY SYSTEMS; DEFORMATION-BEHAVIOR; MECHANICAL-PROPERTIES;
SINGLE-CRYSTALS; BETA-CUZN
AB While most B2 materials are brittle, a new class of B2 (rare-earth) intermetallic compounds is observed to have large ductility. We analytically derive a necessary condition for ductility (dislocation motion) involving < 111 > versus < 001 > slip and the relative stability of various planar defects that must form. We present a sufficient condition for antiphase boundary bistability on {1 (1) over bar0} and {11 (2) over bar} planes that allows multiple slip systems. From these energy-based criteria, we construct two stability maps for B2 ductility that use only dimensionless ratios of elastic constants and defect energies, calculated via density functional theory. These two conditions fully explain and predict enhanced ductility (or lack thereof) for B2 systems. In the 23 systems studied, the ductility of YAg, ScAg, ScAu, and ScPd, ductile-to-brittle crossover for other rare-earth B2 compounds, and brittleness of all classic B2 alloys and ionic compounds are correctly predicted. DOI: 10.1103/PhysRevB.87.104107
C1 [Sun, Ruoshi; Johnson, D. D.] Univ Illinois, Urbana, IL 61801 USA.
[Sun, Ruoshi] MIT, Cambridge, MA 02139 USA.
[Johnson, D. D.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
[Johnson, D. D.] Iowa State Univ, Ames, IA 50011 USA.
RP Sun, RS (reprint author), Univ Illinois, 1304 W Green St, Urbana, IL 61801 USA.
EM ddj@AmesLab.gov
RI Sun, Ruoshi/G-5703-2010;
OI Sun, Ruoshi/0000-0002-6833-3480; Johnson, Duane/0000-0003-0794-7283
FU Department of Energy, Basic Energy Sciences, Division of Materials
Science and Engineering [DEFG02-03ER46026]; Ames; US Department of
Energy by Iowa State University [DE-AC02-07CH11358]; National Science
Foundation [DMR-07-05089]
FX We thank Karl Gschneidner, Jr. and James Morris for sharing their
results, respectively, on YMg and B33 versus B27 stability. We thank
Vaclav Vitek for discussions on complexities for more general theory.
Funding was from the Department of Energy, Basic Energy Sciences,
Division of Materials Science and Engineering (Grant No.
DEFG02-03ER46026) and "materials discovery" seed funding in Ames. The
research was performed at the Ames Laboratory. The Ames Laboratory is
operated for the US Department of Energy by Iowa State University under
Contract No. DE-AC02-07CH11358. In preparation for this work, RS did an
undergraduate summer REU with DDJ at Illinois supported partially by the
National Science Foundation (Grant No. DMR-07-05089).
NR 71
TC 5
Z9 5
U1 4
U2 17
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 19
PY 2013
VL 87
IS 10
AR 104107
DI 10.1103/PhysRevB.87.104107
PG 12
WC Physics, Condensed Matter
SC Physics
GA 109PP
UT WOS:000316380800001
ER
PT J
AU Yan, JQ
McGuire, MA
May, AF
Cao, H
Christianson, AD
Mandrus, DG
Sales, BC
AF Yan, J. -Q.
McGuire, M. A.
May, A. F.
Cao, H.
Christianson, A. D.
Mandrus, D. G.
Sales, B. C.
TI Flux growth and physical properties of Mo3Sb7 single crystals
SO PHYSICAL REVIEW B
LA English
DT Article
ID SUPERCONDUCTOR MO3SB7; TRANSITION; RU3SN7; STATE
AB Millimeter sized single crystals of Mo3Sb7 are grown using the self-flux technique and a thorough characterization of their structural, magnetic, thermal, and transport properties is reported. The structure parameters for the high-temperature cubic phase and the low-temperature tetragonal phase were determined with neutron single crystal diffraction. Both x-ray powder diffraction and neutron single crystal diffraction at room temperature confirmed that Mo3Sb7 crystallizes in Ir3Ge7-type cubic structure with space group Im (3) over barm. The cubic-tetragonal structure transition at 53 K is verified by the peak splitting of (4 0 0) reflection observed by x-ray single crystal diffraction and the dramatic intensity change of the (12 0 0) peak observed by neutron single crystal diffraction. The structural transition is accompanied by a sharp drop in magnetic susceptibility, electrical resistivity, and thermopower while cooling. A weak lambda anomaly was also observed around 53 K in the temperature dependence of specific heat, and the entropy change across the transition is estimated to be 1.80 J/mol Mo K. The temperature dependence of magnetic susceptibility was measured up to 750 K, and it follows a Curie-Weiss behavior above room temperature. Analysis of the low-temperature magnetic susceptibility suggests a spin gap of 110 K around 53 K. A typical phonon thermal conductivity was observed in the low temperature tetragonal phase. A glassy phonon thermal conductivity above 53 K suggests a structural instability in a wide temperature range. Superconductivity was observed at 2.35 K in the as-grown crystals, and the dimensionless specific heat jump Delta C(T)/gamma T-n(c) was determined to be 1.49, which is slightly larger than the BCS value of 1.43 for the weak-coupling limit. DOI: 10.1103/PhysRevB.87.104515
C1 [Yan, J. -Q.; McGuire, M. A.; May, A. F.; Mandrus, D. G.; Sales, B. C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Yan, J. -Q.; Mandrus, D. G.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Cao, H.; Christianson, A. D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
RP Yan, JQ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; May,
Andrew/E-5897-2011; christianson, andrew/A-3277-2016; Cao,
Huibo/A-6835-2016
OI McGuire, Michael/0000-0003-1762-9406; May, Andrew/0000-0003-0777-8539;
christianson, andrew/0000-0003-3369-5884; Cao, Huibo/0000-0002-5970-4980
FU US Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division; Scientific User Facilities Division, Office of
Basic Energy Sciences, US Department of Energy
FX The authors thank D. Parker for helpful discussion. Research was
supported by the US Department of Energy, Basic Energy Sciences,
Materials Sciences and Engineering Division. Work at ORNL's High Flux
Isotope Reactor was sponsored by the Scientific User Facilities
Division, Office of Basic Energy Sciences, US Department of Energy.
NR 29
TC 8
Z9 8
U1 4
U2 44
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 19
PY 2013
VL 87
IS 10
AR 104515
DI 10.1103/PhysRevB.87.104515
PG 8
WC Physics, Condensed Matter
SC Physics
GA 109PP
UT WOS:000316380800003
ER
PT J
AU Fok, R
Kribs, GD
Martin, A
Tsai, Y
AF Fok, R.
Kribs, Graham D.
Martin, Adam
Tsai, Yuhsin
TI Electroweak baryogenesis in R-symmetric supersymmetry
SO PHYSICAL REVIEW D
LA English
DT Article
ID MODEL CP-VIOLATION; STANDARD MODEL; PHASE-TRANSITION; BARYON ASYMMETRY;
FINITE-TEMPERATURE; DIRAC GAUGINOS; GAUGE MEDIATION; FIELD-THEORY;
HIGGS-BOSON; BREAKING
AB We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner'' Higgs superfields, giving R-symmetric mu terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/Higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments owing to R symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the lightest CP-odd scalar. DOI: 10.1103/PhysRevD.87.055018
C1 [Fok, R.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada.
[Kribs, Graham D.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA.
[Martin, Adam] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA.
[Tsai, Yuhsin] Cornell Univ, Lab Elementary Particle Phys, Ithaca, NY 14853 USA.
RP Fok, R (reprint author), York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada.
OI Tsai, Yuhsin/0000-0001-7847-225X
FU NSERC of Canada; U.S. Department of Energy [DE-FG02-96ER40969,
DE-AC02-07CH11359]; NSF [PHY-0918108, PHY-0757868]; Fermilab
FX We thank A. Nelson and S. Su for discussions. G. D. K. and A. M. thank
the Aspen Center of Physics where part of this work was completed. R. F.
was partially supported by funding from NSERC of Canada. G. D. K. was
supported in part by the U.S. Department of Energy under Contract No.
DE-FG02-96ER40969 and by NSF under Contract No. PHY-0918108. A. M. was
supported by Fermilab operated by Fermi Research Alliance, LLC under
Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. Y. T.
was supported in part by the NSF through Grant No. PHY-0757868.
NR 123
TC 22
Z9 22
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD MAR 19
PY 2013
VL 87
IS 5
AR 055018
DI 10.1103/PhysRevD.87.055018
PG 17
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 109ST
UT WOS:000316389600006
ER
PT J
AU Colgan, J
Abdallah, J
Faenov, AY
Pikuz, SA
Wagenaars, E
Booth, N
Culfa, O
Dance, RJ
Evans, RG
Gray, RJ
Kaempfer, T
Lancaster, KL
McKenna, P
Rossall, AL
Skobelev, IY
Schulze, KS
Uschmann, I
Zhidkov, AG
Woolsey, NC
AF Colgan, J.
Abdallah, J., Jr.
Faenov, A. Ya.
Pikuz, S. A.
Wagenaars, E.
Booth, N.
Culfa, O.
Dance, R. J.
Evans, R. G.
Gray, R. J.
Kaempfer, T.
Lancaster, K. L.
McKenna, P.
Rossall, A. L.
Skobelev, I. Yu.
Schulze, K. S.
Uschmann, I.
Zhidkov, A. G.
Woolsey, N. C.
TI Exotic Dense-Matter States Pumped by a Relativistic Laser Plasma in the
Radiation-Dominated Regime
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SOLID ALUMINUM; PULSES; ATOMS; SPECTRA; IONS
AB In high-spectral resolution experiments with the petawatt Vulcan laser, strong x-ray radiation of KK hollow atoms (atoms without n = 1 electrons) from thin Al foils was observed at pulse intensities of 3 x 10(20) W/cm(2). The observations of spectra from these exotic states of matter are supported by detailed kinetics calculations, and are consistent with a picture in which an intense polychromatic x-ray field, formed from Thomson scattering and bremsstrahlung in the electrostatic fields at the target surface, drives the KK hollow atom production. We estimate that this x-ray field has an intensity of >5 x 10(18) W/cm(2) and is in the 3 keV range. DOI: 10.1103/PhysRevLett.110.125001
C1 [Colgan, J.; Abdallah, J., Jr.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Faenov, A. Ya.; Pikuz, S. A.; Skobelev, I. Yu.] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia.
[Wagenaars, E.; Culfa, O.; Dance, R. J.; Rossall, A. L.; Woolsey, N. C.] Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England.
[Booth, N.; Lancaster, K. L.] STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England.
[Evans, R. G.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England.
[Gray, R. J.; McKenna, P.] Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 ONG, Lanark, Scotland.
[Kaempfer, T.; Schulze, K. S.; Uschmann, I.] Helmholtz Inst Jena, D-07743 Jena, Germany.
[Zhidkov, A. G.] PPC Osaka Univ, Suita, Osaka 5650871, Japan.
[Zhidkov, A. G.] CREST, JST, Suita, Osaka 5650871, Japan.
[Faenov, A. Ya.] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Kyoto 6190215, Japan.
[Uschmann, I.] Univ Jena, Inst Opt & Quantenelekt, D-07743 Jena, Germany.
RP Colgan, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RI Pikuz, Sergey/F-7768-2014; McKenna, Paul/B-9764-2009; Wagenaars,
Erik/A-9248-2013; Rossall, Andrew/R-2312-2016;
OI Pikuz, Sergey/0000-0003-2529-1142; McKenna, Paul/0000-0001-8061-7091;
Wagenaars, Erik/0000-0002-5493-3434; Rossall,
Andrew/0000-0002-0123-8163; Colgan, James/0000-0003-1045-3858
FU Science and Technology Facilities Council; Engineering and Physical
Science Research Council of the United Kingdom [EP/E048668/1]; NNSA of
the U.S. DOE [DE-AC5206NA25396]; RFBR; Royal Society [12-02-92617-KOa,
E120059]; RF [MK-4725.2012.8]
FX We thank the Vulcan technical and target preparation teams at the
Central Laser Facility for their support during the experiments. The
research leading to these results has received funding from the Science
and Technology Facilities Council and the Engineering and Physical
Science Research Council (Grant No. EP/E048668/1) of the United Kingdom.
The Los Alamos National Laboratory is operated by Los Alamos National
Security, LLC for the NNSA of the U.S. DOE under Contract No.
DE-AC5206NA25396. The work is supported by a mutual grant of the RFBR
and Royal Society No. 12-02-92617-KOa and No. E120059 and RF President
Grant No. MK-4725.2012.8.
NR 24
TC 26
Z9 26
U1 2
U2 17
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 18
PY 2013
VL 110
IS 12
AR 125001
DI 10.1103/PhysRevLett.110.125001
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 109VX
UT WOS:000316398800006
PM 25166812
ER
PT J
AU Wibowo, AC
Malliakas, CD
Chung, DY
Im, J
Freeman, AJ
Kanatzidis, MG
AF Wibowo, Arief C.
Malliakas, Christos D.
Chung, Duck Young
Im, Jino
Freeman, Arthur J.
Kanatzidis, Mercouri G.
TI Mercury Bismuth Chalcohalides, Hg(3)Q(2)Bi(2)Cl(8) (Q = S, Se, Te):
Syntheses, Crystal Structures, Band Structures, and Optical Properties
SO INORGANIC CHEMISTRY
LA English
DT Article
ID ION-EXCHANGE PROPERTIES; SOLID-STATE; DIMENSIONAL REDUCTION;
COORDINATION POLYMERS; ELECTRONIC-STRUCTURE; CHEMISTRY; CLUSTERS; CL;
BR; SEMICONDUCTOR
AB Three quaternary mercury bismuth chalcohalides, Hg(3)Q(2)Bi(2)Cl(8) (Q = S, Se, Te), are reported along with their syntheses, crystal structures, electronic band structures, and optical properties. The compounds are structurally similar with a layer comprised of a hole perforated sheet network of [Hg(3)Q(2)](2+) (Q = S and Te) that forms by fused cyclohexane, chairlike Hg(6)Q(6) rings. The cationic charge in the network is balanced by edge-sharing monocapped trigonal-prismatic anions of [Bi2Cl8](2-) that form a two-dimensional network located between layers. Compound 1, Hg(3)Q(2)Bi(2)Cl(8), crystallizes in the monoclinic space group C12/m1 with a = 12.9381(9) angstrom, b = 7.3828(6) angstrom, c = 9.2606(6) angstrom, and beta = 116.641(5)degrees. Compound 2, Hg(3)Q(2)Bi(2)Cl(8), crystallizes in the monoclinic space group C12/c1 with a = 17.483(4) angstrom, b = 7.684(2) angstrom, c = 13.415(3) angstrom, and beta = 104.72(3)degrees. The crystals of the Hg(3)Q(2)Bi(2)Cl(8) analogue exhibit complex modulations and structural disorder, which complicated its structural refinement. Compounds 1 and 2 melt incongruently and show band gaps of 3.26 and 2.80 eV, respectively, which are in a good agreement with those from band-structure density functional theory calculations.
C1 [Wibowo, Arief C.; Malliakas, Christos D.; Chung, Duck Young; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Im, Jino; Freeman, Arthur J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
RP Kanatzidis, MG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM m-kanatzidis@northwestern.edu
RI Wibowo, Arief/D-9418-2014
OI Wibowo, Arief/0000-0002-2454-4307
FU Office of Nonproliferation and Verification Research and Development
under the National Nuclear Security Administration of the U.S.
Department of Energy [DE-AC02-06CH11357]
FX This work was supported by the Office of Nonproliferation and
Verification Research and Development under the National Nuclear
Security Administration of the U.S. Department of Energy under Contract
DE-AC02-06CH11357.
NR 45
TC 9
Z9 9
U1 4
U2 62
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD MAR 18
PY 2013
VL 52
IS 6
BP 2973
EP 2979
DI 10.1021/ic3023826
PG 7
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 110JW
UT WOS:000316439400026
PM 23448152
ER
PT J
AU Rosario-Amorin, D
Ouizem, S
Dickie, DA
Wen, YF
Paine, RT
Gao, J
Grey, JK
de Bettencourt-Dias, A
Hay, BP
Delmau, LH
AF Rosario-Amorin, Daniel
Ouizem, Sabrina
Dickie, Diane A.
Wen, Yufeng
Paine, Robert T.
Gao, Jian
Grey, John K.
de Bettencourt-Dias, Ana
Hay, Benjamin P.
Delmau, Laetitia H.
TI Synthesis, Lanthanide Coordination Chemistry, and Liquid-Liquid
Extraction Performance of CMPO-Decorated Pyridine and Pyridine N-Oxide
Platforms
SO INORGANIC CHEMISTRY
LA English
DT Article
ID MM3 FORCE-FIELD; STRUCTURE-STABILITY RELATIONSHIP; CAMBRIDGE STRUCTURAL
DATABASE; STRUCTURE-BASED DESIGN; MOLECULAR-MECHANICS;
SOLVENT-EXTRACTION; CRYSTAL-STRUCTURES; SELECTIVE LIGANDS; NITRIC-ACID;
WIDE RIM
AB Syntheses for a set of new ligands containing one or two carbamoylmethylphosphine oxide (CMPO) fragments appended to pyridine and pyridine N-oxide platforms are described. Molecular mechanics analyses for gas phase lanthanide ligand interactions for the pyridine N-oxides indicate that the trifunctional NOPOCO molecules, 2-{[Ph2P(O)][C(O)NEt2]-C(H)}C5H4NO (7) and 2-{[Ph2P(O)][C(O)NEt2]CHCH2}C5H4NO (8), and pentafunctional NOPOP'O'COC'O' molecules, 2,6-{[Ph2P(O)][C(O)NEt2]C(H)}(2)C5H3NO (9) and 2,6-{[Ph2P(O)][C(O)NEt2]CHCH2}(2)C5H3NO (10), should be able to adopt, with minimal strain, tridentate and pentadentate chelate structures, respectively. As a test of these predictions, selected lanthanide coordination chemistry of the N-oxide derivatives was explored. Crystal structure analyses reveal the formation of a tridentate NOPOCO chelate structure for a 1:1 Pr(III) complex containing 7 while 8 adopts a mixed bidentate/bridging monodentate POCO/NO binding mode with Pr(III). Tridentate and tetradentate chelate structures are obtained for several 1:1 complexes of 9 while a pentadentate chelate structure is observed with 10. Emission spectroscopy for one complex, [Eu(9)(NO3)(3)], in methanol, shows that the Eu(III) ion resides in a low-symmetry site. Lifetime measurements for methanol and deuterated methanol solutions indicate the presence of four methanol molecules in the inner coordination sphere of the metal ion, in addition to the ligand, with the nitrate anions most likely dissociated. The solvent extraction performance of 7-10 in 1,2-dichloroethane for Eu(III) and Am(III) in nitric acid solutions was analyzed and compared with the performance of 2,6-bis(di-n-octylphosphinoylmethyl)pyridine N-oxide (TONOPOP'O') and n-octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (OPhDiBCMPO) measured under identical conditions.
C1 [Rosario-Amorin, Daniel; Ouizem, Sabrina; Dickie, Diane A.; Wen, Yufeng; Paine, Robert T.; Gao, Jian; Grey, John K.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA.
[de Bettencourt-Dias, Ana] Univ Nevada, Dept Chem, Reno, NV 89557 USA.
[Hay, Benjamin P.; Delmau, Laetitia H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Paine, RT (reprint author), Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA.
EM rtpaine@unm.edu
RI Dickie, Diane/B-1647-2010;
OI Dickie, Diane/0000-0003-0939-3309; de Bettencourt-Dias,
Ana/0000-0001-5162-2393
FU Division of Chemical Sciences, Geosciences and Biosciences, Office of
Basic Energy Sciences, U.S. Department of Energy [DE-FG02-03ER15419];
National Science Foundation [CHE-0443580, CHE-0840523, CHE-0946690];
Division of Chemical Sciences, Geosciences and Biosciences, Office of
Basic Energy Sciences, U.S. Department of Energy; NSF [CHE-1058805]
FX Financial support for this study at the University of New Mexico was
provided by the Division of Chemical Sciences, Geosciences and
Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy
(Grant DE-FG02-03ER15419 (R.T.P)). In addition, funds from the National
Science Foundation assisted with the purchases of the X-ray
diffractometer (CHE-0443580) and NMR spectrometers (CHE-0840523 and
-0946690). R.T.P. also wishes to thank Dr. Brian M. Rapko for his
contributions to the initial stages of this study. B.P.H. and L.H.D.
acknowledge support from the Division of Chemical Sciences, Geosciences
and Biosciences, Office of Basic Energy Sciences, U.S. Department of
Energy. A.d.B.-D. acknowledges financial support from the NSF
(CHE-1058805) and Dr. Sebastian Bauer's help with acquisition of the
HAMS spectra.
NR 117
TC 21
Z9 21
U1 2
U2 54
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD MAR 18
PY 2013
VL 52
IS 6
BP 3063
EP 3083
DI 10.1021/ic3025342
PG 21
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 110JW
UT WOS:000316439400036
PM 23461540
ER
PT J
AU Hu, CJ
Peng, Q
Silvernail, NJ
Barabanschikov, A
Zhao, JY
Alp, EE
Sturhahn, W
Sage, JT
Scheidt, WR
AF Hu, Chuanjiang
Peng, Qian
Silvernail, Nathan J.
Barabanschikov, Alexander
Zhao, Jiyong
Alp, E. Ercan
Sturhahn, Wolfgang
Sage, J. Timothy
Scheidt, W. Robert
TI Effects of Imidazole Deprotonation on Vibrational Spectra of High-Spin
Iron(II) Porphyrinates
SO INORGANIC CHEMISTRY
LA English
DT Article
ID CYTOCHROME-C PEROXIDASE; NUCLEAR RESONANT SCATTERING; HEME-LINKED
IONIZATION; ELECTRONIC CONFIGURATION; HORSERADISH-PEROXIDASE;
RAMAN-SPECTROSCOPY; ACTIVE-SITE; SUM-RULES; 5-COORDINATE; LIGAND
AB The effects of the deprotonation of coordinated imidazole on the vibrational dynamics of five-coordinate high-spin iron(II) porphyrinates have been investigated using nuclear resonance vibrational spectroscopy. Two complexes have been studied in detail with both powder and oriented single-crystal measurements. Changes in the vibrational spectra are clearly related to structural differences in the molecular structures that occur when imidazole is deprotonated. Most modes involving the simultaneous motion of iron and imidazolate are unresolved, but the one mode that is resolved is found at higher frequency in the imidazolates. These out-of-plane results are in accord with earlier resonance Raman studies of heme proteins. We also show the imidazole vs imidazolate differences in the in-plane vibrations that are not accessible to resonance Raman studies. The in-plane vibrations are at lower frequency in the imidazolate derivatives; the doming mode shifts are inconclusive. The stiffness, an experimentally determined force constant that averages the vibrational details to quantify the nearest-neighbor interactions, confirms that deprotonation inverts the relative strengths of axial and equatorial coordination.
C1 [Hu, Chuanjiang] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Key Lab Organ Synth Jiangsu Prov, Suzhou 215123, Peoples R China.
[Hu, Chuanjiang; Peng, Qian; Silvernail, Nathan J.; Scheidt, W. Robert] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA.
[Barabanschikov, Alexander; Sage, J. Timothy] Northeastern Univ, Dept Phys, Boston, MA 02115 USA.
[Barabanschikov, Alexander; Sage, J. Timothy] Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA.
[Zhao, Jiyong; Alp, E. Ercan; Sturhahn, Wolfgang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Hu, CJ (reprint author), Soochow Univ, Coll Chem Chem Engn & Mat Sci, Key Lab Organ Synth Jiangsu Prov, Suzhou 215123, Peoples R China.
EM cjhu@suda.edu.cn; jtsage@neu.edu; Scheidt.1@nd.edu
RI Barabanschikov, Alexander/L-3048-2013; Peng, Qian/N-7093-2013
OI Peng, Qian/0000-0002-1218-5976
FU National Natural Science Foundation of China [21271133]; National
Institutes of Health [GM-38401]; NSF [CHE-1026369]; U.S. DOE
[DE-AC02-06CH11357]
FX We thank the National Natural Science Foundation of China (No. 21271133)
for support of this research to C.H., the National Institutes of Health
Grant GM-38401 to W.R.S. and the NSF under CHE-1026369 to J.T.S. Use of
the Advanced Photon Source, an Office of Science User Facility operated
for the U.S. Department of Energy (DOE) Office of Science by Argonne
National Laboratory, was supported by the U.S. DOE under Contract No.
DE-AC02-06CH11357. We thank the reviewers for their helpful comments on
improving this paper.
NR 60
TC 5
Z9 5
U1 0
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD MAR 18
PY 2013
VL 52
IS 6
BP 3170
EP 3177
DI 10.1021/ic3026396
PG 8
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 110JW
UT WOS:000316439400046
PM 23470205
ER
PT J
AU Chen, XY
Goff, GS
Scott, BL
Janicke, MT
Runde, W
AF Chen, Xiao-Yan
Goff, George S.
Scott, Brian L.
Janicke, Michael T.
Runde, Wolfgang
TI Solid-State and Solution-State Coordination Chemistry of Lanthanide(III)
Complexes with (Pyrazol-1-yl)acetic Acid
SO INORGANIC CHEMISTRY
LA English
DT Article
ID PYRAZOLATE COMPLEXES; IONIC LIQUID; ELECTROLYTES; FLUORESCENCE; METALS;
UNITS
AB As a precursor of carboxyl-functionalized task-specific ionic liquids (TSILs) for f-element separations, (pyrazol-1-yOacetic acid (L) can be deprotonated as a functionalized pyrazolate anion to coordinate with hard metal cations. However, the coordination chemistry of L with f-elements remains unexplored. We reacted L with lanthanides in aqueous solution at pH = 5 and synthesized four lanthanide complexes of general formula [Ln(L)(3)(H2O)(2)].nH(2)O (1, Ln = La, n = 2; 2, Ln = Ce, n = 2; 3, Ln = Pr, n = 2; 4, Ln = Nd, n = 1). All complexes were characterized by single crystal X-ray diffraction analysis revealing onedimensional chain formations. Two distinct crystallographic structures are governed by the different coordination modes of carboxylate groups in L: terminal bidentate and bridging tridentate (1-3); terminal bidentate, bridging bidentate, and tridentate coordination in 4. Comparison of the solid state UV-vis-NIR diffuse reflectance spectra with solution state UV-vis-NIR spectra suggests a different species in solution and solid state. The different coordination in solid state and solution was verified by distinctive C-13 NMR signals of the carboxylate groups in the solid state NMR.
C1 [Chen, Xiao-Yan; Goff, George S.; Janicke, Michael T.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Scott, Brian L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Runde, Wolfgang] Los Alamos Natl Lab, Sci Program Off, Los Alamos, NM 87545 USA.
RP Goff, GS (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA.
EM georgeg@lanl.gov; runde@lanl.gov
RI Scott, Brian/D-8995-2017;
OI Scott, Brian/0000-0003-0468-5396; Janicke, Michael/0000-0002-3139-2882
FU Los Alamos Laboratory Directed Research and Development Program; G.T.
Seaborg Institute for Transactinium Science at Los Alamos National
Laboratory
FX The authors gratefully acknowledge the Los Alamos Laboratory Directed
Research and Development Program and the G.T. Seaborg Institute for
Transactinium Science at Los Alamos National Laboratory for financial
support during this project.
NR 47
TC 8
Z9 8
U1 0
U2 44
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD MAR 18
PY 2013
VL 52
IS 6
BP 3217
EP 3224
DI 10.1021/ic302696m
PG 8
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 110JW
UT WOS:000316439400051
PM 23458903
ER
PT J
AU Agrawal, KL
Sykes, ME
An, KH
Frieberg, B
Green, PF
Shtein, M
AF Agrawal, Kanika L.
Sykes, Matthew E.
An, Kwang Hyup
Frieberg, Bradley
Green, P. F.
Shtein, Max
TI Influence of exciton lifetime on charge carrier dynamics in an organic
heterostructure
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID LIGHT-EMITTING DEVICES; HIGH-CURRENT DENSITY; ELECTROLUMINESCENT
DEVICES; DIODES; FLUORESCENCE; TRANSPORT; INJECTION; MOLECULE; SINGLET
AB Interactions between charge carriers and excitons, as well as between excitons and optical cavity modes in organic optoelectronic devices are fundamental to their operational limits and chief in preventing the realization of certain phenomena, such as electrically pumped organic lasing. We uncovered a previously unreported phenomenon, wherein optical cavity-modulated exciton decay rate leads to a concomitant modulation in the electrical current of an archetypal NPD/Alq(3) organic light emitting device operated in forward bias. The magnitude of this variation is sensitive to the local dielectric environment of the device and is found to be as large as 15%. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795523]
C1 [Agrawal, Kanika L.; Sykes, Matthew E.; Green, P. F.; Shtein, Max] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.
[Agrawal, Kanika L.; Sykes, Matthew E.; Green, P. F.; Shtein, Max] Univ Michigan, Ctr Solar & Thermal Energy Convers, DOE Energy Frontiers Res Ctr, Ann Arbor, MI 48109 USA.
[An, Kwang Hyup] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA.
[An, Kwang Hyup] GE Global Res, Niskayuna, NY 12309 USA.
[Frieberg, Bradley] Univ Michigan, Dept Macromol Sci & Engn, Ann Arbor, MI 48109 USA.
RP Agrawal, KL (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.
EM mshtein@umich.edu
RI Shtein, Max/K-2238-2013; Agrawal, Kanika/D-4937-2013
OI Shtein, Max/0000-0003-4844-5108;
FU Center for Solar and Thermal Energy Conversion, an Energy Frontier
Research Center; U.S. Department of Energy Office of Science, Office of
Basic Energy Sciences [DE-SC0000957]; National Science Foundation
[DMR-0906425]
FX This work was supported as part of the Center for Solar and Thermal
Energy Conversion, an Energy Frontier Research Center funded by the U.S.
Department of Energy Office of Science, Office of Basic Energy Sciences
under Award No. DE-SC0000957. B.F. would like to acknowledge support
from the National Science Foundation DMR-0906425. We thank K.P. Pipe, Y.
Zhao, and S.E. Morris for helpful discussions and insights in the early
stages of this work.
NR 19
TC 2
Z9 2
U1 0
U2 64
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD MAR 18
PY 2013
VL 102
IS 11
AR 113304
DI 10.1063/1.4795523
PG 4
WC Physics, Applied
SC Physics
GA 111TX
UT WOS:000316544900091
ER
PT J
AU Cui, M
Hovenier, JN
Ren, Y
Vercruyssen, N
Gao, JR
Kao, TY
Hu, Q
Reno, JL
AF Cui, M.
Hovenier, J. N.
Ren, Y.
Vercruyssen, N.
Gao, J. R.
Kao, T. Y.
Hu, Q.
Reno, J. L.
TI Beam and phase distributions of a terahertz quantum cascade wire laser
SO APPLIED PHYSICS LETTERS
LA English
DT Article
AB We report on both measurements and simulations of the beam profile and wavefront of a single-mode, 3.5 THz quantum cascade wire laser, incorporating a lateral corrugated metal-metal waveguide, 3rd-order distributed feedback grating. The intrinsic wavefront was measured by using a Hartmann wavefront sensor (HWS) without any optical components between the laser and HWS. Both beam profile and wavefront were simulated using an antenna array model, but taking the non-uniform electric field distribution along the waveguide into account. The results show that the non-uniform distribution along the wire laser plays a crucial role in realizing a nearly single-lobed narrow beam. The measured wavefront is spherical and agrees well with the simulation. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798250]
C1 [Cui, M.; Vercruyssen, N.; Gao, J. R.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands.
[Cui, M.; Hovenier, J. N.; Ren, Y.; Vercruyssen, N.; Gao, J. R.] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands.
[Ren, Y.] Chinese Acad Sci, Purple Mt Observ PMO, Nanjing 210008, Jiangsu, Peoples R China.
[Ren, Y.] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China.
[Kao, T. Y.; Hu, Q.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA.
[Reno, J. L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA.
RP Cui, M (reprint author), SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands.
EM m.cui@vu.nl; j.r.gao@tudelft.nl
FU NWO; KNAW China Exchange Programme; NATO SFP; NASA; NSF; U.S. Department
of Energy National Nuclear Security Administration [DE-AC04-94AL85000]
FX The authors acknowledge D. J. Hayton, T. M. Klapwijk, H. P. Urbach, and
A. Neto for helpful discussions. The work in the Netherlands was
supported by NWO, KNAW China Exchange Programme, and NATO SFP. The work
at MIT was supported by NASA and NSF. The work at Sandia was performed,
in part, at the Center for Integrated Nanotechnologies, a U.S.
Department of Energy, Office of Basic Energy Sciences user facility.
Sandia National Laboratories is a multiprogram laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy National Nuclear
Security Administration under Contract DE-AC04-94AL85000.
NR 15
TC 12
Z9 12
U1 2
U2 24
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD MAR 18
PY 2013
VL 102
IS 11
AR 111113
DI 10.1063/1.4798250
PG 5
WC Physics, Applied
SC Physics
GA 111TX
UT WOS:000316544900013
ER
PT J
AU Kuang, YJ
Yu, KM
Kudrawiec, R
Luce, AV
Ting, M
Walukiewicz, W
Tu, CW
AF Kuang, Y. J.
Yu, K. M.
Kudrawiec, R.
Luce, A. V.
Ting, M.
Walukiewicz, W.
Tu, C. W.
TI GaNAsP: An intermediate band semiconductor grown by gas-source molecular
beam epitaxy
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SOLAR-CELLS; ALLOYS; EFFICIENCY
AB Dilute nitride GaNAsP thin films were grown via a GaAsP metamorphic buffer on GaP(100) substrate with gas-source molecular beam epitaxy. The compositions of this III-V-V-V compound were determined by channeling Rutherford backscattering spectroscopy and nuclear reaction analysis. Photoreflectance shows two distinctive transitions from the valence band to the split conduction bands due to N incorporation. Photoluminescence and optical absorption show the fundamental bandgap of Ga(N)AsP is largely tailored by the small amount of N. The observed multiband characteristics and the bandgap tunability of GaNAsP are two merits that fit into the intermediate-band solar cell roadmap, and GaNAsP of high crystal quality provides a strong candidate for intermediate band solar cell materials. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795782]
C1 [Kuang, Y. J.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Yu, K. M.; Kudrawiec, R.; Luce, A. V.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Elect Mat Program, Berkeley, CA 94720 USA.
[Kudrawiec, R.] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland.
[Luce, A. V.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Ting, M.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Tu, C. W.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA.
RP Kuang, YJ (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
RI Yu, Kin Man/J-1399-2012; Kuang, Yanjin/K-9563-2014
OI Yu, Kin Man/0000-0003-1350-9642; Kuang, Yanjin/0000-0002-2191-6654
FU National Science Foundation [DMR-0907652, DMR-1106369]; Office of
Science, Office of Basic Energy Sciences, Materials Sciences and
Engineering Division, of the U.S. Department of Energy
[DE-AC02-05CH11231]; MNiSzW; NSF
FX Sample growth by GSMBE at UCSD was supported by National Science
Foundation Grant Nos. DMR-0907652 and DMR-1106369. RBS, NRA, absorption,
and PR characterization performed at LBNL was supported by the Director,
Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. R.K. acknowledges for the scholarship
from the MNiSzW. A.V.L. acknowledges support from an NSF Graduate
Research Fellowship.
NR 20
TC 12
Z9 12
U1 3
U2 48
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD MAR 18
PY 2013
VL 102
IS 11
AR 112105
DI 10.1063/1.4795782
PG 4
WC Physics, Applied
SC Physics
GA 111TX
UT WOS:000316544900042
ER
PT J
AU Liu, HR
Yang, JH
Xiang, HJ
Gong, XG
Wei, SH
AF Liu, Heng-Rui
Yang, Ji-Hui
Xiang, H. J.
Gong, X. G.
Wei, Su-Huai
TI Origin of the superior conductivity of perovskite Ba(Sr)SnO3
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID THIN-FILMS; SEMICONDUCTORS; SRTIO3; PSEUDOPOTENTIALS; OXIDES
AB ASnO(3) (A = Ba, Sr) are unique perovskite oxides in that they have superior electron conductivity despite their wide optical band gaps. Using first-principles band structure calculations, we show that the small electron effective masses, thus, good electron conductivity of ASnO(3) can be attributed to the large size of Sn in this system that gives the conduction band edge with antibonding Sn and Os characters. Moreover, we show that ASnO(3) can be easily doped by La with shallow La-A(+/0) donor level. Our results, therefore, explain why the perovskite BaSnO3, SrSnO3, and their alloys are promising candidates for transparent conducting oxides. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798325]
C1 [Liu, Heng-Rui; Yang, Ji-Hui; Xiang, H. J.; Gong, X. G.] Fudan Univ, Key Lab Computat Phys Sci MOE, State Key Lab Surface Phys, Shanghai 200433, Peoples R China.
[Liu, Heng-Rui; Yang, Ji-Hui; Xiang, H. J.; Gong, X. G.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
[Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Liu, HR (reprint author), Fudan Univ, Key Lab Computat Phys Sci MOE, State Key Lab Surface Phys, Shanghai 200433, Peoples R China.
RI Xiang, Hongjun/I-4305-2016; gong, xingao/D-6532-2011
OI Xiang, Hongjun/0000-0002-9396-3214;
FU Special Funds for Major State Basic Research, National Science
Foundation of China, Ministry of Education and Shanghai Municipality;
U.S. Department of Energy [DE-AC36-08GO28308]
FX This work was partially supported by the Special Funds for Major State
Basic Research, National Science Foundation of China, Ministry of
Education and Shanghai Municipality. The calculations were performed in
the Supercomputer Center of Fudan University. The work at NREL was
supported by the U.S. Department of Energy under Contract No.
DE-AC36-08GO28308.
NR 36
TC 33
Z9 33
U1 12
U2 179
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD MAR 18
PY 2013
VL 102
IS 11
AR 112109
DI 10.1063/1.4798325
PG 5
WC Physics, Applied
SC Physics
GA 111TX
UT WOS:000316544900046
ER
PT J
AU Geng, YN
Lee, JH
Schlom, DG
Freeland, JW
Wu, WD
AF Geng, Yanan
Lee, J. H.
Schlom, D. G.
Freeland, J. W.
Wu, Weida
TI Magnetic inhomogeneity in a multiferroic EuTiO3 thin film
SO PHYSICAL REVIEW B
LA English
DT Article
ID FERROELECTRICITY; DYSCO3; FERROMAGNET; GDSCO3; SRTIO3
AB We report on variable temperature magnetic force microscopy studies of a strain-enabled multiferroic EuTiO3 film epitaxially grown on a (110)-oriented DyScO3 substrate. Our temperature-and magnetic-field-dependent studies clearly reveal an inhomogeneous magnetic state with the coexistence of ferromagnetic and nonferromagnetic states at low magnetic fields, which provides a microscopic origin of the anomalous missing moment in previous studies [Lee et al., Nature (London) 466, 954 (2010)]. The spins of the nonferromagnetic phase can be aligned by modest magnetic fields (>1.5 T). The observed magnetic inhomogeneity probably originates from the coexistence of nearly degenerate magnetic ground states. DOI: 10.1103/PhysRevB. 87.121109
C1 [Geng, Yanan; Wu, Weida] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Geng, Yanan; Wu, Weida] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA.
[Lee, J. H.; Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Schlom, D. G.] Cornell Univ, Dept Mat Sci, Ithaca, NY 14853 USA.
RP Wu, WD (reprint author), Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA.
EM wdwu@physics.rutgers.edu
RI Schlom, Darrell/J-2412-2013; Wu, Weida/F-2092-2011; Geng,
Yanan/C-6055-2016
OI Schlom, Darrell/0000-0003-2493-6113; Wu, Weida/0000-0003-1691-6091;
FU NSF [DMR-0844807]; US Department of Energy [DE-AC02-06CH11357]
FX The work at Rutgers was supported by NSF Grant No. DMR-0844807. Work at
Argonne was supported by supported by the US Department of Energy under
Contract No. DE-AC02-06CH11357.
NR 33
TC 8
Z9 8
U1 0
U2 56
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 18
PY 2013
VL 87
IS 12
AR 121109
DI 10.1103/PhysRevB.87.121109
PG 4
WC Physics, Condensed Matter
SC Physics
GA 109RB
UT WOS:000316385100003
ER
PT J
AU Kiswandhi, A
Brooks, JS
Cao, HB
Yan, JQ
Mandrus, D
Jiang, Z
Zhou, HD
AF Kiswandhi, A.
Brooks, J. S.
Cao, H. B.
Yan, J. Q.
Mandrus, D.
Jiang, Z.
Zhou, H. D.
TI Competition between the structural phase transition and
superconductivity in Ir1-xPtxTe2 as revealed by pressure effects
SO PHYSICAL REVIEW B
LA English
DT Article
ID CHARGE-DENSITY WAVES; METAL-INSULATOR-TRANSITION; TOPOLOGICAL
INSULATORS; THIOSPINEL CUIR2S4; IRTE2; DICHALCOGENIDES; NATIO2
AB Pressure-dependent transportmeasurements of Ir1-x PtxTe2 are reported. With increasing pressure, the structural phase transition at high temperatures is enhanced while its superconducting transition at low temperatures is suppressed. These pressure effects make Ir1-x PtxTe2 distinct from other studied TX2 systems exhibiting a charge density wave (CDW) state, in which pressure usually suppresses the CDW state and enhances the superconducting state. The results reveal that the emergence of superconductivity competes with the stabilization of the low-temperature monoclinic phase in Ir1-x PtxTe2. DOI: 10.1103/PhysRevB.87.121107
C1 [Kiswandhi, A.; Brooks, J. S.; Zhou, H. D.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA.
[Kiswandhi, A.; Brooks, J. S.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA.
[Cao, H. B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
[Yan, J. Q.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Yan, J. Q.; Mandrus, D.] Univ Tennessee, Dept Mat & Engn, Knoxville, TN 37996 USA.
[Jiang, Z.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Zhou, H. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
RP Kiswandhi, A (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA.
EM hzhou10@utk.edu
RI Mandrus, David/H-3090-2014; Cao, Huibo/A-6835-2016; Zhou,
Haidong/O-4373-2016
OI Cao, Huibo/0000-0002-5970-4980;
FU State of Florida; US Department of Energy, Office of Basic Energy
Sciences, the Scientific User Facilities Division; Materials Science and
Engineering Division; [NSF-DMR-0654118]; [NSF-DMR-1005293]
FX The authors would like to thank Stanley Tozer, Vaughan Williams, Daniel
McIntosh, Robert Schwartz, and David Graf for technical assistance
concerning the pressure cell used in this work. This work is supported
by NSF-DMR-0654118 and the State of Florida. A. K. is supported in part
by NSF-DMR-1005293. Work at ORNL was supported by the US Department of
Energy, Office of Basic Energy Sciences, the Scientific User Facilities
Division (H. B. C.) and the Materials Science and Engineering Division
(J. Q. Y. and D.G.M.).
NR 33
TC 25
Z9 25
U1 5
U2 62
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 18
PY 2013
VL 87
IS 12
AR 121107
DI 10.1103/PhysRevB.87.121107
PG 4
WC Physics, Condensed Matter
SC Physics
GA 109RB
UT WOS:000316385100001
ER
PT J
AU Zhang, Q
Wang, WJ
Kim, JW
Hansen, B
Ni, N
Bud'ko, SL
Canfield, PC
McQueeney, RJ
Vaknin, D
AF Zhang, Qiang
Wang, Wenjie
Kim, Jong-Woo
Hansen, Benjamin
Ni, Ni
Bud'ko, Sergey L.
Canfield, Paul C.
McQueeney, Robert J.
Vaknin, David
TI Magnetoelastic coupling and charge correlation lengths in a twin domain
of Ba(Fe1-xCox)(2)As-2 (x=0.047): A high-resolution x-ray diffraction
study
SO PHYSICAL REVIEW B
LA English
DT Article
ID SUPERCONDUCTOR
AB The interplay between structure, magnetism, and superconductivity in single crystal Ba(Fe1-xCox)(2)As-2 (x = 0.047) has been studied using high-resolution x-ray diffraction by monitoring charge Bragg reflections in each twin domain separately. The emergence of the superconducting state is correlated with the suppression of the orthorhombic distortion around T-C, exhibiting competition between orthorhombicity and superconductivity. Above T-S, the in-plane charge correlation length increases with the decrease of temperature, possibly induced by nematic fluctuations in the paramagnetic tetragonal phase. Upon cooling, anomalies in the in-plane charge correlation lengths along a (xi(a)) and b axes (xi(b)) are observed at T-S and also at T-N indicative of strong magnetoelastic coupling. The in-plane charge correlation lengths are found to exhibit anisotropic behavior along and perpendicular to the in-plane component of stripe-type AFM wave vector (101)(O) below around T-N. The temperature dependence of the out-of-plane charge correlation length shows a single anomaly at T-N, reflecting the connection between Fe-As distance and Fe local moment. The origin of the anisotropic in-plane charge correlation lengths xi(a) and xi(b) is discussed on the basis of the antiphase magnetic domains and their dynamic fluctuations. DOI: 10.1103/PhysRevB.87.094510
C1 [Zhang, Qiang; Wang, Wenjie; Hansen, Benjamin; Ni, Ni; Bud'ko, Sergey L.; Canfield, Paul C.; McQueeney, Robert J.; Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Zhang, Qiang; Wang, Wenjie; Hansen, Benjamin; Ni, Ni; Bud'ko, Sergey L.; Canfield, Paul C.; McQueeney, Robert J.; Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Kim, Jong-Woo] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Zhang, Q (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM qzhangemail@gmail.com; vaknin@ameslab.gov
RI Zhang, Qiang/A-7901-2010; Canfield, Paul/H-2698-2014; McQueeney,
Robert/A-2864-2016; Vaknin, David/B-3302-2009
OI Zhang, Qiang/0000-0003-0389-7039; McQueeney, Robert/0000-0003-0718-5602;
Vaknin, David/0000-0002-0899-9248
FU US Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-AC02-07CH11358]; US Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX Research at Ames Laboratory is supported by the US Department of Energy,
Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering under Contract No. DE-AC02-07CH11358. Use of the Advanced
Photon Source at Argonne National Laboratory was supported by the US
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 34
TC 2
Z9 2
U1 0
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 18
PY 2013
VL 87
IS 9
AR 094510
DI 10.1103/PhysRevB.87.094510
PG 6
WC Physics, Condensed Matter
SC Physics
GA 109OT
UT WOS:000316378600004
ER
PT J
AU Aaltonen, T
Amerio, S
Amidei, D
Anastassov, A
Annovi, A
Antos, J
Apollinari, G
Appel, JA
Arisawa, T
Artikov, A
Asaadi, J
Ashmanskas, W
Auerbach, B
Aurisano, A
Azfar, F
Badgett, W
Bae, T
Barbaro-Galtieri, A
Barnes, VE
Barnett, BA
Barria, P
Bartos, P
Bauce, M
Bedeschi, F
Behari, S
Bellettini, G
Bellinger, J
Benjamin, D
Beretvas, A
Bhatti, A
Bland, KR
Blumenfeld, B
Bocci, A
Bodek, A
Bortoletto, D
Boudreau, J
Boveia, A
Brigliadori, L
Bromberg, C
Brucken, E
Budagov, J
Budd, HS
Burkett, K
Busetto, G
Bussey, P
Butti, P
Buzatu, A
Calamba, A
Camarda, S
Campanelli, M
Canelli, F
Carls, B
Carlsmith, D
Carosi, R
Carrillo, S
Casal, B
Casarsa, M
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cavalli-Sforza, M
Cerri, A
Cerrito, L
Chen, YC
Chertok, M
Chiarelli, G
Chlachidze, G
Cho, K
Chokheli, D
Ciocci, MA
Clark, A
Clarke, C
Convery, ME
Conway, J
Corbo, M
Cordelli, M
Cox, CA
Cox, DJ
Cremonesi, M
Cruz, D
Cuevas, J
Culbertson, R
d'Ascenzo, N
Datta, M
De Barbaro, P
Demortier, L
Deninno, M
Devoto, F
d'Errico, M
Di Canto, A
Di Ruzza, B
Dittmann, JR
D'Onofrio, M
Donati, S
Dorigo, M
Driutti, A
Ebina, K
Edgar, R
Elagin, A
Erbacher, R
Errede, S
Esham, B
Eusebi, R
Farrington, S
Ramos, JPF
Field, R
Flanagan, G
Forrest, R
Franklin, M
Freeman, JC
Frisch, H
Funakoshi, Y
Garfinkel, AF
Garosi, P
Gerberich, H
Gerchtein, E
Giagu, S
Giakoumopoulou, V
Gibson, K
Ginsburg, CM
Giokaris, N
Giromini, P
Giurgiu, G
Glagolev, V
Glenzinski, D
Gold, M
Goldin, D
Golossanov, A
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Lopez, OG
Gorelov, I
Goshaw, AT
Goulianos, K
Gramellini, E
Grinstein, S
Grosso-Pilcher, C
Group, RC
da Costa, JG
Hahn, SR
Han, JY
Happacher, F
Hara, K
Hare, M
Harr, RF
Harrington-Taber, T
Hatakeyama, K
Hays, C
Heinrich, J
Herndon, M
Hocker, A
Hong, Z
Hopkins, W
Hou, S
Hughes, RE
Husemann, U
Huston, J
Introzzi, G
Iori, M
Ivanov, A
James, E
Jang, D
Jayatilaka, B
Jeon, EJ
Jindariani, S
Jones, M
Joo, KK
Jun, SY
Junk, TR
Kambeitz, M
Kamon, T
Karchin, PE
Kasmi, A
Kato, Y
Ketchum, W
Keung, J
Kilminster, B
Kim, DH
Kim, HS
Kim, JE
Kim, MJ
Kim, SB
Kim, SH
Kim, YK
Kim, YJ
Kimura, N
Kirby, M
Knoepfel, K
Kondo, K
Kong, DJ
Konigsberg, J
Kotwal, AV
Kreps, M
Kroll, J
Kruse, M
Kuhr, T
Kurata, M
Laasanen, AT
Lammel, S
Lancaster, M
Lannon, K
Latino, G
Lee, HS
Lee, JS
Leo, S
Leone, S
Lewis, JD
Limosani, A
Lipeles, E
Liu, H
Liu, Q
Liu, T
Lockwitz, S
Loginov, A
Lucchesi, D
Lueck, J
Lujan, P
Lukens, P
Lungu, G
Lys, J
Lysak, R
Madrak, R
Maestro, P
Malik, S
Manca, G
Manousakis-Katsikakis, A
Margaroli, F
Marino, P
Martinez, M
Matera, K
Mattson, ME
Mazzacane, A
Mazzanti, P
McNulty, R
Mehta, A
Mehtala, P
Mesropian, C
Miao, T
Mietlicki, D
Mitra, A
Miyake, H
Moed, S
Moggi, N
Moon, CS
Moore, R
Morello, MJ
Mukherjee, A
Muller, T
Murat, P
Mussini, M
Nachtman, J
Nagai, Y
Naganoma, J
Nakano, I
Napier, A
Nett, J
Neu, C
Nigmanov, T
Nodulman, L
Noh, SY
Norniella, O
Oakes, L
Oh, SH
Oh, YD
Oksuzian, I
Okusawa, T
Orava, R
Ortolan, L
Pagliarone, C
Palencia, E
Palni, P
Papadimitriou, V
Parker, W
Pauletta, G
Paulini, M
Paus, C
Phillips, TJ
Piacentino, G
Pianori, E
Pilot, J
Pitts, K
Plager, C
Pondrom, L
Poprocki, S
Potamianos, K
Prokoshin, F
Pranko, A
Ptohos, F
Punzi, G
Ranjan, N
Fernandez, IR
Renton, P
Rescigno, M
Riddick, T
Rimondi, F
Ristori, L
Robson, A
Rodriguez, T
Rolli, S
Ronzani, M
Roser, R
Rosner, JL
Ruffini, F
Ruiz, A
Russ, J
Rusu, V
Safonov, A
Sakumoto, WK
Sakurai, Y
Santi, L
Sato, K
Saveliev, V
Savoy-Navarro, A
Schlabach, P
Schmidt, EE
Schwarz, T
Scodellaro, L
Scuri, F
Seidel, S
Seiya, Y
Semenov, A
Sforza, F
Shalhout, SZ
Shears, T
Shepard, PF
Shimojima, M
Shochet, M
Shreyber-Tecker, I
Simonenko, A
Sinervo, P
Sliwa, K
Smith, JR
Snider, FD
Sorin, V
Song, H
Stancari, M
St Denis, R
Stelzer, B
Stelzer-Chilton, O
Stentz, D
Strologas, J
Sudo, Y
Sukhanov, A
Suslov, I
Takemasa, K
Takeuchi, Y
Tang, J
Tecchio, M
Teng, PK
Thom, J
Thomson, E
Thukral, V
Toback, D
Tokar, S
Tollefson, K
Tomura, T
Tonelli, D
Torre, S
Torretta, D
Totaro, P
Trovato, M
Ukegawa, F
Uozumi, S
Vazquez, F
Velev, G
Vellidis, C
Vernieri, C
Vidal, M
Vilar, R
Vizan, J
Vogel, M
Volpi, G
Wagner, P
Wallny, R
Wang, SM
Warburton, A
Waters, D
Wester, WC
Whiteson, D
Wicklund, AB
Wilbur, S
Williams, HH
Wilson, JS
Wilson, P
Winer, BL
Wittich, P
Wolbers, S
Wolfe, H
Wright, T
Wu, X
Wu, Z
Yamamoto, K
Yamato, D
Yang, T
Yang, UK
Yang, YC
Yao, WM
Yeh, GP
Yi, K
Yoh, J
Yorita, K
Yoshida, T
Yu, GB
Yu, I
Zanetti, AM
Zeng, Y
Zhou, C
Zucchelli, S
AF Aaltonen, T.
Amerio, S.
Amidei, D.
Anastassov, A.
Annovi, A.
Antos, J.
Apollinari, G.
Appel, J. A.
Arisawa, T.
Artikov, A.
Asaadi, J.
Ashmanskas, W.
Auerbach, B.
Aurisano, A.
Azfar, F.
Badgett, W.
Bae, T.
Barbaro-Galtieri, A.
Barnes, V. E.
Barnett, B. A.
Barria, P.
Bartos, P.
Bauce, M.
Bedeschi, F.
Behari, S.
Bellettini, G.
Bellinger, J.
Benjamin, D.
Beretvas, A.
Bhatti, A.
Bland, K. R.
Blumenfeld, B.
Bocci, A.
Bodek, A.
Bortoletto, D.
Boudreau, J.
Boveia, A.
Brigliadori, L.
Bromberg, C.
Brucken, E.
Budagov, J.
Budd, H. S.
Burkett, K.
Busetto, G.
Bussey, P.
Butti, P.
Buzatu, A.
Calamba, A.
Camarda, S.
Campanelli, M.
Canelli, F.
Carls, B.
Carlsmith, D.
Carosi, R.
Carrillo, S.
Casal, B.
Casarsa, M.
Castro, A.
Catastini, P.
Cauz, D.
Cavaliere, V.
Cavalli-Sforza, M.
Cerri, A.
Cerrito, L.
Chen, Y. C.
Chertok, M.
Chiarelli, G.
Chlachidze, G.
Cho, K.
Chokheli, D.
Ciocci, M. A.
Clark, A.
Clarke, C.
Convery, M. E.
Conway, J.
Corbo, M.
Cordelli, M.
Cox, C. A.
Cox, D. J.
Cremonesi, M.
Cruz, D.
Cuevas, J.
Culbertson, R.
d'Ascenzo, N.
Datta, M.
De Barbaro, P.
Demortier, L.
Deninno, M.
Devoto, F.
d'Errico, M.
Di Canto, A.
Di Ruzza, B.
Dittmann, J. R.
D'Onofrio, M.
Donati, S.
Dorigo, M.
Driutti, A.
Ebina, K.
Edgar, R.
Elagin, A.
Erbacher, R.
Errede, S.
Esham, B.
Eusebi, R.
Farrington, S.
Ramos, J. P. Fernandez
Field, R.
Flanagan, G.
Forrest, R.
Franklin, M.
Freeman, J. C.
Frisch, H.
Funakoshi, Y.
Garfinkel, A. F.
Garosi, P.
Gerberich, H.
Gerchtein, E.
Giagu, S.
Giakoumopoulou, V.
Gibson, K.
Ginsburg, C. M.
Giokaris, N.
Giromini, P.
Giurgiu, G.
Glagolev, V.
Glenzinski, D.
Gold, M.
Goldin, D.
Golossanov, A.
Gomez, G.
Gomez-Ceballos, G.
Goncharov, M.
Lopez, O. Gonzalez
Gorelov, I.
Goshaw, A. T.
Goulianos, K.
Gramellini, E.
Grinstein, S.
Grosso-Pilcher, C.
Group, R. C.
da Costa, J. Guimaraes
Hahn, S. R.
Han, J. Y.
Happacher, F.
Hara, K.
Hare, M.
Harr, R. F.
Harrington-Taber, T.
Hatakeyama, K.
Hays, C.
Heinrich, J.
Herndon, M.
Hocker, A.
Hong, Z.
Hopkins, W.
Hou, S.
Hughes, R. E.
Husemann, U.
Huston, J.
Introzzi, G.
Iori, M.
Ivanov, A.
James, E.
Jang, D.
Jayatilaka, B.
Jeon, E. J.
Jindariani, S.
Jones, M.
Joo, K. K.
Jun, S. Y.
Junk, T. R.
Kambeitz, M.
Kamon, T.
Karchin, P. E.
Kasmi, A.
Kato, Y.
Ketchum, W.
Keung, J.
Kilminster, B.
Kim, D. H.
Kim, H. S.
Kim, J. E.
Kim, M. J.
Kim, S. B.
Kim, S. H.
Kim, Y. K.
Kim, Y. J.
Kimura, N.
Kirby, M.
Knoepfel, K.
Kondo, K.
Kong, D. J.
Konigsberg, J.
Kotwal, A. V.
Kreps, M.
Kroll, J.
Kruse, M.
Kuhr, T.
Kurata, M.
Laasanen, A. T.
Lammel, S.
Lancaster, M.
Lannon, K.
Latino, G.
Lee, H. S.
Lee, J. S.
Leo, S.
Leone, S.
Lewis, J. D.
Limosani, A.
Lipeles, E.
Liu, H.
Liu, Q.
Liu, T.
Lockwitz, S.
Loginov, A.
Lucchesi, D.
Lueck, J.
Lujan, P.
Lukens, P.
Lungu, G.
Lys, J.
Lysak, R.
Madrak, R.
Maestro, P.
Malik, S.
Manca, G.
Manousakis-Katsikakis, A.
Margaroli, F.
Marino, P.
Martinez, M.
Matera, K.
Mattson, M. E.
Mazzacane, A.
Mazzanti, P.
McNulty, R.
Mehta, A.
Mehtala, P.
Mesropian, C.
Miao, T.
Mietlicki, D.
Mitra, A.
Miyake, H.
Moed, S.
Moggi, N.
Moon, C. S.
Moore, R.
Morello, M. J.
Mukherjee, A.
Muller, Th.
Murat, P.
Mussini, M.
Nachtman, J.
Nagai, Y.
Naganoma, J.
Nakano, I.
Napier, A.
Nett, J.
Neu, C.
Nigmanov, T.
Nodulman, L.
Noh, S. Y.
Norniella, O.
Oakes, L.
Oh, S. H.
Oh, Y. D.
Oksuzian, I.
Okusawa, T.
Orava, R.
Ortolan, L.
Pagliarone, C.
Palencia, E.
Palni, P.
Papadimitriou, V.
Parker, W.
Pauletta, G.
Paulini, M.
Paus, C.
Phillips, T. J.
Piacentino, G.
Pianori, E.
Pilot, J.
Pitts, K.
Plager, C.
Pondrom, L.
Poprocki, S.
Potamianos, K.
Prokoshin, F.
Pranko, A.
Ptohos, F.
Punzi, G.
Ranjan, N.
Fernandez, I. Redondo
Renton, P.
Rescigno, M.
Riddick, T.
Rimondi, F.
Ristori, L.
Robson, A.
Rodriguez, T.
Rolli, S.
Ronzani, M.
Roser, R.
Rosner, J. L.
Ruffini, F.
Ruiz, A.
Russ, J.
Rusu, V.
Safonov, A.
Sakumoto, W. K.
Sakurai, Y.
Santi, L.
Sato, K.
Saveliev, V.
Savoy-Navarro, A.
Schlabach, P.
Schmidt, E. E.
Schwarz, T.
Scodellaro, L.
Scuri, F.
Seidel, S.
Seiya, Y.
Semenov, A.
Sforza, F.
Shalhout, S. Z.
Shears, T.
Shepard, P. F.
Shimojima, M.
Shochet, M.
Shreyber-Tecker, I.
Simonenko, A.
Sinervo, P.
Sliwa, K.
Smith, J. R.
Snider, F. D.
Sorin, V.
Song, H.
Stancari, M.
St Denis, R.
Stelzer, B.
Stelzer-Chilton, O.
Stentz, D.
Strologas, J.
Sudo, Y.
Sukhanov, A.
Suslov, I.
Takemasa, K.
Takeuchi, Y.
Tang, J.
Tecchio, M.
Teng, P. K.
Thom, J.
Thomson, E.
Thukral, V.
Toback, D.
Tokar, S.
Tollefson, K.
Tomura, T.
Tonelli, D.
Torre, S.
Torretta, D.
Totaro, P.
Trovato, M.
Ukegawa, F.
Uozumi, S.
Vazquez, F.
Velev, G.
Vellidis, C.
Vernieri, C.
Vidal, M.
Vilar, R.
Vizan, J.
Vogel, M.
Volpi, G.
Wagner, P.
Wallny, R.
Wang, S. M.
Warburton, A.
Waters, D.
Wester, W. C., III
Whiteson, D.
Wicklund, A. B.
Wilbur, S.
Williams, H. H.
Wilson, J. S.
Wilson, P.
Winer, B. L.
Wittich, P.
Wolbers, S.
Wolfe, H.
Wright, T.
Wu, X.
Wu, Z.
Yamamoto, K.
Yamato, D.
Yang, T.
Yang, U. K.
Yang, Y. C.
Yao, W. -M.
Yeh, G. P.
Yi, K.
Yoh, J.
Yorita, K.
Yoshida, T.
Yu, G. B.
Yu, I.
Zanetti, A. M.
Zeng, Y.
Zhou, C.
Zucchelli, S.
TI Measurement of the mass difference between top and antitop quarks
SO PHYSICAL REVIEW D
LA English
DT Article
ID CPT VIOLATION; PHYSICS; MODEL; QCD
AB We present a measurement of the mass difference between top (t) and antitop ((t) over bar) quarks using t (t) over bar candidate events reconstructed in the final state with one lepton and multiple jets. We use the full data set of Tevatron root s = 1.96 TeV proton-antiproton collisions recorded by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb(-1). We estimate event by event the mass difference to construct templates for top pair signal events and background events. The resulting mass difference distribution in data compared to signal and background templates using a likelihood fit yields Delta M-top = M-t - M-(t) over bar = -1.95 +/- 1.11(stat) +/- 0.59(syst) GeV/c(2) and is in agreement with the standard model prediction of no mass difference. DOI.10.1103/PhysRevD.87.052013
C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, Athens 15771, Greece.
[Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain.
[Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA.
[Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy.
[Brigliadori, L.; Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy.
[Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA.
[Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis, E-39005 Santander, Spain.
[Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia.
[Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia.
[Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res Dubna, RU-141980 Dubna, Russia.
[Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA.
[Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Canelli, F.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hocker, A.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Liu, T.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wester, W. C., III; Wilson, J. S.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA.
[Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Clark, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA.
[Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
[Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA.
[Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea.
[Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Campanelli, M.; Cerrito, L.; Lancaster, M.; Riddick, T.; Waters, D.] UCL, London WC1E 6BT, England.
[Ramos, J. P. Fernandez; Lopez, O. Gonzalez; Fernandez, I. Redondo] Ctr Invest Energet Medioambient & Technol, E-28040 Madrid, Spain.
[Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA.
[Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada.
[Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada.
[Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Amidei, D.; Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bromberg, C.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA.
[Shreyber-Tecker, I.] ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Hughes, R. E.; Lannon, K.; Pilot, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Okayama 7008530, Japan.
[Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan.
[Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England.
[Amerio, S.; Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy.
[Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy.
[Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.] Univ Penn, Philadelphia, PA 19104 USA.
[Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Cremonesi, M.; Di Canto, A.; Donati, S.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy.
[Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy.
[Barria, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy.
[Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Carrillo, S.; Introzzi, G.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy.
[Carrillo, S.; Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy.
[Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA.
[Bodek, A.; Budd, H. S.; De Barbaro, P.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA.
[Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Eusebi, R.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Safonov, A.; Thukral, V.; Toback, D.] Texas A&M Univ, College Stn, TX 77843 USA.
[Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl Trieste Udine, I-34127 Trieste, Italy.
[Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy.
[Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy.
[Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan.
[Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA.
[Group, R. C.; Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA.
[Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan.
[Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA.
[Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA.
[Husemann, U.; Lockwitz, S.] Yale Univ, New Haven, CT 06520 USA.
RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
RI Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; ciocci, maria
agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Prokoshin,
Fedor/E-2795-2012; Introzzi, Gianluca/K-2497-2015; Piacentino,
Giovanni/K-3269-2015; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012;
Gorelov, Igor/J-9010-2015; Grinstein, Sebastian/N-3988-2014; Zeng,
Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013;
Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Robson,
Aidan/G-1087-2011; maestro, paolo/E-3280-2010; Chiarelli,
Giorgio/E-8953-2012; Lysak, Roman/H-2995-2014; Moon,
Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Punzi,
Giovanni/J-4947-2012;
OI Latino, Giuseppe/0000-0002-4098-3502; iori,
maurizio/0000-0002-6349-0380; Toback, David/0000-0003-3457-4144; Vidal
Marono, Miguel/0000-0002-2590-5987; Hays, Chris/0000-0003-2371-9723;
Farrington, Sinead/0000-0001-5350-9271; Robson,
Aidan/0000-0002-1659-8284; Dorigo, Mirco/0000-0002-0681-6946; Brucken,
Jens Erik/0000-0001-6066-8756; Lami, Stefano/0000-0001-9492-0147; Jun,
Soon Yung/0000-0003-3370-6109; Margaroli, Fabrizio/0000-0002-3869-0153;
Group, Robert/0000-0002-4097-5254; Simonenko,
Alexander/0000-0001-6580-3638; Lancaster, Mark/0000-0002-8872-7292;
Casarsa, Massimo/0000-0002-1353-8964; Paulini,
Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; ciocci,
maria agnese /0000-0003-0002-5462; Prokoshin, Fedor/0000-0001-6389-5399;
Introzzi, Gianluca/0000-0002-1314-2580; Piacentino,
Giovanni/0000-0001-9884-2924; Marino, Pietro/0000-0003-0554-3066; song,
hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; Grinstein,
Sebastian/0000-0002-6460-8694; Annovi, Alberto/0000-0002-4649-4398;
Ivanov, Andrew/0000-0002-9270-5643; Warburton,
Andreas/0000-0002-2298-7315; maestro, paolo/0000-0002-4193-1288;
Chiarelli, Giorgio/0000-0001-9851-4816; Moon,
Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330;
Punzi, Giovanni/0000-0002-8346-9052; Torre, Stefano/0000-0002-7565-0118
FU U.S. Department of Energy; U.S. National Science Foundation; Italian
Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture,
Sports, Science and Technology of Japan; Natural Sciences and
Engineering Research Council of Canada; National Science Council of the
Republic of China; Swiss National Science Foundation; A.P. Sloan
Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean
World Class University Program, the National Research Foundation of
Korea; Science and Technology Facilities Council, United Kingdom; Royal
Society, United Kingdom; Russian Foundation for Basic Research;
Ministerio de Ciencia e Innovacion, Spain; Programa Consolider-Ingenio,
Spain; Slovak RD Agency; Academy of Finland; Australian Research Council
(ARC)
FX We thank the Fermilab staff and the technical staffs of the
participating institutions for their vital contributions. This work was
supported by the U.S. Department of Energy and National Science
Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the
Ministry of Education, Culture, Sports, Science and Technology of Japan;
the Natural Sciences and Engineering Research Council of Canada; the
National Science Council of the Republic of China; the Swiss National
Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur
Bildung und Forschung, Germany; the Korean World Class University
Program, the National Research Foundation of Korea; the Science and
Technology Facilities Council and the Royal Society, United Kingdom; the
Russian Foundation for Basic Research; the Ministerio de Ciencia e
Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D
Agency; the Academy of Finland; and the Australian Research Council
(ARC).
NR 45
TC 6
Z9 6
U1 2
U2 31
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD MAR 18
PY 2013
VL 87
IS 5
AR 052013
DI 10.1103/PhysRevD.87.052013
PG 8
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 109SL
UT WOS:000316388800002
ER
PT J
AU Chen, CY
Dawson, S
AF Chen, Chien-Yi
Dawson, S.
TI Exploring two Higgs doublet models through Higgs production
SO PHYSICAL REVIEW D
LA English
DT Article
ID 2-HIGGS-DOUBLET MODEL; BOUNDS; BOSON
AB We discuss the connections between the recently observed Higgs-like particle and rare B decays in the context of two Higgs doublet models (2HDMs). The measured decays of the Higgs boson to fermions and gauge bosons, along with the observation of the decay B-s -> mu(+)mu(-), place stringent restrictions on the allowed parameter space of two Higgs doublet models. Future measurements of h(0) -> gamma gamma can potentially exclude Type I 2HDMs, while the parameters of other 2HDMs are already severely restricted. The recent observations of the h(0) -> tau(+)tau(-) and h(0) -> b (b) over bar decays further constrain the models. DOI: 10.1103/PhysRevD.87.055016
C1 [Chen, Chien-Yi; Dawson, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Chen, CY (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
OI Dawson, Sally/0000-0002-5598-695X
FU United States Department of Energy [DE-AC02-98CH10886]
FX We would like to thank Alejandro Celis, Nathaniel Craig, Kyle Cranmer,
Jamison Galloway, Marc-Andre Pleier, Gabe Shaughnessy, and Scott Thomas
for useful discussions. We also thank F. Mahmoudi for help with
SuperIso. This work is supported by the United States Department of
Energy under Grant No. DE-AC02-98CH10886.
NR 44
TC 43
Z9 43
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD MAR 18
PY 2013
VL 87
IS 5
AR 055016
DI 10.1103/PhysRevD.87.055016
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 109SL
UT WOS:000316388800007
ER
PT J
AU Lees, JP
Poireau, V
Tisserand, V
Grauges, E
Palano, A
Eigen, G
Stugu, B
Brown, DN
Kerth, LT
Kolomensky, YG
Lynch, G
Koch, H
Schroeder, T
Asgeirsson, DJ
Hearty, C
Mattison, TS
McKenna, JA
So, RY
Khan, A
Blinov, VE
Buzykaev, AR
Druzhinin, VP
Golubev, VB
Kravchenko, EA
Onuchin, AP
Serednyakov, SI
Skovpen, YI
Solodov, EP
Todyshev, KY
Yushkov, AN
Kirkby, D
Lankford, AJ
Mandelkern, M
Dey, B
Gary, JW
Long, O
Vitug, GM
Campagnari, C
Sevilla, MF
Hong, TM
Kovalskyi, D
Richman, JD
West, CA
Eisner, AM
Lockman, WS
Martinez, AJ
Schumm, BA
Seiden, A
Chao, DS
Cheng, CH
Echenard, B
Flood, KT
Hitlin, DG
Ongmongkolkul, P
Porter, FC
Rakitin, AY
Andreassen, R
Huard, Z
Meadows, BT
Sokoloff, MD
Sun, L
Bloom, PC
Ford, WT
Gaz, A
Nauenberg, U
Smith, JG
Wagner, SR
Ayad, R
Toki, WH
Spaan, B
Schubert, KR
Schwierz, R
Bernard, D
Verderi, M
Clark, PJ
Playfer, S
Bettoni, D
Bozzi, C
Calabrese, R
Cibinetto, G
Fioravanti, E
Garzia, I
Luppi, E
Piemontese, L
Santoro, V
Baldini-Ferroli, R
Calcaterra, A
de Sangro, R
Finocchiaro, G
Patteri, P
Peruzzi, IM
Piccolo, M
Rama, M
Zallo, A
Contri, R
Guido, E
Lo Vetere, M
Monge, MR
Passaggio, S
Patrignani, C
Robutti, E
Bhuyan, B
Prasad, V
Morii, M
Adametz, A
Uwer, U
Lacker, HM
Lueck, T
Dauncey, PD
Mallik, U
Chen, C
Cochran, J
Meyer, WT
Prell, S
Rubin, AE
Gritsan, AV
Arnaud, N
Davier, M
Derkach, D
Grosdidier, G
Le Diberder, F
Lutz, AM
Malaescu, B
Roudeau, P
Schune, MH
Stocchi, A
Wormser, G
Lange, DJ
Wright, DM
Coleman, JP
Fry, JR
Gabathuler, E
Hutchcroft, DE
Payne, DJ
Touramanis, C
Bevan, AJ
Di Lodovico, F
Sacco, R
Sigamani, M
Cowan, G
Brown, DN
Davis, CL
Denig, AG
Fritsch, M
Gradl, W
Griessinger, K
Hafner, A
Prencipe, E
Barlow, RJ
Lafferty, GD
Behn, E
Cenci, R
Hamilton, B
Jawahery, A
Roberts, DA
Dallapiccola, C
Cowan, R
Dujmic, D
Sciolla, G
Cheaib, R
Patel, PM
Robertson, SH
Biassoni, P
Neri, N
Palombo, F
Cremaldi, L
Godang, R
Kroeger, R
Sonnek, P
Summers, DJ
Nguyen, X
Simard, M
Taras, P
De Nardo, G
Monorchio, D
Onorato, G
Sciacca, C
Martinelli, M
Raven, G
Jessop, CP
LoSecco, JM
Honscheid, K
Kass, R
Brau, J
Frey, R
Sinev, NB
Strom, D
Torrence, E
Feltresi, E
Gagliardi, N
Margoni, M
Morandin, M
Pompili, A
Posocco, M
Rotondo, M
Simi, G
Simonetto, F
Stroili, R
Akar, S
Ben-Haim, E
Bomben, M
Bonneaud, GR
Briand, H
Calderini, G
Chauveau, J
Hamon, O
Leruste, P
Marchiori, G
Ocariz, J
Sitt, S
Biasini, M
Manoni, E
Pacetti, S
Rossi, A
Angelini, C
Batignani, G
Bettarini, S
Carpinelli, M
Casarosa, G
Cervelli, A
Forti, F
Giorgi, MA
Lusiani, A
Oberhof, B
Paoloni, E
Perez, A
Rizzo, G
Walsh, JJ
Pegna, DL
Olsen, J
Smith, AJS
Anulli, F
Faccini, R
Ferrarotto, F
Ferroni, F
Gaspero, M
Gioi, LL
Mazzoni, MA
Piredda, G
Bunger, C
Grunberg, O
Hartmann, T
Leddig, T
Voss, C
Waldi, R
Adye, T
Olaiya, EO
Wilson, FF
Emery, S
de Monchenault, GH
Vasseur, G
Yeche, C
Aston, D
Bard, DJ
Benitez, JF
Cartaro, C
Convery, MR
Dorfan, J
Dubois-Felsmann, GP
Dunwoodie, W
Ebert, M
Field, RC
Fulsom, BG
Gabareen, AM
Graham, MT
Hast, C
Innes, WR
Kelsey, MH
Kim, P
Kocian, ML
Leith, DWGS
Lewis, P
Lindemann, D
Lindquist, B
Luitz, S
Luth, V
Lynch, HL
MacFarlane, DB
Muller, DR
Neal, H
Nelson, S
Perl, M
Pulliam, T
Ratcliff, BN
Roodman, A
Salnikov, AA
Schindler, RH
Snyder, A
Su, D
Sullivan, MK
Va'vra, J
Wagner, AP
Wang, WF
Wisniewski, WJ
Wittgen, M
Wright, DH
Wulsin, HW
Ziegler, V
Park, W
Purohit, MV
White, RM
Wilson, JR
Randle-Conde, A
Sekula, SJ
Bellis, M
Burchat, PR
Miyashita, TS
Puccio, EMT
Alam, MS
Ernst, JA
Gorodeisky, R
Guttman, N
Peimer, DR
Soffer, A
Spanier, SM
Ritchie, JL
Ruland, AM
Schwitters, RF
Wray, BC
Izen, JM
Lou, XC
Bianchi, F
Gamba, D
Zambito, S
Lanceri, L
Vitale, L
Martinez-Vidal, F
Oyanguren, A
Villanueva-Perez, P
Ahmed, H
Albert, J
Banerjee, S
Bernlochner, FU
Choi, HHF
King, GJ
Kowalewski, R
Lewczuk, MJ
Nugent, IM
Roney, JM
Sobie, RJ
Tasneem, N
Gershon, TJ
Harrison, PF
Latham, TE
Band, HR
Dasu, S
Pan, Y
Prepost, R
Wu, SL
AF Lees, J. P.
Poireau, V.
Tisserand, V.
Grauges, E.
Palano, A.
Eigen, G.
Stugu, B.
Brown, D. N.
Kerth, L. T.
Kolomensky, Yu. G.
Lynch, G.
Koch, H.
Schroeder, T.
Asgeirsson, D. J.
Hearty, C.
Mattison, T. S.
McKenna, J. A.
So, R. Y.
Khan, A.
Blinov, V. E.
Buzykaev, A. R.
Druzhinin, V. P.
Golubev, V. B.
Kravchenko, E. A.
Onuchin, A. P.
Serednyakov, S. I.
Skovpen, Yu. I.
Solodov, E. P.
Todyshev, K. Yu.
Yushkov, A. N.
Kirkby, D.
Lankford, A. J.
Mandelkern, M.
Dey, B.
Gary, J. W.
Long, O.
Vitug, G. M.
Campagnari, C.
Sevilla, M. Franco
Hong, T. M.
Kovalskyi, D.
Richman, J. D.
West, C. A.
Eisner, A. M.
Lockman, W. S.
Martinez, A. J.
Schumm, B. A.
Seiden, A.
Chao, D. S.
Cheng, C. H.
Echenard, B.
Flood, K. T.
Hitlin, D. G.
Ongmongkolkul, P.
Porter, F. C.
Rakitin, A. Y.
Andreassen, R.
Huard, Z.
Meadows, B. T.
Sokoloff, M. D.
Sun, L.
Bloom, P. C.
Ford, W. T.
Gaz, A.
Nauenberg, U.
Smith, J. G.
Wagner, S. R.
Ayad, R.
Toki, W. H.
Spaan, B.
Schubert, K. R.
Schwierz, R.
Bernard, D.
Verderi, M.
Clark, P. J.
Playfer, S.
Bettoni, D.
Bozzi, C.
Calabrese, R.
Cibinetto, G.
Fioravanti, E.
Garzia, I.
Luppi, E.
Piemontese, L.
Santoro, V.
Baldini-Ferroli, R.
Calcaterra, A.
de Sangro, R.
Finocchiaro, G.
Patteri, P.
Peruzzi, I. M.
Piccolo, M.
Rama, M.
Zallo, A.
Contri, R.
Guido, E.
Lo Vetere, M.
Monge, M. R.
Passaggio, S.
Patrignani, C.
Robutti, E.
Bhuyan, B.
Prasad, V.
Morii, M.
Adametz, A.
Uwer, U.
Lacker, H. M.
Lueck, T.
Dauncey, P. D.
Mallik, U.
Chen, C.
Cochran, J.
Meyer, W. T.
Prell, S.
Rubin, A. E.
Gritsan, A. V.
Arnaud, N.
Davier, M.
Derkach, D.
Grosdidier, G.
Le Diberder, F.
Lutz, A. M.
Malaescu, B.
Roudeau, P.
Schune, M. H.
Stocchi, A.
Wormser, G.
Lange, D. J.
Wright, D. M.
Coleman, J. P.
Fry, J. R.
Gabathuler, E.
Hutchcroft, D. E.
Payne, D. J.
Touramanis, C.
Bevan, A. J.
Di Lodovico, F.
Sacco, R.
Sigamani, M.
Cowan, G.
Brown, D. N.
Davis, C. L.
Denig, A. G.
Fritsch, M.
Gradl, W.
Griessinger, K.
Hafner, A.
Prencipe, E.
Barlow, R. J.
Lafferty, G. D.
Behn, E.
Cenci, R.
Hamilton, B.
Jawahery, A.
Roberts, D. A.
Dallapiccola, C.
Cowan, R.
Dujmic, D.
Sciolla, G.
Cheaib, R.
Patel, P. M.
Robertson, S. H.
Biassoni, P.
Neri, N.
Palombo, F.
Cremaldi, L.
Godang, R.
Kroeger, R.
Sonnek, P.
Summers, D. J.
Nguyen, X.
Simard, M.
Taras, P.
De Nardo, G.
Monorchio, D.
Onorato, G.
Sciacca, C.
Martinelli, M.
Raven, G.
Jessop, C. P.
LoSecco, J. M.
Honscheid, K.
Kass, R.
Brau, J.
Frey, R.
Sinev, N. B.
Strom, D.
Torrence, E.
Feltresi, E.
Gagliardi, N.
Margoni, M.
Morandin, M.
Pompili, A.
Posocco, M.
Rotondo, M.
Simi, G.
Simonetto, F.
Stroili, R.
Akar, S.
Ben-Haim, E.
Bomben, M.
Bonneaud, G. R.
Briand, H.
Calderini, G.
Chauveau, J.
Hamon, O.
Leruste, Ph.
Marchiori, G.
Ocariz, J.
Sitt, S.
Biasini, M.
Manoni, E.
Pacetti, S.
Rossi, A.
Angelini, C.
Batignani, G.
Bettarini, S.
Carpinelli, M.
Casarosa, G.
Cervelli, A.
Forti, F.
Giorgi, M. A.
Lusiani, A.
Oberhof, B.
Paoloni, E.
Perez, A.
Rizzo, G.
Walsh, J. J.
Pegna, D. Lopes
Olsen, J.
Smith, A. J. S.
Anulli, F.
Faccini, R.
Ferrarotto, F.
Ferroni, F.
Gaspero, M.
Gioi, L. Li
Mazzoni, M. A.
Piredda, G.
Buenger, C.
Gruenberg, O.
Hartmann, T.
Leddig, T.
Voss, C.
Waldi, R.
Adye, T.
Olaiya, E. O.
Wilson, F. F.
Emery, S.
de Monchenault, G. Hamel
Vasseur, G.
Yeche, Ch.
Aston, D.
Bard, D. J.
Benitez, J. F.
Cartaro, C.
Convery, M. R.
Dorfan, J.
Dubois-Felsmann, G. P.
Dunwoodie, W.
Ebert, M.
Field, R. C.
Fulsom, B. G.
Gabareen, A. M.
Graham, M. T.
Hast, C.
Innes, W. R.
Kelsey, M. H.
Kim, P.
Kocian, M. L.
Leith, D. W. G. S.
Lewis, P.
Lindemann, D.
Lindquist, B.
Luitz, S.
Luth, V.
Lynch, H. L.
MacFarlane, D. B.
Muller, D. R.
Neal, H.
Nelson, S.
Perl, M.
Pulliam, T.
Ratcliff, B. N.
Roodman, A.
Salnikov, A. A.
Schindler, R. H.
Snyder, A.
Su, D.
Sullivan, M. K.
Va'vra, J.
Wagner, A. P.
Wang, W. F.
Wisniewski, W. J.
Wittgen, M.
Wright, D. H.
Wulsin, H. W.
Ziegler, V.
Park, W.
Purohit, M. V.
White, R. M.
Wilson, J. R.
Randle-Conde, A.
Sekula, S. J.
Bellis, M.
Burchat, P. R.
Miyashita, T. S.
Puccio, E. M. T.
Alam, M. S.
Ernst, J. A.
Gorodeisky, R.
Guttman, N.
Peimer, D. R.
Soffer, A.
Spanier, S. M.
Ritchie, J. L.
Ruland, A. M.
Schwitters, R. F.
Wray, B. C.
Izen, J. M.
Lou, X. C.
Bianchi, F.
Gamba, D.
Zambito, S.
Lanceri, L.
Vitale, L.
Martinez-Vidal, F.
Oyanguren, A.
Villanueva-Perez, P.
Ahmed, H.
Albert, J.
Banerjee, Sw.
Bernlochner, F. U.
Choi, H. H. F.
King, G. J.
Kowalewski, R.
Lewczuk, M. J.
Nugent, I. M.
Roney, J. M.
Sobie, R. J.
Tasneem, N.
Gershon, T. J.
Harrison, P. F.
Latham, T. E.
Band, H. R.
Dasu, S.
Pan, Y.
Prepost, R.
Wu, S. L.
TI Search for CP violation in the decays D-+/- -> (KSK +/-)-K-0, D-s(+/-)
-> (KSK +/-)-K-0, and D-s(+/-) -> K-S(0)pi(+/-)
SO PHYSICAL REVIEW D
LA English
DT Article
AB We report a search for CP violation in the decay modes D-+/- -> (KSK +/-)-K-0, D-s(+/-) -> (KSK +/-)-K-0, and D-s(+/-) -> K-S(0)pi(+/-) using a data set corresponding to an integrated luminosity of 469 fb(-1) collected with the BABAR detector at the PEP-II asymmetric energy e(+)e(-) storage rings. The decay rate CP asymmetries, ACP, are determined to be (+0.13 +/- 0.36(stat) +/- 0.25(syst))%, (-0.05 +/- 0.23(stat) +/- 0.24(syst))%, and (+0.6 +/- 2.0(stat) +/- 0.3(syst))%, respectively. These measurements are consistent with zero, and also with the Standard Model prediction [(-0.332 +/- 0.006)% for the D-+/- -> (KSK +/-)-K-0 and D-s(+/-) -> (KSK +/-)-K-0 modes, and (+0.332 +/- 0.006)% for the D-s(+/-) -> K-S(0)pi(+/-) mode]. They are the most precise determinations to date.
C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France.
[Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain.
[Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Palano, A.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy.
[Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway.
[Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany.
[Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada.
[Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia.
[Kirkby, D.; Lankford, A. J.; Mandelkern, M.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Dey, B.; Gary, J. W.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Eisner, A. M.; Lockman, W. S.; Martinez, A. J.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA.
[Andreassen, R.; Huard, Z.; Meadows, B. T.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA.
[Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA.
[Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany.
[Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Clark, P. J.; Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy.
[Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy.
[Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy.
[Bhuyan, B.; Prasad, V.] Indian Inst Technol, Gauhati 781039, Assam, India.
[Morii, M.] Harvard Univ, Cambridge, MA 02138 USA.
[Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany.
[Lacker, H. M.; Lueck, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Dauncey, P. D.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA.
[Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA.
[Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France.
[Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France.
[Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England.
[Cowan, R.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England.
[Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA.
[Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
[Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA.
[Dallapiccola, C.] Univ Massachusetts, Amherst, MA 01003 USA.
[Cowan, R.; Dujmic, D.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA.
[Cheaib, R.; Patel, P. M.; Robertson, S. H.; Lindemann, D.] McGill Univ, Montreal, PQ H3A 2T8, Canada.
[Biassoni, P.; Neri, N.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Biassoni, P.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA.
[Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada.
[De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy.
[De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy.
[Martinelli, M.; Raven, G.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands.
[Jessop, C. P.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA.
[Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA.
[Adametz, A.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy.
[Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France.
[Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Peruzzi, I. M.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy.
[Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA.
[Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Buenger, C.; Gruenberg, O.; Hartmann, T.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany.
[Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.] CEA, Ctr Saclay, Irfu, SPP, F-91191 Gif Sur Yvette, France.
[Sevilla, M. Franco; Aston, D.; Bard, D. J.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA.
[Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA.
[Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA.
[Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA.
[Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA.
[Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA.
[Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA.
[Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA.
[Bianchi, F.; Gamba, D.; Zambito, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Bianchi, F.; Gamba, D.; Zambito, S.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy.
[Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy.
[Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain.
[Ahmed, H.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada.
[Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA.
[Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy.
RP Lees, JP (reprint author), Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France.
RI Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico,
Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; Frey,
Raymond/E-2830-2016; Rizzo, Giuliana/A-8516-2015; Lo Vetere,
Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Patrignani,
Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Forti,
Francesco/H-3035-2011; Oyanguren, Arantza/K-6454-2014; Luppi,
Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Kravchenko,
Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal,
F*/L-7563-2014; Kolomensky, Yury/I-3510-2015
OI Lusiani, Alberto/0000-0002-6876-3288; Morandin,
Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175;
Calcaterra, Alessandro/0000-0003-2670-4826; Frey,
Raymond/0000-0003-0341-2636; Paoloni, Eugenio/0000-0001-5969-8712;
Cibinetto, Gianluigi/0000-0002-3491-6231; Pacetti,
Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866;
Faccini, Riccardo/0000-0003-2613-5141; Lo Vetere,
Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288;
Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria
Roberta/0000-0003-1633-3195; Forti, Francesco/0000-0001-6535-7965;
Oyanguren, Arantza/0000-0002-8240-7300; Luppi,
Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900;
Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal,
F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975
FU U.S. Department of Energy; U.S. National Science Foundation; Natural
Sciences and Engineering Research Council (Canada); Commissariat a
l'Energie Atomique (France); Institut National de Physique Nucleaire et
de Physique des Particules (France); Bundesministerium fur Bildung und
Forschung (Germany); Deutsche Forschungsgemeinschaft (Germany); Istituto
Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental
Research on Matter (Netherlands); Research Council of Norway; Ministry
of Education and Science of the Russian Federation; Ministerio de
Ciencia e Innovacion (Spain); Science and Technology Facilities Council
(United Kingdom); Marie-Curie IEF program (European Union); A.P. Sloan
Foundation (USA); SLAC
FX We are grateful for the extraordinary contributions of our PEP-II
colleagues in achieving the excellent luminosity and machine conditions
that have made this work possible. The success of this project also
relies critically on the expertise and dedication of the computing
organizations that support BABAR. The collaborating institutions wish to
thank SLAC for its support and the kind hospitality extended to them.
This work is supported by the U.S. Department of Energy and National
Science Foundation, the Natural Sciences and Engineering Research
Council (Canada), the Commissariat a l'Energie Atomique and Institut
National de Physique Nucleaire et de Physique des Particules (France),
the Bundesministerium fur Bildung und Forschung and Deutsche
Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica
Nucleare (Italy), the Foundation for Fundamental Research on Matter
(Netherlands), the Research Council of Norway, the Ministry of Education
and Science of the Russian Federation, Ministerio de Ciencia e
Innovacion (Spain), and the Science and Technology Facilities Council
(United Kingdom). Individuals have received support from the Marie-Curie
IEF program (European Union) and the A.P. Sloan Foundation (USA).
NR 27
TC 3
Z9 3
U1 0
U2 20
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD MAR 18
PY 2013
VL 87
IS 5
AR 052012
DI 10.1103/PhysRevD.87.052012
PG 10
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 109SL
UT WOS:000316388800001
ER
PT J
AU Aaltonen, T
Adelman, J
Gonzalez, BA
Amerio, S
Amidei, D
Anastassov, A
Annovi, A
Antos, J
Apollinari, G
Appel, JA
Arisawa, T
Artikov, A
Asaadi, J
Ashmanskas, W
Auerbach, B
Aurisano, A
Azfar, F
Badgett, W
Bae, T
Barbaro-Galtieri, A
Barnes, VE
Barnett, BA
Barria, P
Bartos, P
Bauce, M
Bedeschi, F
Behari, S
Bellettini, G
Bellinger, J
Benjamin, D
Beretvas, A
Bhatti, A
Bisello, D
Bizjak, I
Bland, KR
Blumenfeld, B
Bocci, A
Bodek, A
Bortoletto, D
Boudreau, J
Boveia, A
Brigliadori, L
Bromberg, C
Brucken, E
Budagov, J
Budd, HS
Burkett, K
Busetto, G
Bussey, P
Buzatu, A
Calamba, A
Calancha, C
Camarda, S
Campanelli, M
Campbell, M
Canelli, F
Carls, B
Carlsmith, D
Carosi, R
Carrillo, S
Carron, S
Casal, B
Casarsa, M
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cavalli-Sforza, M
Cerri, A
Cerrito, L
Chen, YC
Chertok, M
Chiarelli, G
Chlachidze, G
Chlebana, F
Cho, K
Chokheli, D
Chung, WH
Chung, YS
Ciocci, MA
Clark, A
Clarke, C
Compostella, G
Convery, ME
Conway, J
Corbo, M
Cordelli, M
Cox, CA
Cox, DJ
Crescioli, F
Cuevas, J
Culbertson, R
Dagenhart, D
d'Ascenzo, N
Datta, M
De Barbaro, P
Dell'Orso, M
Demortier, L
Deninno, M
Devoto, F
d'Errico, M
Di Canto, A
Di Ruzza, B
Dittmann, JR
D'Onofrio, M
Donati, S
Dong, P
Dorigo, M
Dorigo, T
Ebina, K
Elagin, A
Eppig, A
Erbacher, R
Errede, S
Ershaidat, N
Eusebi, R
Farrington, S
Feindt, M
Fernandez, JP
Field, R
Flanagan, G
Forrest, R
Frank, MJ
Franklin, M
Freeman, JC
Funakoshi, Y
Furic, I
Gallinaro, M
Garcia, JE
Garfinkel, AF
Garosi, P
Gerberich, H
Gerchtein, E
Giagu, S
Giakoumopoulou, V
Giannetti, P
Gibson, K
Ginsburg, CM
Giokaris, N
Giromini, P
Giurgiu, G
Glagolev, V
Glenzinski, D
Gold, M
Goldin, D
Goldschmidt, N
Golossanov, A
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Gonzalez, O
Gorelov, I
Goshaw, AT
Goulianos, K
Grinstein, S
Grosso-Pilcher, C
Group, RC
Da Costa, JG
Hahn, SR
Halkiadakis, E
Hamaguchi, A
Han, JY
Happacher, F
Hara, K
Hare, D
Hare, M
Harr, RF
Hatakeyama, K
Hays, C
Heck, M
Heinrich, J
Herndon, M
Hewamanage, S
Hocker, A
Hopkins, W
Horn, D
Hou, S
Hughes, RE
Hurwitz, M
Husemann, U
Hussain, N
Hussein, M
Huston, J
Introzzi, G
Iori, M
Ivanov, A
James, E
Jang, D
Jayatilaka, B
Jeon, EJ
Jindariani, S
Johnstone, A
Jones, M
Joo, KK
Jun, SY
Junk, TR
Kamon, T
Karchin, PE
Kasmi, A
Kato, Y
Ketchum, W
Keung, J
Khotilovich, V
Kilminster, B
Kim, DH
Kim, HS
Kim, JE
Kim, MJ
Kim, SB
Kim, SH
Kim, YK
Kim, YJ
Kimura, N
Kirby, M
Klimenko, S
Knoepfel, K
Kondo, K
Kong, DJ
Konigsberg, J
Kotwal, AV
Kreps, M
Kroll, J
Krop, D
Kruse, M
Krutelyov, V
Kuhr, T
Kurata, M
Kwang, S
Laasanen, AT
Lami, S
Lammel, S
Lancaster, M
Lander, RL
Lannon, K
Lath, A
Latino, G
LeCompte, T
Lee, E
Lee, HS
Lee, JS
Lee, SW
Leo, S
Leone, S
Lewis, JD
Limosani, A
Lin, CJ
Lindgren, M
Lipeles, E
Lister, A
Litvintsev, DO
Liu, C
Liu, H
Liu, Q
Liu, T
Lockwitz, S
Loginov, A
Lucchesi, D
Lueck, J
Lujan, P
Lukens, P
Lungu, G
Lys, J
Lysak, R
Madrak, R
Maeshima, K
Maestro, P
Malik, S
Manca, G
Manousakis-Katsikakis, A
Margaroli, F
Marino, C
Martinez, M
Mastrandrea, P
Matera, K
Mattson, ME
Mazzacane, A
Mazzanti, P
McFarland, KS
McIntyre, P
McNulty, R
Mehta, A
Mehtala, P
Mesropian, C
Miao, T
Mietlicki, D
Mitra, A
Miyake, H
Moed, S
Moggi, N
Mondragon, MN
Moon, CS
Moore, R
Morello, MJ
Morlock, J
Fernandez, PM
Mukherjee, A
Muller, T
Murat, P
Mussini, M
Nachtman, J
Nagai, Y
Naganoma, J
Nakano, I
Napier, A
Nett, J
Neu, C
Neubauer, MS
Nielsen, J
Nodulman, L
Noh, SY
Norniella, O
Oakes, L
Oh, SH
Oh, YD
Oksuzian, I
Okusawa, T
Orava, R
Ortolan, L
Griso, SP
Pagliarone, C
Palencia, E
Papadimitriou, V
Paramonov, AA
Patrick, J
Pauletta, G
Paulini, M
Paus, C
Pellett, DE
Penzo, A
Phillips, TJ
Piacentino, G
Pianori, E
Pilot, J
Pitts, K
Plager, C
Pondrom, L
Poprocki, S
Potamianos, K
Prokoshin, F
Pranko, A
Ptohos, F
Punzi, G
Rahaman, A
Ramakrishnan, V
Ranjan, N
Rao, K
Redondo, I
Renton, P
Rescigno, M
Riddick, T
Rimondi, F
Ristori, L
Robson, A
Rodrigo, T
Rodriguez, T
Rogers, E
Rolli, S
Roser, R
Ruffini, F
Ruiz, A
Russ, J
Rusu, V
Safonov, A
Sakumoto, WK
Sakurai, Y
Santi, L
Sato, K
Saveliev, V
Savoy-Navarro, A
Schlabach, P
Schmidt, A
Schmidt, EE
Schwarz, T
Scodellaro, L
Scribano, A
Scuri, F
Seidel, S
Seiya, Y
Semenov, A
Sforza, F
Shalhout, SZ
Shears, T
Shepard, PF
Shimojima, M
Shochet, M
Shreyber-Tecker, I
Simonenko, A
Sinervo, P
Sliwa, K
Smith, JR
Snider, FD
Soha, A
Sorin, V
Song, H
Squillacioti, P
Stancari, M
St Denis, R
Stelzer, B
Stelzer-Chilton, O
Stentz, D
Strologas, J
Strycker, GL
Sudo, Y
Sukhanov, A
Suslov, I
Takemasa, K
Takeuchi, Y
Tang, J
Tecchio, M
Teng, PK
Thom, J
Thome, J
Thompson, GA
Thomson, E
Toback, D
Tokar, S
Tollefson, K
Tomura, T
Tonelli, D
Torre, S
Torretta, D
Totaro, P
Trovato, M
Truong, A
Ukegawa, F
Uozumi, S
Varganov, A
Vazquez, F
Velev, G
Vellidis, C
Vidal, M
Vila, I
Vilar, R
Vizan, J
Vogel, M
Volpi, G
Wagner, P
Wagner, RL
Wakisaka, T
Wallny, R
Wang, SM
Warburton, A
Waters, D
Wester, WC
Whiteson, D
Wicklund, AB
Wicklund, E
Wilbur, S
Wick, F
Williams, HH
Wilson, JS
Wilson, P
Winer, BL
Wittich, P
Wolbers, S
Wolfe, H
Wright, T
Wu, X
Wu, Z
Yamamoto, K
Yamato, D
Yang, T
Yang, UK
Yang, YC
Yao, WM
Yeh, GP
Yi, K
Yoh, J
Yorita, K
Yoshida, T
Yu, GB
Yu, I
Yu, SS
Yun, JC
Zanetti, A
Zeng, Y
Zhou, C
Zucchelli, S
AF Aaltonen, T.
Adelman, J.
Alvarez Gonzalez, B.
Amerio, S.
Amidei, D.
Anastassov, A.
Annovi, A.
Antos, J.
Apollinari, G.
Appel, J. A.
Arisawa, T.
Artikov, A.
Asaadi, J.
Ashmanskas, W.
Auerbach, B.
Aurisano, A.
Azfar, F.
Badgett, W.
Bae, T.
Barbaro-Galtieri, A.
Barnes, V. E.
Barnett, B. A.
Barria, P.
Bartos, P.
Bauce, M.
Bedeschi, F.
Behari, S.
Bellettini, G.
Bellinger, J.
Benjamin, D.
Beretvas, A.
Bhatti, A.
Bisello, D.
Bizjak, I.
Bland, K. R.
Blumenfeld, B.
Bocci, A.
Bodek, A.
Bortoletto, D.
Boudreau, J.
Boveia, A.
Brigliadori, L.
Bromberg, C.
Brucken, E.
Budagov, J.
Budd, H. S.
Burkett, K.
Busetto, G.
Bussey, P.
Buzatu, A.
Calamba, A.
Calancha, C.
Camarda, S.
Campanelli, M.
Campbell, M.
Canelli, F.
Carls, B.
Carlsmith, D.
Carosi, R.
Carrillo, S.
Carron, S.
Casal, B.
Casarsa, M.
Castro, A.
Catastini, P.
Cauz, D.
Cavaliere, V.
Cavalli-Sforza, M.
Cerri, A.
Cerrito, L.
Chen, Y. C.
Chertok, M.
Chiarelli, G.
Chlachidze, G.
Chlebana, F.
Cho, K.
Chokheli, D.
Chung, W. H.
Chung, Y. S.
Ciocci, M. A.
Clark, A.
Clarke, C.
Compostella, G.
Convery, M. E.
Conway, J.
Corbo, M.
Cordelli, M.
Cox, C. A.
Cox, D. J.
Crescioli, F.
Cuevas, J.
Culbertson, R.
Dagenhart, D.
d'Ascenzo, N.
Datta, M.
De Barbaro, P.
Dell'Orso, M.
Demortier, L.
Deninno, M.
Devoto, F.
d'Errico, M.
Di Canto, A.
Di Ruzza, B.
Dittmann, J. R.
D'Onofrio, M.
Donati, S.
Dong, P.
Dorigo, M.
Dorigo, T.
Ebina, K.
Elagin, A.
Eppig, A.
Erbacher, R.
Errede, S.
Ershaidat, N.
Eusebi, R.
Farrington, S.
Feindt, M.
Fernandez, J. P.
Field, R.
Flanagan, G.
Forrest, R.
Frank, M. J.
Franklin, M.
Freeman, J. C.
Funakoshi, Y.
Furic, I.
Gallinaro, M.
Garcia, J. E.
Garfinkel, A. F.
Garosi, P.
Gerberich, H.
Gerchtein, E.
Giagu, S.
Giakoumopoulou, V.
Giannetti, P.
Gibson, K.
Ginsburg, C. M.
Giokaris, N.
Giromini, P.
Giurgiu, G.
Glagolev, V.
Glenzinski, D.
Gold, M.
Goldin, D.
Goldschmidt, N.
Golossanov, A.
Gomez, G.
Gomez-Ceballos, G.
Goncharov, M.
Gonzalez, O.
Gorelov, I.
Goshaw, A. T.
Goulianos, K.
Grinstein, S.
Grosso-Pilcher, C.
Group, R. C.
Da Costa, J. Guimaraes
Hahn, S. R.
Halkiadakis, E.
Hamaguchi, A.
Han, J. Y.
Happacher, F.
Hara, K.
Hare, D.
Hare, M.
Harr, R. F.
Hatakeyama, K.
Hays, C.
Heck, M.
Heinrich, J.
Herndon, M.
Hewamanage, S.
Hocker, A.
Hopkins, W.
Horn, D.
Hou, S.
Hughes, R. E.
Hurwitz, M.
Husemann, U.
Hussain, N.
Hussein, M.
Huston, J.
Introzzi, G.
Iori, M.
Ivanov, A.
James, E.
Jang, D.
Jayatilaka, B.
Jeon, E. J.
Jindariani, S.
Johnstone, A.
Jones, M.
Joo, K. K.
Jun, S. Y.
Junk, T. R.
Kamon, T.
Karchin, P. E.
Kasmi, A.
Kato, Y.
Ketchum, W.
Keung, J.
Khotilovich, V.
Kilminster, B.
Kim, D. H.
Kim, H. S.
Kim, J. E.
Kim, M. J.
Kim, S. B.
Kim, S. H.
Kim, Y. K.
Kim, Y. J.
Kimura, N.
Kirby, M.
Klimenko, S.
Knoepfel, K.
Kondo, K.
Kong, D. J.
Konigsberg, J.
Kotwal, A. V.
Kreps, M.
Kroll, J.
Krop, D.
Kruse, M.
Krutelyov, V.
Kuhr, T.
Kurata, M.
Kwang, S.
Laasanen, A. T.
Lami, S.
Lammel, S.
Lancaster, M.
Lander, R. L.
Lannon, K.
Lath, A.
Latino, G.
LeCompte, T.
Lee, E.
Lee, H. S.
Lee, J. S.
Lee, S. W.
Leo, S.
Leone, S.
Lewis, J. D.
Limosani, A.
Lin, C. -J.
Lindgren, M.
Lipeles, E.
Lister, A.
Litvintsev, D. O.
Liu, C.
Liu, H.
Liu, Q.
Liu, T.
Lockwitz, S.
Loginov, A.
Lucchesi, D.
Lueck, J.
Lujan, P.
Lukens, P.
Lungu, G.
Lys, J.
Lysak, R.
Madrak, R.
Maeshima, K.
Maestro, P.
Malik, S.
Manca, G.
Manousakis-Katsikakis, A.
Margaroli, F.
Marino, C.
Martinez, M.
Mastrandrea, P.
Matera, K.
Mattson, M. E.
Mazzacane, A.
Mazzanti, P.
McFarland, K. S.
McIntyre, P.
McNulty, R.
Mehta, A.
Mehtala, P.
Mesropian, C.
Miao, T.
Mietlicki, D.
Mitra, A.
Miyake, H.
Moed, S.
Moggi, N.
Mondragon, M. N.
Moon, C. S.
Moore, R.
Morello, M. J.
Morlock, J.
Fernandez, P. Movilla
Mukherjee, A.
Muller, Th.
Murat, P.
Mussini, M.
Nachtman, J.
Nagai, Y.
Naganoma, J.
Nakano, I.
Napier, A.
Nett, J.
Neu, C.
Neubauer, M. S.
Nielsen, J.
Nodulman, L.
Noh, S. Y.
Norniella, O.
Oakes, L.
Oh, S. H.
Oh, Y. D.
Oksuzian, I.
Okusawa, T.
Orava, R.
Ortolan, L.
Griso, S. Pagan
Pagliarone, C.
Palencia, E.
Papadimitriou, V.
Paramonov, A. A.
Patrick, J.
Pauletta, G.
Paulini, M.
Paus, C.
Pellett, D. E.
Penzo, A.
Phillips, T. J.
Piacentino, G.
Pianori, E.
Pilot, J.
Pitts, K.
Plager, C.
Pondrom, L.
Poprocki, S.
Potamianos, K.
Prokoshin, F.
Pranko, A.
Ptohos, F.
Punzi, G.
Rahaman, A.
Ramakrishnan, V.
Ranjan, N.
Rao, K.
Redondo, I.
Renton, P.
Rescigno, M.
Riddick, T.
Rimondi, F.
Ristori, L.
Robson, A.
Rodrigo, T.
Rodriguez, T.
Rogers, E.
Rolli, S.
Roser, R.
Ruffini, F.
Ruiz, A.
Russ, J.
Rusu, V.
Safonov, A.
Sakumoto, W. K.
Sakurai, Y.
Santi, L.
Sato, K.
Saveliev, V.
Savoy-Navarro, A.
Schlabach, P.
Schmidt, A.
Schmidt, E. E.
Schwarz, T.
Scodellaro, L.
Scribano, A.
Scuri, F.
Seidel, S.
Seiya, Y.
Semenov, A.
Sforza, F.
Shalhout, S. Z.
Shears, T.
Shepard, P. F.
Shimojima, M.
Shochet, M.
Shreyber-Tecker, I.
Simonenko, A.
Sinervo, P.
Sliwa, K.
Smith, J. R.
Snider, F. D.
Soha, A.
Sorin, V.
Song, H.
Squillacioti, P.
Stancari, M.
St Denis, R.
Stelzer, B.
Stelzer-Chilton, O.
Stentz, D.
Strologas, J.
Strycker, G. L.
Sudo, Y.
Sukhanov, A.
Suslov, I.
Takemasa, K.
Takeuchi, Y.
Tang, J.
Tecchio, M.
Teng, P. K.
Thom, J.
Thome, J.
Thompson, G. A.
Thomson, E.
Toback, D.
Tokar, S.
Tollefson, K.
Tomura, T.
Tonelli, D.
Torre, S.
Torretta, D.
Totaro, P.
Trovato, M.
Truong, A.
Ukegawa, F.
Uozumi, S.
Varganov, A.
Vazquez, F.
Velev, G.
Vellidis, C.
Vidal, M.
Vila, I.
Vilar, R.
Vizan, J.
Vogel, M.
Volpi, G.
Wagner, P.
Wagner, R. L.
Wakisaka, T.
Wallny, R.
Wang, S. M.
Warburton, A.
Waters, D.
Wester, W. C., III
Whiteson, D.
Wicklund, A. B.
Wicklund, E.
Wilbur, S.
Wick, F.
Williams, H. H.
Wilson, J. S.
Wilson, P.
Winer, B. L.
Wittich, P.
Wolbers, S.
Wolfe, H.
Wright, T.
Wu, X.
Wu, Z.
Yamamoto, K.
Yamato, D.
Yang, T.
Yang, U. K.
Yang, Y. C.
Yao, W. -M.
Yeh, G. P.
Yi, K.
Yoh, J.
Yorita, K.
Yoshida, T.
Yu, G. B.
Yu, I.
Yu, S. S.
Yun, J. C.
Zanetti, A.
Zeng, Y.
Zhou, C.
Zucchelli, S.
CA CDF Collaboration
TI Search for a Two-Higgs-Boson Doublet Using a Simplified Model in
p(p)over-bar Collisions at root s=1.96 TeV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID STANDARD MODEL; HIGGS BOSONS; CERN LHC; PHYSICS; SUPERSYMMETRY;
DETECTOR; PARTICLE; MASS
AB We present a search for new particles in an extension to the standard model that includes a heavy Higgs boson (H-0), a lighter charged Higgs boson (H+/-), and an even lighter Higgs boson h(0), with decays leading to a W-boson pair and a bottom-antibottom quark pair in the final state. We use events with exactly one lepton, missing transverse momentum, and at least four jets in data corresponding to an integrated luminosity of 8.7 fb(-1) collected by the CDF II detector in proton-antiproton collisions at root s = 1.96 TeV. We find the data to be consistent with standard model predictions and report the results in terms of a simplified Higgs-cascade-decay model, setting 95% confidence level upper limits on the product of cross section and branching fraction from 1.3 pb to 15 fb as a function of H-0 and H+/- masses for m(h)(0) = 126 GeV/c(2). DOI: 10.1103/PhysRevLett.110.121801
C1 [Casal, B.; Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece.
[Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain.
[Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA.
[Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy.
[Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy.
[Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Lander, R. L.; Pellett, D. E.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA.
[Johnstone, A.; Rao, K.; Truong, A.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Boveia, A.; Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia.
[Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia.
[Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia.
[Benjamin, D.; Bocci, A.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA.
[Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Burkett, K.; Canelli, F.; Carron, S.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Corbo, M.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Dong, P.; Ershaidat, N.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Mazzacane, A.; Miao, T.; Moed, S.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Snider, F. D.; Soha, A.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA.
[Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Bussey, P.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Catastini, P.; Franklin, M.; Da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA.
[Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland.
[Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Carls, B.; Cavaliere, V.; Errede, S.; Gerberich, H.; Kamon, T.; Matera, K.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA.
[Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th.; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea.
[Barbaro-Galtieri, A.; Cerri, A.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Riddick, T.; Waters, D.] UCL, London WC1E 6BT, England.
[Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Redondo, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain.
[Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA.
[Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada.
[Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada.
[Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bromberg, C.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA.
[Shreyber-Tecker, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Okayama 7008530, Japan.
[Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan.
[Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England.
[Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Lucchesi, D.; Griso, S. Pagan; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy.
[Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy.
[Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Ristori, L.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA.
[Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Garosi, P.; Giannetti, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ruffini, F.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy.
[Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Leo, S.; Punzi, G.] Univ Pisa, I-56127 Pisa, Italy.
[Barria, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.; Scribano, A.; Sforza, F.; Squillacioti, P.] Univ Siena, I-56127 Pisa, Italy.
[Morello, M. J.; Trovato, M.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Potamianos, K.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA.
[Bodek, A.; Budd, H. S.; Chung, Y. S.; De Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA.
[Giagu, S.; Iori, M.; Margaroli, F.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Halkiadakis, E.; Hare, D.; Lath, A.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Nett, J.; Safonov, A.; Toback, D.] Texas A&M Univ, College Stn, TX 77843 USA.
[Casarsa, M.; Cauz, D.; Dorigo, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Santi, L.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy.
[Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy.
[Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan.
[Group, R. C.; Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA.
[Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA.
[Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan.
[Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA.
[Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Pondrom, L.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA.
[Adelman, J.; Auerbach, B.; Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA.
RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland.
RI Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; vilar,
rocio/P-8480-2014; Garcia, Jose /H-6339-2015; ciocci, maria agnese
/I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Prokoshin,
Fedor/E-2795-2012; Introzzi, Gianluca/K-2497-2015; Piacentino,
Giovanni/K-3269-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015;
Zeng, Yu/C-1438-2013; Scodellaro, Luca/K-9091-2014; Annovi,
Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton,
Andreas/N-8028-2013; Punzi, Giovanni/J-4947-2012; Grinstein,
Sebastian/N-3988-2014; Kim, Soo-Bong/B-7061-2014; Robson,
Aidan/G-1087-2011; maestro, paolo/E-3280-2010; Chiarelli,
Giorgio/E-8953-2012; Lysak, Roman/H-2995-2014; Moon,
Chang-Seong/J-3619-2014
OI Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155;
ciocci, maria agnese /0000-0003-0002-5462; Prokoshin,
Fedor/0000-0001-6389-5399; Introzzi, Gianluca/0000-0002-1314-2580;
Piacentino, Giovanni/0000-0001-9884-2924; song, hao/0000-0002-3134-782X;
Gorelov, Igor/0000-0001-5570-0133; Scodellaro, Luca/0000-0002-4974-8330;
Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643;
Warburton, Andreas/0000-0002-2298-7315; Punzi,
Giovanni/0000-0002-8346-9052; Grinstein, Sebastian/0000-0002-6460-8694;
maestro, paolo/0000-0002-4193-1288; Chiarelli,
Giorgio/0000-0001-9851-4816; Moon, Chang-Seong/0000-0001-8229-7829
FU U.S. Department of Energy; National Science Foundation; Italian Istituto
Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports,
Science, and Technology of Japan; Natural Sciences and Engineering
Research Council of Canada; National Science Council of the Republic of
China; Swiss National Science Foundation; A. P. Sloan Foundation;
Bundesministerium fur Bildung und Forschung, Germany; Korean World Class
University Program; National Research Foundation of Korea; Science and
Technology Facilities Council; Royal Society, U.K.; Russian Foundation
for Basic Research; Ministerio de Ciencia e Innovacion; Programa
Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland;
Australian Research Council (ARC)
FX We thank the Fermilab staff and the technical staffs of the
participating institutions for their vital contributions. This work was
supported by the U.S. Department of Energy and National Science
Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the
Ministry of Education, Culture, Sports, Science, and Technology of
Japan; the Natural Sciences and Engineering Research Council of Canada;
the National Science Council of the Republic of China; the Swiss
National Science Foundation; the A. P. Sloan Foundation; the
Bundesministerium fur Bildung und Forschung, Germany; the Korean World
Class University Program and the National Research Foundation of Korea;
the Science and Technology Facilities Council and the Royal Society,
U.K.; the Russian Foundation for Basic Research; the Ministerio de
Ciencia e Innovacion and Programa Consolider-Ingenio 2010, Spain; the
Slovak R&D Agency; the Academy of Finland; and the Australian Research
Council (ARC).
NR 43
TC 4
Z9 4
U1 2
U2 30
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 18
PY 2013
VL 110
IS 12
AR 121801
DI 10.1103/PhysRevLett.110.121801
PG 8
WC Physics, Multidisciplinary
SC Physics
GA 109VX
UT WOS:000316398800003
ER
PT J
AU Jeevanjee, N
Romps, DM
AF Jeevanjee, Nadir
Romps, David M.
TI Convective self-aggregation, cold pools, and domain size
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE Convection; Atmospheric Models; Cloud-Resolving Models
ID SIMULATIONS
AB Convective self-aggregation refers to a phenomenon in cloud-resolving simulations wherein the atmosphere spontaneously develops a circulation with a convecting moist patch and a nonconvecting dry patch. All previous studies have found a sharp transition to aggregated convection when the domain size exceeds a critical threshold, typically in the range of 200300km. Here, we show that cold pools are responsible for this sharp transition. When cold pools are inhibited, self-aggregation occurs at all domain sizes. In this case, the aggregation strength decreases smoothly as the domain size L is decreased below about 200300km. A streamfunction analysis reveals two distinct sources for the air subsiding into the dry-patch boundary layer: a moist, shallow circulation and a dry, deep circulation. The deep circulation scales with L, whereas the shallow circulation does not. At small L, the shallow circulation dominates, thereby weakening the aggregation.
C1 [Jeevanjee, Nadir; Romps, David M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Jeevanjee, Nadir] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94702 USA.
[Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94702 USA.
RP Jeevanjee, N (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94702 USA.
EM jeevanje@berkeley.edu
RI Romps, David/F-8285-2011
FU U.S. Department of Energy's Earth System Modeling, an Office of Science,
Office of Biological and Environmental Research program
[DE-AC02-05CH11231]
FX This work was supported by the U.S. Department of Energy's Earth System
Modeling, an Office of Science, Office of Biological and Environmental
Research program under Contract No. DE-AC02-05CH11231.
NR 6
TC 24
Z9 24
U1 1
U2 18
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD MAR 16
PY 2013
VL 40
IS 5
BP 994
EP 998
DI 10.1002/grl.50204
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 134VG
UT WOS:000318242900036
ER
PT J
AU Matsui, H
Koike, M
Kondo, Y
Moteki, N
Fast, JD
Zaveri, RA
AF Matsui, H.
Koike, M.
Kondo, Y.
Moteki, N.
Fast, J. D.
Zaveri, R. A.
TI Development and validation of a black carbon mixing state resolved
three-dimensional model: Aging processes and radiative impact
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID LASER-INDUCED INCANDESCENCE; PRIMARY AEROSOL; CLIMATE; COAGULATION;
CHEMISTRY; EMISSIONS; MODULE; SIZE; SOOT; PARAMETERIZATION
AB A new two-dimensional aerosol bin scheme, which resolves both aerosol size and black carbon (BC) mixing state for BC aging processes (e.g., condensation and coagulation) with 12 size x 10 mixing state bins, has been developed and implemented into the WRF-chem model (MS-resolved WRF-chem). The mixing state of BC simulated by this model is compared with direct measurements over the East Asian region in spring 2009. Model simulations generally reproduce the observed features of the BC mixing state, such as the size-dependent number fractions of BC-containing and BC-free particles and the coating thickness of BC-containing particles. This result shows that the model can simulate realistic BC mixing states in the atmosphere if condensation and coagulation processes are calculated explicitly with the detailed treatment of BC mixing state. Sensitivity simulations show that the condensation process is dominant for the growth of thinly coated BC particles, while the coagulation process is necessary to produce thickly coated BC particles. Off-line optical and radiative calculations assuming an average mixing state for each size bin show that the domain-and period-averaged absorption coefficient and heating rate by aerosols are overestimated by 30-40% in the boundary layer, compared with a benchmark simulation with the detailed treatment of mixing state. The absolute value of aerosol radiative forcing is also overestimated (10%, 3W m(-2)) at the surface. However, these overestimations are reduced considerably when all the parameters (including mass and number concentration) are calculated with the simple treatment of mixing state. This is because the overestimation of radiative parameters due to higher absorption efficiency (compared with the benchmark simulation) is largely canceled by the underestimation of BC concentrations due to efficient wet removal processes. The overall errors in radiative forcing can be much smaller because of this cancellation, but for the wrong reasons.
C1 [Matsui, H.; Koike, M.; Kondo, Y.; Moteki, N.] Univ Tokyo, Dept Earth & Planetary Sci, Grad Sch Sci, Tokyo 1130033, Japan.
[Fast, J. D.; Zaveri, R. A.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Matsui, H (reprint author), Univ Tokyo, Dept Earth & Planetary Sci, Grad Sch Sci, Bunkyo Ku, Hongo 7-3-1, Tokyo 1130033, Japan.
EM matsui@eps.s.u-tokyo.ac.jp
RI Kondo, Yutaka/D-1459-2012;
OI Zaveri, Rahul/0000-0001-9874-8807
FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT);
Japan Science and Technology Agency (JST); Japanese Ministry of the
Environment [A-0803, A-1101]; University of Tokyo; U.S. Department of
Energy's (DoE) [DE-AC06-76RLO 1830]
FX This work was supported by the Ministry of Education, Culture, Sports,
Science, and Technology (MEXT), the strategic international cooperative
program of the Japan Science and Technology Agency (JST), the global
environment research fund of the Japanese Ministry of the Environment
(A-0803 and A-1101), and by the Alliance for Global Sustainability (AGS)
project, University of Tokyo. The authors thank Yugo Kanaya at the Japan
Agency for Marine-Earth Science and Technology (JAMSTEC) in Japan for
providing observed BC data at the Fukue site. Support for MOSAIC and
WRF-Chem was provided by the U.S. Department of Energy's (DoE)
Atmospheric System Research program under Contract DE-AC06-76RLO 1830 at
Pacific Northwest National Laboratory (PNNL). PNNL is operated for the
U.S. DoE by the Battelle Memorial Institute. The authors thank Mark
Jacobson for providing the semi-implicit coagulation code on which the
scheme in this study was based. For a part of the calculations, we used
the HA8000 computer system operated by the Supercomputing Division,
Information Technology Center, University of Tokyo.
NR 64
TC 32
Z9 32
U1 4
U2 45
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD MAR 16
PY 2013
VL 118
IS 5
BP 2304
EP 2326
DI 10.1029/2012JD018446
PG 23
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 129LY
UT WOS:000317842800019
ER
PT J
AU Zhao, C
Leung, LR
Easter, R
Hand, J
Avise, J
AF Zhao, Chun
Leung, L. Ruby
Easter, Richard
Hand, Jenny
Avise, Jeremy
TI Characterization of speciated aerosol direct radiative forcing over
California
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID SEA-SALT AEROSOLS; OPTICAL-PROPERTIES; SOLAR-RADIATION; AIR-QUALITY;
IMAGING SPECTRORADIOMETER; ATMOSPHERIC AEROSOLS; HYDROLOGICAL CYCLE;
EMISSION CONTROLS; MINERAL DUST; BLACK CARBON
AB The WRF-Chem model, with the added capability of diagnosing the direct radiative forcing of individual aerosol species, is used to characterize the spatial and seasonal distribution of speciated aerosol direct radiative forcing over California. Overall, the simulation in 2005 is able to reproduce the observed spatial and seasonal distribution of total PM2.5 mass concentration and the relative contribution from individual aerosol species. On statewide average over California, all aerosol species reduce the surface net radiation fluxes, with a total by about 1.5Wm(-2) (winter minimum) to 3Wm(-2) (summer maximum). Elemental carbon (EC) is the largest contributor in summer (-1.1Wm(-2) and similar to 35%), and sulfate is the largest in winter (-0.45Wm(-2) and similar to 30%). In the atmosphere, total aerosol introduces a warming effect of about 0.5Wm(-2) (winter minimum) to 2Wm(-2) (summer maximum). EC and dust contribute about 75 - 95% and 1 - 10% of the total warming through the seasons, respectively. At the top of the atmosphere (TOA), the overall total aerosol direct radiative effect is cooling of -1.0Wm(-2) through the seasons, with sulfate as the biggest contributor of -0.4Wm(-2) (winter minimum) to -0.7Wm(-2) (summer maximum). EC produces a TOA warming of up to about 0.7Wm(-2), whereas all other aerosol species produce a TOA cooling. The diagnostic method implemented in WRF-Chem can be applied to other regions to understand the roles of different aerosols in the direct radiative forcing and regional climate.
C1 [Zhao, Chun; Leung, L. Ruby; Easter, Richard] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA.
[Hand, Jenny] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA.
[Avise, Jeremy] Calif Air Resources Board, Sacramento, CA USA.
RP Zhao, C (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA.
EM chun.zhao@pnnl.gov
RI Zhao, Chun/A-2581-2012
OI Zhao, Chun/0000-0003-4693-7213
FU California Air Resources Board (CARB) [08-323]; DOE Regional and Global
Climate Modeling Program; U.S. Department of Energy Office of Science
[DE-AC02-05CH11231]; PNNL Institutional Computing; Battelle Memorial
Institute [DE-AC06-76RLO330 1830]
FX This work was supported by the California Air Resources Board (CARB)
under contract 08-323 and the DOE Regional and Global Climate Modeling
Program. The statements and conclusions in this paper are those of the
researcher and not necessarily CARB. We thank Drs. V. Ramanathan and
Ranjit Bahadur of the Scripps Institution of Oceanography and Dr. John
Seinfeld of the California Institute of Technology for many insightful
scientific exchanges on interpretations of our modeling results. The
authors thank Dr. Jinho Yoon for his constructive suggestions during the
PNNL internal reviewing. This study used computing resources from the
National Energy Research Scientific Computing Center, which is supported
by the U.S. Department of Energy Office of Science under contract
DE-AC02-05CH11231, and PNNL Institutional Computing. Pacific Northwest
National Laboratory is operated for the U.S. DOE by Battelle Memorial
Institute under contract DE-AC06-76RLO330 1830.
NR 70
TC 21
Z9 21
U1 1
U2 51
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD MAR 16
PY 2013
VL 118
IS 5
BP 2372
EP 2388
DI 10.1029/2012JD018364
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 129LY
UT WOS:000317842800023
ER
PT J
AU Kimes, NE
Callaghan, AV
Aktas, DF
Smith, WL
Sunner, J
Golding, BT
Drozdowska, M
Hazen, TC
Suflita, JM
Morris, PJ
AF Kimes, Nikole E.
Callaghan, Amy V.
Aktas, Deniz F.
Smith, Whitney L.
Sunner, Jan
Golding, Bernard T.
Drozdowska, Marta
Hazen, Terry C.
Suflita, Joseph M.
Morris, Pamela J.
TI Metagenomic analysis and metabolite profiling of deep-sea sediments from
the Gulf of Mexico following the Deepwater Horizon oil spill
SO FRONTIERS IN MICROBIOLOGY
LA English
DT Article
DE Deepwater Horizon; metagenomics; metabolomics; oil-degradation
ID ALKYLSUCCINATE SYNTHASE GENES; BACTERIAL ENRICHMENT CULTURE; ANAEROBIC
OXIDATION; ALCANIVORAX-BORKUMENSIS; DENITRIFYING BACTERIUM; SIGNATURE
METABOLITES; MICROBIAL DIVERSITY; THAUERA-AROMATICA; MARINE BACTERIUM;
HYDROCARBONS
AB Marine subsurface environments such as deep-sea sediments, house abundant and diverse microbial communities that are believed to influence large-scale geochemical processes. These processes include the biotransformation and mineralization of numerous petroleum constituents. Thus, microbial communities in the Gulf of Mexico are thought to be responsible for the intrinsic bioremediation of crude oil released by the Deepwater Horizon (DM) oil spill. While hydrocarbon contamination is known to enrich for aerobic, oil-degrading bacteria in deep-seawater habitats, relatively little is known about the response of communities in deep-sea sediments, where low oxygen levels may hinder such a response. Here, we examined the hypothesis that increased hydrocarbon exposure results in an altered sediment microbial community structure that reflects the prospects for oil biodegradation under the prevailing conditions. We explore this hypothesis using metagenomic analysis and metabolite profiling of deep-sea sediment samples following the DWH oil spill. The presence of aerobic microbial communities and associated functional genes was consistent among all samples, whereas, a greater number of Deltaproteobacteria and anaerobic functional genes were found in sediments closest to the DWH blowout site. Metabolite profiling also revealed a greater number of putative metabolites in sediments surrounding the blowout zone relative to a background site located 127 km away. The mass spectral analysis of the putative metabolites revealed that alkylsuccinates remained below detection levels, but a homologous series of benzylsuccinates (with carbon chain lengths from 5 to 10) could be detected. Our findings suggest that increased exposure to hydrocarbons enriches for Deltaproteobacteria, which are known to be capable of anaerobic hydrocarbon metabolism. We also provide evidence for an active microbial community metabolizing aromatic hydrocarbons in deep-sea sediments of the Gulf of Mexico.
C1 [Kimes, Nikole E.; Morris, Pamela J.] Univ S Carolina, Belle W Baruch Inst Marine & Coastal Sci, Baruch Marine Field Lab, Georgetown, SC 29442 USA.
[Callaghan, Amy V.; Aktas, Deniz F.; Smith, Whitney L.; Sunner, Jan; Suflita, Joseph M.] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.
[Aktas, Deniz F.; Smith, Whitney L.; Sunner, Jan; Suflita, Joseph M.] Univ Oklahoma, Inst Energy & Environm, Norman, OK 73019 USA.
[Golding, Bernard T.; Drozdowska, Marta] Newcastle Univ, Sch Chem, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England.
[Hazen, Terry C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA.
[Hazen, Terry C.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.
[Hazen, Terry C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN USA.
[Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Berkeley, CA 94720 USA.
RP Morris, PJ (reprint author), Univ S Carolina, Belle W Baruch Inst Marine & Coastal Sci, Baruch Marine Field Lab, POB 1630, Georgetown, SC 29442 USA.
EM pjmorris@belle.baruch.sc.edu
RI Hazen, Terry/C-1076-2012
OI Hazen, Terry/0000-0002-2536-9993
FU National Science Foundation [MCB-1049411, MCB-1049409]; Deutsche
Forschungsgemeinschaft [SPP 1319]; NSF [MCB-0921265]
FX We would like to thank the following individuals at LBNL that were
instrumental in collecting, preserving, and aseptically sectioning the
deep-sea sediment cores: Sharon Borglin, Yvette Piceno, Dominique
Joyner, Janet Jansson, and Olivia Mason. We would also like to thank
Andreas Teske for his thoughtful comments and critical review of the
manuscript. This study was supported by the National Science Foundation
(MCB-1049411) and (MCB-1049409) to PJM and JMS, respectively, by the
program SPP 1319 of the Deutsche Forschungsgemeinschaft (grant to BTG in
support of MD), and also in part by an NSF grant (MCB-0921265) to AVC.
BTG and MD also thank the EPSRC Mass Spectrometry Service at the
University of Wales (Swansea) for mass spectrometric analyses.
NR 60
TC 54
Z9 56
U1 10
U2 117
PU FRONTIERS RESEARCH FOUNDATION
PI LAUSANNE
PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND
SN 1664-302X
J9 FRONT MICROBIOL
JI Front. Microbiol.
PD MAR 15
PY 2013
VL 4
AR 50
DI 10.3389/fmicb.2013.00050
PG 17
WC Microbiology
SC Microbiology
GA AA3PH
UT WOS:000331004300001
PM 23508965
ER
PT J
AU Gourgiotis, A
Isnard, H
Nonell, A
Aubert, M
Stadelmann, G
Dupont, E
AlMahamid, I
Tiang, G
Rao, L
Lukens, W
Cassette, P
Panebianco, S
Letourneau, A
Chartier, F
AF Gourgiotis, A.
Isnard, H.
Nonell, A.
Aubert, M.
Stadelmann, G.
Dupont, E.
AlMahamid, I.
Tiang, G.
Rao, L.
Lukens, W.
Cassette, P.
Panebianco, S.
Letourneau, A.
Chartier, F.
TI Bk and Cf chromatographic separation and Bk-249/Cm-248 and Cf-249/Cm-248
elemental ratios determination by inductively coupled plasma quadrupole
mass spectrometry
SO TALANTA
LA English
DT Article
DE Ionic Chromatography (IC); ICP-QMS; Berkelium; Californium; Curium
ID PERFORMANCE LIQUID-CHROMATOGRAPHY; EXTRACTION CHROMATOGRAPHY;
CONFIDENCE-INTERVALS; STANDARD DEVIATIONS; ISOTOPE RATIOS; ICP-QMS;
CALIFORNIUM; BERKELIUM; TRANSMUTATION; CURIUM
AB The French Atomic Energy Commission has carried out several experiments for the study of minor-actinide transmutation processes in high intensity thermal neutron flux. In this context a Cm sample enriched in Cm-248 (similar to 97%) was irradiated in a thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). The precise and accurate determination of Cf isotope ratios and of Bk-249/Cm-248 and Cf-249/Cm-248 elemental ratios in the Cm-248 irradiated sample is crucial for the calculation of actinide neutron capture cross-sections. This work describes an analytical procedure for the separation and the isotope ratio measurement of Bk and Cf in the irradiated sample. The Bk and Cf separation is based on a lanthanides separation protocol previously developed by the laboratory. Well-defined retention times for Bk and Cf were obtained by coupling the Ionic Chromatography (IC) with an ICP-QMS. All conditions of element separation by IC and the different steps of the analytical protocol in order to obtain the isotopic and elemental ratios are presented. Relative uncertainties of Cf isotopic ratios range from 0.3% to 0.5% and the uncertainty of the Bk-249/Cm-248 and Cf-249/Cm-248 elemental ratios are respectively 6.1% and 3.2%. This level of uncertainty for both isotopic and elemental ratios is in perfect agreement with the requirement for transmutation studies. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Gourgiotis, A.; Isnard, H.; Nonell, A.; Aubert, M.; Stadelmann, G.] CEA, DEN DPC SEARS LANIE, F-91191 Gif Sur Yvette, France.
[Dupont, E.; Panebianco, S.; Letourneau, A.] CEA, DSM IRFU SPhN, F-91191 Gif Sur Yvette, France.
[AlMahamid, I.] New York State Dept Hlth, Wadsworth Ctr, Albany, NY 12201 USA.
[AlMahamid, I.] SUNY Albany, Sch Publ Hlth, Albany, NY 12222 USA.
[Cassette, P.] CEA, Lab Natl Henri Becquerel LNE LNHB, LIST, F-91191 Gif Sur Yvette, France.
[Chartier, F.] CEA, DEN DPC, F-91191 Gif Sur Yvette, France.
[Tiang, G.; Rao, L.; Lukens, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Gourgiotis, A.] Inst Phys Globe Paris, CNRS, Equipe Geochim & Cosmochim, F-75238 Paris 05, France.
[Dupont, E.] OECD Nucl Energy Agcy, F-92130 Issy Les Moulineaux, France.
RP Isnard, H (reprint author), CEA, DEN DPC SEARS LANIE, F-91191 Gif Sur Yvette, France.
EM helene.isnard@cea.fr
NR 32
TC 3
Z9 3
U1 2
U2 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-9140
J9 TALANTA
JI Talanta
PD MAR 15
PY 2013
VL 106
BP 39
EP 44
DI 10.1016/j.talanta.2012.11.056
PG 6
WC Chemistry, Analytical
SC Chemistry
GA 146JY
UT WOS:000319088600006
PM 23598093
ER
PT J
AU Klemperer, SL
Kennedy, BM
Sastry, SR
Makovsky, Y
Harinarayana, T
Leech, ML
AF Klemperer, Simon L.
Kennedy, B. Mack
Sastry, Siva R.
Makovsky, Yizhaq
Harinarayana, T.
Leech, Mary L.
TI Mantle fluids in the Karakoram fault: Helium isotope evidence
SO EARTH AND PLANETARY SCIENCE LETTERS
LA English
DT Article
DE Karakoram fault; Tibet; Himalaya; helium isotopes; geothermal activity;
India-Asia collision
ID SAN-ANDREAS FAULT; GLOBAL POSITIONING SYSTEM; WESTERN UNITED-STATES;
SOUTHERN TIBET; CHANNEL FLOW; LITHOSPHERIC STRUCTURE; CONTINUOUS
DEFORMATION; EARTHQUAKES BENEATH; THERMAL SPRINGS; SOUTHWEST TIBET
AB The Karakoram fault (KKF) is the 1000 km-long strike-slip fault separating the western Himalaya from the Tibetan Plateau. From geologic and geodetic data, the KKF is argued either to be a lithospheric-scale fault with hundreds of km of offset at several cm/a, or to be almost inactive with cumulative offset of only a few tens of kilometers and to be just the upper-crustal localization of distributed deformation at depth. Here we show He-3/He-4 ratios in geothermal springs along a 500-km segment of the KKF are 3-100 times the normal ratio in continental crust, providing unequivocal evidence that a component of these hydrologic systems is derived from tectonically active mantle. Mantle enrichment is absent along the Indus-Yarlung suture zone (ISZ) just 35 km southwest of the KKF, suggesting that the mantle fluids flow only within the KKF. Within the last few Ma, the KKF must have accessed tectonically active Tibetan mantle northeast of the "mantle suture" which we therefore locate vertically beneath the KKF, very close to the surface trace of the ISZ. Hence, in southwestern Tibet, Indian crust may not now be underthrusting substantially north of the ISZ, even though Miocene underthrusting may have placed Indian crust north of the ISZ in the lower half of the Tibetan Plateau crust. This is in significant contrast to central and eastern Tibet where underthrust Indian material not only forms the lower half of the Tibetan crust but is also currently underthrusting for similar to 200 km north of the ISZ. Our new constraint on KKF penetration to the mantle allows an improved description of the continuously evolving Karakoram fault, as a tectonically significant yet perhaps geologically ephemeral lithospheric structure. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Klemperer, Simon L.] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA.
[Kennedy, B. Mack] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Isotope Geochem, Berkeley, CA 94720 USA.
[Sastry, Siva R.; Harinarayana, T.] Natl Geophys Res Inst, Hyderabad 500007, Andhra Pradesh, India.
[Makovsky, Yizhaq] Univ Haifa, Dept Marine Geosci, IL-31905 Haifa, Israel.
[Leech, Mary L.] San Francisco State Univ, Dept Geosci, San Francisco, CA 94132 USA.
RP Klemperer, SL (reprint author), Stanford Univ, Dept Geophys, Stanford, CA 94305 USA.
EM sklemp@stanford.edu
RI Leech, Mary/A-8440-2009;
OI Leech, Mary/0000-0003-2871-5297; Makovsky, Yizhaq/0000-0001-6762-9549
FU NSF [EAR-0409939]; Office of Energy Research, Basic Energy Sciences,
Chemical Sciences Division [DE-AC02-05CH11231]
FX Fieldwork was supported by NSF grant EAR-0409939 and NGRI. Laboratory
measurements at Lawrence Berkeley National Laboratory were supported by
the Director, Office of Energy Research, Basic Energy Sciences, Chemical
Sciences Division under Contract no. DE-AC02-05CH11231. Reviews by J.P.
Avouac, D. Grujic, P. Kapp, and an anonymous reviewer, and editorial
comments from B. Marty, greatly improved this paper..
NR 76
TC 34
Z9 37
U1 2
U2 26
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0012-821X
J9 EARTH PLANET SC LETT
JI Earth Planet. Sci. Lett.
PD MAR 15
PY 2013
VL 366
BP 59
EP 70
DI 10.1016/j.eps1.2013.01.013
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 147OO
UT WOS:000319177100007
ER
PT J
AU Wang, GH
Um, W
AF Wang, Guohui
Um, Wooyong
TI Facilitated strontium transport by remobilization of
strontium-containing secondary precipitates in Hanfod Site subsurface
SO JOURNAL OF HAZARDOUS MATERIALS
LA English
DT Article
DE Colloid; Secondary precipitate; Radioactive Sr; Mobility; Remobilization
ID TANK-WASTE LEACHATE; IONIC-STRENGTH; QUARTZ SAND; NITRATE-CANCRINITE;
UNSATURATED FLOW; SEDIMENTS; CESIUM; RELEASE; COLLOIDS; MOBILIZATION
AB Significantly enhanced immobilization of radionuclides (such as Sr-90 and Cs-137) due to adsorption and coprecipitation with neo-formed colloid-sized secondary precipitates has been reported at the U.S. Department of Energy's Hanford Site. However, the stability of these secondary precipitates containing radionuclides in the subsurface under changeable field conditions is not clear. Here, the authors tested the remobilization possibility of Sr-containing secondary precipitates (nitrate-cancrinite) in the subsurface using saturated column experiments under different geochemical and flow conditions. The columns were packed with quartz sand that contained secondary precipitates (nitrate-cancrinite containing Sr), and leached using colloid-free solutions under different flow rates, varying pH, and ionic strength conditions. The results indicate remobilization of the neo-formed secondary precipitates could be possible given a change of pH of ionic strength and flow rate conditions. The remobility of the neo-formed precipitates increased with the rise in the leaching solution flow rate and pH (in a range of pH 4-11), as well as with decreasing solution ionic strength. The increased mobility of Sr-containing secondary precipitates with changing background conditions can be a potential source for additional radionuclide transport in Hanford Site subsurface environments. Published by Elsevier B.V.
C1 [Wang, Guohui; Um, Wooyong] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Um, Wooyong] Pohang Univ Sci & Technol POSTECH, Pohang, South Korea.
RP Um, W (reprint author), Pacific NW Natl Lab, POB 999,P7-54,902 Battelle Blvd, Richland, WA 99354 USA.
EM wooyong.um@pnnl.gov
FU U.S. Department of Energy (DOE) through the Subsurface Biogeochemical
Research (SBR) program [DE-FG02-06ER64190, DE-AC02-05CH11231,
KP1702030-54908]; WCU (World Class University) program through the
National Research Foundation of Korea; Ministry of Education, Science
and Technology [R31-30005]; DOE's Office of Biological and Environmental
Research
FX This research was funded by the U.S. Department of Energy (DOE) through
the Subsurface Biogeochemical Research (SBR) program under grant numbers
DE-FG02-06ER64190, No. DE-AC02-05CH11231, and KP1702030-54908. Portion
of this research was carried at the POSTECH supported by WCU (World
Class University) program through the National Research Foundation of
Korea funded by the Ministry of Education, Science and Technology
(R31-30005). The SEM, EDS, and XRD analyses were performed in
Environmental Molecular Sciences Laboratory (EMSL). EMSL located at PNNL
is a national scientific user facility sponsored by the DOE's Office of
Biological and Environmental Research.
NR 29
TC 2
Z9 2
U1 1
U2 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3894
J9 J HAZARD MATER
JI J. Hazard. Mater.
PD MAR 15
PY 2013
VL 248
BP 364
EP 370
DI 10.1016/j.jhazmat.2013.01.021
PG 7
WC Engineering, Environmental; Engineering, Civil; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 124DK
UT WOS:000317443800042
PM 23416479
ER
PT J
AU Liu, YT
Flynn, TJ
Ferguson, MS
Hoagland, EM
AF Liu, Yitong
Flynn, Thomas J.
Ferguson, Martine S.
Hoagland, Erica M.
TI Use of the Combination Index to determine interactions between
plant-derived phenolic acids on hepatotoxicity endpoints in human and
rat hepatoma cells
SO PHYTOMEDICINE
LA English
DT Article
DE Hepatotoxicity; Dietary phenolic acids; Mixtures; Interactions; Species
differences
ID ROSMARINIC ACID; DIETARY-INTAKE; METABOLISM; INDUCTION; SYNERGISM;
ANTIOXIDANT; POLYPHENOLS; PREDICTION; EXTRACT; MODEL
AB The beneficial or adverse effects of isolated phytochemicals are not always concordant with effects of the botanical dietary supplements from which they were derived. This disparity could be due to interactions between the various phytochemicals present in the whole plant. The phenolic acids, rosmarinic acid (RA), caffeic acid (CA) and ferulic acid (FA) are widely present in foods and dietary supplements, and they are assumed to exert various beneficial biological effects. However, there is little data on the potential biological interactions of these three phenolic acids which commonly occur together and are linked metabolically. In the present study, liver toxicity of the three phenolic acids was assessed on the three compounds singly and in various binary and one ternary combinations. A series of in vitro endpoints relevant to liver toxicity were evaluated in both a human (HepG2/C3A) and rat (MH1C1) hepatocyte cell line. The Combination Index (CI) was calculated for each endpoint from both the concentration responses of the single compounds and the responses of the various binary and ternary mixtures. Both synergistic and antagonistic interactions were observed for some endpoints and some combinations of test agents. Interactions were most prevalent in measures of oxidative stress and cytochrome P450 activities in both cell types. There was only a 53% concordance between the rat and human cells which may be suggestive of species differences. The data suggest an approach for better characterizing the beneficial or adverse effects of complex botanical products through evaluation of interactions between individual phytochemical components. Published by Elsevier GmbH.
C1 [Liu, Yitong; Flynn, Thomas J.; Hoagland, Erica M.] US FDA, Div Toxicol, Ctr Food Safety & Appl Nutr, Laurel, MD 20708 USA.
[Ferguson, Martine S.] US FDA, Div Publ Hlth & Biostat, Ctr Food Safety & Appl Nutr, College Pk, MD 20740 USA.
[Liu, Yitong] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA.
RP Flynn, TJ (reprint author), US FDA, MOD Labs 1, 8301 Muirkirk Rd, Laurel, MD 20708 USA.
EM thomas.flynn@fda.hhs.gov
RI Liu, Yitong/H-2213-2011;
OI Liu, Yitong/0000-0002-4300-4349; Flynn, Thomas/0000-0002-7248-0643
NR 31
TC 7
Z9 8
U1 0
U2 10
PU ELSEVIER GMBH, URBAN & FISCHER VERLAG
PI JENA
PA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY
SN 0944-7113
J9 PHYTOMEDICINE
JI Phytomedicine
PD MAR 15
PY 2013
VL 20
IS 5
BP 461
EP 468
DI 10.1016/j.phymed.2012.12.013
PG 8
WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary
Medicine; Pharmacology & Pharmacy
SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary
Medicine
GA 125IZ
UT WOS:000317534800012
PM 23380082
ER
PT J
AU Bach, HT
Claytor, TN
Hunter, JF
Olivas, ER
Kelsey, CT
Engle, JW
Connors, MA
Nortier, FM
Runde, WH
Moddrell, C
Lenz, JW
John, KD
AF Bach, H. T.
Claytor, T. N.
Hunter, J. F.
Olivas, E. R.
Kelsey, C. T.
Engle, J. W.
Connors, M. A.
Nortier, F. M.
Runde, W. H.
Moddrell, C.
Lenz, J. W.
John, K. D.
TI Improving the survivability of Nb-encapsulated Ga targets for the
production of Ge-68
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article
DE Ge-68; 100 MeV protons; Niobium encapsulated targets; Target failure
ID LIQUID-METAL EMBRITTLEMENT; VAPOR-PRESSURE; GALLIUM; INDIUM
AB At the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF), radioisotopes are produced for medical, scientific, and industrial applications by irradiating various targets with a 100 MeV, 230 mu A proton beam. The medical isotope germanium-68 is produced by irradiating Nb capsules containing molten Ga target material. During irradiation, the Nb is subjected to intense radiation damage, corrosive attack by Ga, and mechanical and thermally-induced stresses for an extended period. Maintaining the structural integrity of the Nb target capsules during irradiation is crucial to contain the molten Ga target and the radioisotope product. In the present work, we focus on potential material related factors and assess the effect of the Nb stock material on target durability. We do so by comparing post-irradiation target mortality information to data collected during pre-irradiation ultrasound testing and X-ray imaging. We also explore possible failure mechanisms by using MCNP6 simulations and ANSYS codes to predict the induced atom displacement levels, hydrogen gas built-up, temperature distribution, and mechanical stresses. Our analysis, performed entirely in the context of an aggressive production program that allows for only limited diagnostic interference, suggests that using Nb stock with reasonably large and uniform grains is the most important factor in reducing early target failure at integrated beam current values <18 mAh and random failure at the face of the rear window at <60 mAh. We discuss possible failure mechanisms of failed targets that were fabricated using the same stock material and grain structure and then irradiated to integrated beam current values of up to 60 mAh and more. Based on these observations, we have enacted new specifications for Nb stock material quality, target design, and limits on integrated beam current. These changes have resulted in improved Nb capsule survivability. Published by Elsevier B.V.
C1 [Bach, H. T.; Claytor, T. N.; Hunter, J. F.; Olivas, E. R.; Kelsey, C. T.; Engle, J. W.; Connors, M. A.; Nortier, F. M.; Runde, W. H.; John, K. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Moddrell, C.] Moddrell Mfg Mgmt LLC, Pasco, WA 99301 USA.
[Lenz, J. W.] Michigan St Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA.
RP Bach, HT (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM hbach@lanl.gov
RI Engle, Jonathan/D-7734-2012;
OI Engle, Jonathan W/0000-0002-3399-7228; John, Kevin/0000-0002-6181-9330
NR 20
TC 3
Z9 3
U1 1
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
J9 NUCL INSTRUM METH B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD MAR 15
PY 2013
VL 299
BP 32
EP 41
DI 10.1016/j.nimb.2013.01.035
PG 10
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 122MM
UT WOS:000317322200005
ER
PT J
AU Norman, TL
Shultz, T
Noble, G
Gruen, TA
Blaha, JD
AF Norman, T. L.
Shultz, T.
Noble, G.
Gruen, T. A.
Blaha, J. D.
TI Bone creep and short and long term subsidence after cemented stem total
hip arthroplasty (THA)
SO JOURNAL OF BIOMECHANICS
LA English
DT Article
DE Cemented total hip arthroplasty; Cortical bone creep; Bone cement creep;
Stem subsidence; Stem-cement interface failure
ID FEMORAL STEMS; ACRYLIC CEMENT; SURFACE FINISH; FOLLOW-UP; CORTICAL BONE;
REPLACEMENT; INTERFACE; COMPONENTS; PROSTHESIS; FAILURE
AB Stem-cement and cement-bone interfacial failures as well as cement fractures have been noted in cemented total hip arthroplasty (THA) as the cause of aseptic loosening. Attempts to reduce the risk of femoral component loosening include improving the stem-cement interface by various coatings, using a textured or porous coated stem surfaces or by using a tapered stem having a highly-polished surface. The latter approach, often referred to as "force-closed" femoral stem design, would theoretically result in stern stabilization subsequent to debonding and 'taper-lock'. Previous work using three-dimensional finite element analysis has shown a state of stress at the stem-cement interface indicative of 'taper-lock' for the debonded stem and indicated that stem-cement interface friction and bone cement creep played a significant role in the magnitudes of stresses and subsidence of the stem. However, the previous analysis did not include the viscoelastic properties of bone, which has been hypothesized to permit additional expansion of the bone canal and allow additional stem subsidence (Lu and McKellop, 1997). The goal of this study was to investigate the effect of bone viscoelastic behavior on stem subsidence using a 3D finite element analysis. It was hypothesized that the viscoelastic behavior of bone in the hoop direction would allow expansion of the bone reducing the constraint on bone over time and permit additional stem subsidence, which may account for the discrepancies between predicted and clinical subsidence measurements. Analyses were conducted using physiological loads, 'average peak loads' and 'high peak loads' for 'normal patient' and 'active patient' (Bergmann et al., 2010) from which short and long term subsidence was predicted. Results indicated that bone creep does contribute to higher stem subsidence initially and after 10 years of simulated loading. However, it was concluded that the "constraint" upon the cement mantle is not mitigated enough to result in stem subsidence equivalent to that observed clinically. (c) 2012 Elsevier Ltd. All rights reserved.
C1 [Norman, T. L.; Noble, G.] Cedarville Univ, Dept Engn & Comp Sci, Cedarville, OH 45314 USA.
[Shultz, T.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA.
[Blaha, J. D.] Univ Michigan, Dept Orthopaed Surg, Ann Arbor, MI 48109 USA.
RP Norman, TL (reprint author), Cedarville Univ, Dept Engn & Comp Sci, Cedarville, OH 45314 USA.
EM tnorman@cedarville.edu
NR 59
TC 2
Z9 5
U1 1
U2 21
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0021-9290
J9 J BIOMECH
JI J. Biomech.
PD MAR 15
PY 2013
VL 46
IS 5
BP 949
EP 955
DI 10.1016/j.jbiomech.2012.12.010
PG 7
WC Biophysics; Engineering, Biomedical
SC Biophysics; Engineering
GA 115RN
UT WOS:000316829700015
PM 23357700
ER
PT J
AU Urgun-Demirtas, M
Negri, MC
Gillenwater, PS
Nnanna, AGA
Yu, JS
AF Urgun-Demirtas, Meltem
Negri, M. Cristina
Gillenwater, Patricia S.
Nnanna, A. G. Agwu
Yu, Jinsong
TI Meeting world's most stringent Hg criterion: A pilot-study for the
treatment of oil refinery wastewater using an ultrafiltration membrane
process
SO JOURNAL OF ENVIRONMENTAL MANAGEMENT
LA English
DT Article
DE Mercury; Ultrafiltration; Pilot-scale membrane; Refinery wastewater;
Great Lakes Initiative
AB A membrane ultrafiltration (UF) technology was tested using an oil refinery's end-of-pipe effluent to demonstrate the proof of concept, i.e. can the Great Lakes Initiative criterion of less than 1.3 ppt be consistently met at the pilot-scale, and to provide the data necessary for preliminary full-scale process design.
This study presents the successful pilot test conducted with continuous but varying feed conditions over a protracted period. The UF membrane process consistently provided a constant permeate quality at all tested operating conditions, virtually independent of the feed water characteristics and the feed Hg concentration (0.5-22.7 ppt). The treatment target of less than 1.3 ppt of Hg was met and exceeded for all tested conditions during the pilot study. Turbidity measurements were <0.5 NTU (with a MDL of 0.5 NTU) 85% of the time and <0.16 NTU 95% of the time when analyzed on-line. The TMP values were below the specification of (negative) 7-12 psi at all tested conditions during the pilot-study. Weekly maintenance cleans and monthly clean in place (CIP) events were very effective in consistently restoring the membrane permeability during the pilot-study. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Urgun-Demirtas, Meltem; Negri, M. Cristina; Gillenwater, Patricia S.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Nnanna, A. G. Agwu; Yu, Jinsong] Purdue Univ Calumet, Water Inst, Hammond, IN 46323 USA.
RP Urgun-Demirtas, M (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM demirtasmu@anl.gov
FU Purdue University by BP Products North America Inc. [85V09]; University
of Chicago Argonne LLC.
FX This study was sponsored via Purdue University by BP Products North
America Inc. through Agreement No. 85V09 with the University of Chicago
Argonne LLC. Authors would like to thank GE Power & Water and BP for
their technical assistance during the pilot-study.
NR 12
TC 2
Z9 2
U1 2
U2 23
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0301-4797
EI 1095-8630
J9 J ENVIRON MANAGE
JI J. Environ. Manage.
PD MAR 15
PY 2013
VL 117
BP 65
EP 75
DI 10.1016/j.jenvman.2012.12.011
PG 11
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA 111JO
UT WOS:000316517800008
PM 23353879
ER
PT J
AU Lorite, I
Serrano, A
Schwartzberg, A
Bueno, J
Costa-Kramer, JL
AF Lorite, I.
Serrano, A.
Schwartzberg, A.
Bueno, J.
Costa-Kraemer, J. L.
TI Surface enhanced Raman spectroscopy by titanium nitride non-continuous
thin films
SO THIN SOLID FILMS
LA English
DT Article
DE Titanium nitride; Surface enhanced Raman spectroscopy; Thin films;
Sputtering
ID SINGLE MOLECULES; SCATTERING; SERS; MONOLAYERS; SILICON
AB Reactive ultra-high vacuum sputtering of titanium nitride (TiN) films on silicon substrates produces, under certain growth conditions, a non-continuous thin film with a distribution of holes that has an optical extinction coefficient comparable to that of gold nanostructures. The full Raman spectra, acquired on different points of the TiN thin film and in comparison to bare silicon substrates, show surface enhanced Raman spectroscopy (SERS) of 40%. TiN, due to the well-known chemical and physical stability in different harsh environments, opens different possibilities in the development of SERS active template. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Lorite, I.; Bueno, J.] CAB INTA CSIC, Ctr Astrobiol, Madrid 28850, Spain.
[Lorite, I.; Costa-Kraemer, J. L.] IMM CSIC, Inst Microelect, Madrid 28760, Spain.
[Serrano, A.] ICV CSIC, Inst Ceram & Vidrio, Madrid 28049, Spain.
[Schwartzberg, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Lorite, I (reprint author), CAB INTA CSIC, Ctr Astrobiol, Carretera Ajalvir Km 4, Madrid 28850, Spain.
EM lorite@physik.uni-leipzig.de
RI Costa Kramer, Jose/A-6333-2009; Serrano, Aida /F-4696-2016;
Microelectronica de Madrid, Instituto de/D-5173-2013
OI Costa Kramer, Jose/0000-0002-7664-2195; Serrano, Aida
/0000-0002-6162-0014; Microelectronica de Madrid, Instituto
de/0000-0003-4211-9045
FU CSIC program JAE-Doc/FSE; [AYA2008-06166-C03-02];
[AYA2010-21697-C05-01]
FX This work has been supported through grants AYA2008-06166-C03-02 and
AYA2010-21697-C05-01. Juan Bueno also acknowledges support through the
CSIC program JAE-Doc/FSE.
NR 22
TC 4
Z9 5
U1 5
U2 77
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD MAR 15
PY 2013
VL 531
BP 144
EP 146
DI 10.1016/j.tsf.2013.01.024
PG 3
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 113OR
UT WOS:000316677900021
ER
PT J
AU Prenzel, T
Mehner, A
Lucca, DA
Qi, Y
Harriman, TA
Mutlugunes, Y
Shojaee, SA
Wang, YQ
Williams, D
Nastasi, M
Zoch, HW
Swiderek, P
AF Prenzel, T.
Mehner, A.
Lucca, D. A.
Qi, Y.
Harriman, T. A.
Mutluguenes, Y.
Shojaee, S. A.
Wang, Y. Q.
Williams, D.
Nastasi, M.
Zoch, H. -W.
Swiderek, P.
TI Chemical and mechanical properties of silica hybrid films from NaOH
catalyzed sols for micromachining with diamond cutting tools
SO THIN SOLID FILMS
LA English
DT Article
DE Silica hybrid coatings; Micromachining; Nanoindentation; Raman
spectroscopy; Infrared spectroscopy; X-ray photoelectron spectroscopy;
Elastic recoil detection
ID RAY PHOTOELECTRON-SPECTROSCOPY; PRECISION OPTICAL MOLDS;
RAMAN-SPECTROSCOPY; GEL COATINGS; INFRARED-SPECTROSCOPY; CARBON-FILMS;
FORMATE; XPS; DENSIFICATION; IRRADIATION
AB Manufacturing of microstructured mold surfaces was realized by the micromachining of thick sol-gel silica hybrid coatings. The films were deposited onto pre-machined steel molds by spin coating using NaOH-catalyzed sols from organosilicate precursors. The effect of the sol synthesis and the heat treatment on the mechanical and chemical properties of these films was studied in order to develop thick and crack-free films with appropriate properties for micromachining with diamond cutting tools. The hardness was measured by nanoindentation as a function of the heat treatment temperature. The transition from soft organic gel films to hard glass-like films due to the thermal treatment was characterized by X-ray photoelectron spectroscopy, elastic recoil detection, and Raman and infrared spectroscopies. The films from NaOH catalyzed sols showed a complex transition from aliphatic carbon originating from hydrocarbon groups to carbonates, carboxylates and disordered carbon clusters. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Prenzel, T.; Mehner, A.; Zoch, H. -W.] Stiftung Inst Werkstofftech, D-28359 Bremen, Germany.
[Lucca, D. A.; Qi, Y.; Harriman, T. A.; Shojaee, S. A.] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA.
[Mutluguenes, Y.] Lab Mikrozerspanung LFM, D-28359 Bremen, Germany.
[Wang, Y. Q.; Williams, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Nastasi, M.] Univ Nebraska, Nebraska Ctr Energy Sci Res, Lincoln, NE 68583 USA.
[Swiderek, P.] Univ Bremen, Inst Appl & Phys Chem, D-28359 Bremen, Germany.
RP Prenzel, T (reprint author), Stiftung Inst Werkstofftech, Badgasteiner Str 3, D-28359 Bremen, Germany.
EM tprenzel@uni-bremen.de
OI Swiderek, Petra/0000-0002-4355-5546; Zoch,
Hans-Werner/0000-0002-4347-4746
FU Deutsche Forschungsgemeinschaft (DFG) [SFB/TR4]; National Science
Foundation [OISE-0352377, OISE-0128050]
FX This work is part of the Transregional Collaborative Research Centre
SFB/TR4 "Process Chains for the Replication of Complex Optical
Elements". The support of the Deutsche Forschungsgemeinschaft (DFG)
through the SFB/TR4 and the National Science Foundation through Grant
nos. OISE-0352377 and OISE-0128050 is gratefully acknowledged. This work
was performed, in part, at the Center for Integrated Nanotechnologies, a
US Department of Energy, Office of Basic Energy Sciences, Nanoscale
Science Research Center operated jointly by Los Alamos and Sandia
National Laboratories.
NR 46
TC 0
Z9 0
U1 2
U2 24
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD MAR 15
PY 2013
VL 531
BP 208
EP 216
DI 10.1016/j.tsf.2013.01.095
PG 9
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 113OR
UT WOS:000316677900031
ER
PT J
AU Wang, GC
Zhang, LH
Kisslinger, K
Gaire, C
Goyal, A
Bhat, I
Lu, TM
AF Wang, G. -C.
Zhang, L. H.
Kisslinger, Kim
Gaire, C.
Goyal, A.
Bhat, I.
Lu, T. -M.
TI Orientational domains in metalorganic chemical vapor deposited CdTe(111)
film on cube-textured Ni
SO THIN SOLID FILMS
LA English
DT Article
DE Epitaxy; Orientational domains; Cadmium telluride film; Cube-textured
nickel sheet; Metal organic chemical vapor deposition; Transmission
electron diffraction; Lattice imaging; Out-of-plane misalignment
ID MOLECULAR-BEAM EPITAXY; MISORIENTED SI(001); CARRIER MOBILITY; CRYSTAL
SILICON; THIN-FILMS; CDTE; SPECTROSCOPY; REDUCTION; HYDROGEN; MBE
AB CdTe thin film was grown by metal organic chemical vapor deposition on cube-textured Ni substrate. The microstructures of the CdTe film and Ni substrate were studied using transmission electron microscopy (TEM) lattice imaging in cross sectional. The orientational relationships of multiple hetereoepitaxial domains in the CdTe film were examined by TEM diffraction. The observed epitaxy is [111](CdTe)//[001](Ni). The adjacent domains in CdTe film have a 30 degrees rotation with respect to each other as inferred by the observed different diffraction patterns obtained from different zone axes. The high resolution lattice imaging shows that lamellar twins dominate within each domain. Our results are compared with CdTe(111) film epitaxially grown on Si(001) substrate by molecular beam epitaxy reported in the literature. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Wang, G. -C.; Gaire, C.; Lu, T. -M.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA.
[Zhang, L. H.; Kisslinger, Kim] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Bhat, I.] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA.
[Goyal, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Wang, GC (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA.
EM wangg@rpi.edu
RI Kisslinger, Kim/F-4485-2014; Zhang, Lihua/F-4502-2014
FU NSF [DMR-1104786]; Rensselaer; U.S. Department of Energy, Office of
Basic Energy Sciences [DE-AC02-98CH10886]
FX This work is supported by NSF DMR-1104786 and Rensselaer. We thank Sunil
Rao and Liang Chen for film growth and discussions. We also thank Dr.
T.S. Kuan for the valuable discussions on the TEM diffraction patterns.
TEM study was carried out in whole at the Center for Functional
Nanomaterials, Brookhaven National Laboratory, which is supported by the
U.S. Department of Energy, Office of Basic Energy Sciences, under
contract no. DE-AC02-98CH10886.
NR 29
TC 3
Z9 3
U1 0
U2 26
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD MAR 15
PY 2013
VL 531
BP 217
EP 221
DI 10.1016/j.tsf.2013.01.082
PG 5
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 113OR
UT WOS:000316677900032
ER
PT J
AU Oehmen, CS
Baxter, DJ
AF Oehmen, Christopher S.
Baxter, Douglas J.
TI ScalaBLAST 2.0: rapid and robust BLAST calculations on multiprocessor
systems
SO BIOINFORMATICS
LA English
DT Article
AB BLAST remains one of the most widely used tools in computational biology. The rate at which new sequence data is available continues to grow exponentially, driving the emergence of new fields of biological research. At the same time, multicore systems and conventional clusters are more accessible. ScalaBLAST has been designed to run on conventional multiprocessor systems with an eye to extreme parallelism, enabling parallel BLAST calculations using 416 000 processing cores with a portable, robust, fault-resilient design that introduces little to no overhead with respect to serial BLAST.
Availability: ScalaBLAST 2.0 source code can be freely downloaded from http://omics.pnl.gov/software/ScalaBLAST.php.
Contact: christopher.oehmen@pnl.gov
C1 [Oehmen, Christopher S.; Baxter, Douglas J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Oehmen, CS (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM christopher.oehmen@pnl.gov
FU Signature Discovery Initiative Laboratory Directed Research and
Development program at Pacific Northwest National Laboratory (PNNL);
EMSL; U.S. Department of Energy [DE-AC05-76RL01830]; Department of
Energy's Office of Biological and Environmental Research
FX A portion of the research was performed using the W. R. Wiley
Environmental Molecular Science Laboratory (EMSL), a national scientific
user facility sponsored by the Department of Energy's Office of
Biological and Environmental Research and located at Pacific Northwest
National Laboratory.; This work was supported through the Signature
Discovery Initiative Laboratory Directed Research and Development
program at Pacific Northwest National Laboratory (PNNL) and by EMSL.
PNNL is operated by Battelle Memorial Institute for the U.S. Department
of Energy under contract DE-AC05-76RL01830.
NR 3
TC 11
Z9 12
U1 0
U2 5
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1367-4803
J9 BIOINFORMATICS
JI Bioinformatics
PD MAR 15
PY 2013
VL 29
IS 6
BP 797
EP 798
DI 10.1093/bioinformatics/btt013
PG 2
WC Biochemical Research Methods; Biotechnology & Applied Microbiology;
Computer Science, Interdisciplinary Applications; Mathematical &
Computational Biology; Statistics & Probability
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Computer Science; Mathematical & Computational Biology; Mathematics
GA 108DA
UT WOS:000316270400019
PM 23361326
ER
PT J
AU Nguyen, DH
Fredlund, E
Zhao, W
Perou, CM
Balmain, A
Mao, JH
Barcellos-Hoff, MH
AF Nguyen, David H.
Fredlund, Erik
Zhao, Wei
Perou, Charles M.
Balmain, Allan
Mao, Jian-Hua
Barcellos-Hoff, Mary Helen
TI Murine Microenvironment Metaprofiles Associate with Human Cancer
Etiology and Intrinsic Subtypes
SO CLINICAL CANCER RESEARCH
LA English
DT Article
ID HUMAN BREAST-TUMORS; GENE-EXPRESSION SIGNATURES; MOLECULAR PORTRAITS;
EPITHELIAL-CELLS; SUPPRESSOR GENE; THYROID CANCERS; RADIATION;
CARCINOMAS; P53; CARCINOGENESIS
AB Purpose: Ionizing radiation is a well-established carcinogen in rodent models and a risk factor associated with human cancer. We developed a mouse model that captures radiation effects on host biology by transplanting unirradiated Trp53-null mammary tissue to sham or irradiated hosts. Gene expression profiles of tumors that arose in irradiated mice are distinct from those that arose in naive hosts. We asked whether expression metaprofiles could discern radiation-preceded human cancer or be informative in sporadic breast cancers.
Experimental Design: Affymetrix microarray gene expression data from 56 Trp53-null mammary tumors were used to define gene profiles and a centroid that discriminates tumors arising in irradiated hosts. These were applied to publicly available human cancer datasets.
Results: Host irradiation induces a metaprofile consisting of gene modules representing stem cells, cell motility, macrophages, and autophagy. Human orthologs of the host irradiation metaprofile discriminated between radiation-preceded and sporadic human thyroid cancers. An irradiated host centroid was strongly associated with estrogen receptor-negative breast cancer. When applied to sporadic human breast cancers, the irradiated host metaprofile strongly associated with basal-like and claudin-low breast cancer intrinsic subtypes. Comparing host irradiation in the context of TGF-beta levels showed that inflammation was robustly associated with claudin-low tumors.
Conclusions: Detection of radiation-preceded human cancer by the irradiated host metaprofile raises possibilities of assessing human cancer etiology. Moreover, the association of the irradiated host metaprofiles with estrogen receptor-negative status and claudin-low subtype suggests that host processes similar to those induced by radiation underlie sporadic cancers. Clin Cancer Res; 19(6); 1353-62. (C) 2013 AACR.
C1 [Nguyen, David H.; Barcellos-Hoff, Mary Helen] NYU, Sch Med, Dept Radiat Oncol, New York, NY 10016 USA.
[Fredlund, Erik; Balmain, Allan] Univ Calif San Francisco, Inst Canc, San Francisco, CA 94143 USA.
[Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Zhao, Wei; Perou, Charles M.] Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC USA.
RP Barcellos-Hoff, MH (reprint author), NYU, Sch Med, Dept Radiat Oncol, 566 1st Ave, New York, NY 10016 USA.
EM mhbarcellos-hoff@nyumc.org
OI Perou, Charles/0000-0001-9827-2247
FU NASA Specialized Center for Research in Radiation Health Effects
[NNX09AM52G]; Department of Energy, Office of Biological and
Environmental Research program on Low-Dose Radiation; NCI Breast SPORE
program [P50-CA58223, RO1-CA138255, RO1-CA148761]; Breast Cancer
Research Foundation
FX This research was supported by funding from NASA Specialized Center for
Research in Radiation Health Effects, NNX09AM52G, and the Department of
Energy, Office of Biological and Environmental Research program on
Low-Dose Radiation. C.M. Perou and W. Zhao received support from the NCI
Breast SPORE program P50-CA58223, by RO1-CA138255 and RO1-CA148761, and
by the Breast Cancer Research Foundation.
NR 48
TC 11
Z9 12
U1 0
U2 2
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 1078-0432
EI 1557-3265
J9 CLIN CANCER RES
JI Clin. Cancer Res.
PD MAR 15
PY 2013
VL 19
IS 6
BP 1353
EP 1362
DI 10.1158/1078-0432.CCR-12-3554
PG 10
WC Oncology
SC Oncology
GA 107BE
UT WOS:000316188900008
PM 23339125
ER
PT J
AU Tang, H
Xiao, GH
Behrens, C
Schiller, J
Allen, J
Chow, CW
Suraokar, M
Corvalan, A
Mao, JH
White, MA
Wistuba, II
Minna, JD
Xie, Y
AF Tang, Hao
Xiao, Guanghua
Behrens, Carmen
Schiller, Joan
Allen, Jeffrey
Chow, Chi-Wan
Suraokar, Milind
Corvalan, Alejandro
Mao, Jianhua
White, Michael A.
Wistuba, Ignacio I.
Minna, John D.
Xie, Yang
TI A 12-Gene Set Predicts Survival Benefits from Adjuvant Chemotherapy in
Non-Small Cell Lung Cancer Patients
SO CLINICAL CANCER RESEARCH
LA English
DT Article
ID VINORELBINE PLUS CISPLATIN; GENE-EXPRESSION SIGNATURE; ADENOCARCINOMA;
VALIDATION; TRIAL; ASSOCIATION; PROGNOSIS; ERCC1
AB Purpose: Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non-small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC.
Experimental Design: An 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC.
Results: Using a cohort of 442 stage I to III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set that robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, and RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (n = 90 and 176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: HR = 0.34, P = 0.017; JBR. 10 clinical trial data: HR = 0.36, P = 0.038), whereas the predicted nonbenefit group showed no survival benefit for 2 datasets (HR = 0.80, P = 0.70; HR = 0.91, P = 0.82).
Conclusions: This is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non-small cell lung cancer will have a survival benefit with ACT. Clin Cancer Res; 19(6); 1577-86. (C)2013 AACR.
C1 [Tang, Hao; Xiao, Guanghua; Allen, Jeffrey; Xie, Yang] Univ Texas SW Med Ctr Dallas, Quantitat Biomed Res Ctr, Dallas, TX 75390 USA.
[Tang, Hao; Xiao, Guanghua; Allen, Jeffrey; Xie, Yang] Univ Texas SW Med Ctr Dallas, Dept Clin Sci, Dallas, TX 75390 USA.
[Schiller, Joan; White, Michael A.; Xie, Yang] Univ Texas SW Med Ctr Dallas, Simmons Canc Ctr, Dallas, TX 75390 USA.
[Schiller, Joan; Minna, John D.] Univ Texas SW Med Ctr Dallas, Dept Internal Med, Dallas, TX 75390 USA.
[White, Michael A.] Univ Texas SW Med Ctr Dallas, Dept Cell Biol, Dallas, TX 75390 USA.
[Minna, John D.] Univ Texas SW Med Ctr Dallas, Dept Pharmacol, Dallas, TX 75390 USA.
[Minna, John D.] Univ Texas SW Med Ctr Dallas, Hamon Ctr Therapeut Oncol, Dallas, TX 75390 USA.
[Behrens, Carmen; Chow, Chi-Wan; Suraokar, Milind; Wistuba, Ignacio I.] Univ Texas MD Anderson Canc Ctr, Dept Thoracic Head & Neck Med Oncol, Houston, TX 77030 USA.
[Corvalan, Alejandro; Wistuba, Ignacio I.] Univ Texas MD Anderson Canc Ctr, Dept Pathol, Houston, TX 77030 USA.
[Mao, Jianhua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
RP Xie, Y (reprint author), Univ Texas SW Med Ctr Dallas, Dept Clin Sci, Quantitat Biomed Res Ctr, Harold C Simmons Comprehens Canc Ctr, Dallas, TX 75390 USA.
EM Yang.Xie@UTSouthwestern.edu
RI Tang, Hao /J-5069-2013
FU NIH [5R01CA152301]; University of Texas SPORE in Lung Cancer
[P50CA70907, P30CA142543, 4R33DA027592]; NSF [DMS-0907562]; NASA
[NNJ05HD36G]; DoD PROSPECT [W81XWH-07-1-0306]; Welch grant Welch
Foundation [I-1414]; CPRIT [RP101251]
FX This work was supported by NIH grants 5R01CA152301 (to H. Tang, Y. Xie,
and I. I. Wistuba), University of Texas SPORE in Lung Cancer (P50CA70907
to J.D. Minna, Y. Xie, and I. I. Wistuba), P30CA142543 (to Y. Xie),
4R33DA027592 (to G. Xiao), NSF grant DMS-0907562 (to G. Xiao), NASA
grant NNJ05HD36G (to Y. Xie), DoD PROSPECT W81XWH-07-1-0306 (to I. I.
Wistuba and J. D. Minna), Welch grant Welch Foundation I-1414 (to M. A.
White), and CPRIT RP101251 (to Y. Xie).
NR 45
TC 59
Z9 59
U1 0
U2 10
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 1078-0432
J9 CLIN CANCER RES
JI Clin. Cancer Res.
PD MAR 15
PY 2013
VL 19
IS 6
BP 1577
EP 1586
DI 10.1158/1078-0432.CCR-12-2321
PG 10
WC Oncology
SC Oncology
GA 107BE
UT WOS:000316188900029
PM 23357979
ER
PT J
AU Kearney, SP
Scoglietti, DJ
AF Kearney, Sean P.
Scoglietti, Daniel J.
TI Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman
scattering at flame temperatures using a second-harmonic
bandwidth-compressed probe
SO OPTICS LETTERS
LA English
DT Article
ID GAS-PHASE THERMOMETRY; SHOT; CARS
AB We demonstrate an approach for picosecond probe-beam generation that enables hybrid femtosecond/picosecond pure-rotational coherent anti-Stokes Raman scattering (CARS) measurements in flames. Sum-frequency generation of bandwidth-compressed picosecond radiation from femtosecond pumps with phase-conjugate chirps provides probe pulses with energies in excess of 1 mJ that are temporally locked to the femtosecond pump/Stokes preparation. This method overcomes previous limitations on hybrid femtosecond/picosecond rotational CARS techniques, which have relied upon less efficient bandwidth-reduction processes that have generally resulted in prohibitively low probe energy for flame measurements. We provide the details of the second-harmonic approach and demonstrate the technique in near-adiabatic hydrogen/air flames. (C) 2013 Optical Society of America
C1 [Kearney, Sean P.; Scoglietti, Daniel J.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA.
RP Kearney, SP (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA.
EM spkearn@sandia.gov
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX The authors thank Mike Herrick of Spectra Physics and Chris Kliewer and
Alexis Bohlin of Sandia for useful technical exchanges. Sandia is a
multiprogram laboratory operated by Sandia Corporation, a
Lockheed-Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under Contract
DE-AC04-94AL85000.
NR 16
TC 17
Z9 17
U1 4
U2 39
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
J9 OPT LETT
JI Opt. Lett.
PD MAR 15
PY 2013
VL 38
IS 6
BP 833
EP 835
PG 3
WC Optics
SC Optics
GA 111SK
UT WOS:000316540800009
PM 23503231
ER
PT J
AU Fan, YC
Wei, ZY
Li, HQ
Chen, H
Soukoulis, CM
AF Fan, Yuancheng
Wei, Zeyong
Li, Hongqiang
Chen, Hong
Soukoulis, Costas M.
TI Low-loss and high-Q planar metamaterial with toroidal moment
SO PHYSICAL REVIEW B
LA English
DT Article
ID NANOSTRUCTURES; PHYSICS; INDEX
AB We experimentally observe toroidal dipolar response in a planar metamaterial comprised of asymmetric split-ring resonators (ASRRs) at microwave frequency. It is shown that a toroidal molecule can be constructed through rational arrangement of planar ASRRs as meta-atoms via manipulating structural symmetry and thus coupling of the meta-atoms. We find that the toroidal resonance provides a subwavelength-scale electromagnetic localization style, and that confining the electromagnetic field inside a dielectric medium with toroidal geometry is beneficial for low-loss metamaterials. The planar scheme of manipulating the coupling among the ASRRs may stimulate research in optical regions involving toroidal multipoles. The toroidal geometry together with the Fano resonance of ASRR-induced high-Q response will have enormous potential applications in enhancing light-matter interactions, e. g., for low-threshold lasing, low-power nonlinear processing, and sensitive biosensing. DOI: 10.1103/PhysRevB.87.115417
C1 [Fan, Yuancheng; Wei, Zeyong; Li, Hongqiang; Chen, Hong] Tongji Univ, Key Lab Adv Microstruct Mat MOE, Shanghai 200092, Peoples R China.
[Fan, Yuancheng; Wei, Zeyong; Li, Hongqiang; Chen, Hong] Tongji Univ, Dept Phys, Shanghai 200092, Peoples R China.
[Fan, Yuancheng; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Fan, Yuancheng; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Soukoulis, Costas M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece.
RP Fan, YC (reprint author), Tongji Univ, Key Lab Adv Microstruct Mat MOE, Shanghai 200092, Peoples R China.
EM boyle429@126.com; hqlee@tongji.edu.cn; soukoulis@ameslab.gov
RI Wei, Zeyong/H-6272-2011; Soukoulis, Costas/A-5295-2008;
OI Fan, Yuancheng/0000-0002-7919-4148
FU NSFC [11174221, 10974144]; CNKBRSF [2011CB922001]; National 863 Program
of China [2006AA03Z407]; NCET [07-0621]; STCSM; SHEDF [06SG24]; US
Department of Energy (Basic Energy Sciences, Division of Materials
Sciences and Engineering) [DE-AC02-07CH11358]; China Scholarship Council
[201206260055]
FX This work was supported by NSFC (Grants No. 11174221 and No. 10974144),
CNKBRSF (Grant No. 2011CB922001), the National 863 Program of China
(Grant No. 2006AA03Z407), NCET (Grant No. 07-0621), STCSM, and SHEDF
(Grant No. 06SG24). Work at Ames Laboratory was supported by the US
Department of Energy (Basic Energy Sciences, Division of Materials
Sciences and Engineering) under Contract No. DE-AC02-07CH11358. Y.F.
acknowledges financial support from the China Scholarship Council (No.
201206260055).
NR 41
TC 39
Z9 39
U1 6
U2 77
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 15
PY 2013
VL 87
IS 11
AR 115417
DI 10.1103/PhysRevB.87.115417
PG 5
WC Physics, Condensed Matter
SC Physics
GA 109PS
UT WOS:000316381100004
ER
PT J
AU Huffman, TJ
Xu, P
Qazilbash, MM
Walter, EJ
Krakauer, H
Wei, J
Cobden, DH
Bechtel, HA
Martin, MC
Carr, GL
Basov, DN
AF Huffman, T. J.
Xu, Peng
Qazilbash, M. M.
Walter, E. J.
Krakauer, H.
Wei, Jiang
Cobden, D. H.
Bechtel, H. A.
Martin, M. C.
Carr, G. L.
Basov, D. N.
TI Anisotropic infrared response of vanadium dioxide microcrystals
SO PHYSICAL REVIEW B
LA English
DT Article
ID METAL-INSULATOR TRANSITIONS; OPTICAL-PROPERTIES; PHASE-TRANSITIONS; BAND
THEORY; VO2; TEMPERATURE; NANOBEAMS; HUBBARD; DRIVEN
AB Vanadium dioxide (VO2) undergoes a phase transition at a temperature of 340 K between an insulating monoclinic M-1 phase and a conducting rutile phase. Accurate measurements of possible anisotropy of the electronic properties and phonon features of VO2 in the insulating monoclinic M-1 and metallic rutile phases are a prerequisite for understanding the phase transition in this correlated system. Recently, it has become possible to grow single domain untwinned VO2 microcrystals, which makes it possible to investigate the true anisotropy of VO2. We performed polarized transmission infrared micro-spectroscopy on these untwinned microcrystals in the spectral range between 200 cm(-1) and 6000 cm(-1) and have obtained the anisotropic phonon parameters and low frequency electronic properties in the insulating monoclinic M-1 and metallic rutile phases. We have also performed ab initio GGA+U total energy calculations of phonon frequencies for both phases. We find our measurements and calculations to be in good agreement. DOI: 10.1103/PhysRevB.87.115121
C1 [Huffman, T. J.; Xu, Peng; Qazilbash, M. M.; Walter, E. J.; Krakauer, H.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA.
[Wei, Jiang] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA.
[Cobden, D. H.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Bechtel, H. A.; Martin, M. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Carr, G. L.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
RP Qazilbash, MM (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA.
EM mum-taz@wm.edu
OI Krakauer, Henry/0000-0003-2517-0957
FU US Department of Energy [DE-AC02-98CH10886]; ONR [N000140910300,
N000141110563, N000140811235, N000141211042]; Jeffress Memorial Trust;
NSF DMR [1255156]
FX The National Synchrotron Light Source is supported by the US Department
of Energy under contract DE-AC02-98CH10886. D. N.B. acknowledges support
from the US Department of Energy. E.J.W. acknowledges support by ONR
grants N000140910300 and N000141110563. H. K. acknowledges support by
ONR grants N000140811235 and N000141211042. The work in M.M.Q.'s group
was partly supported by the Jeffress Memorial Trust and by a grant from
NSF DMR (1255156).
NR 49
TC 13
Z9 13
U1 4
U2 75
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 15
PY 2013
VL 87
IS 11
AR 115121
DI 10.1103/PhysRevB.87.115121
PG 7
WC Physics, Condensed Matter
SC Physics
GA 109PS
UT WOS:000316381100002
ER
PT J
AU Li, XD
Mullen, JT
Jin, ZH
Borysenko, KM
Nardelli, MB
Kim, KW
AF Li, Xiaodong
Mullen, Jeffrey T.
Jin, Zhenghe
Borysenko, Kostyantyn M.
Nardelli, M. Buongiorno
Kim, Ki Wook
TI Intrinsic electrical transport properties of monolayer silicene and MoS2
from first principles
SO PHYSICAL REVIEW B
LA English
DT Article
ID VALLEY POLARIZATION; TRANSISTORS; SCATTERING; CRYSTALS; MOBILITY
AB The electron-phonon interaction and related transport properties are investigated in monolayer silicene and MoS2 by using a density functional theory calculation combined with a full-band Monte Carlo analysis. In the case of silicene, the results illustrate that the out-of-plane acoustic phonon mode may play the dominant role unlike its close relative, graphene. The small energy of this phonon mode, originating from the weak sp(2) pi bonding between Si atoms, contributes to the high scattering rate and significant degradation in electron transport. In MoS2, the longitudinal acoustic phonons show the strongest interaction with electrons. The key factor in this material appears to be the Q valleys located between the Gamma and K points in the first Brillouin zone as they introduce additional intervalley scattering. The analysis also reveals the potential impact of extrinsic screening by other carriers and/or adjacent materials. Finally, the effective deformation potential constants are extracted for all relevant intrinsic electron-phonon scattering processes in both materials. DOI: 10.1103/PhysRevB.87.115418
C1 [Li, Xiaodong; Jin, Zhenghe; Kim, Ki Wook] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA.
[Mullen, Jeffrey T.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Borysenko, Kostyantyn M.] Texas So Univ, Dept Phys, Houston, TX 77004 USA.
[Nardelli, M. Buongiorno] Univ N Texas, Dept Phys, Denton, TX 76203 USA.
[Nardelli, M. Buongiorno] Univ N Texas, Dept Chem, Denton, TX 76203 USA.
[Nardelli, M. Buongiorno] Oak Ridge Natl Lab, CSMD, Oak Ridge, TN 37831 USA.
RP Li, XD (reprint author), N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA.
EM kwk@ncsu.edu
FU SRC/STARnet FAME; SRC/NRI SWAN; SRC CEMPI at the University of North
Texas [P14924]; Office of Basic Energy Sciences, U.S. DOE at Oak Ridge
National Lab [DE-AC05-00OR22725]; UT-Battelle, LLC
FX This work was supported, in part, by SRC/STARnet FAME, SRC/NRI SWAN, as
well as SRC CEMPI at the University of North Texas (Task ID P14924).
M.B.N. also wishes to acknowledge partial support from the Office of
Basic Energy Sciences, U.S. DOE at Oak Ridge National Lab under Contract
No. DE-AC05-00OR22725 with UT-Battelle, LLC. Calculations have been run
at NCCS-ORNL and the NCSU-HPC Initiative.
NR 40
TC 107
Z9 109
U1 13
U2 247
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 15
PY 2013
VL 87
IS 11
AR 115418
DI 10.1103/PhysRevB.87.115418
PG 9
WC Physics, Condensed Matter
SC Physics
GA 109PS
UT WOS:000316381100005
ER
PT J
AU Moriya, K
Schumacher, RA
Adhikari, KP
Adikaram, D
Aghasyan, M
Anderson, MD
Pereira, SA
Ball, J
Baltzell, NA
Battaglieri, M
Batourine, V
Bedlinskiy, I
Bellis, M
Biselli, AS
Bono, J
Boiarinov, S
Briscoe, WJ
Burkert, VD
Carman, DS
Celentano, A
Chandavar, S
Charles, G
Cole, PL
Collins, P
Crede, V
D'Angelo, A
Dashyan, N
De Sanctis, E
De Vita, R
Deur, A
Dey, B
Djalali, C
Doughty, D
Dupre, R
Egiyan, H
El Fassi, L
Eugenio, P
Fedotov, G
Fegan, S
Fersch, R
Fleming, JA
Gevorgyan, N
Gilfoyle, GP
Giovanetti, KL
Girod, FX
Goetz, JT
Gohn, W
Golovatch, E
Gothe, RW
Griffioen, KA
Guidal, M
Hafidi, K
Hakobyan, H
Hanretty, C
Harrison, N
Heddle, D
Hicks, K
Ho, D
Holtrop, M
Hyde, CE
Ilieva, Y
Ireland, DG
Ishkhanov, BS
Isupov, EL
Jo, HS
Keller, D
Khandaker, M
Khetarpal, P
Kim, A
Kim, W
Klein, A
Klein, FJ
Koirala, S
Kubarovsky, A
Kubarovsky, V
Kuleshov, SV
Kvaltine, ND
Livingston, K
Lu, HY
MacGregor, IJD
Markov, N
Mayer, M
McCracken, M
McKinnon, B
Mestayer, MD
Meyer, CA
Mirazita, M
Mineeva, T
Mokeev, V
Montgomery, RA
Munevar, E
Camacho, CM
Nadel-Turonski, P
Nasseripour, R
Nepali, CS
Niccolai, S
Niculescu, G
Niculescu, I
Osipenko, M
Ostrovidov, AI
Pappalardo, LL
Paremuzyan, R
Park, K
Park, S
Pasyuk, E
Phelps, E
Phillips, JJ
Pisano, S
Pivnyuk, N
Pogorelko, O
Pozdniakov, S
Price, JW
Procureur, S
Protopopescu, D
Rimal, D
Ripani, M
Ritchie, BG
Rosner, G
Rossi, P
Sabatie, F
Saini, MS
Salgado, C
Schott, D
Seder, E
Seraydaryan, H
Sharabian, YG
Smith, ES
Smith, GD
Sober, DI
Stepanyan, SS
Stepanyan, S
Stoler, P
Strakovsky, II
Strauch, S
Taiuti, M
Tang, W
Taylor, S
Taylor, CE
Tian, Y
Tkachenko, S
Torayev, B
Ungaro, M
Vernarsky, B
Vlassov, AV
Voskanyan, H
Voutier, E
Walford, NK
Watts, DP
Weygand, DP
Williams, M
Zachariou, N
Zana, L
Zhang, J
Zhao, ZW
Zonta, I
AF Moriya, K.
Schumacher, R. A.
Adhikari, K. P.
Adikaram, D.
Aghasyan, M.
Anderson, M. D.
Pereira, S. Anefalos
Ball, J.
Baltzell, N. A.
Battaglieri, M.
Batourine, V.
Bedlinskiy, I.
Bellis, M.
Biselli, A. S.
Bono, J.
Boiarinov, S.
Briscoe, W. J.
Burkert, V. D.
Carman, D. S.
Celentano, A.
Chandavar, S.
Charles, G.
Cole, P. L.
Collins, P.
Crede, V.
D'Angelo, A.
Dashyan, N.
De Sanctis, E.
De Vita, R.
Deur, A.
Dey, B.
Djalali, C.
Doughty, D.
Dupre, R.
Egiyan, H.
El Fassi, L.
Eugenio, P.
Fedotov, G.
Fegan, S.
Fersch, R.
Fleming, J. A.
Gevorgyan, N.
Gilfoyle, G. P.
Giovanetti, K. L.
Girod, F. X.
Goetz, J. T.
Gohn, W.
Golovatch, E.
Gothe, R. W.
Griffioen, K. A.
Guidal, M.
Hafidi, K.
Hakobyan, H.
Hanretty, C.
Harrison, N.
Heddle, D.
Hicks, K.
Ho, D.
Holtrop, M.
Hyde, C. E.
Ilieva, Y.
Ireland, D. G.
Ishkhanov, B. S.
Isupov, E. L.
Jo, H. S.
Keller, D.
Khandaker, M.
Khetarpal, P.
Kim, A.
Kim, W.
Klein, A.
Klein, F. J.
Koirala, S.
Kubarovsky, A.
Kubarovsky, V.
Kuleshov, S. V.
Kvaltine, N. D.
Livingston, K.
Lu, H. Y.
MacGregor, I. J. D.
Markov, N.
Mayer, M.
McCracken, M.
McKinnon, B.
Mestayer, M. D.
Meyer, C. A.
Mirazita, M.
Mineeva, T.
Mokeev, V.
Montgomery, R. A.
Munevar, E.
Camacho, C. Munoz
Nadel-Turonski, P.
Nasseripour, R.
Nepali, C. S.
Niccolai, S.
Niculescu, G.
Niculescu, I.
Osipenko, M.
Ostrovidov, A. I.
Pappalardo, L. L.
Paremuzyan, R.
Park, K.
Park, S.
Pasyuk, E.
Phelps, E.
Phillips, J. J.
Pisano, S.
Pivnyuk, N.
Pogorelko, O.
Pozdniakov, S.
Price, J. W.
Procureur, S.
Protopopescu, D.
Rimal, D.
Ripani, M.
Ritchie, B. G.
Rosner, G.
Rossi, P.
Sabatie, F.
Saini, M. S.
Salgado, C.
Schott, D.
Seder, E.
Seraydaryan, H.
Sharabian, Y. G.
Smith, E. S.
Smith, G. D.
Sober, D. I.
Stepanyan, S. S.
Stepanyan, S.
Stoler, P.
Strakovsky, I. I.
Strauch, S.
Taiuti, M.
Tang, W.
Taylor, S.
Taylor, C. E.
Tian, Ye
Tkachenko, S.
Torayev, B.
Ungaro, M.
Vernarsky, B.
Vlassov, A. V.
Voskanyan, H.
Voutier, E.
Walford, N. K.
Watts, D. P.
Weygand, D. P.
Williams, M.
Zachariou, N.
Zana, L.
Zhang, J.
Zhao, Z. W.
Zonta, I.
CA CLAS Collaboration
TI Measurement of the Sigma pi photoproduction line shapes near the
Lambda(1405)
SO PHYSICAL REVIEW C
LA English
DT Article
ID KAON-NUCLEON INTERACTIONS; CHIRAL DYNAMICS; QUARK-MODEL; BARYONS;
RESONANCES; STATES
AB The reaction gamma + p -> K+ + Sigma + pi was used to determine the invariant mass distributions or "line shapes" of the Sigma(+) pi-, Sigma - pi(+), and Sigma(0)pi(0) final states, from threshold at 1328 MeV/c(2) through the mass range of the Lambda(1405) and the Lambda(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95 < W < 2.85 GeV. The three mass distributions differ strongly in the vicinity of the I = 0 Lambda(1405), indicating the presence of substantial I = 1 strength in the reaction. Background contributions to the data from the Sigma(0)(1385) and from K*Sigma production were studied and shown to have negligible influence. To separate the isospin amplitudes, Breit-Wigner model fits were made that included channel-coupling distortions due to the N (K) over bar threshold. A best fit to all the data was obtained after including a phenomenological I = 1, J(P) = 1/2(-) amplitude with a centroid at 1394 +/- 20 MeV/c(2) and a second I = 1 amplitude at 1413 +/- 10 MeV/c(2). The centroid of the I = 0 Lambda(1405) strength was found at the Sigma pi threshold, with the observed shape determined largely by channel coupling, leading to an apparent overall peak near 1405 MeV/c(2).
C1 [Moriya, K.; Schumacher, R. A.; Bellis, M.; Biselli, A. S.; Dey, B.; Ho, D.; Lu, H. Y.; McCracken, M.; Meyer, C. A.; Vernarsky, B.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Baltzell, N. A.; El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA.
[Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90757 USA.
[Collins, P.; Klein, F. J.; Sober, D. I.; Walford, N. K.] Catholic Univ Amer, Washington, DC 20064 USA.
[Ball, J.; Charles, G.; Girod, F. X.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France.
[Doughty, D.; Fersch, R.; Heddle, D.] Christopher Newport Univ, Newport News, VA 23606 USA.
[Gohn, W.; Harrison, N.; Markov, N.; Mineeva, T.; Seder, E.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA.
[Fleming, J. A.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA.
[Bono, J.; Khetarpal, P.; Nasseripour, R.; Rimal, D.] Florida Int Univ, Miami, FL 33199 USA.
[Crede, V.; Eugenio, P.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA.
[Taiuti, M.] Univ Genoa, I-16146 Genoa, Italy.
[Briscoe, W. J.; Ilieva, Y.; Schott, D.; Strakovsky, I. I.; Strauch, S.] George Washington Univ, Washington, DC 20052 USA.
[Cole, P. L.; Taylor, C. E.] Idaho State Univ, Pocatello, ID 83209 USA.
[Pappalardo, L. L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy.
[Aghasyan, M.; Pereira, S. Anefalos; De Sanctis, E.; Mirazita, M.; Pisano, S.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Battaglieri, M.; Celentano, A.; De Vita, R.; Fegan, S.; Osipenko, M.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Dupre, R.; Guidal, M.; Jo, H. S.; Camacho, C. Munoz; Niccolai, S.; Paremuzyan, R.] Inst Phys Nucl ORSAY, Orsay, France.
[Bedlinskiy, I.; Kuleshov, S. V.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Vlassov, A. V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Giovanetti, K. L.; Nasseripour, R.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA.
[Batourine, V.; Kim, A.; Kim, W.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea.
[Voutier, E.] Univ Grenoble 1, CNRS, LPSC, IN2P3,INPG, Grenoble, France.
[Holtrop, M.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA.
[Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA.
[Chandavar, S.; Goetz, J. T.; Hicks, K.; Tang, W.] Ohio Univ, Athens, OH 45701 USA.
[Adhikari, K. P.; Adikaram, D.; Hyde, C. E.; Klein, A.; Koirala, S.; Mayer, M.; Nepali, C. S.; Seraydaryan, H.; Torayev, B.] Old Dominion Univ, Norfolk, VA 23529 USA.
[Kubarovsky, A.; Kubarovsky, V.; Stoler, P.; Ungaro, M.] Rensselaer Polytech Inst, Troy, NY 12180 USA.
[Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA.
[D'Angelo, A.; Zonta, I.] Univ Roma Tor Vergata, I-00133 Rome, Italy.
[Fedotov, G.; Golovatch, E.; Ishkhanov, B. S.; Isupov, E. L.; Kubarovsky, A.; Mokeev, V.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia.
[Baltzell, N. A.; Djalali, C.; Fedotov, G.; Gothe, R. W.; Ilieva, Y.; Phelps, E.; Strauch, S.; Tian, Ye; Zachariou, N.] Univ S Carolina, Columbia, SC 29208 USA.
[Batourine, V.; Boiarinov, S.; Burkert, V. D.; Carman, D. S.; Deur, A.; Doughty, D.; Egiyan, H.; Girod, F. X.; Heddle, D.; Kubarovsky, V.; Mestayer, M. D.; Mokeev, V.; Munevar, E.; Nadel-Turonski, P.; Park, K.; Pasyuk, E.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Taylor, S.; Ungaro, M.; Weygand, D. P.; Zhang, J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Hakobyan, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile.
[Anderson, M. D.; Ireland, D. G.; Livingston, K.; MacGregor, I. J. D.; McKinnon, B.; Montgomery, R. A.; Phillips, J. J.; Protopopescu, D.; Rosner, G.; Smith, G. D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Hanretty, C.; Keller, D.; Kvaltine, N. D.; Tkachenko, S.; Zhao, Z. W.] Univ Virginia, Charlottesville, VA 22901 USA.
[Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA.
[Dashyan, N.; Gevorgyan, N.; Hakobyan, H.; Voskanyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia.
RP Moriya, K (reprint author), Indiana Univ, Bloomington, IN 47405 USA.
EM schumacher@cmu.edu
RI Adikaram, D/H-7128-2016; Celentano, Andrea/J-6190-2012; MacGregor,
Ian/D-4072-2011; Kuleshov, Sergey/D-9940-2013; Schumacher,
Reinhard/K-6455-2013; Ishkhanov, Boris/E-1431-2012; Sabatie,
Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang,
Jixie/A-1461-2016; Adikaram, Dasuni/D-1539-2016; D'Angelo,
Annalisa/A-2439-2012; Ireland, David/E-8618-2010; Meyer,
Curtis/L-3488-2014; Lu, Haiyun/B-4083-2012; Charles, Gabriel/B-7573-2015
OI Celentano, Andrea/0000-0002-7104-2983; Kuleshov,
Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827;
Sabatie, Franck/0000-0001-7031-3975; Osipenko,
Mikhail/0000-0001-9618-3013; D'Angelo, Annalisa/0000-0003-3050-4907;
Ireland, David/0000-0001-7713-7011; Meyer, Curtis/0000-0001-7599-3973;
FU DOE [DE-FG02-87ER40315]; United States Department of Energy
[DE-AC05-84ER40150]; National Science Foundation; United Kingdom's
Science and Technology Facilities Council
FX We acknowledge the outstanding efforts of the staff of the Accelerator
and Physics Divisions at Jefferson Lab that made this experiment
possible. The work of the Medium Energy Physics group at Carnegie Mellon
University was supported by DOE Grant No. DE-FG02-87ER40315. The
Southeastern Universities Research Association (SURA) operated the
Thomas Jefferson National Accelerator Facility for the United States
Department of Energy under Contract No. DE-AC05-84ER40150. Further
support was provided by the National Science Foundation and the United
Kingdom's Science and Technology Facilities Council.
NR 50
TC 49
Z9 49
U1 0
U2 16
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD MAR 15
PY 2013
VL 87
IS 3
AR 035206
DI 10.1103/PhysRevC.87.035206
PG 24
WC Physics, Nuclear
SC Physics
GA 109RH
UT WOS:000316385700001
ER
PT J
AU Freitas, A
Schwaller, P
AF Freitas, A.
Schwaller, P.
TI Higgs CP properties from early LHC data
SO PHYSICAL REVIEW D
LA English
DT Article
ID BOSON; SPIN; DECAYS; PARITY
AB In this paper, we constrain CP violation in the Higgs sector using the measured signal strengths in the various Higgs search channels. To this end, we introduce a general parametrization for a resonance which is an admixture of a CP-even Higgs-like state and a CP-odd scalar. By performing a fit to the available data from the Tevatron and LHC experiments, one obtains constraints on the mixing angle and the couplings of the resonance to Standard Model fields. Depending on the couplings, sizable mixing angles are still compatible with the data, but small mixing is in general preferred by the fit. In particular, we find that a pure CP-odd state is disfavored by the current data at the 3 sigma level. Additionally, we consider a mixed fermiophobic resonance and a model with two degenerate mixed resonances and find that both scenarios can successfully fit the data within current errors. Finally, we estimate that the mixing angle can be constrained to alpha < 1: 1 (0.7) in the full 8 TeV (14 TeV) run of the LHC. DOI: 10.1103/PhysRevD.87.055014
C1 [Freitas, A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, Pittsburgh, PA 15260 USA.
[Schwaller, P.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Schwaller, P.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA.
RP Freitas, A (reprint author), Univ Pittsburgh, Dept Phys & Astron, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, Pittsburgh, PA 15260 USA.
FU National Science Foundation [PHY-1212635]; U.S. Department of Energy,
Division of High Energy Physics [DE-AC02-06CH11357, DE-FG02-12ER41811]
FX This project was supported in part by the National Science Foundation
under Grant No. PHY-1212635, and by the U.S. Department of Energy,
Division of High Energy Physics, under Contracts No. DE-AC02-06CH11357
and No. DE-FG02-12ER41811.
NR 53
TC 29
Z9 29
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD MAR 15
PY 2013
VL 87
IS 5
AR 055014
DI 10.1103/PhysRevD.87.055014
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 109RZ
UT WOS:000316387600004
ER
PT J
AU Alivisatos, AP
Chun, MY
Church, GM
Deisseroth, K
Donoghue, JP
Greenspan, RJ
McEuen, PL
Roukes, ML
Sejnowski, TJ
Weiss, PS
Yuste, R
AF Alivisatos, A. Paul
Chun, Miyoung
Church, George M.
Deisseroth, Karl
Donoghue, John P.
Greenspan, Ralph J.
McEuen, Paul L.
Roukes, Michael L.
Sejnowski, Terrence J.
Weiss, Paul S.
Yuste, Rafael
TI The Brain Activity Map
SO SCIENCE
LA English
DT Editorial Material
C1 [Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Chun, Miyoung] Kavli Fdn, Oxnard, CA 93030 USA.
[Church, George M.] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA.
[Church, George M.] Wyss Inst Biologically Inspired Engn, Boston, MA 02115 USA.
[Deisseroth, Karl] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA.
[Deisseroth, Karl] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA.
[Deisseroth, Karl] Stanford Univ, Dept Psychiat, Stanford, CA 94305 USA.
[Donoghue, John P.] Vet Affairs Med Ctr, Rehabil Res & Dev Serv, Providence, RI 02908 USA.
[Donoghue, John P.] Brown Univ, Dept Neurosci, Brown Inst Brain Sci, Providence, RI 02912 USA.
[Donoghue, John P.] Brown Univ, Sch Engn, Providence, RI 02912 USA.
[Greenspan, Ralph J.] Univ Calif San Diego, Kavli Inst Brain & Mind, La Jolla, CA 92093 USA.
[McEuen, Paul L.] Cornell Univ, Dept Phys, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14850 USA.
[Roukes, Michael L.] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA.
[Roukes, Michael L.] CALTECH, Dept Phys, Pasadena, CA 91125 USA.
[Roukes, Michael L.] CALTECH, Dept Appl Phys, Pasadena, CA 91125 USA.
[Roukes, Michael L.] CALTECH, Dept Bioengn, Pasadena, CA 91125 USA.
[Sejnowski, Terrence J.] Salk Inst Biol Studies, Computat Neurobiol Lab, HHMI, La Jolla, CA 92037 USA.
[Sejnowski, Terrence J.] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA.
[Weiss, Paul S.] Univ Calif Los Angeles, Dept Chem & Biochem, Calif NanoSyst Inst, Los Angeles, CA 90095 USA.
[Weiss, Paul S.] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA.
[Yuste, Rafael] Columbia Univ, Kavli Inst Brain Sci, Dept Biol Sci & Neurosci, HHMI, New York, NY 10027 USA.
RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM alivis@berkeley.edu; terry@salk.edu; rafaelyuste@columbia.edu
RI Weiss, Paul/A-2575-2011; Alivisatos , Paul /N-8863-2015
OI Weiss, Paul/0000-0001-5527-6248; Alivisatos , Paul /0000-0001-6895-9048
FU Howard Hughes Medical Institute; NEI NIH HHS [DP1 EY024503]; NIGMS NIH
HHS [DP1 GM105376]
NR 6
TC 83
Z9 87
U1 9
U2 163
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD MAR 15
PY 2013
VL 339
IS 6125
BP 1284
EP 1285
DI 10.1126/science.1236939
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 105GC
UT WOS:000316053400025
PM 23470729
ER
PT J
AU Parks, JM
Johs, A
Podar, M
Bridou, R
Hurt, RA
Smith, SD
Tomanicek, SJ
Qian, Y
Brown, SD
Brandt, CC
Palumbo, AV
Smith, JC
Wall, JD
Elias, DA
Liang, LY
AF Parks, Jerry M.
Johs, Alexander
Podar, Mircea
Bridou, Romain
Hurt, Richard A., Jr.
Smith, Steven D.
Tomanicek, Stephen J.
Qian, Yun
Brown, Steven D.
Brandt, Craig C.
Palumbo, Anthony V.
Smith, Jeremy C.
Wall, Judy D.
Elias, Dwayne A.
Liang, Liyuan
TI The Genetic Basis for Bacterial Mercury Methylation
SO SCIENCE
LA English
DT Article
ID DESULFOVIBRIO-DESULFURICANS LS; SULFATE-REDUCING BACTERIA; FRESH-WATER
SEDIMENTS; SP NOV.; CLOSTRIDIUM-THERMOACETICUM; PRINCIPAL METHYLATORS;
ANAEROBIC-BACTERIA; ACETYL-COENZYME; GEN. NOV.; METHYLTRANSFERASE
AB Methylmercury is a potent neurotoxin produced in natural environments from inorganic mercury by anaerobic bacteria. However, until now the genes and proteins involved have remained unidentified. Here, we report a two-gene cluster, hgcA and hgcB, required for mercury methylation by Desulfovibrio desulfuricans ND132 and Geobacter sulfurreducens PCA. In either bacterium, deletion of hgcA, hgcB, or both genes abolishes mercury methylation. The genes encode a putative corrinoid protein, HgcA, and a 2[4Fe-4S] ferredoxin, HgcB, consistent with roles as a methyl carrier and an electron donor required for corrinoid cofactor reduction, respectively. Among bacteria and archaea with sequenced genomes, gene orthologs are present in confirmed methylators but absent in nonmethylators, suggesting a common mercury methylation pathway in all methylating bacteria and archaea sequenced to date.
C1 [Parks, Jerry M.; Podar, Mircea; Hurt, Richard A., Jr.; Brown, Steven D.; Brandt, Craig C.; Palumbo, Anthony V.; Smith, Jeremy C.; Elias, Dwayne A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Johs, Alexander; Tomanicek, Stephen J.; Qian, Yun; Liang, Liyuan] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Podar, Mircea] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.
[Bridou, Romain; Smith, Steven D.; Wall, Judy D.] Univ Missouri, Div Biochem, Columbia, MO 65211 USA.
[Brown, Steven D.; Smith, Jeremy C.; Elias, Dwayne A.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA.
RP Elias, DA (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
EM eliasda@ornl.gov; liangl@ornl.gov
RI Palumbo, Anthony/A-4764-2011; Elias, Dwayne/B-5190-2011; Parks,
Jerry/B-7488-2009; Johs, Alexander/F-1229-2011; Liang,
Liyuan/O-7213-2014; Brown, Steven/A-6792-2011; smith, jeremy/B-7287-2012
OI Podar, Mircea/0000-0003-2776-0205; Palumbo, Anthony/0000-0002-1102-3975;
Elias, Dwayne/0000-0002-4469-6391; Parks, Jerry/0000-0002-3103-9333;
Johs, Alexander/0000-0003-0098-2254; Liang, Liyuan/0000-0003-1338-0324;
Brown, Steven/0000-0002-9281-3898; smith, jeremy/0000-0002-2978-3227
FU U.S. Department of Energy (DOE), Office of Science, Office of Biological
and Environmental Research, through the Mercury Scientific Focus Area
Program at Oak Ridge National Laboratory (ORNL); DOE [DE-AC05-00OR22725]
FX We thank S. Miller, C. Gilmour, and T. Barkay for helpful discussions,
and K. Rush, X. Yin, G. Christensen, and Q. Gui for experimental
assistance. Supported by the U.S. Department of Energy (DOE), Office of
Science, Office of Biological and Environmental Research, through the
Mercury Scientific Focus Area Program at Oak Ridge National Laboratory
(ORNL). ORNL is managed by UT Battelle, LLC, for DOE under contract
DE-AC05-00OR22725. All other data are available online in the
supplementary materials. Author contributions: J.M.P., A.J., R. B.,
J.C.S., A. V. P., D. A. E., S. D. B., M. P., J.D.W., and L. L. designed
the research. M. P., S. D. B., and C. C. B. performed the comparative
genomic analyses. A.J. and J.M.P. performed the bioinformatics and
biochemical interpretations. R. B., R. A. H., S. D. S., S.J.T., A.J.,
and Y.Q. performed the experiments. J.M.P., A.J., R. B., J.C.S., D. A.
E., J.D.W., and L.L. wrote the paper.
NR 31
TC 158
Z9 164
U1 36
U2 338
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD MAR 15
PY 2013
VL 339
IS 6125
BP 1332
EP 1335
DI 10.1126/science.1230667
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 105GC
UT WOS:000316053400041
PM 23393089
ER
PT J
AU Yu, YH
Li, Y
AF Yu, Yi-Hsiang
Li, Ye
TI Reynolds-Averaged Navier-Stokes simulation of the heave performance of a
two-body floating-point absorber wave energy system
SO COMPUTERS & FLUIDS
LA English
DT Article
DE Wave energy conversion; Heave; Computational Fluid Dynamics;
Reynolds-averaged Navier-Stokes equations; Point absorber; Power
take-off
ID OSCILLATING BODIES; CONVERTER; POWER; EXTRACTION; CONVERSION
AB This paper presents a recent numerical study conducted by researchers at the National Renewable Energy Laboratory on a point absorber wave energy conversion (WEC) system using a Reynolds-averaged Navier-Stokes (RANS)-based Computational Fluid Dynamics (CFD) method. The device we studied was a two-body floating-point absorber (FPA) that operates predominantly in heave and generates energy from the relative motion between the two bodies. We performed a series of numerical simulation to analyze the hydrodynamic response and the power absorption performance of the system in regular waves. Overall, it was successful to use the RANS method to model the complex hydrodynamics interaction of the FPA system. We demonstrated the significance of the nonlinear effects, including viscous damping and wave overtopping. The study showed that the nonlinear effects could significantly decrease the power output and the motion of the FPA system, particularly in larger waves. (C) 2012 Published by Elsevier Ltd.
C1 [Yu, Yi-Hsiang; Li, Ye] Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO 80401 USA.
RP Li, Y (reprint author), Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO 80401 USA.
EM ye.li@nrel.gov
FU U.S. Department of Energy
FX We would like to acknowledge the U.S. Department of Energy's Water Power
Program for supporting this work and RE Vision Consulting, LLC for
collaborating on the wave tank testing.
NR 26
TC 20
Z9 23
U1 5
U2 42
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0045-7930
J9 COMPUT FLUIDS
JI Comput. Fluids
PD MAR 15
PY 2013
VL 73
BP 104
EP 114
DI 10.1016/j.compfluid.2012.10.007
PG 11
WC Computer Science, Interdisciplinary Applications; Mechanics
SC Computer Science; Mechanics
GA 099GF
UT WOS:000315608800008
ER
PT J
AU Zhang, Y
Zuo, TT
Cheng, YQ
Liaw, PK
AF Zhang, Yong
Zuo, TingTing
Cheng, YongQiang
Liaw, Peter K.
TI High-entropy Alloys with High Saturation Magnetization, Electrical
Resistivity, and Malleability
SO SCIENTIFIC REPORTS
LA English
DT Article
ID BULK METALLIC GLASSES; MULTICOMPONENT ALLOYS; ULTRAHIGH STRENGTH;
SOLID-SOLUTION; MICROSTRUCTURE; ELEMENTS; PHASE; AL0.5COCRCUFENI;
BEHAVIORS
AB Soft magnetic materials (SMMs) find important applications in a number of areas. The diverse requirements for these applications are often demanding and challenging for the design and fabrication of SMMs. Here we report a new class of FeCoNi(AlSi)(x) (0 <= x <= 0.8 in molar ratio) SMMsbased on high-entropy alloys (HEAs). It is found that with the compositional and structural changes, the optimal balance of magnetic, electrical, and mechanical properties is achieved at x = 0.2, for which the combination of saturation magnetization (1.15 T), coercivity (1,400 A/m), electrical resistivity (69.5 mu Omega.cm), yield strength (342 MPa), and strain without fracture (50%) makes the alloy an excellent SMM. Ab initio calculations are used to explain the high magnetic saturation of the present HEAs and the effects of compositional structures on magnetic characteristics. The HEA-based SMMs point to new directions in both the application of HEAs and the search for novel SMMs.
C1 [Zhang, Yong; Zuo, TingTing] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China.
[Cheng, YongQiang] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
[Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Zhang, Y (reprint author), Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China.
EM drzhangy@ustb.edu.cn; pliaw@utk.edu
RI ZHANG, Yong/B-7928-2009; Cheng, Yongqiang/F-6567-2010
OI ZHANG, Yong/0000-0002-6355-9923;
FU Natural Science Foundation of China (NSFC) [50971019]; US National
Science Foundation [DMR-0909037, CMMI-0900271, CMMI-1100080]; Department
of Energy (DOE) Office of Nuclear Energy's Nuclear Energy University
Program (NEUP) [00119262]; DOE, Office of Fossil Energy, National Energy
Technology Laboratory [DE-FE-0008855]; Scientific User Facilities
Division, Office of Basic Energy Sciences, US Department of Energy;
National Science Foundation [OCI-1053575]
FX The authors would like to acknowledge the financial support by the
Natural Science Foundation of China (NSFC, No. 50971019). PKL
appreciates the support from the US National Science Foundation
(DMR-0909037, CMMI-0900271, and CMMI-1100080), the Department of Energy
(DOE) Office of Nuclear Energy's Nuclear Energy University Program
(NEUP) 00119262, and the DOE, Office of Fossil Energy, National Energy
Technology Laboratory (DE-FE-0008855) with Drs. C. V. Cooper, A. Ardell,
E.M. Taleff, R.O. Jensen, Jr., Lizhen Tan, V. Cedro, and S. Lesica as
program managers. YQC is supported by the Scientific User Facilities
Division, Office of Basic Energy Sciences, US Department of Energy. This
work used computational resources provided by the Center for Nanophase
Materials Sciences, Oak Ridge National Laboratory, and the Extreme
Science and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number OCI-1053575.
NR 48
TC 85
Z9 85
U1 23
U2 197
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD MAR 15
PY 2013
VL 3
AR 1455
DI 10.1038/srep01455
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 105XB
UT WOS:000316104900001
PM 23492734
ER
PT J
AU Gagnon, AC
Adkins, JF
Erez, J
Eiler, JM
Guan, YB
AF Gagnon, Alexander C.
Adkins, Jess F.
Erez, Jonathan
Eiler, John M.
Guan, Yunbin
TI Sr/Ca sensitivity to aragonite saturation state in cultured subsamples
from a single colony of coral: Mechanism of biomineralization during
ocean acidification
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID O-18 ISOTOPIC DISEQUILIBRIUM; LIGHT-ENHANCED CALCIFICATION; SEA-SURFACE
TEMPERATURE; SCLERACTINIAN CORAL; STYLOPHORA-PISTILLATA;
PLANKTONIC-FORAMINIFERA; DISSOCIATION-CONSTANTS; BIOLOGICAL CARBONATES;
HERMATYPIC CORALS; SEAWATER MEDIA
AB Using a new and rapid NanoSIMS-based method, we quantified the sensitivity of skeletal Sr/Ca in coral to the aragonite saturation state of seawater (Omega(SW)). Skeletal Sr/Ca is a common proxy for temperature while Omega(SW) is a parameter that varied in the past ocean and is predicted to change with continued ocean acidification. Five adult branches of the surface coral Stylophora pistillata were grown at different Omega(SW) from 2.7 to 4.9 (pH of 7.9-8.5) but at a constant temperature of 25 degrees C. Despite a large range of growth parameters and a twofold range in calcification rates, the average skeletal Sr/Ca of coral exposed to each condition are within 1.2% of each other (2 sigma std. dev. of the 5 means). Furthermore, the average skeletal Sr/Ca measured in this study agrees with the results of two previous coral culture experiments conducted at the same temperature but where Omega(SW) was not controlled. These results suggest that aragonite saturation has little or no influence on Sr/Ca paleothermometry over the range of Omega(SW) investigated. Combined with existing data for low Omega(SW) conditions, our results were used to elucidate the mechanisms controlling calcifying fluid acid-base chemistry during coral biomineralization. Assuming that coral drive precipitation through alkalinity pumping, our data suggest that this pumping occurs until the calcifying fluid reaches a target pH. Below a threshold Omega(SW) bounded by 1 < Omega(SW) < 2.4, however, coral do not pump enough alkalinity to reach the target pH and instead pump a maximal but finite amount of alkalinity. In this low Omega(SW) regime, calcifying fluid pH is expected to decrease with Omega(SW). The interplay between these two alkalinity pumping regimes and external seawater composition explain the full range of observed Sr/Ca sensitivity to Omega(SW) and suggest that surface coral may become increasingly sensitive to ocean acidification below a threshold Omega(SW) bounded by 1 < Omega(SW) < 2.4. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Gagnon, Alexander C.] CALTECH, Div Chem, Pasadena, CA 91125 USA.
[Adkins, Jess F.; Eiler, John M.; Guan, Yunbin] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Erez, Jonathan] Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel.
RP Gagnon, AC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM acgagnon@lbl.gov; jess@gps.caltech.edu; erez@vms.huji.ac.il;
eiler@gps.caltech.edu; yunbin@gps.caltech.edu
FU Gordon and Betty Moore Foundation
FX NanoSIMS analysis was conducted at the Caltech Center for Microanalysis
which is supported in part by the Gordon and Betty Moore Foundation. The
confocal laser-scanning microscope is housed and maintained by the
Caltech Biological Imaging Center. Will Berelson of USC made his lab
available for DIC analysis. Several technicians at Hebrew University,
Jerusalem assisted with alkalinity titrations. This manuscript benefited
from constructive suggestions by several anonymous reviewers as well as
the detailed comments and skillful handing of the editor.
NR 59
TC 11
Z9 11
U1 0
U2 76
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD MAR 15
PY 2013
VL 105
BP 240
EP 254
DI 10.1016/j.gca.2012.11.038
PG 15
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 093MA
UT WOS:000315194800015
ER
PT J
AU Liu, CX
Shang, JY
Kerisit, S
Zachara, JM
Zhu, WH
AF Liu, Chongxuan
Shang, Jianying
Kerisit, Sebastien
Zachara, John M.
Zhu, Weihuang
TI Scale-dependent rates of uranyl surface complexation reaction in
sediments
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID POROUS-MEDIA; WEATHERING RATES; HANFORD-SITE; DISSOLUTION RATES;
SILICATE MINERALS; VADOSE ZONE; ADSORPTION; TRANSPORT; MODEL;
URANIUM(VI)
AB Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results show that the grain-scale rate constant of U(VI) surface complexation was over 3-10 orders of magnitude smaller than the rate constant calculated using the molecular simulations. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed that the rate of coupled diffusion and molecular surface complexation reaction in the intragranular porous domains was slower than either individual process alone. The results provide important implications for developing models to scale geochemical/biogeochemical reactions. (C) 2013 Published by Elsevier Ltd.
C1 [Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien; Zachara, John M.; Zhu, Weihuang] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Zhu, Weihuang] Xian Univ Architecture & Technol, Xian 710055, Shaanxi, Peoples R China.
RP Liu, CX (reprint author), Pacific NW Natl Lab, POB 999,MSIN K8-96, Richland, WA 99354 USA.
EM chongxuan.liu@pnnl.gov
RI Shang, jianying/E-3787-2013; Liu, Chongxuan/C-5580-2009
OI Shang, jianying/0000-0002-2498-9699;
FU U.S. Department of Energy (DOE) Biological and Environmental Research
(BER) Division through the Subsurface Biogeochemical Research Program
(SBR) Science Focus Area (SFA) program at Pacific Northwest National
Laboratory (PNNL); DOE by Battelle Memorial Institute [DE-AC06-76RLO
1830]
FX This research was supported by the U.S. Department of Energy (DOE)
Biological and Environmental Research (BER) Division through the
Subsurface Biogeochemical Research Program (SBR) Science Focus Area
(SFA) program at Pacific Northwest National Laboratory (PNNL). PNNL is
operated for the DOE by Battelle Memorial Institute under contract
DE-AC06-76RLO 1830. We thank Associate Editor and three reviewers for
their careful reading and valuable comments and suggestions on the
manuscript.
NR 62
TC 24
Z9 24
U1 11
U2 95
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD MAR 15
PY 2013
VL 105
BP 326
EP 341
DI 10.1016/j.gca.2012.12.003
PG 16
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 093MA
UT WOS:000315194800019
ER
PT J
AU Dhuey, S
Peroz, C
Olynick, D
Calafiore, G
Cabrini, S
AF Dhuey, S.
Peroz, C.
Olynick, D.
Calafiore, G.
Cabrini, S.
TI Obtaining nanoimprint template gratings with 10 nm half-pitch by atomic
layer deposition enabled spacer double patterning
SO NANOTECHNOLOGY
LA English
DT Article
ID LITHOGRAPHY; RESOLUTION; PLASMA; AL2O3; PMMA
AB A strategy for fabricating nanoimprint templates with sub-10 nm line and 20 nm pitch gratings is demonstrated, by combining electron beam lithography and atomic layer deposition. This is achieved through pitch division using a spacer double-patterning technique. The nanostructures are then replicated using step-and-repeat ultra-violet assisted nanoimprint lithography.
C1 [Dhuey, S.; Olynick, D.; Calafiore, G.; Cabrini, S.] LBNL, Mol Foundry, Berkeley, CA 94702 USA.
[Peroz, C.] aBeam Technol, Castro Valley, CA 94546 USA.
RP Dhuey, S (reprint author), LBNL, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94702 USA.
EM sddhuey@lbl.gov
RI Foundry, Molecular/G-9968-2014
FU Office of Science, Office of Basic Energy Sciences, of the US Department
of Energy [DE-AC02-05CH11231]
FX We would like to thank B Harteneck and E Wood for their technical
support. Work at the Molecular Foundry was supported by the Office of
Science, Office of Basic Energy Sciences, of the US Department of Energy
under Contract No. DE-AC02-05CH11231.
NR 17
TC 6
Z9 6
U1 1
U2 44
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
J9 NANOTECHNOLOGY
JI Nanotechnology
PD MAR 15
PY 2013
VL 24
IS 10
AR 105303
DI 10.1088/0957-4484/24/10/105303
PG 5
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 095RT
UT WOS:000315352900007
PM 23416694
ER
PT J
AU Ford, AC
Shaughnessy, M
Wong, BM
Kane, AA
Kuznetsov, OV
Krafcik, KL
Billups, WE
Hauge, RH
Leonard, F
AF Ford, Alexandra C.
Shaughnessy, Michael
Wong, Bryan M.
Kane, Alexander A.
Kuznetsov, Oleksandr V.
Krafcik, Karen L.
Billups, W. Edward
Hauge, Robert H.
Leonard, Francois
TI Physical removal of metallic carbon nanotubes from nanotube network
devices using a thermal and fluidic process
SO NANOTECHNOLOGY
LA English
DT Article
ID FIELD-EFFECT TRANSISTORS; COVALENT FUNCTIONALIZATION; SIDEWALL
FUNCTIONALIZATION; SEPARATION; TRANSITION; GRAPHENE; ARRAYS; ROUTE
AB Electronic and optoelectronic devices based on thin films of carbon nanotubes are currently limited by the presence of metallic nanotubes. Here we present a novel approach based on nanotube alkyl functionalization to physically remove the metallic nanotubes from such network devices. The process relies on preferential thermal desorption of the alkyls from the semiconducting nanotubes and the subsequent dissolution and selective removal of the metallic nanotubes in chloroform. The approach is versatile and is applied to devices post-fabrication.
C1 [Ford, Alexandra C.; Shaughnessy, Michael; Wong, Bryan M.; Kane, Alexander A.; Krafcik, Karen L.; Leonard, Francois] Sandia Natl Labs, Livermore, CA 94551 USA.
[Kuznetsov, Oleksandr V.; Billups, W. Edward; Hauge, Robert H.] Rice Univ, Dept Chem, Houston, TX 77005 USA.
RP Ford, AC (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA.
EM fleonar@sandia.gov
RI Wong, Bryan/B-1663-2009; Hauge, Robert/A-7008-2011
OI Wong, Bryan/0000-0002-3477-8043; Hauge, Robert/0000-0002-3656-0152
FU US Department of Energy, Office of Science, through the National
Institute for NanoEngineering (NINE) at Sandia National Laboratories;
Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy [DE-AC04-94-AL85000]; Welch Foundation [C-0490];
Lockheed Martin Lancer program
FX This project is supported by the US Department of Energy, Office of
Science, through the National Institute for NanoEngineering (NINE) at
Sandia National Laboratories, a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE-AC04-94-AL85000. WEB is supported
by the Welch Foundation (C-0490). RHH acknowledges support from the
Lockheed Martin Lancer program.
NR 24
TC 3
Z9 3
U1 1
U2 30
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
J9 NANOTECHNOLOGY
JI Nanotechnology
PD MAR 15
PY 2013
VL 24
IS 10
AR 105202
DI 10.1088/0957-4484/24/10/105202
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 095RT
UT WOS:000315352900004
PM 23416509
ER
PT J
AU Aluie, H
AF Aluie, Hussein
TI Scale decomposition in compressible turbulence
SO PHYSICA D-NONLINEAR PHENOMENA
LA English
DT Article
DE Compressible turbulence; Scale decomposition; Inertial range; Favre
filtering
ID SUPERSONIC ISOTHERMAL TURBULENCE; ENERGY-DISSIPATION RATE; LARGE-EDDY
SIMULATION; INTERSTELLAR TURBULENCE; STATISTICS; DIFFUSION; FLUID; FLOWS
AB This work presents a rigorous framework based on coarse-graining to analyze highly compressible turbulence. We show how the requirement that viscous effects on the dynamics of large-scale momentum and kinetic energy be negligible an inviscid criterion naturally supports a density weighted coarse-graining of the velocity field. Such a coarse-graining method is already known in the literature as Favre filtering; however its use has been primarily motivated by appealing modeling properties rather than underlying physical considerations. We also prove that kinetic energy injection can be localized to the largest scales by proper stirring, and argue that stirring with an external acceleration field rather than a body force would yield a longer inertial range in simulations. We then discuss the special case of buoyancy-driven flows subject to a spatially-uniform gravitational field. We conclude that a range of scales can exist over which the mean kinetic energy budget is dominated by inertial processes and is immune from contributions due to molecular viscosity and external stirring. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Aluie, Hussein] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Aluie, Hussein] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
RP Aluie, H (reprint author), CNLS, LANL, MS-B258, Los Alamos, NM 87545 USA.
EM hussein@jhu.edu
FU US Department of Energy at LANL [DE-AC52-06NA25396]; LANL/LDRD program
FX I thank G.L. Eyink for invaluable discussions and for suggesting the
idea of the proof in Proposition 5 instead of a more complicated proof
in an earlier version of the manuscript [42]. I also thank D. Livescu
for his input on compressible and variable-density flows, S.S. Girimaji
and S.K. Lele for helpful suggestions, and X. Asay-Davis for
constructive comments. I wish to acknowledge the useful suggestions of
two anonymous referees, and the encouragement of R. Ecke, S. Kurien, S.
Li, H. Li, and B. Wingate during this project. This research was
performed under the auspices of the US Department of Energy at LANL
under Contract No. DE-AC52-06NA25396 and supported by the LANL/LDRD
program.
NR 46
TC 19
Z9 19
U1 1
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-2789
EI 1872-8022
J9 PHYSICA D
JI Physica D
PD MAR 15
PY 2013
VL 247
IS 1
BP 54
EP 65
DI 10.1016/j.physd.2012.12.009
PG 12
WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical
SC Mathematics; Physics
GA 095HE
UT WOS:000315324500005
ER
PT J
AU Reedy, ED
AF Reedy, E. D., Jr.
TI Adhesion/atomistic friction surface interaction model with application
to interfacial fracture and nanofabrication
SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
LA English
DT Article
DE Interfacial fracture; Adhesion
ID SELF-ASSEMBLED MONOLAYERS; CONTACT MECHANICS; ADHESION; SOLIDS; SHEAR
AB A novel adhesion/atomistic friction (Ad/AF) surface interaction model has been developed for solid materials interacting through van der Waals dispersive forces. This model was motivated by friction force microscopy data that suggest that in at least some cases a pressure-independent interfacial shear strength can be used to describe molecular-level friction. The Ad/AF model has two elements. Adhesion is defined by a traction-separation relationship, where the key parameters are interfacial strength and the work of adhesion. The second element of the Ad/AF model defines the nature of interfacial shear stress in a way that is consistent with a pressure-independent interfacial shear strength. The model assumes friction acts only when the opposing materials are in contact. The Ad/AF model, which has been implemented within an explicit dynamics finite element code, has been applied to several problems where adhesion and atomistic friction are expected to play an important role. Illustrative results from interfacial fracture and nano-embossing simulations are presented. The fracture simulation shows that the Ad/AF surface interaction model generates a strongly mode-dependent effective interfacial toughness (i.e., depends on the relative level of the applied shear). The nano-embossing simulations indicate that even low levels of adhesion and atomistic friction can have a significant effect on nanofabrication processes. (C) 2012 Published by Elsevier Ltd.
C1 Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Reedy, ED (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM edreedy@sandia.gov
FU Laboratory Directed Research and Development Program at Sandia National
Laboratories; U.S. Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX This work was supported by the Laboratory Directed Research and
Development Program at Sandia National Laboratories. Sandia National
Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.
NR 29
TC 1
Z9 1
U1 2
U2 29
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0020-7683
J9 INT J SOLIDS STRUCT
JI Int. J. Solids Struct.
PD MAR 15
PY 2013
VL 50
IS 6
BP 937
EP 943
DI 10.1016/j.ijsolstr.2012.11.025
PG 7
WC Mechanics
SC Mechanics
GA 092RD
UT WOS:000315138800011
ER
PT J
AU Sambasivan, SK
Shashkov, MJ
Burton, DE
AF Sambasivan, Shiv Kumar
Shashkov, Mikhail J.
Burton, Donald E.
TI A cell-centered Lagrangian finite volume approach for computing
elasto-plastic response of solids in cylindrical axisymmetric geometries
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Lagrangian; Finite volume; Hypo-elastic; Elasto-plastic; Cell-centered;
Mimetic; Axisymmetric geometries; Material strength; Solid mechanics;
Hydrodynamics
ID GODUNOV-METHOD; HYDRODYNAMICS; SCHEME; PENETRATION; SIMULATION; IMPACT;
ENERGY; GRIDS; DISCRETIZATION; FORMULATION
AB A finite volume cell-centered Lagrangian formulation is presented for solving large deformation problems in cylindrical axisymmetric geometries. Since solid materials can sustain significant shear deformation, evolution equations for stress and strain fields are solved in addition to mass, momentum and energy conservation laws. The total strain-rate realized in the material is split into an elastic and plastic response. The elastic and plastic components in turn are modeled using hypo-elastic theory. In accordance with the hypo-elastic model, a predictor-corrector algorithm is employed for evolving the deviatoric component of the stress tensor. A trial elastic deviatoric stress state is obtained by integrating a rate equation, cast in the form of an objective (Jaumann) derivative, based on Hooke's law. The dilatational response of the material is modeled using an equation of state of the Mie-Gruneisen form. The plastic deformation is accounted for via an iterative radial return algorithm constructed from the J(2) von Mises yield condition. Several benchmark example problems with non-linear strain hardening and thermal softening yield models are presented. Extensive comparisons with representative Eulerian and Lagrangian hydrocodes in addition to analytical and experimental results are made to validate the current approach. Published by Elsevier Inc.
C1 [Sambasivan, Shiv Kumar] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Computat Phys Grp CCS 2, Los Alamos, NM 87545 USA.
[Shashkov, Mikhail J.; Burton, Donald E.] Los Alamos Natl Lab, X Computat Phys Grp XCP4, Los Alamos, NM 87545 USA.
RP Sambasivan, SK (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Computat Phys Grp CCS 2, Los Alamos, NM 87545 USA.
EM shiv@lanl.gov; shashkov@lanl.gov; burton@lanl.gov
FU US Department of Energy's National Nuclear Security Administration by
Los Alamos National Security, LLC, at Los Alamos National Laboratory
[DE-AC52-06NA25396]; US DOE NNSA's Advanced Simulation and Computing
(ASC) Program; US DOE Office of Science Advanced Scientific Computing
Research (ASCR) Program in Applied Mathematics Research; U.S. Department
of Energy through the LANL LDRD Program
FX This work was performed under the auspices of the US Department of
Energy's National Nuclear Security Administration by Los Alamos National
Security, LLC, at Los Alamos National Laboratory, under contract
DE-AC52-06NA25396. The authors gratefully acknowledge the partial
support of the US DOE NNSA's Advanced Simulation and Computing (ASC)
Program and the partial support of the US DOE Office of Science Advanced
Scientific Computing Research (ASCR) Program in Applied Mathematics
Research. One of the authors (Burton) gratefully acknowledges the
support of the U.S. Department of Energy through the LANL LDRD Program
for this work. Authors' wish to extend special thanks to T.C. Carney for
performing FLAG calculations presented in this work. Authors' also wish
to express their gratitude to M.A. Christon, R. Garimella, R. Loubere,
P.-H. Maire, S.R. Runnels and N.R. Morgan for numerous stimulating
discussions on these topics. Authors also wish to thank the anonymous
reviewers for their insightful suggestions.
NR 59
TC 3
Z9 3
U1 1
U2 13
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD MAR 15
PY 2013
VL 237
BP 251
EP 288
DI 10.1016/j.jcp.2012.11.044
PG 38
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 087ZA
UT WOS:000314802100015
ER
PT J
AU Wilson, AD
Stewart, FF
AF Wilson, Aaron D.
Stewart, Frederick F.
TI Deriving osmotic pressures of draw solutes used in osmotically driven
membrane processes
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE Osmotic pressure; Solution concentration; Draw solution; Forward
osmosis; Osmotically driven membrane process
ID INTERNAL CONCENTRATION POLARIZATION; AMMONIA-CARBON DIOXIDE; FLUX
BEHAVIOR; FEED SOLUTION; MASS-TRANSFER; CROSS-FLOW; OSMOSIS;
ELECTROLYTES
AB In osmotically driven membrane processes (ODMPs), such as forward osmosis (FO), the concentration of the draw solute and the related osmotic pressure play a critical role in mass transport and overall process performance. Search of the literature reveals that the concentration units used to describe draw solutes vary and the methods for deriving osmotic pressure from those concentrations are often unclear or not discussed. This paper recommends the use of molality and identifies the benefit of experimentally determined vant Hoff indices when calculating osmotic pressures.
C1 [Wilson, Aaron D.; Stewart, Frederick F.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Wilson, AD (reprint author), Idaho Natl Lab, POB 1625,MS 2208, Idaho Falls, ID 83415 USA.
EM aaron.wilson@inl.gov
RI Wilson, Aaron/C-4364-2008
OI Wilson, Aaron/0000-0001-5865-6537
NR 24
TC 26
Z9 26
U1 2
U2 80
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
J9 J MEMBRANE SCI
JI J. Membr. Sci.
PD MAR 15
PY 2013
VL 431
BP 205
EP 211
DI 10.1016/j.memsci.2012.12.042
PG 7
WC Engineering, Chemical; Polymer Science
SC Engineering; Polymer Science
GA 088WK
UT WOS:000314868300024
ER
PT J
AU Polat, BD
Sezgin, N
Keles, O
Kazmanli, K
Abouimrane, A
Amine, K
AF Polat, B. D.
Sezgin, N.
Keles, O.
Kazmanli, K.
Abouimrane, A.
Amine, K.
TI A nano-architectured porous electrode assembly of copper rich Cu6Sn5
thin film for rechargeable lithium batteries
SO JOURNAL OF ALLOYS AND COMPOUNDS
LA English
DT Article
DE Thin films; Vapor deposition; Nanostructured materials; Lithium ion
batteries
ID LI-ION BATTERIES; X-RAY-DIFFRACTION; ANODE MATERIALS; ELECTROCHEMICAL
PROPERTIES; ALLOY ANODES; TIN; PERFORMANCE; EVOLUTION; CARBON; OXIDE
AB Cu and Sn are codeposited on a copper substrate via electron beam evaporation deposition method to form a nano porous thin film anode. The galvanostatic charge-discharge results show that the nano porous Cu6.26Sn5 thin film performs 784 mAh g (1) as first discharge capacity. A capacity fade is observed during the first three cycles, this sharp capacity decay has disappeared and a progressive increase in the capacity is observed up to 40th cycles. Then, a steady state regime has begun and continued up to 60th cycles. The enhanced electrochemical properties of the nano porous, structured Cu-Sn composite thin film is attributed to its particular composition, morphology and structure. (C) 2012 Published by Elsevier B.V.
C1 [Polat, B. D.; Sezgin, N.; Keles, O.; Kazmanli, K.] Istanbul Tech Univ, Dept Met & Mat Engn, TR-34469 Istanbul, Turkey.
[Abouimrane, A.; Amine, K.] Argonne Natl Lab, Electrochem Technol Program, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Keles, O (reprint author), Istanbul Tech Univ, Dept Met & Mat Engn, TR-34469 Istanbul, Turkey.
EM ozgulkeles@itu.edu.tr
RI Amine, Khalil/K-9344-2013; Kazmanli, Kursat/O-2062-2013
FU Scientific and Technological Research Council of Turkey (TUBITAK)
[110M148]
FX This work is a part of the research project 110M148 approved by The
Scientific and Technological Research Council of Turkey (TUBITAK). The
research grant is gratefully acknowledged.
NR 37
TC 9
Z9 9
U1 4
U2 60
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-8388
J9 J ALLOY COMPD
JI J. Alloy. Compd.
PD MAR 15
PY 2013
VL 553
BP 204
EP 207
DI 10.1016/j.jallcom.2012.11.145
PG 4
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA 085UU
UT WOS:000314640600036
ER
PT J
AU Wang, XX
Ma, XL
Song, CS
Locke, DR
Siefert, S
Winans, RE
Mollmer, J
Lange, M
Moller, A
Glaser, R
AF Wang, Xiaoxing
Ma, Xiaoliang
Song, Chunshan
Locke, Darren R.
Siefert, Soenke
Winans, Randall E.
Moellmer, Jens
Lange, Marcus
Moeller, Andreas
Glaeser, Roger
TI Molecular basket sorbents polyethylenimine-SBA-15 for CO2 capture from
flue gas: Characterization and sorption properties
SO MICROPOROUS AND MESOPOROUS MATERIALS
LA English
DT Article
DE CO2 capture; Flue gas; Mesoporous molecular sieve; Molecular basket
sorbent; Polyethylenimine-SBA-15
ID CARBON-DIOXIDE CAPTURE; HIGH-PRESSURE ADSORPTION; METAL-ORGANIC
FRAMEWORK; MESOPOROUS SILICA; HIGH-CAPACITY; SIEVE MCM-41; ADSORBENT;
SEPARATION; SBA-15; HYDROGEN
AB A series of molecular basket sorbents consisting of SBA-15 loaded with different amounts of polyethylenimine (PEI) have been systematically studied, focusing on their characterization by small angle X-ray scattering (SAXS), N-2 physisorption, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) and their CO2 sorption properties. The meso-structure of SBA-15 was retained after PEI loading. When the PEI loading was no more than 50 wt.%, PEI was dispersed and filled inside the pore channels of SBA-15. Higher PEI loading resulted in a part of the loaded PEI coating on the external surface of the SBA-15 particles and thus caused the agglomeration. The effects of sorption temperature and PEI loading on the CO2 capacity of the PEI/SBA-15 sorbents were examined over a fixed-bed flow system using a model flue gas. The relationship between the sorption performance and the sorbent structure has been discussed. CO2 diffusion in the PEI bulk may play a crucial role for determining the CO2 sorption capacity and sorption/desorption rate at low temperature. With the increase of the sorption temperature, CO2 diffusion can be accelerated and more amine sites may be exposed and accessible for CO2 sorption. As a result, the sorption capacity increases. However, at further higher temperature, e.g., 100 degrees C, the sorption capacity decreases due to the dominant desorption. In addition, the sorption behavior of SBA-15 and PEI-50/SBA-15 at high CO2 pressures (up to 50 bars) has been studied. The results showed that CO2 sorption over PEI/SBA-15 occurs mainly via chemisorption even under pressurized conditions. (C) 2012 Elsevier Inc. All rights reserved.
C1 [Wang, Xiaoxing; Ma, Xiaoliang; Song, Chunshan] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA.
[Ma, Xiaoliang; Song, Chunshan] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA.
[Locke, Darren R.; Siefert, Soenke; Winans, Randall E.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA.
[Moellmer, Jens; Lange, Marcus; Moeller, Andreas; Glaeser, Roger] Inst Nichtklass Chem eV, Leipzig, Germany.
[Glaeser, Roger] Univ Leipzig, Inst Chem Technol, D-04103 Leipzig, Germany.
RP Wang, XX (reprint author), Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA.
EM xxwang@psu.edu; csong@psu.edu
RI Song, Chunshan/B-3524-2008; Wang, Xiaoxing/A-5365-2010
OI Song, Chunshan/0000-0003-2344-9911; Wang, Xiaoxing/0000-0002-1561-3016
FU US Department of Energy through National Energy Technology Laboratory;
US Office of Naval Research; US DOE [DE-AC02-06CH11357]
FX This study was supported in part by the US Department of Energy through
National Energy Technology Laboratory and the US Office of Naval
Research. Use of the Advanced Photon Source, an Office of Science User
Facility operated for the US Department of Energy (DOE) Office of
Science by Argonne National Laboratory, was supported by the US DOE
under Contract No. DE-AC02-06CH11357. The authors would like to thank
Dr. Byeongdu Lee for helpful discussions and assistance with coding SAXS
data analysis algorithms.
NR 53
TC 46
Z9 49
U1 5
U2 184
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1387-1811
J9 MICROPOR MESOPOR MAT
JI Microporous Mesoporous Mat.
PD MAR 15
PY 2013
VL 169
BP 103
EP 111
DI 10.1016/j.micromeso.2012.09.023
PG 9
WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology;
Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 082IF
UT WOS:000314384800015
ER
PT J
AU Zhang, X
Wang, HB
Yang, CM
Du, D
Lin, YH
AF Zhang, Xiao
Wang, Hongbo
Yang, Chunming
Du, Dan
Lin, Yuehe
TI Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles
and their application for immunoassay of biomarker of exposure to
organophosphorus pesticides
SO BIOSENSORS & BIOELECTRONICS
LA English
DT Article
DE Immunosensor; Biomarker; Organophosphate exposure; Fe3O4 at TiO2
nanoparticles
ID PHOSPHORYLATED ACETYLCHOLINESTERASE; NERVE AGENTS; ELECTROCHEMICAL
IMMUNOSENSOR; ENZYME-ACTIVITY; BUTYRYLCHOLINESTERASE; PHOSPHOPEPTIDES;
PLASMA; SENSOR
AB Novel Fe3O4 at TiO2 magnetic nanoparticles were prepared and developed for a new nanoparticle-based immunosensor for electrochemical quantification of organophosphorylated butyrylcholinesterase (BChE) in plasma, a specific biomarker of exposure to organophosphorus (OP) agents. The Fe3O4 at TiO2 nanoparticles were synthesized by hydrolysis of tetrabutyltitanate on the surface of Fe3O4 magnetic nanospheres, and characterized by attenuated total reflection Fourier-transform infrared spectra, transmission electron microscope and X-ray diffraction. The functional Fe3O4 at TiO2 nanoparticles were performed as capture antibody to selectively enrich phosphorylated moiety instead of phosphoserine antibody in the traditional sandwich immunoassays. The secondary recognition was performed by quantum dots (QDs)-tagged anti-BChE antibody (QDs-anti-BChE). With the help of a magnet, the resulting sandwich-like complex, Fe3O4 at TiO2/OP-BChE/QD5-anti-BChE, was easily isolated from sample solutions and the released cadmium ions were detected on a disposable screen-printed electrode (SPE). The binding affinities were investigated by both surface plasmon resonance (SPR) and square wave voltammetry (SWV). This method not only avoids the drawback of unavailability of commercial OP-specific antibody but also amplifies detection signal by QDs-tags together with easy separation of samples by magnetic forces. The proposed immunosensor yields a linear response over a broad OP-BChE concentrations range from 0.02 to 10 nM, with detection limit of 0.01 nM. Moreover, the disposable nanoparticle-based immunosensor has been validated with human plasma samples. It offers a new method for rapid, sensitive, selective and inexpensive screening/evaluating exposure to OP pesticides and nerve agents. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Zhang, Xiao; Du, Dan] Cent China Normal Univ, Key Lab Pesticide & Chem Biol, Minist Educ, Coll Chem, Wuhan 430079, Peoples R China.
[Wang, Hongbo; Yang, Chunming] Hunan Normal Univ, Coll Chem & Chem Engn, Changsha 410081, Hunan, Peoples R China.
[Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Du, D (reprint author), Cent China Normal Univ, Key Lab Pesticide & Chem Biol, Minist Educ, Coll Chem, Wuhan 430079, Peoples R China.
EM chunming@hunnu.edu.cn; dudan@mail.ccnu.edu.cn
RI Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012
OI Lin, Yuehe/0000-0003-3791-7587;
FU National Natural Science Foundation of China [21075047]; Special Fund
for Basic Scientific Research of Central Colleges [CCNU11C01002];
CounterACT Program; National Institutes of Health Office of the Director
(NIH OD); National Institute of Neurological Disorders and Stroke
(NINDS) [U01 NS058161]; US-DOE [DE-AC05-76RL01830]
FX This work was supported by the National Natural Science Foundation of
China (21075047) and the Special Fund for Basic Scientific Research of
Central Colleges (CCNU11C01002). Y. Lin acknowledges the financial
support by the CounterACT Program, National Institutes of Health Office
of the Director (NIH OD), and the National Institute of Neurological
Disorders and Stroke (NINDS), Grant Number U01 NS058161. The contents of
this publication are solely the responsibility of the authors and do not
necessarily represent the official views of the NIH. Pacific Northwest
National Laboratory is operated by Battelle for US-DOE under Contract
DE-AC05-76RL01830.
NR 29
TC 32
Z9 35
U1 11
U2 332
PU ELSEVIER ADVANCED TECHNOLOGY
PI OXFORD
PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,
OXFORD OX5 1GB, OXON, ENGLAND
SN 0956-5663
J9 BIOSENS BIOELECTRON
JI Biosens. Bioelectron.
PD MAR 15
PY 2013
VL 41
BP 669
EP 674
DI 10.1016/j.bios.2012.09.047
PG 6
WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical;
Electrochemistry; Nanoscience & Nanotechnology
SC Biophysics; Biotechnology & Applied Microbiology; Chemistry;
Electrochemistry; Science & Technology - Other Topics
GA 079SA
UT WOS:000314191300100
PM 23122753
ER
PT J
AU Xiang, CC
Li, M
Zhi, MJ
Manivannan, A
Wu, NQ
AF Xiang, Chengcheng
Li, Ming
Zhi, Mingjia
Manivannan, Ayyakkannu
Wu, Nianqiang
TI A reduced graphene oxide/Co3O4 composite for supercapacitor electrode
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Supercapacitor; Graphene; Co3O4; Composite; Energy storage
ID THIN-FILM ELECTRODES; HIGH-ENERGY; ASYMMETRIC SUPERCAPACITORS; ANODE
MATERIAL; HIGH-POWER; OXIDE; PERFORMANCE; NANOCOMPOSITES; DENSITY;
STORAGE
AB 20 nm sized Co3O4 nanoparticles are in-situ grown on the chemically reduced graphene oxide (rGO) sheets to form a rGO Co3O4 composite during hydrothermal processing. The rGO Co3O4 composite is employed as the pseudocapacitor electrode in the 2 M KOH aqueous electrolyte solution. The rGO Co3O4 composite electrode exhibits a specific capacitance of 472 F g(-1) at a scan rate of 2 mV s-1 in a two-electrode cell. 82.6% of capacitance is retained when the scan rate increases to 100 mV s(-1). The rGO Co3O4 composite electrode shows high rate capability and excellent long-term stability. It also exhibits high energy density at relatively high power density. The energy density reaches 39.0 Wh kg(-1) at a power density of 8.3 kW kg(-1). The super performance of the composite electrode is attributed to the synergistic effects of small size and good redox activity of the Co3O4 particles combined with high electronic conductivity of the rGO sheets. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Xiang, Chengcheng; Li, Ming; Zhi, Mingjia; Wu, Nianqiang] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA.
[Xiang, Chengcheng] W Virginia Univ, Dept Ind & Management Syst Engn, Morgantown, WV 26506 USA.
[Manivannan, Ayyakkannu] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA.
RP Wu, NQ (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA.
EM nick.wu@mail.wvu.edu
RI Zhi, Mingjia/A-6866-2010; Li, Ming/D-5108-2011; Wu,
Nianqiang/B-9798-2015
OI Zhi, Mingjia/0000-0002-4291-0809; Li, Ming/0000-0002-2289-0222; Wu,
Nianqiang/0000-0002-8888-2444
FU DOE/NETL [DE-FE0010467]; NSF [EPS 1003907]; West Virginia University
Research Corporation; West Virginia EPSCoR Office
FX This work was supported by the DOE/NETL (DE-FE0010467). The resource and
facilities used were partially supported by NSF (EPS 1003907) and the
West Virginia University Research Corporation and the West Virginia
EPSCoR Office. We are gracious to the use of WVU Shared Facility.
NR 40
TC 159
Z9 164
U1 42
U2 643
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
J9 J POWER SOURCES
JI J. Power Sources
PD MAR 15
PY 2013
VL 226
BP 65
EP 70
DI 10.1016/j.jpowsour.2012.10.064
PG 6
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 075YM
UT WOS:000313923200011
ER
PT J
AU Zhang, Y
Ma, C
Zhu, YM
Si, R
Cai, Y
Wang, JX
Adzic, RR
AF Zhang, Yu
Ma, Chao
Zhu, Yimei
Si, Rui
Cai, Yun
Wang, Jia X.
Adzic, Radoslav R.
TI Hollow core supported Pt monolayer catalysts for oxygen reduction
SO CATALYSIS TODAY
LA English
DT Article
DE Pt monolayer; Hollow nanoparticle; Oxygen reduction catalyst; Fuel cell;
Galvanic replacement; Kirkendall effect
ID FUEL-CELL CATHODES; ELECTROCATALYSTS; SURFACES; DIFFUSION;
NANOPARTICLES; REPLACEMENT; KIRKENDALL; DISSOLUTION; ADSORPTION;
STABILITY
AB We synthesized high-activity electrocatalysts for the oxygen reduction reaction comprising a Pt monolayer shell on compact hollow nanoparticles. Pulse electrodeposited Ni nanoparticles were replaced galvanically by Pd and Pd-Au ions to obtain corresponding hollow nanoparticles. Pt monolayer catalysts supported on such hollow cores exhibited total-metal mass activities ranging from 0.41 to 0.57 A mg(-1), doubling that of 0.25 A mg(-1) for Pt monolayer catalysts on solid Pd cores. We attribute this enhanced activity to the smooth surface morphology and hollow-induced lattice contraction, in addition to the mass-saving geometry of hollow particles. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Zhang, Yu; Si, Rui; Cai, Yun; Wang, Jia X.; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Ma, Chao; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Ma, Chao] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China.
RP Adzic, RR (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555,POB 5000, Upton, NY 11973 USA.
EM jia@bnl.gov; adzic@bnl.gov
RI Wang, Jia/B-6346-2011; cai, yun/G-2689-2013; Ma, Chao/J-4569-2015;
OI Zhang, Yu/0000-0002-0814-2965
FU U.S. Department of Energy, Divisions of Chemical and Material Sciences
[DE-AC02-98CH10886]
FX This work is supported by U.S. Department of Energy, Divisions of
Chemical and Material Sciences, under the Contract No.
DE-AC02-98CH10886.
NR 45
TC 45
Z9 45
U1 5
U2 299
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5861
J9 CATAL TODAY
JI Catal. Today
PD MAR 15
PY 2013
VL 202
BP 50
EP 54
DI 10.1016/j.cattod.2012.03.040
PG 5
WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 048UX
UT WOS:000311939800007
ER
PT J
AU Young, KC
Grace, MD
AF Young, Kevin C.
Grace, Matthew D.
TI Simulation of Stochastic Quantum Systems Using Polynomial Chaos
Expansions
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB We present an approach to the simulation of quantum systems driven by classical stochastic processes that is based on the polynomial chaos expansion, a well-known technique in the field of uncertainty quantification. The polynomial chaos technique represents the density matrix as an expansion in orthogonal polynomials over the principle components of the stochastic process and yields a sparsely coupled hierarchy of linear differential equations. We provide practical heuristics for truncating this expansion based on results from time-dependent perturbation theory and demonstrate, via an experimentally relevant one-qubit numerical example, that our technique can be significantly more computationally efficient than Monte Carlo simulation. DOI: 10.1103/PhysRevLett.110.110402
C1 [Young, Kevin C.; Grace, Matthew D.] Sandia Natl Labs, Dept Scalable & Secure Syst Res, Livermore, CA 94550 USA.
RP Young, KC (reprint author), Sandia Natl Labs, Dept Scalable & Secure Syst Res, Livermore, CA 94550 USA.
EM kyoung@sandia.gov; mgrace@sandia.gov
FU Laboratory Directed Research and Development Program at Sandia National
Laboratories; United States Department of Energy's National Nuclear
Security Administration [DE-AC04-94AL85000]
FX We gratefully acknowledge enlightening discussions with Constantin Brif,
Cosmin Safta, Maher Salloum, and Mohan Sarovar (SNL-CA). This work was
supported by the Laboratory Directed Research and Development Program at
Sandia National Laboratories. Sandia is a multiprogram laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the United States Department of
Energy's National Nuclear Security Administration under Contract No.
DE-AC04-94AL85000.
NR 20
TC 4
Z9 4
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 14
PY 2013
VL 110
IS 11
AR 110402
DI 10.1103/PhysRevLett.110.110402
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 109VI
UT WOS:000316396800001
PM 25166516
ER
PT J
AU May, RA
Smith, RS
Kay, BD
AF May, R. Alan
Smith, R. Scott
Kay, Bruce D.
TI The release of trapped gases from amorphous solid water films. II.
"Bottom-up" induced desorption pathways
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID REACTIVE BALLISTIC DEPOSITION; THERMAL-DESORPTION; INTERSTELLAR ICES;
MOLECULAR-BEAMS; 150 K; CRYSTALLIZATION; MORPHOLOGY; ADSORPTION;
POROSITY; COMETS
AB In this (Paper II) and the preceding companion paper (Paper I; R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104501 (2013)), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In Paper I, we focused on the low coverage regime where the release mechanism is controlled by crystallization-induced cracks formed in the ASW overlayer. In that regime, the results were largely independent of the particular gas underlayer. Here in Paper II, we focus on the high coverage regime where new desorption pathways become accessible prior to ASW crystallization. In contrast to the results for the low coverage regime (Paper I), the release mechanism is a function of the multilayer thickness and composition, displaying dramatically different behavior between Ar, Kr, Xe, CH4, N-2, O-2, and CO. Two primary desorption pathways are observed. The first occurs between 100 and 150 K and manifests itself as sharp, extremely narrow desorption peaks. Temperature programmed desorption is utilized to show that these abrupt desorption bursts are due to pressure induced structural failure of the ASW overlayer. The second pathway occurs at low temperature (typically <100 K) where broad desorption peaks are observed. Desorption through this pathway is attributed to diffusion through pores formed during ASW deposition. The extent of desorption and the line shape of the low temperature desorption peak are dependent on the substrate on which the gas underlayer is deposited. Angle dependent ballistic deposition of ASW is used to vary the porosity of the overlayer and strongly supports the hypothesis that the low temperature desorption pathway is due to porosity that is templated into the ASW overlayer by the underlayer during deposition. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793312]
C1 [May, R. Alan; Smith, R. Scott; Kay, Bruce D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
RP Smith, RS (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
EM scott.smith@pnnl.gov; bruce.kay@pnnl.gov
RI sebastianovitsch, stepan/G-8507-2013; Smith, Scott/G-2310-2015
OI Smith, Scott/0000-0002-7145-1963
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences; DOE's
Office of Biological and Environmental Research; U.S. Department of
Energy [DE-AC05-76RL01830]
FX This work was supported by the U.S. Department of Energy (DOE), Office
of Basic Energy Sciences, Division of Chemical Sciences, Geosciences,
and Biosciences. The research was performed using EMSL, a national
scientific user facility sponsored by DOE's Office of Biological and
Environmental Research and located at Pacific Northwest National
Laboratory, which is operated by Battelle operated for the U.S.
Department of Energy under Contract No. DE-AC05-76RL01830.
NR 42
TC 12
Z9 12
U1 1
U2 31
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAR 14
PY 2013
VL 138
IS 10
AR 104502
DI 10.1063/1.4793312
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 111TK
UT WOS:000316543400047
ER
PT J
AU Li, B
Levy, TJ
Swenson, DWH
Rabani, E
Miller, WH
AF Li, Bin
Levy, Tal J.
Swenson, David W. H.
Rabani, Eran
Miller, William H.
TI A Cartesian quasi-classical model to nonequilibrium quantum transport:
The Anderson impurity model
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID ELECTRONIC DEGREES; COULOMB-BLOCKADE; MOLECULAR WIRES; KONDO PROBLEM;
CONDUCTANCE; FREEDOM; OSCILLATIONS; DYNAMICS; GEOMETRY
AB We apply the recently proposed quasi-classical approach for a second quantized many-electron Hamiltonian in Cartesian coordinates [B. Li and W. H. Miller, J. Chem. Phys. 137, 154107 (2012)] to correlated nonequilibrium quantum transport. The approach provides accurate results for the resonant level model for a wide range of temperatures, bias, and gate voltages, correcting the flaws of our recently proposed mapping using action-angle variables. When electron-electron interactions are included, a Gaussian function scheme is required to map the two-electron integrals, leading to quantitative results for the Anderson impurity model. In particular, we show that the current mapping is capable of capturing quantitatively the Coulomb blockade effect and the temperature dependence of the current below and above the blockade. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793747]
C1 [Li, Bin; Miller, William H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Li, Bin; Miller, William H.] Univ Calif Berkeley, KS Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA.
[Li, Bin; Miller, William H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Levy, Tal J.; Rabani, Eran] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel.
[Swenson, David W. H.] Univ Amsterdam, vant Hoff Inst Mol Sci, NL-1090 GD Amsterdam, Netherlands.
RP Li, B (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RI Rabani, Eran/M-1263-2013
OI Rabani, Eran/0000-0003-2031-3525
FU National Science Foundation [CHE-1148645]; Office of Science, Office of
Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences
Division, U.S. Department of Energy [DE-AC02-05CH11231]; FP7 Marie Curie
IOF project HJSC; US-Israel Binational Science Foundation; Azrieli
Foundation
FX We would like to thank Guy Cohen for fruitful discussions. This work was
supported by the National Science Foundation Grant No. CHE-1148645 and
by the Director, Office of Science, Office of Basic Energy Sciences,
Chemical Sciences, Geosciences, and Biosciences Division, U.S.
Department of Energy under Contract No. DE-AC02-05CH11231, by the FP7
Marie Curie IOF project HJSC, and by the US-Israel Binational Science
Foundation. T.J.L. is grateful to the Azrieli Foundation for the award
of an Azrieli Fellowship. We also acknowledge a generous allocation of
supercomputing time from the National Energy Research Scientific
Computing Center (NERSC) and the use of the Lawrencium computational
cluster resource provided by the IT Division at the Lawrence Berkeley
National Laboratory.
NR 49
TC 4
Z9 4
U1 0
U2 20
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAR 14
PY 2013
VL 138
IS 10
AR 104110
DI 10.1063/1.4793747
PG 6
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 111TK
UT WOS:000316543400011
PM 23514468
ER
PT J
AU May, RA
Smith, RS
Kay, BD
AF May, R. Alan
Smith, R. Scott
Kay, Bruce D.
TI The release of trapped gases from amorphous solid water films. I.
"Top-down" crystallization-induced crack propagation probed using the
molecular volcano
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID THERMAL-DESORPTION; INTERSTELLAR ICES; LIQUID WATER; KINETICS; SURFACES;
GROWTH; SUBLIMATION; SUBSTRATE; CRYSTALS; GRAINS
AB In this (Paper I) and the companion paper (Paper II; R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104502 (2013)), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization of ASW, a phenomenon that we termed the "molecular volcano." The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper, we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length distribution is independent of the trapped gas (Ar, Kr, Xe, CH4, N-2, O-2, or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ/mol. This value is consistent with the crystallization growth rates reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization/crack front into the film is in good agreement with the temperature programmed desorption results. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793311]
C1 [May, R. Alan; Smith, R. Scott; Kay, Bruce D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
RP Smith, RS (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
EM scott.smith@pnnl.gov; bruce.kay@pnnl.gov
RI sebastianovitsch, stepan/G-8507-2013; Smith, Scott/G-2310-2015
OI Smith, Scott/0000-0002-7145-1963
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences; DOE's
Office of Biological and Environmental Research; U.S. Department of
Energy [DE-AC05-76RL01830]
FX This work was supported by the U.S. Department of Energy (DOE), Office
of Basic Energy Sciences, Division of Chemical Sciences, Geosciences,
and Biosciences. The research was performed using EMSL, a national
scientific user facility sponsored by DOE's Office of Biological and
Environmental Research and located at Pacific Northwest National
Laboratory, which is operated by Battelle for the U.S. Department of
Energy under Contract No. DE-AC05-76RL01830.
NR 39
TC 15
Z9 15
U1 1
U2 54
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAR 14
PY 2013
VL 138
IS 10
AR 104501
DI 10.1063/1.4793311
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 111TK
UT WOS:000316543400046
PM 23514503
ER
PT J
AU Willand, A
Kvashnin, YO
Genovese, L
Vazquez-Mayagoitia, A
Deb, AK
Sadeghi, A
Deutsch, T
Goedecker, S
AF Willand, Alex
Kvashnin, Yaroslav O.
Genovese, Luigi
Vazquez-Mayagoitia, Alvaro
Deb, Arpan Krishna
Sadeghi, Ali
Deutsch, Thierry
Goedecker, Stefan
TI Norm-conserving pseudopotentials with chemical accuracy compared to
all-electron calculations
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; SPACE GAUSSIAN
PSEUDOPOTENTIALS; DENSITY-FUNCTIONAL THEORIES; TOTAL-ENERGY
CALCULATIONS; BASIS-SET; EXCHANGE; ELEMENTS; SIMULATIONS; COMPUTATION
AB By adding a nonlinear core correction to the well established dual space Gaussian type pseudopotentials for the chemical elements up to the third period, we construct improved pseudopotentials for the Perdew-Burke-Ernzerhof [J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)] functional and demonstrate that they exhibit excellent accuracy. Our benchmarks for the G2-1 test set show average atomization energy errors of only half a kcal/mol. The pseudopotentials also remain highly reliable for high pressure phases of crystalline solids. When supplemented by empirical dispersion corrections [S. Grimme, J. Comput. Chem. 27, 1787 (2006); S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010)] the average error in the interaction energy between molecules is also about half a kcal/mol. The accuracy that can be obtained by these pseudopotentials in combination with a systematic basis set is well superior to the accuracy that can be obtained by commonly used medium size Gaussian basis sets in all-electron calculations. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793260]
C1 [Willand, Alex; Sadeghi, Ali; Goedecker, Stefan] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland.
[Kvashnin, Yaroslav O.] European Synchrotron Radiat Facil, F-38043 Grenoble, France.
[Genovese, Luigi; Deb, Arpan Krishna; Deutsch, Thierry] UMR E CEA UJF Grenoble 1, INAC, SP2M, Lab Simulat Atomist Sim L, F-38054 Grenoble, France.
[Vazquez-Mayagoitia, Alvaro] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA.
RP Willand, A (reprint author), Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland.
RI Deutsch, Thierry/A-6077-2009; Genovese, Luigi/C-5937-2011;
Vazquez-Mayagoitia, Alvaro/A-9755-2010;
OI Deutsch, Thierry/0000-0001-7503-3390; Genovese,
Luigi/0000-0003-1747-0247; Sadeghi, Ali/0000-0002-0791-6674
FU Swiss National Science Foundation (SNF); Office of Science of the U.S.
Department of Energy [DE-AC02-06CH11357]
FX We acknowledge support from the Swiss National Science Foundation (SNF).
Computer calculations were also performed at the Swiss National
Supercomputing Center (CSCS) in Lugano. Partially, this research used
resources of the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-06CH11357.
NR 43
TC 15
Z9 15
U1 1
U2 22
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAR 14
PY 2013
VL 138
IS 10
AR 104109
DI 10.1063/1.4793260
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 111TK
UT WOS:000316543400010
PM 23514467
ER
PT J
AU Alaie, S
Su, MF
Goettler, DF
El-Kady, I
Leseman, Z
AF Alaie, Seyedhamidreza
Su, Mehmet F.
Goettler, Drew F.
El-Kady, Ihab
Leseman, Zayd
TI Effects of flexural and extensional excitation modes on the transmission
spectrum of phononic crystals operating at gigahertz frequencies
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID PERIODIC ELASTIC COMPOSITES; ACOUSTIC BAND-STRUCTURE; WAVE-GUIDES; GAPS;
ELASTODYNAMICS; OPTIMIZATION
AB Phononic crystals (PnCs) are a class of materials that are capable of manipulating elastodynamic waves. Much of the research on PnCs, both theoretical and experimental, focus on studying the transmission spectrum of PnCs in an effort to characterize and engineer their phononic band gaps. Although most studies have shown acceptable agreement between the theoretical and experimental bandgaps, perfect matches are elusive. A framework is presented wherein two and three dimensional harmonic finite element analyses are utilized to study their mechanical behavior for the purpose of more accurately predicting the spectral properties of PnCs. Discussions on a Harmonic Finite Elements Analysis formulation of a perfectly matched layer absorbing boundary and how reflections from absorbing boundaries can be inferred via standing wave ratios are provided. Comparisons between 2D and 3D analyses are presented that show the less computationally intensive 2D models are equally accurate under certain conditions. Finally, it is shown that a surface excitation boundary condition in a 3D model can significantly improve understanding of the experimental results for PnCs excited by surface mounted excitation sources. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790485]
C1 [Alaie, Seyedhamidreza; Su, Mehmet F.; Goettler, Drew F.; El-Kady, Ihab; Leseman, Zayd] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA.
[El-Kady, Ihab] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Leseman, Z (reprint author), Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA.
EM zleseman@unm.edu
OI alaie, seyedhamidreza/0000-0001-6359-297X
FU Office of Basic Energy Sciences, Division of Materials Sciences, and
Engineering Experimental Program to Stimulate Competitive Research
(EPSCoR) [DE-FG02-10ER46720]; U.S. Department of Energy's National
Nuclear Security Administration [DE-AC04-94AL85000]
FX This work was supported by the Office of Basic Energy Sciences, Division
of Materials Sciences, and Engineering Experimental Program to Stimulate
Competitive Research (EPSCoR) under Award# DE-FG02-10ER46720. Sandia
National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under Contract No. DE-AC04-94AL85000.
NR 30
TC 10
Z9 10
U1 2
U2 43
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 14
PY 2013
VL 113
IS 10
AR 103513
DI 10.1063/1.4790485
PG 8
WC Physics, Applied
SC Physics
GA 112BC
UT WOS:000316565600024
ER
PT J
AU Escobedo, JP
Brown, EN
Trujillo, CP
Cerreta, EK
Gray, GT
AF Escobedo, J. P.
Brown, E. N.
Trujillo, C. P.
Cerreta, E. K.
Gray, G. T., III
TI The effect of shock-wave profile on dynamic brittle failure
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID 316L STAINLESS-STEEL; TUNGSTEN ALLOY; SHEAR-STRENGTH; STRAIN-RATE;
POLYCRYSTALLINE TUNGSTEN; SPALLATION RESPONSE; TAYLOR-WAVE; FRACTURE;
DUCTILE; SOLIDS
AB The influence of shock-wave-loading profile on the failure processes in a brittle material has been investigated. Tungsten heavy alloy (WHA) specimens have been subjected to two shock-wave loading profiles with a similar peak stress of 15.4GPa but different pulse durations. Contrary to the strong dependence of strength on wave profile observed in ductile metals, for WHA, specimens subjected to different loading profiles exhibited similar spall strength and damage evolution morphology. Post-mortem examination of recovered samples revealed that dynamic failure for both loading profiles is dominated by brittle cleavage fracture, with additional energy dissipation through crack branching in the more brittle tungsten particles. Overall, in this brittle material, all relevant damage kinetics and the spall strength are shown to be dominated by the shock peak stress, independent of pulse duration. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794002]
C1 [Escobedo, J. P.; Brown, E. N.; Trujillo, C. P.; Cerreta, E. K.; Gray, G. T., III] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Escobedo, JP (reprint author), Los Alamos Natl Lab, MST 8,MS G-755, Los Alamos, NM 87545 USA.
OI Escobedo-Diaz, Juan/0000-0003-2413-7119; Brown, Eric/0000-0002-6812-7820
FU NNSA of the US Department of Energy [DE-AC52-06NA25396]; US Department
of Energy; Joint DoD/DOE Munitions Program
FX Los Alamos National Laboratory is operated by LANS, LLC, for the NNSA of
the US Department of Energy under Contract No. DE-AC52-06NA25396. This
research was supported under the auspices of the US Department of Energy
and the Joint DoD/DOE Munitions Program. The authors would like to
acknowledge Mike Lopez and Rob Dickerson for their help in sample
preparation and some of the data analysis.
NR 51
TC 12
Z9 12
U1 2
U2 46
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 14
PY 2013
VL 113
IS 10
AR 103506
DI 10.1063/1.4794002
PG 9
WC Physics, Applied
SC Physics
GA 112BC
UT WOS:000316565600017
ER
PT J
AU May, AF
McGuire, MA
Wang, H
AF May, Andrew F.
McGuire, Michael A.
Wang, Hsin
TI Thermoelectric properties of polycrystalline NiSi3P4
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID SEMICONDUCTOR; SILICIDE
AB The Hall and Seebeck coefficients, electrical resistivity, and thermal conductivity of polycrystalline NiSi3P4 were characterized from 2 to 775 K. Undoped NiSi3P4 behaves like a narrow gap semiconductor, with activated electrical resistivity rho below room temperature and a large Seebeck coefficient of similar to 400 mu V/K at 300 K. Attempts to substitute boron for silicon resulted in the production of extrinsic holes, yielding moderately doped semiconductor behavior with rho increasing with increasing temperature above similar to 150 K. Hall carrier densities are limited to approximately 5 x 10(19) cm(-3) at 200 K, which would suggest the solubility limit of boron is reached if boron is indeed incorporated into the lattice. These extrinsic samples have a Hall mobility of similar to 12 cm(2)/V/s at 300 K, and a parabolic band equivalent effective mass of similar to 3.5 times the free electron mass. At 700 K, the thermoelectric figure of merit zT reaches similar to 0.1. Further improvements in thermoelectric performance would require reaching higher carrier densities, as well as a mechanism to further reduce the lattice thermal conductivity, which is similar to 5 W/m/K at 700 K. Alloying in Ge results in a slight reduction of the thermal conductivity at low temperatures, with little influence observed at higher temperatures. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794992]
C1 [May, Andrew F.; McGuire, Michael A.; Wang, Hsin] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP May, AF (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM mayaf@ornl.gov
RI McGuire, Michael/B-5453-2009; May, Andrew/E-5897-2011; Wang,
Hsin/A-1942-2013
OI McGuire, Michael/0000-0003-1762-9406; May, Andrew/0000-0003-0777-8539;
Wang, Hsin/0000-0003-2426-9867
FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division; US Department of Energy, EERE,
Vehicle Technologies, Propulsion Materials Program
FX This research was supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division
(A.F.M., M.A.M), and the US Department of Energy, EERE, Vehicle
Technologies, Propulsion Materials Program (H.W.).
NR 20
TC 2
Z9 2
U1 1
U2 18
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 14
PY 2013
VL 113
IS 10
AR 103707
DI 10.1063/1.4794992
PG 5
WC Physics, Applied
SC Physics
GA 112BC
UT WOS:000316565600034
ER
PT J
AU McDonald, JP
Reeves, RV
Jones, ED
Chinn, KA
Adams, DP
AF McDonald, Joel P.
Reeves, Robert V.
Jones, Eric D., Jr.
Chinn, Kathryn A.
Adams, David P.
TI Effects of oxidation on reaction front instabilities and average
propagation speed in Ni/Ti multilayer foils
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID EXPLOSIVE CRYSTALLIZATION; COMBUSTION SYNTHESIS; THIN-FILMS; MECHANISMS;
ALLOY; PHASE
AB Vapor-deposited, equiatomic Ni/Ti multilayer foils exhibit low-speed, self-propagating formation reactions that are characterized by a spin-like reaction front instability. In addition to the intermetallic reaction between Ni and Ti, reactions performed in air can also exhibit a discrete combustion wave associated with the oxidation of Ti. In general, the oxidation wave trails the complex intermetallic reaction front. Multilayers that have a large reactant layer periodicity (>= 200 nm) exhibit a decrease in net reaction speed as air pressure is reduced. Oxidation has a much smaller effect on the net propagation speed of multilayers with small layer periodicity (<100 nm). The net propagation speed of the multilayers is increased when air is present, due to the added energy release of Ti oxidation. High-speed optical microscopy shows that the increased front speed is associated with an increased nucleation rate of the reaction bands that typify the spinning reaction instability of the Ni/Ti system. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794183]
C1 [McDonald, Joel P.; Reeves, Robert V.; Jones, Eric D., Jr.; Chinn, Kathryn A.; Adams, David P.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP McDonald, JP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
FU Laboratory Directed Research Development (LDRD) Program at Sandia
National Laboratories; United States Department of Energy's National
Nuclear Security Administration [DE-AC04-94AL85000]
FX The authors thank M. A. Rodriguez for XRD and phase analysis. This
research was supported by a Laboratory Directed Research Development
(LDRD) Program at Sandia National Laboratories. Sandia National
Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Company, for the United States Department of Energy's National Nuclear
Security Administration under Contract No. DE-AC04-94AL85000.
NR 29
TC 3
Z9 3
U1 1
U2 22
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 14
PY 2013
VL 113
IS 10
AR 103505
DI 10.1063/1.4794183
PG 7
WC Physics, Applied
SC Physics
GA 112BC
UT WOS:000316565600016
ER
PT J
AU Tang, M
Carter, WC
AF Tang, Ming
Carter, W. Craig
TI Branching Mechanisms in Surfactant Micellar Growth
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID THREAD-LIKE MICELLES; WORMLIKE MICELLES; PHASE-SEPARATION; MICROEMULSION
NETWORKS; DOMAIN-STRUCTURES; AQUEOUS-SOLUTIONS; SHAPED MICELLES;
THIN-FILMS; SYSTEMS; THERMODYNAMICS
AB We present a phase-field model to study the morphological transitions of surfactant micelles in supersaturated dilute solution. Simulations reveal that multiply connected micellar structure can be produced by interface branching instability of a growing micelle at relatively large supersaturation and intermediate spontaneous curvatures. Two branching mechanisms, i.e., a disk-to-cylinder shape transition and a tip bifurcation process, are identified for disklike and cylindrical micelles, respectively. We propose that dynamic branching at the micelle growth front provides an important kinetic pathway for the formation of branched wormlike micelles that are observed in many surfactant systems.
C1 [Tang, Ming] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Carter, W. Craig] MIT, Cambridge, MA 02139 USA.
RP Tang, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM mingtang@alum.mit.edu
FU Lawrence Postdoctoral Fellowship; Laboratory Directed Research and
Development Program under the U.S. Department of Energy by Lawrence
Livermore National Laboratory [DE-AC52-07NA27344]; National Science
Foundation [DMR-0906931]; Office of Science of the U.S. Department of
Energy [DE-AC02-05CH11231]
FX M.T. acknowledges financial support from the Lawrence Postdoctoral
Fellowship and the Laboratory Directed Research and Development Program
under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344. W.C.C.
was supported by the National Science Foundation under Grant No.
DMR-0906931. Part of the simulations were carried out at the National
Energy Research Scientific Computing Center, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 53
TC 9
Z9 9
U1 4
U2 50
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD MAR 14
PY 2013
VL 117
IS 10
BP 2898
EP 2905
DI 10.1021/jp309204t
PG 8
WC Chemistry, Physical
SC Chemistry
GA 108PP
UT WOS:000316308200009
PM 23363001
ER
PT J
AU Zhugayevych, A
Postupna, O
Bakus, RC
Welch, GC
Bazan, GC
Tretiak, S
AF Zhugayevych, Andriy
Postupna, Olena
Bakus, Ronald C., II
Welch, Gregory C.
Bazan, Guillermo C.
Tretiak, Sergei
TI Ab Initio Study of a Molecular Crystal for Photovoltaics: Light
Absorption, Exciton and Charge Carrier Transport
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID POLYMER SOLAR-CELLS; ORGANIC SEMICONDUCTORS; CONVERSION EFFICIENCY;
CONJUGATED OLIGOMERS; ELECTRONIC-STRUCTURE; PURPLE BACTERIA;
ENERGY-TRANSFER; MODEL; EXCHANGE; BACTERIOCHLOROPHYLL
AB Using ab initio methods we examine the molecular and solid-state electronic properties of a recently synthesized small-molecule donor, p-DTS(PTTh2)(2), which belongs to the dithienosilole-pyridylthiadiazole family of chromophores. In combination with the PC70BM acceptor, p-DTS(PTTh2)(2) can be used to fabricate high-efficiency bulk heterojunction organic solar cells. A precise picture of molecular structure and interchromophore packing is provided via a single-crystal X-ray diffraction study; such details cannot be easily obtained with donor materials based on conjugated polymers. In first-principles approaches we are limited to a single-crystallite scale. At this scale, according to our investigation, the principal properties responsible for the high efficiency are strong low-energy light absorption by individual molecules, large exciton diffusion length, and fast disorder-resistant hole transport along pi-stacks in the crystallite. The calculated exciton diffusion length is substantially larger than the average crystallite size in previously characterized device active layers, and the calculated hole mobility is 2 orders of magnitude higher than the measured device scale mobility, meaning that the power conversion "losses" on a single crystallite scale are minimal.
C1 [Zhugayevych, Andriy; Postupna, Olena; Tretiak, Sergei] Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA.
[Zhugayevych, Andriy; Postupna, Olena; Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Postupna, Olena] Univ Rochester, Dept Chem, Rochester, NY 14627 USA.
[Bakus, Ronald C., II; Welch, Gregory C.; Bazan, Guillermo C.] Univ Calif Santa Barbara, Ctr Polymers & Organ Solids, Dept Mat, Santa Barbara, CA 93106 USA.
[Bakus, Ronald C., II; Welch, Gregory C.; Bazan, Guillermo C.] Univ Calif Santa Barbara, Ctr Polymers & Organ Solids, Dept Chem & Biochem, Santa Barbara, CA 93106 USA.
RP Bazan, GC (reprint author), Univ Calif Santa Barbara, Ctr Polymers & Organ Solids, Dept Mat, Santa Barbara, CA 93106 USA.
EM bazan@chem.ucsb.edu; serg@lanl.gov
RI Tretiak, Sergei/B-5556-2009; Bazan, Guillermo/B-7625-2014
OI Tretiak, Sergei/0000-0001-5547-3647;
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES);
Los Alamos Laboratory Directed Research and Development program; Los
Alamos National Security, LLC, for the National Nuclear Security
Administration of the U.S. Department of Energy [DE-AC52-06NA25396];
Center for Integrated Nanotechnology (CINT); Center for Nonlinear
Studies (CNLS) at LANL; National Science Foundation [CHE-1040541]
FX A.Z. thanks Enrique Batista for helpful suggestions on computational
methodology and Stavros Athanasopoulos for discussions on disorder
effects. We acknowledge support for the synthesis of the materials and
calculation efforts the Center for Energy Efficient Materials (CEEM), an
Energy Frontier Research Center funded by the U.S. Department of Energy
(DOE), Office of Basic Energy Sciences (BES). We also acknowledge
support of the Los Alamos Laboratory Directed Research and Development
program. Los Alamos National Laboratory (LANL) is operated by Los Alamos
National Security, LLC, for the National Nuclear Security Administration
of the U.S. Department of Energy under contract DE-AC52-06NA25396. We
acknowledge support of the Center for Integrated Nanotechnology (CINT)
and Center for Nonlinear Studies (CNLS) at LANL. This material is based
upon work supported by the National Science Foundation under
CHE-1040541.
NR 79
TC 26
Z9 26
U1 3
U2 117
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD MAR 14
PY 2013
VL 117
IS 10
BP 4920
EP 4930
DI 10.1021/jp310855p
PG 11
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 108PR
UT WOS:000316308400005
ER
PT J
AU Strandwitz, NC
Comstock, DJ
Grimm, RL
Nichols-Nielander, AC
Elam, J
Lewis, NS
AF Strandwitz, Nicholas C.
Comstock, David J.
Grimm, Ronald L.
Nichols-Nielander, Adam C.
Elam, Jeffrey
Lewis, Nathan S.
TI Photoelectrochemical Behavior of n-type Si(100) Electrodes Coated with
Thin Films of Manganese Oxide Grown by Atomic Layer Deposition
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID SEMICONDUCTOR EMIS CONFIGURATION; SOLAR-ENERGY CONVERSION;
HETEROJUNCTION PHOTOANODES; AQUEOUS-ELECTROLYTES; SILICON PHOTOANODES;
SI(111) SURFACES; WATER OXIDATION; PHOTO-ANODES; SI SYSTEM; CELLS
AB Thin (10 nm) films of manganese oxide have been deposited by atomic layer deposition (ALD) onto n-type silicon and onto degenerately doped p-type silicon. The photoelectrochemical properties of the resulting semiconductor/metal-oxide structures were evaluated in contact with aqueous 0.35 M K4Fe(CN)(6)-0.05 M K3Fe(CN)(6), 1.0 M KOH(aq), as well as in contact with a series of nonaqueous one-electron, reversible, outer-sphere redox systems. Under simulated air mass (AM) 1.5 illumination in contact with 0.35 M K4Fe(CN)(6)-0.05 M K3Fe(CN)(6)(aq), MnO-coated n-Si photoanodes displayed open-circuit voltages of up to 550 mV and stable anodic currents for periods of hours at 0.0 V versus the solution potential. In contact with 1.0 M KOH(aq), at current densities of similar to 25 mA cm(-2), MnOlSi photoanodes under 100 mW cm(-2) of simulated AM 1.5 illumination yielded stable oxygen evolution for 10-30 min. Variation in the thickness of the MnO films from 4 to 20 nm indicated the presence of a series resistance in the MnO film that limited the fill factor and thus the solar energy-conversion efficiency of the photoelectrodes. Open-circuit photovoltages of 30 and 450 mV, respectively, were observed in contact with cobaltocene(+/0) or ferrocene(+/0) in CH3CN, indicating that the energetics of the MnO-coated Si surfaces were a function of the electrochemical potential of the contacting electrolyte solution.
C1 [Comstock, David J.; Elam, Jeffrey] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Strandwitz, Nicholas C.; Grimm, Ronald L.; Nichols-Nielander, Adam C.; Lewis, Nathan S.] CALTECH, Beckman Inst, Div Chem & Chem Engn, Pasadena, CA 91125 USA.
[Strandwitz, Nicholas C.; Grimm, Ronald L.; Nichols-Nielander, Adam C.; Lewis, Nathan S.] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA.
RP Lewis, NS (reprint author), CALTECH, Beckman Inst, Div Chem & Chem Engn, 210 Noyes Lab, Pasadena, CA 91125 USA.
EM nslewis@caltech.edu
RI Nielander, Adam/C-5944-2015
OI Nielander, Adam/0000-0002-3639-2427
FU NSF [CHE-1214152, CHE-1042006]
FX We acknowledge support from the NSF (CHE-1214152) and N.C.S.
acknowledges the NSF for an American Competitiveness in Chemistry
postdoctoral fellowship (CHE-1042006).
NR 49
TC 70
Z9 70
U1 10
U2 203
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD MAR 14
PY 2013
VL 117
IS 10
BP 4931
EP 4936
DI 10.1021/jp311207x
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 108PR
UT WOS:000316308400006
ER
PT J
AU Fenter, P
Kerisit, S
Raiteri, P
Gale, JD
AF Fenter, Paul
Kerisit, Sebastien
Raiteri, Paolo
Gale, Julian D.
TI Is the Calcite-Water Interface Understood? Direct Comparisons of
Molecular Dynamics Simulations with Specular X-ray Reflectivity Data
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID INTERATOMIC POTENTIAL MODEL; REACTIVE FORCE-FIELD; ATOMISTIC SIMULATION;
10(1)OVER-BAR4 SURFACE; CARBONATE MINERALS; POLYMORPHS CALCITE;
ADSORPTION; CACO3; DIFFRACTION; GROWTH
AB New insights into the understanding of calcite-water interface structure are obtained through direct comparisons of multiple classical molecular dynamics (MD) simulations with high-resolution specular X-ray reflectivity (XR) data. This set of comparisons, with four different state-of-the-art force fields (including two nonpolarizable, one polarizable, and one reactive force field), reveal new insights into the absolute accuracy of the simulated structures and the uniqueness of the XR-derived structural results. These four simulations, though qualitatively similar, have visibly distinct interfacial structures and are distinguished through a quantitative comparison of the XR signals calculated from these simulations with experimental XR data. The results demonstrate that the simulated calcite-water interface structures, taken as a whole, are not consistent with the XR data (i.e., within the precision and accuracy of the XR data). This disagreement is largely due to the simulated calcite interfacial structure. The simulated interfacial water profiles show a higher level of consistency with the XR data, but with substantially different levels of agreement, with the rigid-ion model (RIM) simulations showing semiquantitative agreement. Further comparisons of the structural parameters that describe the interfacial structure (derived from both the MD simulations and the XR data) provide further insight into the sources of differences between these two approaches. Using the new insights from the RIM simulations, new structures of the calcite-water interface consistent with both the experimental data and the simulation are identified and compared to recent results.
C1 [Fenter, Paul] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Kerisit, Sebastien] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
[Raiteri, Paolo; Gale, Julian D.] Curtin Univ Technol, Dept Chem, Nanochem Res Inst, Perth, WA 6845, Australia.
RP Fenter, P (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM fenter@anl.gov
RI Gale, Julian/B-7987-2009; Raiteri, Paolo/E-1465-2011;
OI Gale, Julian/0000-0001-9587-9457; Raiteri, Paolo/0000-0003-0692-0505;
Fenter, Paul/0000-0002-6672-9748
FU Geosciences Research Program of the Office of Basic Energy Sciences,
U.S. Department of Energy (DOE); Australian Research Council under the
Discovery program [DP0986999]; U.S. DOE, Office of Science, Office of
Basic Energy Sciences; DOE's Office of Biological and Environmental
Research (OBER); DOE [DE-AC05-76RL01830]; U.S. Department of Energy
Office of Science laboratory [DE-AC02-06CH11357]
FX P.F. and S.K. were supported by the Geosciences Research Program of the
Office of Basic Energy Sciences, U.S. Department of Energy (DOE). P.R.
and J.D.G. thank the Australian Research Council for funding under the
Discovery program (DP0986999). The XR data were collected at the X-ray
Operations and Research beamline 6-ID-B at the Advanced Photon Source
(Argonne National Laboratory). Use of the APS was supported by the U.S.
DOE, Office of Science, Office of Basic Energy Sciences. The computer
simulations carried out by S.K. were performed in part using the
Molecular Science Computing (MSC) facilities in the William R. Wiley
Environmental Molecular Sciences Laboratory (EMSL), a national
scientific user facility sponsored by the DOE's Office of Biological and
Environmental Research (OBER) and located at Pacific Northwest National
Laboratory (PNNL). PNNL is operated for the DOE by Battelle Memorial
Institute under Contract DE-AC05-76RL01830. P.R. and J.D.G. acknowledge
NCI for provision of computing resources and the support of iVEC through
the use of advanced computing resources located at iVEC@Murdoch. The
manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under Contract No.
DE-AC02-06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.
NR 54
TC 50
Z9 50
U1 7
U2 129
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD MAR 14
PY 2013
VL 117
IS 10
BP 5028
EP 5042
DI 10.1021/jp310943s
PG 15
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 108PR
UT WOS:000316308400017
ER
PT J
AU Freeman, CL
Hu, Q
Nielsen, MH
Tao, J
De Yoreo, JJ
Harding, JH
AF Freeman, Colin L.
Hu, Q.
Nielsen, M. H.
Tao, J.
De Yoreo, J. J.
Harding, John H.
TI Surface Selectivity of Calcite on Self-Assembled Monolayers
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID ORIENTED CRYSTALLIZATION; CACO3; NUCLEATION; SIMULATION; CARBONATE;
GROWTH; TEMPLATES; WATER; ALKANETHIOLS; INTERFACES
AB A series of molecular dynamics simulations has been performed to analyze in detail the structure of 16-mercaptohexadecanoic acid (even) and 15-mercaptopentadecanoic acid (odd) self-assembled monolayers (SAMs) and their interface with calcium carbonate prior to crystallization. Small structural differences are noted between the odd and even SAMs that cause the headgroup arrangement of the odd SAM to change its local coordination from six nearest neighbors to a 5 + 1 arrangement. It is observed that the disordered calcium carbonate forms layers of cations and anions at the charged interface with the SAM, and this layering predisposes the structure toward the (012) calcite surface and away from the (001) calcite surface. Calculated interfacial energies of the SAM-calcium carbonate interface demonstrate that the even SAM has a far stronger interaction with the calcium carbonate than the odd due to the better alignment of the headgroups and is there