FN Thomson Reuters Web of Science™ VR 1.0 PT S AU Banks, JW Hittinger, JAF Connors, JM Woodward, CS AF Banks, J. W. Hittinger, J. A. F. Connors, J. M. Woodward, C. S. BE Li, J Yang, HT Machorro, E TI A posteriori error estimation via nonlinear error transport with application to shallow water SO RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS SE Contemporary Mathematics LA English DT Proceedings Paper CT 8th International Conference on Scientific Computing and Applications CY APR 01-04, 2012 CL Univ Nevada, Las Vegas, NV SP UNLV, Dept Math Sci HO Univ Nevada DE A posteriori error estimation; hyperbolic equations; finite volume methods; finite difference methods; weak solutions ID OVERLAPPING GRIDS; EQUATIONS; MESHES AB Numerical error estimation for time dependent hyperbolic problems is challenging for theoretical and practical reasons. In these systems, error can propagate long distances and produce effects far from the point of generation. In addition, nonlinear interactions of error, as well as discretization nonlinearities can play important roles and must be addressed. In this work, we investigate the use of error transport equations for a posteriori error estimation. We discuss the inclusion of nonlinearities in the error equations, which are particularly important for situations where local errors become large, such as near shocks. C1 [Banks, J. W.; Hittinger, J. A. F.; Connors, J. M.; Woodward, C. S.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Banks, JW (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. EM banks20@llnl.gov RI Banks, Jeffrey/A-9718-2012; Woodward, Carol/M-4008-2014 NR 15 TC 0 Z9 0 U1 0 U2 4 PU AMER MATHEMATICAL SOC PI PROVIDENCE PA P.O. BOX 6248, PROVIDENCE, RI 02940 USA SN 0271-4132 BN 978-0-8218-8737-0 J9 CONTEMP MATH PY 2013 VL 586 BP 35 EP 42 DI 10.1090/conm/586/11646 PG 8 WC Mathematics SC Mathematics GA BFD22 UT WOS:000319240200004 ER PT J AU Piwowar, AM Keskin, S Delgado, MO Shen, K Hue, JJ Lanekoff, I Ewing, AG Winograd, N AF Piwowar, Alan M. Keskin, Selda Delgado, Melissa Ortiz Shen, Kan Hue, Jonathan J. Lanekoff, Ingela Ewing, Andrew G. Winograd, Nicholas TI C60-ToF SIMS imaging of frozen hydrated HeLa cells SO SURFACE AND INTERFACE ANALYSIS LA English DT Article; Proceedings Paper CT 18th International Conferenceon Secondary Ion Mass Spectrometry (SIMS XVIII) CY SEP 18-23, 2011 CL Trento, ITALY DE C60; HeLa cell; frozen-hydrated; sample preparation; biological imaging ID ION MASS-SPECTROMETRY; TOF-SIMS AB Sample preparation continues to be a major challenge for SIMS studies of biological materials. Maintaining the native hydrated state of the material is important for preserving both chemical and spatial information. Here, we discuss a method that combines a sample wash and dry protocol followed by plunge-freezing in liquid ethane for a frozen-hydrated analysis of mammalian cells (HeLa). This method allows for the removal of the growth medium and maintains the hydrated state of the cells so that they can be prepared frozen-hydrated without the need for a freeze-fracture device. The cells, which were grown on silicon, were successfully regrown after the cleaning procedure, confirming that a significant portion of the cells remain undamaged during the wash and dry procedure. Results from preliminary SIMS measurements show that is it possible to detect a large variety of biomolecular signals, including intact lipids from the plasma membrane in the mass range of 700-900 Da from single cells, with little external water interference at the surface. Copyright (C) 2012 John Wiley & Sons, Ltd. C1 [Piwowar, Alan M.] Dow Chem Co USA, Spring House, PA 19002 USA. [Piwowar, Alan M.; Keskin, Selda; Delgado, Melissa Ortiz; Shen, Kan; Hue, Jonathan J.; Winograd, Nicholas] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [Lanekoff, Ingela] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ewing, Andrew G.] Univ Gothenburg, Dept Chem, SE-41296 Gothenburg, Sweden. RP Piwowar, AM (reprint author), Dow Chem Co USA, 727 Norristown Rd, Spring House, PA 19002 USA. EM AMPiwowar@dow.com OI Winograd, Nicholas/0000-0002-2690-7714 FU National Institutes of Health LIPID MAPS consortium [GM 069338-07]; [2R01 EB002016-18] FX The authors acknowledge the National Institutes of Health LIPID MAPS consortium (GM 069338-07) and grant 2R01 EB002016-18 for partial financial support, and extend a special thanks to Irene Lee of Case Western Reserve University for her help with HeLa cell preparation. NR 11 TC 20 Z9 20 U1 3 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0142-2421 EI 1096-9918 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD JAN PY 2013 VL 45 IS 1 SI SI BP 302 EP 304 DI 10.1002/sia.4882 PG 3 WC Chemistry, Physical SC Chemistry GA 145WB UT WOS:000319048700077 PM 23585702 ER PT J AU Ohlhausen, JA Coker, EN Ambrosini, A Miller, JE AF Ohlhausen, James A. (Tony) Coker, Eric N. Ambrosini, Andrea Miller, James E. TI ToF-SIMS analysis of iron oxide particle oxidation by isotopic and multivariate analysis SO SURFACE AND INTERFACE ANALYSIS LA English DT Article; Proceedings Paper CT 18th International Conferenceon Secondary Ion Mass Spectrometry (SIMS XVIII) CY SEP 18-23, 2011 CL Trento, ITALY DE ToF-SIMS; multivariate analysis; isotopic analysis; oxidation; reduction; YSZ; yttria stabilized zirconia; iron oxide ID ION MASS-SPECTROMETRY; STATISTICAL-ANALYSIS; IMAGES AB A procedure for quantitative time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of the re-oxidation thermally-reduced of iron oxide particles in a ceramic matrix is discussed. Iron oxide is reacted with yttria stabilized zirconia (YSZ) to create a composite that facilitates the high-temperature reduction of CO2 and H2O to produce CO and H-2 (syngas). The reactivity of this two-step solar-thermochemical process is being investigated by varying the concentration of iron in YSZ up to and past its solid solubility point, thus affecting the size of iron oxide particles in the matrix, and hence their rate and extent of re-oxidation. YSZ samples containing natural abundance iron oxide were mixed with an organic binder, isostatically pressed into a disc and calcined in air at 1450 degrees C. The discs (similar to 10mm diameter, 2mm thickness) were thermally reduced in inert gas at 1400 degrees C and then re-oxidized at 1100 degrees C in the presence of (CO2)-O-18. The ratio of O-18 to O-16 shows the extent of oxygen exchange for each iron oxide particle. ToF-SIMS data are acquired in a fashion that maximizes the ability to correct for detector saturation, thus providing quantitative oxygen isotopic results with little error. The data analysis method uses a combination of multivariate analysis for particle identification and conventional analysis for quantitative isotopic ratioing. The results indicate that large iron oxide particles are only poorly utilized, likely due to slow transport, as O-18 penetration into the particles is limited. Published 2012. This article is a U.S. Government work and is in the public domain in the USA. C1 [Ohlhausen, James A. (Tony); Coker, Eric N.; Ambrosini, Andrea; Miller, James E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ohlhausen, JA (reprint author), Sandia Natl Labs, POB 5800,MS 0886, Albuquerque, NM 87185 USA. EM jaohlha@sandia.gov RI Miller, James/C-1128-2011 OI Miller, James/0000-0001-6811-6948 FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, in the form of a Grand Challenge project entitled 'Reimagining Liquid Transportation Fuels: Sunshine to Petrol.' Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 7 TC 1 Z9 1 U1 1 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0142-2421 EI 1096-9918 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD JAN PY 2013 VL 45 IS 1 SI SI BP 320 EP 323 DI 10.1002/sia.5140 PG 4 WC Chemistry, Physical SC Chemistry GA 145WB UT WOS:000319048700082 ER PT J AU Mudiyanselage, K Senanayake, SD Feria, L Kundu, S Baber, AE Graciani, J Vidal, AB Agnoli, S Evans, J Chang, R Axnanda, S Liu, Z Sanz, JF Liu, P Rodriguez, JA Stacchiola, DJ AF Mudiyanselage, Kumudu Senanayake, Sanjaya D. Feria, Leticia Kundu, Shankhamala Baber, Ashleigh E. Graciani, Jesus Vidal, Alba B. Agnoli, Stefano Evans, Jaime Chang, Rui Axnanda, Stephanus Liu, Zhi Sanz, Javier F. Liu, Ping Rodriguez, Jose A. Stacchiola, Dario J. TI Importance of the Metal-Oxide Interface in Catalysis: In Situ Studies of the Water-Gas Shift Reaction by Ambient-Pressure X-ray Photoelectron Spectroscopy SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE ceria; heterogeneous catalysis; nanocatalysis; surface chemistry; watergas shift reaction ID SURFACE-CHEMISTRY; MECHANISM; NANOPARTICLES; COPPER; CO2; PHOTOEMISSION; CEOX/CU(111); ADSORPTION; OXIDATION; AU(111) C1 [Mudiyanselage, Kumudu; Senanayake, Sanjaya D.; Kundu, Shankhamala; Baber, Ashleigh E.; Graciani, Jesus; Vidal, Alba B.; Agnoli, Stefano; Liu, Ping; Rodriguez, Jose A.; Stacchiola, Dario J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Feria, Leticia; Graciani, Jesus; Sanz, Javier F.] Univ Seville, Dept Quim Fis, E-41012 Seville, Spain. [Evans, Jaime] Cent Univ Venezuela, Fac Ciencias, Caracas 1020A, Venezuela. [Chang, Rui] Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China. [Axnanda, Stephanus; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Stacchiola, DJ (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM djs@bnl.gov RI Stacchiola, Dario/B-1918-2009; Axnanda, Stephanus/G-9236-2011; Kundu, Shankhamala/C-4875-2012; Liu, Zhi/B-3642-2009; Senanayake, Sanjaya/D-4769-2009; Mudiyanselage, Kumudu/B-2277-2013 OI Stacchiola, Dario/0000-0001-5494-3205; Liu, Zhi/0000-0002-8973-6561; Senanayake, Sanjaya/0000-0003-3991-4232; Mudiyanselage, Kumudu/0000-0002-3539-632X FU US DOE, Office of BES [DE-AC02-98CH10086]; Ministerio de Economia y Competitividad (Spain) [MAT2012-31526, CSD2008-0023]; INTEVEP; IDB FX Research carried at BNL was financed by the US DOE, Office of BES (Grant No. DE-AC02-98CH10086). Some of the calculations were performed at the Center for Functional Nanomaterials at BNL. The main theoretical part was carried out by the group of J.F.S. and funded by the Ministerio de Economia y Competitividad (Spain, grants MAT2012-31526 and CSD2008-0023). Computational resources were provided by the Barcelona Centro Nacional de Supercomputacion (Spain). J.E. thanks INTEVEP and IDB for grants used for the research in Venezuela. NR 36 TC 98 Z9 98 U1 29 U2 275 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2013 VL 52 IS 19 BP 5101 EP 5105 DI 10.1002/anie.201210077 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 142LV UT WOS:000318799800019 PM 23576363 ER PT J AU Aydin, C Kulkarni, A Chi, MF Browning, ND Gates, BC AF Aydin, Ceren Kulkarni, Apoorva Chi, Miaofang Browning, Nigel D. Gates, Bruce C. TI Three-Dimensional Structural Analysis of MgO-Supported Osmium Clusters by Electron Microscopy with Single-Atom Sensitivity SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE clusters; electron microscopy; osmium; supported catalysts ID CARBONYL CLUSTERS; OXIDE SUPPORTS; COMPLEXES; CATALYSTS; NANOPARTICLES; MONONUCLEAR; OS3(CO)12; BEHAVIOR; LIGANDS; DIANION C1 [Aydin, Ceren; Kulkarni, Apoorva; Gates, Bruce C.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Chi, Miaofang] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. [Browning, Nigel D.] Pacific NW Natl Lab, Fundamental & Computat Sci Div, Richland, WA 99352 USA. RP Gates, BC (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM bcgates@ucdavis.edu RI Chi, Miaofang/Q-2489-2015; OI Chi, Miaofang/0000-0003-0764-1567; Browning, Nigel/0000-0003-0491-251X FU Department of Energy (DOE) [DE-SC0005822, DE-FG02-03ER46057]; University of California Lab Fee Program; Division of Scientific User Facilities, DOE Office of Science, Basic Energy Sciences FX This work was supported by the Department of Energy (DOE), grants DE-SC0005822 and DE-FG02-03ER46057 (C. A.) and the University of California Lab Fee Program. The electron microscopy experiments were performed at the Oak Ridge National Laboratory Shared Research Equipment (ShaRE) User Facility, which is supported by the Division of Scientific User Facilities, DOE Office of Science, Basic Energy Sciences. We acknowledge beam time and support of the DOE Office of Science, Materials Sciences, for its role in the operation and development of beamlines 4-1 and 10-2 at the Stanford Synchrotron Radiation Lightsource. NR 32 TC 4 Z9 4 U1 6 U2 56 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2013 VL 52 IS 20 BP 5262 EP 5265 DI 10.1002/anie.201300238 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 136OC UT WOS:000318370200009 PM 23592186 ER PT J AU Kuepper, K Derks, C Taubitz, C Prinz, M Joly, L Kappler, JP Postnikov, A Yang, WL Kuznetsova, TV Wiedwald, U Ziemann, P Neumann, M AF Kuepper, Karsten Derks, Christine Taubitz, Christian Prinz, Manuel Joly, Loic Kappler, Jean-Paul Postnikov, Andrei Yang, Wanli Kuznetsova, Tatyana V. Wiedwald, Ulf Ziemann, Paul Neumann, Manfred TI Electronic structure and soft-X-ray-induced photoreduction studies of iron-based magnetic polyoxometalates of type {(M)M-5}(12)Fe-30(III) (M = Mo-VI, W-VI) SO DALTON TRANSACTIONS LA English DT Article ID EXCHANGE INTERACTIONS; MOLECULAR MAGNETS; GIANT CLUSTERS; SPECTROSCOPY; DICHROISM; CHEMISTRY; LINKING; PHOTOCHEMISTRY; ABSORPTION; LIGAND AB Giant Keplerate-type molecules with a {Mo72Fe30} core show a number of very interesting properties, making them particularly promising for various applications. So far, only limited data on the electronic structure of these molecules from X-ray spectra and electronic structure calculations have been available. Here we present a combined electronic and magnetic structure study of three Keplerate-type nanospheres-two with a {Mo72Fe30} core and one with a {W72Fe30} core by means of X-ray absorption spectroscopy, X-ray magnetic circular dichroism (XMCD), SQUID magnetometry, and complementary theoretical approaches. Furthermore, we present detailed studies of the Fe3+-to-Fe2+ photoreduction process, which is induced under soft X-ray radiation in these molecules. We observe that the photoreduction rate greatly depends on the ligand structure surrounding the Fe ions, with negatively charged ligands leading to a dramatically reduced photoreduction rate. This opens the possibility of tailoring such polyoxometalates by X-ray spectroscopic studies and also for potential applications in the field of X-ray induced photochemistry. C1 [Kuepper, Karsten; Wiedwald, Ulf; Ziemann, Paul] Univ Ulm, Inst Solid State Phys, D-89069 Ulm, Germany. [Kuepper, Karsten; Derks, Christine; Taubitz, Christian; Prinz, Manuel; Neumann, Manfred] Univ Osnabruck, Dept Phys, D-49069 Osnabruck, Germany. [Joly, Loic; Kappler, Jean-Paul] Univ Strasbourg, IPCMS UCMS CNRS 7504, F-67034 Strasbourg 2, France. [Postnikov, Andrei] Univ Lorraine, LCP A2MC, F-57078 Metz, France. [Postnikov, Andrei] Univ Bielefeld, Fac Phys, D-33501 Bielefeld, Germany. [Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kuznetsova, Tatyana V.] Russian Acad Sci, Ural Div, Inst Met Phys, Ekaterinburg 620990, Russia. RP Kuepper, K (reprint author), Univ Ulm, Inst Solid State Phys, Albert Einstein Allee 11, D-89069 Ulm, Germany. EM kkuepper@uos.de RI Kuznetsova, Tatyana/J-4806-2013; Wiedwald, Ulf/E-4625-2011; Yang, Wanli/D-7183-2011; Kupper, Karsten/G-1397-2016; Joly, Loic/I-2391-2016 OI Kuznetsova, Tatyana/0000-0003-4302-9607; Yang, Wanli/0000-0003-0666-8063; Joly, Loic/0000-0002-0137-2821 FU BESSY II (Helmholtz - Zentrum Berlin), Germany [DE-AC02-05CH11231]; PhD programme of the Federal State of Lower Saxony, Germany; DFG [GRK 965, FOR 945]; EU; RFBR [11-02-01221, 11-02-00379]; bilateral Program "Russian-German Laboratory at BESSY"; [SFB 569] FX We are indebted to A. Muller and co-workers for generously providing samples. We thank J. Schnack for carefully reading our manuscript and suggesting very valuable improvements. This work was performed at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, USA; which is operated under contract No. DE-AC02-05CH11231, BESSY II (Helmholtz - Zentrum Berlin), Germany, and the Swiss Light Source (Paul Scherrer Institute), Switzerland. Financial and travel support from the SFB 569, the PhD programme of the Federal State of Lower Saxony, Germany, the DFG GRK 965, the DFG FOR 945, and the EU's Seventh Framework Programme are gratefully acknowledged. We thank all beamline scientists for their excellent and generous technical support. T. V. K thanks the RFBR (Project Nos. 11-02-01221 and 11-02-00379) and bilateral Program "Russian-German Laboratory at BESSY" for financial support. NR 41 TC 8 Z9 8 U1 2 U2 35 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 J9 DALTON T JI Dalton Trans. PY 2013 VL 42 IS 22 BP 7924 EP 7935 DI 10.1039/c3dt32759k PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 144MK UT WOS:000318943400014 PM 23403844 ER PT J AU Xu, SL Feng, DH Yan, Z Zhang, L Li, NH Jing, L Wang, JH AF Xu, Shaolun Feng, Donghan Yan, Zheng Zhang, Liang Li, Naihu Jing, Lei Wang, Jianhui TI Ant-Based Swarm Algorithm for Charging Coordination of Electric Vehicles SO INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS LA English DT Article ID OPTIMIZATION AB Uncontrolled charging of large-scale electric vehicles (EVs) can affect the safe and economic operation of power systems, especially at the distribution level. The centralized EVs charging optimization methods require complete information of physical appliances and using habits, which will cause problems of high dimensionality and communication block. Given this, an ant-based swarm algorithm(ASA) is proposed to realize the EVs charging coordination at the transformer level, which can overcome the drawbacks of centralized control method. First, the EV charging load model is developed, and the charging management structure based on swarm intelligence is presented. Second, basic data of the EV using habit is sampled by the Monte Carlo method, and the ASA is applied to realize the load valley filling. The load fluctuation and the transformer capacity are also considered in the algorithm. Finally, the charging coordination of 500 EVs under a 12.47 KV transformer is simulated to demonstrate the validity of the proposed method. C1 [Xu, Shaolun; Feng, Donghan; Yan, Zheng; Zhang, Liang] Minist Educ, Key Lab Control Power Transmiss & Convers, Shanghai 200240, Peoples R China. [Li, Naihu; Jing, Lei] Alstom Grid Technol Ctr Co Ltd, Shanghai 200240, Peoples R China. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Feng, DH (reprint author), Minist Educ, Key Lab Control Power Transmiss & Convers, Shanghai 200240, Peoples R China. EM seed@sjtu.edu.cn RI Feng, Donghan/I-9213-2016; OI Feng, Donghan/0000-0002-9642-4777 FU National High-tech R&D (863) Program of China [2012AA050803]; National Natural Science Foundation of China [51007058]; Research Fund for the Doctoral Program of Higher Education of China [20120073110020]; SMC Excellent Young Faculty Program of Shanghai Jiao Tong University FX This work was supported by the National High-tech R&D (863) Program of China (Grant no. 2012AA050803), National Natural Science Foundation of China (Grant no. 51007058), Research Fund for the Doctoral Program (for Ph.D. Supervisor) of Higher Education of China (Grant no. 20120073110020), and SMC Excellent Young Faculty Program of Shanghai Jiao Tong University. NR 25 TC 3 Z9 3 U1 0 U2 17 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1550-1477 J9 INT J DISTRIB SENS N JI Int. J. Distrib. Sens. Netw. PY 2013 AR 268942 DI 10.1155/2013/268942 PG 13 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 147JX UT WOS:000319164100001 ER PT J AU Mingesz, R Kish, LB Gingl, Z Granqvist, CG Wen, H Peper, F Eubanks, T Schmera, G AF Mingesz, Robert Kish, Laszlo Bela Gingl, Zoltan Granqvist, Claes-Goran Wen, He Peper, Ferdinand Eubanks, Travis Schmera, Gabor TI UNCONDITIONAL SECURITY BY THE LAWS OF CLASSICAL PHYSICS SO METROLOGY AND MEASUREMENT SYSTEMS LA English DT Article DE information theoretic security; unconditional security; secure key exchange; secure key distribution; quantum encryption ID JOHNSON-LIKE NOISE; TAILORED BRIGHT ILLUMINATION; QUANTUM CRYPTOGRAPHY; THERMAL AGITATION; SYSTEM; ATTACK; STATES; SUPERPOSITION; CONDUCTORS; PROTOCOLS AB There is an ongoing debate about the fundamental security of existing quantum key exchange schemes. This debate indicates not only that there is a problem with security but also that the meanings of perfect, imperfect, conditional and unconditional (information theoretic) security in physically secure key exchange schemes are often misunderstood. It has been shown recently that the use of two pairs of resistors with enhanced Johnson-noise and a Kirchhoff-loop - i.e., a Kirchhoff-Law-Johnson-Noise (KLJN) protocol - for secure key distribution leads to information theoretic security levels superior to those of today's quantum key distribution. This issue is becoming particularly timely because of the recent full cracks of practical quantum communicators, as shown in numerous peer-reviewed publications. The KLJN system is briefly surveyed here with discussions about the essential questions such as (i) perfect and imperfect security characteristics of the key distribution, and (ii) how these two types of securities can be unconditional (or information theoretical). C1 [Mingesz, Robert; Gingl, Zoltan] Univ Szeged, Dept Tech Informat, H-6701 Szeged, Hungary. [Kish, Laszlo Bela; Wen, He] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Granqvist, Claes-Goran] Uppsala Univ, Dept Engn Sci, SE-75121 Uppsala, Sweden. [Wen, He] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China. [Peper, Ferdinand] Natl Inst Informat & Commun Technol, Kobe, Hyogo 6512492, Japan. [Eubanks, Travis] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Schmera, Gabor] Space & Naval Warfare Syst Ctr, San Diego, CA 92152 USA. RP Kish, LB (reprint author), Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. EM mingesz@inf.u-szeged.hu; Laszlo.Kish@ece.tamu.edu; Claes-Goran.Granqvist@Angstrom.uu.se; he_wen82@126.com; peper@nict.go.jp; tweuban@sandia.gov; gabe.schmera@navy.mil RI Gingl, Zoltan/E-8262-2011; Wen, He/F-9834-2010 OI Gingl, Zoltan/0000-0001-6570-2685; Wen, He/0000-0001-8024-1899 FU National Natural Science Foundation of China [61002035]; [TAMOP-4.2.1/B-09/1/KONV-2010-0005] FX LBK is grateful to Horace Yuen for discussions on fundamental problems of current QKD schemes, on his new improved scheme, and on the general requirements for physically secure key exchange. LBK is also indebted to Vincent Poor for a discussion on unconditional (information theoretic) security of practical secure physical systems with imperfect security. RM and ZG were partially supported by grant TAMOP-4.2.1/B-09/1/KONV-2010-0005. HW was partially supported by the National Natural Science Foundation of China under grant 61002035. NR 58 TC 19 Z9 19 U1 2 U2 12 PU POLISH ACAD SCIENCES COMMITTEE METROLOGY & RES EQUIPMENT PI WARSAW PA UL MIODOWA 10, WARSAW, 00251, POLAND SN 0860-8229 J9 METROL MEAS SYST JI Metrol. Meas. Syst. PY 2013 VL 20 IS 1 BP 3 EP 16 DI 10.2478/mms-2013-0001 PG 14 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 143QM UT WOS:000318882300001 ER PT J AU Hsin, CL Wingert, M Huang, CW Guo, H Shih, TJ Suh, J Wang, K Wu, JQ Wu, WW Chen, RK AF Hsin, Cheng-Lun Wingert, Matthew Huang, Chun-Wei Guo, Hua Shih, Ten-Jen Suh, Joonki Wang, Kevin Wu, Junqiao Wu, Wen-Wei Chen, Renkun TI Phase transformation and thermoelectric properties of bismuth-telluride nanowires SO NANOSCALE LA English DT Article ID SILICON NANOWIRES; PERFORMANCE AB Thermoelectric materials have attracted much attention due to the current interest in energy conversion and recent advancements in nano-engineering. A simple approach to synthesize BiTe and Bi2Te3 micro/nanowires was developed by combining solution chemistry reactions and catalyst-free vapor-solid growth. A pathway to transform the as-grown BiTe nanostructures into Bi2Te3 can be identified through the Bi-Te phase diagram. Structural characterization of these products was identified using standard microscopy practices. Meanwhile, thermoelectric properties of individual Bi-Te compound micro/nanowires were determined by the suspended microdevice technique. This approach provides an applicable route to synthesize advanced high performance thermoelectric materials in quantities and can be used for a wide range of low-dimensional structures. C1 [Hsin, Cheng-Lun; Shih, Ten-Jen] Natl Cent Univ, Dept Elect Engn, Tao Yuan 32001, Taiwan. [Wingert, Matthew; Chen, Renkun] Univ Calif La Jolla, Dept Mech & Aerosp Engn, San Diego, CA 92093 USA. [Huang, Chun-Wei; Wu, Wen-Wei] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan. [Guo, Hua; Suh, Joonki; Wang, Kevin; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Wu, Junqiao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Hsin, CL (reprint author), Natl Cent Univ, Dept Elect Engn, Tao Yuan 32001, Taiwan. EM clhsin@ee.ncu.edu.tw; rkchen@ucsd.edu RI Guo, Hua/D-5066-2013; Chen, Renkun/J-2400-2014 OI Chen, Renkun/0000-0001-7526-4981 FU Taiwan National Science Council (NSC) [101-2218-E-008-014-MY2, 101-3113-P-008-008-, 100-2628-E-009-023-MY3]; National Science Foundation (NSF) [CBET-0932905]; Department of Energy BES-LBL thermoelectrics program [DE-AC02-05-CH11231]; National Center for Electron Microscopy, Lawrence Berkeley Lab [DE-AC02-05CH11231] FX The authors acknowledge the support from Taiwan National Science Council (NSC) Grants 101-2218-E-008-014-MY2, 101-3113-P-008-008-, 100-2628-E-009-023-MY3, National Science Foundation (NSF) under Grant no. CBET-0932905, Department of Energy BES-LBL thermoelectrics program (DE-AC02-05-CH11231) and National Center for Electron Microscopy, Lawrence Berkeley Lab (DE-AC02-05CH11231). NR 27 TC 26 Z9 26 U1 7 U2 87 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 J9 NANOSCALE JI Nanoscale PY 2013 VL 5 IS 11 BP 4669 EP 4672 DI 10.1039/c3nr00876b PG 4 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 145IL UT WOS:000319008700010 PM 23619552 ER PT J AU Mao, YB Parsons, J McCloy, JS AF Mao, Yuanbing Parsons, Jason McCloy, John S. TI Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles SO NANOSCALE LA English DT Article ID SPIN-GLASS BEHAVIOR; LOW-TEMPERATURE SYNTHESIS; MOLTEN-SALT SYNTHESIS; ROOM-TEMPERATURE; LA2NIMNO6; LA2COMNO6; FILMS; LAALO3; SRTIO3 AB Double perovskite La2BMnO6 (B = Ni and Co) nanoparticles with average particle size of similar to 50 nm were synthesized using a facile, environmentally friendly, and scalable molten-salt reaction at 700 degrees C in air. Their structural and morphological properties were characterized by X-ray diffraction and transmission electron microscopy. Their magnetic properties were evaluated and compared using dc magnetic M-T and M-H, and ac magnetic susceptibility versus frequency, temperature, and field for the first time. The dc magnetization curves show paramagnetic-ferromagnetic transitions at T-C similar to 275 and 220 K for La2NiMnO6 (LNMO) and La2CoMnO6 (LCMO) nanoparticles, respectively. ac susceptibility revealed that the LCMO nanoparticles had a single magnetic transition indicative of Co2+-O2--Mn4+ ordering, whereas the LNMO nanoparticles showed more complex magnetic behaviors suggesting a re-entrant spin glass. C1 [Mao, Yuanbing; Parsons, Jason] Univ Texas Pan Amer, Dept Chem, Edinburg, TX 78539 USA. [McCloy, John S.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Mao, YB (reprint author), Univ Texas Pan Amer, Dept Chem, Edinburg, TX 78539 USA. EM maoy@utpa.edu; john.mccloy@pnnl.gov RI McCloy, John/D-3630-2013 OI McCloy, John/0000-0001-7476-7771 FU University of Texas-Pan American; National Science Foundation under DMR [0934157]; U.S. Department of Energy by Battelle [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research FX This work was partially supported by the startup fund from the University of Texas-Pan American as well as the National Science Foundation under DMR grant #0934157 (PREM-UTPA/UMN-Science and Engineering of Polymeric and Nanoparticle-based Materials for Electronic and Structural Applications). The Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. A portion of the research was performed on an instrument (PPMS) housed within the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 47 TC 12 Z9 12 U1 5 U2 86 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2013 VL 5 IS 11 BP 4720 EP 4728 DI 10.1039/c3nr00825h PG 9 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 145IL UT WOS:000319008700020 PM 23595132 ER PT J AU Lu, J Qin, Y Du, P Luo, XY Wu, TP Ren, Y Wen, JG Miller, DJ Miller, JT Amine, K AF Lu, Jun Qin, Yan Du, Peng Luo, Xiangyi Wu, Tianpin Ren, Yang Wen, Jianguo Miller, Dean J. Miller, Jeffrey T. Amine, Khalil TI Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: application for rechargeable Li-O-2 batteries SO RSC ADVANCES LA English DT Article ID LI-AIR BATTERIES; LITHIUM-OXYGEN BATTERY; LI/AIR BATTERIES; CATHODE CATALYSTS; HIGH-CAPACITY; HIGH-POWER; ELECTRODE; REDUCTION; DISCHARGE; ELECTROCHEMISTRY AB Uniformly dispersed core-shelled Fe/Fe3O4 nanocomposite on porous carbon was synthesized via a wet-chemistry approach, which was tested as a cathode material in rechargeable Li-O-2 battery, showing highly active catalytic effect towards the electrochemical reactions, of particular, oxygen reduction reaction. XPS data showed the oxygen reduction reaction took place on the surface of the catalyst during discharge of the cell. Both XRD and XPS data demonstrated that lithium peroxide partook in the reversible reactions in the Li-O-2 cell with a TEGDME-based electrolyte. C1 [Lu, Jun; Qin, Yan; Du, Peng; Luo, Xiangyi; Miller, Jeffrey T.; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Wu, Tianpin; Ren, Yang] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Lemont, IL 60439 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Electron Microscopy Ctr, Div Mat Sci, Lemont, IL 60439 USA. [Luo, Xiangyi] Univ Utah, Dept Met Engn, Salt Lake City, UT 84112 USA. RP Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM amine@anl.gov RI Du, Peng/F-8336-2013; Amine, Khalil/K-9344-2013; Luo, Xiangyi/N-4709-2014; Luo, Xiangyi/K-6058-2015 OI Luo, Xiangyi/0000-0002-4817-1461; Luo, Xiangyi/0000-0002-4817-1461 FU U.S. Department of Energy; FreedomCAR; Vehicle Technologies Office; Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Vehicles Technology Program; Oak Ridge Associated Universities (ORAU) under DOE [DE-AC05-06OR23100]; DOE Office of Science-Basic Energy Sciences [DE-AC02-06CH11357] FX Research at Argonne National Laboratory was funded by the U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. J. Lu was supported by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Vehicles Technology Program administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE-AC05-06OR23100. The SEM and TEM analysis was performed at the Electron Microscopy Center (EMC), which is supported by the DOE Office of Science-Basic Energy Sciences under contract DE-AC02-06CH11357. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 48 TC 40 Z9 40 U1 12 U2 114 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2013 VL 3 IS 22 BP 8276 EP 8285 DI 10.1039/c3ra40451j PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 144LM UT WOS:000318940800025 ER PT J AU Ryu, WH Kim, DH Kang, SH Kwon, HS AF Ryu, Won-Hee Kim, Dong-Han Kang, Sun-Ho Kwon, Hyuk-Sang TI Electrochemical properties of nanosized Li-rich layered oxide as positive electrode materials for Li-Ion batteries SO RSC ADVANCES LA English DT Article ID LITHIUM BATTERIES; CATHODE MATERIALS; CELLS; GITT; PERFORMANCE; LICOO2; EIS; MN; NI AB A nanosized Li-rich layered oxide/carbon composite material is successfully prepared by simple ball milling pulverization of microsphere-shaped Li-rich layered oxide materials with conductive carbon. The nanosized Li-rich layered oxide/carbon composite electrode exhibits a high 1st discharge capacity of 250 mAh g(-1) with an excellent rate capability at high current density. The composite also reduces the internal resistance from oxygen release during the electrochemical activation of Li2MnO3. The improvement in the electrochemical performance of nanosized Li-rich layered oxide/carbon composite materials primarily occurs because the nanosized particles facilitate the diffusion of Li within the structure and provide innumerable reaction sites with lithium. Furthermore, the electronic conductivity of the active material is effectively enhanced by the carbon coating on the particles. In addition, unique effects of ball milling on the electrochemical properties of the Li-rich layered oxides are observed: (i) pre-activation of the Li2MnO3 component and (ii) gradual electrochemical activation under 4.3 V during cycling. Adverse effects on the electrochemical stability of the nanosized Li-rich layered oxide are also discussed, and these adverse effects mainly arise due to (i) the structural deformation of hexagonal ordering, (ii) the growth of the spinel component and (iii) the insufficient formation of a protective NiF2 layer on the surface of the active material. C1 [Ryu, Won-Hee; Kwon, Hyuk-Sang] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Ryu, Won-Hee; Kim, Dong-Han; Kang, Sun-Ho] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. RP Ryu, WH (reprint author), Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. EM sh0816.kang@samsung.com; hskwon@kaist.ac.kr RI Kwon, Hyuk Sang/C-1889-2011; Ryu, Won-Hee/F-8375-2014 OI Ryu, Won-Hee/0000-0002-0203-2992 FU Basic Science Research Program through the National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [NRF-2010-0024752]; Center for Inorganic Photovoltaic Materials [2012-0001167]; Korea government (MEST); BK21 Program of the Korea Ministry of Knowledge Economy FX This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education, Science and Technology (NRF-2010-0024752). The work was partially supported by the Center for Inorganic Photovoltaic Materials (2012-0001167) grant funded by the Korea government (MEST) and also by the BK21 Program of the Korea Ministry of Knowledge Economy. NR 33 TC 14 Z9 14 U1 4 U2 84 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2013 VL 3 IS 22 BP 8527 EP 8534 DI 10.1039/c3ra40377g PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 144LM UT WOS:000318940800056 ER PT J AU Sakai, VG Khodadadi, S Cicerone, MT Curtis, JE Sokolov, AP Roh, JH AF Sakai, Victoria Garcia Khodadadi, Sheila Cicerone, Marcus T. Curtis, Joseph E. Sokolov, Alexei P. Roh, Joon Ho TI Solvent effects on protein fast dynamics: implications for biopreservation SO SOFT MATTER LA English DT Article ID NEUTRON-SCATTERING; MOLECULAR-DYNAMICS; HYDRATION WATER; MICROSCOPIC INSIGHTS; TREHALOSE; GLYCEROL; LYSOZYME; TRANSITION; MYOGLOBIN; GLASS AB In the context of biopreservation, we study the influence of water, glycerol and trehalose on the ps-ns dynamics of lyzosyme using neutron scattering. Results indicate that the choice of bioprotectant depends on the storage temperature; glycerol is the most effective for low temperatures and trehalose for high temperatures. C1 [Sakai, Victoria Garcia] Rutherford Appleton Lab, ISIS Neutron & Muon Facil, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Khodadadi, Sheila; Curtis, Joseph E.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Cicerone, Marcus T.] NIST, Polymers Div, Gaithersburg, MD 20899 USA. [Sokolov, Alexei P.] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. [Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Roh, Joon Ho] Univ Akron, Akron, OH 44325 USA. RP Sakai, VG (reprint author), Rutherford Appleton Lab, ISIS Neutron & Muon Facil, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. EM Victoria.garcia-sakai@stfc.ac.uk; cicerone@nist.gov; joseph.curtis@nist.gov; sokolov@utk.edu; joonho.roh.ctr.ks@nrl.navy.mil OI Garcia Sakai, Victoria/0000-0001-6570-4218 NR 33 TC 13 Z9 13 U1 4 U2 48 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2013 VL 9 IS 22 BP 5336 EP 5340 DI 10.1039/c3sm50492a PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 144MZ UT WOS:000318945100003 ER PT J AU Hur, SM Frischknecht, AL Huber, DL Fredrickson, GH AF Hur, Su-Mi Frischknecht, Amalie L. Huber, Dale L. Fredrickson, Glenn H. TI Self-assembly in a mixed polymer brush with inhomogeneous grafting density composition SO SOFT MATTER LA English DT Article ID CONSISTENT-FIELD THEORY; MICROPHASE SEPARATION; BLOCK-COPOLYMER; SIMULATIONS; MORPHOLOGY; GRADIENTS; MEMORY AB While theoretical and numerical studies have shown the possibility of obtaining long-range ordering from the self-assembly of A-B binary mixed brushes similar to diblock copolymer thin films, such ordered patterns are not currently obtainable experimentally. In addition, most experimental observations of mixed brushes show relatively short range order with many defective structures. One explanation for poor microdomain ordering in experimental mixed brushes is a strong correlation between the spatial distribution of the grafting points and the self-assembly. To investigate this relationship in detail, we use self-consistent field theory (SCFT) simulations to study the phase-separated morphologies of melt mixed brushes with spatially varying grafting density compositions. Variations in the grafting density composition are implemented by modulating the grafting chain end distribution function to locally control the ratio of A and B chains attached to the surface, while maintaining uniform total grafting density. Three different types of grafting density composition variations are investigated: a linear ramping of the grafting density composition, deterministic sinusoidal variations, and random fluctuations with various correlation lengths and strengths. The resulting patterns in the micro-phase separated brush are seen to depend sensitively on both the wavelengths and amplitudes of the imposed grafting density fluctuations. C1 [Hur, Su-Mi; Fredrickson, Glenn H.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Frischknecht, Amalie L.; Huber, Dale L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Fredrickson, Glenn H.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Fredrickson, Glenn H.] Univ Calif Santa Barbara, Mat Sci Lab, Santa Barbara, CA 93106 USA. RP Fredrickson, GH (reprint author), Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. EM ghf@mrl.ucsb.edu RI Frischknecht, Amalie/N-1020-2014; Huber, Dale/A-6006-2008 OI Frischknecht, Amalie/0000-0003-2112-2587; Huber, Dale/0000-0001-6872-8469 FU U.S. Department of Energy [DE-AC04-94AL85000]; Sandia LDRD program; MARCO Center on Functional Engineered Nano Architectonics (FENA) FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Department of Energy under Contract no. DE-AC04-94AL85000. Partial support was also provided from the Sandia LDRD program and from the MARCO Center on Functional Engineered Nano Architectonics (FENA) and computer resources were provided by the Center for Scientific Computing at UCSB, a partnership between CNSI and MRL: an NSF MRSEC (DMR-1121053). NR 29 TC 7 Z9 7 U1 3 U2 55 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2013 VL 9 IS 22 BP 5341 EP 5354 DI 10.1039/c3sm50173f PG 14 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 144MZ UT WOS:000318945100004 ER PT J AU Meng, D Kumar, SK Cheng, SF Grest, GS AF Meng, Dong Kumar, Sanat K. Cheng, Shengfeng Grest, Gary S. TI Simulating the miscibility of nanoparticles and polymer melts SO SOFT MATTER LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; MODEL ATHERMAL MIXTURES; SELF-EXCLUDING POLYMERS; PHASE-BEHAVIOR; COMPUTER-SIMULATIONS; NANOCOMPOSITES; MATRIX; PARTICLES; COLLOIDS; SYSTEMS AB While the miscibility and spatial dispersion of nanoparticles (NPs) in a polymer melt critically affects the properties of the resulting nanocomposite, little simulation work exists on understanding this critical issue. We use isothermal-isobaric ensemble simulations and show that larger NPs disperse more easily than small NPs, implying the relative dominance of NP-polymer attractions over depletion-induced inter-NP attractions. Similarly, polymer chain length only plays a secondary role, probably because the entropic, depletion-induced inter-NP attractions only occur over length scales comparable to the correlation length in the melt, namely the segment size, sigma. Importantly, no NP self-assembly is observed, and the only transition that occurs for polymer systems with large enough NPs (sigma(NP) >= 6 sigma) is of a purely, first-order solid-fluid type. This result follows from the fact that the range of effective attractions between the NPs, delta = sigma/sigma(NP), is short enough to preclude a vapor-liquid transition. This finding is given more weight since an equivalent sticky sphere model can reproduce the essence of our simulations. The observed behavior is captured by an effective two-body, polymer-mediated, inter-NP interaction potential, a surprising result in light of conventional wisdom in this field which implies the importance of many body effects. C1 [Meng, Dong; Kumar, Sanat K.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Cheng, Shengfeng; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kumar, SK (reprint author), Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. EM sk2794@columbia.edu RI Meng, Dong/D-8328-2014; OI Meng, Dong/0000-0003-1763-6411; Cheng, Shengfeng/0000-0002-6066-2968 FU National Science Foundation [CBET-1033168]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Advanced Scientific Computing Research (ASCR) Leadership Computing Challenge (ALCC); Laboratory Directed Research and Development (LDRD); National Institute for Nano-Engineering at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Financial support from the National Science Foundation (CBET-1033168) is gratefully acknowledged. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231 and the Advanced Scientific Computing Research (ASCR) Leadership Computing Challenge (ALCC). This work was supported in part by the Laboratory Directed Research and Development (LDRD) and the National Institute for Nano-Engineering at Sandia National Laboratories. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 67 TC 16 Z9 16 U1 7 U2 64 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2013 VL 9 IS 22 BP 5417 EP 5427 DI 10.1039/c3sm50460c PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 144MZ UT WOS:000318945100012 ER PT S AU Reichhardt, C Nussinov, Z Reichhardt, CJO AF Reichhardt, C. Nussinov, Z. Reichhardt, C. J. Olson BE Chauhan, AK Murli, C Gadkari, SC TI Connecting Jamming and Depinning Transitions SO SOLID STATE PHYSICS, VOL 57 SE AIP Conference Proceedings LA English DT Proceedings Paper CT 57th DAE Solid State Physics Symposium CY DEC 03-07, 2012 CL Indian Inst Technol, Bombay, INDIA SP Gov India, Dept Atom Energy (DAE), Board Res Nucl Sci (BRNS) HO Indian Inst Technol DE jamming; pinning; peak effect; granular matter ID FLUX-LINE-LATTICE; DYNAMICS AB We examine a system of binary disks that is known to exhibit a jamming transition at a well defined density termed point J. We add quenched disorder and measure the external force needed to depin the disks or send them into motion as a function of disk density. We find a rich variety of depinning behaviors. For small amounts of disorder, only the jammed or stiff phases are pinned. For strong disorder, disks in unjammed samples with densities well below jamming are more strongly pinned than disks in samples at densities close to the jamming transition. We also discuss connections to the peak effect for depinning in vortex systems. C1 [Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM reichhardt@lanl.gov NR 12 TC 0 Z9 0 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1133-3 J9 AIP CONF PROC PY 2013 VL 1512 BP 7 EP 10 DI 10.1063/1.4790891 PG 4 WC Physics, Applied; Physics, Condensed Matter SC Physics GA BEL78 UT WOS:000317266700001 ER PT B AU McMahon, JM Gray, SK Schatz, GC AF McMahon, Jeffrey M. Gray, Stephen K. Schatz, George C. BE Taflove, A Oskooi, A Johnson, SG TI FDTD Computation of the Non local Optical Properties of Arbitrarily Shaped Nanostructures SO ADVANCES IN FDTD COMPUTATIONAL ELECTRODYNAMICS: PHOTONICS AND NANOTECHNOLOGY SE Artech House Antennas and Propagation Series LA English DT Article; Book Chapter ID LONGITUDINAL PLASMONS; SINGLE-MOLECULE; METALLIC-FILMS; NANOPARTICLES; MEDIA; SCATTERING; RESONANCE; SPHERES C1 [McMahon, Jeffrey M.] Univ Illinois, Inst Condensed Matter Theory, Urbana, IL 61801 USA. [Gray, Stephen K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Theory & Modeling Grp, Argonne, IL 60439 USA. [Gray, Stephen K.] Amer Phys Soc, College Pk, MD USA. [Schatz, George C.] Northwestern Univ, Evanston, IL USA. [Schatz, George C.] MIT, Cambridge, MA 02139 USA. RP McMahon, JM (reprint author), Univ Illinois, Inst Condensed Matter Theory, Urbana, IL 61801 USA. RI Wessels, Bruce/B-7541-2009; Taflove, Allen/B-7275-2009 NR 43 TC 0 Z9 0 U1 0 U2 1 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-170-8 J9 ARTECH HSE ANTENN PR PY 2013 BP 185 EP 207 PG 23 WC Mathematics, Interdisciplinary Applications; Optics; Telecommunications SC Mathematics; Optics; Telecommunications GA BET91 UT WOS:000318121700010 ER PT B AU Chen, HN McMahon, JM Ratner, MA Schatz, GC AF Chen, Hanning McMahon, Jeffrey M. Ratner, Mark A. Schatz, George C. BE Taflove, A Oskooi, A Johnson, SG TI Classical Electrodynamics Coupled to Quantum Mechanics for Calculation of Molecular Optical Properties: An RT-TDDFT/FDTD Approach SO ADVANCES IN FDTD COMPUTATIONAL ELECTRODYNAMICS: PHOTONICS AND NANOTECHNOLOGY SE Artech House Antennas and Propagation Series LA English DT Article; Book Chapter ID PHOTOINDUCED ELECTRON-TRANSFER; ENHANCED RAMAN-SPECTROSCOPY; DENSITY-FUNCTIONAL THEORY; SENSITIZED SOLAR-CELLS; METAL NANOPARTICLES; RESPONSE PROPERTIES; GOLD NANOPARTICLES; TIO2 FILM; SILVER; APPROXIMATION C1 [Chen, Hanning] George Washington Univ, Washington, DC 20052 USA. [Chen, Hanning] Northwestern Univ, Argonne Natl Lab, Solar Energy Res Ctr, Evanston, IL 60208 USA. [McMahon, Jeffrey M.] Univ Illinois, Inst Condensed Matter Theory, Urbana, IL 61801 USA. [Ratner, Mark A.; Schatz, George C.] Northwestern Univ, Evanston, IL USA. [Ratner, Mark A.] Northwestern ISEN, Initiat Sustainabil & Energy, Evanston, IL USA. [Ratner, Mark A.] Aarhus Univ, DK-8000 Aarhus C, Denmark. [Ratner, Mark A.] Univ Munich, Munich, Germany. [Ratner, Mark A.] NYU, New York, NY 10003 USA. [Schatz, George C.] MIT, Cambridge, MA 02139 USA. RP Chen, HN (reprint author), George Washington Univ, Washington, DC 20052 USA. RI Wessels, Bruce/B-7541-2009; Taflove, Allen/B-7275-2009 NR 53 TC 0 Z9 0 U1 0 U2 11 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-170-8 J9 ARTECH HSE ANTENN PR PY 2013 BP 209 EP 231 PG 23 WC Mathematics, Interdisciplinary Applications; Optics; Telecommunications SC Mathematics; Optics; Telecommunications GA BET91 UT WOS:000318121700011 ER PT J AU Fongkaew, I T-Thienprasert, J Singh, DJ Du, MH Limpijumnong, S AF Fongkaew, Ittipon T-Thienprasert, Jiraroj Singh, D. J. Du, M. -H. Limpijumnong, Sukit TI First principles calculations of Hydrogen-Titanium vacancy complexes in SrTiO3 SO CERAMICS INTERNATIONAL LA English DT Article; Proceedings Paper CT 8th Asian Meeting on Electroceramics (AMEC) CY JUL 01-05, 2012 CL MALAYSIA SP Off Naval Res Global DE SrTiO3; Hydrogen; Vacancy; First principles calculations ID STRONTIUM-TITANATE; ULTRASOFT PSEUDOPOTENTIALS; STRETCHING VIBRATIONS; O-H; SPECTROSCOPY; IMPURITIES; FILMS AB Hydrogen has been reported to serve exclusively as a donor in many oxides, including SrTiO3. In a perfect crystal, a proton stays near an O atom, forming a strong O-H bond. In the presence of cation vacancies, i.e., Sr vacancy and Ti vacancy, protons prefer to electrically passivate the cation vacancies by forming strong bonds with the O atoms surrounding the vacancy. These result in the formation of nH-V-Sr and nH-V-Ti complexes. Based on first principles density functional calculations, local configurations and vibration signatures of nH-V-Sr complexes and their vibrational signatures have been previously reported [T-Thienprasert et al., Identification of hydrogen defects in SrTiO3 by first-principles local vibration mode calculations, Physical Review B 85, 125205 (2012)]. Here, we report the computational results for nH-V-Ti complexes and compare the results with infrared measurements reported in the literatures. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved. C1 [Fongkaew, Ittipon; Limpijumnong, Sukit] Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand. [Fongkaew, Ittipon; T-Thienprasert, Jiraroj; Limpijumnong, Sukit] Thailand Ctr Excellence Phys ThEP Ctr, Commiss Higher Educ, Bangkok 10400, Thailand. [T-Thienprasert, Jiraroj] Kasetsart Univ, Fac Sci, Dept Phys, Bangkok 10900, Thailand. [Singh, D. J.; Du, M. -H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Limpijumnong, S (reprint author), Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand. EM sukit@sut.ac.th RI Du, Mao-Hua/B-2108-2010 OI Du, Mao-Hua/0000-0001-8796-167X NR 29 TC 2 Z9 2 U1 1 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 EI 1873-3956 J9 CERAM INT JI Ceram. Int. PY 2013 VL 39 SU 1 BP S273 EP S276 DI 10.1016/j.ceramint.2012.10.076 PG 4 WC Materials Science, Ceramics SC Materials Science GA 141SU UT WOS:000318747600053 ER PT J AU Tanabe, KK Siladke, NA Broderick, EM Kobayashi, T Goldston, JF Weston, MH Farha, OK Hupp, JT Pruski, M Mader, EA Johnson, MJA Nguyen, ST AF Tanabe, Kristine K. Siladke, Nathan A. Broderick, Erin M. Kobayashi, Takeshi Goldston, Jennifer F. Weston, Mitchell H. Farha, Omar K. Hupp, Joseph T. Pruski, Marek Mader, Elizabeth A. Johnson, Marc J. A. Nguyen, SonBinh T. TI Stabilizing unstable species through single-site isolation: a catalytically active Ta-V trialkyl in a porous organic polymer SO CHEMICAL SCIENCE LA English DT Article ID HIGH-SURFACE-AREA; AROMATIC FRAMEWORK; HYDROGEN STORAGE; INORGANIC OXIDES; COMPLEXES; TANTALUM; CATALYSIS; NETWORKS; GAS; METATHESIS AB A catechol-functionalized porous organic polymer (POP) has been successfully metallated with a Ta-V trialkyl and remains thermally and structurally robust. The resulting POP-supported (catecholato)Ta-V trialkyl sites remain accessible to small molecules and can undergo reactions to yield stable, monomeric complexes that are quite different from those observed with the homogeneous analogues. Using a combination of reactivity studies, high-resolution solid-state NMR spectroscopy, and X-ray absorption spectroscopy (XAS), we are able to precisely determine the functionality and coordination environment of the active (catecholato)Ta-V trialkyl site and its products in reactions with Bronsted acids. Additionally, the Ta-metallated POP was found to have enhanced catalytic activity in the hydrogenation of cyclohexene and toluene relative to a homogeneous analogue. C1 [Tanabe, Kristine K.; Siladke, Nathan A.; Broderick, Erin M.; Hupp, Joseph T.; Mader, Elizabeth A.; Johnson, Marc J. A.; Nguyen, SonBinh T.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Kobayashi, Takeshi; Goldston, Jennifer F.; Pruski, Marek] US DOE, Ames Lab, Ames, IA 50011 USA. [Goldston, Jennifer F.; Pruski, Marek] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Weston, Mitchell H.; Farha, Omar K.; Hupp, Joseph T.; Nguyen, SonBinh T.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Weston, Mitchell H.; Farha, Omar K.; Hupp, Joseph T.; Nguyen, SonBinh T.] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA. RP Mader, EA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM mader@anl.gov; mjjohnson@anl.gov; stn@anl.gov RI Nguyen, SonBinh/C-1682-2014 OI Nguyen, SonBinh/0000-0002-6977-3445 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. DOE [DE-AC02-06CH11357]; U.S. DOE, Office of Basic Energy Sciences [AL-03-380-011, W-7405-Eng-82]; DTRA [HDTRA1-10-1-0023] FX We thank S. C. Browne, N. David, and L. M. Fenton for synthesizing some of the starting materials used in this work. We thank Dr. M. S. Ferrandon for help with the initial catalysis setup and Dr. S. J. Lopykinski for help with the gas chromatography setup. We thank Drs. J. T. Miller and A. S. Hock for helpful discussions. Work carried out at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. Use of the Advanced Photon Source, a User Facility operated for the U.S. Department of Energy (DOE), Office of Science by Argonne National Laboratory, was also supported by the U.S. DOE under Contract no. DE-AC02-06CH11357. Ames Laboratory's work was supported through the U.S. DOE, Office of Basic Energy Sciences, through Catalysis Science Grant AL-03-380-011 and under Contract W-7405-Eng-82. S. T. N., J. T. H., and O. K. F. additionally acknowledge DTRA (Agreement HDTRA1-10-1-0023) for support. NR 58 TC 23 Z9 23 U1 7 U2 59 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2041-6520 J9 CHEM SCI JI Chem. Sci. PY 2013 VL 4 IS 6 BP 2483 EP 2489 DI 10.1039/c3sc22268c PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 139CS UT WOS:000318559700024 ER PT J AU Flannery, DJ Modzeleski, W Kretschmar, JM AF Flannery, Daniel J. Modzeleski, William Kretschmar, Jeff M. TI Violence and School Shootings SO CURRENT PSYCHIATRY REPORTS LA English DT Article DE School violence; Shootings; Firearms; Homicide; Threat assessment; Mental health; Rampage; Profiling; Targeted; Prevention; Treatment; Survivors; Trauma; Child and adolescent disorders; Psychiatry ID PSYCHOLOGICAL TRAUMA; THREAT ASSESSMENT; UNITED-STATES; SUICIDE; ADOLESCENTS; BEHAVIORS; EXPOSURE; CONTRIBUTORS; SAMPLE; RISK AB Multiple-homicide school shootings are rare events, but when they happen they significantly impact individuals, the school and the community. We focus on multiple-homicide incidents and identified mental health issues of shooters. To date, studies of school shootings have concluded that no reliable profile of a shooter exists, so risk should be assessed using comprehensive threat assessment protocols. Existing studies primarily utilize retrospective case histories or media accounts. The field requires more empirical and systematic research on all types of school shootings including single victim incidents, those that result in injury but not death and those that are successfully averted. We discuss current policies and practices related to school shootings and the role of mental health professionals in assessing risk and supporting surviving victims. C1 [Flannery, Daniel J.; Kretschmar, Jeff M.] Case Western Reserve Univ, Mandel Sch Appl Social Sci, Cleveland, OH 44106 USA. [Modzeleski, William] US DOE, Off Safe & Drug Free Sch, Washington, DC 20585 USA. RP Flannery, DJ (reprint author), Case Western Reserve Univ, Mandel Sch Appl Social Sci, 11402 Bellflower Rd, Cleveland, OH 44106 USA. EM daniel.flannery@case.edu; WModzeleski@gmail.com; jeff.kretschmar@case.edu NR 44 TC 7 Z9 7 U1 10 U2 71 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1523-3812 J9 CURR PSYCHIAT REP JI Curr. Psychiatry Rep. PD JAN PY 2013 VL 15 IS 1 AR 6 DI 10.1007/s11920-012-0331-6 PG 7 WC Psychiatry SC Psychiatry GA 141XM UT WOS:000318759800001 PM 23254623 ER PT J AU Aaron, D Sun, CN Bright, M Papandrew, AB Mench, MM Zawodzinski, TA AF Aaron, Douglas Sun, Che-Nan Bright, Michael Papandrew, Alexander B. Mench, Matthew M. Zawodzinski, Thomas A. TI In Situ Kinetics Studies in All-Vanadium Redox Flow Batteries SO ECS ELECTROCHEMISTRY LETTERS LA English DT Article ID PEM FUEL-CELLS; REFERENCE ELECTRODE AB We report results of polarization measurements resolved for the negative and positive electrodes of vanadium redox batteries (VRBs) using a dynamic hydrogen electrode in an operating battery cell. Electrochemical experiments with symmetric electrolyte feeds were also performed. Greater kinetic polarization is observed at the negative (V3/2+) electrode compared to the positive electrode (V5/4+), in contrast with previously reported ex situ measurements. For the positive electrode, the polarization in the low-current regime was modest and was not kinetically controlled. The relative rates of reaction are a surprise since it might be expected that the V3/2+ redox reaction is a simple outer-sphere electron transfer. (c) 2013 The Electrochemical Society. All rights reserved. C1 [Aaron, Douglas; Bright, Michael; Papandrew, Alexander B.; Zawodzinski, Thomas A.] Univ Tennessee, Knoxville, TN 37996 USA. [Sun, Che-Nan; Zawodzinski, Thomas A.] Oak Ridge Natl Lab, Phys Chem Mat Grp, Oak Ridge, TN 37831 USA. [Mench, Matthew M.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Mench, Matthew M.] Oak Ridge Natl Lab, Emiss & Catalysis Res Grp, Oak Ridge, TN 37831 USA. RP Aaron, D (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM tzawodzi@utk.edu RI Sun, Che-Nan/I-3871-2013 NR 13 TC 38 Z9 38 U1 6 U2 101 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 2162-8726 J9 ECS ELECTROCHEM LETT JI ECS Electrochem. Lett. PY 2013 VL 2 IS 3 BP A29 EP A31 DI 10.1149/2.001303eel PG 3 WC Electrochemistry; Materials Science, Multidisciplinary SC Electrochemistry; Materials Science GA 139AQ UT WOS:000318554100001 ER PT J AU Sun, CN Delnick, FM Aaron, DS Papandrew, AB Mench, MM Zawodzinski, TA AF Sun, Che-Nan Delnick, F. M. Aaron, D. S. Papandrew, A. B. Mench, M. M. Zawodzinski, T. A. TI Probing Electrode Losses in All-Vanadium Redox Flow Batteries with Impedance Spectroscopy SO ECS ELECTROCHEMISTRY LETTERS LA English DT Article ID CELL AB We report on single-electrode electrochemical impedance spectroscopy studies of an all-vanadium redox battery using a dynamic hydrogen reference electrode. The negative electrode, comprising the V2+/V3+ couple, contributes approximately 80% of the total cell overpotential during discharge. The impedance spectra measured at the negative electrode exhibit high-frequency, semicircular arcs which correspond to the double layer capacitance in parallel with a faradaic resistance. The faradaic resistance decreases in magnitude with increasing polarization. Integration of the current-dependent faradaic resistance quantifies the fraction of the overvoltage that is attributed to the kinetic limitations of the charge transfer reaction. (c) 2013 The Electrochemical Society. All rights reserved. C1 [Sun, Che-Nan; Mench, M. M.; Zawodzinski, T. A.] Oak Ridge Natl Lab, Emiss & Catalysis Res Grp, Phys Chem Mat Grp, Oak Ridge, TN 37831 USA. [Delnick, F. M.] Sandia Natl Labs, Power Sources Technol Grp, Albuquerque, NM 87185 USA. [Aaron, D. S.; Papandrew, A. B.; Mench, M. M.; Zawodzinski, T. A.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Sun, CN (reprint author), Oak Ridge Natl Lab, Emiss & Catalysis Res Grp, Phys Chem Mat Grp, Oak Ridge, TN 37831 USA. EM sunc@ornl.gov RI Sun, Che-Nan/I-3871-2013 FU US Department of Energy Office of Electricity Storage Systems Program; University of Tennessee Governor's Chair Fund FX The authors gratefully acknowledge the support of the US Department of Energy Office of Electricity Storage Systems Program and the University of Tennessee Governor's Chair Fund for support of this work. NR 15 TC 29 Z9 30 U1 5 U2 67 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 2162-8726 J9 ECS ELECTROCHEM LETT JI ECS Electrochem. Lett. PY 2013 VL 2 IS 5 BP A43 EP A45 DI 10.1149/2.001305eel PG 3 WC Electrochemistry; Materials Science, Multidisciplinary SC Electrochemistry; Materials Science GA 139BN UT WOS:000318556600001 ER PT J AU Atanasoski, RT Cullen, DA Vernstrom, GD Haugen, GM Atanasoska, LL AF Atanasoski, R. T. Cullen, D. A. Vernstrom, G. D. Haugen, G. M. Atanasoska, L. L. TI A Materials-Based Mitigation Strategy for SU/SD in PEM Fuel Cells: Properties and Performance-Specific Testing of IrRu OER Catalysts SO ECS ELECTROCHEMISTRY LETTERS LA English DT Article ID MEMBRANE AB Catalysts that enable proton exchange membrane fuel cells to weather the damaging conditions experienced during transient periods of fuel starvation have been developed. The addition of minute amounts of iridium and ruthenium to the cathode enhances the oxygen evolution reaction (OER) during start-up/shutdown events, thus lowering the peak cell voltage closer to the onset of water oxidation. The catalyst loadings ranged from 1 to 10 mu g/cm(2), but showed surprisingly high activity and durability. At such low loadings, it is possible to fully integrate the OER catalysts with negligible interference on fuel cell performance and a marginal increase in catalyst cost. (c) 2013 The Electrochemical Society. All rights reserved. C1 [Atanasoski, R. T.; Vernstrom, G. D.; Haugen, G. M.] 3M Co, Fuel Cell Program 3M, St Paul, MN 55144 USA. [Cullen, D. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Atanasoska, L. L.] 3M Co, Corp Res Analyt Lab 3M, St Paul, MN 55144 USA. RP Atanasoski, RT (reprint author), 3M Co, Fuel Cell Program 3M, St Paul, MN 55144 USA. EM rtatanasoski@mmm.com RI Cullen, David/A-2918-2015 OI Cullen, David/0000-0002-2593-7866 FU Fuel Cell Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy [DE-EE0000456]; Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program; Office of Basic Energy Sciences, U.S. Department of Energy FX The MEA assembly and testing by Jimmy Wong and Theresa Watschke is highly appreciated. This work was supported by the Fuel Cell Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy under Award Number DE-EE0000456.; Research sponsored by Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 12 TC 5 Z9 5 U1 1 U2 13 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 2162-8726 J9 ECS ELECTROCHEM LETT JI ECS Electrochem. Lett. PY 2013 VL 2 IS 3 BP F25 EP F28 DI 10.1149/2.006303eel PG 4 WC Electrochemistry; Materials Science, Multidisciplinary SC Electrochemistry; Materials Science GA 139AQ UT WOS:000318554100007 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Amorim, A Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Avramidou, R Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, AK Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Begel, M Harpaz, SB Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buescher, V Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carquin, E Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocca, C Ciocio, A Cirilli, M Cirkovic, P Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Cogan, JG Coggeshall, J Cogneras, E Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Dassoulas, JA Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lorenzi, F de Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Papa, C Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donini, J Dopke, J Doria, A DosAnjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Duguid, L Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Duren, M Ebke, J Eckweiler, S Edmonds, K Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Frank, T Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Goepfert, T Goeringer, C Goessling, C Goldfarb, S Golling, T Gomes, A Fajardo, LSG Gonalo, R Da Costa, JGPF Gonella, L Gonzalez, S de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gosdzik, B Goshaw, AT Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Guicheney, C Guindon, S Gul, U Guler, H Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Hall, D Haller, J Hamacher, K Hamal, P Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hawkins, D Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM van Huysduynen, LH Horn, C Horner, S Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Iliadis, D Ilic, N Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jana, DK Jansen, E Jansen, H Jantsch, A Janus, M Jarlskog, G Jeanty, L Plante, IJL Jennens, D Jenni, P Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keeler, R Kehoe, R Keil, M Kekelidze, GD Keller, JS Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalilzada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koeneke, K Konig, AC Koenig, S Koepke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollefrath, M Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Koperny, S Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kreiss, S Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Krueger, H Kruker, T Krumnack, N Krumshteyn, ZV Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lukas, W Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundberg, O Lundquist, J Lungwitz, M Lynn, D Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Maddocks, HJ Mader, WF Maenner, R Maeno, T Maettig, P Maettig, S Magnoni, L Magradze, E Mahboubi, K Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P MaleevI, VP Maleka, F Mallik', U Malons, D Malone, C Maltezos, S Malyshevm, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandryschis, R Maneira, J Mangeard, PS de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Martensla, FK Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin's, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maurer, J Maxfield, SJ Mayne, A Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjoernmark, JU Moa, T Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Moles-Valls, R Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraess, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Muller, TA Mueller, T Muenstermann, D Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethym, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiyal, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Orem, Y Orestano, D Orlando, N Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pinto, B Pizio, C Plamondon, M Pleier, MA Plotnikova, E Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, M Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radloff, P Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruehr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryan, P Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaefer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schneider, B Schnoor, U Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerer, M Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Soni, N Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlmann, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Stroehmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, H Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Sykora, I Sykora, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadzea, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valentinetti, S Valero, A Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van der Deijl, PC van der Geer, R van der Graaf, H van der Kraaij, E Van der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, R Wang, SM Wang, T Warburton, A Ward, CP Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K Wheeler-Ellis, SJ White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, C Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yaoa, L Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Young, CJ Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zajacova, Z Zanello, L Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zinonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Alvarez Gonzalez, B. Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amorim, A. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Avramidou, R. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. Guimaraes da Costa, J. Barreiro Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, A. K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Begel, M. Harpaz, S. Behar Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. Brown, H. Bruckman de Renstrom, P. A. Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Capasso, L. Capeans Garrido, M. D. M. Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carquin, E. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Castaneda Hernandez, A. M. Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Chavez Barajas, C. A. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheplakov, A. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocca, C. Ciocio, A. Cirilli, M. Cirkovic, P. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Cogan, J. G. Coggeshall, J. Cogneras, E. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crepe-Renaudin, S. Cuciuc, C. -M. Cuenca Almenar, C. Cuhadar Donszelmann, T. Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. de Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Papa, C. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donini, J. Dopke, J. Doria, A. DosAnjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Duguid, L. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebke, J. Eckweiler, S. Edmonds, K. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Frank, T. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goldfarb, S. Golling, T. Gomes, A. Gomez Fajardo, L. S. Gonalo, R. Firmino Da Costa, J. Goncalves Pinto Gonella, L. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gosdzik, B. Goshaw, A. T. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Guicheney, C. Guindon, S. Gul, U. Guler, H. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Hall, D. Haller, J. Hamacher, K. Hamal, P. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hawkins, D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Henriques Correia, A. M. Henrot-Versille, S. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Horn, C. Horner, S. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jana, D. K. Jansen, E. Jansen, H. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Plante, I. Jen-La Jennens, D. Jenni, P. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Jimenez Belenguer, M. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Rozas, A. Juste Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalilzada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollefrath, M. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kreiss, S. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lukas, W. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundberg, O. Lundquist, J. Lungwitz, M. Lynn, D. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Mackeprang, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahboubi, K. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P., I Maleka, F. Mallik', U. Malons, D. Malone, C. Maltezos, S. Malyshevm, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandryschis, R. Maneira, J. Mangeard, P. S. Manhaes de Andrade Filho, L. Manjarres Ramos, J. A. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Martensla, F. K. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin's, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maurer, J. Maxfield, S. J. Mayne, A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Mellado Garcia, B. R. Meloni, F. Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Moya, M. Minano Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Moles-Valls, R. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Mora Herrera, C. Moraess, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethym, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiyal, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Olivares Pino, S. A. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Orem, Y. Orestano, D. Orlando, N. Orlov, I. Oropeza Barrera, C. Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Paredes Hernandez, D. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Pedraza Morales, M. I. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pinto, B. Pizio, C. Plamondon, M. Pleier, M-A. Plotnikova, E. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, M. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radloff, P. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Rocha de Lima, J. G. Roda, C. Roda Dos Santos, D. Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Salvachua Ferrando, B. M. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santamarina Rios, C. Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schneider, B. Schnoor, U. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soni, N. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlmann, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, Hs. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Sykora, I. Sykora, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teixeira Dias Castanheira, M. Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadzea, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valentinetti, S. Valero, A. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Valls Ferrer, J. A. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. van der Kraaij, E. Van der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Vickey Boeriu, O. E. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, C. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Young, C. J. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zanello, L. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zinonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurements of top quark pair relative differential cross-sections with ATLAS in pp collisions at root s=7 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID PARTON DISTRIBUTIONS; P(P)OVER-BAR COLLISIONS; T(T)OVER-BAR; SEARCH; JETS AB Measurements are presented of differential cross-sections for top quark pair production in pp collisions at root s = 7 TeV relative to the total inclusive top quark pair production cross-section. A data sample of 2.05 fb(-1) recorded by the ATLAS detector at the Large Hadron Collider is used. Relative differential cross-sections are derived as a function of the invariant mass, the transverse momentum and the rapidity of the top quark pair system. Events are selected in the lepton (electron or muon) + jets channel. The background-subtracted differential distributions are corrected for detector effects, normalized to the total inclusive top quark pair production cross-section and compared to theoretical predictions. The measurement uncertainties range typically between 10 % and 20 % and are generally dominated by systematic effects. No significant deviations from the Standard Model expectations are observed. C1 [Alam, M. S.; Edson, W.; Ernst, J.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Bahinipati, S.; Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Fellmann, D.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Malons, D.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Salvachua Ferrando, B. M.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalilzada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Ruwiedel, C.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Ruwiedel, C.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandryschis, R.; Nikiforov, A.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Garvey, J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin's, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Phys Engn, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Giusti, P.; Grafstroem, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Abajyan, T.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Psoroulas, S.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wang, T.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Love, J.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Daya-Ishmukhametova, R. K.; Pomeroy, D.; Sciolla, G.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Juiz de Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Ahmad, A.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M-A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Gillberg, D.; Koffas, T.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Baak, M. A.; Bachas, K.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Capeans Garrido, M. D. M.; Carli, T.; Catmore, J. R.; Cattai, A.; Cerri, A.; Chavez Barajas, C. A.; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Henriques Correia, A. M.; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lamanna, M.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Meyer, T. C.; Michal, S.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Portell Bueso, X.; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Roda Dos Santos, D.; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Sfyrla, A.; Shimizu, S.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Ten Kate, H.; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Fiascaris, M.; Gardner, R. W.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Olivares Pino, S. A.; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Yao, L.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Miao, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Paredes Hernandez, D.; Podlyski, F.; Santoni, C.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Paredes Hernandez, D.; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Paredes Hernandez, D.; Podlyski, F.; Santoni, C.; Vazeille, F.] CNRS IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Chen, Y.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Perez Reale, V.; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, INFN Grp Coll Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; Bruckman de Renstrom, P. A.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Kuutmann, E. Bergeaas; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Gomez Fajardo, L. S.; Firmino Da Costa, J. Goncalves Pinto; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Jimenez Belenguer, M.; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Hamburg, Germany. [Kuutmann, E. Bergeaas; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Gomez Fajardo, L. S.; Firmino Da Costa, J. Goncalves Pinto; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Jimenez Belenguer, M.; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Bitenc, U.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik-Fuchs, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Mora Herrera, C.; Nektarijevic, S.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadzea, E. G.] Tbilisi State Univ, E Andronikashvili Inst Phys, GE-380086 Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraess, A.; O'Shea, V.; Oropeza Barrera, C.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Catastini, P.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Hamer, M.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Maleka, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Univ Grenoble 1, Lab Phys Subat & Cosmol, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Maleka, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] CNRSIN2P3, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Maleka, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Guimaraes da Costa, J. Barreiro; Belloni, A.; Conti, G.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Anders, G.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Lukas, W.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Limper, M.; Mallik', U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Dova, M. T.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alonso, F.; Anduaga, X. S.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; de Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; Cindro, V.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Teixeira Dias Castanheira, M.; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Duguid, L.; Edwards, C. A.; Eisenhandler, E.; George, S.; Gonalo, R.; Hayden, D.; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Kramberger, G.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Lane, J. L.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Santamarina Rios, C.; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Jennens, D.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Soni, N.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Alvarez Gonzalez, B.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Giunta, M.; Leroy, C.; Martin, J. P.; Mehdiyev, R.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Snesarev, A. A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Akimov, A. V.; Beale, S.; Becker, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Bronner, J.; Capriotti, D.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Kraaij, E.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Kraaij, E.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; Rocha de Lima, J. G.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshevm, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethym, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Korn, A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Degenhardt, J.; Fratina, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlmann, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P., I; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; De Sousa, M. J. Da Cunha Sargedas; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Cherkaoui El Moursli, R.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Manjarres Ramos, J. A.; Mansoulie, B.; Meyer, J-P.; Mijovic, L.; Morange, N.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.] CEA Saclay, DSM, IRFU, Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Keller, J. S.; Lubatti, H. J.; Rothberg, J.; Verducci, M.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Cuhadar Donszelmann, T.; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Dept Subnucl Phys, Inst Expt Phys, Kosice, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hamilton, A.; Leney, K. J. C.; Vickey, T.; Vickey Boeriu, O. E.; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Cuthbert, C.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Canepa, A.; Dohmae, T.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Munwes, Y.; Orem, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiyal, Y.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiyal, Y.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Bain, T.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martensla, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oram, C. J.; Perez Codina, E.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Sci & Technol Ctr, Medford, MA USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Deng, J.; Farrell, S.; Eschrich, I. Gough; Hawkins, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Coll Udine, Udine, Italy. [Acharya, B. S.] ICTP, Udine, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, IMB, CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw.; Montoya, G. D. Carrillo; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Chen, X.; Di Mattia, A.; DosAnjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Ju, X.; Kashif, L.; Li, H.; Ma, L. L.; Mellado Garcia, B. R.; Ming, Y.; Pan, Y. B.; Pedraza Morales, M. I.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, A. K.; Becks, K. H.; Boek, J.; Braun, H. M.; Cornelissen, T.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kaplan, B.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lantzsch, K.; Lenzen, G.; Maettig, P.; Mechtel, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cuenca Almenar, C.; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Lee, L.; Loginov, A.; Sherman, D.; Tipton, P.; Wall, R.; Walsh, B.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Domaine Sci Doua, Villeurbanne, France. [Aguilar-Saavedra, J. A.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, Lisbon, Portugal. [Apolle, R.; Davies, E.; Mattravers, C.; Nash, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Canelli, F.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Castaneda Hernandez, A. M.] UASLP, Dept Phys, San Luis Potosi, Mexico. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Wemans, A. Do Valle] Univ Nova Lisboa, Dep Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Dobson, E.] UCL, Dept Phys & Astron, London, England. [Guler, H.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, H.; Meng, Z.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, S.] Aix Marseille Univ, CPPM, Marseille, France. [Li, S.] CNRS IN2P3, Marseille, France. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Mountricha, E.; Xu, C.] CEA Saclay, DSM, IRFU, Gif Sur Yvette, France. [Agustoni, M.; Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Ruan, X.] Univ Paris 11, LAL, Orsay, France. [Ruan, X.] CNRS IN2P3, Orsay, France. [Spousta, M.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Tsionou, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wang, H.; Zhang, D.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Wu, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Vanyashin, Aleksandr/H-7796-2013; Moorhead, Gareth/B-6634-2009; Stoicea, Gabriel/B-6717-2011; Doyle, Anthony/C-5889-2009; Pina, Joao /C-4391-2012; Amorim, Antonio/C-8460-2013; Solfaroli Camillocci, Elena/J-1596-2012; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Smirnov, Sergei/F-1014-2011; Conde Muino, Patricia/F-7696-2011; Andreazza, Attilio/E-5642-2011; Boyko, Igor/J-3659-2013; la rotonda, laura/B-4028-2016; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Olshevskiy, Alexander/I-1580-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Booth, Christopher/B-5263-2016; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Kuday, Sinan/C-8528-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; Fazio, Salvatore /G-5156-2010; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Fabbri, Laura/H-3442-2012; Villa, Mauro/C-9883-2009; Kepka, Oldrich/G-6375-2014; Nemecek, Stanislav/G-5931-2014; Jakoubek, Tomas/G-8644-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Prokoshin, Fedor/E-2795-2012; Dawson, Ian/K-6090-2013; Ferrando, James/A-9192-2012; Tudorache, Valentina/D-2743-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Brooks, William/C-8636-2013; Warburton, Andreas/N-8028-2013 OI Vanyashin, Aleksandr/0000-0002-0367-5666; Moorhead, Gareth/0000-0002-9299-9549; Stoicea, Gabriel/0000-0002-7511-4614; Doyle, Anthony/0000-0001-6322-6195; Pina, Joao /0000-0001-8959-5044; Solfaroli Camillocci, Elena/0000-0002-5347-7764; La Rosa, Alessandro/0000-0001-6291-2142; Smirnov, Sergei/0000-0002-6778-073X; Conde Muino, Patricia/0000-0002-9187-7478; Andreazza, Attilio/0000-0001-5161-5759; Boyko, Igor/0000-0002-3355-4662; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Coccaro, Andrea/0000-0003-2368-4559; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Giordani, Mario/0000-0002-0792-6039; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Booth, Christopher/0000-0002-6051-2847; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; De, Kaushik/0000-0002-5647-4489; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Villa, Mauro/0000-0002-9181-8048; Kuleshov, Sergey/0000-0002-3065-326X; Prokoshin, Fedor/0000-0001-6389-5399; Ferrando, James/0000-0002-1007-7816; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Brooks, William/0000-0001-6161-3570; Warburton, Andreas/0000-0002-2298-7315 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 69 TC 24 Z9 24 U1 9 U2 136 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2013 VL 73 IS 1 AR 2261 DI 10.1140/epjc/s10052-012-2261-1 PG 28 WC Physics, Particles & Fields SC Physics GA 135KX UT WOS:000318288100002 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Atkinson, M Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Avramidou, R Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Balek, P Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F Da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, AK Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bittner, B Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Bloch, I Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G Brown, H De Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buescher, V Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Cifici, AK Cifici, R Cinca, D Cindro, V Ciocca, C Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cogneras, E Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDCS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Dassoulas, JA Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Graat, J De Groot, N De Jong, P De la Taille, C De la Torre, H De Lorenzi, F De Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Papa, C Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobbs, M Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dressnandt, N Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duehrssen, M Duerdoth, IP Dufiot, L Dufour, MA Duguid, L Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dueren, M Ebenstein, WL Ebke, J Eckweiler, S Edmonds, K Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Feng, C Feng, EJ Fenyuk, AB Ferencci, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R De Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilehriese, M Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Goepfert, T Goeringer, C Goessling, C Goldfarb, S Golling, T Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L De la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gosdzik, B Goshaw, AT Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Guicheney, C Guindon, S Gul, U Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Hall, D Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM Van Huysduynen, LH Horner, S Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hubacek, Z Hubaut, F Huegging, E Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Iliadis, D Ilic, N Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Jantsch, A Janus, M Jarlskog, G Jeanty, L Plante, IJL Jennens, D Jenni, P Loevschall-Jensen, AE Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazama, S Kazanin, VA Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Keller, JS Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalilzada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koeneke, K Koenig, AC Koenig, S Koepke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsmans, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kreiss, S Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Laria, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepolda, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lukas, W Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundberg, O Lundquist, J Lungwitz, M Lynn, D Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Maddocks, HJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Mancira, J Manfredini, A Mangeard, PS de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, E Marshall, Z Martens, FK Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mayne, A Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Moles-Valls, R Molfetas, A Monk, J Moonier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Mueller, TA Mueller, T Muenstermann, D Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olari, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pinto, B Pizio, C Plamondon, M Pleier, MA Plotnikova, E Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radloff, P Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A De Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruehr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaefer, U Schaelicke, A Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schneider, B Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerers, M Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serif, L Serkin, L Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Sykora, I Sykora, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Urquijo, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valentinetti, S Valero, A Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deijl, PC Van der Geer, R Van der Graaf, H Van der Leeuw, R Van der Poel, E Van der Ster, D Van Eldik, N Van Gemmeren, P Van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpis, M Volpini, G Von der Schmitt, H Von Radziewski, H Von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, R Wang, SM Wang, T Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Weber, P Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiikfuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJ Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zajacova, Z Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zinonos, Z Zenz, S Zerwas, D Della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zibell, A Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Nedden, MZ Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Dos Santos, S. P. Amor Amorim, A. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Atkinson, M. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Avramidou, R. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Balek, P. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. Da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, A. K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bittner, B. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. Brown, H. De Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Cifici, A. K. Cifici, R. Cinca, D. Cindro, V. Ciocca, C. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cogneras, E. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Graat, J. De Groot, N. De Jong, P. De la Taille, C. De la Torre, H. De Lorenzi, F. De Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Papa, C. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dressnandt, N. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Dufiot, L. Dufour, M-A. Duguid, L. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edmonds, K. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencci, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. De Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilehriese, M. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goldfarb, S. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. De la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gosdzik, B. Goshaw, A. T. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Guicheney, C. Guindon, S. Gul, U. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Hall, D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. 030 Hawkins, A. D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. 018 Hedberg, V. 079 Heelan, L. 008 Heim, S. 120 Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Henss, T. Hernandez, C. M. Jimenez, Y. Hernandez Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. Van Huysduynen, L. Hooft Horner, S. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hubacek, Z. Hubaut, F. Huegging, E. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Plante, I. Jen-La Jennens, D. Jenni, P. Loevschall-Jensen, A. E. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Rozas, A. Juste Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazama, S. Kazanin, V. A. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalilzada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsmans, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kreiss, S. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Laria, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepolda, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lukas, W. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundberg, O. Lundquist, J. Lungwitz, M. Lynn, D. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Mackeprang, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Maenner, R. Maeno, T. Mattig, P. Mattig, S. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Mancira, J. Manfredini, A. Mangeard, P. S. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, E. Marshall, Z. Martens, F. K. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mayne, A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Moya, M. Minano Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Moeller, V. Monig, K. Moser, N. Mohapatra, S. Mohr, W. Moles-Valls, R. Molfetas, A. Monk, J. Moonier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olari, A. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Garzon, G. Otero Y. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Lopez, S. Pedraza Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pinto, B. Pizio, C. Plamondon, M. Pleier, M. -A. Plotnikova, E. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radloff, P. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. De Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Martinez, V. Sanchez Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, U. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerers, M. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serif, L. Serkin, L. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Sykora, I. Sykora, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valentinetti, S. Valero, A. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Berg, R. Van der Deijl, P. C. Van der Geer, R. Van der Graaf, H. Van der Leeuw, R. Van der Poel, E. Van der Ster, D. Van Eldik, N. Van Gemmeren, P. Van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpis, M. Volpini, G. Von der Schmitt, H. Von Radziewski, H. Von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Weber, P. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiikfuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zinonos, Z. Zenz, S. Zerwas, D. Della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Nedden, M. Zur Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for pair-produced massive coloured scalars in four-jet final states with the ATLAS detector in proton-proton collisions at root s=7 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID SUPERSYMMETRY AB A search for pair-produced massive coloured scalar particles decaying to a four-jet final state is performed by the ATLAS experiment at the LHC in proton-proton collisions at root s = 7 TeV. The analysed data sample corresponds to an integrated luminosity of 4.6 fb(-1). No deviation from the Standard Model is observed in the invariant mass spectrum of the two-jet pairs. A limit on the scalar gluon pair production cross section of 70 pb (10 pb) is obtained at the 95 % confidence level for a scalar gluon mass of 150 GeV (350 GeV). Interpreting these results as mass limits on scalar gluons, masses ranging from 150 GeV to 287 GeV are excluded at the 95 % confidence level. C1 [Dhullipudi, R.; Greenwood, Z. D.; Jackson, P.; Sawyer, L.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Alam, M. S.; Edson, W.; Ernst, J.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Bahinipati, S.; Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Cifici, A. K.; Cifici, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerers, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerers, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Fellmann, D.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; Van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, High Energy Phys Div, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L. 008; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Ruckstuhl, N.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalilzada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Techol, Bergen, Norway. [Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilehriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilehriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Wendland, D.; Nedden, M. Zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J. 018; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Grafstrom, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bertin, A.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Abajyan, T.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, E.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moser, N.; Mueller, K.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; Von Toerne, E.; Wang, T.; Wermes, N.; Wienemann, P.; Wiikfuchs, L. A. M.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Marroquim, E.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Subramaniam, R.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Micu, L.; Olari, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Garzon, G. Otero Y.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Gillberg, D.; Koffas, T.; Lacey, J.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Avolio, G.; Baak, M. A.; Bachas, K.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Dydak, F.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hauschild, M.; Hawkings, R. J. 030; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lamanna, M.; Lassnig, M.; Le Dortz, O.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Meyer, T. C.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Sfyrla, A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; Van der Ster, D.; Van Eldik, N.; Vandelli, W.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Plante, I. Jen-La; Kapliy, A.; Li, H. L.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Nanava, G.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Pino, S. A. Olivares; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Yao, L.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Brooijmans, G.; Chen, Y.; Dodd, J.; Grau, N.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Spousta, M.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Loevschall-Jensen, A. E.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; De Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Medinnis, M.; Monig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Hamburg, Germany. [Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Medinnis, M.; Monig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; Von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; De Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Hamer, M.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Da Costa, J. Barreiro Guimaraes; Belloni, A.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; Della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lang, V. S.; Lendermann, V.; Lepolda, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Lukas, W.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; De Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, London, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Floderus, A.; Hawkins, A. D.; Hedberg, V. 079; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fys Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Mattig, S.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Moonier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Moonier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Klemetti, M.; Mc Donald, J.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpis, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Bortfeldt, J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Laria, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Giunta, M.; Leroy, C.; Martin, J. P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortolotto, V.; Calfayan, P.; De Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Ince, T.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Stern, S.; Stonjek, S.; Vanadia, M.; Von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Canale, V.; Capasso, L.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Boterenbrood, H.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van der Poel, E.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Boterenbrood, H.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van der Poel, E.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; De Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; Van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De la Taille, C.; De Regie, J. B. De Vivie; Dufiot, L.; Dueren, M.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serif, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De la Taille, C.; De Regie, J. B. De Vivie; Dufiot, L.; Dueren, M.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serif, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Korn, A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Dressnandt, N.; Fratina, S.; Heim, S. 120; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Mancira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anghinolfi, F.; Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Chiefari, G.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Bini, C.; Caloi, R.; Chiefari, G.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Messina, A.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bos, K.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bos, K.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed VAgdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Ramos, J. A. Manjarres; Mansoulie, B.; Meyer, J-P.; Mijovic, L.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondamentales Univers, F-91191 Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tsionou, D.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencci, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Cuthbert, C.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, H.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, D.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Kajomovitz, E.; Kopeliansky, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Bain, T.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Krieger, P.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Anisenkov, A.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsmans, A.; Losty, M. J.; Nugent, I. M.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Deng, J.; Farrell, S.; Eschrich, I. Gough; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Giordani, M. P.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Carrillo-Montoya, G. D.; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Di Mattia, A.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gutzwiller, O.; Ji, H.; Ju, X.; Kashif, L.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Strohmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, A. K.; Becks, K. H.; Boek, J.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lantzsch, K.; Lenzen, G.; Mattig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Loginov, A.; Sherman, D.; Tipton, P.; Wall, R.; Walsh, B.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul, Inst Natl Phys Nucl & Phys Particules IN2P3, Villeurbanne, France. Univ Lisbon, Fac Ciencias, Lisbon, Portugal. Univ Lisbon, CFNUL, Lisbon, Portugal. [Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Hernandez, A. M. Castaneda] UASLP, Dept Phys, San Luis Potosi, Mexico. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. Louisiana Tech Univ, Ruston, LA 71270 USA. [Wemans, A. Do Valle] Univ Nova Lisboa, Dep Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, CEFITEC, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, Caparica, Portugal. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. Manhattan Coll, New York, NY USA. Aix Marseille Univ, CPPM, Marseille, France. CNRS, IN2P3, Marseille, France. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Acad Sinica Grid Comp, Inst Phys, Taipei 115, Taiwan. [Meng, Z.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Ruan, X.] Univ Paris 11, LAL, Orsay, France. [Ruan, X.] CNRS, IN2P3, F-91405 Orsay, France. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Kuday, Sinan/C-8528-2014; Snesarev, Andrey/H-5090-2013; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Demirkoz, Bilge/C-8179-2014; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; Fazio, Salvatore /G-5156-2010; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Fabbri, Laura/H-3442-2012; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Kepka, Oldrich/G-6375-2014; Lokajicek, Milos/G-7800-2014; Jakoubek, Tomas/G-8644-2014; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Prokoshin, Fedor/E-2795-2012; Dawson, Ian/K-6090-2013; Ferrando, James/A-9192-2012; Tudorache, Valentina/D-2743-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Brooks, William/C-8636-2013; Stoicea, Gabriel/B-6717-2011; Doyle, Anthony/C-5889-2009; Pina, Joao /C-4391-2012; Amorim, Antonio/C-8460-2013; Solfaroli Camillocci, Elena/J-1596-2012; Vanyashin, Aleksandr/H-7796-2013; Moorhead, Gareth/B-6634-2009; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Smirnov, Sergei/F-1014-2011; Conde Muino, Patricia/F-7696-2011; Andreazza, Attilio/E-5642-2011; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; O'Shea, Val/G-1279-2010; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Olshevskiy, Alexander/I-1580-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016 OI Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Villa, Mauro/0000-0002-9181-8048; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Prokoshin, Fedor/0000-0001-6389-5399; Ferrando, James/0000-0002-1007-7816; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Brooks, William/0000-0001-6161-3570; Stoicea, Gabriel/0000-0002-7511-4614; Doyle, Anthony/0000-0001-6322-6195; Pina, Joao /0000-0001-8959-5044; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanyashin, Aleksandr/0000-0002-0367-5666; Moorhead, Gareth/0000-0002-9299-9549; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Smirnov, Sergei/0000-0002-6778-073X; Conde Muino, Patricia/0000-0002-9187-7478; Andreazza, Attilio/0000-0001-5161-5759; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Smestad, Lillian/0000-0002-0244-8736; Giordani, Mario/0000-0002-0792-6039; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; O'Shea, Val/0000-0001-7183-1205; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; IN2P3-CNRS, France; CEADSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEADSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 34 TC 23 Z9 23 U1 6 U2 125 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2013 VL 73 IS 1 AR 2263 DI 10.1140/epjc/s10052-012-2263-z PG 20 WC Physics, Particles & Fields SC Physics GA 135KX UT WOS:000318288100004 ER PT J AU Rose, LS Levinson, R AF Rose, L. Shea Levinson, Ronnen TI Analysis of the effect of vegetation on albedo in residential areas: case studies in suburban Sacramento and Los Angeles, CA SO GISCIENCE & REMOTE SENSING LA English DT Article DE urban fabric; albedo; urban greening; albedo; vegetation; sustainability; urban LULC; GIS ID DIGITAL ORTHOPHOTOGRAPHY; LAND-COVER; URBAN; LANDSCAPE AB Increasingly "urban greening" is being implemented in order to meet goals of sustainability. Tree planting is part of these efforts that provide climate and environmental benefits. Albedo is an important factor in climatological and ecological functioning. Using GIS, this study assesses albedo changes of suburban communities resulting from trees. Based on orthophotos and LiDAR, a shading algorithm is used to examine how tree shading changes albedo throughout the year. For comparison, changes in community albedo were calculated with low and high assumptions for tree albedo. Under the low tree albedo assumption (0.14), community albedo was decreased (-0.07) by the effect of tree shading at all times modeled during the year. Using a high albedo for trees (0.20), the albedo changes were slight (<-0.01). This indicates the importance of considering the albedo of both the trees planted and the surfaces that are shaded when developing urban greening policies. C1 [Rose, L. Shea] Univ West Georgia, Dept Geosci, Carrollton, GA 30118 USA. [Levinson, Ronnen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Heat Isl Grp, Berkeley, CA 94720 USA. RP Rose, LS (reprint author), Univ West Georgia, Dept Geosci, 1601 Maple St, Carrollton, GA 30118 USA. EM srose@westga.edu FU California Energy Commission (CEC) through its Public Interest Energy Research Program (PIER); Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the California Energy Commission (CEC) through its Public Interest Energy Research Program (PIER). It was also supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The students at the University of West Georgia were invaluable to the immense digitizing effort in support of this project. The author is grateful for the efforts of Zach Little, David Finni, Jon Indridason, and Sean Bickell. NR 26 TC 2 Z9 2 U1 1 U2 22 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1548-1603 J9 GISCI REMOTE SENS JI GISci. Remote Sens. PY 2013 VL 50 IS 1 BP 64 EP 77 DI 10.1080/15481603.2013.778557 PG 14 WC Geography, Physical; Remote Sensing SC Physical Geography; Remote Sensing GA 139PP UT WOS:000318596200004 ER PT S AU Awwal, AAS Orth, C Tse, E Matone, J Paul, M Hardy, C Brunton, G Hermann, M Yang, S DiNicola, JM Rever, M Dixit, S Heebner, J AF Awwal, Abdul A. S. Orth, Charles Tse, Eddy Matone, JoAnn Paul, Mitanu Hardy, Carla Brunton, Gordon Hermann, Mark Yang, Steve DiNicola, J. M. Rever, Matt Dixit, Sham Heebner, John BE Awwal, AAS TI Image processing and control of a programmable spatial light modulator for spatial beam shaping SO HIGH POWER LASERS FOR FUSION RESEARCH II SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High Power Lasers for Fusion Research II CY FEB 07, 2013 CL San Francisco, CA SP SPIE, NIF DE control systems; laser alignment; beam shaping; liquid crystal device; spatial light modulator ID NATIONAL-IGNITION-FACILITY; AUTOMATIC ALIGNMENT; LASER AB Programmable spatial shapers using liquid-crystal-based spatial-light-modulators in the National Ignition Facility lasers enable spatial shaping of the beam profile so that power delivered to the target can be maximized while maintaining system longevity. Programmable spatial shapers achieve three objectives: Introduce obscurations shadowing isolated flaws on downstream optical elements that could otherwise be affected by high fluence laser illumination; Spatial shaping to reduce beam peak-to-mean fluence variations to allow the laser to operate at higher powers so that maximum power can be delivered to the target; And finally gradually exposing the optical regions that have never seen laser light because they have always had shadowing from a blocker that is no longer needed. In this paper, we describe the control and image processing algorithms that determine beam shaping and verification of the beam profile. Calibration and transmittance mapping essential elements of controlling the PSS are described along with spatially nonlinear response of the device such as scale and rotation. C1 [Awwal, Abdul A. S.; Orth, Charles; Tse, Eddy; Matone, JoAnn; Paul, Mitanu; Hardy, Carla; Brunton, Gordon; Hermann, Mark; Yang, Steve; DiNicola, J. M.; Rever, Matt; Dixit, Sham; Heebner, John] Lawrence Livermore Natl Lab, Comp Engn Div, Natl Ignit Facil, Integrated Comp Control Syst, Livermore, CA 94551 USA. RP Awwal, AAS (reprint author), Lawrence Livermore Natl Lab, Comp Engn Div, Natl Ignit Facil, Integrated Comp Control Syst, Livermore, CA 94551 USA. EM awwal1@llnl.gov NR 19 TC 3 Z9 3 U1 0 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9371-2 J9 PROC SPIE PY 2013 VL 8602 AR 86020A DI 10.1117/12.2008542 PG 12 WC Optics; Physics, Fluids & Plasmas SC Optics; Physics GA BEX24 UT WOS:000318517700006 ER PT S AU Burkhart, SC Awwal, A Borden, M Budge, T Campbell, J Dixit, S Henesian, M Jancaitis, K Jedlovec, D Leach, R Lowe-Webb, R MacGowan, B Pratuch, S Palma, J Salmon, T Smauley, D Smith, L Sommer, S Wegner, P Wilhelmsen, K Witte, M Wong, N AF Burkhart, S. C. Awwal, A. Borden, M. Budge, T. Campbell, J. Dixit, S. Henesian, M. Jancaitis, K. Jedlovec, D. Leach, R. Lowe-Webb, R. MacGowan, B. Pratuch, S. Palma, J. Salmon, T. Smauley, D. Smith, L. Sommer, S. Wegner, P. Wilhelmsen, K. Witte, M. Wong, N. BE Awwal, AAS TI The National Ignition Facility - Beam Area Increase SO HIGH POWER LASERS FOR FUSION RESEARCH II SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High Power Lasers for Fusion Research II CY FEB 07, 2013 CL San Francisco, CA SP SPIE, NIF ID LINE-REPLACEABLE UNITS; AUTOMATIC ALIGNMENT; LASER AB he National Ignition Facility (NIF) is the world's most energetic laser, having demonstrated in excess of 1.9MJ @351nm with Inertial Confinement Fusion pulse-shapes in July, 2012. First commissioned with 192 operational beamlines in March, 2009, NIF has since transitioned to routine operation for stockpile stewardship, inertial confinement fusion research, and basic high energy density science. The NIF design includes component placement and beam alignment tolerances to preclude laser beam clipping on components within the laser chain, indeed lengthy studies and analyses, including various statistical approaches, were done in the design phase as early as 1996. The margin between the available optical aperture and the beam was established to ensure, given beam centering variations and component placement errors, that we would achieve a confidence level such that even low-level clipping, which causes downstream modulation damage, would occur at an acceptably or even vanishingly low rate. With the completion of NIF and nearly 4 years of operational experience, it became apparent that we could increase the beam size to more optimally fill the available aperture, and gain an additional 5% to 10% or more energy and power delivered to targets. It was also shown that additional energy could be recovered by removing approximately 70% of our beam 'corner blockers' originally installed in May 2010 to prevent target-chamber 1 mu m counterpropagating light from leaking back through the extinction minimums at the corners of vacuum-loaded square optics. Subsequent analyses showed that only one and in some cases two of the corner blockers were really needed. Increasing the beam size was a challenging endeavor, however, as it fundamentally meant recommissioning the entire NIF laser chain to tailor all 192 beams to their specific available aperture, individual beam rotation (for the NIF square beam), beam centering offsets, change-out of the 48 front-end aperture (relay-plane "0"), and removal of 48 Laser Mirror #2 line replaceable units for corner-blocker removal. Some of this commissioning, such as tailoring beam sizes to their specific available aperture, had not been performed during the original commissioning. Furthermore, achieving this required precise diagnostics and rapid analysis of massive quantities of images and data in order to direct the changes and feed-back the achieved results. Completed on June 1, 2012, the beam area was increased by 7.5%, and was a significant contributing factor in NIF transitioning from a 1.6MJ laser to its present 1.9MJ capability C1 [Burkhart, S. C.; Awwal, A.; Borden, M.; Budge, T.; Campbell, J.; Dixit, S.; Henesian, M.; Jancaitis, K.; Jedlovec, D.; Leach, R.; Lowe-Webb, R.; MacGowan, B.; Pratuch, S.; Palma, J.; Salmon, T.; Smauley, D.; Smith, L.; Sommer, S.; Wegner, P.; Wilhelmsen, K.; Witte, M.; Wong, N.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Burkhart, SC (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 13 TC 0 Z9 0 U1 1 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9371-2 J9 PROC SPIE PY 2013 VL 8602 AR 860203 DI 10.1117/12.2009402 PG 13 WC Optics; Physics, Fluids & Plasmas SC Optics; Physics GA BEX24 UT WOS:000318517700001 ER PT S AU Labaria, GR Liebman, JA Sayre, DB Herrmann, HW Bond, EJ Church, JA AF Labaria, George R. Liebman, Judith A. Sayre, Daniel B. Herrmann, Hans W. Bond, Essex J. Church, Jennifer A. BE Awwal, AAS TI Multi-objective optimization for the National Ignition Facility's Gamma Reaction History diagnostic SO HIGH POWER LASERS FOR FUSION RESEARCH II SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High Power Lasers for Fusion Research II CY FEB 07, 2013 CL San Francisco, CA SP SPIE, NIF DE multi-objective; optimization; gamma-ray reaction history AB The National Ignition Facility (NIF) is producing experimental results for the study of Inertial Confinement Fusion (ICF) . The Gamma Reaction History (GRH) diagnostic at NIF can detect gamma rays to measure fusion burn parameters such as fusion burn width, bang time, neutron yield, and areal density of the compressed ablator for cryogenic deuterium-tritium (DT) implosions. Gamma-ray signals detected with this diagnostic are inherently distorted by hardware impulse response functions (IRFs) and gains, and are comprised of several components including gamma rays from laser-plasma interactions (LPI) . One method for removing hardware distortions to approximate the gamma-ray reaction history is deconvolution. However, deconvolution of the distorted signal to obtain the gamma-ray reaction history and its associated parameters presents an ill-posed inverse problem and does not separate out the source components of the gamma-ray signal. A multi-dimensional parameter space model for the distorted gamma-ray signal has been developed in the literature. To complement a deconvolution, we develop a multi-objective optimization algorithm to determine the model parameters so that the error between the model and the collected gamma-ray data is minimized in the least-squares sense. The implementation of the optimization algorithm must be sufficiently robust to be used in automated production software. To achieve this level of robustness, impulse response signals must be carefully processed and constraints on the parameter space based on theory and experimentation must be implemented to ensure proper convergence of the algorithm. In this paper, we focus on the optimization algorithm's theory and implementation. C1 [Labaria, George R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Labaria, George R.; Liebman, Judith A.; Sayre, Daniel B.; Bond, Essex J.; Church, Jennifer A.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Herrmann, Hans W.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Labaria, GR (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM labaria.george@berkeley.edu; liebman1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52- 07NA27344, LLNL-CONF-611632] FX We thank the members of the GRH team for their useful discussions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344. LLNL-CONF-611632 NR 7 TC 1 Z9 1 U1 3 U2 7 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9371-2 J9 PROC SPIE PY 2013 VL 8602 AR UNSP 86020C DI 10.1117/12.2009047 PG 12 WC Optics; Physics, Fluids & Plasmas SC Optics; Physics GA BEX24 UT WOS:000318517700007 ER PT S AU Leach, RR Field, JE Kegelmeyer, LM Kozioziemski, B Lee, T Mapoles, E Roberts, R Dylla-Spears, RJ Suratwala, T AF Leach, Richard R., Jr. Field, John E. Kegelmeyer, Laura Mascio Kozioziemski, Bernard Lee, Tanza Mapoles, Evan Roberts, Randy Dylla-Spears, Rebecca J. Suratwala, Tayyab BE Awwal, AAS TI Image processing methods for characterizing cryogenic target quality during fuel layer formation at the National Ignition Facility (NIF) SO HIGH POWER LASERS FOR FUSION RESEARCH II SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High Power Lasers for Fusion Research II CY FEB 07, 2013 CL San Francisco, CA SP SPIE, NIF DE NIF; cryogenic hydrogen crystal growth; registration; symmetry; texture; image entropy; trend analysis; montage; seed formation; eigenimages ID INERTIAL CONFINEMENT FUSION AB A challenging aspect of preparing cryogenic targets for National Ignition Facility (NIF) ignition experiments is growing a single crystal layer (similar to 70 mu m thick) of solid frozen deuterium-tritium (DT) fuel on the inner surface of a spherical hollow plastic capsule 2 mm in diameter. For the most critical fusion experiments, the layer must be smooth, having uniform thickness, and largely free of isolated defects (e. g. grooves). A single target layer typically takes up to 18 hours to form. X-ray images on 3 orthogonal axes are used to monitor the growth of the crystal and evaluate the quality of the layer. While these methods provide a good indicator of target layer condition, new metrics are currently being developed to take advantage of other properties in the x-ray image, which may give earlier indications of target quality. These properties include symmetry of texture, seed formation, and eigenimage analysis. We describe the approach and associated image processing to evaluate and classify these metrics, whose goal is to improve overall layer production and better quantify the quality of the layer during its growth. C1 [Leach, Richard R., Jr.; Field, John E.; Kegelmeyer, Laura Mascio; Kozioziemski, Bernard; Lee, Tanza; Mapoles, Evan; Roberts, Randy; Dylla-Spears, Rebecca J.; Suratwala, Tayyab] Lawrence Livermore Natl Lab, Natl Ignit Facil, Natl Ignit Campaign, Livermore, CA 94551 USA. RP Leach, RR (reprint author), Lawrence Livermore Natl Lab, Natl Ignit Facil, Natl Ignit Campaign, Livermore, CA 94551 USA. EM leach1@llnl.gov NR 16 TC 0 Z9 0 U1 1 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9371-2 J9 PROC SPIE PY 2013 VL 8602 AR 86020H DI 10.1117/12.2009413 PG 11 WC Optics; Physics, Fluids & Plasmas SC Optics; Physics GA BEX24 UT WOS:000318517700012 ER PT J AU Friedman, P Ball, R Beene, J Benhammou, Y Ben-Moshe, M Bentefour, H Chapman, JW Etzion, E Ferretti, C Levin, D Silver, Y Varner, R Weaverdyck, C Zhou, B AF Friedman, Peter Ball, Robert Beene, James Benhammou, Yan Ben-Moshe, Meny Bentefour, Hassan Chapman, J. W. Etzion, Erez Ferretti, Claudio Levin, Daniel Silver, Yiftah Varner, Robert Weaverdyck, Curtis Zhou, Bing TI Plasma panel-based radiation detectors SO JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY LA English DT Article DE plasma panel sensor; PPS; plasma panel radiation detector; plasma panel detector ID SIMULATION AB The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels. It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in plasma display panels, it uses nonreactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (<50-mu m RMS) and low cost. In this paper, we report on prototype PPS experimental results in detecting betas, protons, and cosmic muons, and we extrapolate on the PPS potential for applications including the detection of alphas, heavy ions at low-to-medium energy, thermal neutrons, and X-rays. C1 [Friedman, Peter] Integrated Sensors LLC, Ottawa Hills, OH 43606 USA. [Ball, Robert; Chapman, J. W.; Ferretti, Claudio; Levin, Daniel; Weaverdyck, Curtis; Zhou, Bing] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Benhammou, Yan; Ben-Moshe, Meny; Etzion, Erez; Silver, Yiftah] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Beene, James; Varner, Robert] Oak Ridge Natl Lab, Holifield Radioact Ion Beam Facil, Oak Ridge, TN USA. [Bentefour, Hassan] Ion Beam Applicat SA IBA, Louvain, Belgium. RP Friedman, P (reprint author), Integrated Sensors LLC, 2403 Evergreen Rd, Ottawa Hills, OH 43606 USA. EM peter@isensors.net FU US Department of Energy [DE-FG02-07ER84749, DE-SC0006204, DE-SC0006219, DE-FG02-12ER41788]; Office of Nuclear Physics at the US Department of Energy; United States-Israel Binational Science Foundation [2008123] FX This work was supported in part by the US Department of Energy under grant numbers DE-FG02-07ER84749, DE-SC0006204, DE-SC0006219, and DE-FG02-12ER41788. This work was also partially supported by the Office of Nuclear Physics at the US Department of Energy and the United States-Israel Binational Science Foundation under grant number 2008123. NR 8 TC 1 Z9 1 U1 1 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1071-0922 J9 J SOC INF DISPLAY JI J. Soc. Inf. Disp. PD JAN PY 2013 VL 21 IS 1 BP 46 EP 54 DI 10.1002/jsid.151 PG 9 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Optics; Physics, Applied SC Engineering; Materials Science; Optics; Physics GA 142MY UT WOS:000318802700009 ER PT J AU Kim, YM Schmidt, BJ Kidwai, AS Jones, MB Kaiser, BLD Brewer, HM Mitchell, HD Palsson, BO McDermott, JE Heffron, F Smith, RD Peterson, SN Ansong, C Hyduke, DR Metz, TO Adkins, JN AF Kim, Young-Mo Schmidt, Brian J. Kidwai, Afshan S. Jones, Marcus B. Kaiser, Brooke L. Deatherage Brewer, Heather M. Mitchell, Hugh D. Palsson, Bernhard O. McDermott, Jason E. Heffron, Fred Smith, Richard D. Peterson, Scott N. Ansong, Charles Hyduke, Daniel R. Metz, Thomas O. Adkins, Joshua N. TI Salmonella modulates metabolism during growth under conditions that induce expression of virulence genes SO MOLECULAR BIOSYSTEMS LA English DT Article ID ENTERICA SEROVAR TYPHIMURIUM; PROTEOMIC ANALYSIS; INTRACELLULAR SURVIVAL; INTERACTION NETWORKS; MASS-SPECTROMETRY; ESCHERICHIA-COLI; UNITED-STATES; OMICS DATA; METABOLOMICS; MODELS AB Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome-scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome-scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Furthermore, analyses of omics data in the context of the metabolic model indicated rewiring of the metabolic network to support pathways associated with virulence. For example, cellular concentrations of polyamines were perturbed, as well as the predicted capacity for secretion and uptake. C1 [Kim, Young-Mo; Kaiser, Brooke L. Deatherage; Mitchell, Hugh D.; McDermott, Jason E.; Smith, Richard D.; Ansong, Charles; Metz, Thomas O.; Adkins, Joshua N.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Schmidt, Brian J.; Palsson, Bernhard O.; Hyduke, Daniel R.] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA. [Kidwai, Afshan S.; Heffron, Fred] Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR 97239 USA. [Jones, Marcus B.; Peterson, Scott N.] J Craig Venter Inst, Rockville, MD 20850 USA. [Brewer, Heather M.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Metz, TO (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM thomas.metz@pnnl.gov; joshua.Adkins@pnnl.gov RI Smith, Richard/J-3664-2012; Kim, Young-Mo/D-3282-2009; OI Smith, Richard/0000-0002-2381-2349; Kim, Young-Mo/0000-0002-8972-7593; Adkins, Joshua/0000-0003-0399-0700; Metz, Tom/0000-0001-6049-3968 FU National Institute of Allergy and Infectious Diseases [Y1-AI-8401]; San Diego Center for Systems Biology; NIH/NIGMS [GM085764]; Department of Energy's (DOE) Office of Biological and Environmental Research; DOE [DE-AC05-76RLO 1830] FX This work was funded by the National Institute of Allergy and Infectious Diseases under Interagency agreement Y1-AI-8401. DRH is supported in part by a Seed Award from the San Diego Center for Systems Biology funded by NIH/NIGMS (GM085764). Significant portions of the work were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's (DOE) Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is amulti-program national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RLO 1830. NR 79 TC 17 Z9 18 U1 1 U2 26 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1742-206X EI 1742-2051 J9 MOL BIOSYST JI Mol. Biosyst. PY 2013 VL 9 IS 6 BP 1522 EP 1534 DI 10.1039/c3mb25598k PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 139BS UT WOS:000318557100044 PM 23559334 ER PT J AU Liao, T Sun, CH Sun, ZQ Du, AJ Smith, S AF Liao, Ting Sun, Chenghua Sun, Ziqi Du, Aijun Smith, Sean TI Chemically modified ribbon edge stimulated H-2 dissociation: a first-principles computational study SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MAGNETIC-PROPERTIES; HYDROGEN STORAGE; CARBON NANOTUBES; METAL-CATALYSTS; SURFACE; OXIDE; DESORPTION; MONOLAYERS; MECHANISM AB First-principles computational studies indicate that (B, N, or O)-doped graphene ribbon edges can substantially reduce the energy barrier for H-2 dissociative adsorption. The low barrier is competitive with many widely used metal or metal oxide catalysts. This suggests that suitably functionalized graphene architectures are promising metal-free alternatives for low-cost catalytic processes. C1 [Liao, Ting; Sun, Chenghua; Du, Aijun] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Computat Bio & Nanotechnol Grp, Brisbane, Qld 4072, Australia. [Sun, Chenghua] Univ Queensland, Australian Inst Bioengn & Nanotechnol, ARC Ctr Excellence Funct Nanomat, Brisbane, Qld 4072, Australia. [Sun, Ziqi] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2500, Australia. [Smith, Sean] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Liao, T (reprint author), Univ Queensland, Australian Inst Bioengn & Nanotechnol, Computat Bio & Nanotechnol Grp, Brisbane, Qld 4072, Australia. EM t.liao1@uq.edu.au; smithsc@ornl.gov RI Sun, Ziqi/A-8122-2011; Sun, Chenghua/C-5734-2009; LIAO, Ting/C-7027-2012; Du, Aijun/C-5759-2009 OI Sun, Ziqi/0000-0002-4777-4017; LIAO, Ting/0000-0001-7488-6244; Du, Aijun/0000-0002-3369-3283 NR 32 TC 10 Z9 10 U1 3 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2013 VL 15 IS 21 BP 8054 EP 8057 DI 10.1039/c3cp50654a PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 139EV UT WOS:000318565500013 PM 23632601 ER PT J AU Yin, WJ Wei, SH Yan, Y AF Yin, Wan-Jian Wei, Su-Huai Yan, Yanfa TI Control of one-dimensional magnetism in graphene via spontaneous hydrogenation of the grain boundary SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET; CARBON AB We propose that control of one-dimensional (1D) magnetism in graphene could be made easier by spontaneous hydrogenation of chemically reactive grain boundaries (GBs) in polycrystalline graphenes. Unlike pristine graphene, where hydrogen adsorption favors the formation of zero-dimensional (0D) clusters, the defect cores (pentagon, heptagon and octagon) at the GBs in polycrystalline graphene promote hydrogenation along the GBs. The hydrogenation in polycrystalline graphene starts at the GBs, proceeds gradually towards the grain interior (GI) and results in smooth 1D graphane-graphene interfaces. Our calculations show that the type (ferro- or antiferro-magnetism) and strength of the magnetism can be controlled by controlling the orientation of GBs. Since GBs in single-layer graphenes can be fabricated in a controllable way in experiments, the hydrogenation of GBs could be a unique method to realize large-area magnetic graphenes for future spintronic applications. C1 [Yin, Wan-Jian; Yan, Yanfa] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO USA. RP Yin, WJ (reprint author), Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. EM wanjian.yin@utoledo.edu; suhuai.wei@nrel.gov; yanfa.yan@utoledo.edu RI Yin, Wanjian/F-6738-2013 NR 38 TC 3 Z9 3 U1 2 U2 47 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2013 VL 15 IS 21 BP 8271 EP 8275 DI 10.1039/c3cp50781e PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 139EV UT WOS:000318565500037 PM 23612720 ER PT J AU El Gabaly, F McCarty, KF Bluhm, H McDaniel, AH AF El Gabaly, Farid McCarty, Kevin F. Bluhm, Hendrik McDaniel, Anthony H. TI Oxidation stages of Ni electrodes in solid oxide fuel cell environments SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID NICKEL METAL; PHOTOELECTRON-SPECTROSCOPY; AMBIENT-PRESSURE; OXYGEN EVOLUTION; OXIDIZED NICKEL; WATER; SURFACE; FILMS; BEHAVIOR; GROWTH AB Nickel is the most commonly used anode for solid-oxide fuel cells (SOFC) due to its fast kinetics and low price. A leading cause of degradation in Ni electrodes is oxidation. Here we use operando ambient-pressure X-ray photoelectron spectroscopy (XPS) to chemically characterize the Ni electrode of a fuel cell anode during oxidation in a H-2/H2O atmosphere. We find three different stages of Ni oxidation in the model SOFC. In the first two stages, the Ni exposed to the gas remains metallic but the Ni at the interface with the zirconia electrolyte is oxidized. In the third oxidation stage, we find that Ni transforms to NiOOH, a phase not previously considered in the SOFC literature. We show that the transformation between Ni and NiOOH is reversible and is initiated at the Ni/gas interface. In addition we find that NiOOH stores charge, as evidenced by the stable discharge plateau (voltage) measured as this oxyhydroxide phase reduces to metallic Ni. C1 [El Gabaly, Farid; McCarty, Kevin F.; McDaniel, Anthony H.] Sandia Natl Labs, Livermore, CA 94551 USA. [Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP El Gabaly, F (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM felgaba@sandia.gov RI McCarty, Kevin/F-9368-2012 OI McCarty, Kevin/0000-0002-8601-079X FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy; Sandia Laboratory Directed Research and Development program [DE-AC04-94AL85000]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy and the Sandia Laboratory Directed Research and Development program under Contract DE-AC04-94AL85000. The Advanced Light Source and Beamline 11.0.2 are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 13 Z9 13 U1 1 U2 48 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2013 VL 15 IS 21 BP 8334 EP 8341 DI 10.1039/c3cp50366f PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 139EV UT WOS:000318565500044 PM 23615670 ER PT J AU Thakur, P Conca, JL Dodge, CJ Francis, AJ Choppin, GR AF Thakur, P. Conca, J. L. Dodge, C. J. Francis, A. J. Choppin, G. R. TI Complexation thermodynamics and structural studies of trivalent actinide and lanthanide complexes with DTPA, MS-325 and HMDTPA SO RADIOCHIMICA ACTA LA English DT Article DE DTPA; HMDTPA; MS-325; Lanthanides; Actinides ID DIETHYLENETRIAMINEPENTAACETIC ACID; DIETHYLENETRIAMINE-N,N,N',N'',N''-PENTAACETIC ACID; CRYSTAL-STRUCTURES; HYDRATION NUMBER; DERIVATIVES; LUMINESCENCE; STABILITIES; EUROPIUM; SPECTRA; LIGANDS AB The protonation constants of DTPA (diethylenetriaminepentaacetic acid) and two derivatives of DTPA, 1-R(4,4-diphenyl cyclohexyl-phosphonyl-methyl diethylenentriamine-pentaacetic acid (MS-325) and (R)-hydroxymethyl-diethylenen-triaminepentaacetic acid (HMDTPA) were determined by potentiometric titration in 0.1 M NaClO4. The formation of 1: 1 complexes of Am3+, Cm3+ and Ln(3+) cations with these three ligands were investigated by potentiometric titration with competition by ethylenediaminetetraacetic acid (EDTA) and the solvent extraction method in aqueous solutions of I = 0.10 M NaClO4. The thermodynamic data of complexation were determined by the temperature dependence of the stability constants and by calorimetry. The complexation is exothermic and becomes weaker with increase in temperature. The complexation strength of these ligands follows the order: DTPA approximate to HMDTPA > MS-325. Eu3+/Cm3+ luminescence, EXAFS (Extended X-ray Absorption Fine Structure) and DFT (Density Functional Theory) calculations suggest that all three ligands are octadentate in the complex. In the complex, M(L)(2-) (L = DTPA, MS-325 and HMDTPA). The M3+ binds via five carboxylates oxygen atoms, three nitrogen atoms, and the complex contains one water of hydration. C1 [Thakur, P.; Choppin, G. R.] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. [Dodge, C. J.; Francis, A. J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Francis, A. J.] Pohang Univ Sci & Technol, Div Adv Nucl Engn, Pohang, South Korea. RP Thakur, P (reprint author), Carlsbad Environm Monitoring & Res Ctr, 1400 Univ Dr, Carlsbad, NM 88220 USA. EM pthakur@cemrc.org FU USDOE-Office of Basic Sciences; World Class University (WCU) program through the National Research Foundation of Korea; Ministry of Education, Science and Technology [R31 - 30005] FX This research was supported by an USDOE-Office of Basic Sciences Contract and in part (AJF) by the World Class University (WCU) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31 - 30005). We gratefully acknowledge the help of Dr. Bert Van De Burgt Department of Chemistry & Biochemistry Florida State University in data accumulations. Our thanks to the anonymous reviewer for thoughtful and constructive comments. NR 49 TC 5 Z9 5 U1 8 U2 36 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PY 2013 VL 101 IS 4 BP 221 EP 232 DI 10.1524/ract.2013.2018 PG 12 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 140PZ UT WOS:000318668700003 ER PT J AU Mincher, BJ Precek, M Mezyk, SP Elias, G Martin, LR Paulenova, A AF Mincher, B. J. Precek, M. Mezyk, S. P. Elias, G. Martin, L. R. Paulenova, A. TI The redox chemistry of neptunium in gamma-irradiated aqueous nitric acid SO RADIOCHIMICA ACTA LA English DT Article DE Neptunium; Radiation chemistry; Nitrous acid; Redox chemistry ID PULSE-RADIOLYSIS; CATALYZED OXIDATION; HYDROGEN-ATOMS; RATE CONSTANTS; NITROUS-ACID; KINETICS; REACTIVITY; ELECTRON; NITRATE; SYSTEM AB The redox chemistry of neptunium in irradiated 4 M nitric acid was investigated using gamma-ray irradiation and UV/Vis spectroscopic measurements. Irradiation caused changes in the abundances of Np(V) and Np(VI) regardless of the initial fractional components of these oxidation states. At low absorbed doses Np(V) was oxidized to Np(VI) in irradiated solution, due to its reaction with oxidizing, radiolytically-produced, free radicals. However, when sufficient radiolytically-produced nitrous acid accumulated, the reduction of Np(VI) to Np(V) occurred, even at this high nitric acid concentration. Neptunium(IV) was not produced. A kinetic model which incorporates the standard water radiolysis reactions, estimated radical yields for 4 M HNO3, and rate constants for neptunium reactions available from the literature was used to successfully reproduce the experimental results. C1 [Mincher, B. J.; Elias, G.; Martin, L. R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Precek, M.; Paulenova, A.] Oregon State Univ, Corvallis, OR 97331 USA. [Mezyk, S. P.] Calif State Univ Long Beach, Long Beach, CA 90820 USA. RP Mincher, BJ (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Bruce.Mincher@inl.gov RI Precek, Martin/G-5648-2014; Martin, Leigh/P-3167-2016; Mincher, Bruce/C-7758-2017 OI Precek, Martin/0000-0002-5790-5543; Martin, Leigh/0000-0001-7241-7110; FU INL Laboratory Directed Research and Development (LDRD) program under DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work was supported through the INL Laboratory Directed Research and Development (LDRD) program, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 33 TC 6 Z9 6 U1 0 U2 25 PU OLDENBOURG VERLAG PI MUNICH PA LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PY 2013 VL 101 IS 4 BP 259 EP 265 DI 10.1524/ract.2013.2013 PG 7 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 140PZ UT WOS:000318668700007 ER PT J AU Holliday, K Dardenne, K Walther, C Stumpf, T AF Holliday, K. Dardenne, K. Walther, C. Stumpf, T. TI The incorporation of europium into apatite: a new explanation SO RADIOCHIMICA ACTA LA English DT Article DE Apatite; Europium; TRLFS; EXAFS; Incorporation; Mechanism ID SPECTROSCOPY; CHEMISTRY; IONS; LUMINESCENCE; IFEFFIT; OLIVINE; SYSTEM; MODEL AB Time resolved laser fluorescence spectroscopy (TRLFS) and X-ray absorption fine structure (XAFS) are used as complimentary techniques to show that the heterovalent incorporation of europium into apatite at temperatures relevant to environmental and biological processes occurs at grain boundaries and not the crystallographic calcium sites as previously presumed. For this study, we focus on mechanisms at the solid solution interface and therefore define this temperature regime as the range in which liquid water exists (0-100 degrees C). Site-selective TRLFS show that the local Eu3+ symmetry does not match the presumed crystallographic site of incorporation. This is confirmed by XAFS results that show a deviation from the local environment in apatite. The transition of this amorphous europium to a crystallographic calcium site upon heating is then explained by grain growth and followed through a transition species by TRLFS. C1 [Holliday, K.; Dardenne, K.; Walther, C.; Stumpf, T.] Karlsruhe Inst Technol, Inst Nukl Entsorgung, D-76021 Karlsruhe, Germany. [Holliday, K.] Lawrence Livermore Natl Lab, Div Mat, Livermore, CA USA. [Walther, C.] Leibniz Univ Hannover, Inst Radiookol & Strahlenschutz, D-30419 Hannover, Germany. RP Holliday, K (reprint author), Karlsruhe Inst Technol, Inst Nukl Entsorgung, POB 3640, D-76021 Karlsruhe, Germany. EM holliday7@llnl.gov RI Dardenne, Kathy/A-2519-2017 OI Dardenne, Kathy/0000-0003-1286-1855 FU Helmholtz Gemeinshaft Deutscher Forschungszentren (HGF); LLNL [DE-AC52-07NA27344] FX We would like to thank Sebastian Buchner for technical assistance with TRLFS measurements. This work was cofinanced by the Helmholtz Gemeinshaft Deutscher Forschungszentren (HGF) by supporting the Helmholtz-Hochschul-Nachwuchsgruppe "Aufklarung geochemischer Reaktionsmechanismen an der Wasser/Mineralphasen Grenzflache". We thank the ANKA synchrotron source for providing the beamtime. Prepared by LLNL under Contract DE-AC52-07NA27344. NR 38 TC 2 Z9 2 U1 1 U2 22 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PY 2013 VL 101 IS 4 BP 267 EP 272 DI 10.1524/ract.2013.2023 PG 6 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 140PZ UT WOS:000318668700008 ER PT J AU Conway, JM Konrad, BP Coombs, D AF Conway, Jessica M. Konrad, Bernhard P. Coombs, Daniel TI STOCHASTIC ANALYSIS OF PRE- AND POSTEXPOSURE PROPHYLAXIS AGAINST HIV INFECTION SO SIAM JOURNAL ON APPLIED MATHEMATICS LA English DT Article DE HIV; viral dynamics; branching process; preexposure prophylaxis; postexposure prophylaxis; HIV prevention ID HUMAN-IMMUNODEFICIENCY-VIRUS; HEPATITIS-C VIRUS; PREEXPOSURE PROPHYLAXIS; VIRAL LOAD; IN-VIVO; ANTIRETROVIRAL THERAPY; MUCOSAL TRANSMISSION; POPULATION-DYNAMICS; COITAL ACT; PREVENTION AB The events that occur following HIV exposure, preceding any detectable infection, are difficult to study experimentally. However, there is considerable evidence that these events can be influenced by the action of antiretroviral drugs, taken either as pre-or postexposure prophylaxis (PrEP and PEP, respectively). We present simple theoretical models of HIV dynamics immediately following exposure, and apply these models to understanding how drug prophylaxis can act to reduce the risk of infection. Because HIV infection following exposure is a relatively rare event, we work with stochastic models which we base on continuous-time branching processes, allowing us to compute the risk of infection under different scenarios. We obtain analytical solutions for viral extinction probabilities, allowing us to avoid extensive computer simulations. We predict in the case of PrEP that reverse transcriptase inhibitors should be somewhat more effective than protease inhibitors and also that single drugs should be nearly as effective as a combination approach. We then model viral dynamics under PEP and find that fast initiation of therapy is essential for risk reduction. However, we predict that a two-week PEP regimen would be nearly as effective as the current recommendation of four weeks of therapy. Our work provides a coherent platform for studying the early dynamics of HIV and indicates possible directions for experimental and theoretical work. C1 [Conway, Jessica M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Konrad, Bernhard P.; Coombs, Daniel] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada. [Konrad, Bernhard P.; Coombs, Daniel] Univ British Columbia, Inst Appl Math, Vancouver, BC V6T 1Z2, Canada. RP Conway, JM (reprint author), Los Alamos Natl Lab, T-6, Los Alamos, NM 87545 USA. EM conway@lanl.gov; konradbe@math.ubc.ca; coombs@math.ubc.ca OI Coombs, Daniel/0000-0002-8038-6278 FU Natural Science and Engineering Research Council of Canada; Canadian Institutes of Health Research [HFE-105370, HET 85520]; Pacific Institute for Mathematical Sciences through the International Graduate Training Centre in Mathematical Biology FX This work was supported by the Natural Science and Engineering Research Council of Canada and by the Canadian Institutes of Health Research [funding reference number HFE-105370 to JMC; grant HET 85520], the Pacific Institute for Mathematical Sciences through the International Graduate Training Centre in Mathematical Biology, and was enabled by the use of computing resources provided by WestGrid and Compute/Calcul Canada. NR 53 TC 6 Z9 6 U1 0 U2 8 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0036-1399 J9 SIAM J APPL MATH JI SIAM J. Appl. Math. PY 2013 VL 73 IS 2 BP 904 EP 928 DI 10.1137/120876800 PG 25 WC Mathematics, Applied SC Mathematics GA 136IO UT WOS:000318355800014 ER PT J AU Chen, J AF Chen, Jie TI ON THE USE OF DISCRETE LAPLACE OPERATOR FOR PRECONDITIONING KERNEL MATRICES SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE Laplace operator; preconditioning; kernel matrix; Toeplitz matrix; stiffness matrix ID SEQUENCES; SYSTEMS AB This paper presents a preconditioning strategy applied to certain types of kernel matrices that are increasingly ill-conditioned. The ill-conditioning of these matrices is tied to the unbounded variation of the Fourier transform of the kernel function. Hence, the basic idea is to differentiate the kernel in order to suppress the variation. The idea resembles some existing preconditioning methods for Toeplitz matrices, where the theory heavily relies on the underlying fixed generating function. The theory does not apply to the case of a fixed domain with increasingly fine discretizations because the generating function depends on the grid size. For this case, we prove equal distribution results on the spectrum of the resulting matrices. Furthermore, the proposed preconditioning technique also applies to non-Toeplitz matrices, thus eliminating the reliance on a regular grid structure of the points. The preconditioning strategy can be used to accelerate an iterative solver for solving linear systems with respect to kernel matrices. C1 Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Chen, J (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jiechen@mcs.anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357]; UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne") [DE-AC02-06CH11357]; U.S. Department of Energy FX This work was supported by the U.S. Department of Energy under contract DE-AC02-06CH11357. This work was performed by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne") under contract DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the government. NR 22 TC 1 Z9 1 U1 0 U2 2 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 EI 1095-7197 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2013 VL 35 IS 2 BP A577 EP A602 DI 10.1137/120874527 PG 26 WC Mathematics, Applied SC Mathematics GA 136ZT UT WOS:000318404100003 ER PT J AU Lipnikov, K Svyatskiy, D Vassilevski, Y AF Lipnikov, K. Svyatskiy, D. Vassilevski, Y. TI ANDERSON ACCELERATION FOR NONLINEAR FINITE VOLUME SCHEME FOR ADVECTION-DIFFUSION PROBLEMS SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE advection-diffusion equation; finite volume method; discrete maximum principle; positivity preservation; Picard's method; Anderson acceleration ID POLYGONAL MESHES; MAXIMUM-PRINCIPLES; POLYHEDRAL MESHES; EQUATIONS; SYSTEMS; ROBUSTNESS AB We consider the solution of systems of nonlinear algebraic equations that appear in a positivity preserving finite volume scheme for steady-state advection-diffusion equations. We propose and analyze numerically an efficient strategy for accelerating the Picard method when it is applied to these systems. The strategy is based on the Anderson acceleration and the adaptive inexact solution of linear systems. We demonstrate its numerical robustness for three black-box preconditioners. C1 [Lipnikov, K.; Svyatskiy, D.] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA. [Vassilevski, Y.] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia. RP Lipnikov, K (reprint author), Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA. EM lipnikov@lanl.gov; dasvyat@lanl.gov; vasilevs@dodo.inm.ras.ru RI Vassilevski, Yuri/A-6068-2016 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research FX Submitted to the journal's Methods and Algorithms for Scientific Computing section February 28, 2012; accepted for publication (in revised form) December 7, 2012; published electronically April 23, 2013. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research.; This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics. NR 40 TC 4 Z9 4 U1 0 U2 3 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 EI 1095-7197 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2013 VL 35 IS 2 BP A1120 EP A1136 DI 10.1137/120867846 PG 17 WC Mathematics, Applied SC Mathematics GA 136ZT UT WOS:000318404100026 ER PT J AU Vecharynski, E Knyazev, AV AF Vecharynski, Eugene Knyazev, Andrew V. TI ABSOLUTE VALUE PRECONDITIONING FOR SYMMETRIC INDEFINITE LINEAR SYSTEMS SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE preconditioning; linear system; preconditioned minimal residual method; polar decomposition; matrix absolute value; multigrid; polynomial filtering ID STABILIZED STOKES SYSTEMS; CONJUGATE-GRADIENT METHOD; FAST ITERATIVE SOLUTION; HELMHOLTZ-EQUATION; SHIFTED-LAPLACIAN; GMRES; ALGORITHM AB We introduce a novel strategy for constructing symmetric positive definite (SPD) preconditioners for linear systems with symmetric indefinite matrices. The strategy, called absolute value preconditioning, is motivated by the observation that the preconditioned minimal residual method with the inverse of the absolute value of the matrix as a preconditioner converges to the exact solution of the system in at most two steps. Neither the exact absolute value of the matrix nor its exact inverse are computationally feasible to construct in general. However, we provide a practical example of an SPD preconditioner that is based on the suggested approach. In this example we consider a model problem with a shifted discrete negative Laplacian and suggest a geometric multigrid (MG) preconditioner, where the inverse of the matrix absolute value appears only on the coarse grid, while operations on finer grids are based on the Laplacian. Our numerical tests demonstrate practical effectiveness of the new MG preconditioner, which leads to a robust iterative scheme with minimalist memory requirements. C1 [Vecharynski, Eugene] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Knyazev, Andrew V.] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80217 USA. [Knyazev, Andrew V.] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA. RP Vecharynski, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM eugene.vecharynski@gmail.com; andrew.knyazev@ucdenver.edu RI Knyazev, Andrew/H-2274-2011 OI Knyazev, Andrew/0000-0002-1635-3711 FU National Science Foundation [1115734] FX This work is partially supported by National Science Foundation grant 1115734. NR 45 TC 5 Z9 5 U1 3 U2 7 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 EI 1095-7197 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2013 VL 35 IS 2 BP A696 EP A718 DI 10.1137/120886686 PG 23 WC Mathematics, Applied SC Mathematics GA 136ZT UT WOS:000318404100008 ER PT J AU Brown, J Smith, B Ahmadia, A AF Brown, Jed Smith, Barry Ahmadia, Aron TI ACHIEVING TEXTBOOK MULTIGRID EFFICIENCY FOR HYDROSTATIC ICE SHEET FLOW SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE hydrostatic; ice sheet; Newton-Krylov; multigrid; preconditioning ID HIGHER-ORDER; MODEL; GLACIOLOGY; PRECONDITIONER; APPROXIMATION; VELOCITY; STREAMS AB The hydrostatic equations for ice sheet flow offer improved fidelity compared with the shallow ice approximation and shallow stream approximation popular in today's ice sheet models. Nevertheless, they present a serious bottleneck because they require the solution of a three-dimensional (3D) nonlinear system, as opposed to the two-dimensional system present in the shallow stream approximation. This 3D system is posed on high-aspect domains with strong anisotropy and variation in coefficients, making it expensive to solve with current methods. This paper presents a Newton-Krylov multigrid solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level system at a small multiple of the cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and the method is compared to various algebraic methods that are in use or have been proposed as viable approaches. C1 [Brown, Jed; Smith, Barry] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Ahmadia, Aron] King Abdullah Univ Sci & Technol, Supercomp Lab, Thuwal 293556900, Makkah, Saudi Arabia. RP Brown, J (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jedbrown@mcs.anl.gov; bsmith@mcs.anl.gov; aron.ahmadia@kaust.edu.sa OI Smith, Barry/0000-0001-5955-8111 FU Swiss National Science Foundation Grant [200021-113503/1]; U.S. Department of Energy's Office of Science Ice Sheet Initiative for CL-imate ExtremeS program [DE-AC02-06CH11357]; Shaheen Supercomputing Laboratory at KAUST; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Submitted to the journal's Computational Methods in Science and Engineering section May 18, 2011; accepted for publication (in revised form) July 2, 2012; published electronically March 12, 2013. This work was supported by Swiss National Science Foundation Grant 200021-113503/1, U.S. Department of Energy's Office of Science Ice Sheet Initiative for CL-imate ExtremeS program under Contract DE-AC02-06CH11357, and the Shaheen Supercomputing Laboratory at KAUST. This manuscript was created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under contract DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the government. NR 38 TC 13 Z9 13 U1 0 U2 9 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 EI 1095-7197 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2013 VL 35 IS 2 BP B359 EP B375 DI 10.1137/110834512 PG 17 WC Mathematics, Applied SC Mathematics GA 136ZT UT WOS:000318404100033 ER PT J AU Owhadi, H Scovel, C Sullivan, TJ McKerns, M Ortiz, M AF Owhadi, H. Scovel, C. Sullivan, T. J. McKerns, M. Ortiz, M. TI Optimal Uncertainty Quantification SO SIAM REVIEW LA English DT Article DE uncertainty quantification; concentration inequalities; sensitivity analysis; Markov-Krein-type reduction theorems for generalized Chebyshev optimization problems ID BOUNDED RANDOM-VARIABLES; EXTREME-POINTS; TERMINAL BALLISTICS; INEQUALITIES; SUMS; DISTRIBUTIONS; OPTIMIZATION; CONVERGENCE; CONSISTENCY; STATISTICS AB We propose a rigorous framework for uncertainty quantification (UQ) in which the UQ objectives and its assumptions/information set are brought to the forefront. This framework, which we call optimal uncertainty quantification (OUQ), is based on the observation that, given a set of assumptions and information about the problem, there exist optimal bounds on uncertainties: these are obtained as values of well-defined optimization problems corresponding to extremizing probabilities of failure, or of deviations, subject to the constraints imposed by the scenarios compatible with the assumptions and information. In particular, this framework does not implicitly impose inappropriate assumptions, nor does it repudiate relevant information. Although OUQ optimization problems are extremely large, we show that under general conditions they have finite-dimensional reductions. As an application, we develop optimal concentration inequalities (OCI) of Hoeffding and McDiarmid type. Surprisingly, these results show that uncertainties in input parameters, which propagate to output uncertainties in the classical sensitivity analysis paradigm, may fail to do so if the transfer functions (or probability distributions) are imperfectly known. We show how, for hierarchical structures, this phenomenon may lead to the nonpropagation of uncertainties or information across scales. In addition, a general algorithmic framework is developed for OUQ and is tested on the Caltech surrogate model for hypervelocity impact and on the seismic safety assessment of truss structures, suggesting the feasibility of the framework for important complex systems. The introduction of this paper provides both an overview of the paper and a self-contained minitutorial on the basic concepts and issues of UQ. C1 [Owhadi, H.; Sullivan, T. J.] CALTECH, Pasadena, CA 91125 USA. [Scovel, C.] Los Alamos Natl Lab, Los Alamos, NM USA. [McKerns, M.] CALTECH, Ctr Adv Comp Res, Pasadena, CA 91125 USA. [Ortiz, M.] CALTECH, Grad Aeronaut Labs, Dept Aeronaut, Pasadena, CA 91125 USA. RP Owhadi, H (reprint author), CALTECH, Pasadena, CA 91125 USA. EM owhadi@caltech.edu; jcs@lanl.gov; tjs@caltech.edu; mmckerns@caltech.edu; ortiz@aero.caltech.edu FU Department of Energy National Nuclear Security Administration through Caltech's ASC/PSAAP Center for the Predictive Modeling and Simulation of High Energy Density Dynamic Response of Materials [DE-FC52-08NA28613] FX Received by the editors September 7, 2010; accepted for publication (in revised form) May 22, 2012; published electronically May 8, 2013. This work was partially supported by the Department of Energy National Nuclear Security Administration under award DE-FC52-08NA28613 through Caltech's ASC/PSAAP Center for the Predictive Modeling and Simulation of High Energy Density Dynamic Response of Materials. NR 101 TC 19 Z9 19 U1 1 U2 21 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0036-1445 EI 1095-7200 J9 SIAM REV JI SIAM Rev. PY 2013 VL 55 IS 2 BP 271 EP 345 DI 10.1137/10080782X PG 75 WC Mathematics, Applied SC Mathematics GA 142GS UT WOS:000318785900002 ER PT J AU Wild, SM Shoemaker, CA AF Wild, Stefan M. Shoemaker, Christine A. TI Global Convergence of Radial Basis Function Trust-Region Algorithms for Derivative-Free Optimization SO SIAM REVIEW LA English DT Article DE derivative-free optimization; radial basis functions; trust-region methods; nonlinear optimization ID PARALLEL PATTERN SEARCH; NONLINEAR OPTIMIZATION; UNCONSTRAINED OPTIMIZATION; GEOMETRY AB We analyze globally convergent, derivative-free trust-region algorithms relying on radial basis function interpolation models. Our results extend the recent work of Conn, Scheinberg, and Vicente [SIAM J. Optim., 20 (2009), pp. 387-415] to fully linear models that have a nonlinear term. We characterize the types of radial basis functions that fit in our analysis and thus show global convergence to first-order critical points for the ORBIT algorithm of Wild, Regis, and Shoemaker [SIAM J. Sci. Comput., 30 (2008), pp. 3197-3219]. Using ORBIT, we present numerical results for different types of radial basis functions on a series of test problems. We also demonstrate the use of ORBIT in finding local minima on a computationally expensive environmental engineering problem involving remediation of contaminated groundwater. C1 [Wild, Stefan M.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Shoemaker, Christine A.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. [Shoemaker, Christine A.] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA. RP Wild, SM (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wild@mcs.anl.gov; cas12@cornell.edu RI Wild, Stefan/P-4907-2016 OI Wild, Stefan/0000-0002-6099-2772 FU Argonne, a U.S. Department of Energy (DOE) Office of Science laboratory [DE-AC02-06CH11357]; DOE Computational Science Graduate Fellowship [DE-FG02-97ER25308]; Applied Mathematics activity within the DOE Office of Science's Advanced Scientific Computing Research program; NSF [BES-022917, CBET-0756575, CCF-0305583, DMS-0434390] FX Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 (wild@mcs.anl.gov). Argonne, a U.S. Department of Energy (DOE) Office of Science laboratory, is operated under contract DE-AC02-06CH11357. The work of this author was supported by a DOE Computational Science Graduate Fellowship under grant DE-FG02-97ER25308 and by the Applied Mathematics activity within the DOE Office of Science's Advanced Scientific Computing Research program.; School of Civil and Environmental Engineering and School of Operations Research and Information Engineering, Cornell University, Hollister Hall, Ithaca, NY 14853 (cas12@cornell.edu). The work of this author was supported by NSF grants BES-022917, CBET-0756575, CCF-0305583, and DMS-0434390. NR 40 TC 15 Z9 15 U1 0 U2 11 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0036-1445 EI 1095-7200 J9 SIAM REV JI SIAM Rev. PY 2013 VL 55 IS 2 BP 349 EP 371 DI 10.1137/120902434 PG 23 WC Mathematics, Applied SC Mathematics GA 142GS UT WOS:000318785900003 ER PT J AU Yang, L Zhu, ZH Yu, XY Thevuthasan, S Cowin, JP AF Yang, Li Zhu, Zihua Yu, Xiao-Ying Thevuthasan, Suntharampillai Cowin, James P. TI Performance of a microfluidic device for in situ ToF-SIMS analysis of selected organic molecules at aqueous surfaces SO ANALYTICAL METHODS LA English DT Article ID ION MASS-SPECTROMETRY; X-RAY SPECTROSCOPY; LIQUID WATER; AIR/WATER INTERFACE; MICROJETS; DYNAMICS; EVAPORATION; FILMS; BEAM AB In this study, we report new results concerning the analytical performance of a novel portable vacuum compatible device enabling in situ study of aqueous surfaces using vacuum-based surface analysis tools. The surfaces of aqueous solutions of three representative organic molecules (formic acid, glycerol, and glutamic acid) were analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Their molecular signals were successfully observed. The device can be operated without interruption in vacuum for up to 8 hours, and SIMS measurements are feasible at any time in this time range. The stability testing of our device under primary ion beam bombardment shows that high fluence (6 x 10(12) ions per cm(2) s(-1)) measurements can be operated continuously for up to 30 minutes without any significant damage to the aperture. However, extra-high fluence measurements (>1 x 10(14) ions per cm(2) s(-1)) may lead to rapid boiling in the aperture, and the aqueous solutions may spread out quickly. Device reproducibility is studied for both consecutive measurements over a short period of time (e.g., 5 min) and intermittent measurements over a long time (e. g., several hours). The relative standard deviation (RSD) for molecular ion signals was determined to be less than 15% for consecutive measurements in 5 min. As to total counts, the RSD is determined to be less than 1% for each chemical compound. Higher RSDs of +/- 40-50% were obtained for intermittent measurements in a few hours, both acceptable for semi-quantitative analysis. In addition, the detection limits of formic acid, glycerol, and glutamic acid are estimated to be 0.04%, 0.008%, and 0.002% (weight ratio), respectively. C1 [Yang, Li; Cowin, James P.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99354 USA. [Yang, Li; Zhu, Zihua; Thevuthasan, Suntharampillai] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99354 USA. [Yu, Xiao-Ying] Pacific NW Natl Lab, Atmospher Sci & Global Climate Change Div, Richland, WA 99354 USA. RP Zhu, ZH (reprint author), Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99354 USA. EM zihua.zhu@pnnl.gov; xiaoying.yu@pnnl.gov RI Zhu, Zihua/K-7652-2012; Yu, Xiao-Ying/L-9385-2013 OI Yu, Xiao-Ying/0000-0002-9861-3109 FU Department of Energy (DOE) Division of Chemical Sciences, Geosciences, and Biosciences (BES Chemical Sciences grant) [KC-0301020-16248]; Office of Biological and Environmental Research (OBER); Use at Facility Funds (UAFF) of the Pacific Northwest National Laboratory (PNNL); PNNL Chemical Imaging Initiative LDRD (Laboratory Directed Research and Development) Fund; OBER FX We are grateful for the support from the Department of Energy (DOE) Division of Chemical Sciences, Geosciences, and Biosciences (BES Chemical Sciences grant, KC-0301020-16248), the Office of Biological and Environmental Research (OBER), the Use at Facility Funds (UAFF) of the Pacific Northwest National Laboratory (PNNL), and the PNNL Chemical Imaging Initiative LDRD (Laboratory Directed Research and Development) Fund. The research was performed in the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by OBER and located at PNNL. PNNL is operated for DOE by Battelle. A Battelle patent (Intellectual Property Report no. 16961-E) was filed based on this invention. NR 38 TC 11 Z9 11 U1 0 U2 34 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1759-9660 EI 1759-9679 J9 ANAL METHODS-UK JI Anal. Methods PY 2013 VL 5 IS 10 BP 2515 EP 2522 DI 10.1039/c3ay26513g PG 8 WC Chemistry, Analytical; Food Science & Technology; Spectroscopy SC Chemistry; Food Science & Technology; Spectroscopy GA 135US UT WOS:000318314700012 ER PT J AU Comolli, LR Siegerist, CE Shin, SH Bertozzi, C Regan, W Zettl, A De Yoreo, J AF Comolli, Luis R. Siegerist, Cristina E. Shin, Seong-Ho Bertozzi, Carolyn Regan, William Zettl, Alex De Yoreo, Jim TI Conformational Transitions at an S-Layer Growing Boundary Resolved by Cryo-TEM SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE conformational transitions; electron microscopy; nanostructures; oligomeric intermediates; self-assembly ID PROTEINS; TUBULIN; GROWTH C1 [Comolli, Luis R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Siegerist, Cristina E.] Http Www Cristinasiegerist Com ComputingVisualiza, Berkeley, CA 94708 USA. [Shin, Seong-Ho; De Yoreo, Jim] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Regan, William; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Regan, William; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bertozzi, Carolyn] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Comolli, LR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM lrcomolli@lbl.gov RI Foundry, Molecular/G-9968-2014; Zettl, Alex/O-4925-2016; OI Zettl, Alex/0000-0001-6330-136X; Regan, William/0000-0003-0143-9827 FU Office of Science, Office of Basic Energy Sciences, Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was performed at Lawrence Berkeley National Laboratory, with support from the Office of Science, Office of Basic Energy Sciences, Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 24 TC 8 Z9 8 U1 1 U2 33 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2013 VL 52 IS 18 BP 4829 EP 4832 DI 10.1002/anie.201300543 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 132ZO UT WOS:000318107400015 PM 23564404 ER PT J AU Palaniappan, KK Ramirez, RM Bajaj, VS Wemmer, DE Pines, A Francis, MB AF Palaniappan, Krishnan K. Ramirez, R. Matthew Bajaj, Vikram S. Wemmer, David E. Pines, Alexander Francis, Matthew B. TI Molecular Imaging of Cancer Cells Using a Bacteriophage-Based 129Xe NMR Biosensor SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE cancer cells; NMR imaging; protein bioconjugation; viral capsids; xenon ID NUCLEAR-MAGNETIC-RESONANCE; LASER-POLARIZED XE-129; GROWTH-FACTOR RECEPTOR; HYPERPOLARIZED XE-129; FUNCTIONALIZED XENON; FILAMENTOUS PHAGE; CONTRAST AGENTS; PARACEST AGENTS; SPECTROSCOPY; CRYPTOPHANE C1 [Palaniappan, Krishnan K.; Ramirez, R. Matthew; Bajaj, Vikram S.; Wemmer, David E.; Pines, Alexander; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ramirez, R. Matthew; Bajaj, Vikram S.; Pines, Alexander; Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wemmer, David E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mbfrancis@berkeley.edu FU U.S. Department of Defense Cancer Research Program [BC016995]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC02-05CH112] FX This work was supported by grants from the U.S. Department of Defense Cancer Research Program (grant number BC016995, M.B.F.) and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under contract number DE-AC02-05CH112 (A.P.). NR 54 TC 39 Z9 39 U1 3 U2 64 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2013 VL 52 IS 18 BP 4849 EP 4853 DI 10.1002/anie.201300170 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 132ZO UT WOS:000318107400020 PM 23554263 ER PT J AU Kuvychko, IV Castro, KP Deng, SHM Wang, XB Strauss, SH Boltalina, OV AF Kuvychko, Igor V. Castro, Karlee P. Deng, S. H. M. Wang, Xue-Bin Strauss, Steven H. Boltalina, Olga V. TI Taming Hot CF3 Radicals: Incrementally Tuned Families of Polyarene Electron Acceptors for Air-Stable Molecular Optoelectronics SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE electrochemistry; electron affinity; polycyclic aromatic hydrocarbons; synthetic methods; trifluoromethylation ID ORGANIC SEMICONDUCTORS; AROMATIC-COMPOUNDS; PERFLUOROALKYLATION; TRIFLUOROMETHYLATION; AFFINITIES C1 [Kuvychko, Igor V.; Castro, Karlee P.; Strauss, Steven H.; Boltalina, Olga V.] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Deng, S. H. M.; Wang, Xue-Bin] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Kuvychko, IV (reprint author), Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. EM igor.kuvychko@gmail.com; xuebin.wang@pnnl.gov; steven.strauss@colostate.edu; olga.boltalina@colostate.edu FU U.S. Department of Energy (DOE), Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences; DOE's Office of Biological and Environmental Research FX We thank the U.S. NSF (CHE-1012468 (SHS/OVB) and the Colorado State University Research Foundation for generous support. The PES work was supported by the U.S. Department of Energy (DOE), Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences and was performed at the EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle. NR 28 TC 16 Z9 16 U1 2 U2 53 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2013 VL 52 IS 18 BP 4871 EP 4874 DI 10.1002/anie.201300085 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 132ZO UT WOS:000318107400025 PM 23526691 ER PT J AU Jacobson, AR Light, TEL Hamlin, T Nemzek, R AF Jacobson, A. R. Light, T. E. L. Hamlin, T. Nemzek, R. TI Joint radio and optical observations of the most radio-powerful intracloud lightning discharges SO ANNALES GEOPHYSICAE LA English DT Article DE Meteorology and atmospheric dynamics; Atmospheric electricity; Lightning ID TRANSIONOSPHERIC PULSE PAIRS; NARROW BIPOLAR EVENTS; ALAMOS SFERIC ARRAY; FORTE SATELLITE; PHOTODIODE DETECTOR; TRANSIENT DETECTOR; DETECTION NETWORK; VHF; FREQUENCY; EMISSIONS AB The most radio-powerful intracloud lightning emissions are associated with a phenomenon variously called "narrow bipolar events" or "compact intracloud discharges". This article examines in detail the coincidence and timing relationship between, on the one hand, the most radio-powerful intracloud lightning events and, on the other hand, optical outputs (or lack thereof) of the same discharge process. This is done, first, using coordinated very high frequency (VHF) and optical observations from the FORTE satellite and, second, using coordinated sferic and all-sky optical observations from the Los Alamos Sferic Array. In both cases, it is found that the sought coincidences are exceedingly rare. Moreover, in the handful of coincidences between optical and intense radio emissions that have been identified, the radio emissions differ from their usual behavior, by being accompanied by approximately simultaneous "conventional" lightning radio emissions. It is implied that the most radio-powerful intracloud emission process essentially differs from ordinary incandescent lightning. C1 [Jacobson, A. R.] Univ Washington, Washington, DC USA. [Light, T. E. L.; Hamlin, T.; Nemzek, R.] Los Alamos Natl Lab, ISR 2, Los Alamos, NM USA. RP Jacobson, AR (reprint author), Univ Washington, Washington, DC USA. EM abramj@u.washington.edu FU National Science Foundation [0947130]; Defense Advanced Research Projects Agency's Nimbus program; US Department of Energy FX One author (ARJ) was supported in this work by National Science Foundation grant 0947130 and by the Defense Advanced Research Projects Agency's Nimbus program, led by Dr. Matthew Goodman. The other authors contributed under the auspices of the US Department of Energy. NR 56 TC 4 Z9 5 U1 0 U2 8 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 0992-7689 J9 ANN GEOPHYS-GERMANY JI Ann. Geophys. PY 2013 VL 31 IS 3 BP 563 EP 580 DI 10.5194/angeo-31-563-2013 PG 18 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 137JQ UT WOS:000318432300016 ER PT S AU Hentschinski, M Vera, AS Salas, C AF Hentschinski, M. Sabio Vera, Agustin Salas, Clara BE Capua, M Fiore, R Papa, A Vera, AS Tassi, E TI The hard to soft Pomeron transition in small x DIS data using optimal renormalization SO DIFFRACTION 2012 SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Workshop on Diffraction in High Energy Physics (DIFFRACTION) CY SEP 10-15, 2012 CL Puerto del Carmen, SPAIN SP LHCPhenoNet, Inst Fisica Teorica, Univ Autonoma Madrid, Ist Nazl Fisica Nucl, Univ Calabria, CERN, Univ Calabria, Phys Dept, INFN, Autonoma Univ, Inst Theoret Phys (IFT UAM/CSIC), DESY, LHC Era, European Network Adv Phenomenol (LHCPhenoNet) DE High energy resummation; Pomeron intercept ID APPROXIMATION AB We show that it is possible to describe the effective Pomeron intercept, determined from the HERA Deep Inelastic Scattering data at small values of Bjorken x, using next-to-leading order BFKL evolution together with collinear improvements. To obtain a good description over the whole range of Q(2) we use a non-Abelian physical renormalization scheme with BLM optimal scale, combined with a parametrization of the running coupling in the infrared region. C1 [Hentschinski, M.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Hentschinski, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Hentschinski, Martin/A-9708-2015 OI Hentschinski, Martin/0000-0003-2922-7308 NR 14 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1146-3 J9 AIP CONF PROC PY 2013 VL 1523 BP 59 EP 62 DI 10.1063/1.4802116 PG 4 WC Physics, Particles & Fields SC Physics GA BES95 UT WOS:000317985000014 ER PT S AU Fazio, S AF Fazio, Salvatore BE Capua, M Fiore, R Papa, A Vera, AS Tassi, E TI GPDs at an Electron Ion Collider SO DIFFRACTION 2012 SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Workshop on Diffraction in High Energy Physics (DIFFRACTION) CY SEP 10-15, 2012 CL Puerto del Carmen, SPAIN SP LHCPhenoNet, Inst Fisica Teorica, Univ Autonoma Madrid, Ist Nazl Fisica Nucl, Univ Calabria, CERN, Univ Calabria, Phys Dept, INFN, Autonoma Univ, Inst Theoret Phys (IFT UAM/CSIC), DESY, LHC Era, European Network Adv Phenomenol (LHCPhenoNet) DE GPDs; DVCS; VMP; EIC AB The feasibility for a precise determination of Generalized Parton Distribution (GPDs) functions at an Electron Ion Collider (EIC) has been explored. The high luminosity of the machine, together with the large resolution and rapidity acceptance of the new dedicated detector, will open opportunity for high precision measurements of GPDs. We report on the study of GPDs from deeply virtual Compton scattering (DVCS). We also point out that such measurements at a proposed EIC provide insight to both, the transverse distribution of sea quarks and gluons as well as the proton spin decomposition. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Fazio, S (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Fazio, Salvatore /G-5156-2010 NR 4 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1146-3 J9 AIP CONF PROC PY 2013 VL 1523 BP 79 EP 82 DI 10.1063/1.4802121 PG 4 WC Physics, Particles & Fields SC Physics GA BES95 UT WOS:000317985000019 ER PT S AU Guryn, W AF Guryn, Wlodek CA STAR Collaboration BE Capua, M Fiore, R Papa, A Vera, AS Tassi, E TI Transverse spin asymmetries in the CNI region in polarized proton-proton elastic scattering at STAR SO DIFFRACTION 2012 SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Workshop on Diffraction in High Energy Physics (DIFFRACTION) CY SEP 10-15, 2012 CL Puerto del Carmen, SPAIN SP LHCPhenoNet, Inst Fisica Teorica, Univ Autonoma Madrid, Ist Nazl Fisica Nucl, Univ Calabria, CERN, Univ Calabria, Phys Dept, INFN, Autonoma Univ, Inst Theoret Phys (IFT UAM/CSIC), DESY, LHC Era, European Network Adv Phenomenol (LHCPhenoNet) DE Polarization; Elastic Scattering ID 1ST MEASUREMENT; ROOT-S=200 GEV AB We shall present the result on single spin asymmetry (A(N)) in polarized proton-proton scattering at root s = 200 GeV in small four momentum transferred squared (t) region. With the Roman Pots of the pp2pp experiment, installed at the STAR detector at RHIC, a data sample of about 20 million elastic events in -t range of 0.003 <= vertical bar t vertical bar <= 0.035 (GeV/c)(2) was analyzed. A fit of t-dependence of A(N) indicates that a hadronic spin-flip amplitude is comparable to zero. C1 [Guryn, Wlodek; STAR Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Guryn, W (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1146-3 J9 AIP CONF PROC PY 2013 VL 1523 BP 194 EP 198 DI 10.1063/1.4802148 PG 5 WC Physics, Particles & Fields SC Physics GA BES95 UT WOS:000317985000046 ER PT S AU Van Buren, G AF Van Buren, G. CA STAR Collaboration BE Capua, M Fiore, R Papa, A Vera, AS Tassi, E TI STAR: Characterizing Hot Quark Matter SO DIFFRACTION 2012 SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Workshop on Diffraction in High Energy Physics (DIFFRACTION) CY SEP 10-15, 2012 CL Puerto del Carmen, SPAIN SP LHCPhenoNet, Inst Fisica Teorica, Univ Autonoma Madrid, Ist Nazl Fisica Nucl, Univ Calabria, CERN, Univ Calabria, Phys Dept, INFN, Autonoma Univ, Inst Theoret Phys (IFT UAM/CSIC), DESY, LHC Era, European Network Adv Phenomenol (LHCPhenoNet) DE relativistic heavy ion collisions; quark gluon plasma AB With discovery of Quark Gluon Plasma well-established at RHIC, the STAR Experiment continues to work toward a more complete understanding of properties of the produced matter, and the conditions necessary for the phase change. We will present recent progress on characterizing quark matter at high temperature through a wide variety of measurement techniques in STAR's repertoire: from observing species suppression and correlations, to determining statistical moments and prospecting for symmetry-breaking. RHIC has further embarked on a program to study this matter through a range of conditions achieved by varying the collision energies, which are hoped to span and locate the QCD critical point. We will show how STAR's toolkit is already providing intriguing results from the the first phase of this program and discuss possible future directions for the program. C1 [Van Buren, G.; STAR Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Van Buren, G (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. NR 21 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1146-3 J9 AIP CONF PROC PY 2013 VL 1523 BP 216 EP 220 DI 10.1063/1.4802153 PG 5 WC Physics, Particles & Fields SC Physics GA BES95 UT WOS:000317985000051 ER PT S AU Hentschinski, M Murdaca, B AF Hentschinski, Martin Murdaca, Beatrice BE Capua, M Fiore, R Papa, A Vera, AS Tassi, E TI The Mueller-Tang jet impact factor at NLO from the high energy effective action SO DIFFRACTION 2012 SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Workshop on Diffraction in High Energy Physics (DIFFRACTION) CY SEP 10-15, 2012 CL Puerto del Carmen, SPAIN SP LHCPhenoNet, Inst Fisica Teorica, Univ Autonoma Madrid, Ist Nazl Fisica Nucl, Univ Calabria, CERN, Univ Calabria, Phys Dept, INFN, Autonoma Univ, Inst Theoret Phys (IFT UAM/CSIC), DESY, LHC Era, European Network Adv Phenomenol (LHCPhenoNet) DE High energy effective action; jets with rapidity gaps; diffraction; BFKL ID QCD EFFECTIVE ACTION; SCATTERING AB We report on recent progress in the evaluation of next-to-leading order observables using Lipatov's QCD high energy effective action. In this contribution we focus on the determination of the real part of the next-to-leading order corrections to the Mueller-Tang impact factor which is the only missing element for a complete NLO BFKL description of quark induced dijet events with a rapidity gap. C1 [Hentschinski, Martin] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Murdaca, Beatrice] Univ Calabria, Dipartimento Fis, I-87030 Commenda Di Rende, Italy. [Murdaca, Beatrice] Ist Nazl Fis Nucleare, Grp Coll Cosenza, I-87036 Cosenza, Italy. RP Hentschinski, M (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RI Hentschinski, Martin/A-9708-2015; OI Hentschinski, Martin/0000-0003-2922-7308; Murdaca, Beatrice/0000-0002-1681-5998 FU U.S. Department of Energy [DE-AC02-98CH10886]; Department of Energy [DE-AC02-98CH10886]; BNL "Laboratory Directed Research and Development" [LDRD 12-034] FX We would like to thank G. Chachamis, J. Madrigal Martinez and A. Sabio Vera for fruit-ful collaboration. M.H. acknowledges support from the U.S. Department of Energy under contract number DE-AC02-98CH10886 and a BNL Laboratory Directed Research and Development grant (LDRD 12-034). NR 28 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1146-3 J9 AIP CONF PROC PY 2013 VL 1523 BP 268 EP + DI 10.1063/1.4802164 PG 2 WC Physics, Particles & Fields SC Physics GA BES95 UT WOS:000317985000062 ER PT S AU Balitsky, I AF Balitsky, Ian BE Capua, M Fiore, R Papa, A Vera, AS Tassi, E TI Photon impact factor in the NLO SO DIFFRACTION 2012 SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Workshop on Diffraction in High Energy Physics (DIFFRACTION) CY SEP 10-15, 2012 CL Puerto del Carmen, SPAIN SP LHCPhenoNet, Inst Fisica Teorica, Univ Autonoma Madrid, Ist Nazl Fisica Nucl, Univ Calabria, CERN, Univ Calabria, Phys Dept, INFN, Autonoma Univ, Inst Theoret Phys (IFT UAM/CSIC), DESY, LHC Era, European Network Adv Phenomenol (LHCPhenoNet) DE High energy; Conformal invariance; Wilson lines ID EVOLUTION AB The photon impact factor for the BFKL pomeron is calculated in the next-to-leading order (NLO) approximation using the operator expansion in Wilson lines. The result is represented as a NLO k(T)-factorization formula for the structure functions of small-x deep inelastic scattering. C1 JLab, Newport News, VA 23606 USA. RP Balitsky, I (reprint author), JLab, 12000 Jefferson Ave, Newport News, VA 23606 USA. NR 20 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1146-3 J9 AIP CONF PROC PY 2013 VL 1523 BP 276 EP 281 DI 10.1063/1.4802166 PG 6 WC Physics, Particles & Fields SC Physics GA BES95 UT WOS:000317985000064 ER PT S AU Albrow, MG AF Albrow, M. G. CA CDF Collaboration BE Capua, M Fiore, R Papa, A Vera, AS Tassi, E TI Central Exclusive Production of Hadrons in CDF SO DIFFRACTION 2012 SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Workshop on Diffraction in High Energy Physics (DIFFRACTION) CY SEP 10-15, 2012 CL Puerto del Carmen, SPAIN SP LHCPhenoNet, Inst Fisica Teorica, Univ Autonoma Madrid, Ist Nazl Fisica Nucl, Univ Calabria, CERN, Univ Calabria, Phys Dept, INFN, Autonoma Univ, Inst Theoret Phys (IFT UAM/CSIC), DESY, LHC Era, European Network Adv Phenomenol (LHCPhenoNet) DE Diffraction; Double pomeron exchange; Central exclusive production AB At the Fermilab Tevatron with root s = 900 and 1960 GeV, we have studied exclusive double pomeron exchange in the Collider Detector at Fermilab, CDF. With similar to 300,000 events we present the mass spectrum of two hadrons, h(+)h(-), assumed to be pions, with vertical bar eta(pi)vertical bar < 1.3 and two rapidity gaps Delta eta > 4.6. The mass spectrum shows resonance structures, including f(0)(980), f(2)(1270), and f(0)(1370). The cross section ratio 1960 GeV/900 GeV and the mean p(T) (pair) show mass-dependent structures, even above M = 2 GeV where there are no established pi(+)pi(-) resonances. The data extend above M = 5 GeV. We place an upper limit on exclusive chi(c0) -> pi(+)pi(-) and K+K-. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Albrow, MG (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1146-3 J9 AIP CONF PROC PY 2013 VL 1523 BP 294 EP 297 DI 10.1063/1.4802170 PG 4 WC Physics, Particles & Fields SC Physics GA BES95 UT WOS:000317985000068 ER PT S AU Albrow, MG AF Albrow, Michael G. BE Capua, M Fiore, R Papa, A Vera, AS Tassi, E TI High Precision Spectrometers for Very Forward Protons in CMS SO DIFFRACTION 2012 SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Workshop on Diffraction in High Energy Physics (DIFFRACTION) CY SEP 10-15, 2012 CL Puerto del Carmen, SPAIN SP LHCPhenoNet, Inst Fisica Teorica, Univ Autonoma Madrid, Ist Nazl Fisica Nucl, Univ Calabria, CERN, Univ Calabria, Phys Dept, INFN, Autonoma Univ, Inst Theoret Phys (IFT UAM/CSIC), DESY, LHC Era, European Network Adv Phenomenol (LHCPhenoNet) DE Higgs; Central exclusive production AB We plan to add proton tracking and timing detectors at z = 240-250 m on both sides of CMS to study central exclusive production, with one or both protons measured, and single diffraction. They provide measurements of p + p -> p + X + p, where X = Z,H,W+W- and multiparticle states (with or without jets), as well as single high mass diffraction in low pile-up runs. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Albrow, MG (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1146-3 J9 AIP CONF PROC PY 2013 VL 1523 BP 320 EP 323 DI 10.1063/1.4802177 PG 4 WC Physics, Particles & Fields SC Physics GA BES95 UT WOS:000317985000075 ER PT S AU Rajamanickam, S Boman, EG AF Rajamanickam, Sivasankaran Boman, Erik G. BE Bader, DA Meyerhenke, H Sanders, P Wagner, D TI Parallel partitioning with Zoltan: Is hypergraph partitioning worth it? SO GRAPH PARTITIONING AND GRAPH CLUSTERING SE Contemporary Mathematics LA English DT Proceedings Paper CT 10th DIMACS Implementation Challenge Workshop CY FEB 13-14, 2012 CL Georgia Inst Technol, Atlanta, GA SP DIMACS, Command Control & Interoperabil Ctr Adv Data Anal, Pacific NW Natl Lab, Sandia Natl Lab, Intel Corp, Deutsch Forschungsgemeinschaft HO Georgia Inst Technol DE Graph partitioning; hypergraph partitioning; parallel computing ID MATRIX-VECTOR MULTIPLICATION AB Graph partitioning is an important and well studied problem in combinatorial scientific computing, and is commonly used to reduce communication in parallel computing. Different models (graph, hypergraph) and objectives (edge cut, boundary vertices) have been proposed. Hypergraph partitioning has become increasingly popular over the last decade. Its main strength is that it accurately captures communication volume, but it is slower to compute than graph partitioning. We present an empirical study of the Zoltan parallel hypergraph and graph (PEG) partitioner on graphs from the 10th DIMACS implementation challenge and some directed (nonsymmetric) graphs. We show that hypergraph partitioning is superior to graph partitioning on directed graphs (nonsymmetric matrices), where the communication volume is reduced in several cases by over an order of magnitude, but has no significant benefit on undirected graphs (symmetric matrices) using current parallel software tools. C1 [Rajamanickam, Sivasankaran; Boman, Erik G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rajamanickam, S (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM srajama@sandia.gov; egboman@sandia.gov NR 22 TC 1 Z9 1 U1 0 U2 8 PU AMER MATHEMATICAL SOC PI PROVIDENCE PA P.O. BOX 6248, PROVIDENCE, RI 02940 USA SN 0271-4132 BN 978-0-8218-9038-7 J9 CONTEMP MATH PY 2013 VL 588 BP 37 EP 52 DI 10.1090/conm/588/11711 PG 16 WC Mathematics SC Mathematics GA BES46 UT WOS:000317939900004 ER PT S AU Buluc, A Madduri, K AF Buluc, Aydin Madduri, Kamesh BE Bader, DA Meyerhenke, H Sanders, P Wagner, D TI Graph partitioning for scalable distributed graph computations SO GRAPH PARTITIONING AND GRAPH CLUSTERING SE Contemporary Mathematics LA English DT Proceedings Paper CT 10th DIMACS Implementation Challenge Workshop CY FEB 13-14, 2012 CL Georgia Inst Technol, Atlanta, GA SP DIMACS, Command Control & Interoperabil Ctr Adv Data Anal, Pacific NW Natl Lab, Sandia Natl Labs, Intel Corp, Deutsch Forschungsgemeinschaft HO Georgia Inst Technol DE graph partitioning; hypergraph partitioning; inter-node communication modeling; breadth-first search; 2D decomposition AB Inter-node communication time constitutes a significant fraction of the execution time of graph algorithms on distributed-memory systems. Global computations on large-scale sparse graphs with skewed degree distributions are particularly challenging to optimize for, as prior work shows that it is difficult to obtain balanced partitions with low edge cuts for these graphs. In this work, we attempt to determine the optimal partitioning and distribution of such graphs, for load-balanced parallel execution of communication-intensive graph algorithms. We use breadth-first search (BFS) as a representative example, and derive upper bounds on the communication costs incurred with a two-dimensional partitioning of the graph. We present empirical results for communication costs with various graph partitioning strategies, and also obtain parallel BFS execution times for several large-scale DIMACS Challenge instances on a supercomputing platform. Our performance results indicate that for several graph instances, reducing work and communication imbalance among partitions is more important than minimizing the total edge cut. C1 [Buluc, Aydin] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Madduri, Kamesh] Penn State Univ, State Coll, PA 16801 USA. RP Buluc, A (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. FU Office of Science, U.S. Department of Energy [DE-ACO2-05CH11231] FX This work was supported by the Director, Office of Science, U.S. Department of Energy under Contract No. DE-ACO2-05CH11231. NR 10 TC 2 Z9 2 U1 0 U2 2 PU AMER MATHEMATICAL SOC PI PROVIDENCE PA P.O. BOX 6248, PROVIDENCE, RI 02940 USA SN 0271-4132 BN 978-0-8218-9038-7 J9 CONTEMP MATH PY 2013 VL 588 BP 83 EP + DI 10.1090/conm/588/11709 PG 3 WC Mathematics SC Mathematics GA BES46 UT WOS:000317939900007 ER PT S AU Djidjev, H Onus, M AF Djidjev, Hristo Onus, Melih BE Bader, DA Meyerhenke, H Sanders, P Wagner, D TI Using graph partitioning for efficient network modularity optimization SO GRAPH PARTITIONING AND GRAPH CLUSTERING SE Contemporary Mathematics LA English DT Proceedings Paper CT 10th DIMACS Implementation Challenge Workshop CY FEB 13-14, 2012 CL Georgia Inst Technol, Atlanta, GA SP DIMACS, Command Control & Interoperabil Ctr Adv Data Anal, Pacific NW Natl Lab, Sandia Natl Labs, Intel Corp, Deutsch Forschungsgemeinschaft HO Georgia Inst Technol ID COMMUNITY; DYNAMICS AB The paper reviews an approach for finding the communities of a network developed by the authors [WAW'06, Lecture Notes in Computer Science, Volume 4936/2008, 117-128, IEEE TPDS vol. PP, issue 99, 2012], which is based on a reduction of the modularity optimization problem to the minimum weighted cut problem, and gives an experimental evaluation of an implementation based on that approach on graphs from the 10th DIMACS Implementation Challenge Testbed. Specifically, we describe a reduction from the problem of finding a partition of the nodes of a graph G that maximizes the modularity to the problem of finding a partition that minimizes the weight of the cut in a complete graph on the same node set as G, and weights dependent on a random graph model associated with G. The resulting minimum cut problem can then be solved by modifying existing codes for graph partitioning. We compare the performance of our implementation based on the Metis graph partitioning tool [SIAM J. Sci. Comp. 20, 359-392] against one of the best performing algorithms described in this volume. C1 [Djidjev, Hristo] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Onus, Melih] Bilkent Univ, Dept Comp Engn, TR-06800 Ankara, Turkey. RP Djidjev, H (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. FU Department of Energy [W-705-ENG-36]; Los Alamos National Laboratory Directed Research and Development Program (LDRD) [20110093DR, 20130252ER] FX The work of the first author has been supported by the Department of Energy under contract W-705-ENG-36 and by the Los Alamos National Laboratory Directed Research and Development Program (LDRD), projects 20110093DR and 20130252ER. NR 34 TC 0 Z9 0 U1 1 U2 3 PU AMER MATHEMATICAL SOC PI PROVIDENCE PA P.O. BOX 6248, PROVIDENCE, RI 02940 USA SN 0271-4132 BN 978-0-8218-9038-7 J9 CONTEMP MATH PY 2013 VL 588 BP 103 EP + DI 10.1090/conm/588/11713 PG 4 WC Mathematics SC Mathematics GA BES46 UT WOS:000317939900008 ER PT J AU Grover, S Teplin, CW Li, JV Bobela, DC Bornstein, J Schroeter, P Johnston, S Guthrey, H Stradins, P Branz, HM Young, DL AF Grover, Sachit Teplin, Charles W. Li, Jian V. Bobela, David C. Bornstein, Jon Schroeter, Paul Johnston, Steve Guthrey, Harvey Stradins, Paul Branz, Howard M. Young, David L. TI Device Physics of Heteroepitaxial Film c-Si Heterojunction Solar Cells SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Charge recombination; diode ideality factor; heteroepitaxial silicon; open-circuit voltage; photovoltaic (PV) cells; quantum efficiency (QE) ID POLYCRYSTALLINE SILICON; SURFACE-RECOMBINATION; CHALLENGES; EFFICIENCY; GLASS AB We characterize heterojunction solar cells made from single-crystal silicon films grown heteroepitaxially using hot-wire chemical vapor deposition (HWCVD). Heteroepitaxy-induced dislocations limit the cell performance, providing a unique platform to study the device physics of thin crystal Si heterojunction solar cells. Hydrogen passivation of these dislocations enables an open-circuit voltage V-OC close to 580 mV. However, dislocations are partially active, even after passivation. Using standard characterization methods, we compare the performance of heteroepitaxial absorbers with homoepitaxial absorbers that are free of dislocations. Heteroepitaxial cells have a smaller diffusion length and a larger ideality factor, indicating stronger recombination, which leads to inefficient current collection and a lower V-OC than homoepitaxial cells. Modeling indicates that the recombination in the inversion layer of heterojunction cells made from defective absorbers is comparable with the overall recombination in the bulk. Temperature-dependent V-OC measurements point to significant recombination at the interface that is attributable to the presence of dislocations. C1 [Grover, Sachit; Teplin, Charles W.; Li, Jian V.; Johnston, Steve; Guthrey, Harvey; Stradins, Paul; Branz, Howard M.; Young, David L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bobela, David C.; Bornstein, Jon; Schroeter, Paul] Ampulse Corp, Golden, CO 80401 USA. RP Grover, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM sachit.grover@nrel.gov; Charles.Teplin@NREL.gov; jian.li@nrel.gov; David@ampulse.com; jon@ampulse.com; Paul@ampulse.com; steve.johnston@nrel.gov; harvey.guthrey@nrel.gov; pauls.stradins@nrel.gov; howard.branz@nrel.gov; David.Young@nrel.gov RI Grover, Sachit/M-1881-2013; Li, Jian/B-1627-2016 FU U.S. Department of Energy Solar Energy Technologies Program [AC36-08-GO28308]; Ampulse Corporation FX This work was supported by the U.S. Department of Energy Solar Energy Technologies Program under Contract AC36-08-GO28308 and by the Ampulse Corporation. NR 27 TC 8 Z9 8 U1 1 U2 26 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JAN PY 2013 VL 3 IS 1 BP 230 EP 235 DI 10.1109/JPHOTOV.2012.2223455 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 137KF UT WOS:000318434000036 ER PT J AU Hacke, P Smith, R Terwilliger, K Glick, S Jordan, D Johnston, S Kempe, M Kurtz, S AF Hacke, Peter Smith, Ryan Terwilliger, Kent Glick, Stephen Jordan, Dirk Johnston, Steve Kempe, Michael Kurtz, Sarah TI Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules Undergoing Degradation by System Voltage Stress SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Current-voltage (I-V) characteristics; degradation; high-voltage techniques; photovoltaic (PV) cells; photovoltaic systems; reliability ID PHOTOVOLTAIC MODULES; FAILURE AB Acceleration factors are calculated for crystalline silicon photovoltaic modules under system voltage stress by comparing the module power during degradation outdoors with that in accelerated testing at three temperatures and 85% relative humidity. A lognormal analysis is applied to the accelerated lifetime test data, considering failure at 80% of the initial module power. Activation energy of 0.73 eV for the rate of failure is determined for the chamber testing at constant relative humidity, and the probability of module failure at an arbitrary temperature is predicted. To obtain statistical data for multiple modules over the course of degradation in situ of the test chamber, dark I-V measurements are obtained and transformed using superposition, which is found to be well suited for rapid and quantitative evaluation of potential-induced degradation. It is determined that shunt resistance measurements alone do not represent the extent of power degradation. This is explained with a two-diode model analysis that shows an increasing second diode recombination current and ideality factor as the degradation in module power progresses. Failure modes of the modules stressed outdoors are examined and compared with those stressed in accelerated tests. C1 [Hacke, Peter; Smith, Ryan; Terwilliger, Kent; Glick, Stephen; Jordan, Dirk; Johnston, Steve; Kempe, Michael; Kurtz, Sarah] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Hacke, P (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM peter.hacke@nrel.gov; Ryan.Smith@nrel.gov; kent.terwilliger@nrel.gov; Stephen.Glick@nrel.gov; dirk.jordan@nrel.gov; steve.johnston@nrel.gov; Michael.Kempe@nrel.gov; Sarah.Kurtz@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 32 TC 22 Z9 24 U1 3 U2 38 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JAN PY 2013 VL 3 IS 1 BP 246 EP 253 DI 10.1109/JPHOTOV.2012.2222351 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 137KF UT WOS:000318434000038 ER PT J AU Pattnaik, S Xiao, T Shinar, R Shinar, J Dalal, VL AF Pattnaik, Sambit Xiao, Teng Shinar, R. Shinar, J. Dalal, V. L. TI Novel Hybrid Amorphous/Organic Tandem Junction Solar Cell SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Amorphous semiconductors; degradation; organic semiconductors; photovoltaic (PV) cells; silicon ID MICROCRYSTALLINE SILICON; POLYMER; TRANSPORT AB We report on a novel hybrid amorphous Si-organic series-connected tandem junction solar cell. The solar cell is fabricated on indium tin oxide (ITO)-coated glass and uses an a-(Si,C):H as the first cell and a P3HT/PCBM organic cell as the second cell. An intermediate ITO layer is used as an ohmic layer which provides an excellent contact to both the first and the second cells. By adjusting the bandgap and thickness of the first a-(Si,C):H cell, we achieve an almost complete matching of currents produced by the first and the second cells. The first cell produces similar to 0.95-1.0-V open-circuit voltage, and the second cell produces similar to 0.6-V open-circuit voltage. The combined cell produces 1.5-V open-circuit voltage and had a fill factor of 77%, showing the effectiveness of the intermediate ITO layer to act as an excellent connecting layer between the two cells. When such an ITO layer is not used, the fill factor is very poor. The solar conversion efficiency of the organic cell was 4.3%, whereas the efficiency of the tandem cell was 5.7%. We also measured the stability of the organic cell with and without an inorganic cell acting as a filter in front. It is shown that the degradation of the organic cell is much higher when it is subjected to a full solar spectrum, as compared with when it is subjected to light passing through an inorganic cell first, which filters out ultraviolet (UV) and blue photons. Thus, we show that this new cell combination has the potential to significantly increase the efficiency of organic cells while also decreasing the instability. We also discuss the potential of achieving much higher efficiencies, that is approaching 20%, by using an appropriate combination of amorphous and organic cells. An example is shown next. C1 [Pattnaik, Sambit; Shinar, R.; Dalal, V. L.] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. [Pattnaik, Sambit; Shinar, R.; Dalal, V. L.] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Xiao, Teng; Shinar, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Xiao, Teng; Shinar, J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Pattnaik, S (reprint author), Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. EM pattnaik@iastate.edu; txiao@iastate.edu; rshinar@iastate.edu; shinar@ameslab.gov; vdalal@iastate.edu FU National Science Foundation; Iowa Power Fund; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC 02-07CH11358] FX This work was supported by the National Science Foundation and Iowa Power Fund for some of the work. This work was also supported in part by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC 02-07CH11358. NR 20 TC 5 Z9 5 U1 0 U2 39 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JAN PY 2013 VL 3 IS 1 BP 295 EP 299 DI 10.1109/JPHOTOV.2012.2212700 PG 5 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 137KF UT WOS:000318434000046 ER PT J AU Ray, B Khan, MR Black, C Alam, MA AF Ray, Biswajit Khan, Mohammad Ryyan Black, Charles Alam, Muhammad Ashraful TI Nanostructured Electrodes for Organic Solar Cells: Analysis and Design Fundamentals SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Bulk heterojunction (BHJ); fill factor (FF); morphology; nanostructured electrodes (NEs); organic photovoltaic (OPV) cell ID POWER CONVERSION EFFICIENCY; POLYMER PHOTOVOLTAIC CELLS; RECOMBINATION; BLENDS; POLY(3-HEXYLTHIOPHENE); HETEROJUNCTIONS; ENHANCEMENT; PERFORMANCE; MORPHOLOGY; NETWORK AB Nanostructured electrodes (NEs) improve optical absorption and charge collection in photovoltaic (PV) devices. Traditionally, the electrodes have been designed exclusively for higher optical absorption. Such an optical design of the electrodes does not necessarily ensure better charge collection. Since the efficiency of organic PV (OPV) devices is hindered by the low carrier mobility of the organic semiconductors, the charge collection property of the NEs provides an interesting design alternative. The goal of this paper is the formulation of the essential design rules for NEs to improve charge collection in the low-mobility organic materials. We use detailed optoelectronic device simulation to explore the physics of NEs embedded in the organic semiconductors and quantify its effect on the performance gain of organic solar cells. Our analysis suggests that an optimum codesign of electrodes and morphology is essential for significant performance improvement (mainly through fill factor) in OPV cells. C1 [Ray, Biswajit; Khan, Mohammad Ryyan; Alam, Muhammad Ashraful] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47906 USA. [Black, Charles] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Ray, B (reprint author), Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47906 USA. EM biswajit.025@gmail.com; ryyan.khan.eee@gmail.com; ctblack@bnl.gov; alam@purdue.edu FU Center for Re-Defining Photovoltaic Efficiency Through Molecule Scale Control, an Energy Frontier Research Center; U.S. Department of Energy Office of Science; Office of Basic Energy Sciences [DE-SC0001085]; Network of Computational Nanotechnology from the National Science Foundation [EEC-0228390] FX This work was supported in part by the Center for Re-Defining Photovoltaic Efficiency Through Molecule Scale Control, an Energy Frontier Research Center funded by the U.S. Department of Energy Office of Science, and in part by the Office of Basic Energy Sciences under Award DE-SC0001085. The computational resources for this work were provided by the Network of Computational Nanotechnology under Award EEC-0228390 from the National Science Foundation. NR 49 TC 11 Z9 11 U1 0 U2 27 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JAN PY 2013 VL 3 IS 1 BP 318 EP 329 DI 10.1109/JPHOTOV.2012.2220529 PG 12 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 137KF UT WOS:000318434000049 ER PT J AU Ahrenkiel, RK Feldman, A Lehman, J Johnston, SW AF Ahrenkiel, R. K. Feldman, A. Lehman, J. Johnston, S. W. TI Novel Free-Carrier Pump-Probe Analysis of Carrier Transport in Semiconductors SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Charge-carrier lifetime; free carrier absorption; photoconductive decay AB We have developed a pump-probe configuration to measure the carrier lifetime using the transient free-carrier density. The free-carrier absorption varies as lambda(2) Delta n/mu, where lambda is 10.6 mu m in this paper. We measure the transient photoconductive decay that is proportional to Delta n (*) mu. The data product gives Delta alpha (*) Delta sigma similar to lambda(2) Delta n(t)(2). The mobility variation is nullified by multiplying the data from the two parallel measurements. From the product data, both Delta n(t) and mu(Delta n) can be determined. A large increase in Delta alpha and decrease in mu are observed and caused by space-charge effects in regions of high injection. These data show the unexpected and remarkable result that the lifetime is relatively constant up to an injection level of about three times the doping level. However, the mobility decreases by about a factor of six over the same injection range. C1 [Ahrenkiel, R. K.; Feldman, A.] Colorado Sch Mines, Golden, CO 80401 USA. [Ahrenkiel, R. K.; Johnston, S. W.] Natl Renewable Energy Lab, Golden, CO 80402 USA. [Feldman, A.; Lehman, J.] NIST, Boulder, CO 80302 USA. RP Ahrenkiel, RK (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. EM rahren@mac.com; ari1127@gmail.com; lehman@boulder.nist.gov; steve.johnston@nrel.gov NR 7 TC 3 Z9 3 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JAN PY 2013 VL 3 IS 1 BP 348 EP 352 DI 10.1109/JPHOTOV.2012.2215581 PG 5 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 137KF UT WOS:000318434000053 ER PT J AU Madaeni, SH Sioshansi, R Denholm, P AF Madaeni, Seyed Hossein Sioshansi, Ramteen Denholm, Paul TI Comparing Capacity Value Estimation Techniques for Photovoltaic Solar Power SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Approximation techniques; capacity value; photovoltaic (PV) solar; reliability theory ID LOAD-CARRYING CAPABILITY; UNITED-STATES; WIND POWER AB In this paper, we estimate the capacity value of photovoltaic (PV) solar plants in the western U.S. Our results show that PV plants have capacity values that range between 52% and 93%, depending on location and sun-tracking capability. We further compare more robust but data- and computationally-intense reliability-based estimation techniques with simpler approximation methods. We show that if implemented properly, these techniques provide accurate approximations of reliability-based methods. Overall, methods that are based on the weighted capacity factor of the plant provide the most accurate estimate. We also examine the sensitivity of PV capacity value to the inclusion of sun-tracking systems. C1 [Madaeni, Seyed Hossein; Sioshansi, Ramteen] Ohio State Univ, Integrated Syst Engn Dept, Columbus, OH 43210 USA. [Denholm, Paul] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. RP Madaeni, SH (reprint author), Pacific Gas & Elect Co, Short Term Elect Supply Dept, San Francisco, CA 94105 USA. EM SHM8@pge.com; sioshansi.1@osu.edu; paul.denholm@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; Alliance for Sustainable Energy, LLC [AGG-1-11946-01] FX Manuscript received July 18, 2012; accepted August 29, 2012. Date of publication September 28, 2012; date of current version December 19, 2012. This work was supported by the U.S. Department of Energy through prime contract DE-AC36-08GO28308 and by the Alliance for Sustainable Energy, LLC, through subcontract AGG-1-11946-01. The opinions expressed and conclusions reached are solely those of the authors and do not represent the official position of Pacific Gas and Electric Company. NR 32 TC 10 Z9 11 U1 2 U2 23 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JAN PY 2013 VL 3 IS 1 BP 407 EP 415 DI 10.1109/JPHOTOV.2012.2217114 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 137KF UT WOS:000318434000063 ER PT J AU Fthenakis, V Anctil, A AF Fthenakis, Vasilis Anctil, Annick TI Direct Te Mining: Resource Availability and Impact on Cumulative Energy Demand of CdTe PV Life Cycles SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE CdTe photovoltaics (PV); life-cycle assessments (LCAs); photovoltaic cells ID TECHNOLOGIES AB As the availability of tellurium (Te) is constrained by the production rate of its main parent compound (Cu), its potential supply to deploy CdTe photovoltaics (PV) merits investigation. Recently, Te-rich ores and gold-telluride mines have been discovered in several places throughout the world that will allow the economic recovery of Te, independent of the production of copper. In conventional CdTe life-cycle assessments, the environmental impacts of mining and smelting are typically allocated to all the coproducts on the basis of the products' physical amount or economic values. Consequently, directly mining Te from such ores potentially might increase the environmental burden of mining and smelting operations in the life cycle of CdTe PV systems. Other factors influencing the impacts of direct Te mining include the presence of additional coproducts (e.g., gold and silver), the relative contribution of Te to the life-cycle cumulative energy demand (CED) of CdTe PV, the proportion of directly mined Te content relative to the content of the Cu byproduct in the Te-supply chain, and end-of-life CdTe PV recycling. We estimated that the total CED would increase by 1% when 100% of the supply came from direct mining and by 0.7% if we assume a supply mixture representing the ratios of the reserves. C1 [Fthenakis, Vasilis] Columbia Univ, New York, NY 10027 USA. [Fthenakis, Vasilis; Anctil, Annick] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Fthenakis, V (reprint author), Columbia Univ, New York, NY 10027 USA. EM vmf@bnl.gov; aanctil@bnl.gov NR 16 TC 6 Z9 6 U1 2 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JAN PY 2013 VL 3 IS 1 BP 433 EP 438 DI 10.1109/JPHOTOV.2012.2216860 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 137KF UT WOS:000318434000067 ER PT J AU Repins, IL Romero, MJ Li, JV Wei, SH Kuciauskas, D Jiang, CS Beall, C DeHart, C Mann, J Hsu, WC Teeter, G Goodrich, A Noufi, R AF Repins, Ingrid L. Romero, Manuel J. Li, Jian V. Wei, Su-Huai Kuciauskas, Darius Jiang, Chun-Sheng Beall, Carolyn DeHart, Clay Mann, Jonathan Hsu, Wan-Ching Teeter, Glenn Goodrich, Al Noufi, Rommel TI Kesterite Successes, Ongoing Work, and Challenges: A Perspective From Vacuum Deposition SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Cu2ZnSnS4 (CZTS); earth; kesterite; photovoltaic; thin film ID FILM SOLAR-CELLS; THIN-FILMS; PHOTOVOLTAICS; CU2ZNSNSE4; EFFICIENCY; CZTS; AVAILABILITY AB Recent years have seen dramatic improvements in the performance of kesterite devices. The existence of devices of comparable performance, made by a number of different techniques, provides some new perspective on what characteristics are likely fundamental to the material. Here, we review progress in kesterite device fabrication, aspects of the film characteristics that have yet to be understood, and challenges in device development that remain for kesterites to contribute significantly to photovoltaic manufacturing. Performance goals, as well as characteristics of mid-gap defect density, free carrier density, surfaces, grain boundaries, grain-to-grain uniformity, and bandgap alloying are discussed. C1 [Repins, Ingrid L.; Romero, Manuel J.; Li, Jian V.; Wei, Su-Huai; Kuciauskas, Darius; Jiang, Chun-Sheng; Beall, Carolyn; DeHart, Clay; Mann, Jonathan; Teeter, Glenn; Goodrich, Al; Noufi, Rommel] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hsu, Wan-Ching] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. RP Repins, IL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM ingrid.repins@nrel.gov; manuel.romero@nrel.gov; jian.li@nrel.gov; Suhuai.Wei@nrel.gov; darius.kuciauskas@nrel.gov; chun.sheng.jiang@nrel.gov; Carolyn.Beall@nrel.gov; Clay.DeHart@nrel.gov; jonathan.mann@nrel.gov; ching.hsu@ucla.edu; glenn.teeter@nrel.gov; Alan.Goodrich@nrel.gov; Rommel.Noufi@nrel.gov RI jiang, chun-sheng/F-7839-2012; Li, Jian/B-1627-2016 FU Alliance for Sustainable Energy, LLC [DE-AC36-08GO28308]; U.S. Department of Energy; California NanoSystem Institute FX Manuscript received May 14, 2012; revised August 21, 2012; accepted August 22, 2012. Date of publication September 19, 2012; date of current version December 19, 2012. This work was supported by the Alliance for Sustainable Energy, LLC, under Contract DE-AC36-08GO28308 along with the U.S. Department of Energy. (The Alliance for Sustainable Energy, LLC, is the manager and operator of the National Renewable Energy Laboratory.) The work of W.-C. Hsu was supported by the California NanoSystem Institute. NR 52 TC 31 Z9 31 U1 3 U2 82 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JAN PY 2013 VL 3 IS 1 BP 439 EP 445 DI 10.1109/JPHOTOV.2012.2215842 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 137KF UT WOS:000318434000068 ER PT J AU Mann, JR Kempe, M Repins, I Duda, A Glick, S Kanevce, A AF Mann, J. R. Kempe, M. Repins, I. Duda, A. Glick, S. Kanevce, A. TI A Dry Heat-Induced Effect of Using Silver in CIGS Gridlines SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Buffer; Cu(In,Ga)Se-2 (CIGS); diffusion; gridlines; photocurrent; silver ID FILM SOLAR-CELLS AB The ease with which screen-printed silver is deposited and its high conductivity make it an appealing choice for gridline material on CIGS-based photovoltaic devices. However, present results suggest silver diffusion into the device can cause severe reductions in efficiency after as little as 200 h at 85 degrees C. Dramatic reductions in fill factor, characterized by unusual inflections in the power quadrant of current-voltage curves, are observed for devices with silver gridlines but not for those with nickel or aluminum gridlines. The shape of the current-voltage curves demonstrate that the degradation mode is not simply due to changes in resistance but is consistent with the creation of a secondary barrier near the device junction. C1 [Mann, J. R.; Kempe, M.; Repins, I.; Duda, A.; Glick, S.; Kanevce, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mann, JR (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jonathan.mann@nrel.gov; Michael.Kempe@NREL.gov; ingrid.repins@nrel.gov; anna.duda@nrel.gov; Stephen.Glick@NREL.GOV; Ana.Kanevce@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX Manuscript received March 7, 2012; revised September 14, 2012; accepted September 14, 2012. Date of publication October 24, 2012; date of current version December 19, 2012. This work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 13 TC 0 Z9 0 U1 1 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JAN PY 2013 VL 3 IS 1 BP 457 EP 460 DI 10.1109/JPHOTOV.2012.2219852 PG 4 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 137KF UT WOS:000318434000071 ER PT J AU Mann, J Li, J Repins, I Ramanathan, K Glynn, S DeHart, C Noufi, R AF Mann, Jonathan Li, Jian Repins, Ingrid Ramanathan, Kannan Glynn, Stephen DeHart, Clay Noufi, Rommel TI Reflection Optimization for Alternative Thin-Film Photovoltaics SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Cadmium sulfide (CdS); copper indium gallium selenide (CIGS); copper zinc tin selenide (CZTS); reflection; zinc sulfide (ZnS) ID SOLAR-CELLS; SINGLE-LAYER; EFFICIENCY AB The recent improvements in efficiencies for kesterite (copper zinc tin selenide, CZTS) devices warrant an investigation into how the kesterite device stack can best be capped to minimize losses due to reflection. Additionally, ongoing efforts to replace the cadmium sulfide (CdS) layer in copper indium gallium selenide (CIGS)-based devices, most notably with zinc sulfide (ZnS), need to be accompanied by a similar investigation into how to best finish a CIGS/ZnS stack to minimize reflection losses. An optical analysis of how CZTS/CdS and CIGS/ZnS devices reflect light has been performed for the purpose of optimizing the transparent conducting oxide and antireflection layers for each stack. This research addresses what is similar and what is different between the alternative stacks and the routine CIGS/CdS stack and how to best reduce the reflection losses for each situation. C1 [Mann, Jonathan; Li, Jian; Repins, Ingrid; Ramanathan, Kannan; Glynn, Stephen; DeHart, Clay; Noufi, Rommel] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Li, Jian] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Mann, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jonathan.mann@nrel.gov; Jian2.Li@nrel.gov; ingrid.repins@nrel.gov; kannan.ramanathan@nrel.gov; Stephen.Glynn@nrel.gov; Clay.DeHart@nrel.gov; Rommel.Noufi@nrel.gov FU U.S Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX Manuscript received May 18, 2012; accepted September 26, 2012. Date of publication November 12, 2012; date of current version December 19, 2012. This work was supported by the U.S Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 14 TC 8 Z9 8 U1 1 U2 49 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JAN PY 2013 VL 3 IS 1 BP 472 EP 475 DI 10.1109/JPHOTOV.2012.2224321 PG 4 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 137KF UT WOS:000318434000074 ER PT J AU Ishizuka, S Mansfield, LM DeHart, C Scott, M To, B Young, MR Egaas, B Noufi, R AF Ishizuka, Shogo Mansfield, Lorelle M. DeHart, Clay Scott, Marty To, Bobby Young, Matthew R. Egaas, Brian Noufi, Rommel TI Rapid Fabrication of Cu(In,Ga)Se-2 Thin Films by the Two-Step Selenization Process SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Copper indium gallium diselenide; Cu(In,Ga)Se-2 (CIGS); photovoltaic cells; selenization; thin films ID SOLAR-CELLS; SE-VAPOR; PRECURSORS; CUINSE2; PHASE AB Two-step processes currently used for the industrial Cu(In,Ga)Se-2 (CIGS) module production require a long process time of several hours for the CIGS absorber formation. In this paper, we are studying the reaction pathway to rapid selenization of stacked metal precursors in elemental Se vapor. The objective is to understand the reaction kinetics to find the best precursor structure and the optimal selenization conditions to form high-quality CIGS films with proper Ga depth profiles. In addition to stacked metal precursors, the effect of the use of Se-containing precursors was also examined. As expected, the stacking order of the metal precursors influences the properties of the resulting CIGS absorbers. The Cu amount deposited for the precursor formation critically affected the final film and cell properties, as well. We also found that the formation of CIGS films with large grain sizes and flat Ga depth profiles was possible even for [Cu]/([In] + [Ga]) < 1 conditions with the use of particular precursor structures and selenization conditions. The results suggest that the selenization reaction pathway can be dictated with the precursor structure, and further improvements are expected by controlling reaction kinetics with precursor structure modification. C1 [Ishizuka, Shogo; Mansfield, Lorelle M.; DeHart, Clay; Scott, Marty; To, Bobby; Young, Matthew R.; Egaas, Brian; Noufi, Rommel] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ishizuka, Shogo] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. RP Ishizuka, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM shogo-ishizuka@aist.go.jp; lorelle.mansfield@nrel.gov; clay.dehart@nrel.gov; marty.scott@nrel.gov; bobby.to@nrel.gov; matthew.young@nrel.gov; brian.egaas@nrel.gov; rommel.noufi@nrel.gov FU U.S. Department of Energy SunShot Program's Funding of the National Renewable Energy Laboratory Core Science and Technology Activities; Foundational Program for Advancing Conversion Efficiency FX Manuscript received May 21, 2012; revised August 27, 2012 and September 21, 2012; accepted September 27, 2012. Date of publication November 12, 2012; date of current version December 19, 2012. This work was supported by the U.S. Department of Energy SunShot Program's Funding of the National Renewable Energy Laboratory Core Science and Technology Activities, and Foundational Program for Advancing Conversion Efficiency. NR 14 TC 5 Z9 5 U1 2 U2 38 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JAN PY 2013 VL 3 IS 1 BP 476 EP 482 DI 10.1109/JPHOTOV.2012.2222868 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 137KF UT WOS:000318434000075 ER PT S AU Hao, Q AF Hao, Qiu CA STAR Collaboration GP IOP TI Heavy Flavor Results from STAR SO INTERNATIONAL CONFERENCE ON HEAVY ION COLLISIONS IN THE LHC ERA SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Heavy Ion Collisions in the LHC Era CY JUL 16-20, 2012 CL Quy Nhon, VIETNAM SP European Res Council, Xunta Galicia, EMMI, Agence Nationale Rech, Lab Annecy-le-Vieux Physique Theorique ID COLLISIONS AB Heavy flavor quarks are considered to be unique probes of the medium created in high energy heavy ion collisions. These proceedings report selected STAR results from various measurements of heavy flavor production, including J/psi, suppression and collectivity, Upsilon suppression, ratio of bottom-decay electrons to charm-decay electrons, D meson spectra and charm cross section. C1 [Hao, Qiu; STAR Collaboration] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Hao, Q (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM hqiu@lbl.gov NR 20 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2013 VL 422 AR 012013 DI 10.1088/1742-6596/422/1/012013 PG 4 WC Physics, Nuclear SC Physics GA BEW61 UT WOS:000318416900013 ER PT J AU Kaur, N Zhao, QZ Xie, Q Hu, JP AF Kaur, Navneet Zhao, Qingzhen Xie, Qi Hu, Jianping TI Arabidopsis RING Peroxins are E3 Ubiquitin Ligases that Interact with Two Homologous Ubiquitin Receptor Proteins SO JOURNAL OF INTEGRATIVE PLANT BIOLOGY LA English DT Article DE Arabidopsis; RING domain proteins; peroxisomes; ubiquitin receptor ID PEROXISOMAL IMPORT RECEPTOR; U-BOX; PLANT PEROXISOMES; PEX5P; BIOGENESIS; FINGER; FAMILY; PROTEASOME; THALIANA; DOMAIN AB Peroxisomes are essential eukaryotic organelles that mediate various metabolic processes. Peroxisome import depends on a group of peroxisome biogenesis factors called peroxins, many of which are evolutionarily conserved. PEX2, PEX10, and PEX12 are three RING-finger-domain-containing integral membrane peroxins crucial for protein import. In yeast (Saccharomyces cerevisae), RING peroxins act as E3 ligases, facilitating the recycling of the peroxisome import receptor protein PEX5 through ubiquitination. In plants, RING peroxins are essential to plant vitality. To elucidate the mode of action of the plant RING peroxins, we employed in vitro assays to show that the Arabidopsis RING peroxins also have E3 ligase activities. We also identified a PEX2-interacting protein, DSK2b, which is a member of the ubiquitin receptor family known to function as shuttle factors ferrying polyubiquitinated substrates to the proteasome for degradation. DSK2b and its tandem duplicate DSK2a are localized in the cytosol and the nucleus, and both interact with the RING domain of PEX2 and PEX12. DSK2 artificial microRNA lines did not display obvious defects in plant growth or peroxisomal processes, indicating functional redundancies among Arabidopsis ubiquitin receptor proteins. Our results suggest that Arabidopsis RING peroxins can function as E3 ligases and act together with the ubiquitin receptor protein DSK2 in the peroxisomal membrane-associated protein degradation system. C1 [Kaur, Navneet; Hu, Jianping] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Zhao, Qingzhen; Xie, Qi] Chinese Acad Sci, Inst Genet & Dev Biol, Beijing 100101, Peoples R China. RP Hu, JP (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM huji@msu.edu FU National Science Foundation [MCB 0618335]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-FG02-91ER20021] FX The authors would like to thank the Arabidopsis Biological Resource Center (ABRC) for providing seeds of the DSK2 T-DNA insertion mutants, and Jilian Fan for genotyping the mutants, Judy Callis (University of California, Davis) for the UBC8 and CIP8 constructs, Sheng Yang He (Michigan State University) for the modified pB42AD plasmid, and Detlef Weigel (Max Planck Institute for Developmental Biology, Tubingen, Germany) for sharing the amiRNA backbone pRS300 vector. This work was supported by grants from the National Science Foundation Arabidopsis 2010 program (MCB 0618335) and the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy (DE-FG02-91ER20021) to J. H. NR 61 TC 20 Z9 26 U1 2 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1672-9072 J9 J INTEGR PLANT BIOL JI J. Integr. Plant Biol. PD JAN PY 2013 VL 55 IS 1 SI SI BP 108 EP + DI 10.1111/jipb.12014 PG 13 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 139RA UT WOS:000318600300001 PM 23336935 ER PT J AU El-Hachemi, Z Escudero, C Acosta-Reyes, F Casas, MT Altoe, V Aloni, S Oncins, G Sorrenti, A Crusats, J Campos, JL Ribo, JM AF El-Hachemi, Zoubir Escudero, Carlos Acosta-Reyes, Francisco Teresa Casas, M. Altoe, Virginia Aloni, Shaul Oncins, Gerard Sorrenti, Alessandro Crusats, Joaquim Lourdes Campos, J. Ribo, Josep M. TI Structure vs. properties - chirality, optics and shapes - in amphiphilic porphyrin J-aggregates SO JOURNAL OF MATERIALS CHEMISTRY C LA English DT Article ID SUPRAMOLECULAR CHIRALITY; SYMMETRY-BREAKING; STIRRED SOLUTIONS; AQUEOUS-SOLUTION; WATER; SPECTRA; DYE; CRYSTALLIZATION; ASSEMBLIES; MICROSCOPY AB The structure of the meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4) J-aggregates could be determined by X-ray and electron diffraction methods. A sheet-like architecture reveals the relationship between structure and chirality, optics and shapes of the J-aggregates of the meso 4-sulfonatophenyl- and phenyl-substituted porphyrins. The structure of the J-aggregates of H4TPPS4 belongs to the chiral space group P2(1) and includes four porphyrin molecules in its unit cell. The intermolecular stabilization of the zwitterionic units by hydrogen bonding and electrostatic interactions between the positively charged central NH groups and the periphery anionic sulfonato groups results in a structure of porphyrins sheets along the [(1) over bar 01] plane direction. The structure of the sheet on the [(1) over bar 01] plane is already chiral and its molecular architecture explains the simultaneous presence of H- and J-aggregate bands in their absorption spectra. This structure also accounts for the high similarity observed between the absorption spectra of different mesomorphs of the same substance and even between different members of the series of meso-4-sulfonatophenyl- and aryl-substituted diprotonated porphyrins. The possibility, or not, of the sheet-like structure on [(1) over bar 01] to interact with other layers, either through ionic or hydrophobic interactions, depends on the substitution pattern at the meso-positions of the porphyrin ring. Thus, the different morphologies of the particles [mono- bi- and multilayered] of this series of J-aggregates are explained taking into account the role that the fourth meso-substituent plays in the interlayer stabilization. The results suggest that supramolecular helicity, previously detected in several J-aggregates, is not the explanation of their chirality but would be the expression of the intrinsic chirality of the packing between building blocks. C1 [El-Hachemi, Zoubir; Sorrenti, Alessandro; Crusats, Joaquim; Ribo, Josep M.] Univ Barcelona IECC UB, Inst Cosmos Sci, Dept Organ Chem, Barcelona 08028, Catalonia, Spain. [Escudero, Carlos] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Acosta-Reyes, Francisco; Teresa Casas, M.; Lourdes Campos, J.] UPC, Dept Chem Engn, Barcelona 08028, Catalonia, Spain. [Altoe, Virginia; Aloni, Shaul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Oncins, Gerard] Univ Barcelona, Nanometr Tech Unit Sci & Technol Serv CCiTUB, E-08028 Barcelona, Catalonia, Spain. RP El-Hachemi, Z (reprint author), Univ Barcelona IECC UB, Inst Cosmos Sci, Dept Organ Chem, C Marti & Franques 1, Barcelona 08028, Catalonia, Spain. EM jmribo@ub.edu RI Sorrenti, Alessandro/J-9442-2014; Campos, J.Lourdes/N-7336-2014; Foundry, Molecular/G-9968-2014; Campos, Juan/N-1211-2014; Escudero, Carlos/F-8044-2011; OI Campos, J.Lourdes/0000-0002-4136-7082; Campos, Juan/0000-0002-2479-4373; Escudero, Carlos/0000-0001-8716-9391; Casas Becerra, Maria Teresa/0000-0002-5309-8246 NR 57 TC 34 Z9 34 U1 2 U2 56 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7526 J9 J MATER CHEM C JI J. Mater. Chem. C PY 2013 VL 1 IS 20 BP 3337 EP 3346 DI 10.1039/c3tc30299g PG 10 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 136KQ UT WOS:000318361200009 ER PT J AU Johnson, JL Dalla Vecchia, C Khochfar, S AF Johnson, Jarrett L. Dalla Vecchia, Claudio Khochfar, Sadegh TI The First Billion Years project: the impact of stellar radiation on the co-evolution of Populations II and III SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE molecular processes; galaxies: formation; galaxies: high-redshift; intergalactic medium; cosmology: theory; early Universe ID SUPERMASSIVE BLACK-HOLES; PAIR-INSTABILITY SUPERNOVAE; INITIAL MASS FUNCTION; HIGH-REDSHIFT PROTOGALAXIES; STAR-FORMATION HISTORY; LAMBDA-CDM UNIVERSE; DARK-MATTER HALOES; METAL-FREE STARS; CHEMICAL ENRICHMENT; PRIMORDIAL STARS AB With the first metal enrichment by Population III (Pop III) supernovae (SNe), the formation of the first metal-enriched, Pop II stars becomes possible. In turn, Pop III star formation and early metal enrichment are slowed by the high-energy radiation emitted by Pop II stars. Thus, through the SNe and radiation they produce, Pops II and III co-evolve in the early Universe, one regulated by the other. We present large (4 Mpc)(3), high-resolution cosmological simulations in which we self-consistently model early metal enrichment and the stellar radiation responsible for the destruction of the coolants (H-2 and HD) required for Pop III star formation. We find that the molecule-dissociating stellar radiation produced both locally and over cosmological distances reduces the Pop III star formation rate at z greater than or similar to 10 by up to an order of magnitude, to a rate per comoving volume of less than or similar to 10(-4) M-circle dot yr(-1) Mpc(-3), compared to the case in which this radiation is not included. However, we find that the effect of Lyman-Werner (LW) feedback is to enhance the amount of Pop II star formation. We attribute this to the reduced rate at which gas is blown out of dark matter haloes by SNe in the simulation with LW feedback, which results in larger reservoirs for metal-enriched star formation. Even accounting for metal enrichment, molecule-dissociating radiation and the strong suppression of low-mass galaxy formation due to reionization at z less than or similar to 10, we find that Pop III stars are still formed at a rate of similar to 10(-5) M-circle dot yr(-1) Mpc(-3) down to z similar to 6. This suggests that the majority of primordial pair-instability SNe that may be uncovered in future surveys will be found at z less than or similar to 10. We also find that the molecule-dissociating radiation emitted from Pop II stars may destroy H-2 molecules at a high enough rate to suppress gas cooling and allow for the formation of supermassive primordial stars which collapse to form similar to 10(5) M-circle dot black holes. C1 [Johnson, Jarrett L.] Los Alamos Natl Lab, Nucl & Particle Phys Astrophys & Cosmol Grp T2, Los Alamos, NM 87545 USA. [Johnson, Jarrett L.; Dalla Vecchia, Claudio; Khochfar, Sadegh] Max Planck Inst Extraterr Phys, Theoret Modeling Cosm Struct Grp, D-85748 Garching, Germany. RP Johnson, JL (reprint author), Los Alamos Natl Lab, Nucl & Particle Phys Astrophys & Cosmol Grp T2, POB 1663, Los Alamos, NM 87545 USA. EM jlj@lanl.gov OI Dalla Vecchia, Claudio/0000-0002-2620-7056 FU US Department of Energy through the LANL/LDRD Program; Marie Curie Reintegration Grant [FP7-RG-256573] FX JLJ gratefully acknowledges the support of the US Department of Energy through the LANL/LDRD Program. CDV acknowledges support by Marie Curie Reintegration Grant FP7-RG-256573. We acknowledge helpful discussions with Bhaskar Agarwal, Volker Bromm, UmbertoMaio, Jan-Pieter Paardekooper and Dan Whalen, and we thank Andrew Davis for comments on an early draft. NR 136 TC 55 Z9 55 U1 1 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JAN PY 2013 VL 428 IS 3 BP 1857 EP 1872 DI 10.1093/mnras/sts011 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134RA UT WOS:000318230700001 ER PT J AU Zheng, HM AF Zheng, Haimei TI Using molecular tweezers to move and image nanoparticles SO NANOSCALE LA English DT Article ID NANOMETRIC OPTICAL TWEEZERS; ATOMIC-FORCE MICROSCOPE; METAL NANOPARTICLES; GOLD NANOPARTICLES; ELECTRON-BEAM; MANIPULATION; PARTICLES; TRAP; NANOMANIPULATION; NANOWIRES AB The ability to manipulate nanoparticles is significant in nanoscale science and technology. As sizes of the objects scale down to the sub-10 nm regime, it imposes a great challenge for the conventional optical tweezers. There has been much effort to explore alternative manipulation methods including using nanostructures, electron beams, scanning probes, etc. In this paper, an overview of the latest advances in trapping and manipulation of nanoparticles with a focus on the emergent electron tweezers is provided. C1 Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94708 USA. RP Zheng, HM (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94708 USA. EM hmzheng@lbl.gov FU US Department of Energy Office of Science Early Career Research Program FX HZ thanks the support of the US Department of Energy Office of Science Early Career Research Program. NR 59 TC 8 Z9 8 U1 2 U2 55 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2013 VL 5 IS 10 BP 4070 EP 4078 DI 10.1039/c3nr00737e PG 9 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 136LC UT WOS:000318362400004 PM 23592008 ER PT J AU Wang, GM Ling, YC Lu, XH Zhai, T Qian, F Tong, YX Li, Y AF Wang, Gongming Ling, Yichuan Lu, Xihong Zhai, Teng Qian, Fang Tong, Yexiang Li, Yat TI A mechanistic study into the catalytic effect of Ni(OH)(2) on hematite for photoelectrochemical water oxidation SO NANOSCALE LA English DT Article ID NICKEL-OXIDE; NANOWIRE ARRAYS; OXYGEN; PHOTOANODES; ELECTRODES; CO; NANOSTRUCTURES; PHOTOOXIDATION; PERFORMANCE; CONVERSION AB We report a mechanistic study of the catalytic effect of Ni(OH)(2) on hematite nanowires for photoelectrochemical water oxidation. Ni compounds have been shown to be good catalysts for electrochemical and photoelectrochemical water oxidation. While we also observed improved photocurrents for Ni-catalyst decorated hematite photoanodes, we found that the photocurrents decay rapidly, indicating the photocurrents were not stable. Importantly, we revealed that the enhanced photocurrent was due to water oxidation as well as the photo-induced charging effect. In addition to oxidizing water, the photoexcited holes generated in hematite efficiently oxidize Ni2+ to Ni3+ (0.35 V vs. Ag/AgCl). The instability of photocurrent was due to the depletion of Ni2+. We proposed that the catalytic mechanism of the Ni(II) catalyst for water oxidation is a two-step process that involves the fast initial oxidation of Ni2+ to Ni3+, and followed by the slow oxidation of Ni3+ to Ni4+, which is believed to be the active catalytic species for water oxidation. The catalytic effect of the Ni(II) catalyst was limited by the slow formation of Ni4+. Finally, we elucidated the real catalytic performance of Ni(OH)(2) on hematite for photoelectrochemical water oxidation by suppressing the photoinduced charging effect. This work could provide important insights for future studies on Ni based catalyst modified photoelectrodes for water oxidation. C1 [Wang, Gongming; Ling, Yichuan; Lu, Xihong; Zhai, Teng; Tong, Yexiang; Li, Yat] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Lu, Xihong; Zhai, Teng; Tong, Yexiang] SunYat Sen Univ, Sch Chem & Chem Engn, KLGHEI Environm & Energy Chem, MOE,Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Guangdong, Peoples R China. [Qian, Fang] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Li, Y (reprint author), Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. EM yli@chemistry.ucsc.edu RI Wang, Gongming/C-4555-2012; Lu, Xihong/L-5171-2015; Ling, Yichuan/I-9567-2016; OI Lu, Xihong/0000-0002-6764-0024; Li, Yat/0000-0002-8058-2084 FU United States NSF [DMR-0847786]; Natural Science Foundations of China [90923008, J1103305]; Natural Science Foundations of Guangdong Province [9251027501000002]; University of California, Santa Cruz; Academic New Artist Ministry of Education Doctoral Post Graduate (China); China Scholarship Council FX Y.L. acknowledges the financial support from United States NSF (DMR-0847786). Y.X.T. acknowledges the financial support from the Natural Science Foundations of China (90923008 and J1103305) and the Natural Science Foundations of Guangdong Province (9251027501000002). G.M.W. acknowledges the financial support of Chancellor's Dissertation Year Fellowship at the University of California, Santa Cruz. X. H. L. thanks the Academic New Artist Ministry of Education Doctoral Post Graduate (China) and China Scholarship Council for financial support. NR 35 TC 52 Z9 52 U1 8 U2 109 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 J9 NANOSCALE JI Nanoscale PY 2013 VL 5 IS 10 BP 4129 EP 4133 DI 10.1039/c3nr00569k PG 5 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 136LC UT WOS:000318362400012 PM 23563928 ER PT J AU Wieser, ME Holden, N Coplen, TB Bohlke, JK Berglund, M Brand, WA De Bievre, P Groning, M Loss, RD Meija, J Hirata, T Prohaska, T Schoenberg, R O'Connor, G Walczyk, T Yoneda, S Zhu, XK AF Wieser, Michael E. Holden, Norman Coplen, Tyler B. Boehlke, John K. Berglund, Michael Brand, Willi A. De Bievre, Paul Groening, Manfred Loss, Robert D. Meija, Juris Hirata, Takafumi Prohaska, Thomas Schoenberg, Ronny O'Connor, Glenda Walczyk, Thomas Yoneda, Shige Zhu, Xiang-Kun TI Atomic weights of the elements 2011 (IUPAC Technical Report) SO PURE AND APPLIED CHEMISTRY LA English DT Article DE atomic-weight intervals; atomic-weight ranges; bromine; conventional atomic-weight values; germanium; half-lives; indium; IUPAC Inorganic Chemistry Division; magnesium; mercury; standard atomic weights ID PLASMA-MASS SPECTROMETRY; ISOTOPIC COMPOSITION; MAGNESIUM; RATIOS; REFERENCES; GRAPHS; TABLES AB The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of five elements. The atomic weight of bromine has changed from 79.904(1) to the interval [79.901, 79.907], germanium from 72.63(1) to 72.630(8), indium from 114.818(3) to 114.818(1), magnesium from 24.3050(6) to the interval [24.304, 24.307], and mercury from 200.59(2) to 200.592(3). For bromine and magnesium, assignment of intervals for the new standard atomic weights reflects the common occurrence of variations in the atomic weights of those elements in normal terrestrial materials. C1 [Wieser, Michael E.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Holden, Norman] Brookhaven Natl Lab, Upton, NY 11973 USA. [Coplen, Tyler B.; Boehlke, John K.] US Geol Survey, Reston, VA 22092 USA. [Berglund, Michael] Inst Reference Mat & Measurements, Geel, Belgium. [Brand, Willi A.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Groening, Manfred] IAEA, Seibersdorf, Austria. [Loss, Robert D.] Curtin Univ Technol, Dept Appl Phys, Perth, WA, Australia. [Meija, Juris] Natl Res Council Canada, Ottawa, ON, Canada. [Hirata, Takafumi] Kyoto Univ, Kyoto, Japan. [Prohaska, Thomas] Univ Nat Resources & Appl Life Sci, Dept Chem, Vienna, Austria. [Schoenberg, Ronny] Univ Tubingen, Inst Geosci, Tubingen, Germany. [O'Connor, Glenda] New Brunswick Lab, Argonne, IL USA. [Walczyk, Thomas] Natl Univ Singapore, Dept Chem Sci, Singapore 117548, Singapore. [Walczyk, Thomas] Natl Univ Singapore, Dept Biochem Med, Singapore 117548, Singapore. [Yoneda, Shige] Natl Museum Nat & Sci, Tokyo, Japan. [Zhu, Xiang-Kun] Chinese Acad Geol Sci, Beijing, Peoples R China. RP Wieser, ME (reprint author), Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. EM mwieser@ucalgary.ca RI Brand, Willi/D-2043-2009; OI Meija, Juris/0000-0002-3349-5535 FU IUPAC Inorganic Chemistry Division, Commission on Isotopic Abundances and Atomic Weights; U.S. Geological Survey National Research Program; IUPAC projects [2007-029-1-200, 2007-028-1-200, 2007-038-3-200, 2009-025-2-200, 2009-029-1-200] FX Sponsoring body: IUPAC Inorganic Chemistry Division, Commission on Isotopic Abundances and Atomic Weights: see more details on p. 1076.; The support of the U.S. Geological Survey National Research Program made this report possible. The following IUPAC projects contributed to this Technical Report: 2007-029-1-200, 2007-028-1-200, 2007-038-3-200, 2009-025-2-200, and 2009-029-1-200. NR 51 TC 157 Z9 157 U1 7 U2 68 PU INT UNION PURE APPLIED CHEMISTRY PI RES TRIANGLE PK PA 104 TW ALEXANDER DR, PO BOX 13757, RES TRIANGLE PK, NC 27709-3757 USA SN 0033-4545 J9 PURE APPL CHEM JI Pure Appl. Chem. PY 2013 VL 85 IS 5 BP 1047 EP 1078 DI 10.1351/PAC-REP-13-03-02 PG 32 WC Chemistry, Multidisciplinary SC Chemistry GA 137AY UT WOS:000318408300009 ER PT S AU Huang, K Heinrich, H Keiser, DD Sohn, YH AF Huang, K. Heinrich, H. Keiser, D. D., Jr. Sohn, Y. H. BE Ochsner, A Belova, I Murch, G TI Fuel-Matrix Chemical Interaction Between U-7wt.%Mo Alloy and Mg SO RECENT ADVANCES IN MASS TRANSPORT IN ENGINEERING MATERIALS SE Defect and Diffusion Forum LA English DT Article; Book Chapter DE U-Mo alloy; Mg; interdiffusion; diffusion barrier ID MO DISPERSION FUEL; HIGH-DENSITY; AL; INTERDIFFUSION AB A solid-to-solid, U-7wt.%Mo vs. Mg diffusion couple was assembled and annealed at 550 degrees C for 96 hours. The microstructure in the interdiffusion zone and the development of concentration profiles were examined via scanning electron microscopy, transmission electron microscopy(TEM) and X-ray energy dispersive spectroscopy. A TEM specimen was prepared at the interface between U-7wt.%Mo and Mg using focused ion beam in-situ lift-out. The U-7wt.%Mo alloy was bonded well to the Mg at the atomic scale, without any evidence of oxidation, cracks or pores. Despite the good bonding, very little or negligible interdiffusion was observed. This is consistent with the expectation based on negligible solubilities according to the equilibrium phase diagrams. Along with other desirable properties, Mg is a potential inert matrix or barrier material for U-Mo fuel alloy system being developed for the Reduced Enrichment for Research and Test Reactor (RERTR) program. C1 [Huang, K.; Sohn, Y. H.] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Heinrich, H.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Keiser, D. D., Jr.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. RP Huang, K (reprint author), Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. EM Yongho.Sohn@ucf.edu NR 21 TC 5 Z9 5 U1 1 U2 2 PU TRANS TECH PUBLICATIONS LTD PI STAFA-ZURICH PA LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND SN 1012-0386 J9 DEFECT DIFFUS FORUM PY 2013 VL 333 BP 199 EP 206 DI 10.4028/www.scientific.net/DDF.333.199 PG 8 WC Materials Science, Multidisciplinary; Transportation Science & Technology SC Materials Science; Transportation GA BEN26 UT WOS:000317436200018 ER PT J AU Mohanty, D Kalnaus, S Meisner, RA Safat, AS Li, JL Payzant, EA Rhodes, K Wood, DL Daniel, C AF Mohanty, Debasish Kalnaus, Sergiy Meisner, Roberta A. Safat, Athena S. Li, Jianlin Payzant, E. Andrew Rhodes, Kevin Wood, David L., III Daniel, Claus TI Structural transformation in a Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold SO RSC ADVANCES LA English DT Article ID POSITIVE-ELECTRODE MATERIALS; X-RAY-DIFFRACTION; OXIDES; STABILITY; EVOLUTION; CAPACITY AB A decrease in the c-lattice parameter was observed in Li1.2Co0.1Mn0.55Ni0.15O2 during constant voltage holding at 4.5 V by in situ X-ray diffraction. Comparison of magnetic susceptibility data before and after high-voltage hold reveals the change in average oxidation states of transition metal ions during high-voltage holding process. Transmission electron microscopy studies show the spinel reflections with fundamental trigonal spots from the particles after high-voltage hold indicating substantial structural modification. The structural transformation was believed to occur due to the oxygen release and/or the migration of transition metal cations to lithium layer during constant voltage holding. C1 [Mohanty, Debasish; Kalnaus, Sergiy; Meisner, Roberta A.; Safat, Athena S.; Wood, David L., III] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37931 USA. [Li, Jianlin; Daniel, Claus] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Payzant, E. Andrew] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Rhodes, Kevin] Ford Motor Co, Ford Res & Innovat Ctr, Dearborn, MI 48121 USA. [Daniel, Claus] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. RP Mohanty, D (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37931 USA. EM mohantyd@ornl.gov; kalnauss@ornl.gov RI Payzant, Edward/B-5449-2009; Mohanty, Debasish/B-6207-2012; Daniel, Claus/A-2060-2008; Li, Jianlin/D-3476-2011 OI Payzant, Edward/0000-0002-3447-2060; Mohanty, Debasish/0000-0003-1141-0657; Daniel, Claus/0000-0002-0571-6054; Li, Jianlin/0000-0002-8710-9847 FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Office of Energy Efficiency and Renewable Energy for the Vehicle Technologies Office's Applied Battery Research Program; DOE, Basic Energy Sciences, Materials Sciences and Engineering Division; ORNL's ShaRE User Facility; Scientific User Facilities Division, Office of Basic Energy Sciences, DOE; DOE Vehicle Technologies Office (VTO) within Applied Battery Research (ABR) FX This research at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy (DOE) under contract DE-AC05-00OR22725, was sponsored by the Office of Energy Efficiency and Renewable Energy for the Vehicle Technologies Office's Applied Battery Research Program (Program Managers: Peter Faguy and David Howell). Part of this research was supported by the DOE, Basic Energy Sciences, Materials Sciences and Engineering Division and by ORNL's ShaRE User Facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. The electrodes were produced at the DOE's Cell Fabrication Facility, Argonne National Laboratory, by Andrew Jansen and Bryant Polzin. The Cell Fabrication Facility is fully supported by the DOE Vehicle Technologies Office (VTO) within the core funding of the Applied Battery Research (ABR). The authors thank Dr. Daniel Abraham at Argonne National Laboratory for useful discussion. NR 31 TC 22 Z9 22 U1 7 U2 39 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2013 VL 3 IS 20 BP 7479 EP 7485 DI 10.1039/c3ra40510a PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 135QF UT WOS:000318302900046 ER PT J AU Somma, RD Boixo, S AF Somma, R. D. Boixo, S. TI SPECTRAL GAP AMPLIFICATION SO SIAM JOURNAL ON COMPUTING LA English DT Article DE quantum algorithms; adiabatic quantum computing; quantum Monte-Carlo ID SIMULATING SPARSE HAMILTONIANS; QUANTUM COMPUTATION; ALGORITHMS; COMPLEXITY AB Many problems can be solved by preparing a specific eigenstate of some Hamiltonian H. The generic cost of quantum algorithms for these problems is determined by the inverse spectral gap of H for that eigenstate and the cost of evolving with H for some fixed time. The goal of spectral gap amplification is to construct a Hamiltonian H' with the same eigenstate as H but a bigger spectral gap, requiring that constant-time evolutions with H' and H are implemented with nearly the same cost. We show that a quadratic spectral gap amplification is possible when H satisfies a frustration-free property and give H' for these cases. This results in quantum speedups for optimization problems. It also yields improved constructions for adiabatic simulations of quantum circuits and for the preparation of projected entangled pair states, which play an important role in quantum many-body physics. Defining a suitable black-box model, we establish that the quadratic amplification is optimal for frustration-free Hamiltonians and that no spectral gap amplification is possible, in general, if the frustration-free property is removed. A corollary is that finding a similarity transformation between a stoquastic Hamiltonian and the corresponding stochastic matrix is hard in the black-box model, setting limits to the power of some classical methods that simulate quantum adiabatic evolutions. C1 [Somma, R. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Boixo, S.] Univ So Calif, Inst Informat Sci, Marina Del Rey, CA 90292 USA. RP Somma, RD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM somma@lanl.gov; sboixo@isi.edu FU National Science Foundation through the CCF program; Laboratory Directed Research and Development Program at Los Alamos National Laboratory; Sandia National Laboratories; Lockheed Martin Corporation FX This author's work was supported by the National Science Foundation through the CCF program, and the Laboratory Directed Research and Development Program at Los Alamos National Laboratory and Sandia National Laboratories.; This author's work was partly supported by the Lockheed Martin Corporation. NR 44 TC 11 Z9 11 U1 0 U2 3 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0097-5397 J9 SIAM J COMPUT JI SIAM J. Comput. PY 2013 VL 42 IS 2 BP 593 EP 610 DI 10.1137/120871997 PG 18 WC Computer Science, Theory & Methods; Mathematics, Applied SC Computer Science; Mathematics GA 136HU UT WOS:000318353800008 ER PT J AU Blass, T Romero, LA AF Blass, Timothy Romero, L. A. TI STABILITY OF ORDINARY DIFFERENTIAL EQUATIONS WITH COLORED NOISE FORCING SO SIAM JOURNAL ON CONTROL AND OPTIMIZATION LA English DT Article DE colored noise; parametric forcing; moment stability; Fokker-Planck operator; ladder operators ID FOKKER-PLANCK; OPERATORS AB We present a perturbation method for determining the moment stability of linear ordinary differential equations with parametric forcing by colored noise. In particular, the forcing arises from passing white noise through an nth order filter. We carry out a perturbation analysis based on a small parameter e that gives the amplitude of the forcing. Our perturbation analysis is based on a ladder operator approach to the vector Ornstein-Uhlenbeck process. We can carry out our perturbation expansion to any order in e, for a large class linear filters, and for quite arbitrary linear systems. As an example we apply our results to the stochastically forced Mathieu equation. C1 [Blass, Timothy] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA. [Romero, L. A.] Sandia Natl Labs, Computat Math & Algorithms Dept, Albuquerque, NM 87123 USA. RP Blass, T (reprint author), Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA. EM tblass@andrew.cmu.edu; lromero@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Computational Mathematics and Algorithms Department, Sandia National Laboratories, Albuquerque, NM 87123-1320 (lromero@sandia.gov). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 25 TC 2 Z9 2 U1 0 U2 4 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0363-0129 J9 SIAM J CONTROL OPTIM JI SIAM J. Control Optim. PY 2013 VL 51 IS 2 BP 1099 EP 1127 DI 10.1137/110855302 PG 29 WC Automation & Control Systems; Mathematics, Applied SC Automation & Control Systems; Mathematics GA 137AN UT WOS:000318406900012 ER PT S AU White, HB AF White, Herman B. BE Cunningham, BA TI Elementary Particle Physics at the Intensity Frontier SO WOMEN IN PHYSICS SE AIP Conference Proceedings LA English DT Meeting Abstract CT 4th IUPAP International Conference on Women in Physics CY APR 05-08, 2011 CL Stellenbosch, SOUTH AFRICA SP Int Union Pure & Appl Phys (IUPAP), Alfred P Sloan Fdn, Amer Assoc Advancement Sci, Amer Assoc Phys Teachers, Amer Phys Soc, Abdus Salam Int Centre Theoret Phys, Argonne Natl Lab, Deutsch Physikalische Gesell, Diverse Media Works LLC, Dorothy Jemison Fdn Excellence, Fermi Natl Accelerator Lab, Int Centre Theoret Phys, Japan Soc Appl Phys, Johns Hopkins Univ, John Wiley & Sons, Korean Phys Soc, LIGO-California Inst Technol, LOreal, Los Alamos Natl Lab, Massachusetts Inst Technol, Michigan State Univ, Natl Sci Council, Natl Inst Standards & Technol, Natl Sci Fdn, NE Univ, Coll Sci, Penn State Univ, Dept Phys, Phys Soc Japan, Scholast Inc, Stanford Univ, Thomas Jefferson Natl Accelerator Facil, UNESCO, Univ Dist Columbia, Univ Penn, Dept Phys & Astronomy, Dept Sci & Technol, Council Sci & Ind Res (Def Peace Safety & Secur; Mat Sci & Mfg; R&D; R&D Outcomes & Human Capital Dev), Juta Publishers, Natl Res Fdn, Nelson Mandela Metropolitan Univ, Dept Phys, S African Agcy Sci & Technol Awareness, S African Inst Phys, Square Kilometre Array Africa, Univ Pretoria, Dept Phys C1 [White, Herman B.] Fermilab Natl Accelerator Lab, Batavia, IL USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1138-8 J9 AIP CONF PROC PY 2013 VL 1517 BP 196 EP 196 PG 1 WC Physics, Applied SC Physics GA BEK11 UT WOS:000317018600111 ER PT S AU Seestrom, SJ AF Seestrom, Susan J. BE Cunningham, BA TI Measurement of the Beta Asymmetry in Neutron Decay Using Ultracold Neutrons SO WOMEN IN PHYSICS SE AIP Conference Proceedings LA English DT Meeting Abstract CT 4th IUPAP International Conference on Women in Physics CY APR 05-08, 2011 CL Stellenbosch, SOUTH AFRICA SP Int Union Pure & Appl Phys (IUPAP), Alfred P Sloan Fdn, Amer Assoc Advancement Sci, Amer Assoc Phys Teachers, Amer Phys Soc, Abdus Salam Int Centre Theoret Phys, Argonne Natl Lab, Deutsch Physikalische Gesell, Diverse Media Works LLC, Dorothy Jemison Fdn Excellence, Fermi Natl Accelerator Lab, Int Centre Theoret Phys, Japan Soc Appl Phys, Johns Hopkins Univ, John Wiley & Sons, Korean Phys Soc, LIGO-California Inst Technol, LOreal, Los Alamos Natl Lab, Massachusetts Inst Technol, Michigan State Univ, Natl Sci Council, Natl Inst Standards & Technol, Natl Sci Fdn, NE Univ, Coll Sci, Penn State Univ, Dept Phys, Phys Soc Japan, Scholast Inc, Stanford Univ, Thomas Jefferson Natl Accelerator Facil, UNESCO, Univ Dist Columbia, Univ Penn, Dept Phys & Astronomy, Dept Sci & Technol, Council Sci & Ind Res (Def Peace Safety & Secur; Mat Sci & Mfg; R&D; R&D Outcomes & Human Capital Dev), Juta Publishers, Natl Res Fdn, Nelson Mandela Metropolitan Univ, Dept Phys, S African Agcy Sci & Technol Awareness, S African Inst Phys, Square Kilometre Array Africa, Univ Pretoria, Dept Phys C1 [Seestrom, Susan J.] Los Alamos Natl Lab, UCNA Collaborat, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1138-8 J9 AIP CONF PROC PY 2013 VL 1517 BP 201 EP 201 PG 1 WC Physics, Applied SC Physics GA BEK11 UT WOS:000317018600121 ER PT S AU Petreczky, P AF Petreczky, Peter BE Goncalves, VP DaSilva, MLL Amaral, JTD Machado, MVT TI QCD at non-zero temperature : status and prospects SO XII HADRON PHYSICS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th Hadron Physics Conference CY APR 22-27, 2012 CL Bento Goncalves, BRAZIL SP CNPq, CAPES, CLAF, FAPESP, FAPERJ, FAPERGS, FAPEMIG, UFRGS DE Lattice QCD; Quark Gluon Plasma; Hadron Resonance Gas ID QUARK-GLUON PLASMA; SU(2) GAUGE-THEORY; YANG-MILLS THEORY; MESON SPECTRAL FUNCTIONS; DECONFINEMENT PHASE-TRANSITION; MAXIMUM-ENTROPY ANALYSIS; SPATIAL STRING TENSION; CHIRAL CRITICAL-POINT; ADJOINT HIGGS-MODEL; FINITE-TEMPERATURE AB I will discuss recent progress in lattice QCD calculations related to the QCD phase diagram, equation of state and meson spectral functions. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Petreczky, P (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 212 TC 6 Z9 6 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1143-2 J9 AIP CONF PROC PY 2013 VL 1520 BP 103 EP 147 DI 10.1063/1.4795947 PG 45 WC Physics, Nuclear SC Physics GA BES88 UT WOS:000317972900004 ER PT S AU Fazio, S AF Fazio, Salvatore BE Goncalves, VP DaSilva, MLL Amaral, JTD Machado, MVT TI DVCS and GPDs at eRHIC: towards a high resolution partonic imaging SO XII HADRON PHYSICS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th Hadron Physics Conference CY APR 22-27, 2012 CL Bento Goncalves, BRAZIL SP CNPq, CAPES, CLAF, FAPESP, FAPERJ, FAPERGS, FAPEMIG, UFRGS DE DVCS; GPDs; eRHIC; EIC AB The feasibility for a measurement of the exclusive production of a real photon, a process although known as Deeply Virtual Compton Scattering (DVCS) at an eRHIC has been explored. An electron-proton/ion collider facility (eRHIC) is under consideration at Brookhaven National Laboratory (BNL). Such a new facility will require the design and construction of a new optimized detector profiting from the experience gained from electron-proton colliders like at the experiments H1 and ZEUS at DESY-HERA. In particular, eRHIC is a machine designed to collide an electron beam with energies ranging from 5 GeV up to 20 GeV with the RHIC hadron beams (protons (100-250 GeV) and nuclei (<= 100 GeV)), thus varying center-of-mass energies. DVCS is universally believed to be a golden measurement toward the determination of the Generalized Parton Distribution (GPDs) functions. The high luminosity of the machine, expected in the order of 10(34) cm(2)s(-1) at the highest center-of-mass energy, together with the large rapidity acceptance of a newly designed dedicated detector, will open the opportunity for measuring DVCS with an unprecedented precision, providing an important tool toward a 2+1 dimensional picture of the internal structure of the proton. The huge impact such measurements would have on the determination of GPDs will be discussed. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Fazio, S (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. RI Fazio, Salvatore /G-5156-2010 NR 4 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1143-2 J9 AIP CONF PROC PY 2013 VL 1520 BP 154 EP 159 DI 10.1063/1.4795949 PG 6 WC Physics, Nuclear SC Physics GA BES88 UT WOS:000317972900006 ER PT S AU Koch, V Bzdak, A Skokov, V AF Koch, Volker Bzdak, Adam Skokov, Vladimir BE Goncalves, VP DaSilva, MLL Amaral, JTD Machado, MVT TI Fluctuations and the QCD Phase Diagram SO XII HADRON PHYSICS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th Hadron Physics Conference CY APR 22-27, 2012 CL Bento Goncalves, BRAZIL SP CNPq, CAPES, CLAF, FAPESP, FAPERJ, FAPERGS, FAPEMIG, UFRGS DE QCD; Fluctuations; Phase Diagram ID TRANSITION AB We briefly review how fluctuation measurements may help to reveal the properties of the QCD phase diagram. We further discuss various background effects, such as charge conservation, which contribute to fluctuation observables and which need to be well understood before definitive conclusions about a possible phase structure can be drawn. C1 [Koch, Volker] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bzdak, Adam] RIKEN BNL Res Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA. [Skokov, Vladimir] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Koch, V (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. OI Skokov, Vladimir/0000-0001-7619-1796 FU U. S. Department of Energy [DE-AC02-98CH10886]; Office of Nuclear Physics in the US Department of Energy's Ofce of Science [DE-AC02-05CH11231]; Polish Ministry of Science and Higher Education [N202 125437] FX A. B. and V. S. were supported by Contract No. DE-AC02-98CH10886 with the U. S. Department of Energy. V. K. was supported by the Office of Nuclear Physics in the US Department of Energys Ofce of Science under Contract No. DE-AC02-05CH11231. A. B. also acknowledges the grant N N202 125437 of the Polish Ministry of Science and Higher Education (2009-2012). NR 17 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1143-2 J9 AIP CONF PROC PY 2013 VL 1520 BP 232 EP 237 DI 10.1063/1.4795962 PG 6 WC Physics, Nuclear SC Physics GA BES88 UT WOS:000317972900019 ER PT S AU de Urreta, EJG Scoccola, NN Jayalath, CP Goity, JL AF Gonzalez de Urreta, E. J. Scoccola, N. N. Jayalath, C. P. Goity, J. L. BE Goncalves, VP DaSilva, MLL Amaral, JTD Machado, MVT TI Partial Decay Widths of Negative Parity Baryons in the 1/N-c Expansion SO XII HADRON PHYSICS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th Hadron Physics Conference CY APR 22-27, 2012 CL Bento Goncalves, BRAZIL SP CNPq, CAPES, CLAF, FAPESP, FAPERJ, FAPERGS, FAPEMIG, UFRGS DE Large N-c QCD; excited baryons ID LARGE N-C; QCD; MASSES AB The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N-c expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N-c and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are given. C1 [Gonzalez de Urreta, E. J.; Scoccola, N. N.] CNEA, Ctr Atom Constituyentes, Dept Phys, Buenos Aires, DF, Argentina. [Scoccola, N. N.] Univ Favaloro, Buenos Aires, DF, Argentina. [Jayalath, C. P.; Goity, J. L.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Jayalath, C. P.] Univ Peradeniya, Dept Phys, Peradeniya 20400, Sri Lanka. RP de Urreta, EJG (reprint author), CNEA, Ctr Atom Constituyentes, Dept Phys, Buenos Aires, DF, Argentina. FU DOE [DE-AC05-06OR23177]; JSA operates the Thomas Jefferson National Accelerator Facility; National Science Foundation (USA) [PHY-0555559, PHY-0855789]; CONICET [PIP 02368]; ANPCyT [PICT 07-03-00818] FX EGU and NNS wants to thank the organizers for their warm hospitality during the workshop. This work was supported by DOE Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility, by the National Science Foundation (USA) through grant PHY-0555559 and PHY-0855789 (JLG and CJ), by CONICET (Argentina) grant # PIP 02368 and by ANPCyT (Argentina) grants PICT 07-03-00818 (EGU and NNS). NR 23 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1143-2 J9 AIP CONF PROC PY 2013 VL 1520 BP 249 EP 254 DI 10.1063/1.4795965 PG 6 WC Physics, Nuclear SC Physics GA BES88 UT WOS:000317972900022 ER PT J AU Bar-Shalom, S Geller, M Nandi, S Soni, A AF Bar-Shalom, Shaouly Geller, Michael Nandi, Soumitra Soni, Amarjit TI Two Higgs Doublets, a 4th Generation and a 125 GeV Higgs: A Review SO ADVANCES IN HIGH ENERGY PHYSICS LA English DT Review ID ELECTROWEAK SYMMETRY-BREAKING; LEADING QCD CORRECTIONS; ULTRA HEAVY FERMIONS; STANDARD-MODEL; TOP-QUARK; WEAK-INTERACTIONS; BARYON ASYMMETRY; FLAVOR VIOLATION; COMPOSITE HIGGS; PP COLLISIONS AB We review the possible role that multi-Higgs models may play in our understanding of the dynamics of a heavy 4th sequential generation of fermions. We describe the underlying ingredients of such models, focusing on two Higgs doublets, and discuss how they may effectively accommodate the low-energy phenomenology of such new heavy fermionic degrees of freedom. We also discuss the constraints on these models from precision electroweak data as well as from flavor physics and the implications for collider searches of the Higgs particles and of the 4th generation fermions, bearing in mind the recent observation of a light Higgs with a mass of similar to 125GeV. C1 [Bar-Shalom, Shaouly; Geller, Michael] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Nandi, Soumitra] Univ Siegen, Nat Wissensch Tech Fak, D-57068 Siegen, Germany. [Nandi, Soumitra] Indian Inst Technol, Gauhati 781039, Assam, India. [Soni, Amarjit] Brookhaven Natl Lab, Theory Grp, Upton, NY 11973 USA. RP Nandi, S (reprint author), Univ Siegen, Nat Wissensch Tech Fak, D-57068 Siegen, Germany. EM soumitra.nandi@gmail.com OI nandi, soumitra/0000-0001-6567-0302 FU Technion; U.S. DOE [DE-AC02-98CH10886(BNL)] FX SBS and MG acknowledge research support from the Technion. The work of AS was supported in part by the U.S. DOE Contract no. DE-AC02-98CH10886(BNL). NR 155 TC 3 Z9 3 U1 0 U2 2 PU HINDAWI PUBLISHING CORPORATION PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-7357 EI 1687-7365 J9 ADV HIGH ENERGY PHYS JI Adv. High. Energy Phys. PY 2013 AR 672972 DI 10.1155/2013/672972 PG 28 WC Physics, Particles & Fields SC Physics GA 132UD UT WOS:000318093300001 ER PT J AU Martin del Campo, JS Rollin, J Myung, S Chun, Y Chandrayan, S Patino, R Adams, MWW Zhang, YHP AF Martin del Campo, Julia S. Rollin, Joseph Myung, Suwan Chun, You Chandrayan, Sanjeev Patino, Rodrigo Adams, Michael W. W. Zhang, Y. -H. Percival TI High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE biocatalysis; hydrogen; hydrogenases; polyphosphates; xylose ID FERMENTATIVE HYDROGEN-PRODUCTION; ESCHERICHIA-COLI; BIOMASS; WATER; GLUCOSE; BIOHYDROGEN; STARCH C1 [Martin del Campo, Julia S.; Rollin, Joseph; Myung, Suwan; Chun, You; Zhang, Y. -H. Percival] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Martin del Campo, Julia S.; Patino, Rodrigo] Ctr Invest & Estudios Avanzados, Dept Fis Aplicada, Merida 97310, Yucatan, Mexico. [Chandrayan, Sanjeev; Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Myung, Suwan; Zhang, Y. -H. Percival] Virginia Tech, ICTAS, Blacksburg, VA 24061 USA. [Adams, Michael W. W.; Zhang, Y. -H. Percival] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. RP Zhang, YHP (reprint author), Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI You, Chun/D-7656-2013; CHANDRAYAN, SANJEEV /M-1662-2016 OI CHANDRAYAN, SANJEEV /0000-0003-2219-4654 FU Biological Systems Engineering Department of Virginia Tech; Shell GameChanger Program; CALS Biodesign and Bioprocessing Research Center; DOE BioEnergy Science Center; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the DOE [DE-FG05-95ER20175]; Mexican Council of Science and Technology (Conacyt) FX This work was supported by the Biological Systems Engineering Department of Virginia Tech, and partially supported by Shell GameChanger Program, the CALS Biodesign and Bioprocessing Research Center, and the DOE BioEnergy Science Center (to P.Z.) and the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the DOE (DE-FG05-95ER20175 to M.A.). JSMC thanked the Mexican Council of Science and Technology (Conacyt) for her PhD grant. NR 31 TC 14 Z9 14 U1 3 U2 76 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2013 VL 52 IS 17 BP 4587 EP 4590 DI 10.1002/anie.201300766 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 132BU UT WOS:000318043600013 PM 23512726 ER PT J AU Boukhalfa, S He, L Melnichenko, YB Yushin, G AF Boukhalfa, S. He, L. Melnichenko, Y. B. Yushin, Gleb TI Small-Angle Neutron Scattering for InSitu Probing of Ion Adsorption Inside Micropores SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE adsorption; carbon; energy storage; nanoporous materials; small-angle neutron scattering ID DOUBLE-LAYER CAPACITORS; CARBON NANOTUBE; ENERGY-STORAGE; ELECTRODES; SUPERCAPACITORS; ELECTROLYTES; DEPOSITION; OXIDE C1 [Boukhalfa, S.; Yushin, Gleb] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [He, L.; Melnichenko, Y. B.] Oak Ridge Natl Lab, Neutron Sci Directorate, Biol & Soft Matter Div, Oak Ridge, TN USA. [Melnichenko, Y. B.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA. RP Yushin, G (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM yushin@gatech.edu RI Yushin, Gleb/B-4529-2013; OI Yushin, Gleb/0000-0002-3274-9265; He, Lilin/0000-0002-9560-8101 FU Georgia Institute of Technology; US Army Research Office [W911NF-12-1-0259]; Laboratory Directed Research and Development Program; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; ORNL Postdoctoral Research Associates Program FX This work was partially supported by the Georgia Institute of Technology and the US Army Research Office (contract number W911NF-12-1-0259). The research at ORNL's High Flux Isotope Reactor was sponsored by the Laboratory Directed Research and Development Program and the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This research was also supported in part by the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education. We thank Micromeritics Inc. (US) and J. Jagiello for assistance with gas and vapor sorption analyses. NR 29 TC 16 Z9 16 U1 2 U2 52 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2013 VL 52 IS 17 BP 4618 EP 4622 DI 10.1002/anie.201209141 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 132BU UT WOS:000318043600020 PM 23364852 ER PT J AU Shindell, DT Lamarque, JF Schulz, M Flanner, M Jiao, C Chin, M Young, PJ Lee, YH Rotstayn, L Mahowald, N Milly, G Faluvegi, G Balkanski, Y Collins, WJ Conley, AJ Dalsoren, S Easter, R Ghan, S Horowitz, L Liu, X Myhre, G Nagashima, T Naik, V Rumbold, ST Skeie, R Sudo, K Szopa, S Takemura, T Voulgarakis, A Yoon, JH Lo, F AF Shindell, D. T. Lamarque, J. -F. Schulz, M. Flanner, M. Jiao, C. Chin, M. Young, P. J. Lee, Y. H. Rotstayn, L. Mahowald, N. Milly, G. Faluvegi, G. Balkanski, Y. Collins, W. J. Conley, A. J. Dalsoren, S. Easter, R. Ghan, S. Horowitz, L. Liu, X. Myhre, G. Nagashima, T. Naik, V. Rumbold, S. T. Skeie, R. Sudo, K. Szopa, S. Takemura, T. Voulgarakis, A. Yoon, J. -H. Lo, F. TI Radiative forcing in the ACCMIP historical and future climate simulations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID INTERCOMPARISON PROJECT ACCMIP; COMMUNITY ATMOSPHERE MODEL; BLACK CARBON; SYSTEM MODEL; AEROSOL; PREINDUSTRIAL; CHEMISTRY; SENSITIVITY; DISTRIBUTIONS; EMISSIONS AB The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980-2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models' all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) -0.26 Wm(-2); -0.06 to -0.49 Wm(-2). Screening based on model skill in capturing observed AOD yields a best estimate of -0.42 Wm(-2); -0.33 to -0.50 Wm(-2), including adjustment for missing aerosol components in some models. Many ACCMIP and CMIP5 models appear to produce substantially smaller aerosol RF than this best estimate. Climate feedbacks contribute substantially (35 to -58%) to modeled historical aerosol RF. The 1850 to 2000 aerosol ERF is -1.17 Wm(-2); -0.71 to -1.44 Wm(-2). Thus adjustments, including clouds, typically cause greater forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global aerosol RF peaks in most models around 1980, declining thereafter with only weak sensitivity to the Representative Concentration Pathway (RCP). One model, however, projects approximately stable RF levels, while two show increasingly negative RF due to nitrate (not included in most models). Aerosol ERF, in contrast, becomes more negative during 1980 to 2000. During this period, increased Asian emissions appear to have a larger impact on aerosol ERF than European and North American decreases due to their being upwind of the large, relatively pristine Pacific Ocean. There is no clear relationship between historical aerosol ERF and climate sensitivity in the CMIP5 subset of ACCMIP models. In the ACCMIP/CMIP5 models, historical aerosol ERF of about -0.8 to -1.5 Wm(-2) is most consistent with observed historical warming. Aerosol ERF masks a large portion of greenhouse forcing during the late 20th and early 21st century at the global scale. Regionally, aerosol ERF is so large that net forcing is negative over most industrialized and biomass burning regions through 1980, but remains strongly negative only over east and southeast Asia by 2000. Net forcing is strongly positive by 1980 over most deserts, the Arctic, Australia, and most tropical oceans. Both the magnitude of and area covered by positive forcing expand steadily thereafter. C1 [Shindell, D. T.; Lee, Y. H.; Milly, G.; Faluvegi, G.; Voulgarakis, A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Shindell, D. T.; Lee, Y. H.; Milly, G.; Faluvegi, G.; Voulgarakis, A.] Columbia Earth Inst, New York, NY USA. [Lamarque, J. -F.; Conley, A. J.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Schulz, M.] Inst Meteorol, Oslo, Norway. [Flanner, M.; Jiao, C.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Chin, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Young, P. J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Young, P. J.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Rotstayn, L.] CSIRO Marine & Atmospher Res, Ctr Australian Weather & Climate Res, Aspendale, Vic, Australia. [Mahowald, N.; Lo, F.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY USA. [Balkanski, Y.; Szopa, S.] IPSL, LSCE, Gif Sur Yvette, France. [Collins, W. J.; Rumbold, S. T.] Hadley Ctr, Met Off, Exeter, Devon, England. [Dalsoren, S.; Myhre, G.; Skeie, R.] CICERO, Oslo, Norway. [Easter, R.; Ghan, S.; Liu, X.; Yoon, J. -H.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Horowitz, L.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Nagashima, T.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Naik, V.] NOAA, UCAR, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Sudo, K.] Nagoya Univ, Grad Sch Environm Studies, Dept Earth & Environm Sci, Nagoya, Aichi 4648601, Japan. [Takemura, T.] Kyushu Univ, Appl Mech Res Inst, Fukuoka 8168580, Japan. [Voulgarakis, A.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London, England. RP Shindell, DT (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM drew.t.shindell@nasa.gov RI Balkanski, Yves/A-6616-2011; Lamarque, Jean-Francois/L-2313-2014; Kyushu, RIAM/F-4018-2015; Jiao, Chaoyi/F-9065-2015; Myhre, Gunnar/A-3598-2008; Skeie, Ragnhild/K-1173-2015; Schulz, Michael/A-6930-2011; U-ID, Kyushu/C-5291-2016; Ghan, Steven/H-4301-2011; Lee, Yunha/Q-7222-2016; Manager, CSD Publications/B-2789-2015; Collins, William/A-5895-2010; Takemura, Toshihiko/C-2822-2009; Young, Paul/E-8739-2010; Flanner, Mark/C-6139-2011; Mahowald, Natalie/D-8388-2013; Horowitz, Larry/D-8048-2014; Naik, Vaishali/A-4938-2013; YOON, JIN-HO/A-1672-2009; Liu, Xiaohong/E-9304-2011; Rotstayn, Leon/A-1756-2012; Szopa, Sophie/F-8984-2010; Chin, Mian/J-8354-2012; Shindell, Drew/D-4636-2012 OI Balkanski, Yves/0000-0001-8241-2858; Lamarque, Jean-Francois/0000-0002-4225-5074; Myhre, Gunnar/0000-0002-4309-476X; Skeie, Ragnhild/0000-0003-1246-4446; Schulz, Michael/0000-0003-4493-4158; Ghan, Steven/0000-0001-8355-8699; Lee, Yunha/0000-0001-7478-2672; Collins, William/0000-0002-7419-0850; Takemura, Toshihiko/0000-0002-2859-6067; Young, Paul/0000-0002-5608-8887; Flanner, Mark/0000-0003-4012-174X; Mahowald, Natalie/0000-0002-2873-997X; Horowitz, Larry/0000-0002-5886-3314; Naik, Vaishali/0000-0002-2254-1700; YOON, JIN-HO/0000-0002-4939-8078; Liu, Xiaohong/0000-0002-3994-5955; Rotstayn, Leon/0000-0002-2385-4223; Szopa, Sophie/0000-0002-8641-1737; FU NASA MAP program; ACMAP program; NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS); National Science Foundation; Office of Science (BER) of the US Department of Energy; US Department of Energy Office of Science Decadal and Regional Climate Prediction; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; Joint DECC and Defra Integrated Climate Programme [GA01101]; Environment Research and Technology Development Fund of the Ministry of the Environment, Japan [S-7]; Norwegian Research Council; Atmospheric Chemistry and Climate (ACC); project of International Global Atmospheric Chemistry (IGAC); Stratospheric Processes And their Role in Climate (SPARC) under the International Geosphere-Biosphere Project (IGBP); World Climate Research Program (WCRP) FX Thanks to Stephen Jeffrey for assistance with data analysis. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and the US Department of Energy's Program for Climate Model Diagnosis and Intercomparison, and we thank the climate modeling groups (listed in Tables 1, G1 and G2 of this paper) for producing and making available their model output as well as the satellite data teams. The authors are grateful to the British Atmospheric Data Centre (BADC) for collecting and archiving the ACCMIP data. DS acknowledges support from the NASA MAP and ACMAP programs and the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS). The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the US Department of Energy. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. S. Ghan was supported by the US Department of Energy Office of Science Decadal and Regional Climate Prediction using Earth System Models (EaSM) program. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. W. J. Collins and S. T. Rumbold were supported by the Joint DECC and Defra Integrated Climate Programme (GA01101). VN and LWH acknowledge efforts of GFDL's Global Atmospheric Model Development Team in the development of the GFDL-AM3 and Modeling Services Group for assistance with data processing. The MIROC-CHEM calculations were performed on the NIES supercomputer system (NEC SX-8R), and supported by the Environment Research and Technology Development Fund (S-7) of the Ministry of the Environment, Japan. The LMDz-OR-INCA simulations were done using computing resources provided by the CCRT/GENCI computer center of the CEA. The CICERO-OsloCTM2 simulations were done within the projects SLAC (Short Lived Atmospheric Components) and EarthClim funded by the Norwegian Research Council. ACCMIP is organized under the auspices of Atmospheric Chemistry and Climate (AC&C), a project of International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) under the International Geosphere-Biosphere Project (IGBP) and World Climate Research Program (WCRP). NR 78 TC 141 Z9 144 U1 8 U2 95 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2013 VL 13 IS 6 BP 2939 EP 2974 DI 10.5194/acp-13-2939-2013 PG 36 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 117NU UT WOS:000316961000002 ER PT J AU Stevenson, DS Young, PJ Naik, V Lamarque, JF Shindell, DT Voulgarakis, A Skeie, RB Dalsoren, SB Myhre, G Berntsen, TK Folberth, GA Rumbold, ST Collins, WJ MacKenzie, IA Doherty, RM Zeng, G van Noije, TPC Strunk, A Bergmann, D Cameron-Smith, P Plummer, DA Strode, SA Horowitz, L Lee, YH Szopa, S Sudo, K Nagashima, T Josse, B Cionni, I Righi, M Eyring, V Conley, A Bowman, KW Wild, O Archibald, A AF Stevenson, D. S. Young, P. J. Naik, V. Lamarque, J. -F. Shindell, D. T. Voulgarakis, A. Skeie, R. B. Dalsoren, S. B. Myhre, G. Berntsen, T. K. Folberth, G. A. Rumbold, S. T. Collins, W. J. MacKenzie, I. A. Doherty, R. M. Zeng, G. van Noije, T. P. C. Strunk, A. Bergmann, D. Cameron-Smith, P. Plummer, D. A. Strode, S. A. Horowitz, L. Lee, Y. H. Szopa, S. Sudo, K. Nagashima, T. Josse, B. Cionni, I. Righi, M. Eyring, V. Conley, A. Bowman, K. W. Wild, O. Archibald, A. TI Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID LONG-TERM CHANGES; SURFACE OZONE; PREINDUSTRIAL TIMES; STRATOSPHERIC OZONE; GLOBAL ATMOSPHERE; GREENHOUSE GASES; NITROGEN-OXIDES; 3-D MODELS; METHANE; AIR AB Ozone (O-3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m(-2). The model range of pre-industrial to present-day changes in O-3 produces a spread (+/- 1 standard deviation) in RFs of +/- 17 %. Three different radiation schemes were used we find differences in RFs between schemes (for the same ozone fields) of +/- 10 %. Applying two different tropopause definitions gives differences in RFs of +/- 3 %. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/- 30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44 +/- 12 %), nitrogen oxides (31 +/- 9 %), carbon monoxide (15 +/- 3 %) and non-methane volatile organic compounds (9 +/- 2 %); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(-2) DU-1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(-2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the tropical lower troposphere, associated with increases in water vapour; and increases in the sub-tropical to mid-latitude upper troposphere, associated with increases in lightning and stratosphere-to-troposphere transport. Climate change has relatively small impacts on global mean tropospheric ozone RF. C1 [Stevenson, D. S.; MacKenzie, I. A.; Doherty, R. M.] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland. [Young, P. J.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA. [Young, P. J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Naik, V.] NOAA, UCAR, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Lamarque, J. -F.; Conley, A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Shindell, D. T.; Lee, Y. H.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Shindell, D. T.; Lee, Y. H.] Columbia Earth Inst, New York, NY USA. [Voulgarakis, A.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London, England. [Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.] CICERO, Oslo, Norway. [Folberth, G. A.; Rumbold, S. T.; Collins, W. J.] Met Off Hadley Ctr, Exeter, Devon, England. [Zeng, G.] Natl Inst Water & Atmospher Res, Lauder, New Zealand. [van Noije, T. P. C.; Strunk, A.] Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, Netherlands. [Bergmann, D.; Cameron-Smith, P.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Plummer, D. A.] Environm Canada, Canadian Ctr Climate Modeling & Anal, Victoria, BC, Canada. [Strode, S. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Strode, S. A.] Univ Space Res Assoc, Columbia, MD USA. [Horowitz, L.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Szopa, S.] Lab Sci Climat & Environm, Gif Sur Yvette, France. [Sudo, K.] Nagoya Univ, Grad Sch Environm Studies, Dept Earth & Environm Sci, Nagoya, Aichi 4648601, Japan. [Nagashima, T.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Josse, B.] CNRS Ctr Natl Rech Meteorol, CNRM, GAME, Toulouse, France. [Cionni, I.] Agenzia Nazl Nuove Tecnol Energia & Sviluppo Econ, Bologna, Italy. [Righi, M.; Eyring, V.] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany. [Bowman, K. W.] NASA, Jet Prop Lab, Pasadena, CA USA. [Wild, O.] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England. [Archibald, A.] Univ Cambridge, Ctr Atmospher Sci, Cambridge CB2 1TN, England. RP Stevenson, DS (reprint author), Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland. EM david.s.stevenson@ed.ac.uk RI Skeie, Ragnhild/K-1173-2015; Strode, Sarah/H-2248-2012; Eyring, Veronika/O-9999-2016; Lee, Yunha/Q-7222-2016; Manager, CSD Publications/B-2789-2015; Cameron-Smith, Philip/E-2468-2011; Szopa, Sophie/F-8984-2010; Shindell, Drew/D-4636-2012; Horowitz, Larry/D-8048-2014; Bergmann, Daniel/F-9801-2011; Naik, Vaishali/A-4938-2013; Lamarque, Jean-Francois/L-2313-2014; Myhre, Gunnar/A-3598-2008; Stevenson, David/C-8089-2012; Collins, William/A-5895-2010; Young, Paul/E-8739-2010; Wild, Oliver/A-4909-2009; Righi, Mattia/I-5120-2013 OI Righi, Mattia/0000-0003-3827-5950; Skeie, Ragnhild/0000-0003-1246-4446; Strode, Sarah/0000-0002-8103-1663; Eyring, Veronika/0000-0002-6887-4885; Lee, Yunha/0000-0001-7478-2672; Archibald, Alexander/0000-0001-9302-4180; Folberth, Gerd/0000-0002-1075-440X; Cameron-Smith, Philip/0000-0002-8802-8627; Szopa, Sophie/0000-0002-8641-1737; Horowitz, Larry/0000-0002-5886-3314; Bergmann, Daniel/0000-0003-4357-6301; Naik, Vaishali/0000-0002-2254-1700; Lamarque, Jean-Francois/0000-0002-4225-5074; Myhre, Gunnar/0000-0002-4309-476X; Stevenson, David/0000-0002-4745-5673; Collins, William/0000-0002-7419-0850; Young, Paul/0000-0002-5608-8887; Wild, Oliver/0000-0002-6227-7035; FU Atmospheric Chemistry and Climate (ACC); Joint DECC and Defra Integrated Climate Programme [GA01101]; Defra SSNIP air quality contract [AQ 0902]; New Zealand Ministry of Science and Innovation; National Science Foundation; Office of Science (BER) of the US Department of Energy; US Dept. of Energy (BER); LLNL [DE-AC52-07NA27344]; NERSC [DE-AC02-05CH11231]; NASA Modeling, Analysis and Prediction program; Environment Research and Technology Development Fund of the Ministry of the Environment, Japan [S-7]; Office of Science and Technology through EPSRC's High End Computing Programme; Norwegian Research Council; Meteo-France; CNRS; NASA MAP program; NASA ACMAP program; SciDAC program of the Dept. of Energy; UK Met Office; NOAA; CICERO; NIWA; Edinburgh University FX ACCMIP is organized under the auspices of Atmospheric Chemistry and Climate (AC&C), a project of International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) under the International Geosphere-Biosphere Project (IGBP) and World Climate Research Program (WCRP). The authors are grateful to the British Atmospheric Data Centre (BADC), which is part of the NERC National Centre for Atmospheric Science (NCAS), for collecting and archiving the ACCMIP data. D. S. thanks James Manners for assistance in setting up the E-S radiation code. GAF, STR and WJC were supported by the Joint DECC and Defra Integrated Climate Programme (GA01101) and the Defra SSNIP air quality contract AQ 0902. GZ acknowledges NIWA HPCF facility and funding from New Zealand Ministry of Science and Innovation. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the US Department of Energy. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. The work of DB and PC was funded by the US Dept. of Energy (BER), performed under the auspices of LLNL under Contract DE-AC52-07NA27344, and used the supercomputing resources of NERSC under contract No. DE-AC02-05CH11231. VN and LWH acknowledge efforts of GFDL's Global Atmospheric Model Development Team in the development of the GFDL-AM3 and Modeling Services Group for assistance with data processing. The GEOSCCM work was supported by the NASA Modeling, Analysis and Prediction program, with computing resources provided by NASA's High-End Computing Program through the NASA Advanced Supercomputing Division. The MIROC-CHEM calculations were perfomed on the NIES supercomputer system (NEC SX-8R), and supported by the Environment Research and Technology Development Fund (S-7) of the Ministry of the Environment, Japan. The STOC-HadAM3 work made use of the facilities of HECToR, the UK's national high-performance computing service, which is provided by UoE HPCx Ltd at the University of Edinburgh, Cray Inc and NAG Ltd., and funded by the Office of Science and Technology through EPSRC's High End Computing Programme. The LMDz-OR-INCA simulations were done using computing resources provided by the CCRT/GENCI computer center of the CEA. The CICERO-OsloCTM2 simulations were done within the projects SLAC (Short Lived Atmospheric Components) and EarthClim funded by the Norwegian Research Council. The MOCAGE simulations were supported by Meteo-France and CNRS. Supercomputing time was provided by Meteo-France/DSI supercomputing center. DTS and YHL acknowledge support from the NASA MAP and ACMAP programs. D. P. would like to thank the Canadian Foundation for Climate and Atmospheric Sciences for their long-running support of CMAM development. AC was supported by the SciDAC program of the Dept. of Energy.; Finally, we acknowledge support towards publication costs from the UK Met Office, NOAA, CICERO and NIWA, in the absence of support from Edinburgh University. NR 99 TC 85 Z9 89 U1 6 U2 87 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2013 VL 13 IS 6 BP 3063 EP 3085 DI 10.5194/acp-13-3063-2013 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 117NU UT WOS:000316961000008 ER PT J AU Roberts, YL Pilewskie, P Kindel, BC Feldman, DR Collins, WD AF Roberts, Y. L. Pilewskie, P. Kindel, B. C. Feldman, D. R. Collins, W. D. TI Quantitative comparison of the variability in observed and simulated shortwave reflectance SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CLIMATE MODELS; SPECTRA; RADIOMETRY; EARTH AB The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system that has been designed to monitor the Earth's climate with unprecedented absolute radiometric accuracy and SI traceability. Climate Observation System Simulation Experiments (OSSEs) have been generated to simulate CLARREO hyperspectral shortwave imager measurements to help define the measurement characteristics needed for CLARREO to achieve its objectives. To evaluate how well the OSSE-simulated reflectance spectra reproduce the Earth's climate variability at the beginning of the 21st century, we compared the variability of the OSSE reflectance spectra to that of the reflectance spectra measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIA-MACHY). Principal component analysis (PCA) is a multivariate decomposition technique used to represent and study the variability of hyperspectral radiation measurements. Using PCA, between 99.7% and 99.9% of the total variance the OSSE and SCIAMACHY data sets can be explained by subspaces defined by six principal components (PCs). To quantify how much information is shared between the simulated and observed data sets, we spectrally decomposed the intersection of the two data set subspaces. The results from four cases in 2004 showed that the two data sets share eight (January and October) and seven (April and July) dimensions, which correspond to about 99.9% of the total SCIAMACHY variance for each month. The spectral nature of these shared spaces, understood by examining the transformed eigenvectors calculated from the subspace intersections, exhibit similar physical characteristics to the original PCs calculated from each data set, such as water vapor absorption, vegetation reflectance, and cloud reflectance. C1 [Roberts, Y. L.; Pilewskie, P.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Roberts, Y. L.; Pilewskie, P.; Kindel, B. C.] Lab Atmospher & Space Sci, Boulder, CO USA. [Roberts, Y. L.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Feldman, D. R.; Collins, W. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Collins, W. D.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Roberts, YL (reprint author), Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. EM yolanda.l.roberts@nasa.gov RI Feldman, Daniel/N-8703-2013; Collins, William/J-3147-2014; Richards, Amber/K-8203-2015 OI Feldman, Daniel/0000-0003-3365-5233; Collins, William/0000-0002-4463-9848; NR 37 TC 5 Z9 5 U1 0 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2013 VL 13 IS 6 BP 3133 EP 3147 DI 10.5194/acp-13-3133-2013 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 117NU UT WOS:000316961000013 ER PT J AU Kulawik, SS Worden, JR Wofsy, SC Biraud, SC Nassar, R Jones, DBA Olsen, ET Jimenez, R Park, S Santoni, GW Daube, BC Pittman, JV Stephens, BB Kort, EA Osterman, GB AF Kulawik, S. S. Worden, J. R. Wofsy, S. C. Biraud, S. C. Nassar, R. Jones, D. B. A. Olsen, E. T. Jimenez, R. Park, S. Santoni, G. W. Daube, B. C. Pittman, J. V. Stephens, B. B. Kort, E. A. Osterman, G. B. CA TES Team TI Comparison of improved Aura Tropospheric Emission Spectrometer CO2 with HIPPO and SGP aircraft profile measurements SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CARBON-DIOXIDE; RETRIEVAL ALGORITHM; ERROR ANALYSIS; TES; SATELLITE; SURFACE; ALTITUDE; GASES; SPACE; BIAS AB Thermal infrared radiances from the Troposheric Emission Spectrometer (TES) between 10 and 15 mu m contain significant carbon dioxide (CO2) information, however the CO2 signal must be separated from radiative interference from temperature, surface and cloud parameters, water, and other trace gases. Validation requires data sources spanning the range of TES CO2 sensitivity, which is approximately 2.5 to 12 km with peak sensitivity at about 5 km and the range of TES observations in latitude (40 degrees S to 40 degrees N) and time (2005-2011). We therefore characterize Tropospheric Emission Spectrometer (TES) CO2 version 5 biases and errors through comparisons to ocean and land-based aircraft profiles and to the Carbon Tracker assimilation system. We compare to ocean profiles from the first three Hiaper Pole-to-Pole Observations (HIPPO) campaigns between 40 degrees S and 40 degrees N with measurements between the surface and 14 km and find that TES CO2 estimates capture the seasonal and latitudinal gradients observed by HIPPO CO2 measurements. Actual errors range from 0.8-1.8 ppm, depending on the campaign and pressure level, and are approximately 1.6-2 times larger than the predicted errors. The bias of TES versus HIPPO is within 1 ppm for all pressures and datasets; however, several of the sub-tropical TES CO2 estimates are lower than expected based on the calculated errors. Comparisons to land aircraft profiles from the United States Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) between 2005 and 2011 measured form the surface to 5 km to TES CO2 show good agreement with an overall bias of -0.3 ppm to 0.1 ppm and standard deviations of 0.8 to 1.0 ppm at different pressure levels. Extending the SGP aircraft profiles above 5 km using AIRS or CONTRAIL measurements improves comparisons with TES. Comparisons to CarbonTracker (version CT2011) show a persistent spatially dependent bias pattern and comparisons to SGP show a time-dependent bias -0.2 ppm yr(-1). We also find that the predicted sensitivity of the TES CO2 estimates is too high, which results from using a multi-step retrieval for CO2 and temperature. We find that the averaging kernel in the TES product corrected by a pressure-dependent factor accurately reflects the sensitivity of the TES CO2 product. C1 [Kulawik, S. S.; Worden, J. R.; Olsen, E. T.; Kort, E. A.; Osterman, G. B.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Wofsy, S. C.; Santoni, G. W.; Daube, B. C.; Pittman, J. V.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Wofsy, S. C.; Santoni, G. W.; Daube, B. C.; Pittman, J. V.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Biraud, S. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Nassar, R.] Environm Canada, Toronto, ON, Canada. [Jones, D. B. A.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Jimenez, R.] Univ Nacl Colombia, Dept Chem & Environm Engn, Air Qual Res Grp, Bogota 111321, DC, Colombia. [Park, S.] Kyungpook Natl Univ, Dept Oceanog, Coll Ecol & Environm Sci, Taegu, South Korea. [Stephens, B. B.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Kulawik, SS (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM susan.kulawik@jpl.nasa.gov RI Kort, Eric/F-9942-2012; Biraud, Sebastien/M-5267-2013; Stephens, Britton/B-7962-2008; Jones, Dylan/O-2475-2014; OI Kort, Eric/0000-0003-4940-7541; Biraud, Sebastien/0000-0001-7697-933X; Stephens, Britton/0000-0002-1966-6182; Jones, Dylan/0000-0002-1935-3725; Nassar, Ray/0000-0001-6282-1611 FU Office of Biological and Environmental Research of the US Department of Energy as part of the Atmospheric Radiation Measurement Program (ARM), ARM Aerial Facility [DE-AC02-288 05CH11231]; Terrestrial Ecosystem Science Program; National Aeronantics and Space Administration; NASA ACMAP; National Science Foundation (NSF); Scripps Institution of Oceanography; NCAR [ATM-0628575, ATM-0628519, ATM-0628388]; several offices and programs of the National Oceanic and Atmospheric Administration; Atmospheric Composition and Climate Program; Office of Oceanic and Atmospheric Research; Environmental Research Laboratory; NSF FX SGP aircraft measurements were supported by the Office of Biological and Environmental Research of the US Department of Energy under contract No. DE-AC02-288 05CH11231 as part of the Atmospheric Radiation Measurement Program (ARM), ARM Aerial Facility, and Terrestrial Ecosystem Science Program.; Work at the Jet Propulsion Laboratory, California Institute of Technology, was performed under a contract with the National Aeronantics and Space Administration and funded through NASA ACMAP. 2007.; The HIPPO campaign was funded by National Science Foundation (NSF) grants to Harvard University, Scripps Institution of Oceanography, and NCAR (ATM-0628575, ATM-0628519, and ATM-0628388) and by several offices and programs of the National Oceanic and Atmospheric Administration; the Atmospheric Composition and Climate Program, the Office of Oceanic and Atmospheric Research, and the Environmental Research Laboratory. The National Center for Atmospheric Research is sponsored by the NSF. NR 39 TC 8 Z9 8 U1 0 U2 21 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2013 VL 13 IS 6 BP 3205 EP 3225 DI 10.5194/acp-13-3205-2013 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 117NU UT WOS:000316961000018 ER PT J AU Stier, P Schutgens, NAJ Bellouin, N Bian, H Boucher, O Chin, M Ghan, S Huneeus, N Kinne, S Lin, G Ma, X Myhre, G Penner, JE Randles, CA Samset, B Schulz, M Takemura, T Yu, F Yu, H Zhou, C AF Stier, P. Schutgens, N. A. J. Bellouin, N. Bian, H. Boucher, O. Chin, M. Ghan, S. Huneeus, N. Kinne, S. Lin, G. Ma, X. Myhre, G. Penner, J. E. Randles, C. A. Samset, B. Schulz, M. Takemura, T. Yu, F. Yu, H. Zhou, C. TI Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GENERAL-CIRCULATION MODEL; PLANETARY ALBEDO; CLIMATE RESPONSE; SATELLITE; SIMULATION; SENSITIVITY; NUCLEATION; SULFATE; SYSTEM; EARTH AB Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.47 Wm(-2) and the inter-model standard deviation is 0.55 Wm(-2), corresponding to a relative standard deviation of 12 %. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm(-2), and the standard deviation increases to 1.01 W-2, corresponding to a significant relative standard deviation of 97 %. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45 Wm(-2) (8 %) clear-sky and 0.62 Wm(-2) (11 %) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm(-2) in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention. C1 [Stier, P.; Schutgens, N. A. J.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Bellouin, N.] Met Off, Hadley Ctr, Exeter, Devon, England. [Bian, H.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Bian, H.; Chin, M.; Randles, C. A.; Yu, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Boucher, O.; Huneeus, N.] UPMC, CNRS, IPSL, Lab Meteorol Dynam, Paris, France. [Ghan, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kinne, S.] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. [Lin, G.; Penner, J. E.; Zhou, C.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Ma, X.; Yu, F.] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA. [Myhre, G.; Samset, B.] CICERO, Oslo, Norway. [Randles, C. A.] Morgan State Univ, GESTAR, Baltimore, MD 21239 USA. [Schulz, M.] Norwegian Meteorol Inst, Oslo, Norway. [Takemura, T.] Kyushu Univ, Appl Mech Res Inst, Fukuoka 8168580, Japan. [Yu, H.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Stier, P (reprint author), Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PU, England. EM philip.stier@physics.ox.ac.uk RI Stier, Philip/B-2258-2008; Takemura, Toshihiko/C-2822-2009; Yu, Hongbin/C-6485-2008; Penner, Joyce/J-1719-2012; Chin, Mian/J-8354-2012; Myhre, Gunnar/A-3598-2008; Schulz, Michael/A-6930-2011; U-ID, Kyushu/C-5291-2016; Ghan, Steven/H-4301-2011; Huneeus, Nicolas/J-4994-2016; ma, xiaoyan/D-2308-2014; Yu, Fangqun/F-3708-2011; Schutgens, Nick/B-2275-2013; Kyushu, RIAM/F-4018-2015 OI Stier, Philip/0000-0002-1191-0128; Huneeus, Nicolas/0000-0002-6214-5518; Bellouin, Nicolas/0000-0003-2109-9559; Zhou, Cheng/0000-0001-9095-2846; Takemura, Toshihiko/0000-0002-2859-6067; Yu, Hongbin/0000-0003-4706-1575; Myhre, Gunnar/0000-0002-4309-476X; Schulz, Michael/0000-0003-4493-4158; Ghan, Steven/0000-0001-8355-8699; Yu, Fangqun/0000-0003-0874-4883; Schutgens, Nick/0000-0001-9805-6384; FU UK Natural Environment Research Council project AEROS on aerosol uncertainties [NE/G006148/1]; US Department of Energy Office of Science Decadal and Regional Climate Prediction using Earth System Models (EaSM) program; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; US National Aeronautics and Space Administration; National Science Foundation; Joint DECC/Defra Met Office Hadley Centre Climate Programme [GA01101]; Funding Program for Next Generation World-Leading Researchers by the Cabinet Office, Government of Japan [GR079] FX This work has been supported by the UK Natural Environment Research Council project AEROS on aerosol uncertainties [NE/G006148/1]. We would like to thank J. Griesfeller (MetNo) for his support with the AeroCom database and Z. Kipling (Oxford) for his helpful comments on the manuscript. S. Ghan was supported by the US Department of Energy Office of Science Decadal and Regional Climate Prediction using Earth System Models (EaSM) program. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. X. Ma and F. Yu were funded by the US National Aeronautics and Space Administration and National Science Foundation. N. Bellouin was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). T. Takemura was supported by the Funding Program for Next Generation World-Leading Researchers by the Cabinet Office, Government of Japan (GR079). NR 54 TC 36 Z9 37 U1 4 U2 45 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2013 VL 13 IS 6 BP 3245 EP 3270 DI 10.5194/acp-13-3245-2013 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 117NU UT WOS:000316961000021 ER PT J AU Politz, MC Copeland, MF Pfleger, BF AF Politz, Mark C. Copeland, Matthew F. Pfleger, Brian F. TI Artificial repressors for controlling gene expression in bacteria SO CHEMICAL COMMUNICATIONS LA English DT Article ID TAL EFFECTORS; ESCHERICHIA-COLI; LAC REPRESSOR; PROTEINS; OPERONS AB Transcriptional repression is a common approach to control gene expression in synthetic biology applications. Here, an engineered DNA binding protein based upon a transcription activator-like effector (TALE) scaffold was shown to outperform LacI in blocking transcription from a promoter and to repress expression of a downstream gene in an operon. C1 [Politz, Mark C.; Copeland, Matthew F.; Pfleger, Brian F.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Politz, Mark C.; Copeland, Matthew F.; Pfleger, Brian F.] Univ Wisconsin, US DOE, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Pfleger, BF (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, 3629 Engn Hall,1415 Engn Dr, Madison, WI 53706 USA. EM pfleger@wisc.edu FU Wisconsin Alumni Research Foundation; National Science Foundation [EFRI-1240268]; DOE Great Lakes Bioenergy Research Center (DOE BER Office of Sciences) [DE-FC02-07ER64494]; Biotechnology Training Program (NIH) FX This work was funded by the Wisconsin Alumni Research Foundation, the National Science Foundation (EFRI-1240268), and the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Sciences DE-FC02-07ER64494). M. C. P. was supported as a trainee in the Biotechnology Training Program (NIH). NR 17 TC 19 Z9 20 U1 1 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PY 2013 VL 49 IS 39 BP 4325 EP 4327 DI 10.1039/c2cc37107c PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 130PS UT WOS:000317931500065 PM 23230569 ER PT J AU Li, W Kiran, MSRN Manson, JL Schlueter, JA Thirumurugan, A Ramamurty, U Cheetham, AK AF Li, Wei Kiran, M. S. R. N. Manson, Jamie L. Schlueter, John A. Thirumurugan, A. Ramamurty, U. Cheetham, Anthony K. TI Mechanical properties of a metal-organic framework containing hydrogen-bonded bifluoride linkers SO CHEMICAL COMMUNICATIONS LA English DT Article ID ZEOLITIC IMIDAZOLATE FRAMEWORKS; NANOINDENTATION; ANISOTROPY; CRYSTALS AB We report the mechanical properties of a framework structure, [Cu2F(HF)(HF2)(pyz)(4)][(SbF6)(2)](n) (pyz = pyrazine), in which [Cu(pyz)(2)](2+) layers are pillared by HF2- anions containing the exceptionally strong F-H center dot center dot center dot F hydrogen bonds. Nanoindentation studies on single-crystals clearly demonstrate that such bonds are extremely robust and mechanically comparable with coordination bonds in this system. C1 [Li, Wei; Cheetham, Anthony K.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Kiran, M. S. R. N.; Ramamurty, U.] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, Karnataka, India. [Manson, Jamie L.] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. [Schlueter, John A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Thirumurugan, A.] Indian Inst Sci Educ & Res Thiruvananthapuram, Sch Chem, Thiruvananthapuram 695016, Kerala, India. RP Cheetham, AK (reprint author), Univ Cambridge, Dept Mat Sci & Met, Pembroke St, Cambridge CB2 3QZ, England. EM akc30@cam.ac.uk RI Li, Wei/D-1101-2011; Ramamurty, Upadrasta/E-5623-2011; A, Thirumurugan/A-1825-2010 OI A, Thirumurugan/0000-0001-8469-2718 FU European Research Council; UGC; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. National Science Foundation [DMR-1005825] FX W.L., T.A. and A.K.C. thank the European Research Council for financial support (Advanced Investigator Award to A.K.C.). M.S.R.N.K. thanks the UGC for a Dr D. S. Kothari Post-Doctoral Fellowship. Work at Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, was performed under Contract No. DE-AC02-06CH11357. Work at EWU was supported by the U.S. National Science Foundation under grant No. DMR-1005825. NR 31 TC 19 Z9 20 U1 1 U2 72 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PY 2013 VL 49 IS 40 BP 4471 EP 4473 DI 10.1039/c3cc41357h PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 130QU UT WOS:000317934700009 PM 23571480 ER PT J AU Guo, BK Ben, T Bi, ZH Veith, GM Sun, XG Qiu, SL Dai, S AF Guo, Bingkun Ben, Teng Bi, Zhonghe Veith, Gabriel M. Sun, Xiao-Guang Qiu, Shilun Dai, Sheng TI Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium-sulfur batteries SO CHEMICAL COMMUNICATIONS LA English DT Article ID IONIC-LIQUID ELECTROLYTE; LI-S BATTERIES; POLYPYRROLE COMPOSITE CATHODES; RECHARGEABLE BATTERIES; CARBON COMPOSITES; PERFORMANCE AB Lithium-sulfur (Li-S) batteries are attractive candidates for transportation applications because of their high energy density (2600 W h kg(-1)). However, Li-S batteries have failed to achieve commercial success, due to the rapid capacity fading with cycling caused mainly by the "shuttle'' phenomenon. Here, we report a feasible approach to mitigate this issue using a porous aromatic framework (PAF) as a hosting substrate in Li-S batteries. As a cathode material, the composite of PAF with sulfur exhibits high capacity and excellent cycling stability in both a sulfone electrolyte, 1.0 M LiPF6-MiPS, and an ionic liquid electrolyte, 0.5 M LiTFSI-MPPY center dot TFSI. C1 [Guo, Bingkun; Bi, Zhonghe; Sun, Xiao-Guang; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Ben, Teng; Qiu, Shilun] Jilin Univ, Dept Chem, Changchun 130012, Peoples R China. [Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Guo, BK (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM guob@ornl.gov; sunx@ornl.gov; dais@ornl.gov RI Guo, Bingkun/J-5774-2014; Dai, Sheng/K-8411-2015; Ben, Teng/B-4634-2011 OI Dai, Sheng/0000-0002-8046-3931; Ben, Teng/0000-0002-0847-330X FU U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering FX This research was supported by the U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering. NR 35 TC 36 Z9 37 U1 16 U2 255 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PY 2013 VL 49 IS 43 BP 4905 EP 4907 DI 10.1039/c3cc41518j PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 135VC UT WOS:000318315700010 PM 23604139 ER PT J AU Bejger, C Tian, YH Barker, BJ Boland, KS Scott, BL Batista, ER Kozimor, SA Sessler, JL AF Bejger, Christopher Tian, Yong-Hui Barker, Beau J. Boland, Kevin S. Scott, Brian L. Batista, Enrique R. Kozimor, Stosh A. Sessler, Jonathan L. TI Synthesis and characterization of a tetrathiafulvalene-salphen actinide complex SO DALTON TRANSACTIONS LA English DT Article ID DIMETHYL-SULFOXIDE; N,N-DIMETHYLFORMAMIDE; LUMINESCENT; MOLECULE; LIGAND AB A new tetrathiafulvalene-salphen uranyl complex has been prepared. The system was designed to study the electronic coupling between actinides and a redox active ligand framework. Theoretical and experimental methods - including DFT calculations, single crystal X-ray analysis, cyclic voltammetry, NMR and IR spectroscopies - were used to characterize this new uranyl complex. C1 [Bejger, Christopher; Sessler, Jonathan L.] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA. [Bejger, Christopher; Sessler, Jonathan L.] Univ Texas Austin, Inst Cellular & Mol Biol, Austin, TX 78712 USA. [Tian, Yong-Hui; Barker, Beau J.; Boland, Kevin S.; Scott, Brian L.; Batista, Enrique R.; Kozimor, Stosh A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sessler, Jonathan L.] Yonsei Univ, Dept Chem, Seoul 120749, South Korea. RP Batista, ER (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM erb@lanl.gov; Stosh@lanl.gov; Sessler@cm.utexas.edu RI Barker, Beau/S-5494-2016; Scott, Brian/D-8995-2017 OI Barker, Beau/0000-0001-6680-6814; Scott, Brian/0000-0003-0468-5396 FU Office of Basic Energy Sciences, U. S. Department of Energy (DOE) [DE-FG02-01ER15186]; Ministry of Education, Science and Technology; Heavy Element Chemistry Program by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Glenn T. Seaborg Institute; National Nuclear Security Administration of U.S. Department of Energy [DE-AC52-06NA25396] FX Work at UT Austin was supported by the Office of Basic Energy Sciences, U. S. Department of Energy (DOE) (grant no. DE-FG02-01ER15186 to J.L.S.). J.L.S. also thanks the WCU (World Class University) program of Korea (R32-10217) administered by the National Research Foundation of Korea and funded by the Ministry of Education, Science and Technology. Research at LANL was supported by the Heavy Element Chemistry Program by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy and the Glenn T. Seaborg Institute Graduate and Student Fellowships (CB). LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy under contract DE-AC52-06NA25396. NR 18 TC 6 Z9 6 U1 2 U2 26 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 J9 DALTON T JI Dalton Trans. PY 2013 VL 42 IS 19 BP 6716 EP 6719 DI 10.1039/c3dt50698c PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 131GV UT WOS:000317981700007 PM 23572119 ER PT J AU Wannarit, N Roubeau, O Youngme, S Teat, SJ Gamez, P AF Wannarit, Nanthawat Roubeau, Olivier Youngme, Sujittra Teat, Simon J. Gamez, Patrick TI Influence of supramolecular bonding contacts on the spin crossover behaviour of iron(II) complexes from 2,2 '-dipyridylamino/s-triazine ligands SO DALTON TRANSACTIONS LA English DT Article ID MEMORY DEVICES; VARIABLE-TEMPERATURE; TRANSITION; LIGHT; COMPOUND; SERIES; SE; PHOTOMAGNETISM; POLYDENTATE; PRESSURE AB Reactions of the related ligands 2-(N,N-bis(2-pyridyl)amino)-4,6-bis(phenoxy)-(1,3,5)triazine (L1) and 2-(N, N-bis(2-pyridyl) amino)-4,6-bis(pentafluorophenoxy)-(1,3,5) triazine (L1(F)) with iron(II) thiocyanate produced two spin-crossover coordination compounds with distinct cooperative behaviours. trans-[Fe-(L1)(2)(NCS)(2)]center dot 2CH(2)Cl(2) (1) displays a very gradual transition centred at T 1/2 = 233 K, characterized by a Delta T-80 (namely the temperature range within which 80% of the transition considered occurs) of 90 K, while that of fluorinated trans-[Fe(L1(F))(2)(NCS)(2)]center dot 2CH(3)CN (3) is significantly more abrupt (and centred at T 1/2 = 238 K), with a Delta T-80 of 50 K, resulting from supramolecular contacts induced by the fluorinated phenol groups. The coordination compound equivalent to 1 with selenocyanate anions, namely trans-[Fe-(L1)(2)(NCSe)(2)]center dot 4CH(2)Cl(2)center dot 4CH(3)OH (2), also exhibits SCO properties centred at T 1/2 = 238 K, but the transition is very gradual (Delta T-80 = 150 K). Light-induced excited spin-state trapping (LIESST) is effective although incomplete for 2 and 3, while it is complete with a T-LIESST of 58 K for 1. C1 [Wannarit, Nanthawat; Gamez, Patrick] Univ Barcelona, Dept Quim Inorgan, QBI, E-08028 Barcelona, Spain. [Roubeau, Olivier] CSIC, Inst Ciencia Mat Aragon ICMA, E-50009 Zaragoza, Spain. [Roubeau, Olivier] Univ Zaragoza, E-50009 Zaragoza, Spain. [Wannarit, Nanthawat; Youngme, Sujittra] Khon Kaen Univ, Dept Chem, Mat Chem Res Unit, Khon Kaen 40002, Thailand. [Wannarit, Nanthawat; Youngme, Sujittra] Khon Kaen Univ, Fac Sci, Ctr Excellence Innovat Chem, Khon Kaen 40002, Thailand. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Gamez, Patrick] Passeig Lluis Co 23, ICREA, Barcelona 08010, Spain. RP Roubeau, O (reprint author), CSIC, Inst Ciencia Mat Aragon ICMA, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. EM patrick.gamez@qi.ub.es RI Gamez, Patrick/B-3610-2012; Roubeau, Olivier/A-6839-2010 OI Gamez, Patrick/0000-0003-2602-9525; Roubeau, Olivier/0000-0003-2095-5843 FU Ministerio de Economia y Competitividad of Spain [CTQ2011-27929-C02-01, MAT2011-24284]; Royal Golden Jubilee Program (RGJ) [PHD/0234/2550]; Khon Kaen University; Office of Science, Office of Basic Energy Sciences of the U. S. Department of Energy [DE-AC02-05CH11231] FX PG acknowledges ICREA (Institucio Catalana de Recerca i Estudis Avancats) and the Ministerio de Economia y Competitividad of Spain (Project CTQ2011-27929-C02-01). NW thanks the Royal Golden Jubilee Program (RGJ, Grant no. PHD/0234/2550) and Khon Kaen University for a research grant. SY acknowledges The Thailand Research Fund, the National Research University Project of Thailand, Office of the Higher Education Commission, through the Advanced Functional Materials Cluster of Khon Kaen University and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U. S. Department of Energy under contract no. DE-AC02-05CH11231. OR acknowledges funding from the Ministerio de Economia y Competitividad of Spain (Project MAT2011-24284). NR 64 TC 14 Z9 14 U1 0 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 J9 DALTON T JI Dalton Trans. PY 2013 VL 42 IS 19 BP 7120 EP 7130 DI 10.1039/c3dt50326g PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 131GV UT WOS:000317981700051 PM 23525160 ER PT J AU Douglas, EA Zeenberg, D Maeda, M Gila, BP Abernathy, CR Pearton, SJ Ren, F AF Douglas, E. A. Zeenberg, D. Maeda, M. Gila, B. P. Abernathy, C. R. Pearton, S. J. Ren, F. TI Depth-Resolved Cathodoluminescence Spectroscopy Characterization of RF Stressed AlGaN/GaN High Electron Mobility Transistors SO ECS SOLID STATE LETTERS LA English DT Article ID DRAIN BIAS; GAN; HEMTS; RELIABILITY; POWER; PERFORMANCE; DEGRADATION; AMPLIFIERS; SUBSTRATE; OPERATION AB AlGaN/GaN high electron mobility transistors with 0.125 mu m gate length were rf stressed at 10 GHz. Depth resolved cathodoluminescence (CL) was employed to investigate the role of defects in devices that exhibited typical mean time to failure (MTTF) compared to those that suffered from infant mortality. The CL spectra exhibited both laterally and vertically localized defect emission within the channel of devices that failed early, indicating the presence of an increased concentration of V-Ga-based defects within the device. Additionally, residual compressive stress was observed in all devices after electrical stress. (C) 2013 The Electrochemical Society. [DOI: 10.1149/2.002306ssl] All rights reserved. C1 [Douglas, E. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Zeenberg, D.; Maeda, M.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Ren, F.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. RP Douglas, EA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM edougla@sandia.gov RI Douglas, Erica/J-3732-2014 OI Douglas, Erica/0000-0003-1873-0223 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; AFOSR MURI FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The work at UF is supported by an AFOSR MURI monitored by James Hwang. NR 28 TC 1 Z9 1 U1 0 U2 6 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 2162-8742 J9 ECS SOLID STATE LETT JI ECS Solid State Lett. PY 2013 VL 2 IS 6 BP Q39 EP Q42 DI 10.1149/2.002306ssl PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 136EP UT WOS:000318344900004 ER PT S AU Fourspring, K Ninkov, Z Heap, S Roberto, M Kim, A AF Fourspring, Kenneth Ninkov, Zoran Heap, Sally Roberto, Massimo Kim, Alex BE Douglass, MR Oden, PI TI Testing of Digital Micromirror Devices for Space-Based Applications SO EMERGING DIGITAL MICROMIRROR DEVICE BASED SYSTEMS AND APPLICATIONS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Emerging Digital Micromirror Device Based Systems and Applications V CY FEB 05-06, 2013 CL San Francisco, CA SP SPIE, DLP Texas Instruments, VUZIX Corp DE Cryogenic; Digital Micromirror Devices (DMD); low-temperature; MEMS; proton radiation ID MULTIOBJECT SPECTROMETER; PERFORMANCE AB Scientists conceiving future space missions are interested in using DMDs as a multi-object spectrometer (MOS) slit mask. The main uncertainties in utilizing DMDs in a space-based instrument are associated with their operational longevity given the exposure to high levels of proton radiation and their ability to operate at low temperatures. Since a favored orbit is at the second Lagrangian point (L2), it is important to determine how long such Micro-Electrical Mechanical Systems (MEMS) would remain operational in the harsh L2 radiation environment, which primarily consists of solar protons and cosmic rays. To address this uncertainty, we have conducted DMD proton testing at the Lawrence Berkeley National Laboratory (LBNL) 88 '' Cyclotron. Three DMDs were irradiated with high-energy protons (20-50MeV) with energies sufficient to penetrate the DMD package's optical window and interact electrically with the device. After each irradiation step, an optical test procedure was used to validate the operability of each individual mirror on the DMD array. Each DMD was irradiated to a wide range of dosage levels and remained 100% operable up to a total dose of 30 krads. In addition, a few single event upsets were seen during each irradiation dose increment. To determine the minimal operating temperature of the DMDs, we placed a DMD in a liquid nitrogen dewar, and cooled it from room temperature to 130 K. During this test, the DMD was illuminated with a light source and monitored with a CCD camera. Additionally, the temperature was held constant at 173 K for 24 hours to test landing DMD patterns for long periods of time. There was no indication that extended periods of low temperature operation impact the DMD performance. Both of these results point to DMDs as a suitable candidate for future long duration space missions. C1 [Fourspring, Kenneth; Ninkov, Zoran] Rochester Inst Technol, 54 Lomb Mem Dr, Rochester, NY 14623 USA. [Heap, Sally] Space Telescope Sci Inst, Baltimore, MD 21212 USA. [Roberto, Massimo] NASA, Goddard Space Flight Ctr, Code 681, Greenbelt, MD 20771 USA. [Kim, Alex] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Fourspring, K (reprint author), Rochester Inst Technol, 54 Lomb Mem Dr, Rochester, NY 14623 USA. FU NASA Graduate Student Research Program ( GSRP) FX KF would like to thank Sally Heap and NASA Goddard for continued funding through the NASA Graduate Student Research Program ( GSRP). He would also like to thank Peter Hammond of Lightforce Technologies for assistance in designing and manufacturing the dewar parts and Bryan Fodness for support during the irradiation procedure at LBNL. The staff at LBNL's Cyclotron was helpful during our proton testing and we thank them. NR 14 TC 0 Z9 0 U1 1 U2 7 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9387-3 J9 PROC SPIE PY 2013 VL 8618 AR 86180B DI 10.1117/12.2006121 PG 10 WC Optics; Physics, Applied SC Optics; Physics GA BET57 UT WOS:000318030300010 ER PT S AU Graff, DL Love, SP AF Graff, David L. Love, Steven P. BE Douglass, MR Oden, PI TI Real-time matched-filter imaging for chemical detection using a DMD-based programmable filter SO EMERGING DIGITAL MICROMIRROR DEVICE BASED SYSTEMS AND APPLICATIONS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Emerging Digital Micromirror Device Based Systems and Applications V CY FEB 05-06, 2013 CL San Francisco, CA SP SPIE, DLP Texas Instruments, VUZIX Corp DE hyperspectral imaging; Hadamard spectroscopy; spectral matched filters; chemical detection; real-time spectral imaging; micro-mirror array; DLP; DMD ID SPECTROMETER AB Hyperspectral imaging sensors have proven to be powerful tools for highly selective and sensitive chemical detection applications, but have some significant operational drawbacks including a detection time-lag due to the large computational overhead of the matched filter analysis of the resulting data cubes. For applications where only a single chemical is of interest or real-time detection is desired, an intelligently designed multispectral sensor can trade high resolution and continuous spectral coverage for an in-line optical matched filter, enabling snapshot chemical detection with nearly no image processing requirements. Such a system can operate with little loss of performance, greatly reduced data volume, and at a fraction of the cost. We have recently developed a high-speed, high-resolution, programmable spectral filter based on a DLP (R) digital micro-mirror device (DMD) that mimics a conventional band-pass filter by operating on the spectrum without disturbing the underlying image. Our DMD-based filter can independently choose or reject dozens or hundreds of spectral bands and present them simultaneously to an imaging sensor, forming a complete 2D image. With this new technology, even very complicated matched filters can be implemented directly into the optical train of the sensor, producing an image highlighting the target chemical within a spectrally cluttered scene in real-time without further processing. Examples of matched-filter images recorded with our visible-spectrum prototype will be displayed, and extensions to other spectral regions will be discussed. Finally, we will discuss strategies for implementing more sophisticated clutter-suppressing matched filters on the DMD-based system, including schemes that approximate the subtlety of post-processing algorithms by utilizing the DMD's duty-cycle-based gray-scale capability. C1 [Graff, David L.; Love, Steven P.] Los Alamos Natl Lab, Space & Remote Sensing Sci Grp ISR 2, Los Alamos, NM 87544 USA. RP Graff, DL (reprint author), Los Alamos Natl Lab, Space & Remote Sensing Sci Grp ISR 2, Mail Stop B244, Los Alamos, NM 87544 USA. OI Love, Steven/0000-0003-0588-9622 NR 16 TC 2 Z9 2 U1 0 U2 8 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9387-3 J9 PROC SPIE PY 2013 VL 8618 AR 86180F DI 10.1117/12.2002694 PG 10 WC Optics; Physics, Applied SC Optics; Physics GA BET57 UT WOS:000318030300014 ER PT S AU Love, SP Graff, DL AF Love, Steven P. Graff, David L. BE Douglass, MR Oden, PI TI Full-frame programmable spectral filters based on micro-mirror arrays SO EMERGING DIGITAL MICROMIRROR DEVICE BASED SYSTEMS AND APPLICATIONS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Emerging Digital Micromirror Device Based Systems and Applications V CY FEB 05-06, 2013 CL San Francisco, CA SP SPIE, DLP Texas Instruments, VUZIX Corp DE Spectral imager; hyperspectral; DLP; DMD; Hadamard; matched filter; programmable spectral imager AB Rapidly programmable micro-mirror arrays, such as the DLP (R) digital micro-mirror device (DMD), have opened an exciting new arena in spectral imaging: rapidly reprogrammable, high spectral resolution, multi-band spectral filters that perform spectral processing directly in the optical hardware. Such a device is created by placing a DMD at the spectral plane of an imaging spectrometer, and using it as a spectral selector that passes some wavelengths down the optical train to the final image and rejects others. While simple in concept, realizing a truly practical DMD-based spectral filter has proved challenging. Versions described to date have been limited by the intertwining of image position and spectral propagation direction common to most imaging spectrometers, reducing these instruments to line-by-line scanning imagers rather than true spectral cameras that collect entire two-dimensional images at once. Here we report several optical innovations that overcome this limitation and allow us to construct full-frame programmable filters that spectrally manipulate every pixel, simultaneously and without spectral shifts, across a full 2D image. So far, our prototype, which can be programmed either as a matched-filter imager for specific target materials or as a fully hyperspectral multiplexing Hadamard transform imager, has demonstrated over 100 programmable spectral bands while maintaining good spatial image quality. We discuss how diffraction-mediated trades between spatial and spectral resolution determine achievable performance. Finally, we describe methods for dealing with the DLP's 2D diffractive effects, and suggest a simple modification to the DLP that would eliminate their impact for this application. C1 [Love, Steven P.; Graff, David L.] Los Alamos Natl Lab, Space & Remote Sensing Sci Grp ISR 2, Los Alamos, NM 87544 USA. RP Love, SP (reprint author), Los Alamos Natl Lab, Space & Remote Sensing Sci Grp ISR 2, Mail Stop B244, Los Alamos, NM 87544 USA. EM splove@lanl.gov OI Love, Steven/0000-0003-0588-9622 NR 7 TC 2 Z9 2 U1 0 U2 9 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9387-3 J9 PROC SPIE PY 2013 VL 8618 AR 86180C DI 10.1117/12.2002659 PG 12 WC Optics; Physics, Applied SC Optics; Physics GA BET57 UT WOS:000318030300011 ER PT S AU Kerfeld, CA Kirilovsky, D AF Kerfeld, Cheryl A. Kirilovsky, Diana BE Chauvat, F CassierChauvat, C TI Structural, Mechanistic and Genomic Insights into OCP-Mediated Photoprotection SO GENOMICS OF CYANOBACTERIA SE Advances in Botanical Research LA English DT Review; Book Chapter ID ORANGE CAROTENOID PROTEIN; SYNECHOCYSTIS PCC 6803; CHLOROPHYLL-BINDING PROTEIN; PHOTOSYSTEM-II; THYLAKOID MEMBRANES; ENERGY-DISSIPATION; STATE TRANSITIONS; BLUE-LIGHT; PHYCOBILISOME FLUORESCENCE; PORPHYRIDIUM-CRUENTUM AB Until relatively recently, photoprotective mechanisms in cyanobacteria were poorly understood. Yet, they play a crucial role in the ecophysiology of cyanobacteria, which inhabit a range of environments, some of them are extreme where stresses such as high salinity, drought and temperature exacerbate the threat of photodamage. This review focuses on the OCP-mediated photoprotective mechanism, which is widespread among cyanobacteria. Mechanistic and structural studies combined with genomic sequence data are painting an increasingly detailed picture of OCP-mediated photoprotection. C1 [Kerfeld, Cheryl A.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Kirilovsky, Diana] CEA Saclay, UMR8221, Lab Mecanismes Fondamentaux Bioenergie, F-91191 Gif Sur Yvette, France. RP Kerfeld, CA (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. EM ckerfeld@lbl.gov NR 81 TC 6 Z9 6 U1 5 U2 27 PU ACADEMIC PRESS LTD-ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL ROAD, LONDON NW1 7DX, ENGLAND SN 0065-2296 BN 978-0-12-394313-2 J9 ADV BOT RES JI Adv. Bot. Res. PY 2013 VL 65 BP 1 EP 26 DI 10.1016/B978-0-12-394313-2.00001-9 PG 26 WC Plant Sciences SC Plant Sciences GA BEL02 UT WOS:000317147100002 ER PT J AU Riley, WJ AF Riley, W. J. TI Using model reduction to predict the soil-surface (COO)-O-18 flux: an example of representing complex biogeochemical dynamics in a computationally efficient manner SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID OXYGEN-ISOTOPE RATIO; ATMOSPHERIC CO2; CARBON-DIOXIDE; ORGANIC-MATTER; 3-DIMENSIONAL SYNTHESIS; CHEMICAL-KINETICS; TALLGRASS PRAIRIE; EDDY COVARIANCE; WATER-VAPOR; DELTA O-18 AB Earth system models (ESMs) must calculate largescale interactions between the land and atmosphere while accurately characterizing fine-scale spatial heterogeneity in water, carbon, and other nutrient dynamics. We present here a high-dimension model representation (HDMR) approach that allows detailed process representation of a coupled carbon and water tracer (the delta O-18 value of the soil-surface CO2 flux (delta F-s)) in a computationally tractable manner. delta F-s depends on the delta O-18 value of soil water, soil moisture and temperature, and soil CO2 production (all of which are depth dependent), and the delta O-18 value of above-surface CO2. We tested the HDMR approach over a growing season in a C-4-dominated pasture using two vertical soil discretizations. The difference between the HDMR approach and the full model solution in the three-month integrated isoflux was less than 0.2% (0.5 mol m(-2) parts per thousand), and the approach is up to 100 times faster than the full numerical solution. This type of model reduction approach allows representation of complex coupled biogeochemical processes in regional and global climate models and can be extended to characterize subgridscale spatial heterogeneity. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Riley, WJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Bldg 84-1134,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM wjriley@lbl.gov RI Riley, William/D-3345-2015 OI Riley, William/0000-0002-4615-2304 FU Office of Science, Office of Biological and Environmental Research of the US Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under Contract No. DE-AC02-05CH11231 as part of their NGEE Arctic and ARM Programs. NR 54 TC 3 Z9 3 U1 1 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2013 VL 6 IS 2 BP 345 EP 352 DI 10.5194/gmd-6-345-2013 PG 8 WC Geosciences, Multidisciplinary SC Geology GA 137LY UT WOS:000318438600005 ER PT J AU Conley, AJ Lamarque, JF Vitt, F Collins, WD Kiehl, J AF Conley, A. J. Lamarque, J. -F. Vitt, F. Collins, W. D. Kiehl, J. TI PORT, a CESM tool for the diagnosis of radiative forcing SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID INTERCOMPARISON PROJECT ACCMIP; CLIMATE MODEL; ATMOSPHERIC CHEMISTRY; ABSORPTION; OZONE AB The Parallel Offline Radiative Transfer (PORT) model is a stand-alone tool, driven by model-generated datasets, that can be used for any radiation calculation that the underlying radiative transfer schemes can perform, such as diagnosing radiative forcing. In its present distribution, PORT isolates the radiation code from the Community Atmosphere Model (CAM4) in the Community Earth System Model (CESM1). The current configuration focuses on CAM4 radiation with the constituents as represented in present-day conditions in CESM1, along with their optical properties. PORT includes an implementation of stratospheric temperature adjustment under the assumption of fixed dynamical heating, which is necessary to compute radiative forcing in addition to the more straightforward instantaneous radiative forcing. PORT can be extended to use radiative constituent distributions from other models or model simulations. Ultimately, PORT can be used with various radiative transfer models. As illustrations of the use of PORT, we perform the computation of radiative forcing from doubling of carbon dioxide, from the change of tropospheric ozone concentration from the year 1850 to 2000, and from present-day aerosols. The radiative forcing from tropospheric ozone (with respect to 1850) generated by a collection of model simulations under the Atmospheric Chemistry and Climate Model Intercomparison Project is found to be 0.34 (with an intermodel standard deviation of 0.07) W m(-2). Present-day aerosol direct forcing (relative to no aerosols) is found to be -1.3 W m(-2). C1 [Conley, A. J.; Lamarque, J. -F.; Vitt, F.; Kiehl, J.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Collins, W. D.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Collins, W. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Conley, AJ (reprint author), Natl Ctr Atmospher Res, 1850 Table Mesa Dr, Boulder, CO 80305 USA. EM aconley@ucar.edu RI Collins, William/J-3147-2014; Lamarque, Jean-Francois/L-2313-2014 OI Collins, William/0000-0002-4463-9848; Lamarque, Jean-Francois/0000-0002-4225-5074 FU SciDAC project from the Department of Energy; National Science Foundation FX Andrew Conley, Jean-Francois Lamarque, and Francis Vitt were fully or partially supported by the SciDAC project from the Department of Energy. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. Many thanks to Chuck Bardeen for his helpful comments which improved an earlier version of this paper. NR 17 TC 17 Z9 17 U1 1 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2013 VL 6 IS 2 BP 469 EP 476 DI 10.5194/gmd-6-469-2013 PG 8 WC Geosciences, Multidisciplinary SC Geology GA 137LY UT WOS:000318438600013 ER PT J AU Drewniak, B Song, J Prell, J Kotamarthi, VR Jacob, R AF Drewniak, B. Song, J. Prell, J. Kotamarthi, V. R. Jacob, R. TI Modeling agriculture in the Community Land Model SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID SOIL CARBON DYNAMICS; CROP-CLIMATE MODEL; NITROGEN REMOBILIZATION; TERRESTRIAL CARBON; GLOBAL PATTERNS; MAIZE YIELDS; TILLAGE; WHEAT; SEQUESTRATION; EMISSIONS AB The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above-and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types - maize, soybean, and spring wheat - into the coupled carbon-nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements for soybean, but not as well for maize. CLM-Crop yields were comparable with observations in countries such as the United States, Argentina, and China, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation, in agreement with other modeling studies. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model - simulating agriculture in a realistic way, complete with fertilizer and residue management practices. Results are encouraging, with improved representation of human influences on the land surface and the potentially resulting climate impacts. C1 [Drewniak, B.; Prell, J.; Kotamarthi, V. R.] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Song, J.] No Illinois Univ, Dept Geog, De Kalb, IL 60115 USA. [Jacob, R.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Drewniak, B (reprint author), Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bbye@anl.gov FU US Department of Energy, Office of Science [DE-AC02-06CH11357]; Office of Science and US Department of Energy [DE-AC02-05CH11231] FX We would like to extend our thanks to Sam Levis for his helpful discussions and guidance with model development. Our gratitude also goes to Bill Sacks for making the Crop Calendar Dataset available for use as model input. The work of Drewniak, Song, Prell, Kotamarthi, and Jacob at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, under contract DE-AC02-06CH11357. Numerical simulations were performed with resources provided by the National Energy Research Scientific Computing Center, supported by the Office of Science and US Department of Energy Contract No. DE-AC02-05CH11231. NR 62 TC 19 Z9 19 U1 5 U2 50 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2013 VL 6 IS 2 BP 495 EP 515 DI 10.5194/gmd-6-495-2013 PG 21 WC Geosciences, Multidisciplinary SC Geology GA 137LY UT WOS:000318438600015 ER PT J AU Groff, D George, A Sun, N Sathitsuksanoh, N Bokinsky, G Simmons, BA Holmes, BM Keasling, JD AF Groff, Dan George, Anthe Sun, Ning Sathitsuksanoh, Noppadon Bokinsky, Gregory Simmons, Blake A. Holmes, Bradley M. Keasling, Jay D. TI Acid enhanced ionic liquid pretreatment of biomass SO GREEN CHEMISTRY LA English DT Article ID 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE; ENZYMATIC SACCHARIFICATION; CELLULOSE; SWITCHGRASS; BIOFUELS; ETHANOL; SUGARS; RECALCITRANCE; HYDROLYSIS; CHEMICALS AB Acid enhanced ionic liquid pretreatment is a promising method for boosting the yield of sugars produced from purified cellulose. Acid enhancement significantly increases the yields of sugars from the lignocellulosic feedstock switchgrass. The addition of Amberlyst 15, a protic acid resin, to the ionic liquid pretreatment of switchgrass boosted the yield of sugar up to ten times, decreased the amount of cellulase required for saccharification and increased the biocatalytic conversion of switchgrass into free fatty acids 10-fold to 22% of the theoretical yield. C1 [Groff, Dan; George, Anthe; Sun, Ning; Sathitsuksanoh, Noppadon; Bokinsky, Gregory; Simmons, Blake A.; Holmes, Bradley M.; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA USA. [George, Anthe; Simmons, Blake A.; Holmes, Bradley M.] Sandia Natl Labs, Livermore, CA USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Groff, D (reprint author), Joint BioEnergy Inst, Emeryville, CA USA. EM bradley.m.holmes@gmail.com; jdkeasling@lbl.gov RI Sun, Ning/D-6709-2012; Keasling, Jay/J-9162-2012; sathitsuksanoh, noppadon/O-6305-2014; OI Keasling, Jay/0000-0003-4170-6088; sathitsuksanoh, noppadon/0000-0003-1521-9155; Simmons, Blake/0000-0002-1332-1810 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 25 TC 18 Z9 19 U1 3 U2 42 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 J9 GREEN CHEM JI Green Chem. PY 2013 VL 15 IS 5 BP 1264 EP 1267 DI 10.1039/c3gc37086k PG 4 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA 135OB UT WOS:000318296700025 ER PT J AU Tian, WH Samatova, NF AF Tian, Wenhong Samatova, Nagiza F. TI Global Alignment of Pairwise Protein Interaction Networks for Maximal Common Conserved Patterns SO INTERNATIONAL JOURNAL OF GENOMICS LA English DT Article ID WHOLE GENOMES; SPECIFICITY; ANNOTATION; ORTHOLOGS; GENES; YEAST AB A number of tools for the alignment of protein-protein interaction (PPI) networks have laid the foundation for PPI network analysis. Most of alignment tools focus on finding conserved interaction regions across the PPI networks through either local or global mapping of similar sequences. Researchers are still trying to improve the speed, scalability, and accuracy of network alignment. In view of this, we introduce a connected-components based fast algorithm, HopeMap, for network alignment. Observing that the size of true orthologs across species is small comparing to the total number of proteins in all species, we take a different approach based on a precompiled list of homologs identified by KO terms. Applying this approach to S. cerevisiae (yeast) and D. melanogaster (fly), E. coli K12 and S. typhimurium, E. coli K12 and C. crescenttus, we analyze all clusters identified in the alignment. The results are evaluated through up-to-date known gene annotations, gene ontology (GO), and KEGG ortholog groups (KO). Comparing to existing tools, our approach is fast with linear computational cost, highly accurate in terms of KO and GO terms specificity and sensitivity, and can be extended to multiple alignments easily. C1 [Tian, Wenhong] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China. [Samatova, Nagiza F.] Oak Ridge Natl Lab, Dept Comp, Oak Ridge, TN 37831 USA. [Samatova, Nagiza F.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA. [Samatova, Nagiza F.] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27696 USA. RP Tian, WH (reprint author), Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China. EM tian_wenhong@uestc.edu.cn FU U.S. Department of Energy (DOE), Office of Science; Office of Advanced Scientific Computing Research (ASCR); Office of Biological and Environmental Research (BER); U.S. National Science Foundation (Expeditions in Computing); U.S. DOE [DEAC05-00OR22725] FX The author would like to thank NetworkBLAST and NetworkBLAST-M team, Professor Roded Sharan and Maxim Kalaev et al. for sharing the datasets and helpful communications, and thank Graemlin team (Jason Flannick et al.) from Stanford University for providing PPI network data and useful communications on alignment problems. Also thank journal reviewers for providing helpful suggestions to improve the quality of this paper. The short version of this paper is published in the proceedings of Pacific Symposium on Biocomputing 14, 2009 [33]. This work was supported in part by the U.S. Department of Energy (DOE), Office of Science, the Office of Advanced Scientific Computing Research (ASCR), the Office of Biological and Environmental Research (BER), and the U.S. National Science Foundation (Expeditions in Computing). Oak Ridge National Laboratory is managed by UT-Battelle for the LLC U.S. DOE under Contract no. DEAC05-00OR22725. NR 24 TC 2 Z9 2 U1 0 U2 11 PU HINDAWI PUBLISHING CORPORATION PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 2314-436X J9 INT J GENOMICS JI Int. J. Genomics PY 2013 AR 670623 DI 10.1155/2013/670623 PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 135EY UT WOS:000318271900001 ER PT J AU Ramasamy, KK Wang, Y AF Ramasamy, Karthikeyan K. Wang, Yong TI Catalyst activity comparison of alcohols over zeolites SO JOURNAL OF ENERGY CHEMISTRY LA English DT Article DE zeolite; HZSM-5; alcohol conversion; catalyst activity; hydrocarbons ID TO-HYDROCARBONS REACTION; BIOMASS RESOURCES; METHANOL; CONVERSION; H-ZSM-5; ETHANOL; CHEMICALS; CAVITIES; GASOLINE; SAPO-34 AB Alcohol transformation to transportation fuel-range hydrocarbon over HZSM-5 (SiO2/Al2O3 = 30) catalyst was studied at 360 degrees C and 300 psig. Product distributions and catalyst life were compared between methanol, ethanol, 1-propanol and 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared with that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, naphthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 h TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization and hydrogenation. Compared with ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of the oligomerized products of propylene and butylene to form the cyclic compounds requires the sites with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1-propanol and 1-butanol compared with methanol and ethanol conversion over HZSM-5. C1 [Ramasamy, Karthikeyan K.; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. [Ramasamy, Karthikeyan K.; Wang, Yong] Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99163 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. EM karthi@pnnl.gov; yong.wang@pnnl.gov RI Ramasamy, karthikeyan/C-3258-2014; Ramasamy, karthikeyan/H-9981-2014 FU Pacific Northwest National Laboratory; U. S. Department of Energy [DE-AC05-76RL01830] FX This work was supported by the Pacific Northwest National Laboratory's Laboratory Directed Research and Development Funding. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U. S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 23 TC 15 Z9 15 U1 3 U2 78 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2095-4956 J9 J ENERGY CHEM JI J. Energy Chem. PD JAN PY 2013 VL 22 IS 1 BP 65 EP 71 PG 7 WC Chemistry, Applied; Chemistry, Physical; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA 132EM UT WOS:000318050700009 ER PT J AU Kaur, M Johnson, A Tian, GX Jiang, WL Rao, LF Paszczynski, A Qiang, Y AF Kaur, Maninder Johnson, Andrew Tian, Guoxin Jiang, Weilin Rao, Linfeng Paszczynski, Andrzej Qiang, You TI Separation nanotechnology of diethylenetriaminepentaacetic acid bonded magnetic nanoparticles for spent nuclear fuel SO NANO ENERGY LA English DT Article DE Magnetic nanoparticles; Functionalization; Actinides; Sorption; Magnetic separation; Hydrodynamic size ID ASSISTED CHEMICAL-SEPARATION; FISSION-PRODUCT; PARTICLES; EXTRACTANTS; PLUTONIUM; SILICA AB A nanomagnetic separation method based on diethylenetriaminepentaacetic acid (DTPA) conjugated with magnetic nanoparticles (MNPs) is studied for application in spent nuclear fuel separation. The high affinity of DTPA towards actinides aids in separation from the highly acidic medium of nuclear waste. The solubility and magnetization of particles at tow pH is protected by encapsulating them in silica. Surface functionalization of silica coated particles with polyamines enhances the loading capacity of the chelator on MNPs. The particles were characterized before and after surface modification using different characterizing tools. The uptake behavior of Am(III), Pu(IV), U(VI), and Np(V) from 0.1 M NaNO3 solution was determined. The sorption results show the strong affinity of DTPA towards Am(III) and Pu(IV) by extracting 97% and 80% of actinides, respectively. The high removal efficiency of actinides make the chelator conjugated MNPs an effective method for spent nuclear fuel separation. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Kaur, Maninder; Qiang, You] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Kaur, Maninder; Qiang, You] Univ Idaho, Environm Sci Program, Moscow, ID 83844 USA. [Johnson, Andrew; Paszczynski, Andrzej] Univ Idaho, Sch Food Sci, Moscow, ID 83844 USA. [Tian, Guoxin; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Jiang, Weilin] Pacific NW Natl Lab, Richland, WA 99352 USA. [Qiang, You] Ctr Adv Energy Studies, Idaho Falls, ID 83401 USA. RP Qiang, Y (reprint author), Univ Idaho, Dept Phys, Moscow, ID 83844 USA. EM Weilin.Jiang@pnnl.gov; andrzej@uidaho.edu; youqiang@uidaho.edu OI Jiang, Weilin/0000-0001-8302-8313 FU U.S. Department of Energy (DOE) [DE-FC07-08ID14926]; U.S. DOE, Office of Nuclear Energy, the Fuel Research and Development Program [DE-AC02-05CH11231]; DOE BES FX This study was supported by U.S. Department of Energy (DOE) under Contract DE-FC07-08ID14926 (Conjugates of Actinide-Chelator-Magnetic Nanoparticles for Used Fuel Separation Technology). The actinide sorption studies were supported by U.S. DOE, Office of Nuclear Energy, the Fuel Research and Development Program under Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. A portion of the research was conducted in the Environmental Molecular Sciences Laboratory (EMSL), a DOE user facility operated by Battelle for DOE Office of Biological and Environmental Research under Proposal ID# 39391 for TEM, XRD and DLS, and under Proposal ID# 44713 for HIM. Jiang was supported in part by DOE BES. NR 30 TC 14 Z9 14 U1 2 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 J9 NANO ENERGY JI Nano Energy PD JAN PY 2013 VL 2 IS 1 BP 124 EP 132 DI 10.1016/j.nanoen.2012.08.005 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 132EK UT WOS:000318050500018 ER PT J AU Modestino, MA Diaz-Botia, CA Haussener, S Gomez-Sjoberg, R Ager, JW Segalman, RA AF Modestino, Miguel A. Diaz-Botia, Camilo A. Haussener, Sophia Gomez-Sjoberg, Rafael Ager, Joel W. Segalman, Rachel A. TI Integrated microfluidic test-bed for energy conversion devices SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID REDOX-FLOW BATTERIES; HYDROGEN-PRODUCTION; FUEL-CELL; LAMINAR-FLOW; WATER; SYSTEMS; CATALYSTS; STORAGE; ACID AB Energy conversion devices require the parallel functionality of a variety of components for efficient operation. We present a versatile microfluidic test-bed for facile testing of integrated catalysis and mass transport components for energy conversion via water electrolysis. This system can be readily extended to solar-fuels generators and fuel-cell devices. C1 [Modestino, Miguel A.; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Modestino, Miguel A.; Ager, Joel W.; Segalman, Rachel A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Modestino, Miguel A.; Haussener, Sophia; Ager, Joel W.; Segalman, Rachel A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Diaz-Botia, Camilo A.; Gomez-Sjoberg, Rafael] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Haussener, Sophia] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Haussener, Sophia] Ecole Polytech Fed Lausanne, Inst Engn Mech, CH-1015 Lausanne, Switzerland. RP Ager, JW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM jwager@lbl.gov; segalman@berkeley.edu OI Ager, Joel/0000-0001-9334-9751; Segalman, Rachel/0000-0002-4292-5103 FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; Engineering Division at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, as follows: the electrochemical and transport characterization was supported through the Office of Science of the U.S. Department of Energy under Award no. DE-SC0004993; the development of the microfluidic devices was supported by the Engineering Division at Lawrence Berkeley National Laboratory under contract number DE-AC02-05CH11231. The authors thank Jeff Beeman for help with catalyst deposition, as well as Tyler Matthews, Kenneth Lee, Karl Walczak, and Carl Koval for helpful discussions and experimental assistance. NR 25 TC 9 Z9 9 U1 0 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2013 VL 15 IS 19 BP 7050 EP 7054 DI 10.1039/c3cp51302e PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 131GK UT WOS:000317980600007 PM 23579859 ER PT J AU Summerscales, OT Gordon, JC AF Summerscales, Owen T. Gordon, John C. TI Complexes containing multiple bonding interactions between lanthanoid elements and main-group fragments SO RSC ADVANCES LA English DT Review ID C-H ACTIVATION; HETEROCYCLIC CARBENE COMPLEXES; EARTH METHYLIDENE COMPLEXES; ALUMINUM-CARBON CLUSTER; BASE INDUCED REDUCTIONS; TERMINAL IMIDO COMPLEX; TRANSITION-METAL; STRUCTURAL-CHARACTERIZATION; CRYSTAL-STRUCTURES; PHOSPHORANEIMINATO COMPLEXES AB In this review we detail recent developments in the synthesis of lanthanoid complexes (group III and lanthanide elements) containing multiple bonding interactions with tetrel, pnictogen and chalcogen main group elements. C1 [Summerscales, Owen T.; Gordon, John C.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Summerscales, OT (reprint author), Los Alamos Natl Lab, Div Chem, MS J582, Los Alamos, NM 87545 USA. EM jgordon@lanl.gov FU Los Alamos National Laboratory FX OTS gratefully acknowledges receipt of a Director's Postdoctoral Fellowship at Los Alamos National Laboratory. NR 104 TC 35 Z9 35 U1 7 U2 51 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2013 VL 3 IS 19 BP 6682 EP 6692 DI 10.1039/c3ra23151h PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 130PE UT WOS:000317929800001 ER PT S AU Sheik-Bahae, M Ghasemkhani, M Albrecht, AR Seletskiy, DV Cederberg, JG Melgaard, SD AF Sheik-Bahae, Mansoor Ghasemkhani, Mohammad Albrecht, Alexander R. Seletskiy, Denis V. Cederberg, Jeffrey G. Melgaard, Seth D. BE Hastie, JE TI Work at UNM was supported by DARPA GRANT 10669320, AFOSR ( STTR program), and AFRL/ RV University Small Grant. VECSEL growth was supported by Sandia's Laboratory Directed Research and Development Office. Sandia National Laboratories is a multi- program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. D. V. S acknowledges support by the National Science Foundation under Award No. 1160764. SO VERTICAL EXTERNAL CAVITY SURFACE EMITTING LASERS (VECSELS) III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Vertical External Cavity Surface Emitting Lasers (VECSELs) III CY FEB 03-05, 2013 CL San Francisco, CA SP SPIE, Coherent, Inc DE Optical refrigeration; laser cooling of solids; VECSEL AB Laser cooling of solids to 148 K has been demonstrated in a Yb:YLF crystal using intracavity absorption enhancement in an InGaAs MQW VECSEL at 1020 nm. This is the lowest temperature achieved in the intracavity geometry to date and presents a significant advancement towards an all-solid-state compact cryocooler. C1 [Sheik-Bahae, Mansoor; Ghasemkhani, Mohammad; Albrecht, Alexander R.; Melgaard, Seth D.] Univ New Mexico, Dept Phys & Astron, 1919 Lomas Blvd NE, Albuquerque, NM 87131 USA. [Seletskiy, Denis V.] Univ Konstanz, Dept Phys, Ctr Appl Photon, Constance, Germany. [Cederberg, Jeffrey G.] Sandia Natl Labs, Albuquerque, NM 94550 USA. RP Sheik-Bahae, M (reprint author), Univ New Mexico, Dept Phys & Astron, 1919 Lomas Blvd NE, Albuquerque, NM 87131 USA. EM msb@unm.edu FU DARPA [10669320]; AFOSR; STTR; AFRL/ RV; VECSEL; Sandia National Laboratories is a multi- program laboratory managed and operated by Sandia Corporation; U. S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; National Science Foundation [1160764] FX Work at UNM was supported by DARPA GRANT 10669320, AFOSR ( STTR program), and AFRL/ RV University Small Grant. VECSEL growth was supported by Sandia's Laboratory Directed Research and Development Office. Sandia National Laboratories is a multi- program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE- AC04-94AL85000. D. V. S acknowledges support by the National Science Foundation under Award No. 1160764. NR 8 TC 1 Z9 1 U1 3 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9375-0 J9 PROC SPIE PY 2013 VL 8606 AR 86060A DI 10.1117/12.2003561 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA BET49 UT WOS:000318027500007 ER PT S AU Hahn, HA AF Hahn, Heidi Ann BE Paredis, CJJ Bishop, C Bodner, D TI The conundrum of verification and validation of social science-based models SO 2013 CONFERENCE ON SYSTEMS ENGINEERING RESEARCH SE Procedia Computer Science LA English DT Proceedings Paper CT 11th Annual Conference on Systems Engineering Research (CSER) CY MAR 19-22, 2013 CL Georgia Inst Technol, Atlanta, GA SP Georgia Res Tech Inst, Intercax, IBM Res HO Georgia Inst Technol DE Verification and validation; social science-based models AB In the systems engineering lexicon, definitions for the terms "verification" and "validation" are settled; consistent with the definitions promulgated by the Department of Defense (DoD) [1]; and quite distinct from one another. Verification confirms that all elements of the system meet technical requirements (the product was built right). Validation confirms that the realized system complies with stakeholder requirements (the right system was built). The distinction becomes blurred, however, when one considers verification and validation (V&V) of social science-based models and simulations. Unlike physics-based models, the theoretical underpinnings of Human, Social, Cultural, and Behavioral (HSCB) or other social science models are not readily verified through observation of real-world events or empirical testing. As a result, the theoretical claims on which the models are built are often contested. As noted by Lustick and Tubin [2], when experts do not agree on what the right thing is, determining that the model is built right cannot be separated from tests of whether the right thing has been built. Because systems engineers may encounter social-science based models either in the context of system design or verification, where they may be used as substitutes for human operators or users, or when they are components of a physical system, as is the case when HSCB models are embedded into enhanced persistent surveillance systems for military or intelligence applications, it is important that they understand the limitations and controversies surrounding V&V of these types of models. In this paper, the literature on V&V of models is reviewed, with an emphasis on social science models and some recently developed constructs for their verification and validation. Future directions for social science-based model development and V&V are briefly outlined. (C) 2013 The Authors. Published by Elsevier B. V. Selection and/or peer-review under responsibility of Georgia Institute of Technology C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hahn, HA (reprint author), Los Alamos Natl Lab, POB 1663 MS F696, Los Alamos, NM 87545 USA. EM Hahn@lanl.gov NR 15 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-0509 J9 PROCEDIA COMPUT SCI PY 2013 VL 16 BP 878 EP 887 DI 10.1016/j.procs.2013.01.092 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Industrial; Operations Research & Management Science SC Computer Science; Engineering; Operations Research & Management Science GA BEL52 UT WOS:000317222600092 ER PT J AU Groenewold, GS Scott, JR Lee, ED Lammert, SA AF Groenewold, Gary S. Scott, Jill R. Lee, Edgar D. Lammert, Stephen A. TI Rapid analysis of organophosphonate compounds recovered from vinyl floor tile using vacuum extraction coupled with a fast-duty cycle GC/MS SO ANALYTICAL METHODS LA English DT Article ID SOLID-PHASE MICROEXTRACTION; VOLATILE ORGANIC-COMPOUNDS; DESORPTION ELECTROSPRAY-IONIZATION; CHROMATOGRAPHY-MASS-SPECTROMETRY; CHEMICAL WARFARE AGENTS; PORTABLE GAS-CHROMATOGRAPHY; EMISSION CELL FLEC; DEGRADATION-PRODUCTS; ATMOSPHERIC-PRESSURE; THERMAL-DESORPTION AB In a terrorist event or industrial accident, environmental toxins will be inhomogeneously distributed on surfaces. A field vacuum extractor (FVE) can be used to sample contamination on fixed surfaces in a non-destructive fashion, but application to heterogeneously contaminated environments tends to be limited by the sampling time and time required for analysis, which is similar to 15 to 30 min for a laboratory gas chromatograph/mass spectrometer (GC/MS). In the present study, FVE surface sampling was combined with a portable, fast-duty cycle GC/MS that enables analysis of a surface sample approximately every 3 minutes. Employing multiple FVE devices enables rapid measurement of many samples as might be required for characterizing contamination that is inhomogeneously distributed in a release environment. The FVE utilizes solid phase microextraction (SPME) fibers to sorb volatilized compounds from an evacuated headspace enclosed over the surface to be sampled (vinyl floor tile in the present study), over the course of a 30 min sampling time. Recovery of organophosphonate compounds in quantities sufficient to enable identification was achieved sampling floor tile exposed to as little as 30 ng. The amount detected was found to increase in a linear fashion with quantity applied to the floor tile, over three orders of magnitude. Carboxen-polydimethylsiloxane (PDMS) was used as the SPME sorbent phase and was sufficiently robust for multiple sampling and analysis cycles. The carboxen-PDMS retained 2-5% of the organophosphonate compounds after the initial GC/MS analysis, and this fraction could be readily measured in a subsequent re-analysis of the same sample. The re-analysis showed identifiable quantities of the organophosphonate compounds in all experiments except those with the lowest exposure quantities. Thus, once-analyzed carboxen-PDMS fibers may be archived for re-analysis at a later date if desired. C1 [Groenewold, Gary S.; Scott, Jill R.] Idaho Natl Lab, Idaho Falls, ID USA. [Lee, Edgar D.; Lammert, Stephen A.] Torion Technol Inc, Amer Fork, UT USA. RP Scott, JR (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. EM jill.scott@inl.gov; ed.lee@torion.com FU Department of Homeland Security, Office of Research and Development; DOE Idaho Operations Office [DE-AC07-05ID14517] FX This research was funded by the Department of Homeland Security, Office of Research and Development and was performed at the Idaho National Laboratory under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 60 TC 3 Z9 3 U1 0 U2 26 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1759-9660 J9 ANAL METHODS-UK JI Anal. Methods PY 2013 VL 5 IS 9 BP 2227 EP 2236 DI 10.1039/c3ay26280d PG 10 WC Chemistry, Analytical; Food Science & Technology; Spectroscopy SC Chemistry; Food Science & Technology; Spectroscopy GA 127HX UT WOS:000317690200011 ER PT J AU Doi, K Togano, E Xantheas, SS Nakanishi, R Nagata, T Ebata, T Inokuchi, Y AF Doi, Keisuke Togano, Eijiro Xantheas, Sotiris S. Nakanishi, Ryuzo Nagata, Takashi Ebata, Takayuki Inokuchi, Yoshiya TI Microhydration Effects on the Intermediates of the S(N)2 Reaction of Iodide Anion with Methyl Iodide SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE halides; IR spectroscopy; S(N)2 reactions; solvent effects ID NUCLEOPHILIC DISPLACEMENT-REACTIONS; GAS-PHASE MEASUREMENTS; STEPWISE SOLVATION; SN2 REACTION; KINETICS; CL; TEMPERATURE; SIMULATIONS; SOLVENT; SURFACE C1 [Doi, Keisuke; Togano, Eijiro; Ebata, Takayuki; Inokuchi, Yoshiya] Hiroshima Univ, Grad Sch Sci, Dept Chem, Higashihiroshima 7398526, Japan. [Xantheas, Sotiris S.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Nakanishi, Ryuzo; Nagata, Takashi] Univ Tokyo, Grad Sch Arts & Sci, Dept Basic Sci, Tokyo 1538902, Japan. RP Inokuchi, Y (reprint author), Hiroshima Univ, Grad Sch Sci, Dept Chem, Higashihiroshima 7398526, Japan. EM y-inokuchi@hiroshima-u.ac.jp RI Inokuchi, Yoshiya/D-4681-2013; Xantheas, Sotiris/L-1239-2015; OI Inokuchi, Yoshiya/0000-0001-7959-5315; Xantheas, Sotiris/0000-0002-6303-1037 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan [21350016]; US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences FX This work is supported by Grant-in-Aids (21350016) for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. S.S.X. acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the DOE by Battelle. NR 22 TC 10 Z9 10 U1 0 U2 27 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2013 VL 52 IS 16 BP 4380 EP 4383 DI 10.1002/anie.201207697 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 126KW UT WOS:000317615000010 PM 23361998 ER PT J AU Lin, LC Kim, J Kong, XQ Scott, E McDonald, TM Long, JR Reimer, JA Smit, B AF Lin, Li-Chiang Kim, Jihan Kong, Xueqian Scott, Eric McDonald, Thomas M. Long, Jeffrey R. Reimer, Jeffrey A. Smit, Berend TI Understanding CO2 Dynamics in Metal-Organic Frameworks with Open Metal Sites SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE carbon dioxide capture; chemical shift anisotropy; CO2 dynamics; metal-organic frameworks ID CARBON-DIOXIDE CAPTURE; ADSORPTION; SIMULATIONS; BINDING; N-2 C1 [Lin, Li-Chiang; Kong, Xueqian; Scott, Eric; Reimer, Jeffrey A.; Smit, Berend] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Kim, Jihan; McDonald, Thomas M.; Long, Jeffrey R.; Smit, Berend] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. [Kong, Xueqian; Reimer, Jeffrey A.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA USA. [McDonald, Thomas M.; Long, Jeffrey R.; Smit, Berend] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Lin, LC (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM lichianglin@berkeley.edu RI Smit, Berend/B-7580-2009; EFRC, CGS/I-6680-2012; Kim, Jihan/H-8002-2013; Lin, Li-Chiang/J-8120-2014; Stangl, Kristin/D-1502-2015; OI Smit, Berend/0000-0003-4653-8562; Lin, Li-Chiang/0000-0002-2821-9501 FU Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015] FX This research was supported through the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-SC0001015. NR 29 TC 68 Z9 68 U1 11 U2 161 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2013 VL 52 IS 16 BP 4410 EP 4413 DI 10.1002/anie.201300446 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 126KW UT WOS:000317615000017 PM 23554332 ER PT S AU Gilles, D Turck-Chieze, S Busquet, M Thais, F Loisel, G Piau, L Ducret, JE Blenski, T Poirier, M Blancard, C Cosse, P Faussurier, G Gilleron, F Pain, JC Guzik, JA Kilcrease, DP Magee, NH Harris, J Bastiani-Ceccotti, S Delahaye, F Zeippen, CJ AF Gilles, D. Turck-Chieze, S. Busquet, M. Thais, F. Loisel, G. Piau, L. Ducret, J. E. Blenski, T. Poirier, M. Blancard, C. Cosse, P. Faussurier, G. Gilleron, F. Pain, J. C. Guzik, J. A. Kilcrease, D. P. Magee, N. H. Harris, J. Bastiani-Ceccotti, S. Delahaye, F. Zeippen, C. J. BE Stehle, C Joblin, C DHendecourt, L TI INTERACTION OF CONFIGURATION IN SPECTRAL OPACITY CALCULATIONS FOR STELLAR PHYSICS SO ECLA: EUROPEAN CONFERENCE ON LABORATORY ASTROPHYSICS SE EAS Publications Series LA English DT Proceedings Paper CT ECLA: European Conference on Laboratory Astrophysics CY SEP 26-30, 2011 CL Paris, FRANCE SP Minist Enseignement Super Rech, CNRS, Programme Natl Phys & Chim, Observ Paris, Univ Pierre & Marie Curie, Univ Cergy Pontolse, Univ Paris Sud, Ctr Natl Etudes Spatiales, Commissariat Energie Atom, Inst Astrophys Paris, Inst Rech Astrophys & Plantetol, Lab Etude Matiere & Env Astrophys, Soc Bruker, Ville Paris ID LOCAL-DENSITY APPROXIMATION; CODE; PLASMAS AB We discuss the role of Configuration Interaction (CI) and the influence of the number of configurations taken into account in the calculations of nickel and iron spectral opacities provided by the OPAC international collaboration, including statistical approaches (SCO, CASSANDRA, STA), detailed accounting (OPAS, LEDCOP, OP, HULLAC-v9) or hybrid method (SCO-RCG). Opacity calculations are presented for a temperature T of 27.3 eV and a density of 3.4 mg/cm(3), conditions relevant for pulsating stellar envelopes. C1 [Gilles, D.; Turck-Chieze, S.; Piau, L.; Ducret, J. E.] CE Saclay, SAp IRFU DSM, F-91191 Gif Sur Yvette, France. [Busquet, M.] ARTEP Ellicott City, Ellicott City, MD 21042 USA. [Thais, F.; Blenski, T.; Poirier, M.] CEA, IRAMIS, SPAM, F-91191 Gif Sur Yvette, France. [Loisel, G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Blancard, C.; Cosse, P.; Faussurier, G.; Gilleron, F.; Pain, J. C.] CEA, DAM, DIF, F-91297 Arpajon, France. [Guzik, J. A.; Kilcrease, D. P.; Magee, N. H.] LANL, Div Theoret, Los Alamos, NM 87545 USA. [Harris, J.] AWE Reading Berkshire, Aldermaston RG7 4PR, England. [Bastiani-Ceccotti, S.] Ecole Polytechn, LULI, F-91128 Palaiseau, France. [Delahaye, F.; Zeippen, C. J.] CNRS, LERMA, UMR 8112, Observatoire Paris,UPMC, 5 Pl J Janssen, F-92195 Meudon, France. RP Gilles, D (reprint author), CE Saclay, SAp IRFU DSM, F-91191 Gif Sur Yvette, France. OI Pain, Jean-Christophe/0000-0002-7825-1315; Kilcrease, David/0000-0002-2319-5934 NR 14 TC 4 Z9 4 U1 0 U2 4 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 1633-4760 BN 978-2-7598-0941-7 J9 EAS PUBLICATIONS PY 2013 VL 58 BP 51 EP + DI 10.1051/eas/1258007 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BEP63 UT WOS:000317632700007 ER PT J AU Al-Naib, I Singh, R Shalaby, M Ozaki, T Morandotti, R AF Al-Naib, Ibraheem Singh, Ranjan Shalaby, Mostafa Ozaki, Tsuneyuki Morandotti, Roberto TI Enhanced Q-factor in Optimally Coupled Macrocell THz Metamaterials: Effect of Spatial Arrangement SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Coupling effects; Fano resonance; LC resonance; metamaterials (MTMs); periodic structures; quality factor (Q-factor); spatial arrangement; terahertz (THz) spectroscopy ID SPLIT-RING RESONATORS; TERAHERTZ METAMATERIALS; RESONANCES; ARRAYS; INDEX AB We present a study of a novel coupling scheme based on the use of two traditional single-gap split ring resonators (SRRs) and two asymmetric double-gap split ring resonators (ASRs) that have different spatial arrangements. Each unit cell consists of two resonator elements. In particular, the two-SRR and two-ASR unit cells are arranged in vertical, horizontal, and diagonal configurations to form a terahertz (THz) macrocell in a large metamaterial (MTM) array. Surprisingly, our results show that the diagonal arrangement in both types of resonators exhibits a strong resonance enhancement, leading to significant improvement in the quality factor (Q-factor) of SRRs and ASRs. Numerical simulations reveal stronger currents being excited for the diagonal macrocell of both types of MTM resonators. This observation is mainly due to optimal coupling between the resonators in the diagonal arrangement that causes subradiant scattering and reduced radiation damping. This coupling scheme could be easily implemented in MTMs across most part of the electromagnetic spectrum in order to minimize undesired radiation losses. We further investigate the effect of mutual interaction on the transmission and the Q-factor of the fundamental resonances in three different kinds of spatial arrangements. C1 [Al-Naib, Ibraheem; Shalaby, Mostafa; Ozaki, Tsuneyuki; Morandotti, Roberto] Inst Natl Rech Sci INRS EMT, Energy Mat & Telecommun Ctr, Varennes, PQ J3X 1S2, Canada. [Singh, Ranjan] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Al-Naib, I (reprint author), Inst Natl Rech Sci INRS EMT, Energy Mat & Telecommun Ctr, Varennes, PQ J3X 1S2, Canada. EM alnaib@emt.inrs.ca; ranjan@lanl.gov; shalaby@emt.inrs.ca; ozaki@emt.inrs.ca; morandot@emt.inrs.ca RI Singh, Ranjan/B-4091-2010; Al-Naib, Ibraheem/A-2344-2009; OI Singh, Ranjan/0000-0001-8068-7428; Ozaki, Tsuneyuki/0000-0001-8857-3900; Al-Naib, Ibraheem/0000-0002-7499-0655 FU Natural Sciences and Engineering Research Council of Canada; Fonds Quebecois de la Recherche sur la Nature et les Technologies FX This work was supported by the Natural Sciences and Engineering Research Council of Canada and the Fonds Quebecois de la Recherche sur la Nature et les Technologies. NR 43 TC 7 Z9 8 U1 2 U2 33 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2013 VL 19 IS 1 AR 8400807 DI 10.1109/JSTQE.2012.2202639 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 128OW UT WOS:000317779700010 ER PT J AU Azad, AK O'Hara, JF Singh, R Chen, HT Taylor, AJ AF Azad, Abul K. O'Hara, John F. Singh, Ranjan Chen, Hou-Tong Taylor, Antoinette J. TI A Review of Terahertz Plasmonics in Subwavelength Holes on Conducting Films SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Review DE Extraordinary light transmission; plasmonics; surface plasmon polaritons (SPPs); terahertz (THz) ID TIME-DOMAIN SPECTROSCOPY; EXTRAORDINARY OPTICAL-TRANSMISSION; ENHANCED MICROWAVE TRANSMISSION; SURFACE-PLASMON; LIGHT TRANSMISSION; METALLIC GRATINGS; CARRIER DYNAMICS; PERIODIC ARRAY; APERTURES; RADIATION AB In this paper, we present a review of experimental studies of terahertz plasmonic transmission properties through subwavelength holes patterned in conducting films. The frequency-dependent transmission spectrum reveals resonant behavior with an anomalously high peak transmission which is mediated by the excitation of surface plasmon polaritons. We show how terahertz time-domain spectroscopy has been utilized to determine the resonant transmission effects of hole shape, dielectric properties of materials, and thickness of the arrays. Enhanced terahertz transmission was also observed through a single hole, accompanied by annular periodic corrugations. In addition to metals films, we review films comprised of highly doped semiconductors and superconductors. We finally review various modulation schemes to actively control or manipulate the resonant terahertz transmission using external stimuli such as thermal, optical, and electrical fields. This body of work is used to provide perspective on how manipulation of terahertz radiation via surface plasmon polaritons could affect next-generation terahertz photonic devices. C1 [Azad, Abul K.; Singh, Ranjan; Chen, Hou-Tong] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87544 USA. [O'Hara, John F.] Oklahoma State Univ, Dept Elect & Comp Engn, Stillwater, OK 74078 USA. [Taylor, Antoinette J.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87544 USA. RP Azad, AK (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87544 USA. EM aazad@lanl.gov; oharaj@okstate.edu; ranjan@lanl.gov; chenht@lanl.gov; ttaylor@lanl.gov RI Chen, Hou-Tong/C-6860-2009; Singh, Ranjan/B-4091-2010; OI Chen, Hou-Tong/0000-0003-2014-7571; Singh, Ranjan/0000-0001-8068-7428; Azad, Abul/0000-0002-7784-7432 FU Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences Nanoscale Science Research Center; Los Alamos and Sandia National Laboratories [DE-AC52-06NA25396]; Los Alamos National Laboratory LDRD Program FX This work was supported in part by the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences Nanoscale Science Research Center operated jointly by Los Alamos and Sandia National Laboratories under Contract DE-AC52-06NA25396 and by Los Alamos National Laboratory LDRD Program. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy. NR 104 TC 10 Z9 10 U1 12 U2 104 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X EI 1558-4542 J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2013 VL 19 IS 1 AR 8400416 DI 10.1109/JSTQE.2012.2208181 PG 16 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 128OW UT WOS:000317779700006 ER PT J AU Zhang, XQ Li, Q Cao, W Gu, JQ Singh, R Tian, Z Han, JG Zhang, WL AF Zhang, Xueqian Li, Quan Cao, Wei Gu, Jianqiang Singh, Ranjan Tian, Zhen Han, Jiaguang Zhang, Weili TI Polarization-Independent Plasmon-Induced Transparency in a Fourfold Symmetric Terahertz Metamaterial SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Coupled modes; metamaterials; plasmon-induced transparency (PIT); polarization independent; terahertz (THz) ID RESONANCES AB Metamaterials that reveal fascinating and unique resonant properties allow for adequate control of electromagnetic waves at will. Recently, considerable studies have shown that the plasmon-induced transparency (PIT) effect can be realized by metamaterials via destructive interference between different resonance modes; however, most of them are sensitive to the polarization of incident wave. Here, we demonstrate a polarization-independent PIT metamaterial functioning in the terahertz regime. The proposed structure has a fourfold symmetry and exhibits a typical PIT behavior due to the coupling effect of four different modes, yielding polarization-independent characteristics. C1 [Zhang, Xueqian; Li, Quan; Gu, Jianqiang; Tian, Zhen; Han, Jiaguang; Zhang, Weili] Tianjin Univ, Ctr Terahertz Waves, Tianjin 300072, Peoples R China. [Zhang, Xueqian; Li, Quan; Cao, Wei; Gu, Jianqiang; Tian, Zhen; Han, Jiaguang; Zhang, Weili] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China. [Cao, Wei; Zhang, Weili] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Singh, Ranjan] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Singh, Ranjan] Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Zhang, XQ (reprint author), Tianjin Univ, Ctr Terahertz Waves, Tianjin 300072, Peoples R China. EM alearn1988@126.com; thztju@tju.edu.cn; wei.cao@okstate.edu; gjq@tju.edu.cn; ranjan.ranjansingh@gmail.com; zhen_tian@yahoo.com.cn; jiaghan@tju.edu.cn; weili.zhang@okstate.edu RI Singh, Ranjan/B-4091-2010; Zhang, Weili/C-5416-2011; Tian, Zhen/D-8707-2015 OI Singh, Ranjan/0000-0001-8068-7428; Zhang, Weili/0000-0002-8591-0200; Tian, Zhen/0000-0002-2861-4325 FU National Science Foundation of China [61138001, 61107053, 61028011, 61107085, 61007034]; U.S. National Science Foundation FX This work was supported in part by the National Science Foundation of China under Grant 61138001, Grant 61107053, Grant 61028011, Grant 61107085, and Grant 61007034, and in part by the U.S. National Science Foundation. NR 30 TC 12 Z9 14 U1 0 U2 38 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2013 VL 19 IS 1 AR 8400707 DI 10.1109/JSTQE.2012.2200656 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 128OW UT WOS:000317779700009 ER PT J AU Eppich, GR Williams, RW Gaffney, AM Schorzman, KC AF Eppich, Gary R. Williams, Ross W. Gaffney, Amy M. Schorzman, Kerri C. TI U-235-Pa-231 age dating of uranium materials for nuclear forensic investigations SO JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY LA English DT Article ID PLASMA-MASS SPECTROMETRY; FEMTOGRAM QUANTITIES; ANION-EXCHANGE; HCL-HF; PROTOACTINIUM; SEPARATION; SAMPLES AB Age dating of nuclear material can provide insight into source and suspected use in nuclear forensic investigations. We report here a method for the determination of the date of most recent chemical purification for uranium materials using the U-235-Pa-231 chronometer. Protactinium is separated from uranium and neptunium matrices using anion exchange resin, followed by sorption of Pa to an SiO2 medium. The concentration of Pa-231 is measured by isotope dilution mass spectrometry using Pa-233 spikes prepared from an aliquot of Np-237 and calibrated in-house using the rock standard Table Mountain Latite and the uranium isotopic standard U100. Combined uncertainties of age dates using this method are 1.5 to 3.5 %, an improvement over alpha spectrometry measurement methods. Model ages of five uranium standard reference materials are presented; all standards have concordant U-235-Pa-231 and U-234-Th-230 model ages. C1 [Eppich, Gary R.; Williams, Ross W.; Gaffney, Amy M.; Schorzman, Kerri C.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA USA. RP Eppich, GR (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave, Livermore, CA USA. EM eppich1@llnl.gov RI Gaffney, Amy/F-8423-2014; OI Gaffney, Amy/0000-0001-5714-0029; Eppich, Gary/0000-0003-2176-6673 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344. LLNL-JRNL-615952] FX The authors would like to thank two anonymous reviewers who provided useful comments leading to an improved manuscript. Major support for this work was provided by the Office of Nonproliferation and International Security (NA-24), National Nuclear Security Administration, and the U.S. Department of Energy. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-615952. NR 12 TC 17 Z9 17 U1 8 U2 49 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0267-9477 J9 J ANAL ATOM SPECTROM JI J. Anal. At. Spectrom. PY 2013 VL 28 IS 5 BP 666 EP 674 DI 10.1039/c3ja50041a PG 9 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 127CV UT WOS:000317674200006 ER PT J AU Lu, Y Zorba, V Mao, XL Zheng, RE Russo, RE AF Lu, Yuan Zorba, Vassilia Mao, Xianglei Zheng, Ronger Russo, Richard E. TI UV fs-ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis SO JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY LA English DT Article ID ORTHOGONAL BEAM GEOMETRY; COPPER-BASED-ALLOYS; SPECTROCHEMICAL ANALYSIS; TEMPORAL DEPENDENCE; PLASMA; FEMTOSECOND; LIBS; ABLATION; EMISSION; TIME AB We study the use of an ultraviolet (UV) femtosecond (fs)-nanosecond (ns) double-pulse scheme to improve the analytical capabilities of Laser Induced Breakdown Spectroscopy (LIBS) in the few-micron (<2 mu m) spatial resolution regime. We show that a double-pulse orthogonal configuration can enhance the spectral emission intensity by roughly 360 times as compared to a single-fs laser pulse LIBS of silicon (Si). Although the spectral emission lifetime in single-pulse LIBS is less than 20 ns, the second pulse provides signal enhancement hundreds of nanoseconds later, indicating that a significant number of non-radiative species (neutrals and/or particles) exist in these small length-scale plasmas long after the fslaser pulse is over. The double-pulse configuration is a practical way to improve the limits of detection of LIBS for micron/submicron spatial resolution. C1 [Lu, Yuan; Zorba, Vassilia; Mao, Xianglei; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lu, Yuan; Zheng, Ronger] Ocean Univ China, Qingdao 266100, Shandong, Peoples R China. RP Russo, RE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM RERusso@lbl.gov RI Zorba, Vassilia/C-4589-2015 FU Chemical Science Division, Office of Basic Energy Sciences, Office of Nuclear Nonproliferation, and the U.S. Department of Energy [DE-AC02-05CH11231]; Laboratory Directed Research and Development (LDRD); Berkeley Lab, Office of Science, of the U.S. Department of Energy; China Scholarship Council (CSC) FX This research has been supported by the Chemical Science Division, Office of Basic Energy Sciences, Office of Nuclear Nonproliferation, and the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. This work was also supported by Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy. The work of Y. Lu was supported by the China Scholarship Council (CSC). NR 51 TC 31 Z9 32 U1 3 U2 49 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0267-9477 J9 J ANAL ATOM SPECTROM JI J. Anal. At. Spectrom. PY 2013 VL 28 IS 5 BP 743 EP 748 DI 10.1039/c3ja30315b PG 6 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 127CV UT WOS:000317674200016 ER PT J AU Wang, CP Zaharia, SG Lyons, LR Angelopoulos, V AF Wang, Chih-Ping Zaharia, Sorin G. Lyons, Larry R. Angelopoulos, Vassilis TI Spatial distributions of ion pitch angle anisotropy in the near-Earth magnetosphere and tail plasma sheet SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID DAWN-DUSK ASYMMETRY; FIELD; MODEL; MAGNETOTAIL; PRECIPITATION; SCATTERING; PARTICLES; ISEE-1; MOTION; STORM AB We have quantified anisotropy of ion pitch angle distributions observed by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and determined statistically how anisotropy varies with particle energy, as well as spatial distributions and dependences on geomagnetic activity. In the tail plasma sheet, ions from a few keV to a few tens of keV are mostly isotropic. The locations and energy ranges for these isotropic ions and their changes with Dst are consistent with ions being isotropized by current sheet scattering predicted using empirical magnetic field models. Ions of a few hundreds of keV in the tail have cigar-shaped or unidirectional pitch angle distribution (PAD) and are likely a result of Speiser motion. The majority of ions in the near-Earth magnetosphere are expected to conserve their first and second adiabatic invariants as they move with pitch angle dependent drift. This gives drift shell splitting, which plays an important role in generating pancake-shaped PAD observed from similar to 1 keV up to hundreds of keV. The magnetic local time of the pancake PAD rotates with increasing energy. Loss of near 90 degrees ions due to magnetopause shadowing can further explain the butterfly-shaped PAD observed at the postmidnight sector at energies above 30 keV. For ions below a few hundreds of eV in the tail plasma sheet and the near-Earth magnetosphere, their PAD is dominantly bidirectional, which is likely due to ionosphere outflow. High-energy ions on the dayside become less anisotropic during higher AE, when pitch angle scattering by electromagnetic ion cyclotron waves may play an important role. Citation: Wang, C.-P., S. G. Zaharia, L. R. Lyons, and V. Angelopoulos (2012), Spatial distributions of ion pitch angle anisotropy in the near-Earth magnetosphere and tail plasma sheet, J. Geophys. Res. Space Physics, 118, 244-255, doi:10.1029/2012JA018275. C1 [Wang, Chih-Ping; Lyons, Larry R.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90024 USA. [Zaharia, Sorin G.] Los Alamos Natl Lab, Space Sci & Applicat ISR 1, Los Alamos, NM USA. [Angelopoulos, Vassilis] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. RP Wang, CP (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90024 USA. EM cat@atmos.ucla.edu FU NASA [NNX07AF66G, NNX07AG42G, NNX09AQ41H, NNX08A135G, NNH09AL06I, NAS5-02099]; NSF [ATM-0819864, ATM-1003595, ATM-0902941, AGS-1131873]; DLR [50 OC 0302]; ISSI FX The work by C.-P. Wang and L. R. Lyons have been supported by NASA grants NNX07AF66G, NNX07AG42G, NNX09AQ41H, and NNX08A135G, and NSF grants ATM-0819864 and ATM-1003595. The work by S. G. Zaharia has been supported by NASA grant NNH09AL06I and NSF grants ATM-0902941 and AGS-1131873. We acknowledge NASA contract NAS5-02099 for THEMIS, and C. W. Carlson and J. P. McFadden for the use of ESA data, D. Larson and R. P. Lin for use of the SST data, K. H. Glassmeier, U. Auster and W. Baumjohann for the use of FGM data provided under DLR contract 50 OC 0302. OMNI data. We thank Drew Turner for useful discussion in processing the SST data. AE index was provided by World Data Center for Geomagnetism, Kyoto. We thank the support of ISSI International Teams Program: Plasma Entry and Transport in the Plasma Sheet. NR 43 TC 19 Z9 19 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN PY 2013 VL 118 IS 1 BP 244 EP 255 DI 10.1029/2012JA018275 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 129RC UT WOS:000317858600024 ER PT J AU Hercik, D Travnicek, PM Johnson, JR Kim, EH Hellinger, P AF Hercik, David Travnicek, Pavel M. Johnson, Jay R. Kim, Eun-Hwa Hellinger, Petr TI Mirror mode structures in the asymmetric Hermean magnetosheath: Hybrid simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PERPENDICULAR BOW SHOCK; MESSENGERS 1ST FLYBY; LOW-FREQUENCY WAVES; SOLAR-WIND; MAGNETIC-FIELD; ANISOTROPY INSTABILITIES; LINEAR INSTABILITY; MACH NUMBER; MAGNETOSPHERE; MAGNETOPAUSE AB Results of two global three-dimensional hybrid simulations of the solar wind interaction with the Hermean magnetosphere are presented for southward and northward interplanetary magnetic field (IMF) orientations. Important dawn-dusk asymmetries of the Hermean bow shock and magnetosheath are observed depending on the IMF orientation. For the southward IMF, the dawnside has a thicker magnetosheath with higher beta values and slower bulk velocities compared to the duskside, whereas for the northward IMF, the duskside has a thicker and higher beta magnetosheath with slower bulk velocities. Mirror mode activity consequently appears at the dawnside for the southward IMF and at the duskside for the northward IMF. A mechanism for the bow shock and magnetosheath asymmetries is proposed and discussed in the context of the Hermean and terrestrial magnetosheaths. Citation: Hercik, D., P. M. Travnicek, J. R. Johnson, E.-H. Kim, and P. Hellinger (2013), Mirror mode structures in the asymmetric Hermean magnetosheath: Hybrid simulations, J. Geophys. Res. Space Physics, 118, 405-417, doi:10.1029/2012JA018083. C1 [Hercik, David; Travnicek, Pavel M.; Hellinger, Petr] Acad Sci Czech Republic, Inst Astron, CR-12023 Prague, Czech Republic. [Hercik, David; Travnicek, Pavel M.; Hellinger, Petr] Acad Sci Czech Republic, Inst Atmospher Phys, Prague, Czech Republic. [Hercik, David] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Travnicek, Pavel M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Johnson, Jay R.; Kim, Eun-Hwa] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hercik, D (reprint author), Acad Sci Czech Republic, Inst Astron, Budecska 6, CR-12023 Prague, Czech Republic. EM hercik@asu.cas.cz RI Hellinger, Petr/F-5267-2014; Hercik, David/G-1224-2014; Travnicek, Pavel/G-8608-2014 OI Hellinger, Petr/0000-0002-5608-0834; FU European Commission's Seventh Framework Programme (FP7) under the grant agreement SWIFF [263340]; European Commission's Seventh Framework Programme (FP7) under the grant agreement SHOCK [284515]; Czech Ministry of Education, Youth and Sports [ME09009, RVO: 67985815]; NASA [NNX11A1164G, NNH06ZDA001N, NNX12AD08G, NNH09AM53I, NNH09AK63I, NNH11AQ46I]; NSF [ATM0902730]; DOE [DE-AC02-09CH11466]; [RVO: 68378289] FX The research at the Astronomical Institute, ASCR leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7) under the grant agreement SWIFF (project 263340) and SHOCK (project 284515) and from Czech Ministry of Education, Youth and Sports under project ME09009 and project RVO: 67985815. At Institute of Atmospheric Physics, work was supported by RVO: 68378289. The work at the University California Berkeley was supported by NASA grants NNX11A1164G, NNH06ZDA001N, and NNX12AD08G. The work at the Princeton University was supported by NASA grants (NNH09AM53I, NNH09AK63I, and NNH11AQ46I), NSF grant ATM0902730, and DOE contract DE-AC02-09CH11466. NR 59 TC 4 Z9 4 U1 2 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN PY 2013 VL 118 IS 1 BP 405 EP 417 DI 10.1029/2012JA018083 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 129RC UT WOS:000317858600038 ER PT J AU Martha, SK Nanda, J Kim, Y Unocic, RR Pannala, S Dudney, NJ AF Martha, Surendra K. Nanda, Jagjit Kim, Yoongu Unocic, Raymond R. Pannala, Sreekanth Dudney, Nancy J. TI Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2 SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID LI-ION BATTERIES; HIGH-CAPACITY; RATE CAPABILITY; CO ELECTRODES; SURFACE; MN; SPINEL; CELL; NI; PERFORMANCE AB The electrochemical rate performance and capacity retention of the "layered-layered" lithium rich Li1.2Mn0.525Ni0.175Co0.1O2 (Li-rich NMC) material are significantly improved by a nanometer layer coating of a lithium conducting solid electrolyte, lithium phosphorus oxynitride (LiPON). The LiPON layer is deposited on the Li-rich NMC particles by the RF-magnetron sputtering method. The presence of the LiPON layer provides interfacial stability under high current (rate) and voltage cycling conditions and thereby improves the capacity retention over cycle life compared to pristine or uncoated Li-rich NMC. Specifically, the LiPON coated Li-rich NMC composite electrode showed stable reversible capacities of >275 mAh g(-1) when cycled to 4.9 V for more than 300 cycles, and showed at least threefold improvements in the rate performance compared to the uncoated electrode compositions. Increasing the LiPON layer thickness beyond a few nanometers leads to capacity fade due to increasing electronic resistance. Detailed microstructural and electrochemical impedance spectroscopy studies are undertaken to characterize and understand the role of LiPON in improving the interfacial stability and electrochemical activity at the interface. C1 [Martha, Surendra K.; Nanda, Jagjit; Kim, Yoongu; Unocic, Raymond R.; Dudney, Nancy J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Pannala, Sreekanth] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Martha, SK (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM nandaj@ornl.gov RI Pannala, Sreekanth/F-9507-2010; Dudney, Nancy/I-6361-2016 OI Dudney, Nancy/0000-0001-7729-6178 FU U.S. Department of Energy [DE-AC05-00OR22725]; Vehicle Technologies Program for the Office of Energy Efficiency and Renewable Energy; ORNL's Shared Research Equipment (ShaRE) User Program; Office of Basic Energy Sciences, the U.S. Department of Energy FX This research at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725, was sponsored by the Vehicle Technologies Program for the Office of Energy Efficiency and Renewable Energy. The electron microscopy work was supported by ORNL's Shared Research Equipment (ShaRE) User Program, which was sponsored by the Office of Basic Energy Sciences, the U.S. Department of Energy. Materials used in this study were supplied courtesy of Toda Kyogo Corporation, Japan. The authors also acknowledge the assistance of G. M. Veith and Loic Baggetto (MSTD, ORNL) for discussions on XPS analysis. The authors also would like to acknowledge Dorothy Coffey for FIB and TEM specimen preparation. NR 37 TC 47 Z9 47 U1 15 U2 186 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2013 VL 1 IS 18 BP 5587 EP 5595 DI 10.1039/c3ta10586e PG 9 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA 126AY UT WOS:000317584700018 ER PT J AU Karwacki, CJ Ganesh, P Kent, PRC Gordon, WO Peterson, GW Niu, JJ Gogotsi, Y AF Karwacki, Christopher J. Ganesh, P. Kent, Paul R. C. Gordon, Wesley O. Peterson, Gregory W. Niu, Jun Jie Gogotsi, Yury TI Structure-activity relationship of Au/ZrO2 catalyst on formation of hydroxyl groups and its influence on CO oxidation SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID SUPPORTED GOLD NANOPARTICLES; AUGMENTED-WAVE METHOD; GAS SHIFT REACTION; ZIRCONIA POLYMORPHS; SURFACE-CHEMISTRY; TETRAGONAL ZRO2; AU; ADSORPTION; WATER; CLUSTERS AB The effect of changes in morphology and surface hydroxyl species upon thermal treatment of zirconia on the oxidation activity of Au/ZrO2 catalyst was studied. We observed using transmission Fourier transform infrared (FTIR) spectroscopy progressive changes in the presence of monodentate (type I), bidentate (type II) and hydrogen bridged species (type III) for each of the thermally treated (85 to 500 degrees C) supports consisting of bare zirconia and Au/ZrO2 catalysts. Furthermore, structural changes in zirconia were accompanied by an increase in crystal size (7 to 58 nm) and contraction of the supports porosity (SSA 532 to 7 m(2) g(-1)) with increasing thermal treatment. Deposition of gold nanoparticles under similar preparation conditions on different thermally treated zirconia resulted in changes in the mean gold cluster size, ranging from 3.7 to 5.6 nm. Changes in the surface hydroxyl species, support structure and size of the gold centers are important parameters responsible for the observed decrease (>90%) in CO conversion activity for the Au/ZrO2 catalysts. Density functional theory calculations provide evidence of increased CO binding to Au nanoclusters in the presence of surface hydroxyls on zirconia, which increases charge transfer at the perimeter of the gold nanocluster on zirconia support. This further helps in reducing a model CO-oxidation reaction barrier in the presence of surface hydroxyls. This work demonstrates the need to understand the structure-activity relationship of both the support and active particles for the design of catalytic materials. C1 [Karwacki, Christopher J.; Gordon, Wesley O.; Peterson, Gregory W.] Edgewood Chem Biol Ctr, Aberdeen Proving Ground, MD 21010 USA. [Ganesh, P.; Kent, Paul R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kent, Paul R. C.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Niu, Jun Jie; Gogotsi, Yury] Drexel Univ, Dept Mat Sci & Engn, AJ Drexel Nanotechnol Inst, Philadelphia, PA 19104 USA. RP Karwacki, CJ (reprint author), Edgewood Chem Biol Ctr, 5183 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA. EM christopher.j.karwacki.civ@mail.mil RI Kent, Paul/A-6756-2008; Ganesh, Panchapakesan/L-5571-2013; Gogotsi, Yury/B-2167-2008; Ganesh, Panchapakesan/E-3435-2012; OI Kent, Paul/0000-0001-5539-4017; Gogotsi, Yury/0000-0001-9423-4032; Ganesh, Panchapakesan/0000-0002-7170-2902; Peterson, Gregory/0000-0003-3467-5295 FU US Army Research Development Engineering Command; Aberdeen Proving Ground, MD; Army Research Office; Research Triangle Park, NC; Joint Science and Technology Office; Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the US Army Research Development Engineering Command, Aberdeen Proving Ground, MD, the Army Research Office, Research Triangle Park, NC and the Joint Science and Technology Office. PG and PRCK (DFT calculations) were supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Computations used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 48 TC 13 Z9 13 U1 5 U2 64 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2013 VL 1 IS 19 BP 6051 EP 6062 DI 10.1039/c3ta00081h PG 12 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA 130RF UT WOS:000317936000034 ER PT J AU Byun, TS Toloczko, MB Saleh, TA Maloy, SA AF Byun, Thak Sang Toloczko, Mychailo B. Saleh, Tarik A. Maloy, Stuart A. TI Irradiation dose and temperature dependence of fracture toughness in high dose HT9 steel from the fuel duct of FFTF SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CORE MATERIALS; SPECIMEN; REACTORS AB To expand the knowledge base for fast reactor core materials, fracture toughness has been evaluated for high dose HT9 steel using miniature disk compact tension (DCT) specimens. The HT9 steel DCT specimens were machined from the ACO-3 fuel duct of the Fast Flux Test Facility (FFTF), which achieved high doses in the range of 3-148 dpa at 378-504 degrees C. The static fracture resistance (J-R) tests have been performed in a servohydraulic testing machine in vacuum at selected temperatures including room temperature, 200 degrees C, and each irradiation temperature. Brittle fracture with a low toughness less than 50 MPa root m occurred in room temperature tests when irradiation temperature was below 400 degrees C, while ductile fracture with stable crack growth was observed when irradiation temperature was higher. No fracture toughness less than 100 MPa root m was measured when the irradiation temperature was above 430 degrees C. It was shown that the influence of irradiation temperature was dominant in fracture toughness while the irradiation dose has only limited influence over the wide dose range 3-148 dpa. A slow decrease of fracture toughness with test temperature above room temperature was observed for the nonirradiated and high temperature (>430 degrees C) irradiation cases, which indicates that the ductile-brittle transition temperatures (DBTTs) in those conditions are lower than room temperature. A comparison with the collection of existing data confirmed the dominance of irradiation temperature in the fracture toughness of HT9 steels. Published by Elsevier B.V. C1 [Byun, Thak Sang] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Toloczko, Mychailo B.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Saleh, Tarik A.; Maloy, Stuart A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Byun, TS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM byunts@ornl.gov RI Maloy, Stuart/A-8672-2009; OI Maloy, Stuart/0000-0001-8037-1319; Saleh, Tarik/0000-0003-2108-4293 FU US Department of Energy, Office of Nuclear Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX This research was sponsored by US Department of Energy, Office of Nuclear Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors would like to express special thanks to Dr. L. Tan of ORNL for his technical review and thoughtful comments. NR 24 TC 6 Z9 6 U1 5 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2013 VL 432 IS 1-3 BP 1 EP 8 DI 10.1016/j.jnucmat.2012.07.019 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 128XB UT WOS:000317801900001 ER PT J AU Chen, X Sokolov, MA Sham, S Erdman, DL Busby, JT Mo, K Stubbins, JF AF Chen, Xiang Sokolov, Mikhail A. Sham, Sam Erdman, Donald L., III Busby, Jeremy T. Mo, Kun Stubbins, James F. TI Experimental and modeling results of creep-fatigue life of Inconel 617 and Haynes 230 at 850 degrees C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID NICKEL-BASE SUPERALLOY; LOW-CYCLE FATIGUE; STRUCTURAL-MATERIALS; HIGH-TEMPERATURE; BEHAVIOR; DEFORMATION; REACTORS; ALLOYS; TIME AB Creep-fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 degrees C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep-fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep-fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep-fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep-fatigue life. The linear damage summation could predict the creep-fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep-fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep-fatigue life prediction results for both materials. Published by Elsevier B.V. C1 [Chen, Xiang; Mo, Kun; Stubbins, James F.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Chen, Xiang; Sokolov, Mikhail A.; Sham, Sam; Erdman, Donald L., III; Busby, Jeremy T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Chen, X (reprint author), 1 Bethel Valley Rd,POB 2008,Bldg 4500S,MS 6151, Oak Ridge, TN 37831 USA. EM chenx@ornl.gov RI Mo, Kun/A-9737-2011; Chen, Xiang/D-4531-2013; OI Mo, Kun/0000-0003-0412-8987; Chen, Xiang/0000-0002-8662-5209 FU U.S. Department of Energy [DE-FC07-07ID14819, NEUP 09-516] FX The work was supported by the U.S. Department of Energy grants DE-FC07-07ID14819 and NEUP 09-516. The microanalysis was carried out in the Shared Research Equipment User Facility at Oak Ridge National Laboratory which is supported by the Scientific User Facilities Division of the Office of Science, U.S. Department of Energy. The authors are thankful for Dr. Richard Wright and Dr. Laura Carroll from Idaho National Laboratory and Dr. Henry White from Haynes International Inc. for providing test materials. The authors also would like to thank Christopher Stevens and Eric Manneschmidt from Oak Ridge National Laboratory for their technical support. NR 33 TC 16 Z9 16 U1 3 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2013 VL 432 IS 1-3 BP 94 EP 101 DI 10.1016/j.jnucmat.2012.08.040 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 128XB UT WOS:000317801900016 ER PT J AU Kirchhofer, R Hunn, JD Demkowicz, PA Cole, JI Gorman, BP AF Kirchhofer, Rita Hunn, John D. Demkowicz, Paul A. Cole, James I. Gorman, Brian P. TI Microstructure of TRISO coated particles from the AGR-1 experiment: SiC grain size and grain boundary character SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FUEL-PARTICLES; SILICON-CARBIDE; PERFORMANCE; DIFFUSION; SILVER; EBSD AB Pre-irradiation SiC microstructures in tristructural-isotropic (TRISO) coated fuel particles from the Advanced Gas Reactor Fuel Development and Qualification program's first irradiation experiment (AGR-1) were quantitatively characterized using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). From EBSD, it was determined that only the cubic polymorph of as-deposited SiC was present and the SiC had a high fraction of coincident site lattice (CSL) Sigma 3 grain boundaries. Additionally, the local area misorientation (LAM), which is a qualitative measurement of strain in the SiC lattice, was mapped for each sample fuel variant. The morphology of the SiC/IPyC interfaces were characterized by TEM following site-specific focused ion beam (FIB) specimen preparation. It was determined that the SiC layer had a heavily faulted microstructure typical of chemical vapor deposition (CVD) SiC and that the average grain diameter increased radially from the SiC/IPyC interface for the samples manufactured with similar CVD conditions, while the last sample showed a nearly constant grain size across the layer. (c) 2012 Elsevier B.V. All rights reserved. C1 [Kirchhofer, Rita; Gorman, Brian P.] Colorado Sch Mines, Golden, CO 80401 USA. [Hunn, John D.] Oak Ridge Natl Lab, Fuel Cycle & Isotopes Div, Oak Ridge, TN USA. [Demkowicz, Paul A.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. [Cole, James I.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Kirchhofer, R (reprint author), Colorado Sch Mines, 1500 Illinois St, Golden, CO 80401 USA. EM rkirchho@mines.edu OI Cole, James/0000-0003-1178-5846 FU US Department of Energy through Nuclear Energy University Program (NEUP); Idaho National Laboratory (INL); US Department of Energy Advanced Gas Reactor Fuel Development and Qualification Program FX This work was funded by the US Department of Energy through Nuclear Energy University Program (NEUP) and Idaho National Laboratory (INL). Sample analysis was performed at Idaho National Laboratory and Colorado School of Mines. Special thanks to M. K. Meyer (INL). Coated particle fabrication at Oak Ridge National Laboratory (ORNL) was supported by the US Department of Energy Advanced Gas Reactor Fuel Development and Qualification Program. NR 27 TC 21 Z9 22 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2013 VL 432 IS 1-3 BP 127 EP 134 DI 10.1016/j.jnucmat.2012.08.052 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 128XB UT WOS:000317801900020 ER PT J AU Wei, CC Aitkaliyeva, A Luo, ZP Ewh, A Sohn, YH Kennedy, JR Sencer, BH Myers, MT Martin, M Wallace, J General, MJ Shao, L AF Wei, Chao-Chen Aitkaliyeva, Assel Luo, Zhiping Ewh, Ashley Sohn, Y. H. Kennedy, J. R. Sencer, Bulent H. Myers, M. T. Martin, M. Wallace, J. General, M. J. Shao, Lin TI Understanding the phase equilibrium and irradiation effects in Fe-Zr diffusion couples SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB We have studied the radiation effects in Fe-Zr diffusion couples, formed by thermal annealing of a mechanically bonded binary system at 850 degrees C for 15 days. After irradiation with 3.5 MeV Fe ions at 600 degrees C, a cross sectional specimen was prepared by using a focused-ion-beam-based lift out technique and was characterized using scanning/transmission electron microscopy, selected-area diffraction and X-ray energy dispersive spectroscopy analyses. Comparison studies were performed in localized regions within and beyond the ion projected range and the following observations were obtained: (1) the interaction layer consists of FeZr3, FeZr2, Fe2Zr, and Fe23Zr6; (2) large Fe23Zr6 particles with smaller core particles of Zr-rich Fe2Zr are found within the alpha-Fe matrix; (3) Zr diffusion is significantly enhanced in the ion bombarded region, leading to the formation of an Fe-Zr compound; (4) grains located within the interaction layer are much smaller in the ion bombarded region and are associated with new crystal growth and nanocrystal formation; and (5) large alpha-Fe particles form on the surface of the Fe side, but the particles are limited to the region close to the interaction layer. These studies reveal the complexity of the interaction phase formation in an Fe-Zr binary system and the accelerated microstructural changes under irradiation. (c) 2012 Elsevier B.V. All rights reserved. C1 [Wei, Chao-Chen; Aitkaliyeva, Assel; Luo, Zhiping; General, M. J.; Shao, Lin] Texas A&M Univ, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Luo, Zhiping] Texas A&M Univ, Microscopy & Imaging Ctr, College Stn, TX 77843 USA. [Ewh, Ashley; Sohn, Y. H.] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32816 USA. [Aitkaliyeva, Assel; Kennedy, J. R.; Sencer, Bulent H.] Idaho Natl Lab, Fundamental Fuel Properties Dept, Nucl Fuel & Mat Div, Idaho Falls, ID 83415 USA. [Myers, M. T.; Martin, M.; Wallace, J.; Shao, Lin] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Shao, L (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM lshao@tamu.edu RI Sohn, Yongho/A-8517-2010; Luo, Zhiping/C-4435-2014; Paz y Puente, Ashley/M-2022-2015; OI Sohn, Yongho/0000-0003-3723-4743; Luo, Zhiping/0000-0002-8264-6424; Paz y Puente, Ashley/0000-0001-7108-7164; Aitkaliyeva, Assel/0000-0003-1481-6804 FU US Department of Energy under DOE-NE Idaho Operations Office [AC07-05ID14517] FX This work was supported by the US Department of Energy under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. NR 12 TC 5 Z9 5 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2013 VL 432 IS 1-3 BP 205 EP 211 DI 10.1016/j.jnucmat.2012.07.027 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 128XB UT WOS:000317801900030 ER PT J AU Baker, MP King, JC Gorman, BP Marshall, DW AF Baker, M. P. King, J. C. Gorman, B. P. Marshall, D. W. TI Selection and properties of alternative forming fluids for TRISO fuel kernel production SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID GEL MICROSPHERE PELLETIZATION; INTERNAL GELATION; ZIRCONIA MICROSPHERES; URANIUM-DIOXIDE; FABRICATION; CERIA; PELLETS; YTTRIA AB Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of similar to 10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 degrees C and 80 degrees C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels. (C) 2012 Elsevier B.V. All rights reserved. C1 [Baker, M. P.; King, J. C.; Gorman, B. P.] Colorado Sch Mines, Golden, CO 80401 USA. [Marshall, D. W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP King, JC (reprint author), Colorado Sch Mines, 1500 Illinois St, Golden, CO 80401 USA. EM kingjc@mines.edu FU Colorado School of Mines' Nuclear Science and Engineering Fellowship; U.S. Nuclear Regulatory Commission (NRC) FX Michael Baker's research is supported by a Colorado School of Mines' Nuclear Science and Engineering Fellowship, which is co-sponsored by the U.S. Nuclear Regulatory Commission (NRC). Additional acknowledgement is given to Dr. Jeffrey Phillips at Idaho National Laboratory, and Clay Richardson and Scott Niedzialek at Babcock & Wilcox, for their input and advice. NR 45 TC 1 Z9 1 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2013 VL 432 IS 1-3 BP 395 EP 406 DI 10.1016/j.jnucmat.2012.07.047 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 128XB UT WOS:000317801900052 ER PT J AU Egeland, GW Mariani, RD Hartmann, T Porter, DL Hayes, SL Kennedy, JR AF Egeland, G. W. Mariani, R. D. Hartmann, T. Porter, D. L. Hayes, S. L. Kennedy, J. R. TI Reducing fuel-cladding chemical interaction: The effect of palladium on the reactivity of neodymium on iron in diffusion couples SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID METALLIC FUEL; LATTICE-CONSTANTS; CRYSTAL-STRUCTURE; MINOR ACTINIDES; STAINLESS-STEEL; BARRIER; PERFORMANCE; FCCI; LANTHANIDES; BEHAVIOR AB Fast-reactor fuel alloys produce lanthanide fission products which migrate to the fuel/cladding interface causing fuel-cladding chemical interaction. To test viability of pinning these lanthanides, neodymium was selected as an iron interacting lanthanide and palladium was chosen as the dopant. An arc-melt produced 1:1 neodymium-palladium compound and pure neodymium were tested against iron in diffusion couples at temperatures above and below the Nd-Fe eutectic melting point. (c) 2012 Elsevier B.V. All rights reserved. C1 [Egeland, G. W.; Hartmann, T.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Mariani, R. D.; Porter, D. L.; Hayes, S. L.; Kennedy, J. R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Egeland, GW (reprint author), Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. EM gerald.egeland@gmail.com RI Hayes, Steven/D-8373-2017 OI Hayes, Steven/0000-0002-7583-2069 FU DOE [DE-AC07-05ID14517] FX We would like to thank Ariana Alaniz and Dr. Dan Koury for assistance at the Harry Reid Center for Environmental Studies at UNLV. This program was funded by DOE Contract No. DE-AC07-05ID14517. NR 21 TC 3 Z9 3 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2013 VL 432 IS 1-3 BP 539 EP 544 DI 10.1016/j.jnucmat.2012.07.028 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 128XB UT WOS:000317801900068 ER PT J AU Lawton, JS Jones, A Zawodzinski, T AF Lawton, Jamie S. Jones, Amanda Zawodzinski, Thomas TI Concentration Dependence of VO2+ Crossover of Nafion for Vanadium Redox Flow Batteries SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID ELECTRON-SPIN-RESONANCE; DIFFUSION-COEFFICIENTS; MEMBRANES; ION; TRANSPORT; WATER; MODEL; CONDUCTIVITY AB The VO2+ crossover,. or permeability, through Nafion in a vanadium redox flow battery (VRFB) was monitored as a function of sulfuric acid concentration and VO2+ concentration. A vanadium rich solution was flowed on one side of the membrane through a flow field while symmetrically on the other side a blank or vanadium deficit solution was flowed. The blank solution was flowed through an electron paramagnetic resonance (EPR) cavity and the VO2+ concentration was determined from the intensity of the EPR signal. Concentration values were fit using a solution of Fick's law that allows for the effect of concentration change on the vanadium rich side. The fits resulted in permeability values of VO2+ ions across the membrane. Viscosity measurements of many VO2+ and H2SO4 solutions were made at 30-60 degrees C. These viscosity values were then used to determine the effect of the viscosity of the flowing solution on the permeability of the ion. (C) 2013 The Electrochemical Society. [DOI: 10.1149/2.004306jes] All rights reserved. C1 [Lawton, Jamie S.; Jones, Amanda; Zawodzinski, Thomas] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Zawodzinski, Thomas] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Lawton, JS (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM tzawodzi@utk.edu NR 27 TC 13 Z9 13 U1 7 U2 73 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2013 VL 160 IS 4 BP A697 EP A702 DI 10.1149/2.004306jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 117TU UT WOS:000316976800025 ER PT J AU Sethuraman, VA Nguyen, A Chon, MJ Nadimpalli, SPV Wang, H Abraham, DP Bower, AF Shenoy, VB Guduru, PR AF Sethuraman, V. A. Nguyen, A. Chon, M. J. Nadimpalli, S. P. V. Wang, H. Abraham, D. P. Bower, A. F. Shenoy, V. B. Guduru, P. R. TI Stress Evolution in Composite Silicon Electrodes during Lithiation/Delithiation SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID LITHIUM-ION BATTERIES; SOLID-STATE AMORPHIZATION; IN-SITU MEASUREMENTS; NEGATIVE-ELECTRODES; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; MECHANICAL-PROPERTIES; STRUCTURAL-CHANGES; POLYACRYLIC-ACID; CYCLE LIFE AB We report real-time average stress measurements on composite silicon electrodes made with two different binders viz. Carboxymethyl cellulose (CMC) and Polyvinylidene fluoride (PVDF) during electrochemical lithiation and delithiation. During galvanostatic lithiation at very slow rates, the stress in a CMC-based electrode becomes compressive and increases to 70 MPa, where it reaches a plateau and increases slowly thereafter with capacity. The PVDF-based electrode exhibits similar behavior, although with lower peak compressive stress of about 12 MPa. These initial experiments indicate that the stress evolution in a Si composite electrode depends strongly on the mechanical properties of the binder. Stress data obtained from a series of lithiation/delithiation cycles suggests plasticity induced irreversible shape changes in contacting Si particles, and as a result, the stress response of the system during any given lithiation/delithiation cycle depends on the cycling history of the electrode. While these results constitute the first in situ stress measurements on composite Si electrodes during electrochemical cycling, the diagnostic technique described herein can be used to assess the mechanical response of a composite electrode made with other active material/binder combinations. (C) 2013 The Electrochemical Society. [DOI: 10.1149/2.021306jes] All rights reserved. C1 [Sethuraman, V. A.; Nguyen, A.; Chon, M. J.; Nadimpalli, S. P. V.; Wang, H.; Bower, A. F.; Shenoy, V. B.; Guduru, P. R.] Brown Univ, Sch Engn, Providence, RI 02912 USA. [Abraham, D. P.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Shenoy, V. B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. RP Sethuraman, VA (reprint author), Brown Univ, Sch Engn, Providence, RI 02912 USA. EM vj@cal.berkeley.edu; Pradeep_Guduru@Brown.edu RI Wang, Hailong/C-2330-2008; Sethuraman, Vijay/E-5702-2010; Nadimpalli, Siva/B-6777-2009; OI Sethuraman, Vijay/0000-0003-4624-1355; Nadimpalli, Siva/0000-0001-9281-4842 FU United States Department of Energy - EPSCoR Implementation award [DE-SC0007074] FX The authors gratefully acknowledge financial support from the United States Department of Energy - EPSCoR Implementation award (grant # DE-SC0007074). NR 47 TC 18 Z9 19 U1 4 U2 67 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2013 VL 160 IS 4 BP A739 EP A746 DI 10.1149/2.021306jes PG 8 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 117TU UT WOS:000316976800032 ER PT J AU Xiao, N Li, N Cui, GF Tian, D Yu, SY Li, Q Wu, G AF Xiao, Ning Li, Ning Cui, Guofeng Tian, Dong Yu, Shiyou Li, Qing Wu, Gang TI Triblock Copolymers as Suppressors for Microvia Filling via Copper Electroplating SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID POLYETHYLENE-GLYCOL; PLATING FORMULA; CHLORIDE-IONS; PEG; ELECTRODEPOSITION; INHIBITION; BEHAVIOR; PPG; SPS; CL AB In this work, ethylene-propylene-ethylene (EPE) oxide triblock copolymers were found to be effective suppressors for microvia filling during copper electroplating. The studied EPE copolymers were divided into two groups according to their solubility and compositions. The first group was composed of EPE 1000, EPE 2000, and EPE 3500, and the second group contained EPE 2450, EPE 2900, and EPE 8000. In particular, the function of the triblock copolymer suppressors (e.g. EPE 2900) and their synergistic effect with other additives during copper electroplating were studied by galvanostatic measurements, suggesting that the suppression strength was greatly dependent on Cl-. In addition, cyclic voltammetry (CV) measurements indicated that a given suppressor in the plating bath required an optimal Cl- concentration to realize the strongest suppression strength. Then the filling performance of the plating bath using different suppressors was systematically compared by galvanostatic measurements and filling plating experiments in the plating bath with a fixed Cl- concentration (60 ppm), an optimal Cl- concentration, and a wide operation window of Cl- respectively. These experimental analyzes indicated that EPE 2000 and EPE 2900 were the best suppressors in the first and second group, respectively. The relevant mechanism of triblock copolymer suppressors for microvia filling was discussed. (C) 2013 The Electrochemical Society. [DOI: 10.1149/2.015306jes] All rights reserved. C1 [Xiao, Ning; Li, Ning; Tian, Dong; Yu, Shiyou] Harbin Inst Technol, Dept Appl Chem, Harbin 150001, Peoples R China. [Cui, Guofeng] Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R China. [Li, Qing; Wu, Gang] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Xiao, N (reprint author), Harbin Inst Technol, Dept Appl Chem, Harbin 150001, Peoples R China. EM lininghit@263.net RI Wu, Gang/E-8536-2010; Li, Qing/G-4502-2011 OI Wu, Gang/0000-0003-4956-5208; Li, Qing/0000-0003-4807-030X FU Highnic Group (China) FX This work was financially supported by Highnic Group (China). The authors gratefully acknowledge Sun He for her support to this work. NR 28 TC 8 Z9 8 U1 3 U2 39 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2013 VL 160 IS 4 BP D188 EP D195 DI 10.1149/2.015306jes PG 8 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 117TU UT WOS:000316976800055 ER PT J AU Ahluwalia, RK Arisetty, S Wang, XP Wang, XH Subbaraman, R Ball, SC DeCrane, S Myers, DJ AF Ahluwalia, Rajesh K. Arisetty, Srikanth Wang, Xiaoping Wang, Xiaohua Subbaraman, Ram Ball, Sarah C. DeCrane, Stacy Myers, Deborah J. TI Thermodynamics and Kinetics of Platinum Dissolution from Carbon-Supported Electrocatalysts in Aqueous Media under Potentiostatic and Potentiodynamic Conditions SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID PROTON-EXCHANGE MEMBRANE; ELECTROLYTE FUEL-CELLS; PARTICLE-SIZE; ACID; DEGRADATION; DURABILITY; INSTABILITY; MECHANISM; TEM AB The stability of dispersed high surface area carbon-supported platinum nano-particle electrocatalysts (Pt/C) was investigated as a function of particle size (mean diameters of 1.9, 3.2, 7.1, and 12.7 nm) and oxide coverage under potentiostatic and potentiodynamic conditions in aqueous perchloric acid electrolyte. A non-ideal solid solution theory was formulated to explain the observed dependence of the equilibrium dissolved Pt concentration on potential, Pt particle size, and oxide coverage, as inferred from cyclic voltammetry measurements. The activities of Pt and PtOx in Pt-PtOx solid solutions were correlated with the oxide coverage and Pt particle size. The theoretical framework was also used to determine the rate constants for Pt dissolution and PtOx formation and reduction. The results from the kinetic model were found to be consistent with the measured Pt dissolution for triangle potential cycles with different upper and lower potential limits and scan rates. (C) 2013 The Electrochemical Society. [DOT: 10.1149/2.018306jes] All rights reserved. C1 [Ahluwalia, Rajesh K.; Arisetty, Srikanth; Wang, Xiaoping; Wang, Xiaohua; Subbaraman, Ram; DeCrane, Stacy; Myers, Deborah J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ball, Sarah C.] Johnson Matthey Technol Ctr, Reading RG4 9NH, Berks, England. [DeCrane, Stacy] Kettering Univ, Flint, MI 48503 USA. RP Ahluwalia, RK (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM walia@anl.gov FU Fuel Cell Technologies Office of the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy; UChicago, Argonne, LLC [DE-AC02-06CH11357] FX This work was supported by the Fuel Cell Technologies Office of the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy. Dr. Nancy Garland was the DOE technology development manager for this work. Argonne is a DOE, Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago, Argonne, LLC. The authors thank the Analytical Chemistry Laboratory and Dr. Yifen Tsai at Argonne National Laboratory for the ICP-MS analyzes. The authors also thank Brian Theobald, Elvis Christian, and the Analytical Department at Johnson Matthey Technology Center for the preparation and TEM analysis of the catalyst materials. NR 30 TC 28 Z9 28 U1 1 U2 27 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2013 VL 160 IS 4 BP F447 EP F455 DI 10.1149/2.018306jes PG 9 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 117TU UT WOS:000316976800078 ER PT J AU Gregoire, JM Xiang, C Mitrovic, S Liu, X Marcin, M Cornell, EW Fan, J Jin, J AF Gregoire, J. M. Xiang, C. Mitrovic, S. Liu, X. Marcin, M. Cornell, E. W. Fan, J. Jin, J. TI Combined Catalysis and Optical Screening for High Throughput Discovery of Solar Fuels Catalysts SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID WATER OXIDATION; MOLECULAR CATALYSTS; HYDROGEN-PRODUCTION; METAL-OXIDES AB Considerable research and development efforts are being devoted to the efficient generation of solar fuels. A solar fuels device couples a solar photoabsorber with catalysts to convert solar energy to chemical energy via reactions such as oxygen evolution (water splitting). Widespread deployment of this technology hinges upon discovery of new materials through efforts such as the high throughput screening of oxygen evolution catalysts, as discussed in this manuscript. We derive an expression for the efficiency of the oxygen evolution catalyst that combines catalytic and optical properties. Using this hybrid efficiency, we screen 5456 samples in a (Fe-Co-Ni-Ti)O-x. pseudo-quaternary catalyst library using automated, high throughput electrochemical and optical experiments. The observed compositional trends in this catalyst efficiency lead to the discovery of a new high performance composition region. (C) 2013 The Electrochemical Society. [DOI: 10.1149/2.035304jes] All rights reserved. C1 [Gregoire, J. M.; Xiang, C.; Mitrovic, S.; Liu, X.; Marcin, M.; Jin, J.] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. [Cornell, E. W.; Jin, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Fan, J.] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China. RP Gregoire, JM (reprint author), CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. EM gregoire@caltech.edu RI Mitrovic, Slobodan/E-7847-2010 OI Mitrovic, Slobodan/0000-0001-8913-8505 FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; National Science Foundation of China [21003106, 20873122] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, as follows: The experiments and data interpretation were supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993; J.F. acknowledges financial support from the National Science Foundation of China (21003106 and 20873122). The authors thank Lung-Sheng Lin for assistance in fabrication of the cell and William Fisher of Lawrence Berkeley National Laboratory for assistance in fabrication of the capillary for the reference electrode. The authors also thank Dr. Joel Haber, Eric McFarland, Nathan Lewis, Carl Koval and Joachim Lewerenz for helpful discussions. NR 18 TC 29 Z9 29 U1 2 U2 44 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2013 VL 160 IS 4 BP F337 EP F342 DI 10.1149/2.035304jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 117TU UT WOS:000316976800063 ER PT J AU Li, YH Gerdes, K Horita, T Liu, XB AF Li, Yihong Gerdes, Kirk Horita, Teruhisa Liu, Xingbo TI Surface Exchange and Bulk Diffusivity of LSCF as SOFC Cathode: Electrical Conductivity Relaxation and Isotope Exchange Characterizations SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID HIGH-TEMPERATURE PROPERTIES; CHEMICAL DIFFUSION; OXYGEN-TRANSPORT; ELECTRODE-KINETICS; CHARGE-TRANSFER; COEFFICIENT; LA0.6SR0.4CO0.2FE0.8O3-DELTA; REDUCTION; PATHWAYS; TRACER AB The oxygen diffusion coefficient (D) and surface exchange coefficient (k) of a typical SOFC cathode material, La0.6Sr0.4Ce0.2Fe0.5O3-delta (LSCF) were characterized by both electrical conductivity relaxation (ECR) and oxygen isotope exchange (IE) methods. Conductivity relaxation experiments were conducted at 800 degrees C for small step changes in partial pressure of oxygen (PO2), both decreasing and increasing, from 0.02 atm to 0.20 atm. The results revealed PO2 dependent hysteresis with the reduction process requiring more equilibration time than oxidation. Analysis of the experimental data indicated that the surface exchange coefficient is a function of the final oxygen partial pressure in an isothermal system. In addition, both forward and backward oxygen reduction reaction constants, which are vital for the fundamental understanding of SOFC cathode reaction mechanisms, are investigated based on the relationship between surface exchange coefficient and PO2. The direct comparisons between the results from both ECR and IE were presented and the possible experimental errors in both methods were discussed. (C) 2013 The Electrochemical Society. [DOI: 10.1149/2.044304jes] All rights reserved. C1 [Li, Yihong; Gerdes, Kirk; Liu, Xingbo] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Li, Yihong; Liu, Xingbo] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Horita, Teruhisa] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. RP Li, YH (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM xingbo.liu@mail.wvu.edu FU National Energy Technology Laboratory in West Virginia University [DE-AC26-04NT41817] FX This technical effort from US was performed in support of the National Energy Technology Laboratory's on-going research in West Virginia University under contract #DE-AC26-04NT41817. The valuable technical assistance and discussion from Mingyang Gong and Greg Collins in WVU are acknowledged. The assistance of Richard Pineault, David Ruehl and Randall Gemmen from NETL in Morgantown, WV are highly appreciated. NR 37 TC 22 Z9 22 U1 4 U2 88 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2013 VL 160 IS 4 BP F343 EP F350 DI 10.1149/2.044304jes PG 8 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 117TU UT WOS:000316976800064 ER PT J AU Olson, TS Dameron, AA Wood, K Pylpenko, S Hurst, KE Christensen, S Bult, JB Ginley, DS O'Hayre, R Dinh, H Gennett, T AF Olson, Tim S. Dameron, Arrelaine A. Wood, Kevin Pylpenko, Svitlana Hurst, Katherine E. Christensen, Steven Bult, Justin B. Ginley, David S. O'Hayre, Ryan Dinh, Huyen Gennett, Thomas TI Enhanced Fuel Cell Catalyst Durability with Nitrogen Modified Carbon Supports SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID PT-RU ALLOYS; METHANOL OXIDATION; PLATINUM NANOPARTICLES; DOPED CARBON; ELECTROOXIDATION; NANOTUBES; CROSSOVER AB This work illustrates the utility and improved performance of nitrogen-modified catalyst supports for direct methanol fuel cell (DMFC) applications. A unique two-step vapor-phase synthesis procedure is used to achieve the N-modification and Pt-Ru decoration of high surface-area carbon powders relevant to integration as electrocatalysts in fuel cell membrane electrode assemblies (MEA's). First, nitrogen surface moieties are incorporated into a commercial high surface area carbon support via a N-ion implantation technique, followed by Pt-Ru nanoparticle deposition via magnetron sputtering. The nitrogen-ion implantation of high surface area carbon supports yields superior Pt-Ru catalyst particle stability and performance as compared to industry standards. Specifically, results indicate a higher retention of metal catalyst surface area and electrochemical activity after accelerated electrochemical degradation testing. Further, characterization of catalyst materials before, during and after the electrochemical cycling provides insight into the catalyst particle coarsening and/or catalyst surface area loss mechanisms that dominate this fuel cell catalyst system. (C) 2013 The Electrochemical Society. [DOI: 10.1149/2.062304jes] All rights reserved. C1 [Olson, Tim S.; Dameron, Arrelaine A.; Hurst, Katherine E.; Christensen, Steven; Bult, Justin B.; Ginley, David S.; Dinh, Huyen; Gennett, Thomas] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Wood, Kevin; Pylpenko, Svitlana; O'Hayre, Ryan] Colorado Sch Mines, Golden, CO 80401 USA. RP Olson, TS (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Thomas.Gennett@nrel.gov RI O'Hayre, Ryan/A-8183-2009 FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; Army Research office [W911NF-09-1-0528] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The SAXS and XRD work on this project by the Colorado School of Mines was supported by the Army Research office (under Grant No. W911NF-09-1-0528). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. We acknowledge Michael Toney, Tom Hostetler, Doug Van Campen, and John Pople for useful support regarding synchrotron experiments. NR 27 TC 12 Z9 12 U1 3 U2 42 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2013 VL 160 IS 4 BP F389 EP F394 DI 10.1149/2.062304jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 117TU UT WOS:000316976800070 ER PT J AU Reifsnider, KL Chiu, WKS Brinkman, KS Du, YH Nakajo, A Rabbi, F Liu, QL AF Reifsnider, K. L. Chiu, Wilson K. S. Brinkman, Kyle S. Du, Yanhai Nakajo, Arata Rabbi, Fazle Liu, Qianlong TI Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID OXIDE FUEL-CELLS; X-RAY NANOTOMOGRAPHY; OXYGEN PERMEATION; THIN-FILMS; ION; COMPOSITE; CATHODES; ANODE; ELECTRODES; TRANSPORT AB The electrochemical science that makes many energy conversion and storage technologies work rests on our knowledge and understanding of heterogeneous materials and material systems. The function and functionality of those systems share many common features across a wide range of technologies including fuel cells; batteries, capacitors, and membranes. The science that controls that functionality for these complex material systems is typically summoned in fragments to design a specific device. The present paper discusses an attempt to create a codified multiphysics approach to that general subject, across multiple scales in space and time, for heterogeneous functional materials, or "HeteroFoaM" as we call it. The scope of the paper will be necessarily limited to a general definition of the problem focused on a few specific examples of the progress made for directions that support technologies such as conversion of chemical energy to electricity, membranes for selective transport, and charge storage devices. The principal motivation for this approach is to establish the science that controls emergent properties in heterogeneous functional materials as a foundation for design of functional material systems with performance not bounded by constituent properties. (C) 2013 The Electrochemical Society. [DOI: 10.1149/2.012306jes] All rights reserved. C1 [Reifsnider, K. L.; Du, Yanhai; Rabbi, Fazle; Liu, Qianlong] Univ S Carolina, Dept Mech Engn, Columbia, SC 29209 USA. [Chiu, Wilson K. S.; Nakajo, Arata] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA. [Brinkman, Kyle S.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Reifsnider, KL (reprint author), Univ S Carolina, Dept Mech Engn, Columbia, SC 29209 USA. EM Reifsnider@sc.edu OI Brinkman, Kyle/0000-0002-2219-1253 FU Energy Frontier Research Center for Heterogeneous Functional Materials, the HeteroFoaM Center under DoE from the Office of Basic Energy Sciences [DE-SC0001061]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-AC02-98CH10886]; Department of Energy [DE-AC09-08SR22470] FX This work was presented as a Keynote lecture at the symposium on "Renewable Fuels from Sunlight and Electricity," PRiME 2012/222nd Meeting of the Electrochemical Society, Honolulu, HI, October 7-12, 2012. The authors gratefully acknowledge the support of the Energy Frontier Research Center for Heterogeneous Functional Materials, the HeteroFoaM Center, for support of this research under DoE grant no. DE-SC0001061 from the Office of Basic Energy Sciences. The X-ray tomography elements of this research were carried out at the Advanced Photon Source (Dr. S. Wang) supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357, and at the National Synchrotron Light Source (Dr. J. Wang, Dr. K. Chen-Wiegart) at Brookhaven National Laboratory supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. SFM samples were provided by Prof. F. Chen (University of South Carolina) and Ni-YSZ samples were provided by MER Dr. J. Van herle (Ecole Polytechnique Federale de Lausanne, Switzerland). The oxygen membrane characterization elements of this research were carried out at the Savannah River National Laboratory (Dr. K. Brinkman) which operates under contract No. DE-AC09-08SR22470 with the Department of Energy. NR 67 TC 8 Z9 8 U1 0 U2 19 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2013 VL 160 IS 4 BP F470 EP F481 DI 10.1149/2.012306jes PG 12 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 117TU UT WOS:000316976800081 ER PT J AU Hatt, A AF Hatt, Alison TI Networking at the heart of African workshop on computational materials science SO MRS BULLETIN LA English DT Article RP Hatt, A (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. RI Hatt, Alison/B-4652-2010 NR 0 TC 0 Z9 0 U1 0 U2 1 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD JAN PY 2013 VL 38 IS 1 BP 12 EP 14 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 125OP UT WOS:000317549400008 ER PT J AU French, WR Iacovella, CR Rungger, I Souza, AM Sanvito, S Cummings, PT AF French, William R. Iacovella, Christopher R. Rungger, Ivan Souza, Amaury Melo Sanvito, Stefano Cummings, Peter T. TI Atomistic simulations of highly conductive molecular transport junctions under realistic conditions SO NANOSCALE LA English DT Article ID GOLD NANOWIRES; BENZENEDITHIOL; ELONGATION; DYNAMICS; MECHANISM; GEOMETRY; ATOMS AB We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate (BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states in Au MACs causes the increases in conductance. Other structures also result in increased conductance but are too short-lived to be detected in experiment, while MACs remain stable for long simulation times. Examinations of thermally evolved junctions with and without MACs show negligible overlap between conductance histograms, indicating that the increase in conductance is related to this unique structural change and not thermal fluctuation. These results, which provide an excellent explanation for a recently observed anomalous experimental result [Bruot et al., Nat. Nanotechnol., 2012, 7, 35-40], should aid in the development of mechanically responsive molecular electronic devices. C1 [French, William R.; Iacovella, Christopher R.; Cummings, Peter T.] Dept Chem & Biomol Engn, Nashville, TN USA. [Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland. [Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano] Trinity Coll Dublin, CRANN, Dublin 2, Ireland. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Cummings, PT (reprint author), Dept Chem & Biomol Engn, Nashville, TN USA. EM peter.cummings@vanderbilt.edu RI Iacovella, Christopher/D-2050-2011; French, William/D-4164-2013; Souza, Amaury/H-9474-2014 OI French, William/0000-0003-2927-0234; FU U.S. Department of Education for a Graduate Assistance in Areas of National Need (GAANN) Fellowship [P200A090323]; National Science Foundation [CBET-1028374]; King Abdullah University of Science and Technology (ACRAB project); National Energy Research Scientific Computing Center (NERSC); Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX WRF acknowledges partial support from the U.S. Department of Education for a Graduate Assistance in Areas of National Need (GAANN) Fellowship under grant number P200A090323; WRF, CRI and PTC acknowledge partial support from the National Science Foundation through grant CBET-1028374. IR, AMS, and SS thank the King Abdullah University of Science and Technology (ACRAB project) for financial support. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231; specifically, the conductance calculations were performed on NERSC's Carver. NR 43 TC 17 Z9 17 U1 4 U2 35 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 J9 NANOSCALE JI Nanoscale PY 2013 VL 5 IS 9 BP 3654 EP 3659 DI 10.1039/c3nr00459g PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 129RK UT WOS:000317859400012 PM 23552959 ER PT J AU Schlung, SA Ravelo, AC Aiello, IW Andreasen, DH Cook, MS Drake, M Dyez, KA Guilderson, TP LaRiviere, JP Stroynowski, Z Takahashi, K AF Schlung, Shiloh A. Ravelo, A. Christina Aiello, Ivano W. Andreasen, Dyke H. Cook, Mea S. Drake, Michelle Dyez, Kelsey A. Guilderson, Thomas P. LaRiviere, Jonathan P. Stroynowski, Zuzanna Takahashi, Kozo TI Millennial-scale climate change and intermediate water circulation in the Bering Sea from 90 ka: A high-resolution record from IODP Site U1340 SO PALEOCEANOGRAPHY LA English DT Article ID SANTA-BARBARA BASIN; SUB-ARCTIC PACIFIC; LAST GLACIAL TERMINATION; OXYGEN-MINIMUM ZONE; YOUNGER DRYAS EVENT; NORTH PACIFIC; NORTHWESTERN PACIFIC; CYCLADOPHORA-DAVISIANA; OCEAN CIRCULATION; HEINRICH EVENT-1 AB Millennial-scale climate events in the North Pacific are thought to be related to changes in the circulation of North Pacific Intermediate Water, which may have formed in the Bering Sea in the past. To advance our understanding of the mechanisms that underlie millennial-scale events, Bering Sea sediment cores from the Integrated Ocean Drilling Program site U1340 were used to construct high-resolution, multiproxy climate records of the last 90,000 years. Sediment density records show millennial-scale events resembling Dansgaard-Oeschger events, several of which are laminated. Interstadials were characterized by 3-5 degrees C warming, increased productivity driven by upwelling, and reduced benthic oxygenation. Bering Sea intermediate water also changed over longer timescales; our records show the presence of intermediate water with lower salinity and higher oxygen content than modern beginning around 60 ka and persisting until the beginning of the deglaciation. The Bolling-Allerod was characterized by high productivity, laminated sediments, and strong denitrification signature. Our data support the idea that productivity-derived changes in oxygenation at intermediate water source regions may have contributed to the intensification of the North Pacific-wide oxygen minima during the Bolling-Allerod. Citation: Schlung, S. A., A. Christina Ravelo, I. W. Aiello, D. H. Andreasen, M. S. Cook, M. Drake, K. A. Dyez, T. P. Guilderson, J. P. LaRiviere, Z. Stroynowski, and K. Takahashi (2013), Millennial-scale climate change and intermediate water circulation in the Bering Sea from 90 ka: A high-resolution record from IODP Site U1340, Paleoceanography, 28, 54-67, doi:10.1029/2012PA002365. C1 [Schlung, Shiloh A.; Ravelo, A. Christina; Guilderson, Thomas P.; LaRiviere, Jonathan P.; Stroynowski, Zuzanna] Univ Calif Santa Cruz, Ocean Sci Dept, Santa Cruz, CA 95064 USA. [Aiello, Ivano W.; Drake, Michelle] Moss Landing Marine Labs, Moss Landing, CA 95039 USA. [Andreasen, Dyke H.; Dyez, Kelsey A.] Williams Coll, Williamstown, MA 01267 USA. [Cook, Mea S.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Guilderson, Thomas P.] Univ Calif Santa Cruz, Earth & Planetary Sci Dept, Santa Cruz, CA 95064 USA. [Takahashi, Kozo] Hokusei Gakuen Univ, Atsubetsu Ku, Sapporo, Hokkaido 0048631, Japan. RP Ravelo, AC (reprint author), Univ Calif Santa Cruz, Ocean Sci Dept, 1156 High St, Santa Cruz, CA 95064 USA. EM acr@ucsc.edu FU National Science Foundation [OCE0963144]; Consortium for Ocean Leadership [T323A7-001] FX The authors thank the IODP and all the crew, staff, technicians, and scientists on the JOIDES Resolution during IODP Expedition 323 to the Bering Sea. They also thank Elektra Robinson and Michaela Gwiazda for their help with sample preparation. This work was funded by the National Science Foundation (grant no. OCE0963144) and the Consortium for Ocean Leadership (award no. T323A7-001). NR 104 TC 13 Z9 14 U1 1 U2 43 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0883-8305 EI 1944-9186 J9 PALEOCEANOGRAPHY JI Paleoceanography PY 2013 VL 28 IS 1 DI 10.1029/2012PA002365 PG 14 WC Geosciences, Multidisciplinary; Oceanography; Paleontology SC Geology; Oceanography; Paleontology GA 129KO UT WOS:000317838200006 ER PT J AU Baalrud, SD AF Baalrud, S. D. TI The incomplete plasma dispersion function: Properties and application to waves in bounded plasmas SO PHYSICS OF PLASMAS LA English DT Article ID MAXWELLIAN VELOCITY DISTRIBUTION; ELECTRONIC LONGITUDINAL MODES; LASER-INDUCED FLUORESCENCE; ELECTROSTATIC OSCILLATIONS; CUTOFF DISTRIBUTIONS; 2-POLE APPROXIMATION; LOW-PRESSURE; DOUBLE-LAYER; PROPAGATION; PERTURBATIONS AB The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near boundary sheaths or double layers, where the passing interval can be modeled as Maxwellian with a lower temperature than the trapped interval. The depleted Maxwellian is used as an example to demonstrate the utility of using the incomplete plasma dispersion function for calculating modifications to wave dispersion relations. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789387] C1 [Baalrud, S. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Baalrud, S. D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Baalrud, SD (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; U.S. Department of Energy Fusion Energy Postdoctoral Research Program FX The author thanks Professor F. Skiff for reading and commenting on the manuscript and Professor C. C. Hegna for helpful discussions. This research was supported in part by an appointment to the U.S. Department of Energy Fusion Energy Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education, and in part under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 55 TC 1 Z9 1 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 012118 DI 10.1063/1.4789387 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200020 ER PT J AU Bellei, C Amendt, PA Wilks, SC Haines, MG Casey, DT Li, CK Petrasso, R Welch, DR AF Bellei, C. Amendt, P. A. Wilks, S. C. Haines, M. G. Casey, D. T. Li, C. K. Petrasso, R. Welch, D. R. TI Species separation in inertial confinement fusion fuels SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL IGNITION FACILITY; SHOCK-WAVE; MIXTURES; TARGETS AB It is shown by means of multi-fluid particle-in-cell simulations that convergence of the spherical shock wave that propagates through the inner gas of inertial confinement fusion-relevant experiments is accompanied by a separation of deuterium (D) and tritium (T) ions across the shock front. Deuterons run ahead of the tritons due to their lower mass and higher charge-to-mass ratio and can reach the center several tens of picoseconds before the tritons. The rising edge of the DD and TT fusion rate is also temporally separated by the same amount, which should be an observable in experiments and would be a direct proof of the "stratification conjecture" on the shock front [Amendt et al., Phys. Plasmas 18, 056308 (2011)]. Moreover, dephasing of the D and T shock components in terms of density and temperature leads to a degradation of the DT fusion yield as the converging shock first rebounds from the fuel center (shock yield). For the parameters of this study, the second peak in the fusion yield (compression yield) is strongly dependent on the choice of the flux limiter. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773291] C1 [Bellei, C.; Amendt, P. A.; Wilks, S. C.; Casey, D. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Haines, M. G.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Casey, D. T.; Li, C. K.; Petrasso, R.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Welch, D. R.] Voss Scient, Albuquerque, NM 87108 USA. RP Bellei, C (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. FU LLNL Computational Directorate Grand Challenge award; U.S. Department of Energy [DE-AC52-07NA27344]; [LDRD-11-ERD-075] FX Useful discussions with D. Ryutov and E. Williams are acknowledged. The authors also thank P. B. Radha for providing Lilac simulation results. Computing support for this work came from a LLNL Computational Directorate Grand Challenge award.; This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and supported by LDRD-11-ERD-075. NR 25 TC 22 Z9 22 U1 1 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 012701 DI 10.1063/1.4773291 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200052 ER PT J AU Black, C Germaschewski, K Bhattacharjee, A Ng, CS AF Black, Carrie Germaschewski, Kai Bhattacharjee, Amitava Ng, C. S. TI Discrete kinetic eigenmode spectra of electron plasma oscillations in weakly collisional plasma: A numerical study SO PHYSICS OF PLASMAS LA English DT Article ID FOKKER-PLANCK EQUATION; VLASOV EQUATION; VELOCITY SPACE; INTEGRATION; DIFFUSION; MODES AB It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein (LB) collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set [C.-S. Ng et al., Phys. Rev. Lett. 83, 1974 (1999) and C. S. Ng et al., Phys. Rev. Lett. 96, 065002 (2004)]. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator [A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456 (1958)]. The effect of collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789882] C1 [Black, Carrie] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. [Germaschewski, Kai; Bhattacharjee, Amitava] Univ New Hampshire, Dept Phys, Ctr Integrated Computat & Anal Reconnect & Turbul, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Ng, C. S.] Univ Alaska, Inst Geophys, Fairbanks, AK 99775 USA. [Ng, C. S.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Black, C (reprint author), NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. EM Carrie.Black@nasa.gov RI Ng, Chung-Sang/F-2980-2011 OI Ng, Chung-Sang/0000-0003-1861-5356 FU NSF [CNS-0855145, AGS-1056898]; DOE [ER55093]; National Science Foundation [PHY-1004357]; National Science Foundation of China NSFC [41128004] FX This work was conducted at the Center for Integrated Computation and Analysis of Reconnection and Turbulence (CICART) at the Institute for the Study of Earth, Oceans, and Space located at the University of New Hampshire. The research of C.B. is supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. K.G. is supported by NSF Grants CNS-0855145 and AGS-1056898 and DOE Grant ER55093. C.S.N. is supported in part by a National Science Foundation Grant PHY-1004357 and by the National Science Foundation of China NSFC under Grant No. 41128004. NR 21 TC 2 Z9 2 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 012125 DI 10.1063/1.4789882 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200027 ER PT J AU Burby, JW Qin, H AF Burby, J. W. Qin, H. TI Toroidal precession as a geometric phase SO PHYSICS OF PLASMAS LA English DT Article ID GUIDING-CENTER MOTION; PARTICLES; STABILIZATION; TOKAMAKS; IONS AB Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789377] C1 [Burby, J. W.; Qin, H.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Qin, H.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. RP Burby, JW (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy [DE-AC02-09CH11466] FX We would like to thank Roscoe White, Nik Logan, and Jack Berkery for several illuminating conversations. We would also like to express our appreciation to Ben Faber and Jeff Parker for proof reading early versions of this manuscript. Finally, we are especially grateful to Jordan T. Burby for creating the figures that appear in the text. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-09CH11466. NR 29 TC 1 Z9 1 U1 5 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 012511 DI 10.1063/1.4789377 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200047 ER PT J AU Chen, H Sheppard, JC Meyerhofer, DD Hazi, A Link, A Anderson, S Baldis, HA Fedosejev, R Gronberg, J Izumi, N Kerr, S Marley, E Park, J Tommasini, R Wilks, S Williams, GJ AF Chen, Hui Sheppard, J. C. Meyerhofer, D. D. Hazi, A. Link, A. Anderson, S. Baldis, H. A. Fedosejev, R. Gronberg, J. Izumi, N. Kerr, S. Marley, E. Park, J. Tommasini, R. Wilks, S. Williams, G. J. TI Emittance of positron beams produced in intense laser plasma interaction SO PHYSICS OF PLASMAS LA English DT Article AB The first measurement of the emittance of intense laser-produced positron beams has been made. The emittance values were derived through measurements of positron beam divergence and source size for different peak positron energies under various laser conditions. For one of these laser conditions, we used a one dimensional pepper-pot technique to refine the emittance value. The laser-produced positrons have a geometric emittance between 100 and 500mm.mrad, comparable to the positron sources used at existing accelerators. With 10(10)-10(12) positrons per bunch, this low emittance beam, which is quasi-monoenergetic in the energy range of 5-20 MeV, may be useful as an alternative positron source for future accelerators. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789621] C1 [Chen, Hui; Hazi, A.; Link, A.; Anderson, S.; Gronberg, J.; Izumi, N.; Tommasini, R.; Wilks, S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Sheppard, J. C.] Standford Univ, SLAC, Menlo Pk, CA 94025 USA. [Meyerhofer, D. D.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Baldis, H. A.; Marley, E.; Park, J.; Williams, G. J.] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA. [Fedosejev, R.; Kerr, S.] Univ Alberta, Dept Appl Sci, Edmonton, AB T6G 2R3, Canada. RP Chen, H (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI IZUMI, Nobuhiko/J-8487-2016; Tommasini, Riccardo/A-8214-2009; OI IZUMI, Nobuhiko/0000-0003-1114-597X; Tommasini, Riccardo/0000-0002-1070-3565; Kerr, Shaun/0000-0003-4822-564X FU U.S. DOE by LLNL [DE-AC52-07NA27344]; LLNL LDRD program FX We thank Dr. Tor Raubenheimer (SLAC) for initiating this work, Dr. Aaron Tremaine for discussion, and Dr. Peter Beiersdorfer, Dr. Bob Cauble, Dr. Henry Shaw, and Dr. Bill Goldstein for their encouragement and support. We gratefully acknowledge the JLF and Omega EP facility support during the experiment. This work was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344, the computation was supported by LLNL Grand Computing Challenge time-allocation. The work was funded by the LLNL LDRD program. NR 35 TC 14 Z9 15 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 013111 DI 10.1063/1.4789621 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200070 ER PT J AU Chen, Y Munsat, T Parker, SE Heidbrink, WW Van Zeeland, MA Tobias, BJ Domier, CW AF Chen, Y. Munsat, T. Parker, S. E. Heidbrink, W. W. Van Zeeland, M. A. Tobias, B. J. Domier, C. W. TI Gyrokinetic simulations of reverse shear Alfven eigenmodes in DIII-D plasmas SO PHYSICS OF PLASMAS LA English DT Article ID DRIVEN AB A gyrokinetic ion/mass-less fluid electron hybrid model as implemented in the GEM code [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 837 (2007)] is used to study the reverse shear Alfven eigenmodes (RSAE) observed in DIII-D, discharge #142111. This is a well diagnosed case with measurement of the core-localized RSAE mode structures and the mode frequency, which can be used to compare with simulations. Simulations reproduce many features of the observation, including the mode frequency up-sweeping in time and the sweeping range. A new algorithmic feature is added to the GEM code for this study. Instead of the gyrokinetic Poisson equation itself, its time derivative, or the vorticity equation, is solved to obtain the electric potential. This permits a numerical scheme that ensures the E x B convection of the equilibrium density profiles of each species cancel each other in the absence of any finite-Larmor-radius effects. These nonlinear simulations generally result in an electron temperature fluctuation level that is comparable to measurements, and a mode frequency spectrum broader than the experimental spectrum. The spectral width from simulations can be reduced if less steep beam density profiles are used, but then the experimental fluctuation level can be reproduced only if a collision rate above the classical level is assumed. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4775776] C1 [Chen, Y.; Munsat, T.; Parker, S. E.] Univ Colorado, Boulder, CO 80309 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [Tobias, B. J.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Domier, C. W.] Univ Calif Davis, Davis, CA 95616 USA. RP Chen, Y (reprint author), Univ Colorado, Boulder, CO 80309 USA. FU U.S. Department of Energy's SciDAC project "Center for Nonlinear Simulation of Energetic Particles in Burning Plasmas"; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Dr. Guo-Yong Fu for helpful discussions. This work was supported by the U.S. Department of Energy's SciDAC project "Center for Nonlinear Simulation of Energetic Particles in Burning Plasmas." This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 25 TC 13 Z9 13 U1 3 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 012109 DI 10.1063/1.4775776 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200011 ER PT J AU Diallo, A Kramer, GJ Smith, DR Maingi, R Bell, RE Guttenfelder, W LeBlanc, BP Podesta, M McKee, GJ Fonck, R AF Diallo, A. Kramer, G. J. Smith, D. R. Maingi, R. Bell, R. E. Guttenfelder, W. LeBlanc, B. P. Podesta, M. McKee, G. J. Fonck, R. TI Observation of ion scale fluctuations in the pedestal region during the edge-localized-mode cycle on the National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article ID CORRELATION REFLECTOMETRY; FUSION PLASMAS; MICROWAVE REFLECTOMETRY; NSTX; TURBULENCE; ELM AB Characterization of the spatial structure of turbulence fluctuations during the edge localized mode cycle in the pedestal region is reported. Using the beam emission spectroscopy and the correlation reflectometry systems, measurements show spatial structure-k(perpendicular to)rho(ped)(i)-ranging from 0.2 to 0.7 propagating in the ion diamagnetic drift direction at the pedestal top. These propagating spatial scales are found to be anisotropic and consistent with ion-scale microturbulence of the type ion temperature gradient and/or kinetic ballooning modes. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773402] C1 [Diallo, A.; Kramer, G. J.; Bell, R. E.; Guttenfelder, W.; LeBlanc, B. P.; Podesta, M.; Fonck, R.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Smith, D. R.; McKee, G. J.; Fonck, R.] Univ Wisconsin, Dept Engn Phys, Madison, WI USA. [Smith, D. R.; McKee, G. J.; Fonck, R.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Diallo, A (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RI Diallo, Ahmed/M-7792-2013 FU U.S. Department of Energy [DE-AC0209CH11466] FX The NSTX team is gratefully acknowledged. We thank the UCLA group for providing the data. A. D. acknowledges T. Osborne for providing the python tools for profile analysis, and J. Menard, S. Kaye, J. Manickam, and C. S. Chang for useful discussions. This manuscript has been authored by Princeton University and collaborators supported by U.S. Department of Energy Contract DE-AC0209CH11466. NR 43 TC 9 Z9 9 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 012505 DI 10.1063/1.4773402 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200041 ER PT J AU Dorf, MA Cohen, RH Dorr, M Rognlien, T Hittinger, J Compton, J Colella, P Martin, D McCorquodale, P AF Dorf, M. A. Cohen, R. H. Dorr, M. Rognlien, T. Hittinger, J. Compton, J. Colella, P. Martin, D. McCorquodale, P. TI Simulation of neoclassical transport with the continuum gyrokinetic code COGENT SO PHYSICS OF PLASMAS LA English DT Article ID FINITE ASPECT RATIO; ARBITRARY COLLISIONALITY; PARTICLE SIMULATION; ELECTRIC-FIELD; PLASMAS; TURBULENCE; OPERATOR; PROGRESS; SYSTEMS; REGIME AB The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v(parallel to), mu) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v(parallel to) and mu are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy. Topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4776712] C1 [Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Colella, P.; Martin, D.; McCorquodale, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Dorf, MA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy [DE-AC52-07NA27344] FX The authors are grateful to B. Cohen, I. Joseph, M. Umansky, and X. Xu for fruitful discussions. This research was supported by the U.S. Department of Energy under contract DE-AC52-07NA27344. NR 49 TC 7 Z9 7 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 012513 DI 10.1063/1.4776712 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200049 ER PT J AU Doss, FW Loomis, EN Welser-Sherrill, L Fincke, JR Flippo, KA Keiter, PA AF Doss, F. W. Loomis, E. N. Welser-Sherrill, L. Fincke, J. R. Flippo, K. A. Keiter, P. A. TI Instability, mixing, and transition to turbulence in a laser-driven counterflowing shear experiment SO PHYSICS OF PLASMAS LA English DT Article ID LAYERS; COMPRESSIBILITY AB In a turbulence experiment conducted at the Omega Laser Facility [Boehly et al., Opt. Commun. 133, 495 (1997)]], regions of 60 mg/cc foam are separated by an aluminum plate running the length of a 1.6mm shock tube. Two counter-propagating laser-driven shocks are used to create a high speed, Delta V 140 km/s shear flow environment, sustained for similar to 10 ns, while canceling the transverse pressure gradient across the interface. The spreading of the aluminum by shear-instability-induced mixing is measured by x-ray radiography. The width of the mix region is compared to simulations. Reynolds numbers greater than or similar to 4 x 10(5) are achieved within the layer. Following the onset of shear, we observe striations corresponding to the dominant mode growth and their transition through non-linear structures to developed turbulence. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789618] C1 [Doss, F. W.; Loomis, E. N.; Welser-Sherrill, L.; Fincke, J. R.; Flippo, K. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Keiter, P. A.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Doss, FW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM fdoss@lanl.gov RI Keiter, Paul/J-3037-2013; Flippo, Kirk/C-6872-2009 OI Flippo, Kirk/0000-0002-4752-5141 FU U.S. Department of Energy; [DE-AC52-06NA25396] FX The authors are grateful to the LANL MST-7 target fabrication and P-24 operations teams. This work was supported by the U.S. Department of Energy and operated by Los Alamos National Security LLC under Contract No. DE-AC52-06NA25396. NR 23 TC 14 Z9 14 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 012707 DI 10.1063/1.4789618 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200058 ER PT J AU Ellison, CL Matyash, K Parker, JB Raitses, Y Fisch, NJ AF Ellison, C. L. Matyash, K. Parker, J. B. Raitses, Y. Fisch, N. J. TI Comment on "Three-dimensional numerical investigation of electron transport with rotating spoke in a cylindrical anode layer Hall plasma accelerator" [Phys. Plasmas 19, 073519 (2012)] SO PHYSICS OF PLASMAS LA English DT Editorial Material ID THRUSTERS; OSCILLATIONS; DISCHARGE AB The oscillation behavior described by Tang et al. [Phys. Plasmas 19, 073519 (2012)] differs too greatly from previous experimental and numerical studies to claim observation of the same phenomenon. Most significantly, the rotation velocity by Tang et al. [Phys. Plasmas 19, 073519 (2012)] is three orders of magnitude larger than that of typical "rotating spoke" phenomena. Several physical and numerical considerations are presented to more accurately understand the numerical results of Tang et al. [Phys. Plasmas 19, 073519 (2012)] in light of previous studies. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773895] C1 [Ellison, C. L.; Parker, J. B.; Raitses, Y.; Fisch, N. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Matyash, K.] Ernst Moritz Arndt Univ Greifswald, D-17487 Greifswald, Germany. RP Ellison, CL (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Parker, Jeffrey/0000-0002-9079-9930 NR 17 TC 1 Z9 1 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 014701 DI 10.1063/1.4773895 PG 2 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200098 ER PT J AU Hatch, DR Pueschel, MJ Jenko, F Nevins, WM Terry, PW Doerk, H AF Hatch, D. R. Pueschel, M. J. Jenko, F. Nevins, W. M. Terry, P. W. Doerk, H. TI Magnetic stochasticity and transport due to nonlinearly excited subdominant microtearing modes SO PHYSICS OF PLASMAS LA English DT Article ID ELECTROMAGNETIC GYROKINETIC SIMULATIONS; GRADIENT-DRIVEN TURBULENCE; PLASMA TURBULENCE; TEARING MODES; TOKAMAK; MICROTURBULENCE; COLLISIONLESS; ELECTRONS; PHYSICS; CODE AB Subdominant, linearly stable microtearing modes are identified as the main mechanism for the development of magnetic stochasticity and transport in gyrokinetic simulations of electromagnetic ion temperature gradient driven plasma microturbulence. The linear eigenmode spectrum is examined in order to identify and characterize modes with tearing parity. Connections are demonstrated between microtearing modes and the nonlinear fluctuations that are responsible for the magnetic stochasticity and electromagnetic transport, and nonlinear coupling with zonal modes is identified as the salient nonlinear excitation mechanism. A simple model is presented, which relates the electromagnetic transport to the electrostatic transport. These results may provide a paradigm for the mechanisms responsible for electromagnetic stochasticity and transport, which can be examined in a broader range of scenarios and parameter regimes. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789448] C1 [Hatch, D. R.; Jenko, F.; Doerk, H.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Pueschel, M. J.; Terry, P. W.] Univ Wisconsin, Madison, WI 53706 USA. [Nevins, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hatch, DR (reprint author), EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. FU Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; European Research Council under the European Union [277870] FX This work was carried out using the HELIOS supercomputer system at the International Fusion Energy Research Centre, Aomori, Japan, under the Broader Approach collaboration between Euratom and Japan, implemented by Fusion for Energy and JAEA. Resources were also used at the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Funding was received from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 277870. The authors wish to acknowledge useful conversations with E. Wang and W. Dorland. NR 54 TC 19 Z9 20 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 012307 DI 10.1063/1.4789448 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200035 ER PT J AU Jenkins, TG Austin, TM Smithe, DN Loverich, J Hakim, AH AF Jenkins, Thomas G. Austin, Travis M. Smithe, David N. Loverich, John Hakim, Ammar H. TI Time-domain simulation of nonlinear radiofrequency phenomena SO PHYSICS OF PLASMAS LA English DT Article ID ION-CYCLOTRON FREQUENCY; PARAMETRIC-INSTABILITIES; EDGE PLASMA; PARTICLE SIMULATIONS; BERNSTEIN WAVES; TOKAMAK PLASMAS; HYBRID; DECAY; RANGE; EXCITATION AB Nonlinear effects associated with the physics of radiofrequency wave propagation through a plasma are investigated numerically in the time domain, using both fluid and particle-in-cell (PIC) methods. We find favorable comparisons between parametric decay instability scenarios observed on the Alcator C-MOD experiment [J. C. Rost, M. Porkolab, and R. L. Boivin, Phys. Plasmas 9, 1262 (2002)] and PIC models. The capability of fluid models to capture important nonlinear effects characteristic of wave-plasma interaction (frequency doubling, cyclotron resonant absorption) is also demonstrated. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4776704] C1 [Jenkins, Thomas G.; Austin, Travis M.; Smithe, David N.; Loverich, John] Tech X Corp, Boulder, CO 80303 USA. [Hakim, Ammar H.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Jenkins, TG (reprint author), Tech X Corp, 5621 Arapahoe Ave, Boulder, CO 80303 USA. FU U.S. Department of Energy's SBIR program under a Phase I grant [DE-SC0006242] FX We are indebted to members of the RF SciDAC project for useful discussion and feedback and for suggesting the use of J. C. Rost's C-Mod data as a suitable benchmark for the PIC approach. Dr. Rost's assistance in providing figures and data is particularly appreciated. We also acknowledge the constructive comments provided by the reviewer. This research was financially supported by the U.S. Department of Energy's SBIR program under a Phase I grant, Contract DE-SC0006242. NR 43 TC 16 Z9 16 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 012116 DI 10.1063/1.4776704 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200018 ER PT J AU Karimabadi, H Roytershteyn, V Wan, M Matthaeus, WH Daughton, W Wu, P Shay, M Loring, B Borovsky, J Leonardis, E Chapman, SC Nakamura, TKM AF Karimabadi, H. Roytershteyn, V. Wan, M. Matthaeus, W. H. Daughton, W. Wu, P. Shay, M. Loring, B. Borovsky, J. Leonardis, E. Chapman, S. C. Nakamura, T. K. M. TI Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas SO PHYSICS OF PLASMAS LA English DT Article ID KELVIN-HELMHOLTZ INSTABILITY; SOLAR-WIND TURBULENCE; MAGNETOHYDRODYNAMIC TURBULENCE; RECONNECTION; TRANSPORT; FIELDS; FLUID; POWER AB An unsolved problem in plasma turbulence is how energy is dissipated at small scales. Particle collisions are too infrequent in hot plasmas to provide the necessary dissipation. Simulations either treat the fluid scales and impose an ad hoc form of dissipation (e. g., resistivity) or consider dissipation arising from resonant damping of small amplitude disturbances where damping rates are found to be comparable to that predicted from linear theory. Here, we report kinetic simulations that span the macroscopic fluid scales down to the motion of electrons. We find that turbulent cascade leads to generation of coherent structures in the form of current sheets that steepen to electron scales, triggering strong localized heating of the plasma. The dominant heating mechanism is due to parallel electric fields associated with the current sheets, leading to anisotropic electron and ion distributions which can be measured with NASA's upcoming Magnetospheric Multiscale mission. The motion of coherent structures also generates waves that are emitted into the ambient plasma in form of highly oblique compressional and shear Alfven modes. In 3D, modes propagating at other angles can also be generated. This indicates that intermittent plasma turbulence will in general consist of both coherent structures and waves. However, the current sheet heating is found to be locally several orders of magnitude more efficient than wave damping and is sufficient to explain the observed heating rates in the solar wind. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773205] C1 [Karimabadi, H.; Roytershteyn, V.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Wan, M.; Matthaeus, W. H.; Wu, P.; Shay, M.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Daughton, W.; Nakamura, T. K. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Loring, B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Borovsky, J.] Space Sci Inst, Boulder, CO 80301 USA. [Leonardis, E.; Chapman, S. C.] Univ Warwick, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England. [Chapman, S. C.] Univ Tromso, Dept Math & Stat, Tomso, Norway. RP Karimabadi, H (reprint author), Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. RI Shay, Michael/G-5476-2013; Chapman, Sandra/C-2216-2008; Daughton, William/L-9661-2013; Wan, Minping/A-1344-2011; NASA MMS, Science Team/J-5393-2013; OI Chapman, Sandra/0000-0003-0053-1584; NASA MMS, Science Team/0000-0002-9504-5214; Roytershteyn, Vadim/0000-0003-1745-7587 FU NASA [NNH11CC65C, NNX11AJ44G]; NSF [EAGER 1105084, AGS-1063439, SHINE AGS-1156094]; UK EPSRC; STFC; DOE [DE-AC05-00OR22725]; [DE-SC0004662] FX This work was partially supported by DE-SC0004662, NASA through the Heliophysics Theory Program and NNH11CC65C, and NSF through EAGER 1105084. The Delaware group (W.H.M., M.W., P.W., and M.S.) is supported by NASA (Heliophysics Theory NNX11AJ44G, Solar Probe Plus and MMS Theory programs) and by NSF (AGS-1063439 and SHINE AGS-1156094). S.C.C. acknowledges support from the UK EPSRC and STFC. Simulations were performed on Kraken provided by the NSF at NICS, on Pleiades provided by NASA's HEC Program, and resources of the National Center for Computational Sciences at Oak Ridge National Laboratory (Jaguar/Lens), which is supported by DOE under Contract No. DE-AC05-00OR22725. Visualization and analysis were performed on Nautilus and Longhorn systems using ParaView and visualization software developed by the NICS RDAV group. We acknowledge useful conversations with J. TenBarge on kinetic Alfven turbulence. We also thank the referee for useful comments that led to improvements in the paper. NR 50 TC 106 Z9 106 U1 2 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 012303 DI 10.1063/1.4773205 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200031 ER PT J AU Niemann, C Gekelman, W Constantin, CG Everson, ET Schaeffer, DB Clark, SE Winske, D Zylstra, AB Pribyl, P Tripathi, SKP Larson, D Glenzer, SH Bondarenko, AS AF Niemann, C. Gekelman, W. Constantin, C. G. Everson, E. T. Schaeffer, D. B. Clark, S. E. Winske, D. Zylstra, A. B. Pribyl, P. Tripathi, S. K. P. Larson, D. Glenzer, S. H. Bondarenko, A. S. TI Dynamics of exploding plasmas in a large magnetized plasma SO PHYSICS OF PLASMAS LA English DT Article ID ALFVEN-WAVE RADIATION; LASER-PRODUCED PLASMA; SHOCK-WAVES; FIELD; EXPANSION; DESIGN; ACCELERATION; PENETRATION; PROPAGATION; CLOUDS AB The dynamics of an exploding laser-produced plasma in a large ambient magneto-plasma was investigated with magnetic flux probes and Langmuir probes. Debris-ions expanding at super-Alfvenic velocity (up to M-A = 1.5) expel the ambient magnetic field, creating a large (>20 cm) diamagnetic cavity. We observe a field compression of up to B/B-0 = 1.5 as well as localized electron heating at the edge of the bubble. Two-dimensional hybrid simulations reproduce these measurements well and show that the majority of the ambient ions are energized by the magnetic piston and swept outside the bubble volume. Nonlinear shear-Alfven waves (delta B/B-0 > 25%) are radiated from the cavity with a coupling efficiency of 70% from magnetic energy in the bubble to the wave. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773911] C1 [Niemann, C.; Gekelman, W.; Constantin, C. G.; Everson, E. T.; Schaeffer, D. B.; Clark, S. E.; Zylstra, A. B.; Pribyl, P.; Tripathi, S. K. P.; Bondarenko, A. S.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Winske, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Larson, D.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Niemann, C (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM cniemann@ucla.edu OI Larson, David/0000-0003-0814-8555 FU DOE/NSF [DE-FG02-06ER5406, NSF05-619]; DOE Office of Science Early Career Research Program [E-FOA-0000395]; Defense Threat Reduction Agency [HDTRA1-12-1-0024] FX This work was supported by the DOE/NSF Partnership in Basic Plasma Science under Contract Nos. DE-FG02-06ER5406 and NSF05-619, the DOE Office of Science Early Career Research Program (E-FOA-0000395), and the Defense Threat Reduction Agency under Contract No. HDTRA1-12-1-0024. The experiments were performed at the UCLA Basic Plasma Science Facility (BaPSF). We thank Z. Lucky, M. Nakamoto, and M. Drandell for technical support during the experiment, and A. Ng and the University of British Columbia for the donation of the high-energy laser system. NR 56 TC 15 Z9 15 U1 0 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 012108 DI 10.1063/1.4773911 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200010 ER PT J AU Yin, L Albright, BJ Rose, HA Montgomery, DS Kline, JL Kirkwood, RK Michel, P Bowers, KJ Bergen, B AF Yin, L. Albright, B. J. Rose, H. A. Montgomery, D. S. Kline, J. L. Kirkwood, R. K. Michel, P. Bowers, K. J. Bergen, B. TI Self-organized coherent bursts of stimulated Raman scattering and speckle interaction in multi-speckled laser beams SO PHYSICS OF PLASMAS LA English DT Article ID DECAY INSTABILITY; PLASMA; WAVE AB Nonlinear physics governing the kinetic behavior of stimulated Raman scattering (SRS) in multi-speckled laser beams has been identified in the trapping regime over a wide range of k lambda(D) values (here k is the wave number of the electron plasma waves and lambda(D) is the Debye length) in homogeneous and inhomogeneous plasmas. Hot electrons from intense speckles, both forward and side-loss hot electrons produced during SRS daughter electron plasma wave bowing and filamentation, seed and enhance the growth of SRS in neighboring speckles by reducing Landau damping. Trapping-enhanced speckle interaction through transport of hot electrons, backscatter, and sidescatter SRS light waves enable the system of speckles to self-organize and exhibit coherent, sub-ps SRS bursts with more than 100% instantaneous reflectivity, resulting in an SRS transverse coherence width much larger than a speckle width and a SRS spectrum that peaks outside the incident laser cone. SRS reflectivity is found to saturate above a threshold laser intensity at a level of reflectivity that depends on k lambda(D): higher k lambda(D) leads to lower SRS and the reflectivity scales as similar to(k lambda(D))(-4). As k lambda(D) and Landau damping increase, speckle interaction via sidescattered light and side-loss hot electrons decreases and the occurrence of self-organized events becomes infrequent, leading to the reduction of time-averaged SRS reflectivity. It is found that the inclusion of a moderately strong magnetic field in the laser direction can effectively control SRS by suppressing transverse speckle interaction via hot electron transport. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4774964] C1 [Yin, L.; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Bowers, K. J.; Bergen, B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kirkwood, R. K.; Michel, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Yin, L (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM lyin@lanl.gov RI Michel, Pierre/J-9947-2012; OI Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320; Kline, John/0000-0002-2271-9919 FU U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory; DOE NNSA; LANL Directed Research and Development (LDRD) Program; DOE Office of Fusion Energy Science FX This work was performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory and was supported by DOE NNSA Funding for ICF, by the LANL Directed Research and Development (LDRD) Program, and by the DOE Office of Fusion Energy Science. VPIC simulations were run on ASC Roadrunner and Cielo, and on DOE OLCF Jaguar. The authors acknowledge stimulating discussions with Dr. J. C. Fernandez, Dr. J. Moody, Dr. B. Afeyan and we thank Dr. R. London especially for detailed discussion on the density variation obtained in radiation hydrodynamic modeling of recent large-scale LPI experiments using the OMEGA laser. NR 36 TC 18 Z9 18 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2013 VL 20 IS 1 AR 012702 DI 10.1063/1.4774964 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 122AC UT WOS:000317286200053 ER PT J AU Aranson, IS AF Aranson, I. S. TI Active colloids SO PHYSICS-USPEKHI LA English DT Review ID SOFT CONDENSED MATTER; GRANULAR MEDIA; PARTICLES; CRYSTALS; INTERFACE; DYNAMICS; BEHAVIOR; BANDGAP; FIELDS; ROUTE AB A colloidal suspension is a heterogeneous fluid containing solid microscopic particles. Colloids play an important role in our everyday life, from food and pharmaceutical industries to medicine and nanotechnology. It is useful to distinguish two major classes of colloidal suspensions: equilibrium and active, i.e., maintained out of thermodynamic equilibrium by external electric or magnetic fields, light, chemical reactions, or hydrodynamic shear flow. While the properties of equilibrium colloidal suspensions are fairly well understood, active colloids pose a formidable challenge, and the research is in its early exploratory stage. One of the most remarkable properties of active colloids is the possibility of dynamic self-assembly, a natural tendency of simple building blocks to organize into complex functional architectures. Examples range from tunable, self-healing colloidal crystals and membranes to self-assembled microswimmers and robots. Active colloidal suspensions may exhibit material properties not present in their equilibrium counterparts, e.g., reduced viscosity and enhanced self-diffusivity, etc. This study surveys the most recent developments in the physics of active colloids, both in synthetic and living systems, with the aim of elucidation of the fundamental physical mechanisms governing self-assembly and collective behavior. C1 [Aranson, I. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Aranson, I. S.] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM aronson@anl.gov RI Aranson, Igor/I-4060-2013 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DEAC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Contract DEAC02-06CH11357. NR 114 TC 24 Z9 24 U1 9 U2 119 PU TURPION LTD PI BRISTOL PA C/O TURPION LTD, IOP PUBLISHING, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6HG, ENGLAND SN 1063-7869 EI 1468-4780 J9 PHYS-USP+ JI Phys. Usp. PY 2013 VL 56 IS 1 BP 79 EP 92 DI 10.3367/UFNe.0183.201301e.0087 PG 14 WC Physics, Multidisciplinary SC Physics GA 125YS UT WOS:000317578800004 ER PT J AU Vasdekis, AE AF Vasdekis, Andreas E. TI Single microbe trap and release in sub-microfluidics SO RSC ADVANCES LA English DT Article ID ELECTRON-BEAM LITHOGRAPHY; CELL ISOLATION; RESOLUTION; BACTERIA; SU-8; MICROBIOLOGY; OPTOFLUIDICS; GROWTH; ARRAYS; RESIST AB Life on Earth is comprised mostly of microbes with significant implications in disease and carbon cycling. However, their dimensions and mobility make microbes challenging to analyse on-chip. A sub-micron resolution microfluidic system (sub-microfluidics) capable of trapping and releasing single Escherichia coli bacteria is presented. The fabrication method based on electron-beam and cast molding lithography is described, as well as the trap and release of single E. coli. The release time from the trap is found to depend on cell morphology. C1 [Vasdekis, Andreas E.] Ecole Polytech Fed Lausanne, Opt Lab, Lausanne, Switzerland. [Vasdekis, Andreas E.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Vasdekis, AE (reprint author), Ecole Polytech Fed Lausanne, Opt Lab, Lausanne, Switzerland. EM andreas.vasdekis@pnnl.gov OI Vasdekis, Andreas/0000-0003-4315-1047 NR 35 TC 6 Z9 6 U1 1 U2 40 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2013 VL 3 IS 18 BP 6343 EP 6346 DI 10.1039/c3ra40369f PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 126AT UT WOS:000317584200021 ER PT S AU Beebe-Wang, J Vaska, P Dilmanian, FA Peggs, SG Schlyer, DJ AF Beebe-Wang, Joanne Vaska, Paul Dilmanian, F. Avraham Peggs, Stephen G. Schlyer, David J. BE Belkic, D TI Verifying Radiation Treatment in Proton Therapy via PET Imaging of the Induced Positron-Emitters SO THEORY OF HEAVY ION COLLISION PHYSICS IN HADRON THERAPY SE Advances in Quantum Chemistry LA English DT Review; Book Chapter ID BEAM RANGE VERIFICATION; MONTE-CARLO CODE; DISTRIBUTIONS; RADIOTHERAPY; TRANSPORT AB Positron Emission Topography (PET) is a promising technique to verify the dose distribution from proton therapy, a precise treatment modality increasingly used in radiation oncology because its radiation pattern conforms more closely to the configuration of a tumor than does that from X-ray radiation, thereby sparing normal healthy tissue. Proton therapy produces positron-emitting isotopes along the beam's path, allowing PET to image the distribution of therapeutic energy, viz., a form of quality assurance of the treatment. This ability is especially important when treating heterogeneous organs, such as the lungs or the head-and-neck, where calculating the expected dose distribution for treatment is complex. Here, we present the findings from our Monte Carlo simulations of the yield of positron emitters produced by proton beams of up to 250 MeV, followed by our statistically realistic Monte Carlo simulation of the images expected from a clinical PET scanner. Our emphases lay in predicting accurately the distribution of positron emitters, and in determining the quality of the PET signal near the Bragg peak that is critical to the success of PET imaging for verifying the proton beam's location and dosimetry. We also demonstrate that the results depend strongly on the accuracy of the available nuclear reaction cross section data. Accordingly, we quantify the differences in the calculated positron-emitter yields from four different sets of such data, comparing them to the simulated distributions of positron-emitter production and absorbed proton energies. C1 [Beebe-Wang, Joanne; Vaska, Paul; Dilmanian, F. Avraham; Peggs, Stephen G.; Schlyer, David J.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Beebe-Wang, J (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. NR 32 TC 0 Z9 0 U1 0 U2 9 PU ELSEVIER ACADEMIC PRESS INC PI SAN DIEGO PA 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA SN 0065-3276 BN 978-0-12-396455-7 J9 ADV QUANTUM CHEM JI Adv. Quantum Chem. PY 2013 VL 65 BP 111 EP 127 DI 10.1016/B978-0-12-396455-7.00005-4 PG 17 WC Chemistry, Physical SC Chemistry GA BEL65 UT WOS:000317240800006 ER PT J AU Yoon, H Hart, DB McKenna, SA AF Yoon, Hongkyu Hart, David B. McKenna, Sean A. TI Parameter estimation and predictive uncertainty in stochastic inverse modeling of groundwater flow: Comparing null-space Monte Carlo and multiple starting point methods SO WATER RESOURCES RESEARCH LA English DT Article ID SIMULATED TRANSMISSIVITY FIELDS; STEADY-STATE FLOW; ERROR REDUCTION; PILOT POINTS; 2 STATISTICS; HYDRAULIC CONDUCTIVITY; AUTOMATED CALIBRATION; NEW-MEXICO; TRANSPORT; IDENTIFIABILITY AB Given a highly parameterized groundwater model in which the conceptual model of the heterogeneity is stochastic, a set of inverse calibrations from multiple starting points (MSPs) provide an ensemble of calibrated parameters and follow-on transport predictions. However, the multiple calibrations are computationally expensive. A recently developed null-space Monte Carlo (NSMC) method combines the calibration solution-space parameters with the ensemble of null-space parameters, creating sets of calibration-constrained parameters for input to follow-on transport predictions. The consistency between probabilistic ensembles of parameter estimates and predictions created using the MSP calibration and the NSMC approaches is examined using a highly parameterized (>1300 parameters) model of the Culebra dolomite previously developed for the Waste Isolation Pilot Plant project in New Mexico as a test case. A total of 100 estimated fields are retained from the MSP approach, and the ensemble of results defining the model fit to the data and prediction of an advective travel time are compared with the same results obtained using NSMC. We demonstrate that the NSMC fields based on a single calibrated model can be significantly constrained by the calibrated solution space, and the resulting distribution of advective travel times is biased toward the travel time from the single calibrated field. To overcome this, newly proposed strategies to employ a multiple calibration-constrained NSMC (M-NSMC) approach are evaluated. Comparison of the M-NSMC and MSP methods demonstrates that M-NSMC can provide a computationally efficient and practical solution for predictive uncertainty analysis in highly nonlinear and complex subsurface flow and transport models. Citation: Yoon, H., D. B. Hart, and S. A. McKenna (2013), Parameter estimation and predictive uncertainty in stochastic inverse modeling of groundwater flow: Comparing null-space Monte Carlo and multiple starting point methods, Water Resour. Res., 49, doi: 10.1002/wrcr.20064. C1 [Yoon, Hongkyu; Hart, David B.; McKenna, Sean A.] Sandia Natl Labs, Geosci Res & Applicat Ctr, Albuquerque, NM 87185 USA. RP Yoon, H (reprint author), Sandia Natl Labs, Geosci Res & Applicat Ctr, POB 5800,MS 0751, Albuquerque, NM 87185 USA. EM hyoon@sandia.gov FU Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001114]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-SC0001114. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We also acknowledge the effort of Randall Hunt and two anonymous reviewers for their careful and constructive reviews, which led to significant improvement of our manuscript. NR 62 TC 7 Z9 7 U1 1 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JAN PY 2013 VL 49 IS 1 BP 536 EP 553 DI 10.1002/wrcr.20064 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 129GR UT WOS:000317827600040 ER PT J AU Jung, Y Pruess, K AF Jung, Yoojin Pruess, Karsten TI Reply to comment by Maier and Kocabas on "A closed-form analytical solution for thermal single-well injection-withdrawal tests" SO WATER RESOURCES RESEARCH LA English DT Editorial Material C1 [Jung, Yoojin; Pruess, Karsten] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Jung, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM yoojinjung@lbl.gov RI Jung, Yoojin/G-2519-2015 NR 3 TC 1 Z9 1 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JAN PY 2013 VL 49 IS 1 BP 644 EP 646 DI 10.1029/2012WR012827 PG 3 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 129GR UT WOS:000317827600049 ER PT J AU Yoo, B Afzal, W Prausnitz, JM AF Yoo, Brian Afzal, Waheed Prausnitz, John M. TI Effect of Water on the Densities and Viscosities of Some Ionic Liquids Containing a Phosphonium Cation SO ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS LA English DT Article DE Viscosity; Density; Water Content; Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate; Trihexyltetradecylphosphonium Dicyanamide; Tributyltetradecylphosphonium Dodecylbenzenesulfonate; Triisobutylmethylphosphonium Tosylate ID TEMPERATURE AB A small amount of water can significantly decrease the viscosity of an ionic liquid. From 25-80 degrees C, densities and viscosities were measured for dilute solutions of water in six ionic liquids: trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate, trihexyltetradecylphosphonium dicyanamide, tributyltetradecylphosphonium dodecylbenzenesulfonate, 1-ethyl,3-methylimidazolium bis(triflouromethylsulfonyl)imide, methyltrioctylammonium bis(trifluoromethylsulfonyl)imide, and triisobutylmethylphosphonium tosylate. At 25 degrees C, when the water content is about 1 wt. %, the viscosity of a phosphonium-based ionic liquid is reduced by nearly one order of magnitude. C1 [Prausnitz, John M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Prausnitz, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM prausnit@cchem.berkeley.edu OI Afzal, Waheed/0000-0002-2927-0114 FU Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory FX The authors are grateful to the Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, for financial support, to Sasisanker Padmanabhan for helpful discussions, and to Prof. Michael Manga (UC Berkeley) for providing the density meter. NR 11 TC 9 Z9 9 U1 3 U2 27 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0942-9352 J9 Z PHYS CHEM JI Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys. PY 2013 VL 227 IS 2-3 SI SI BP 157 EP 165 DI 10.1524/zpch.2013.0328 PG 9 WC Chemistry, Physical SC Chemistry GA 125HI UT WOS:000317530500002 ER PT J AU Chou, SS Kaehr, B Kim, J Foley, BM De, M Hopkins, PE Huang, J Brinker, CJ Dravid, VP AF Chou, Stanley S. Kaehr, Bryan Kim, Jaemyung Foley, Brian M. De, Mrinmoy Hopkins, Patrick E. Huang, Jiaxing Brinker, C. Jeffrey Dravid, Vinayak P. TI Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE dichalcogenides; molybdenum; organicinorganic hybrid composites; photothermal therapy; supramolecular chemistry ID REDUCED GRAPHENE OXIDE; SINGLE-LAYER MOS2; NANOPARTICLE RECEPTORS; ALPHA-CHYMOTRYPSIN; CARBON NANOTUBES; LARGE-AREA; HEAT-FLOW; THERAPY; BINDING; PHOTOTRANSISTORS C1 [Kaehr, Bryan; Brinker, C. Jeffrey] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Kaehr, Bryan; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem, Albuquerque, NM 87106 USA. [Kaehr, Bryan; Brinker, C. Jeffrey] Univ New Mexico, Nucl Engn Ctr Microengn Mat, Albuquerque, NM 87106 USA. [Chou, Stanley S.; Kim, Jaemyung; Foley, Brian M.; De, Mrinmoy; Huang, Jiaxing; Dravid, Vinayak P.] Northwestern Univ, Dept Mat Sci & Engn, Int Inst Nanotechnol, Evanston, IL 60208 USA. [Hopkins, Patrick E.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. RP Chou, SS (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Int Inst Nanotechnol, Evanston, IL 60208 USA. EM s-chou@northwestern.edu; bjkaehr@sandia.gov RI Kim, Jaemyung/E-4617-2012; Huang, Jiaxing/B-7521-2009; Dravid, Vinayak/B-6688-2009; Huang, Jiaxing/A-9417-2012; OI Kim, Jaemyung/0000-0001-6144-9766; Kim, Jaemyung/0000-0002-0195-1460 FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; D.H.S.; National Cancer Institute Center for Cancer Nanotechnology Excellence (CCNE) initiative at Northwestern University [U54A119341]; National Science Foundation [0955612]; Alfred P. Sloan Research Foundation FX B.K. and C.J.B. acknowledge support from the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract number DE-AC04-94AL85000. S. C. thanks D.H.S. for a fellowship and Dr. Y. Lin for helpful discussions. V. P. D. acknowledges support by the National Cancer Institute Center for Cancer Nanotechnology Excellence (CCNE) initiative at Northwestern University award number U54A119341. J.H. acknowledges support from the National Science Foundation (DMR CAREER grant number 0955612) and the Alfred P. Sloan Research Foundation. NR 51 TC 136 Z9 137 U1 37 U2 356 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2013 VL 52 IS 15 BP 4160 EP 4164 DI 10.1002/anie.201209229 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 118YX UT WOS:000317064600015 PM 23471666 ER PT J AU Thomas, JL Raut, JC Law, KS Marelle, L Ancellet, G Ravetta, F Fast, JD Pfister, G Emmons, LK Diskin, GS Weinheimer, A Roiger, A Schlager, H AF Thomas, J. L. Raut, J. -C. Law, K. S. Marelle, L. Ancellet, G. Ravetta, F. Fast, J. D. Pfister, G. Emmons, L. K. Diskin, G. S. Weinheimer, A. Roiger, A. Schlager, H. TI Pollution transport from North America to Greenland during summer 2008 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BIOMASS BURNING EMISSIONS; MOZAIC AIRBORNE PROGRAM; LONG-RANGE TRANSPORT; ARCTIC AIR-POLLUTION; TROPOSPHERIC OZONE; CARBON-MONOXIDE; SATELLITE-OBSERVATIONS; LOWER STRATOSPHERE; SOURCE ATTRIBUTION; BOUNDARY-LAYER AB Ozone pollution transported to the Arctic is a significant concern because of the rapid, enhanced warming in high northern latitudes, which is caused, in part, by short-lived climate forcers, such as ozone. Long-range transport of pollution contributes to background and episodic ozone levels in the Arctic. However, the extent to which plumes are photochemically active during transport, particularly during the summer, is still uncertain. In this study, regional chemical transport model simulations are used to examine photochemical production of ozone in air masses originating from boreal fire and anthropogenic emissions over North America and during their transport toward the Arctic during early July 2008. Model results are evaluated using POLARCAT aircraft data collected over boreal fire source regions in Canada (ARCTAS-B) and several days downwind over Greenland (POLARCAT-France and POLARCAT-GRACE). Model results are generally in good agreement with the observations, except for certain trace gas species over boreal fire regions, in some cases indicating that the fire emissions are too low. Anthropogenic and biomass burning pollution (BB) from North America was rapidly uplifted during transport east and north to Greenland where pollution plumes were observed in the mid-and upper troposphere during POLARCAT. A model sensitivity study shows that CO levels are in better agreement with POLARCAT measurements (fresh and aged fire plumes) upon doubling CO emissions from fires. Analysis of model results, using Delta O-3/Delta CO enhancement ratios, shows that pollution plumes formed ozone during transport towards the Arctic. Fresh anthropogenic plumes have average Delta O-3/Delta CO enhancement ratios of 0.63 increasing to 0.92 for aged anthropogenic plumes, indicating additional ozone production during aging. Fresh fire plumes are only slightly enhanced in ozone (Delta O-3/Delta CO=0.08), but form ozone downwind with Delta O-3/Delta CO of 0.49 for aged BB plumes (model-based run). We estimate that aged anthropogenic and BB pollution together made an important contribution to ozone levels with an average contribution for latitudes > 55 degrees N of up to 6.5 ppbv (18%) from anthropogenic pollution and 3 ppbv (5.2%) from fire pollution in the model domain in summer 2008. C1 [Thomas, J. L.; Raut, J. -C.; Law, K. S.; Marelle, L.; Ancellet, G.; Ravetta, F.] Univ Versailles St Quentin, UPMC Univ Paris 06, CNRS, INSU,LATMOS,IPSL,UMR8190, Paris, France. [Fast, J. D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pfister, G.; Emmons, L. K.; Weinheimer, A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Diskin, G. S.] NASA Langley Res Ctr, Hampton, VA USA. [Roiger, A.; Schlager, H.] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany. RP Thomas, JL (reprint author), Univ Versailles St Quentin, UPMC Univ Paris 06, CNRS, INSU,LATMOS,IPSL,UMR8190, Paris, France. EM jennie.thomas@latmos.ipsl.fr RI Raut, Jean-Christophe/G-3946-2016; Emmons, Louisa/R-8922-2016; OI Emmons, Louisa/0000-0003-2325-6212; Raut, Jean-Christophe/0000-0002-3552-2437 FU French Agence Nationale de la Recherche (ANR); CNES; CNRS-INSU-LEFE; IPEV; EUFAR; ANR Climate Impact of Short-lived Climate Forcers and Methane in the Arctic (CLIMSLIP) Blanc SIMI [5-6 021 01]; CLIMSLIP-LEFE (CNRS-INSU); European Union Arctic Climate Change, Economy and Society (ACCESS) project [FP7-SCP0-2011-265863]; US Department of Energy (DOE) Office of Science (BER) Climate Change Modeling Program; INSU-CNRS (France); Meteo-France; Forschungszentrum (FZJ, Julich, Germany); National Science Foundation FX We thank the POLARCAT aircraft teams especially the NASA ARCTAS, DLR-GRACE, and French ATR-42 teams. French ATR-42 campaigns and data analysis were part of POLARCAT-France funded by French Agence Nationale de la Recherche (ANR), CNES, CNRS-INSU-LEFE, IPEV and EUFAR. Authors (J. Thomas, K. Law and J. C. Raut) acknowledge support from projects ANR Climate Impact of Short-lived Climate Forcers and Methane in the Arctic (CLIMSLIP) Blanc SIMI 5-6 021 01, CLIMSLIP-LEFE (CNRS-INSU), and the European Union Arctic Climate Change, Economy and Society (ACCESS) project (FP7-SCP0-2011-265863). J. Fast was supported by the US Department of Energy (DOE) Office of Science (BER) Climate Change Modeling Program. We thank D. Blake and E. Apel (NMHC measurements) as well as Greg Huey (PAN measurements) and the entire ARCTAS team for the use of the measurements taken onboard the DC8. The authors acknowledge the strong support of the European Commission, Airbus, and the Airlines (Lufthansa, Austrian, Air France) who carry free of charge the MOZAIC equipment and perform the maintenance since 1994. MOZAIC is presently funded by INSU-CNRS (France), Meteo-France, and Forschungszentrum (FZJ, Julich, Germany). The MOZAIC database is supported by ETHER (CNES and INSU-CNRS). We also acknowledge valuable help from colleagues at PNNL, NCAR (C. Wiedinmyer, S. Walters) and LATMOS/IPSL (D. Cugnet and T. Onishi). The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research with funding from the National Science Foundation. CNRS is acknowledged for publication cost support. NR 84 TC 14 Z9 14 U1 2 U2 26 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2013 VL 13 IS 7 BP 3825 EP 3848 DI 10.5194/acp-13-3825-2013 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 126HV UT WOS:000317605400020 ER PT J AU Neville, SM Halder, GJ Murray, KS Moubaraki, B Kepert, CJ AF Neville, Suzanne M. Halder, Gregory J. Murray, Keith S. Moubaraki, Boujemaa Kepert, Cameron J. TI A Family of Three-Dimensional Molecular Framework Materials Containing the Three-Connecting Ligands 2,4,6-Tris(n '-pyridyl)-1,3,5-triazine: 3-tpt and 4-tpt SO AUSTRALIAN JOURNAL OF CHEMISTRY LA English DT Article ID METAL-ORGANIC FRAMEWORKS; SPIN-CROSSOVER BEHAVIOR; POROUS MATERIALS; BUILDING-BLOCKS; DESIGN; TRANSITION; CHEMISTRY; NETWORKS; NETS; TPT=2,4,6-TRI(4-PYRIDYL)-1,3,5-TRIAZINE AB Three-dimensional (3D) framework materials containing the ligands 2,4,6-tris(4'-pyridyl)-1,3,5-triazine (4-tpt) and 2,4,6-tris(3'-pyridyl)-1,3,5-triazine (3-tpt) have been prepared and their structure and magnetic properties investigated. The [M-II(NCS)(2)(py)(4)] (M-II = Fe, Co, py = 3-tpt, and 4-tpt) coordination environments in these materials have been targeted in an effort to prepare high-dimensional coordination polymers which contain spin crossover (SCO) centres. Using Fe-II, two isotopological cubic 3D materials [Fe(NCS)(2)(4-tpt)(4/3)]center dot n(BzOH, ac) (1a(Bz, ac)) and [Fe(NCS)(2)(3-tpt)(4/3)]center dot n(BzOH, ac) (1b(Bz, ac)) were formed. However, with Co II a different 3D framework topology results, [Co(NCS)(2)(3-tpt)(4/3)]center dot(BzOH, ac) (2(Bz, ac)). Further synthetic variation leads to the isostructural 3D materials trans-[M-II(NCS)(2)(4-tpt)(4/3)]cis-[M-II(NCS)(2)(4-tpt)(2)]center dot n(tce, EtOH) (Fe: 3a(Tce, Et) and Co: 3b(Tce, Et)) which form 3D networks outside Wellsian classification - and for which uniquely both two-and three-connecting modes of 4-tpt are present in the one complex. Despite having the metal coordination environments for which SCO has previously been observed, magnetic susceptibilities of this family of materials reveal a high spin nature. C1 [Neville, Suzanne M.; Murray, Keith S.; Moubaraki, Boujemaa] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia. [Halder, Gregory J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Kepert, Cameron J.] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. RP Kepert, CJ (reprint author), Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. EM c.kepert@chem.usyd.edu.au RI Halder, Gregory/C-5357-2013; Murray, Keith/B-9518-2014; neville, suzanne/B-2254-2016; OI Kepert, Cameron/0000-0002-6105-9706 FU ARC Discovery Grant; Australian Synchrotron Research Program; Commonwealth of Australia under the Major National Research Facilities Program; National Science Foundation/Department of Energy [HE9522232, CHE0087817]; Illinois board of higher education; USA Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by an ARC Discovery Grant. The authors thank K. W. Chapman and P. Turner for their assistance collecting the synchrotron single crystal data. Use of the ChemMatCARS Sector 15 at the Advanced Photon Source was supported by the Australian Synchrotron Research Program, which was funded by the Commonwealth of Australia under the Major National Research Facilities Program. ChemMatCARS Sector 15 is also supported by the National Science Foundation/Department of Energy under grant numbers HE9522232 and CHE0087817, and by the Illinois board of higher education. Use of the Advanced Photon Source was supported by the USA Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 46 TC 5 Z9 5 U1 2 U2 37 PU CSIRO PUBLISHING PI COLLINGWOOD PA 150 OXFORD ST, PO BOX 1139, COLLINGWOOD, VICTORIA 3066, AUSTRALIA SN 0004-9425 J9 AUST J CHEM JI Aust. J. Chem. PY 2013 VL 66 IS 4 BP 452 EP 463 DI 10.1071/CH12444 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 124YG UT WOS:000317504400008 ER PT S AU Starrfield, S Timmes, FX Hix, WR Iliadis, C Arnett, WD Meakin, C Sparks, WM AF Starrfield, S. Timmes, F. X. Hix, W. R. Iliadis, C. Arnett, W. D. Meakin, C. Sparks, W. M. BE Di Stefano, R Orio, M Moe, M TI y Hydrodynamic Studies of the Evolution of Recurrent Novae to Supernova Ia Explosions SO BINARY PATHS TO TYPE IA SUPERNOVAE EXPLOSIONS SE IAU Symposium Proceedings Series LA English DT Proceedings Paper CT 281st Symposium of the International-Astronomical-Union CY JUL 04-08, 2011 CL Padova, ITALY SP INAF, City Padova, Univ Padova, Dept Astronomy, INAF Padova Observ, ANEMOS DE stars: white dwarfs; close binaries; dwarf novae; interiors; novae; cataclysmic variables; supernovae ID ACCRETING WHITE-DWARFS; HYDROGEN SHELL FLASHES; MODELS AB We have begun new studies of the evolution of thermonuclear runaways (TNRs) in the accreted envelopes of white dwarfs (WDs). Here we focus on the recent outbursts of RS Oph (2006), U Sco (2010) and T Pyx (2011). 11 Sco explodes about every 10 years and the ejected material from the WD is helium rich. It has a short orbital period for recurrent novae (RNe) but the secondary is likely to be evolved. The WD is thought to be close in mass to the Chandrasekhar limit. T Pyx has just suffered its first outburst since 1966 and it was predicted to never experience another outburst. It has a short orbital period and has formed dust in the ejecta as this paper was being written. One important question is the secular evolution of the WD. Do the repeated outbursts cause the WD to gain or lose mass? If it is gaining mass, it could eventually reach the Chandrasekhar limit and become a Type Ia supernova (SNe Ia) if it can hide the hydrogen and helium in the system. Here, we report on our latest studies of TNRs in accreted envelopes on WDs using a variety of initial WD masses, luminosities, and mass accretion rates. Of great importance to our conclusions, we assume a solar composition (Lodders abundance distribution). We use our 1-D hydro code, NOVA, that includes the Hix and Thielemann nuclear reaction network, the Iliadis reaction rate library, the Timmes equation of state, OPAL opacities, and the new convection of Arnett, Meakin, and Young. We report on the amount of ejected mass, evolution time to explode, and whether or not the WD is growing or losing mass. C1 [Starrfield, S.; Timmes, F. X.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Hix, W. R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Iliadis, C.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Arnett, W. D.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Meakin, C.; Sparks, W. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Starrfield, S (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. EM starrfield@asu.edu; fxt44@mac.com; raph@utk.edu; iliadis@unc.edu; darnett@as.arizona.edu; casey.meakin@gmail.com; warrensparks@comcast.net RI Hix, William/E-7896-2011 OI Hix, William/0000-0002-9481-9126 NR 15 TC 0 Z9 0 U1 0 U2 2 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-1-107-01981-2 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2013 VL 281 BP 166 EP + DI 10.1017/S1743921312014937 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BEI40 UT WOS:000316706100039 ER PT S AU Scannapieco, E Raskin, C Della Valle, M Fryer, C Rhoads, J Rockefeller, G Timmes, FX AF Scannapieco, E. Raskin, C. Della Valle, M. Fryer, C. Rhoads, J. Rockefeller, G. Timmes, F. X. BE Di Stefano, R Orio, M Moe, M TI Constraining Type Ia Supernova Progenitors SO BINARY PATHS TO TYPE IA SUPERNOVAE EXPLOSIONS SE IAU Symposium Proceedings Series LA English DT Proceedings Paper CT 281st Symposium of the International-Astronomical-Union CY JUL 04-08, 2011 CL Padova, ITALY SP INAF, City Padova, Univ Padova, Dept Astronomy, INAF Padova Observ, ANEMOS DE supernovae ID GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; HOST GALAXIES; WHITE-DWARFS; COLLISIONS AB We present observational and theoretical studies constraining Type Ia supernova progenitors. First, we use a new observational technique to show that "prompt" SNe Ia that trace star-formation on cosmic timescales exhibit a significant delay time of 200-500 million years. This implies that either the majority of SNe Ia companion stars have main-sequence masses less than three solar masses, or that most SNe Ia arise from double-white dwarf binaries. Second we present a comprehensive study of white dwarf collisions as an avenue for creating SNe Ia. Using a smooth particle hydrodynamics code with a 13-isotope nuclear network, we show that several combinations of white dwarf masses and impact parameters produce enough Ni-56 to result in luminosities ranging from those of sub-luminous to super-luminous SNe Ia, depending on the parameters of the collision. Finally, we conduct a simulation survey of double-degenerate white dwarf mergers with varying mass combinations. Unlike previous works, we do not add detonations by hand to our simulations, and we do not find any thermonuclear explosions during the mergers. Instead, all but one of our simulations forms a cold, degenerate core surrounded by a hot disk, while our least massive pair of stars forms only a hot disk. We characterize the remnants by core mass, rotational velocity, and half-mass radius, and discuss how we will evolve them further with simulations that incorporate dissipative processes. Such simulations may indeed lead to double-degenerate Type Ia explosions that occur many orbits after the mergers themselves. C1 [Scannapieco, E.; Raskin, C.; Rhoads, J.; Timmes, F. X.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Della Valle, M.] Osserv Astron Capodimonte, INAF, I-1680131 Naples, Italy. [Rhoads, J.; Rockefeller, G.] Los Alamos Natl Lab, CCS 2, Los Alamos, NM USA. RP Scannapieco, E (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. EM evan.scannapieco@asu.edu; dellavalle@na.astro.it OI Rockefeller, Gabriel/0000-0002-9029-5097 FU NSF [AST08-06720]; NASA NESSF [PVSO401] FX This work was supported by NSF grant AST08-06720 and NASA NESSF grant PVSO401. NR 19 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-1-107-01981-2 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2013 VL 281 BP 275 EP + DI 10.1017/S1743921312015190 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BEI40 UT WOS:000316706100065 ER PT J AU Berryman, E Marshall, JD Rahn, T Litvak, M Butnor, J AF Berryman, E. Marshall, J. D. Rahn, T. Litvak, M. Butnor, J. TI Decreased carbon limitation of litter respiration in a mortality-affected pinon-juniper woodland SO BIOGEOSCIENCES LA English DT Article ID PONDEROSA PINE FORESTS; SOIL RESPIRATION; PRECIPITATION PULSES; DESERT ECOSYSTEM; NITROGEN AVAILABILITY; PLANT; DECOMPOSITION; TEMPERATURE; RESPONSES; MOISTURE AB Microbial respiration depends on microclimatic variables and carbon (C) substrate availability, all of which are altered when ecosystems experience major disturbance. Widespread tree mortality, currently affecting pinon-juniper ecosystems in southwestern North America, may affect C substrate availability in several ways, for example, via litterfall pulses and loss of root exudation. To determine pinon mortality effects on C and water limitation of microbial respiration, we applied field amendments (sucrose and water) to two pinon-juniper sites in central New Mexico, USA: one with a recent (<1 yr), experimentally induced mortality event and a nearby site with live canopy. We monitored the respiration response to water and sucrose applications to the litter surface and to the underlying mineral soil surface, testing the following hypotheses: (1) soil respiration in a pinon-juniper woodland is water-and labile C-limited in both the litter layer and mineral soil; (2) pinon mortality reduces the C limitation of litter respiration; and (3) pinon mortality enhances the C limitation of mineral soil respiration. Litter respiration at both sites responded to increased water availability, yet surprisingly, mineral soil respiration was not limited by water. Consistent with hypothesis 2, C limitation of litter respiration was lower at the recent mortality site compared to the intact canopy site. Applications to the mineral soil showed evidence of reduction in CO2 flux on the girdled site and a non-significant increase on the control. We speculate that the reduction may have been driven by water-induced carbonate dissolution, which serves as a sink for CO2 and would reduce the net flux. Widespread pinon mortality may decrease labile C limitation of litter respiration, at least during the first growing season following mortality. C1 [Berryman, E.] Colorado State Univ, Dept Forest & Rangeland Stewardship, Ft Collins, CO 80523 USA. [Marshall, J. D.] Univ Idaho, Dept Forest Rangeland & Fire Sci, Moscow, ID 83843 USA. [Rahn, T.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Litvak, M.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Butnor, J.] Univ Vermont, USDA, US Forest Serv, Aiken Ctr, Burlington, VT USA. RP Berryman, E (reprint author), Colorado State Univ, Dept Forest & Rangeland Stewardship, 1472 Campus Delivery, Ft Collins, CO 80523 USA. EM erin.berryman@colostate.edu RI Rahn, Thom/C-5211-2012; Butnor, John/P-9738-2016; OI Rahn, Thomas/0000-0001-8634-1348 FU Los Alamos National Laboratory's Institute for Geophysics and Planetary Physics Minigrant Program (LA-UR) [11-10329]; US Department of Energy - EPSCoR [DE-FG02-08ER46506] FX This research was supported by Los Alamos National Laboratory's Institute for Geophysics and Planetary Physics Minigrant Program (LA-UR #11-10329) and by a grant from the US Department of Energy - EPSCoR to Marcy Litvak, Thom Rahn and Bob Sinsabaugh (#DE-FG02-08ER46506). The authors would like to acknowledge the assistance of Leo Stoscheck, Daniel McInnis, and Jennifer Johnson. The authors are greatly appreciative of comments from Bob Sinsabaugh, Mike Ryan, R. Dave Evans, Jodi Johnson-Maynard, and two anonymous reviewers. NR 41 TC 8 Z9 8 U1 0 U2 40 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 J9 BIOGEOSCIENCES JI Biogeosciences PY 2013 VL 10 IS 3 BP 1625 EP 1634 DI 10.5194/bg-10-1625-2013 PG 10 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 118FV UT WOS:000317010600025 ER PT J AU Todd-Brown, KEO Randerson, JT Post, WM Hoffman, FM Tarnocai, C Schuur, EAG Allison, SD AF Todd-Brown, K. E. O. Randerson, J. T. Post, W. M. Hoffman, F. M. Tarnocai, C. Schuur, E. A. G. Allison, S. D. TI Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations SO BIOGEOSCIENCES LA English DT Article ID GENERAL-CIRCULATION MODEL; GLOBAL VEGETATION MODEL; CLIMATE-CHANGE; TERRESTRIAL ECOSYSTEM; ORGANIC-CARBON; PERMAFROST CARBON; NET PRIMARY; TEMPERATURE SENSITIVITY; THEORETICAL-MODEL; SEASONAL CYCLE AB Stocks of soil organic carbon represent a large component of the carbon cycle that may participate in climate change feedbacks, particularly on decadal and centennial timescales. For Earth system models (ESMs), the ability to accurately represent the global distribution of existing soil carbon stocks is a prerequisite for accurately predicting future carbon-climate feedbacks. We compared soil carbon simulations from 11 model centers to empirical data from the Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). Model estimates of global soil carbon stocks ranged from 510 to 3040 Pg C, compared to an estimate of 1260 Pg C (with a 95% confidence interval of 890-1660 Pg C) from the HWSD. Model simulations for the high northern latitudes fell between 60 and 820 Pg C, compared to 500 Pg C (with a 95% confidence interval of 380-620 Pg C) for the NCSCD and 290 PgC for the HWSD. Global soil carbon varied 5.9 fold across models in response to a 2.6-fold variation in global net primary productivity (NPP) and a 3.6-fold variation in global soil carbon turnover times. Model-data agreement was moderate at the biome level (R-2 values ranged from 0.38 to 0.97 with a mean of 0.75); however, the spatial distribution of soil carbon simulated by the ESMs at the 1 degrees scale was not well correlated with the HWSD (Pearson correlation coefficients less than 0.4 and root mean square errors from 9.4 to 20.8 kg C m(-2)). In northern latitudes where the two data sets overlapped, agreement between the HWSD and the NCSCD was poor (Pearson correlation coefficient 0.33), indicating uncertainty in empirical estimates of soil carbon. We found that a reduced complexity model dependent on NPP and soil temperature explained much of the 1 degrees spatial variation in soil carbon within most ESMs (R-2 values between 0.62 and 0.93 for 9 of 11 model centers). However, the same reduced complexity model only explained 10% of the spatial variation in HWSD soil carbon when driven by observations of NPP and temperature, implying that other drivers or processes may be more important in explaining observed soil carbon distributions. The reduced complexity model also showed that differences in simulated soil carbon across ESMs were driven by differences in simulated NPP and the parameterization of soil heterotrophic respiration (inter-model R-2 = 0.93), not by structural differences between the models. Overall, our results suggest that despite fair global-scale agreement with observational data and moderate agreement at the biome scale, most ESMs cannot reproduce grid-scale variation in soil carbon and may be missing key processes. Future work should focus on improving the simulation of driving variables for soil carbon stocks and modifying model structures to include additional processes. C1 [Todd-Brown, K. E. O.; Randerson, J. T.; Hoffman, F. M.; Allison, S. D.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Post, W. M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Allison, S. D.] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA. [Tarnocai, C.] Agr & Agri Food Canada, Res Branch, Ottawa, ON K1A 0C6, Canada. [Schuur, E. A. G.] Univ Florida, Dept Biol, Gainesville, FL 32611 USA. [Hoffman, F. M.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Todd-Brown, KEO (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM ktoddbro@uci.edu RI Allison, Steven/E-2978-2010; Hoffman, Forrest/B-8667-2012; OI Allison, Steven/0000-0003-4629-7842; Hoffman, Forrest/0000-0001-5802-4134; Todd-Brown, Katherine/0000-0002-3109-8130 FU NSF Advancing Theory in Biology program; Decadal and Regional Climate Prediction using Earth System Models (EaSM) program [AGU-1048890]; Office of Science (BER), US Department of Energy FX We thank Shishi Lui and Yaxing Wei for assistance with the HWSD, as well as Yufang Jin for assistance with the NCSCD data set. This research was funded by grants from the NSF Advancing Theory in Biology program, the Decadal and Regional Climate Prediction using Earth System Models (EaSM; AGU-1048890) program, and the Office of Science (BER), US Department of Energy. NR 112 TC 152 Z9 153 U1 14 U2 151 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2013 VL 10 IS 3 BP 1717 EP 1736 DI 10.5194/bg-10-1717-2013 PG 20 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 118FV UT WOS:000317010600032 ER PT J AU Waidmann, CR Silks, LA Wu, RL Gordon, JC AF Waidmann, Christopher R. Silks, L. A. Pete'' Wu, Ruilian Gordon, John C. TI One-pot reduction of olefin and ketone moieties by a copper-phosphine catalyst enabled by polar aprotic solvents SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID ASYMMETRIC HYDROSILYLATION; CONJUGATE REDUCTION; COPPER(II)-DIPYRIDYLPHOSPHINE CATALYST; ENANTIOSELECTIVE HYDROSILYLATION; CARBONYL-COMPOUNDS; STRYKERS REAGENT; HYDRIDE; LIGANDS; COMPLEXES; MECHANISM AB One-pot reduction of both olefin and ketone moieties in a non-food biomass derived substrate using simple copper-phosphine catalysts is described. The electron rich, sterically unencumbered bis(diethylphosphino)ethane ligand used here gives an 84% yield of the product where both the olefin and ketone have been reduced in minutes using PhSiH3 and dry acetonitrile as the solvent. The coordinating ability of acetonitrile appears to be critical for effecting this one-pot reduction. Labeling experiments indicate that ketone reduction in benzene occurs predominantly via a sigma bond metathesis pathway. C1 [Waidmann, Christopher R.; Gordon, John C.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Silks, L. A. Pete''; Wu, Ruilian] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Waidmann, CR (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM waidmann@lanl.gov; jgordon@lanl.gov OI Silks, Pete/0000-0002-2993-5630 FU LDRD Program at LANL FX This work was supported by the LDRD Program at LANL. NR 40 TC 1 Z9 1 U1 1 U2 20 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2013 VL 3 IS 5 BP 1240 EP 1245 DI 10.1039/c3cy20762e PG 6 WC Chemistry, Physical SC Chemistry GA 126FA UT WOS:000317596800012 ER PT J AU Borfecchia, E Garino, C Salassa, L Ruiu, T Gianolio, D Zhang, XY Attenkofer, K Chen, LX Gobetto, R Sadler, PJ Lamberti, C AF Borfecchia, Elisa Garino, Claudio Salassa, Luca Ruiu, Tiziana Gianolio, Diego Zhang, Xiaoyi Attenkofer, Klaus Chen, Lin X. Gobetto, Roberto Sadler, Peter J. Lamberti, Carlo TI X-ray transient absorption structural characterization of the (MLCT)-M-3 triplet excited state of cis-[Ru(bpy)(2)(py)(2)](2+) SO DALTON TRANSACTIONS LA English DT Article ID MOLECULAR-STRUCTURES; FINE-STRUCTURE; MLCT STATE; SPECTROSCOPY; COMPLEXES; METALLOPORPHYRIN; PHOTOCHEMISTRY; STABILIZATION; SNAPSHOTS; DYNAMICS AB The excited state dynamics and structure of the photochemically active complex cis-[Ru(bpy)(2)(py)(2)](2+) have been investigated using optical transient absorption (OTA) and X-ray transient absorption (XTA) spectroscopy, and density functional theory (DFT). Upon light-excitation in aqueous solution cis-[ Ru( bpy)(2)(py)(2)](2+) undergoes ultrafast dissociation of one pyridine ligand to form cis-[Ru(bpy)(2)(py)(H2O)](2+). OTA measurements highlighted the presence of two major time components of 1700 ps and 130 ps through which the system decays to the ground-state and evolves towards the photoproduct. XTA data were acquired after 150 ps, 500 ps, and 3000 ps from laser excitation (lambda(exc) = 351 nm) and provided the transient structure of the (MLCT)-M-3 state corresponding to the longer time component in the OTA experiment. In excellent agreement with DFT, XTA shows that the (MLCT)-M-3 geometry is characterized by an elongation of the dissociating Ru-N(py) bond and a shortening of the trans Ru-N(bpy) bond with respect to the ground state. Conversely, calculations show that the (MC)-M-3 state has a highly distorted structure with Ru-N(py) bonds between 2.77-3.05 angstrom. C1 [Borfecchia, Elisa; Garino, Claudio; Ruiu, Tiziana; Gobetto, Roberto; Lamberti, Carlo] Univ Turin, Dept Chem, NIS Ctr Excellence, I-10125 Turin, Italy. [Borfecchia, Elisa; Garino, Claudio; Ruiu, Tiziana; Gobetto, Roberto; Lamberti, Carlo] Univ Turin, INSTM Reference Ctr, I-10125 Turin, Italy. [Salassa, Luca; Sadler, Peter J.] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England. [Gianolio, Diego] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. [Zhang, Xiaoyi; Attenkofer, Klaus; Chen, Lin X.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Zhang, Xiaoyi; Attenkofer, Klaus; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Salassa, L (reprint author), CIC BiomaGUNE, Paseo Miramon 182, Donostia San Sebastian 20009, Spain. EM lsalassa@cicbiomagune.es; carlo.lamberti@unito.it RI biomaGUNE, CIC/J-9136-2014; Borfecchia, Elisa/M-2568-2015; Gianolio, Diego/I-9221-2012; Lamberti, Carlo/C-5901-2013; Garino, Claudio/B-5669-2014; Salassa, Luca/M-7300-2014 OI biomaGUNE, CIC/0000-0001-7690-0660; Borfecchia, Elisa/0000-0001-8374-8329; Gianolio, Diego/0000-0002-0708-4492; Lamberti, Carlo/0000-0001-8004-2312; Garino, Claudio/0000-0002-7854-6076; Salassa, Luca/0000-0002-2112-9095 FU Marie Curie Intraeuropean Fellowship [220281 PHOTORUACD]; European Research Council (ERC) [247450]; DOE-BES [DE-AC02-06CH11357]; MICINN of Spain for the Ramon y Cajal Fellowship [RYC-2011-07787]; INSTM (Florence, Italy) FX LS was supported for this work by a Marie Curie Intraeuropean Fellowship (220281 PHOTORUACD) and by the European Research Council (ERC grant no. 247450) BIO-INCMED (PJS). Use of the APS and the CNM is supported by DOE-BES under Contract No. DE-AC02-06CH11357. LS gratefully acknowledges the MICINN of Spain for the Ramon y Cajal Fellowship RYC-2011-07787. The authors are grateful to the APS for GUP 12873 and to M. Castagna and Fratelli Castagna s.r.l. for a generous travel funding to CG and TR. EB is grateful to INSTM (Florence, Italy) for having co-founded her PhD grant. NR 52 TC 17 Z9 17 U1 3 U2 66 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 J9 DALTON T JI Dalton Trans. PY 2013 VL 42 IS 18 BP 6564 EP 6571 DI 10.1039/c3dt32865a PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 126AH UT WOS:000317583000037 PM 23474490 ER PT J AU Park, SH Choi, KB Kim, MY Lee, CS AF Park, Su Han Choi, Ki Bong Kim, Myung Yoon Lee, Chang Sik TI Experimental Investigation and Prediction of Density and Viscosity of GTL, GTL-Biodiesel, and GTL-Diesel Blends As a Function of Temperature SO ENERGY & FUELS LA English DT Article ID SYNTHESIS GAS-PRODUCTION; EMISSION CHARACTERISTICS; FUEL PROPERTIES; ENGINE; LIQUID; RME AB The purpose of this study is to experimentally investigate the densities and viscosities of gas-to-liquid (GTL)-biodiesel and GTL-diesel blends for various fuel temperatures and blending ratios. The biodiesel used in this study was derived from soybean oil, and was added to GTL from 20% to 100% by volumetric ratio. In the case of the GTL-diesel blend, diesel was added at 30% and 70% by volumetric ratio. Based on the experimental results, the empirical correlations for densities and viscosities were derived for variations in fuel temperatures and blending ratios. The densities of GTL-biodiesel and GTL-diesel blends decreased linearly with increasing fuel temperature and GTL is insensitive to temperature change compared to biodiesel and diesel. The dynamic and kinematic viscosities of GTL-biodiesel and GTL-diesel blends decreased exponentially with increasing fuel temperatures. As the fuel temperatures increased, the rate of change in viscosities for the temperature change significantly decreased. The increase of biodiesel and diesel in GTL blended fuels caused an increase in density. At a given temperature, the rates of density increase in the GTL-biodiesel and GTL-diesel blends showed similar values. The rates of density increase caused by biodiesel blending were higher than that caused by diesel blending due to the high density of biodiesel. With increased fuel temperature, the variations in viscosity from the blending of biodiesel or diesel with GTL decreased. In terms of the interdependence of density and kinematic viscosity, the density and the kinematic viscosity were positively correlated. At the same density conditions, an increase in biodiesel or diesel content in GTL blended fuels caused a decrease in the kinematic viscosity of the blended fuels. C1 [Park, Su Han; Choi, Ki Bong; Lee, Chang Sik] Hanyang Univ, Sch Mech Engn, Seoul 133791, South Korea. [Kim, Myung Yoon] Hyundai Motor Grp, Automot R&D Div, Powertrain Control Syst Team, Hwaseung Si 445706, Gyeonggi Do, South Korea. [Park, Su Han] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. RP Lee, CS (reprint author), Hanyang Univ, Sch Mech Engn, 17 Haengdang Dong, Seoul 133791, South Korea. EM cslee@hanyang.ac.kr FU Second Brain Korea 21 Project; National Research Foundation of Korea (NRF); Korea government (MEST) [2011-0025295] FX This work was supported by the Second Brain Korea 21 Project and was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2011-0025295). NR 22 TC 3 Z9 3 U1 6 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD JAN PY 2013 VL 27 IS 1 BP 56 EP 65 DI 10.1021/ef301150k PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 122OP UT WOS:000317327700007 ER PT J AU Muntean, JV Libera, JA Snyder, SW Wu, TP Cronauer, DC AF Muntean, John V. Libera, Joseph A. Snyder, Seth W. Wu, Tianpin Cronauer, Donald C. TI Quantitative Nuclear Magnetic Resonance Spectroscopy as a Tool To Evaluate Chemical Modification of Deep Hydrotreated Recycled Lube Oils SO ENERGY & FUELS LA English DT Article ID ATOMIC LAYER DEPOSITION; NMR-SPECTROSCOPY; SENSITIVITY; FRACTIONS; CATALYSTS AB The applications of H-1 and C-13 nuclear magnetic resonance (NMR) and two-dimensional H-1/C-13 NMR spectroscopy have been shown to be useful techniques for the qualitative and quantitative characterization of hydrotreated recycled lube oils. The addition of hydrogen to aromatic and alkene hydrocarbons can be quantitatively and selectively measured. The decrease of oxygen/nitrogen/sulfur species can also be inferred from the reduction of specific resonances in the NMR spectra. Treated recycled lube oil was subsequently hydrotreated with Pd catalysts deposited by either atomic layer deposition (ALD) or incipient wetness impregnation (IWI) on a SiO2/Al2O3 support. In both cases, much lower hydrogenation temperatures were required than had been observed with typical NiMo or CoMo on Al2O3. In addition, the ALD-deposited catalyst was more effective for the reduction of aromatics and heteroatom components than the IWI catalyst. The lube oil fractions were of high purity (low aromaticity and low heteroatom content) even at low reaction severity. C1 [Muntean, John V.; Libera, Joseph A.; Snyder, Seth W.; Wu, Tianpin; Cronauer, Donald C.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Cronauer, DC (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dccronauer@anl.gov FU U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; Advanced Manufacturing Office), under DOE Award [YN-19-01-000, 82034] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract DE-AC02-06CH11357. Funding for this work was provided by the U.S. Department of Energy, Office of Energy Efficiency, Industrial Technologies Program (now the Advanced Manufacturing Office), under DOE Award Number YN-19-01-000, 82034. The authors thank Joseph Renk (U.S. Department of Energy) for his guidance and support. Acknowledgements are also extended to J. T. Miller of Argonne National Laboratory and J. Franceschi, J. Condela, M. Wyant, W. Gorman, and J. Parks of the ULI/CEP team for advice, support, and oil samples used in this research. NR 25 TC 0 Z9 2 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD JAN PY 2013 VL 27 IS 1 BP 133 EP 137 DI 10.1021/ef301490d PG 5 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 122OP UT WOS:000317327700016 ER PT J AU Smagala, TG Christensen, E Christison, KM Mohler, RE Gjersing, E McCormick, RL AF Smagala, Thomas G. Christensen, Earl Christison, Krege M. Mohler, Rachel E. Gjersing, Erica McCormick, Robert L. TI Hydrocarbon Renewable and Synthetic Diesel Fuel Blendstocks: Composition and Properties SO ENERGY & FUELS LA English DT Article ID TRANSPORTATION FUELS; BIOMASS; CATALYSTS AB We examined the chemical composition and properties of several diesel fuels and blendstocks derived from Fischer-Tropsch (FT) synthesis, hydroisomerization of lipids, and fermentation of sugar via the terpenoid metabolic pathway. Comprehensive two-dimensional gas chromatographic analysis with nonpolar and polar columns, C-13 NMR, GC-MS, and elemental analysis were used to assess fuel chemistry. Performance properties included density, heat of combustion, cetane number, and cloud point, as well as other properties. The fuels consisted almost entirely of normal and iso-paraffins. Three samples contained residual oxygen below 0.1 mass %. All of the renewable and synthetic diesel fuels have significantly lower density than is typical for a petroleum-derived diesel fuel. As a result, they have slightly higher net heat of combustion on a mass basis (2%-3% higher), but lower heat of combustion on a volume basis (3%-7% lower). Two critical diesel performance properties, cetane number and cloud point, were correlated with iso-paraffin content and chain length. The results confirm that properties of hydroisomerized fats and oils, as well as FT diesel, can be tuned by increasing the degree of isomerization to lower cloud point which also lowers the cetane number. In spite of this trade-off between cloud point, and cetane number, the cetane numbers were still over 70 for fuels with cloud points as low as -27 degrees C. The terpenoid biofuel exhibited a cloud point below -70 degrees C and a cetane number of 58. C1 [Smagala, Thomas G.; Christison, Krege M.; Mohler, Rachel E.] Chevron Corp, Richmond, CA 94801 USA. [Christensen, Earl; Gjersing, Erica; McCormick, Robert L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Smagala, TG (reprint author), Chevron Corp, 100 Chevron Way, Richmond, CA 94801 USA. EM tsmagala@chevron.com RI McCormick, Robert/B-7928-2011 FU Laboratory Directed Research and Development (LDRD) Program FX Work at the National Renewable Energy Laboratory (NREL) was supported by the Laboratory Directed Research and Development (LDRD) Program. NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC. Part of the low-temperature performance testing was kindly supplied by Innospec Fuel Specialties. NR 23 TC 10 Z9 10 U1 2 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD JAN PY 2013 VL 27 IS 1 BP 237 EP 246 DI 10.1021/ef3012849 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 122OP UT WOS:000317327700029 ER PT J AU Averyt, K Macknick, J Rogers, J Madden, N Fisher, J Meldrum, J Newmark, R AF Averyt, K. Macknick, J. Rogers, J. Madden, N. Fisher, J. Meldrum, J. Newmark, R. TI Water use for electricity in the United States: an analysis of reported and calculated water use information for 2008 SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE energy water nexus; electricity; freshwater demands AB Water use by the electricity sector represents a significant portion of the United States water budget (41% of total freshwater withdrawals; 3% consumed). Sustainable management of water resources necessitates an accurate accounting of all water demands, including water use for generation of electricity. Since 1985, the Department of Energy (DOE) Energy Information Administration (EIA) has collected self-reported data on water consumption and withdrawals from individual power generators. These data represent the only annual collection of water consumption and withdrawals by the electricity sector. Here, we compile publically available information into a comprehensive database and then calculate water withdrawals and consumptive use for power plants in the US. In effect, we evaluate the quality of water use data reported by EIA for the year 2008. Significant differences between reported and calculated water data are evident, yet no consistent reason for the discrepancies emerges. C1 [Averyt, K.; Meldrum, J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80305 USA. [Macknick, J.; Newmark, R.] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. [Rogers, J.; Madden, N.] Union Concerned Scientists, Cambridge, MA 02139 USA. [Fisher, J.] Synapse Energy Econ, Cambridge, MA 02139 USA. RP Averyt, K (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80305 USA. EM kristen.averyt@colorado.edu OI Meldrum, James/0000-0001-5250-3759 FU Kresge Foundation; Wallace Research Foundation; Union of Concerned Scientists; Energy Water in a Warming World (EW3); EW3 Scientific Advisory Committee FX The authors would like to thank Rachel Wilson and Nicole Hughes for their work compiling the database, as well as Shazia Davis for her contributions to this effort. This work was supported by The Kresge Foundation, Wallace Research Foundation, and Roger and Vicki Sant. We greatly appreciate the support of the Union of Concerned Scientists, The Energy Water in a Warming World (EW3) contributors, and the EW3 Scientific Advisory Committee, particularly M Webber for helpful insights and reviews. Additional support was provided through the Western Water Assessment and the Cooperative Institute for Research in Environmental Sciences at University of Colorado Boulder. NR 11 TC 28 Z9 29 U1 5 U2 35 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JAN-MAR PY 2013 VL 8 IS 1 AR 015001 DI 10.1088/1748-9326/8/1/015001 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 118BV UT WOS:000316998300064 ER PT J AU Clemmer, S Rogers, J Sattler, S Macknick, J Mai, T AF Clemmer, S. Rogers, J. Sattler, S. Macknick, J. Mai, T. TI Modeling low-carbon US electricity futures to explore impacts on national and regional water use SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE electricity; water; climate; modeling AB The US electricity sector is currently responsible for more than 40% of both energy-related carbon dioxide emissions and total freshwater withdrawals for power plant cooling (EIA 2012a Annual Energy Outlook 2012 (Washington, DC: US Department of Energy), Kenny et al 2009 Estimated Use of Water in the United States 2005 (US Geological Survey Circular vol 1344) (Reston, VA: US Geological Survey)). Changes in the future electricity generation mix in the United States will have important implications for water use, particularly given the changing water availability arising from competing demands and climate change and variability. However, most models that are used to make long-term projections of the electricity sector do not have sufficient regional detail for analyzing water-related impacts and informing important electricity-and water-related decisions. This paper uses the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) to model a range of low-carbon electricity futures nationally that are used to calculate changes in national water use (a sample result, on water consumption, is included here). The model also produces detailed sub-regional electricity results through 2050 that can be linked with basin-level water modeling. The results will allow for sufficient geographic resolution and detail to be relevant from a water management perspective. C1 [Clemmer, S.; Rogers, J.; Sattler, S.] Union Concerned Scientists, Cambridge, MA 02238 USA. [Macknick, J.; Mai, T.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Clemmer, S (reprint author), Union Concerned Scientists, Cambridge, MA 02238 USA. EM sclemmer@ucsusa.org; jrogers@ucsusa.org; ssattler@ucsusa.org; Jordan.Macknick@nrel.gov; Trieu.Mai@nrel.gov FU Kresge Foundation; Wallace Research Foundation; Roger and Vicki Sant FX We gratefully acknowledge funding for this research from The Kresge Foundation, Wallace Research Foundation, and Roger and Vicki Sant, and the research oversight provided by the EW3 Scientific Advisory Committee-Peter Frumhoff (Union of Concerned Scientists), George Hornberger (Vanderbilt University), Robert Jackson (Duke University), Robin Newmark (NREL), Jonathan Overpeck (University of Arizona), Brad Udall (University of Colorado Boulder, NOAA Western Water Assessment), and Michael Webber (University of Texas at Austin). NR 39 TC 19 Z9 19 U1 0 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JAN-MAR PY 2013 VL 8 IS 1 AR 015004 DI 10.1088/1748-9326/8/1/015004 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 118BV UT WOS:000316998300067 ER PT J AU Klimont, Z Smith, SJ Cofala, J AF Klimont, Z. Smith, S. J. Cofala, J. TI The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE sulfur dioxide; global emissions; RCP; anthropogenic ID AEROSOL OPTICAL DEPTH; AIR-QUALITY; CHINA; PROJECTIONS; SCENARIOS; GASES AB The evolution of global and regional anthropogenic SO2 emissions in the last decade has been estimated through a bottom-up calculation. After increasing until about 2006, we estimate a declining trend continuing until 2011. However, there is strong spatial variability, with North America and Europe continuing to reduce emissions, with an increasing role of Asia and international shipping. China remains a key contributor, but the introduction of stricter emission limits followed by an ambitious program of installing flue gas desulfurization on power plants resulted in a significant decline in emissions from the energy sector and stabilization of total Chinese SO2 emissions. Comparable mitigation strategies are not yet present in several other Asian countries and industrial sectors in general, while emissions from international shipping are expected to start declining soon following an international agreement to reduce the sulfur content of fuel oil. The estimated trends in global SO2 emissions are within the range of representative concentration pathway (RCP) projections and the uncertainty previously estimated for the year 2005. C1 [Klimont, Z.; Cofala, J.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Smith, S. J.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Klimont, Z (reprint author), Int Inst Appl Syst Anal, Schlosspl 1, A-2361 Laxenburg, Austria. EM klimont@iiasa.ac.at RI Klimont, Zbigniew/P-7641-2015 OI Klimont, Zbigniew/0000-0003-2630-198X FU ECLIPSE European Union [282688, 265148]; Office of Biological and Environmental Research of the US Department of Energy FX Z Klimont and J Cofala acknowledge the support of the ECLIPSE European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 282688 and the FP7 PEGASOS project, under Grant Agreement 265148. S Smith's work on this paper was supported by the Office of Biological and Environmental Research of the US Department of Energy as part of the Earth System Modeling Program. The authors would like to thank Stephen Dessel for assistance with data processing and Chris Heyes and Wolfgang Schopp for gridding of emissions. NR 33 TC 98 Z9 99 U1 10 U2 102 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JAN-MAR PY 2013 VL 8 IS 1 AR 014003 DI 10.1088/1748-9326/8/1/014003 PG 6 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 118BV UT WOS:000316998300011 ER PT J AU Le Page, Y Hurtt, G Thomson, AM Bond-Lamberty, B Patel, P Wise, M Calvin, K Kyle, P Clarke, L Edmonds, J Janetos, A AF Le Page, Y. Hurtt, G. Thomson, A. M. Bond-Lamberty, B. Patel, P. Wise, M. Calvin, K. Kyle, P. Clarke, L. Edmonds, J. Janetos, A. TI Sensitivity of climate mitigation strategies to natural disturbances SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE natural disturbances; climate change; integrated assessment; climate mitigation; climate policies ID FOREST PRODUCTIVITY; TROPICAL CYCLONES; CARBON BALANCE; LAND-USE; FUTURE; FIRE; CO2; STABILIZATION; ENHANCEMENT; SCENARIOS AB The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon-efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because of the potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and the global economy. An understanding of the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies. C1 [Le Page, Y.; Hurtt, G.; Thomson, A. M.; Bond-Lamberty, B.; Patel, P.; Wise, M.; Calvin, K.; Kyle, P.; Clarke, L.; Edmonds, J.; Janetos, A.] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Hurtt, G.] Univ Maryland, Dept Geog Sci, College Pk, MD 20740 USA. RP Le Page, Y (reprint author), Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. EM Yannick.LePage@pnnl.gov RI Thomson, Allison/B-1254-2010; Bond-Lamberty, Ben/C-6058-2008; OI Bond-Lamberty, Ben/0000-0001-9525-4633; Calvin, Katherine/0000-0003-2191-4189 FU NASA Terrestrial Ecology and Inter-Disciplinary Studies programs; DOE Office of Science Integrated Assessment Program FX This study was supported by grants from the NASA Terrestrial Ecology and Inter-Disciplinary Studies programs and the DOE Office of Science Integrated Assessment Program. The Global Change Assessment Model (GCAM) is freely available as a community model (www.globalchange.umd.edu/models/gcam/). NR 40 TC 10 Z9 10 U1 3 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JAN-MAR PY 2013 VL 8 IS 1 AR 015018 DI 10.1088/1748-9326/8/1/015018 PG 6 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 118BV UT WOS:000316998300081 ER PT J AU Meldrum, J Nettles-Anderson, S Heath, G Macknick, J AF Meldrum, J. Nettles-Anderson, S. Heath, G. Macknick, J. TI Life cycle water use for electricity generation: a review and harmonization of literature estimates SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE life cycle assessment; consumption; withdrawal; power; meta-analysis ID GREENHOUSE-GAS EMISSIONS; ENERGY; POWER; BIOMASS AB This article provides consolidated estimates of water withdrawal and water consumption for the full life cycle of selected electricity generating technologies, which includes component manufacturing, fuel acquisition, processing, and transport, and power plant operation and decommissioning. Estimates were gathered through a broad search of publicly available sources, screened for quality and relevance, and harmonized for methodological differences. Published estimates vary substantially, due in part to differences in production pathways, in defined boundaries, and in performance parameters. Despite limitations to available data, we find that: water used for cooling of thermoelectric power plants dominates the life cycle water use in most cases; the coal, natural gas, and nuclear fuel cycles require substantial water per megawatt-hour in most cases; and, a substantial proportion of life cycle water use per megawatt-hour is required for the manufacturing and construction of concentrating solar, geothermal, photovoltaic, and wind power facilities. On the basis of the best available evidence for the evaluated technologies, total life cycle water use appears lowest for electricity generated by photovoltaics and wind, and highest for thermoelectric generation technologies. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research. C1 [Meldrum, J.] Univ Colorado, Western Water Assessment, Boulder, CO 80309 USA. [Meldrum, J.] Univ Colorado, Inst Behav Sci, Boulder, CO 80309 USA. [Nettles-Anderson, S.; Heath, G.; Macknick, J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Meldrum, J (reprint author), Univ Colorado, Western Water Assessment, Boulder, CO 80309 USA. EM james.meldrum@colorado.edu; garvin.heath@nrel.gov; jordan.macknick@nrel.gov OI Meldrum, James/0000-0001-5250-3759 FU US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the US Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. We wish to thank Laura Vimmerstedt and Dan Bilello, whose comments helped to improve the manuscript. We also acknowledge the LCA Harmonization project team that developed the database of LCA publications (www.nrel.gov/harmonization), Alfred Hicks for polishing the graphics, and Judy Oberg for research assistance. NR 66 TC 49 Z9 50 U1 15 U2 70 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JAN-MAR PY 2013 VL 8 IS 1 AR 015031 DI 10.1088/1748-9326/8/1/015031 PG 18 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 118BV UT WOS:000316998300094 ER PT J AU Shehabi, A Stokes, JR Horvath, A AF Shehabi, Arman Stokes, Jennifer R. Horvath, Arpad TI Reply to Comment on 'Energy and air emission implications of a decentralized wastewater system' SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Editorial Material DE life-cycle assessment; decentralized wastewater treatment; greenhouse gases AB Complementing centralized water-related infrastructure with decentralized facilities is being considered in some communities and a life-cycle perspective is needed for informed decision making. Our 2012 study presents a framework for analyzing the environmental effects of decentralized wastewater systems. While the analysis framework could be applied to cases with a variety of sizes, we evaluated two currently operating systems in California, one decentralized and one centralized plant with a much larger capacity. The disparate scales of the two plants represent an 'off-the-grid' suburban neighborhood-scale system compared with a similarly sized neighborhood connecting to an adjacent large centralized plant. Deciding whether or not to connect expanding developments to nearby centralized plants is a realistic scenario for future growth, making the treatment plants evaluated in our study a realistic choice for comparison. C1 [Shehabi, Arman] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Stokes, Jennifer R.; Horvath, Arpad] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Shehabi, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM ashehabi@lbl.gov; horvath@ce.berkeley.edu NR 2 TC 0 Z9 0 U1 3 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JAN-MAR PY 2013 VL 8 IS 1 AR 019002 DI 10.1088/1748-9326/8/1/019002 PG 2 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 118BV UT WOS:000316998300106 ER PT J AU Warner, E Inman, D Kunstman, B Bush, B Vimmerstedt, L Peterson, S Macknick, J Zhang, YM AF Warner, Ethan Inman, Daniel Kunstman, Benjamin Bush, Brian Vimmerstedt, Laura Peterson, Steve Macknick, Jordan Zhang, Yimin TI Modeling biofuel expansion effects on land use change dynamics SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE system dynamics; biofuel; land use; agriculture; diet; sustainability ID GREENHOUSE-GAS EMISSIONS; ENERGY AB Increasing demand for crop-based biofuels, in addition to other human drivers of land use, induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to complement existing LUC modeling approaches and to improve the understanding of global LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios and varying model assumptions. We report on a small subset of such analyses. This model provides insights into the drivers and dynamic interactions of LUC (e. g., dietary choices and biofuel policy) and is not intended to assert improvement in numerical results relative to other works. Demand for food commodities are mostly met in high food and high crop-based biofuel demand scenarios, but cropland must expand substantially. Meeting roughly 25% of global transportation fuel demand by 2050 with biofuels requires >2 times the land used to meet food demands under a presumed 40% increase in per capita food demand. In comparison, the high food demand scenario requires greater pastureland for meat production, leading to larger overall expansion into forest and grassland. Our results indicate that, in all scenarios, there is a potential for supply shortfalls, and associated upward pressure on prices, of food commodities requiring higher land use intensity (e. g., beef) which biofuels could exacerbate. C1 [Warner, Ethan; Inman, Daniel; Kunstman, Benjamin; Bush, Brian; Vimmerstedt, Laura; Macknick, Jordan; Zhang, Yimin] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Peterson, Steve] Peterson Grp, Lebanon, NH USA. [Peterson, Steve] Lexidyne LLC, Colorado Springs, CO USA. [Peterson, Steve] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. RP Warner, E (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Ethan.Warner@nrel.gov OI Bush, Brian/0000-0003-2864-7028 FU US Department of Energy's Office of Biomass Program FX The authors wish to acknowledge the US Department of Energy's Office of Biomass Program which provided the funding for this work. The authors do not have any other potential conflicts of interest. Data sources used in the model are included in the supplemental information, and are cited in the references section. NR 33 TC 9 Z9 9 U1 3 U2 32 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JAN-MAR PY 2013 VL 8 IS 1 AR 015003 DI 10.1088/1748-9326/8/1/015003 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 118BV UT WOS:000316998300066 ER PT J AU Wei, M Nelson, JH Greenblatt, JB Mileva, A Johnston, J Ting, M Yang, C Jones, C McMahon, JE Kammen, DM AF Wei, Max Nelson, James H. Greenblatt, Jeffery B. Mileva, Ana Johnston, Josiah Ting, Michael Yang, Christopher Jones, Chris McMahon, James E. Kammen, Daniel M. TI Deep carbon reductions in California require electrification and integration across economic sectors SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE energy system modeling; renewable energy; long term energy scenarios; electricity system optimization; deep carbon reduction ID CUTS AB Meeting a greenhouse gas (GHG) reduction target of 80% below 1990 levels in the year 2050 requires detailed long-term planning due to complexity, inertia, and path dependency in the energy system. A detailed investigation of supply and demand alternatives is conducted to assess requirements for future California energy systems that can meet the 2050 GHG target. Two components are developed here that build novel analytic capacity and extend previous studies: (1) detailed bottom-up projections of energy demand across the building, industry and transportation sectors; and (2) a high-resolution variable renewable resource capacity planning model (SWITCH) that minimizes the cost of electricity while meeting GHG policy goals in the 2050 timeframe. Multiple pathways exist to a low-GHG future, all involving increased efficiency, electrification, and a dramatic shift from fossil fuels to low-GHG energy. The electricity system is found to have a diverse, cost-effective set of options that meet aggressive GHG reduction targets. This conclusion holds even with increased demand from transportation and heating, but the optimal levels of wind and solar deployment depend on the temporal characteristics of the resulting load profile. Long-term policy support is found to be a key missing element for the successful attainment of the 2050 GHG target in California. C1 [Wei, Max; Greenblatt, Jeffery B.; McMahon, James E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Energy Anal & Environm Impacts Dept, Berkeley, CA 94720 USA. [Nelson, James H.; Mileva, Ana; Johnston, Josiah; Jones, Chris; Kammen, Daniel M.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Ting, Michael] Itron Inc, Oakland, CA 94607 USA. [Yang, Christopher] Univ Calif Davis, Inst Transportat Studies, Davis, CA 95616 USA. [Kammen, Daniel M.] Univ Calif Berkeley, Richard & Rhoda Goldman Sch Publ Policy, Berkeley, CA 94720 USA. RP Wei, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Energy Anal & Environm Impacts Dept, 1 Cyclotron Rd MS 90R-2002, Berkeley, CA 94720 USA. EM Mwei@lbl.gov; kammen@berkeley.edu RI Yang, Christopher/G-3725-2013 FU California Energy Commission FX We thank the California Energy Commission for support. This paper reflects the views of the authors and does not necessarily reflect the view of the California Energy Commission or the State of California. DMK thanks the Class of 1935 of the University of California, Berkeley, and the Karsten Family Foundation. NR 28 TC 15 Z9 15 U1 1 U2 30 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JAN-MAR PY 2013 VL 8 IS 1 AR 014038 DI 10.1088/1748-9326/8/1/014038 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 118BV UT WOS:000316998300046 ER PT J AU Tang, JY Riley, WJ Koven, CD Subin, ZM AF Tang, J. Y. Riley, W. J. Koven, C. D. Subin, Z. M. TI CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID METHANE EMISSIONS; ORGANIC-CARBON; CO2 PRODUCTION; SOIL; CLIMATE; CYCLE; DECOMPOSITION; SIMULATION; DYNAMICS; EXCHANGE AB To improve regional and global biogeochemistry modeling and climate predictability, we have developed a generic reactive transport module for the land model CLM4 (called CLM4-BeTR (Biogeochemical Transport and Reactions)). CLM4-BeTR represents the transport, interactions, and biotic and abiotic transformations of an arbitrary number of tracers (aka chemical species) in an arbitrary number of phases (e. g., dissolved, gaseous, sorbed, aggregate). An operator splitting approach was employed and consistent boundary conditions were derived for each modeled sub-process. Aqueous tracer fluxes, associated with hydrological processes such as surface run-on and run-off, belowground drainage, and ice to liquid conversion were also computed consistently with the bulk water fluxes calculated by the soil physics module in CLM4. The transport code was evaluated and found in good agreement with several analytical test cases using a time step of 30 min. The model was then applied at the Harvard Forest site with a representation of depth-dependent belowground biogeochemistry. The results indicated that, at this site, (1) CLM4-BeTR was able to simulate soil-surface CO2 effluxes and soil CO2 profiles accurately; (2) the transient surface CO2 effluxes calculated based on the tracer transport mechanism were in general not equal to the belowground CO2 production rates with the magnitude of the difference being a function of averaging timescale and site conditions: differences were large (-20 similar to 20 %) on hourly, smaller (-5 similar to 5 %) at daily timescales, and persisted to the monthly timescales with a smaller magnitude (<4 %); (3) losses of CO2 through processes other than surface gas efflux were less than 1% of the overall soil respiration; and (4) the contributions of root respiration and heterotrophic respiration have distinct temporal signals in surface CO2 effluxes and soil CO2 concentrations. The development of CLM4-BeTR will allow detailed comparisons between ecosystem observations and predictions and insights to the modeling of terrestrial biogeochemistry. C1 [Tang, J. Y.; Riley, W. J.; Koven, C. D.; Subin, Z. M.] Lawrence Berkeley Natl Lab LBL, Div Earth Sci, Dept Climate & Carbon Sci, Berkeley, CA 94720 USA. RP Tang, JY (reprint author), Lawrence Berkeley Natl Lab LBL, Div Earth Sci, Dept Climate & Carbon Sci, Berkeley, CA 94720 USA. EM jinyuntang@lbl.gov RI Tang, Jinyun/M-4922-2013; Subin, Zachary/K-5168-2012; Riley, William/D-3345-2015; Koven, Charles/N-8888-2014 OI Tang, Jinyun/0000-0002-4792-1259; Subin, Zachary/0000-0002-9257-9288; Riley, William/0000-0002-4615-2304; Koven, Charles/0000-0002-3367-0065 FU Office of Science, Office of Biological and Environmental Research of the US Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under Contract No. DE-AC02-05CH11231 as part of their Regional and Global Climate Modeling Program. The authors appreciate Kathleen Savage and Eric Davidson at the Woods Hole Research Center for providing the soil CO2 profile data and soil moisture and temperature data at the Harvard Forest site. NR 55 TC 19 Z9 19 U1 1 U2 22 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2013 VL 6 IS 1 BP 127 EP 140 DI 10.5194/gmd-6-127-2013 PG 14 WC Geosciences, Multidisciplinary SC Geology GA 118FI UT WOS:000317008500009 ER PT J AU Lamarque, JF Shindell, DT Josse, B Young, PJ Cionni, I Eyring, V Bergmann, D Cameron-Smith, P Collins, WJ Doherty, R Dalsoren, S Faluvegi, G Folberth, G Ghan, SJ Horowitz, LW Lee, YH MacKenzie, IA Nagashima, T Naik, V Plummer, D Righi, M Rumbold, ST Schulz, M Skeie, RB Stevenson, DS Strode, S Sudo, K Szopa, S Voulgarakis, A Zeng, G AF Lamarque, J. -F. Shindell, D. T. Josse, B. Young, P. J. Cionni, I. Eyring, V. Bergmann, D. Cameron-Smith, P. Collins, W. J. Doherty, R. Dalsoren, S. Faluvegi, G. Folberth, G. Ghan, S. J. Horowitz, L. W. Lee, Y. H. MacKenzie, I. A. Nagashima, T. Naik, V. Plummer, D. Righi, M. Rumbold, S. T. Schulz, M. Skeie, R. B. Stevenson, D. S. Strode, S. Sudo, K. Szopa, S. Voulgarakis, A. Zeng, G. TI The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID GENERAL-CIRCULATION MODEL; CHEMICAL-TRANSPORT MODEL; FLUX CONVECTION SCHEME; LARGE-SCALE MODELS; ACCURATE SIMULATION; CUMULUS CONVECTION; DRY DEPOSITION; NOX EMISSIONS; PARAMETERIZATION; OZONE AB The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and [GRAPHICA] interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry. C1 [Lamarque, J. -F.] Natl Ctr Atmospher Res, Earth Syst Lab, Boulder, CO 80307 USA. [Shindell, D. T.; Faluvegi, G.; Lee, Y. H.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Shindell, D. T.; Faluvegi, G.; Lee, Y. H.] Columbia Earth Inst, New York, NY USA. [Josse, B.] CNRS, Ctr Natl Rech Meteorol, Meteo France, GAME CNRM, Toulouse, France. [Young, P. J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Young, P. J.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA. [Cionni, I.] Agenzia Nazl Nuove Tecnol Energia & Sviluppo Econ, Bologna, Italy. [Eyring, V.; Righi, M.] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany. [Bergmann, D.; Cameron-Smith, P.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Collins, W. J.; Folberth, G.; Rumbold, S. T.] Met Off, Hadley Ctr Climate Predict, Exeter, Devon, England. [Doherty, R.; MacKenzie, I. A.; Stevenson, D. S.] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland. [Dalsoren, S.; Skeie, R. B.] CICERO, Oslo, Norway. [Ghan, S. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Horowitz, L. W.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Nagashima, T.; Sudo, K.] Japan Marine Sci & Technol Ctr, Frontier Res Ctr Global Change, Yokohama, Kanagawa, Japan. [Naik, V.] UCAR NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Plummer, D.] Environm Canada, Canadian Ctr Climate Modeling & Anal, Victoria, BC, Canada. [Schulz, M.] Inst Meteorol, Oslo, Norway. [Strode, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Strode, S.] Univ Space Res Assoc, Columbia, MD USA. [Szopa, S.] CEA CNRS UVSQ IPSL, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Voulgarakis, A.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London, England. [Zeng, G.] Natl Inst Water & Atmospher Res, Lauder, New Zealand. RP Lamarque, JF (reprint author), Natl Ctr Atmospher Res, Earth Syst Lab, POB 3000, Boulder, CO 80307 USA. EM lamar@ucar.edu RI Schulz, Michael/A-6930-2011; Strode, Sarah/H-2248-2012; Ghan, Steven/H-4301-2011; Eyring, Veronika/O-9999-2016; Manager, CSD Publications/B-2789-2015; Collins, William/A-5895-2010; mackenzie, ian/E-9320-2013; Stevenson, David/C-8089-2012; Bergmann, Daniel/F-9801-2011; Young, Paul/E-8739-2010; Righi, Mattia/I-5120-2013; Cameron-Smith, Philip/E-2468-2011; Szopa, Sophie/F-8984-2010; Shindell, Drew/D-4636-2012; Horowitz, Larry/D-8048-2014; Naik, Vaishali/A-4938-2013; Lamarque, Jean-Francois/L-2313-2014; Skeie, Ragnhild/K-1173-2015; OI Schulz, Michael/0000-0003-4493-4158; Strode, Sarah/0000-0002-8103-1663; Ghan, Steven/0000-0001-8355-8699; Eyring, Veronika/0000-0002-6887-4885; Folberth, Gerd/0000-0002-1075-440X; Righi, Mattia/0000-0003-3827-5950; Collins, William/0000-0002-7419-0850; Stevenson, David/0000-0002-4745-5673; Bergmann, Daniel/0000-0003-4357-6301; Young, Paul/0000-0002-5608-8887; Cameron-Smith, Philip/0000-0002-8802-8627; Szopa, Sophie/0000-0002-8641-1737; Horowitz, Larry/0000-0002-5886-3314; Naik, Vaishali/0000-0002-2254-1700; Lamarque, Jean-Francois/0000-0002-4225-5074; Skeie, Ragnhild/0000-0003-1246-4446; Lee, Yunha/0000-0001-7478-2672 FU NASA MAP; ACMAP programs; US Department of Energy Office of Science Decadal and Regional Climate Prediction using Earth System Models (EaSM) program; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; US Dept. of Energy (BER); LLNL [DE-AC52-07NA27344]; NERSC [DE-AC02-05CH11231]; DLR Earth System Model Validation Project (ESMVal); German Climate Computing Center (DKRZ); ENEA National Integrated Model; Joint DECC; Defra Integrated Climate Programme [GA01101]; New Zealand Ministry of Science and Innovation; NASA Modeling, Analysis and Prediction program; UK research council grant [NE/I008063/1]; National Science Foundation; Office of Science (BER) of the US Department of Energy FX ACCMIP is organized under the auspices of Atmospheric Chemistry and Climate (AC&C), a project of International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) under the International Geosphere-Biosphere Project (IGBP) and World Climate Research Program (WCRP). The authors are grateful to the British Atmospheric Data Centre (BADC), which is part of the NERC National Centre for Atmospheric Science (NCAS), for collecting and archiving the ACCMIP data. D. S., G. F. and Y. L. acknowledge support from the NASA MAP and ACMAP programs. D. P. would like to thank the Canadian Foundation for Climate and Atmospheric Sciences for their long-running support of CMAM development. S. G. was supported by the US Department of Energy Office of Science Decadal and Regional Climate Prediction using Earth System Models (EaSM) program. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. The work of D. B. and P. C. was funded by the US Dept. of Energy (BER), performed under the auspices of LLNL under Contract DE-AC52-07NA27344, and used the supercomputing resources of NERSC under contract No. DE-AC02-05CH11231. V. E. and M. R. were supported by the DLR Earth System Model Validation Project (ESMVal) and used the supercomputing resources of the German Climate Computing Center (DKRZ) and the Leibniz Supercomputing Centre (LRZ) for the EMAC simulations. The work of I. C. was funded by the ENEA National Integrated Model to support the international negotiation on atmospheric pollution (Minni) project. W. J. C., G. A. F. and S. T. R. were supported by the Joint DECC and Defra Integrated Climate Programme (GA01101). V. N. and L. W. H. acknowledge efforts of GFDL's Global Atmospheric Model Development Team in the development of the GFDL-AM3 and Modeling Services Group for assistance with data processing. G. Z. acknowledges NIWA HPCF facility and funding from New Zealand Ministry of Science and Innovation. The GEOSCCM work was supported by the NASA Modeling, Analysis and Prediction program, with computing resources provided by NASA's High-End Computing Program through the NASA Advanced Supercomputing Division. The STOC-HadAM3 work was supported by cross UK research council grant NE/I008063/1 and used facilities provided by the UK's national high-performance computing service, HECToR, through Computational Modelling Services (CMS), part of the NERC National Centre for Atmospheric Science (NCAS). The LMDz-OR-INCA simulations were done using computing resources provided by the CCRT/GENCI computer center of the CEA. The MIROC-CHEM calculations were performed on the NIES supercomputer system (NEC SX-8R), and supported by the Environment Research and Technology Development Fund (S-7) of the Ministry of the Environment, Japan. The CICERO-OsloCTM2 simulations were done within the projects SLAC (Short Lived Atmospheric Components) and EarthClim funded by the Norwegian Research Council. The MOCAGE simulations were supported by Meteo-France and CNRS. Supercomputing time was provided by Meteo-France/DSI supercomputing center. The CESM project (which includes CESM-CAM-Superfast, NCAR-CAM3.5 and NCAR-CAM5.1) is supported by the National Science Foundation and the Office of Science (BER) of the US Department of Energy. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. NR 91 TC 113 Z9 119 U1 4 U2 73 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2013 VL 6 IS 1 BP 179 EP 206 DI 10.5194/gmd-6-179-2013 PG 28 WC Geosciences, Multidisciplinary SC Geology GA 118FI UT WOS:000317008500012 ER PT J AU Kirkevag, A Iversen, T Seland, O Hoose, C Kristjansson, JE Struthers, H Ekman, AML Ghan, S Griesfeller, J Nilsson, ED Schulz, M AF Kirkevag, A. Iversen, T. Seland, O. Hoose, C. Kristjansson, J. E. Struthers, H. Ekman, A. M. L. Ghan, S. Griesfeller, J. Nilsson, E. D. Schulz, M. TI Aerosol-climate interactions in the Norwegian Earth System Model-NorESM1-M SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; SECONDARY ORGANIC AEROSOL; BIOMASS BURNING EMISSIONS; CHEMICAL-TRANSPORT MODEL; CARBONACEOUS AEROSOLS; CLOUD MICROPHYSICS; OPTICAL-THICKNESS; MARINE AEROSOL; BLACK CARBON; ARCTIC-OCEAN AB The objective of this study is to document and evaluate recent changes and updates to the module for aerosols and aerosol-cloud-radiation interactions in the atmospheric module CAM4-Oslo of the core version of the Norwegian Earth System Model (NorESM), NorESM1-M. Particular attention is paid to the role of natural organics, sea salt, and mineral dust in determining the gross aerosol properties as well as the anthropogenic contribution to these properties and the associated direct and indirect radiative forcing. The aerosol module is extended from earlier versions that have been published, and includes life-cycling of sea salt, mineral dust, particulate sulphate, black carbon, and primary and secondary organics. The impacts of most of the numerous changes since previous versions are thoroughly explored by sensitivity experiments. The most important changes are: modified prognostic sea salt emissions; updated treatment of precipitation scavenging and gravitational settling; inclusion of biogenic primary organics and methane sulphonic acid (MSA) from oceans; almost doubled production of land-based biogenic secondary organic aerosols (SOA); and increased ratio of organic matter to organic carbon (OM/OC) for biomass burning aerosols from 1.4 to 2.6. Compared with in situ measurements and remotely sensed data, the new treatments of sea salt and dust aerosols give smaller biases in near-surface mass concentrations and aerosol optical depth than in the earlier model version. The model biases for mass concentrations are approximately unchanged for sulphate and BC. The enhanced levels of modeled OM yield improved overall statistics, even though OM is still underestimated in Europe and overestimated in North America. The global anthropogenic aerosol direct radiative forcing (DRF) at the top of the atmosphere has changed from a small positive value to -0.08 W m(-2) in CAM4-Oslo. The sensitivity tests suggest that this change can be attributed to the new treatment of biomass burning aerosols and gravitational settling. Although it has not been a goal in this study, the new DRF estimate is closer both to the median model estimate from the AeroCom intercomparison and the best estimate in IPCC AR4. Estimated DRF at the ground surface has increased by ca. 60 %, to -1.89 W m(-2). We show that this can be explained by new emission data and omitted mixing of constituents between updrafts and downdrafts in convective clouds. The increased abundance of natural OM and the introduction of a cloud droplet spectral dispersion formulation are the most important contributions to a considerably decreased estimate of the indirect radiative forcing (IndRF). The IndRF is also found to be sensitive to assumptions about the coating of insoluble aerosols by sulphate and OM. The IndRF of -1.2 W m(-2), which is closer to the IPCC AR4 estimates than the previous estimate of -1.9 W m(-2), has thus been obtained without imposing unrealistic artificial lower bounds on cloud droplet number concentrations. C1 [Kirkevag, A.; Iversen, T.; Seland, O.; Griesfeller, J.; Schulz, M.] Norwegian Meteorol Inst, Oslo, Norway. [Iversen, T.; Hoose, C.; Kristjansson, J. E.] Univ Oslo, Dept Geosci, Oslo, Norway. [Hoose, C.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, D-76021 Karlsruhe, Germany. [Struthers, H.; Nilsson, E. D.] Stockholm Univ, Dept Appl Environm Sci, S-10691 Stockholm, Sweden. [Struthers, H.; Ekman, A. M. L.] Stockholm Univ, Dept Meteorol, S-10691 Stockholm, Sweden. [Ghan, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kirkevag, A (reprint author), Norwegian Meteorol Inst, Oslo, Norway. EM alf.kirkevag@met.no RI Hoose, Corinna/A-4295-2009; Schulz, Michael/A-6930-2011; Ghan, Steven/H-4301-2011 OI Hoose, Corinna/0000-0003-2827-5789; Schulz, Michael/0000-0003-4493-4158; Ghan, Steven/0000-0001-8355-8699 FU Research Council of Norway [207711/E10]; Norwegian Space Centre through PM-VRAE; EU; US Department of Energy (DOE), Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program; Office of Science Earth System Modeling Program; Battelle Memorial Institute [AC06-76RLO 1830] FX We are deeply grateful to NCAR for providing early access to model code for CCSM/CESM and to NCAR staff for invaluable advice. NorESM has benefited from contributions by many scientists at member institutions of The Norwegian Climate Centre: BCCR, met. no, MetOs-UiO, NERSC, Cicero, NILU and NP; from NCAR and PNNL in USA, and MISU and The Bolin Centre in Sweden. We are grateful to the AeroCom community for valuable discussions and for making AeroCom model intercomparison and observation data available on the AeroCom web page (http://aerocom.met.no). Thanks also to Dirk Olivie, Svetlana Tsyro, Leonor Tarrason, Hilde Fagerli, David Simpson and Brigitte Koffi for valuable discussions, and to Birthe Steensen for work with the CALIOP figures. The CALIOP data were prepared by Brigitte Koffi. This work has been supported by the Research Council of Norway through the NorClim, EarthClim (207711/E10) and NOTUR/NorStore projects, by the Norwegian Space Centre through PM-VRAE, and through the EU projects PEGASOS and ACCESS. A. Ekman, E. D. Nilsson and H. Struthers would like to acknowledge the support from the Swedish Research Council, project GRACE, and the Bert Bolin Climate Center. S. Ghan was funded by the US Department of Energy (DOE), Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program and by the Office of Science Earth System Modeling Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 102 TC 56 Z9 58 U1 3 U2 44 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2013 VL 6 IS 1 BP 207 EP 244 DI 10.5194/gmd-6-207-2013 PG 38 WC Geosciences, Multidisciplinary SC Geology GA 118FI UT WOS:000317008500013 ER PT J AU Long, MS Keene, WC Easter, R Sander, R Kerkweg, A Erickson, D Liu, X Ghan, S AF Long, M. S. Keene, W. C. Easter, R. Sander, R. Kerkweg, A. Erickson, D. Liu, X. Ghan, S. TI Implementation of the chemistry module MECCA (v2.5) in the modal aerosol version of the Community Atmosphere Model component (v3.6.33) of the Community Earth System Model SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID MARINE BOUNDARY-LAYER; CONSISTENT SIMULATION; TECHNICAL NOTE; BROMINE CHEMISTRY; GEOS-CHEM; STRATOSPHERE; SOLVERS AB A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM; v3.6.33) and the Max Planck Institute for Chemistry's Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA; v2.5) to provide enhanced resolution of multiphase processes, particularly those involving inorganic halogens, and associated impacts on atmospheric composition and climate. Three Rosenbrock solvers (Ros-2, Ros-3, RODAS-3) were tested in conjunction with the basic load-balancing options available to modal-CAM (1) to establish an optimal configuration of the implicitly-solved multiphase chemistry module that maximizes both computational speed and repeatability of Ros2 and RODAS-3 results versus Ros-3, and (2) to identify potential implementation strategies for future versions of this and similar coupled systems. RODAS-3 was faster than Ros-2 and Ros-3 with good reproduction of Ros-3 results, while Ros-2 was both slower and substantially less reproducible relative to Ros-3 results. Modal-CAM with MECCA chemistry was a factor of 15 slower than modal-CAM using standard chemistry. MECCA chemistry integration times demonstrated a systematic frequency distribution for all three solvers, and revealed that the change in run-time performance was due to a change in the frequency distribution of chemical integration times; the peak frequency was similar for all solvers. This suggests that efficient chemistry-focused load-balancing schemes can be developed that rely on the parameters of this frequency distribution. C1 [Long, M. S.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Keene, W. C.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. [Easter, R.; Liu, X.; Ghan, S.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Sander, R.] Max Planck Inst Chem, Air Chem Dept, D-55020 Mainz, Germany. [Kerkweg, A.] Johannes Gutenberg Univ Mainz, Inst Atmospher Phys, D-55099 Mainz, Germany. [Erickson, D.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. RP Long, MS (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM mlong@seas.harvard.edu RI Sander, Rolf/A-5725-2011; Chem, GEOS/C-5595-2014; Liu, Xiaohong/E-9304-2011; Ghan, Steven/H-4301-2011 OI Sander, Rolf/0000-0001-6479-2092; Liu, Xiaohong/0000-0002-3994-5955; Ghan, Steven/0000-0001-8355-8699 FU US Department of Energy's (DOE's) Office of Science through the Office of Biological and Environmental Research (BER) [DE-FG02-07ER64442, DE-SC0007120]; Global Change Education Program Graduate Research Environmental Fellowship; National Center for Computational Sciences at Oak Ridge National Laboratory; DOE's Office of Science (BER) [DE-AC05-00OR22725]; National Science Foundation; DOE's Office of Science (BER); US Department of Energy, Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830] FX Financial support was provided by the US Department of Energy's (DOE's) Office of Science through the Office of Biological and Environmental Research (BER, grant numbers DE-FG02-07ER64442 and DE-SC0007120 to the University of Virginia), a Global Change Education Program Graduate Research Environmental Fellowship, and the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by DOE's Office of Science (BER) under contract DE-AC05-00OR22725. The CESM project is supported by the National Science Foundation and the DOE's Office of Science (BER). PNNL authors were funded by the US Department of Energy, Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 23 TC 2 Z9 2 U1 0 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2013 VL 6 IS 1 BP 255 EP 262 DI 10.5194/gmd-6-255-2013 PG 8 WC Geosciences, Multidisciplinary SC Geology GA 118FI UT WOS:000317008500015 ER PT J AU Liu, XH Xiao, P MacKinnon, SND AF Liu, Xiao Hong Xiao, Ping MacKinnon, Scott N. Dr. TI IS EFFICACY OF ACUPUNCTURE TREATMENT A WISHFUL THINKING? FUNCTIONAL TEST OF ACUPUNCTURE FOR LOWER BACK PAIN, A CLINICAL STUDY SO JOURNAL OF COGNITIVE NEUROSCIENCE LA English DT Meeting Abstract CT 20th Annual Meeting of the Cognitive-Neuroscience-Society CY APR 13-16, 2013 CL San Francisco, CA SP Cognit Neuroscience Soc C1 [Liu, Xiao Hong; MacKinnon, Scott N. Dr.] Mem Univ Newfoundland, St John, NF, Canada. [Xiao, Ping] Lawrence Berkeley Natl Lab, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 2 U2 5 PU MIT PRESS PI CAMBRIDGE PA 55 HAYWARD STREET, CAMBRIDGE, MA 02142 USA SN 0898-929X J9 J COGNITIVE NEUROSCI JI J. Cogn. Neurosci. PY 2013 SU S BP 174 EP 174 PG 1 WC Neurosciences; Psychology, Experimental SC Neurosciences & Neurology; Psychology GA 118MV UT WOS:000317030501006 ER PT J AU Oh, H Mormino, EC Jagust, WJ AF Oh, Hwamee Mormino, Elizabeth C. Jagust, William J. TI EFFECTS OF AGING AND BETA-AMYLOID DEPOSITION ON EPISODIC ENCODING BRAIN ACTIVITY IN COGNITIVELY NORMAL ELDERLY SO JOURNAL OF COGNITIVE NEUROSCIENCE LA English DT Meeting Abstract CT 20th Annual Meeting of the Cognitive-Neuroscience-Society CY APR 13-16, 2013 CL San Francisco, CA SP Cognit Neuroscience Soc C1 [Oh, Hwamee; Jagust, William J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Mormino, Elizabeth C.] Harvard Univ, Sch Med, Cambridge, MA 02138 USA. [Jagust, William J.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU MIT PRESS PI CAMBRIDGE PA 55 HAYWARD STREET, CAMBRIDGE, MA 02142 USA SN 0898-929X J9 J COGNITIVE NEUROSCI JI J. Cogn. Neurosci. PY 2013 SU S BP 226 EP 226 PG 1 WC Neurosciences; Psychology, Experimental SC Neurosciences & Neurology; Psychology GA 118MV UT WOS:000317030501251 ER PT J AU Watson, P Jane, W Neal, C AF Watson, Patrick Jane, Wang Neal, Cohen TI EVENT RECONSTRUCTION REVEALS RELATIONAL REPRESENTATIONS THAT DO NOT OVERLAP WITH THE SEMANTIC INFORMATION PRESENT IN THE EXPERIMENT SO JOURNAL OF COGNITIVE NEUROSCIENCE LA English DT Meeting Abstract CT 20th Annual Meeting of the Cognitive-Neuroscience-Society CY APR 13-16, 2013 CL San Francisco, CA SP Cognit Neuroscience Soc C1 [Watson, Patrick; Neal, Cohen] Univ Illinois, Urbana, IL 61801 USA. [Watson, Patrick] Sandia Natl Labs, Livermore, CA 94550 USA. [Jane, Wang] Northwestern Univ, Evanston, IL 60208 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU MIT PRESS PI CAMBRIDGE PA 55 HAYWARD STREET, CAMBRIDGE, MA 02142 USA SN 0898-929X J9 J COGNITIVE NEUROSCI JI J. Cogn. Neurosci. PY 2013 SU S BP 249 EP 249 PG 1 WC Neurosciences; Psychology, Experimental SC Neurosciences & Neurology; Psychology GA 118MV UT WOS:000317030501361 ER PT J AU Vakhtin, A Calhoun, V Jung, R Prestopnik, J Taylor, P Ford, C AF Vakhtin, Andrei Calhoun, Vince Jung, Rex Prestopnik, Jillian Taylor, Paul Ford, Corey TI CHANGES IN INTRINSIC FUNCTIONAL BRAIN NETWORKS FOLLOWING BLAST-INDUCED MILD TRAUMATIC BRAIN INJURY SO JOURNAL OF COGNITIVE NEUROSCIENCE LA English DT Meeting Abstract CT 20th Annual Meeting of the Cognitive-Neuroscience-Society CY APR 13-16, 2013 CL San Francisco, CA SP Cognit Neuroscience Soc C1 [Vakhtin, Andrei; Calhoun, Vince; Jung, Rex; Prestopnik, Jillian; Ford, Corey] Univ New Mexico, Albuquerque, NM 87131 USA. [Taylor, Paul] Sandia Natl Labs, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU MIT PRESS PI CAMBRIDGE PA 55 HAYWARD STREET, CAMBRIDGE, MA 02142 USA SN 0898-929X J9 J COGNITIVE NEUROSCI JI J. Cogn. Neurosci. PY 2013 SU S BP 261 EP 261 PG 1 WC Neurosciences; Psychology, Experimental SC Neurosciences & Neurology; Psychology GA 118MV UT WOS:000317030501417 ER PT J AU Michalak, SE Hamada, MS Hengartner, NW AF Michalak, Sarah E. Hamada, Michael S. Hengartner, Nicolas W. TI Analysis of interval-censored data with random unknown end points: an application to soft error rate estimation SO JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS LA English DT Article DE Failure time data; Hardware reliability; Measurement error; Measurement process ID FIT AB . The paper presents a Bayesian approach to analysing interval-censored data with random unknown end points. Such data occur when the event of interest is interval censored but, because of the measurement process, the interval end points are not known exactly. Modelling the measurement process permits inference that accounts for this source of variability. Our results are motivated by an experimental study that was designed to characterize the cosmic-rayneutron-induced soft error rate of a semiconductor device. C1 [Michalak, Sarah E.; Hamada, Michael S.; Hengartner, Nicolas W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Michalak, SE (reprint author), Los Alamos Natl Lab, Stat Sci Grp, MS F600, Los Alamos, NM 87545 USA. EM michalak@lanl.gov NR 15 TC 3 Z9 3 U1 2 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9254 J9 J R STAT SOC C-APPL JI J. R. Stat. Soc. Ser. C-Appl. Stat. PY 2013 VL 62 IS 3 BP 473 EP 486 DI 10.1111/rssc.12005 PG 14 WC Statistics & Probability SC Mathematics GA 123RW UT WOS:000317409400007 ER PT S AU Tang, M Fuierer, P Dickens, P Fu, EG AF Tang, Ming Fuierer, Paul Dickens, Peter Fu, Engang BE Stanek, C TI Irradiation study on Srn+1TinO3n+1 Ruddlesden-Popper phases synthesized by hot-forging SO PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 10, NO 2 SE Physica Status Solidi C-Current Topics in Solid State Physics LA English DT Proceedings Paper CT 18th International Conference on Defects in Insulating Materials (ICDIM) CY JUN 24-29, 2012 CL Santa Fe, NM SP New Mexico Consortium, Los Alamos Natl Bank (LANB), Netzsch, Los Alamos Natl Lab DE Srn+1TinO3n+1; Ruddlesden-Popper; radiation damage ID POWDER DIFFRACTION; TEMPERATURE; SRTIO3; ION; CERAMICS AB The hot-forging technique was used to obtain both the n = 2 (Sr3Ti2O7) and n = infinity (SrTiO3) members of Ruddlesden-Popper phase Srn+1TinO3n+1. Pure phase and high density (>95% theoretical) materials were achieved using this technique. These polycrystalline samples were irradiated with 200 keV He ions to a fluence of 2x10(21) ion/m(2) (corresponding to a peak dose at 5 dpa) at room temperature to study radiation damage effects. Microstructural investigation on pristine and irradiated samples was performed using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Three phenomena are revealed upon comparing prisXtine versus irradiated samples. First, both compounds interplanar lattice spacings increased after irradiation. Second, peak broadening possibly suggests incredibly small grain due to irradiation. Third, experiment results revealed an amorphization in the irradiated Sr3Ti2O7, while no amorphization was observed in irradiated SrTiO3. (c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Tang, Ming] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Tang, M (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM mtang@lanl.gov NR 27 TC 4 Z9 4 U1 1 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY SN 1862-6351 J9 PHYS STATUS SOLIDI C PY 2013 VL 10 IS 2 BP 216 EP 220 DI 10.1002/pssc.201200523 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA BEM08 UT WOS:000317294600015 ER PT S AU Blair, MW Fasoli, M Tornga, SC Vedda, A Smith, NA Bennett, BL Hehlen, MP Muenchausen, RE AF Blair, Michael W. Fasoli, Mauro Tornga, Stephanie C. Vedda, Anna Smith, Nickolaus A. Bennett, Bryan L. Hehlen, Markus P. Muenchausen, Ross E. BE Stanek, C TI Nanophosphor GdOBr:Ce via combustion synthesis: luminescence results SO PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 10, NO 2 SE Physica Status Solidi C-Current Topics in Solid State Physics LA English DT Proceedings Paper CT 18th International Conference on Defects in Insulating Materials (ICDIM) CY JUN 24-29, 2012 CL Santa Fe, NM SP New Mexico Consortium, Los Alamos Natl Bank (LANB), Netzsch, Los Alamos Natl Lab DE combustion synthesis; scintillation; luminescence ID SIZE AB We used combustion synthesis to produce phase pure GdOBr:Ce with varying Ce concentration. Several combinations of NH4Br and fuel concentration were tested before phase pure GdOBr:Ce was produced by using a 50% excess of NH4Br and a 50% lean concentration of fuel. In addition to the expected emissions from Ce and Gd, we also detected emissions from Eu3+ and Tb3+. Further research indicated that these extra rare earth emissions were due to impurities in the Gd2O3 starting material. While not the desired effect, we were able to monitor both Eu and Ce intensities as a function of Ce concentration in GdOBr. The Ce emission is seen to reach a maximum between 0.1 and 0.5 mol %. At higher Ce content, the Ce luminescence is quenched because of the concentration quenching effect and the higher concentration of O-H and N-H groups as revealed by IR spectra. Eu emission progressively decreases as Ce content increases from a combination of competition with Ce for charge capture in the RL process and the effect of OH and NH groups. As Ce concentration increases the RL intensity ratio of the bands of the Ce doublet changes even though the energy difference between the two bands (0.24 +/- 0.1 eV) is compatible with the spin-orbit splitting of the ground level of Ce3+ (0.25 eV). Fitting results indicate that this relative change is not due to changes in self-absorption, and the effect may be due to changes in local symmetry of the Ce ion. (c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Blair, Michael W.; Tornga, Stephanie C.; Smith, Nickolaus A.; Bennett, Bryan L.; Hehlen, Markus P.; Muenchausen, Ross E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Blair, MW (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. EM mblair@lanl.gov OI Fasoli, Mauro/0000-0001-5463-4875 NR 20 TC 0 Z9 0 U1 2 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY SN 1862-6351 J9 PHYS STATUS SOLIDI C PY 2013 VL 10 IS 2 BP 227 EP 231 DI 10.1002/pssc.201200525 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA BEM08 UT WOS:000317294600017 ER PT S AU Liliental-Weber, Z dos Reis, R Novikov, SV Yu, KM Levander, AX Dubon, OD Wu, J Walukiewicz, W Foxon, CT AF Liliental-Weber, Z. dos Reis, R. Novikov, S. V. Yu, K. M. Levander, A. X. Dubon, O. D. Wu, J. Walukiewicz, W. Foxon, C. T. BE Toropov, A Ivanov, S TI Microstructure of Mg doped GaNAs alloys SO PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 10, NO 3 SE Physica Status Solidi C-Current Topics in Solid State Physics LA English DT Proceedings Paper CT 4th International Symposium on Growth of III-Nitrides (ISGN) CY JUL 16-19, 2012 CL Saint-Petersburg, RUSSIA SP Russian Acad Sci, Ioffe Phys-Tech Inst, Riber, Aixtron, Komef, U S Army Foward Element Commmand Atlantic, Off Naval Res Sci & Technol, SemiTEq, Veeco, Optogan LED Solut, Crystal IS DE nitride semiconductors; p-doping; TEM; amorphous materials; planar defect; conductivity AB Transmission Electron Microscopy of Mg doped GaN1-xAsx samples, grown by MBE at low temperatures, show substantial structural changes for samples that are semi-insulating and those with high or low conductivity. The conductive samples show p-type conductivity as evidence from the positive thermopower values. All the Mg doped samples show phase segregation: cubic GaAs and GaN grains (a mixture of cubic and some hexagonal) phases within an amorphous matrix. The best conductive samples show cubic GaAs grains with high density of stacking faults embedded into an amorphous matrix. The samples that are less conductive have lower ratio of the amorphous to the crystalline phase of the samples and much lower density of stacking faults. Higher Mg concentration is expected in the amorphous parts of the samples The semi-insulating samples that have either low Mg concentration or low As show grains of GaAs and GaN attached to each other with no evidence of the amorphous phase between them. There are no SFs in these grains. It is possible that the presence of the GaN between the GaAs grains lead to semi-insulating material properties since p-type doping of GaN is more difficult. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Liliental-Weber, Z.; dos Reis, R.; Yu, K. M.; Levander, A. X.; Dubon, O. D.; Wu, J.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, M-S 62R203-8255, Berkeley, CA 94720 USA. [Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Levander, A. X.; Dubon, O. D.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Liliental-Weber, Z (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, M-S 62R203-8255, Berkeley, CA 94720 USA. EM z_liliental-weber@lbl.gov RI Wu, Junqiao/G-7840-2011; Foundry, Molecular/G-9968-2014; OI Wu, Junqiao/0000-0002-1498-0148; Yu, Kin Man/0000-0003-1350-9642 FU Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors appreciate the use of the TEM facility at the National Center for Electron Microscopy at the Lawrence Berkeley National Laboratory. NR 12 TC 0 Z9 0 U1 1 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY SN 1862-6351 J9 PHYS STATUS SOLIDI C PY 2013 VL 10 IS 3 BP 453 EP 456 DI 10.1002/pssc.201200666 PG 4 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA BEM01 UT WOS:000317290800043 ER PT J AU Tian, H Yang, Y Xie, D Ren, TL Shu, Y Sun, H Zhou, CJ Liu, X Tao, LQ Ge, J Zhang, CH Zhang, YG AF Tian, He Yang, Yi Xie, Dan Ren, Tian-Ling Shu, Yi Sun, Hui Zhou, Chang-Jian Liu, Xuan Tao, Lu-Qi Ge, Jie Zhang, Cang-Hai Zhang, Yuegang TI Laser directed lithography of asymmetric graphene ribbons on a polydimethylsiloxane trench structure SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID SINGLE-LAYER GRAPHENE; THERMAL-CONDUCTIVITY; EXFOLIATED GRAPHENE; RAMAN-SPECTROSCOPY; MONOLAYER GRAPHENE; RESONATORS; TRANSISTOR; FILMS; OXIDE AB Recently, manipulating heat transport by asymmetric graphene ribbons has received significant attention, in which phonons in the carbon lattice are used to carry energy. In addition to heat control, asymmetric graphene ribbons might also have broad applications in renewable energy engineering, such as thermoelectric energy harvesting. Here, we transfer a single sheet of graphene over a 5 mu m trench of polydimethylsiloxane (PDMS) structure. By using a laser (1.77 mW, 1 mu m diameter spot size, 517 nm wavelength) focusing on one side of the suspended graphene, a triangular shaped graphene ribbon is obtained. As the graphene has a negative thermal expansion coefficient, local laser heating could make the affected graphene area shrink and eventually break. Theoretical calculation shows that the 1.77 mW laser could create a local hot spot as high as 1462.5 degrees C, which could induce an asymmetric shape structure. We also find the temperature coefficient (-13.06 cm(-1) mW) of suspended graphene on PDMS trench substrate is ten times higher than that reported on SiO2/Si trench substrate. Collectively, our results raise the exciting prospect that the realization of graphene with asymmetric shape on thermally insulating substrate is technologically feasible, which may open up important applications in thermal circuits and thermal management. C1 [Tian, He; Yang, Yi; Xie, Dan; Ren, Tian-Ling; Shu, Yi; Sun, Hui; Zhou, Chang-Jian; Liu, Xuan; Tao, Lu-Qi; Ge, Jie; Zhang, Cang-Hai] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol TNList, Inst Microelect, Beijing 100084, Peoples R China. [Zhang, Yuegang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Ren, TL (reprint author), Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol TNList, Inst Microelect, Beijing 100084, Peoples R China. EM RenTL@tsinghua.edu.cn; yzhang5@lbl.gov RI Tian, He/I-1299-2014; Zhang, Y/E-6600-2011; Foundry, Molecular/G-9968-2014 OI Tian, He/0000-0001-7328-2182; Zhang, Y/0000-0003-0344-8399; FU National Natural Science Foundation of China [61025021, 60936002, 51072089, 61020106006]; National Key Project of Science and Technology [2011ZX02403-002]; Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231]; Ministry of Education Scholarship of China FX This work was supported by the National Natural Science Foundation of China (61025021, 60936002, 51072089, and 61020106006), the National Key Project of Science and Technology (2011ZX02403-002). The graphene sample preparation, optical and Raman characterizations of the graphene devices were performed at the Molecular Foundry of Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under contract no. DE-AC02-05CH11231. H. Tian is additionally supported by the Ministry of Education Scholarship of China. We are grateful for the PDMS trench structure prepared by D. Wang from Lawrence Berkeley National Laboratory and helpful discussion with G. Zhang from Peking University. NR 37 TC 2 Z9 2 U1 3 U2 58 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2013 VL 15 IS 18 BP 6825 EP 6830 DI 10.1039/c3cp50538c PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 129TU UT WOS:000317866300030 PM 23545537 ER PT J AU Wang, B Richardson, TJ Chen, GY AF Wang, Bin Richardson, Thomas J. Chen, Guoying TI Stable and high-rate overcharge protection for rechargeable lithium batteries SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID REDOX SHUTTLE ADDITIVES; LI-ION CELLS; ELECTROACTIVE POLYMERS; PERFORMANCE AB Rechargeable lithium or lithium-ion cells can be overcharge-protected by an electroactive polymer composite separator. The use of non-woven fibrous membranes instead of conventional microporous membranes as the composite substrates allowed better distribution of the electroactive polymer, which led to improved utilization and a 40-fold increase in sustainable current density. For the first time, stable overcharge protection for hundreds of cycles was demonstrated in several cell chemistries, including LiNi1/3Co1/3Mn1/3O2, LiFePO4, and spinel Li1.05Mn1.95O4 half-cells. Protection at a charging rate as high as 5 C was achieved at a steady state cell potential below 4.85 V. C1 [Wang, Bin; Richardson, Thomas J.; Chen, Guoying] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Chen, GY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM gchen@lbl.gov RI Wang, Bin/F-9677-2012 OI Wang, Bin/0000-0001-7104-4543 FU Office of FreedomCAR and Vehicle Technologies of the U. S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr Wei Zhang for assisting with electrode fabrication. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the U. S. Department of Energy under contract no. DE-AC02-05CH11231. NR 21 TC 4 Z9 4 U1 4 U2 85 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2013 VL 15 IS 18 BP 6849 EP 6855 DI 10.1039/c3cp50992c PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 129TU UT WOS:000317866300033 PM 23545568 ER PT J AU McDermott, D Amelang, J Lopatina, LM Reichhardt, CJO Reichhardt, C AF McDermott, Danielle Amelang, Jeff Lopatina, Lena M. Reichhardt, Cynthia J. Olson Reichhardt, Charles TI Domain and stripe formation between hexagonal and square ordered fillings of colloidal particles on periodic pinning substrates SO SOFT MATTER LA English DT Article ID GROUND-STATES; ARRAYS; COMMENSURATE; CRYSTALS; MONOLAYERS; DEFECTS; SYSTEMS; LATTICE; DRIVEN; FIELDS AB Using large scale numerical simulations, we examine the ordering of colloidal particles on square periodic two-dimensional muffin-tin substrates consisting of a flat surface with localized pinning sites. We show that when there are four particles per pinning site, the particles adopt a hexagonal ordering, while for five particles per pinning site, a square ordering appears. For fillings between four and five particles per pinning site, we identify a rich variety of distinct ordering regimes, including disordered grain boundaries, crystalline stripe structures, superlattice orderings, and disordered patchy arrangements. We characterize the different regimes using Voronoi analysis, energy dispersion, and ordering of the domains. We show that many of the boundary formation features we observe occur for a wide range of other fillings. Our results demonstrate that grain boundary tailoring can be achieved with muffin-tin periodic pinning substrates. C1 [McDermott, Danielle; Amelang, Jeff; Lopatina, Lena M.; Reichhardt, Cynthia J. Olson; Reichhardt, Charles] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [McDermott, Danielle] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Amelang, Jeff] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. RP Reichhardt, CJO (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cjrx@lanl.gov FU NNSA of the U.S. DoE at LANL [DE-AC52-06NA25396]; ASC Summer Workshop program at LANL FX This work was carried out under the auspices of the NNSA of the U.S. DoE at LANL under Contract no. DE-AC52-06NA25396. D. M. and J.A. received support from the ASC Summer Workshop program at LANL. NR 33 TC 11 Z9 11 U1 2 U2 11 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2013 VL 9 IS 18 BP 4607 EP 4613 DI 10.1039/c3sm27652j PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 124WL UT WOS:000317499000006 ER PT J AU Kipnusu, WK Kossack, W Iacob, C Zeigermann, P Jasiurkowska, M Sangoro, JR Valiullin, R Kremer, F AF Kipnusu, Wycliffe Kiprop Kossack, Wilhelm Iacob, Ciprian Zeigermann, Philipp Jasiurkowska, Malgorzata Sangoro, Joshua Rume Valiullin, Rustem Kremer, Friedrich TI The interplay between inter- and intra-molecular dynamics in a series of alkylcitrates SO SOFT MATTER LA English DT Article ID GLASS-TRANSITION; HYDROGEN-BONDS; LIQUIDS AB The inter- and intra-molecular dynamics in a series of glass-forming alkylcitrates is studied by a combination of Broadband Dielectric Spectroscopy (BDS), Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR), Fourier-Transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC). Analyzing the temperature dependencies of specific IR absorption bands in terms of their spectral position and the corresponding oscillator strengths enables one to unravel the intramolecular dynamics of specific molecular moieties and to compare them with the (primarily dielectrically) determined intermolecular dynamics. With decreasing temperature, the IR band positions of carbonyls (part of the core units) and H-bonded moieties of citrates show a red shift with a kink at the calorimetric glass transition temperature (T-g) while other moieties, whose dynamics are decoupled from those of the core units, exhibit a blue shift with nominal changes at T-g. The oscillator strength of all units in citrates depicts stronger temperature dependencies above T-g and in some, the ester linkage and H-bonded units show a change of slope at a temperature where structural and faster secondary relaxations merge. By that, a wealth of novel information is obtained proving the fundamental importance of intramolecular mobility in the process of glass formation, beyond coarse-grained descriptions. C1 [Kipnusu, Wycliffe Kiprop; Kossack, Wilhelm; Iacob, Ciprian; Zeigermann, Philipp; Jasiurkowska, Malgorzata; Valiullin, Rustem; Kremer, Friedrich] Univ Leipzig, Inst Expt Phys 1, D-04103 Leipzig, Germany. [Sangoro, Joshua Rume] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. RP Kipnusu, WK (reprint author), Univ Leipzig, Inst Expt Phys 1, Linnestr 5, D-04103 Leipzig, Germany. EM Kipnusu@physik.uni-leipzig.de RI Valiullin, Rustem/F-6432-2011; Iacob, Ciprian/Q-7812-2016; Sangoro, Joshua/A-6573-2011; OI Sangoro, Joshua/0000-0002-5483-9528; Kiprop Kipnusu, Wycliffe/0000-0003-0643-7716; Kossack, Wilhelm/0000-0003-1578-8454 FU DFG (Germany); NOW (The Netherlands) within IRTG 'Diffusion in Porous Materials'; Leipzig School of Natural Sciences, 'Building with Molecules and Nano-Objects' (BuilMoNa) FX Financial support from DFG (Germany) and NOW (The Netherlands) within IRTG 'Diffusion in Porous Materials' and Leipzig School of Natural Sciences, 'Building with Molecules and Nano-Objects' (BuilMoNa) is gratefully acknowledged. We also thank Dr Thomas Lupke of Kunststoff-Zentrum in Leipzig for carrying out DSC measurements. NR 25 TC 10 Z9 10 U1 1 U2 22 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2013 VL 9 IS 18 BP 4681 EP 4686 DI 10.1039/c3sm27670h PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 124WL UT WOS:000317499000016 ER PT S AU Pereira, H Lettry, J Alessi, J Kalvas, T AF Pereira, H. Lettry, J. Alessi, J. Kalvas, T. BE Tarvainen, O Kalvas, T TI Estimation of Sputtering Damages on a Magnetron H- Ion Source Induced by Cs+ and H+ Ions SO THIRD INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2012) SE AIP Conference Proceedings LA English DT Proceedings Paper CT 3rd International Symposium on Negative Ions, Beams and Sources (NIBS) CY SEP 03-07, 2012 CL Jyvaskyla, FINLAND SP Dehnel - Particle Accelerator Components & Engn Inc, Federat Finnish Learned Soc, Univ Jyvaskyla, Dept Phys, Univ Jyvaskyla DE negative ion source; H-; Cesium; sputtering damages AB An H- ion source is being developed for CERN's Linac4 accelerator. A beam current requirement of 80 mA and a reliability above 99 % during 1 year with 3 month uninterrupted operation periods are mandatory. To design a low-maintenance long life-time source, it is important to investigate and understand the wear mechanisms. A cesiated plasma discharge ion source, such as the BNL magnetron source, is a good candidate for the Linac4 ion source. However, in the magnetron source operated at BNL, the removal of material from the molybdenum cathode and the stainless steel anode cover plate surfaces is visible after extended operation periods. The observed sputtering traces are shown to result from cesium vapors and hydrogen gas ionized in the extraction region and subsequently accelerated by the extraction field. This paper presents a quantitative estimate of the ionization of cesium and hydrogen by the electron and H- beams in the extraction region of BNL's magnetron ion source. The respective contributions of Cs+ and H+ ions to the sputtering process are estimated. C1 [Pereira, H.; Lettry, J.] CERN, CH-1211 Geneva 23, Switzerland. [Alessi, J.] BNL, New York, NY 11973 USA. [Kalvas, T.] Univ Jyvaskyla, Dept Phys, SF-40351 Jyvaskyla, Finland. RP Pereira, H (reprint author), CERN, CH-1211 Geneva 23, Switzerland. NR 8 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1136-4 J9 AIP CONF PROC PY 2013 VL 1515 BP 81 EP 88 DI 10.1063/1.4792773 PG 8 WC Physics, Applied; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Physics GA BEK03 UT WOS:000317013500010 ER PT S AU Kashiwagi, M Taniguchi, M Umeda, N Dairaku, M Tobari, H Yamanaka, H Watanabe, K Inoue, T de Esch, HPL Grisham, LR Boilson, D Hemsworth, RS Tanaka, M AF Kashiwagi, Mieko Taniguchi, Masaki Umeda, Naotaka Dairaku, Masayuki Tobari, Hiroyuki Yamanaka, Haruhiko Watanabe, Kazuhiro Inoue, Takashi de Esch, H. P. L. Grisham, Larry R. Boilson, Deirdre Hemsworth, Ronald S. Tanaka, Masanobu BE Tarvainen, O Kalvas, T TI Compensations of beamlet deflections for 1 MeV accelerator of ITER NBI SO THIRD INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2012) SE AIP Conference Proceedings LA English DT Proceedings Paper CT 3rd International Symposium on Negative Ions, Beams and Sources (NIBS) CY SEP 03-07, 2012 CL Jyvaskyla, FINLAND SP Dehnel - Particle Accelerator Components & Engn Inc, Federat Finnish Learned Soc, Univ Jyvaskyla, Dept Phys, Univ Jyvaskyla DE Negative ion; Accelerator; Ion beam; ITER; NBI AB Compensation methods of beamlet deflections have been studied in a three dimensional (3D) beam analysis using OPERA-3d code for 1 MeV accelerator of the ITER neutral beam injector (NBI). The beamlet deflection is caused by i) magnetic field generated by permanent magnets embedded in the extraction grid (EXG) for electron suppression and ii) space charge repulsion between the beamlets and beam groups. Moreover, the beamlet deflection is caused due to electric field distortion formed by a grid support structure. In order to compensate the beamlet deflections due to i) and ii), an aperture offset of 0.6 mm was applied in the electron suppression grid (ESG) and a metal bar with 3 mm in thickness, so-called a kerb, was attached around the aperture area at the back side of the ESG, respectively. Detailed configuration of the compensation methods was also considered so as to suppress the beam spread due to the electric field distortion and to lower electric field concentrations at the edge of the kerb. For the beamlets near the grid support structure, the beamlet deflection due to the space charge repulsion could be negated due to the electric field distortion formed by the grid support structure C1 [Kashiwagi, Mieko; Taniguchi, Masaki; Umeda, Naotaka; Dairaku, Masayuki; Tobari, Hiroyuki; Yamanaka, Haruhiko; Watanabe, Kazuhiro; Inoue, Takashi] Japan Atom Energy Agcy, 801-1 Mukoyama, Naka, Ibaraki 3110193, Japan. [de Esch, H. P. L.] CEA Cadarache, IRFM, F-13108 St Paul Les Durance, France. [Grisham, Larry R.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Boilson, Deirdre; Hemsworth, Ronald S.; Tanaka, Masanobu] ITER Org, F-13115 St Paul Les Durance, France. RP Kashiwagi, M (reprint author), Japan Atom Energy Agcy, 801-1 Mukoyama, Naka, Ibaraki 3110193, Japan. FU ITER [C53TD48FJ] FX This report is based on work undertaken within the ITER Organization and/or its members, i.e., China, European Union, Inida, Japan, Korea, Russia and the United States of America. Disseminaation of information contained in this paper is governed by the applicable terms of the ITER agreement. The views and opinions expressed hereindo not necessarily reflect those of the ITER Organization. Part of this work was founded by ITER task contract (C53TD48FJ). NR 16 TC 5 Z9 5 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1136-4 J9 AIP CONF PROC PY 2013 VL 1515 BP 227 EP 236 DI 10.1063/1.4792789 PG 10 WC Physics, Applied; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Physics GA BEK03 UT WOS:000317013500026 ER PT S AU Stockli, MP Han, BX Murray, SN Pennisi, TR Santana, M Welton, RF AF Stockli, Martin P. Han, B. X. Murray, S. N. Pennisi, T. R. Santana, M. Welton, R. F. BE Tarvainen, O Kalvas, T TI Recent Performance of the SNS H- Source for 1-MW Neutron Production SO THIRD INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2012) SE AIP Conference Proceedings LA English DT Proceedings Paper CT 3rd International Symposium on Negative Ions, Beams and Sources (NIBS) CY SEP 03-07, 2012 CL Jyvaskyla, FINLAND SP Dehnel - Particle Accelerator Components & Engn Inc, Federat Finnish Learned Societies, Univ Jyvaskyla, Dept Phys, Univ Jyvaskyla DE Cesium; H- ions; ion source; RF ion source; multicusp ion source ID ION-SOURCE; DESIGN AB This paper describes the performance of the SNS H- ion source and LEBT as they continue to deliver similar to 50 mA H- beams at a 5.3% duty factor required for neutron production with a similar to 1MW proton beam since the fall of 2009. The source continues to deliver persistent H- beams for up to 6 weeks without adding Cs after an initial dose of similar to 4 mg, except when there are excessive plasma impurities. In one case the H- beam decayed due to an air leak, which is shown to be consistent with sputtering of the Cs layer, and which allows us to bracket the plasma potential. In another case, the performance of two sources degraded progressively, which appears to be consistent with a progressive deterioration of the Cs covered Mo converter. These two and other recently discovered issues are discussed in detail. C1 [Stockli, Martin P.; Han, B. X.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Welton, R. F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Stockli, MP (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. NR 16 TC 5 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1136-4 J9 AIP CONF PROC PY 2013 VL 1515 BP 292 EP 301 DI 10.1063/1.4792797 PG 10 WC Physics, Applied; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Physics GA BEK03 UT WOS:000317013500034 ER PT S AU Bollinger, DS AF Bollinger, D. S. BE Tarvainen, O Kalvas, T TI H- Ion Source Development for the FNAL 750keV Injector Upgrade SO THIRD INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2012) SE AIP Conference Proceedings LA English DT Proceedings Paper CT 3rd International Symposium on Negative Ions, Beams and Sources (NIBS) CY SEP 03-07, 2012 CL Jyvaskyla, FINLAND SP Dehnel - Particle Accelerator Components & Engn Inc, Federat Finnish Learned Societies, Univ Jyvaskyla, Dept Phys, Univ Jyvaskyla DE Ion Source; Magnetron; RFQ; HINS; Cockcroft-Walton AB The new FNAL 750keV injector upgrade for the replacement of the 40 year old Fermi National Laboratory (FNAL) Cockcroft-Walton accelerators with a new ion source and 200MHz Radio Frequency Quadrupole (RFQ), Low Energy Beam Transport (LEBT) and Medium Energy Beam Transport (MEBT) [1], has been built and is now being tested prior to installation during the 2012 shutdown. The new H -ion source is a round aperture magnetron which was developed at Brookhaven National Lab (BNL) by Jim Alessi[2]. Operational experience from BNL has shown that this type of source is more reliable with a longer lifetime (on the order of 6 to 9 months) due to better power efficiency. With a similar duty factor to BNL, we expect to have a comparable lifetime between source changes. The new source design reliably produces 90mA of H- beam current at 15Hz rep-rate, 250 mu s pulse width, and a duty factor of 0.38%.. The measured emittances at the end of the LEBT are horizontally epsilon(H) = 0.21(pi) mm(*) mrad and vertically epsilon(V) = 0.17(pi) mm(*) mrad. With 35kV extraction the power efficiency is 60mA/kW. The source design, along with data from a test stand and the LEBT, will be presented in this paper. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Bollinger, DS (reprint author), Fermilab Natl Accelerator Lab, Box 500,MS 307, Batavia, IL 60510 USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1136-4 J9 AIP CONF PROC PY 2013 VL 1515 BP 312 EP 320 DI 10.1063/1.4792799 PG 9 WC Physics, Applied; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Physics GA BEK03 UT WOS:000317013500036 ER PT S AU Welton, RF Dudnikov, VG Han, BX Murray, SN Pennisi, TR Roseberry, RT Santana, M Stockli, MP AF Welton, R. F. Dudnikov, V. G. Han, B. X. Murray, S. N. Pennisi, T. R. Roseberry, R. T. Santana, M. Stockli, M. P. BE Tarvainen, O Kalvas, T TI Developing Reliable Internal Antennas and Standardizing Performance of H- RF Ion Sources SO THIRD INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2012) SE AIP Conference Proceedings LA English DT Proceedings Paper CT 3rd International Symposium on Negative Ions, Beams and Sources (NIBS) CY SEP 03-07, 2012 CL Jyvaskyla, FINLAND SP Dehnel - Particle Accelerator Components & Engn Inc, Federat Finnish Learned Soc, Univ Jyvaskyla, Dept Phys, Univ Jyvaskyla DE negative ion sources; particle accelerators; ion formation AB The Spallation Neutron Source (SNS) now routinely operates near 1 MW of beam power on target with 30-40 mA peak current in the linac and an overall availability of similar to 90%. H- beam pulses (similar to 1 ms, 60Hz) are produced by a RF-driven, Cs-enhanced, multi-cusp ion source closely coupled to an electrostatic Low Energy Beam Transport (LEBT) which focuses the beam into an RFQ accelerator. The ion source and LEBT normally have a combined availability of similar to 99%. The source plasma is generated by RF excitation (2MHz, similar to 60kW) of a copper antenna which has been encased with a thickness of similar to 0.7 mm of porcelain enamel and is immersed into the plasma chamber. Failure of this coating material during operations has been a long-standing problem and a cause of downtime. This report describes new antenna installation criteria which have led to trouble free antenna performance over this last year, a significant improvement over previous years. These results suggest that inclusions and defects in the antenna coating play an important role in the failure process. This report also addresses the problem of inconsistent performance among our inventory of five ostensibly identical baseline SNS ion sources. Over the last several years only source #3 has regularly provided the required beam current to the SNS by outperforming the others by 5-10 mA. To address this, all baseline sources have been characterized on the ion source test stand and small physical differences between source #3 and the others have been identified and the impact of those differences on beam production assessed. C1 [Welton, R. F.; Han, B. X.; Murray, S. N.; Pennisi, T. R.; Roseberry, R. T.; Santana, M.; Stockli, M. P.] Oak Ridge Natl Lab, Spallat Neutron Source, POB 2008, Oak Ridge, TN 37830 USA. [Dudnikov, V. G.] Muons Inc, Batavia, IL 60510 USA. RP Welton, RF (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, POB 2008, Oak Ridge, TN 37830 USA. FU U.S. Department of Energy [DE-AC05-00OR22725] FX This work was performed at Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. NR 6 TC 6 Z9 6 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1136-4 J9 AIP CONF PROC PY 2013 VL 1515 BP 341 EP 348 DI 10.1063/1.4792802 PG 8 WC Physics, Applied; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Physics GA BEK03 UT WOS:000317013500039 ER PT S AU Han, BX Stockli, MP Welton, RF Murray, SN Pennisi, TR Santana, M AF Han, B. X. Stockli, M. P. Welton, R. F. Murray, S. N., Jr. Pennisi, T. R. Santana, M. BE Tarvainen, O Kalvas, T TI Emittance Characterization of the Spallation Neutron Source H- Injector SO THIRD INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2012) SE AIP Conference Proceedings LA English DT Proceedings Paper CT 3rd International Symposium on Negative Ions, Beams and Sources (NIBS) CY SEP 03-07, 2012 CL Jyvaskyla, FINLAND SP Dehnel - Particle Accelerator Components & Engn Inc, Federat Finnish Learned Societies, Univ Jyvaskyla, Dept Phys, Univ Jyvaskyla DE H- ion source; Low-energy beam transport; Beam emittance AB The H- injector for the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory consists of a RF H- ion source and a compact electrostatic low-energy beam transport (LEBT) section. Up to 5 ion sources and up to 4 LEBT assemblies are alternated for the SNS beam operations. The beam current and emittance of the H- beam exiting the LEBT were characterized on the test-stand for different sources and LEBT assemblies in order to understand and minimize their performance variations. C1 [Han, B. X.; Stockli, M. P.; Welton, R. F.; Murray, S. N., Jr.; Pennisi, T. R.; Santana, M.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Han, BX (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. NR 5 TC 1 Z9 1 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1136-4 J9 AIP CONF PROC PY 2013 VL 1515 BP 473 EP 480 DI 10.1063/1.4792818 PG 8 WC Physics, Applied; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Physics GA BEK03 UT WOS:000317013500055 ER PT S AU Stockli, MP Faircloth, D Kraus, W Ando, A Bollinger, DS Briefi, S Fantz, U Friedl, R Kashiwagi, M King, D Koivisto, H Han, BX Lettry, J Takeiri, Y Tarvainen, O Tsumori, K Welton, RF Wimmer, C AF Stockli, M. P. Faircloth, D. Kraus, W. Ando, A. Bollinger, D. S. Briefi, S. Fantz, U. Friedl, R. Kashiwagi, M. King, D. Koivisto, H. Han, B. X. Lettry, J. Takeiri, Y. Tarvainen, O. Tsumori, K. Welton, R. F. Wimmer, Ch BE Tarvainen, O Kalvas, T TI Workshop on Performance Variations in H- Ion Sources 2012: PV H(-)12 SO THIRD INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2012) SE AIP Conference Proceedings LA English DT Proceedings Paper CT 3rd International Symposium on Negative Ions, Beams and Sources (NIBS) CY SEP 03-07, 2012 CL Jyvaskyla, FINLAND SP Dehnel - Particle Accelerator Components & Engn Inc, Federat Finnish Learned Soc, Univ Jyvaskyla, Dept Phys, Univ Jyvaskyla DE Cesium; H- ions; ion source AB This paper briefly summarizes a workshop held in Jyvaskyla the day after NIBS' 12. The half-day workshop aimed at globally capturing the issue of performance variations in H- sources. There was a focus on production facilities and facilities that work under production-like conditions, because there are often high expectations to be met. C1 [Stockli, M. P.; Han, B. X.; Wimmer, Ch] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Faircloth, D.] STFC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Kraus, W.; Briefi, S.; Fantz, U.; Friedl, R.; Wimmer, Ch] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Ando, A.] Tohoku Univ, Grad Sch Engn, Sendai, Miyagi 980, Japan. [Bollinger, D. S.] Fermilab Natl Accelerator Lab, Batavia, IL 60543 USA. [Kashiwagi, M.] JAEA, Naka, Ibaraki 3110193, Japan. [King, D.] EURATOM CCFE Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Koivisto, H.; Tarvainen, O.] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40500, Finland. [Lettry, J.] CERN, Geneva, Switzerland. [Takeiri, Y.; Tsumori, K.] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. RP Stockli, MP (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. NR 3 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1136-4 J9 AIP CONF PROC PY 2013 VL 1515 BP 594 EP 597 DI 10.1063/1.4792832 PG 4 WC Physics, Applied; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Physics GA BEK03 UT WOS:000317013500069 ER PT J AU Abreu, P Aglietta, M Ahlers, M Ahn, EJ Albuquerque, IFM Allard, D Allekotte, I Allen, J Allison, P Almela, A Castillo, JA Alvarez-Muniz, J Batista, RA Ambrosio, M Aminaei, A Anchordoqui, L Andringa, S Anticic, T Aramo, C Arganda, E Arqueros, F Asorey, H Assis, P Aublin, J Ave, M Avenier, M Avila, G Backer, T Badescu, AM Balzer, M Barber, KB Barbosa, AF Bardenet, R Barroso, SLC Baughman, B Bauml, J Beatty, JJ Becker, BR Becker, KH Belletoile, A Bellido, JA BenZvi, S Berat, C Bertou, X Biermann, PL Billoir, P Blanco, F Blanco, M Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Bonino, R Borodai, N Brack, J Brancus, I Brogueira, P Brown, WC Bruijn, R Buchholz, P Bueno, A Burton, RE Caballero-Mora, KS Caccianiga, B Caramete, L Caruso, R Castellina, A Catalano, O Cataldi, G Cazon, L Cester, R Chauvin, J Cheng, SH Chiavassa, A Chinellato, JA Diaz, JC Chudoba, J Cilmo, M Clay, RW Coluccia, MR Conceicao, R Contreras, F Cook, H Cooper, MJ Coppens, J Cordier, A Coutu, S Covault, CE Creusot, A Criss, A Cronin, J Curutiu, A Dagoret-Campagne, S Dallier, R Daniel, B Dasso, S Daumiller, K Dawson, BR de Almeida, RM De Domenico, M De Donato, C de Jong, SJ De La Vega, G de Mello, WJM Neto, JRTD De Mitri, I de Souza, V de Vries, KD del Peral, L del Rio, M Deligny, O Dembinski, H Dhital, N Di Giulio, C Castro, MLD Diep, PN Diogo, F Dobrigkeit, C Docters, W D'Olivo, JC Dong, PN Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I Ebr, J Engel, R Erdmann, M Escobar, CO Espadanal, J Etchegoyen, A San Luis, PF Falcke, H Farrar, G Fauth, AC Fazzini, N Ferguson, AP Fick, B Filevich, A Filipcic, A Fliescher, S Fracchiolla, CE Fraenkel, ED Fratu, O Frohlich, U Fuchs, B Gaior, R Gamarra, RF Gambetta, S Garcia, B Roca, STG Garcia-Gamez, D Garcia-Pinto, D Bravo, AG Gemmeke, H Ghia, PL Giller, M Gitto, J Glass, H Gold, MS Golup, G Albarracin, FG Berisso, MG Vitale, PFG Goncalves, P Gonzalez, JG Gookin, B Gorgi, A Gouffon, P Grashorn, E Grebe, S Griffith, N Grigat, M Grillo, AF Guardincerri, Y Guarino, F Guedes, GP Hansen, P Harari, D Harrison, TA Harton, JL Haungs, A Hebbeker, T Heck, D Herve, AE Hojvat, C Hollon, N Holmes, VC Homola, P Horandel, JR Horvath, P Hrabovsky, M Huber, D Huege, T Insolia, A Ionita, F Italiano, A Jarne, C Jiraskova, S Josebachuili, M Kadija, K Kampert, KH Karhan, P Kasper, P Katkov, I Kegl, B Keilhauer, B Keivani, A Kelley, JL Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapp, J Koang, DH Kotera, K Krohm, N Kromer, O Kruppke-Hansen, D Kuehn, F Kuempel, D Kulbartz, JK Kunka, N La Rosa, G Lachaud, C LaHurd, D Latronico, L Lauer, R Lautridou, P Le Coz, S Leao, MSAB Lebrun, D Lebrun, P de Oliveira, MAL Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopez, R Aguera, AL Louedec, K Bahilo, JL Lu, L Lucero, A Ludwig, M Lyberis, H Maccarone, MC Macolino, C Maldera, S Mandat, D Mantsch, P Mariazzi, AG Marin, J Marin, V Maris, IC Falcon, HRM Marsella, G Martello, D Martin, L Martinez, H Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurel, D Maurizio, D Mazur, PO Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Mertsch, P Meurer, C Micanovic, S Micheletti, MI Minaya, IA Miramonti, L Molina-Bueno, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, E Moreno, JC Mostafa, M Moura, CA Muller, MA Muller, G Munchmeyer, M Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Nelles, A Neuser, J Nhung, PT Niechciol, M Niemietz, L Nierstenhoefer, N Nitz, D Nosek, D Nozka, L Oehlschlager, J Olinto, A Ortiz, M Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Palmieri, N Parente, G Parizot, E Parra, A Pastor, S Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Petrera, S Petrolini, A Petrov, Y Pfendner, C Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Plum, M Ponce, VH Pontz, M Porcelli, A Privitera, P Prouza, M Quel, EJ Querchfeld, S Rautenberg, J Ravel, O Ravignani, D Revenu, B Ridky, J Riggi, S Risse, M Ristori, P Rivera, H Rizi, V Roberts, J de Carvalho, WR Rodriguez, G Cabo, IR Martino, JR Rojo, JR Rodriguez-Frias, MD Ros, G Rosado, J Rossler, T Roth, M Rouille-d'Orfeuil, B Roulet, E Rovero, AC Ruehle, C Saftoiu, A Salamida, F Salazar, H Greus, FS Salina, G Sanchez, F Santo, CE Santos, E Santos, EM Sarazin, F Sarkar, B Sarkar, S Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Scholten, O Schoorlemmer, H Schovancova, J Schovanek, P Schroder, F Schulte, S Schuster, D Sciutto, SJ Scuderi, M Segreto, A Settimo, M Shadkam, A Shellard, RC Sidelnik, I Sigl, G Sima, O Smialkowski, A Smida, R Snow, GR Sommers, P Sorokin, J Spinka, H Squartini, R Srivastava, YN Stanic, S Stapleton, J Stasielak, J Stephan, M Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Susa, T Sutherland, MS Swain, J Szadkowski, Z Szuba, M Tapia, A Tartare, M Tascau, O Tcaciuc, R Thao, NT Thomas, D Tiffenberg, J Timmermans, C Tkaczyk, W Peixoto, CJT Toma, G Tomankova, L Tome, B Tonachini, A Travnicek, P Tridapalli, DB Tristram, G Trovato, E Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM Varela, E Cardenas, BV Vazquez, JR Vazquez, RA Veberic, D Verzi, V Vicha, J Videla, M Villasenor, L Wahlberg, H Wahrlich, P Wainberg, O Walz, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Werner, F Westerhoff, S Whelan, BJ Widom, A Wieczorek, G Wiencke, L Wilczynska, B Wilczynski, H Will, M Williams, C Winchen, T Wommer, M Wundheiler, B Yamamoto, T Yapici, T Younk, P Yuan, G Yushkov, A Garcia, BZ Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Zhu, Y Silva, MZ Ziolkowski, M AF Abreu, P. Aglietta, M. Ahlers, M. Ahn, E. J. Albuquerque, I. F. M. Allard, D. Allekotte, I. Allen, J. Allison, P. Almela, A. Alvarez Castillo, J. Alvarez-Muniz, J. Alves Batista, R. Ambrosio, M. Aminaei, A. Anchordoqui, L. Andringa, S. Anticic, T. Aramo, C. Arganda, E. Arqueros, F. Asorey, H. Assis, P. Aublin, J. Ave, M. Avenier, M. Avila, G. Baecker, T. Badescu, A. M. Balzer, M. Barber, K. B. Barbosa, A. F. Bardenet, R. Barroso, S. L. C. Baughman, B. Baeuml, J. Beatty, J. J. Becker, B. R. Becker, K. H. Belletoile, A. Bellido, J. A. BenZvi, S. Berat, C. Bertou, X. Biermann, P. L. Billoir, P. Blanco, F. Blanco, M. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Bonino, R. Borodai, N. Brack, J. Brancus, I. Brogueira, P. Brown, W. C. Bruijn, R. Buchholz, P. Bueno, A. Burton, R. E. Caballero-Mora, K. S. Caccianiga, B. Caramete, L. Caruso, R. Castellina, A. Catalano, O. Cataldi, G. Cazon, L. Cester, R. Chauvin, J. Cheng, S. H. Chiavassa, A. Chinellato, J. A. Diaz, J. Chirinos Chudoba, J. Cilmo, M. Clay, R. W. Coluccia, M. R. Conceicao, R. Contreras, F. Cook, H. Cooper, M. J. Coppens, J. Cordier, A. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. Curutiu, A. Dagoret-Campagne, S. Dallier, R. Daniel, B. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. De Donato, C. de Jong, S. J. De La Vega, G. de Mello Junior, W. J. M. de Mello Neto, J. R. T. De Mitri, I. de Souza, V. de Vries, K. D. del Peral, L. del Rio, M. Deligny, O. Dembinski, H. Dhital, N. Di Giulio, C. Diaz Castro, M. L. Diep, P. N. Diogo, F. Dobrigkeit, C. Docters, W. D'Olivo, J. C. Dong, P. N. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. Ebr, J. Engel, R. Erdmann, M. Escobar, C. O. Espadanal, J. Etchegoyen, A. San Luis, P. Facal Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Fick, B. Filevich, A. Filipcic, A. Fliescher, S. Fracchiolla, C. E. Fraenkel, E. D. Fratu, O. Froehlich, U. Fuchs, B. Gaior, R. Gamarra, R. F. Gambetta, S. Garcia, B. Garcia Roca, S. T. Garcia-Gamez, D. Garcia-Pinto, D. Gascon Bravo, A. Gemmeke, H. Ghia, P. L. Giller, M. Gitto, J. Glass, H. Gold, M. S. Golup, G. Gomez Albarracin, F. Gomez Berisso, M. Gomez Vitale, P. F. Goncalves, P. Gonzalez, J. G. Gookin, B. Gorgi, A. Gouffon, P. Grashorn, E. Grebe, S. Griffith, N. Grigat, M. Grillo, A. F. Guardincerri, Y. Guarino, F. Guedes, G. P. Hansen, P. Harari, D. Harrison, T. A. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Herve, A. E. Hojvat, C. Hollon, N. Holmes, V. C. Homola, P. Horandel, J. R. Horvath, P. Hrabovsky, M. Huber, D. Huege, T. Insolia, A. Ionita, F. Italiano, A. Jarne, C. Jiraskova, S. Josebachuili, M. Kadija, K. Kampert, K. H. Karhan, P. Kasper, P. Katkov, I. Kegl, B. Keilhauer, B. Keivani, A. Kelley, J. L. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapp, J. Koang, D. -H. Kotera, K. Krohm, N. Kroemer, O. Kruppke-Hansen, D. Kuehn, F. Kuempel, D. Kulbartz, J. K. Kunka, N. La Rosa, G. Lachaud, C. LaHurd, D. Latronico, L. Lauer, R. Lautridou, P. Le Coz, S. Leao, M. S. A. B. Lebrun, D. Lebrun, P. Leigui de Oliveira, M. A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopez, R. Lopez Agueera, A. Louedec, K. Lozano Bahilo, J. Lu, L. Lucero, A. Ludwig, M. Lyberis, H. Maccarone, M. C. Macolino, C. Maldera, S. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, J. Marin, V. Maris, I. C. Marquez Falcon, H. R. Marsella, G. Martello, D. Martin, L. Martinez, H. Martinez Bravo, O. Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurel, D. Maurizio, D. Mazur, P. O. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Mertsch, P. Meurer, C. Micanovic, S. Micheletti, M. I. Minaya, I. A. Miramonti, L. Molina-Bueno, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, E. Moreno, J. C. Mostafa, M. Moura, C. A. Muller, M. A. Mueller, G. Muenchmeyer, M. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Nelles, A. Neuser, J. Nhung, P. T. Niechciol, M. Niemietz, L. Nierstenhoefer, N. Nitz, D. Nosek, D. Nozka, L. Oehlschlaeger, J. Olinto, A. Ortiz, M. Pacheco, N. Pakk Selmi-Dei, D. Palatka, M. Pallotta, J. Palmieri, N. Parente, G. Parizot, E. Parra, A. Pastor, S. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Petrera, S. Petrolini, A. Petrov, Y. Pfendner, C. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Plum, M. Ponce, V. H. Pontz, M. Porcelli, A. Privitera, P. Prouza, M. Quel, E. J. Querchfeld, S. Rautenberg, J. Ravel, O. Ravignani, D. Revenu, B. Ridky, J. Riggi, S. Risse, M. Ristori, P. Rivera, H. Rizi, V. Roberts, J. Rodrigues de Carvalho, W. Rodriguez, G. Rodriguez Cabo, I. Rodriguez Martino, J. Rodriguez Rojo, J. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossler, T. Roth, M. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Ruehle, C. Saftoiu, A. Salamida, F. Salazar, H. Greus, F. Salesa Salina, G. Sanchez, F. Santo, C. E. Santos, E. Santos, E. M. Sarazin, F. Sarkar, B. Sarkar, S. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Scholten, O. Schoorlemmer, H. Schovancova, J. Schovanek, P. Schroeder, F. Schulte, S. Schuster, D. Sciutto, S. J. Scuderi, M. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sidelnik, I. Sigl, G. Sima, O. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Srivastava, Y. N. Stanic, S. Stapleton, J. Stasielak, J. Stephan, M. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Susa, T. Sutherland, M. S. Swain, J. Szadkowski, Z. Szuba, M. Tapia, A. Tartare, M. Tascau, O. Tcaciuc, R. Thao, N. T. Thomas, D. Tiffenberg, J. Timmermans, C. Tkaczyk, W. Todero Peixoto, C. J. Toma, G. Tomankova, L. Tome, B. Tonachini, A. Travnicek, P. Tridapalli, D. B. Tristram, G. Trovato, E. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van den Berg, A. M. Varela, E. Vargas Cardenas, B. Vazquez, J. R. Vazquez, R. A. Veberic, D. Verzi, V. Vicha, J. Videla, M. Villasenor, L. Wahlberg, H. Wahrlich, P. Wainberg, O. Walz, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Werner, F. Westerhoff, S. Whelan, B. J. Widom, A. Wieczorek, G. Wiencke, L. Wilczynska, B. Wilczynski, H. Will, M. Williams, C. Winchen, T. Wommer, M. Wundheiler, B. Yamamoto, T. Yapici, T. Younk, P. Yuan, G. Yushkov, A. Zamorano Garcia, B. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Zhu, Y. Zimbres Silva, M. Ziolkowski, M. CA Pierre Auger Collaboration TI Ultrahigh Energy Neutrinos at the Pierre Auger Observatory SO ADVANCES IN HIGH ENERGY PHYSICS LA English DT Review ID COSMIC-RAYS; AIR-SHOWERS; TAU-NEUTRINOS; FLUX; SPECTRUM; SEARCH; ARRAY; LIMIT AB The observation of ultrahigh energy neutrinos (UHE nu s) has become a priority in experimental astroparticle physics. UHE nu s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going nu) or in the Earth crust (Earth-skimming nu), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE nu s in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE nu s in the EeV range and above. C1 [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, LIP, Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, Inst Super Tecn, Lisbon, Portugal. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Marin, J.; Morello, C.; Navarra, G.] Univ Turin, Ist Fis Spazio Interplanetario INAF, Turin, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Marin, J.; Maurizio, D.; Menichetti, E.; Morello, C.; Mussa, R.; Navarra, G.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Ahlers, M.; BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Ahn, E. J.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Kuehn, F.; Lebrun, P.; Mantsch, P.; Mazur, P. O.; Spinka, H.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Albuquerque, I. F. M.; Gouffon, P.; Tridapalli, D. B.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Allard, D.; Creusot, A.; Lachaud, C.; Parizot, E.; Tristram, G.] Univ Paris 07, Lab AstroParticule & Cosmol APC, CNRS IN2P3, Paris, France. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.] Inst Balseiro CNEA UNCuyo CONICET, San Carlos De Bariloche, Rio Negro, Argentina. [Allen, J.; Farrar, G.; Roberts, J.; Zaw, I.] NYU, New York, NY USA. [Allison, P.; Baughman, B.; Beatty, J. J.; Grashorn, E.; Griffith, N.; Stapleton, J.] Ohio State Univ, Columbus, OH 43210 USA. [Almela, A.; Etchegoyen, A.; Wainberg, O.] Univ Tecnol Nacl, Fac Reg Buenos Aires, Buenos Aires, DF, Argentina. [Almela, A.; Etchegoyen, A.; Filevich, A.; Gamarra, R. F.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Sidelnik, I.; Suarez, F.; Tapia, A.; Wainberg, O.; Wundheiler, B.] UNSAM, CONICET, CNEA, Inst Tecnol Detecci & Astroparticulas, Buenos Aires, DF, Argentina. [Alvarez Castillo, J.; De Donato, C.; D'Olivo, J. C.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Valdes Galicia, J. F.; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Alvarez-Muniz, J.; Garcia Roca, S. T.; Lopez Agueera, A.; Parente, G.; Parra, A.; Pelayo, R.; Riggi, S.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Cabo, I.; Tueros, M.; Valino, I.; Vazquez, R. A.; Yushkov, A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Alves Batista, R.; Chinellato, J. A.; Daniel, B.; de Mello Junior, W. J. M.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Pakk Selmi-Dei, D.; Zimbres Silva, M.] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Ambrosio, M.; Aramo, C.; Cilmo, M.; D'Urso, D.; Guarino, F.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; Cilmo, M.; D'Urso, D.; Guarino, F.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Aminaei, A.; Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Jiraskova, S.; Kelley, J. L.; Nelles, A.; Schoorlemmer, H.; Timmermans, C.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Anchordoqui, L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Anticic, T.; Kadija, K.; Micanovic, S.; Susa, T.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Arganda, E.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Univ Nacl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Arganda, E.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Arganda, E.; Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Minaya, I. A.; Ortiz, M.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [Aublin, J.; Billoir, P.; Blanco, M.; Bonifazi, C.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.; Muenchmeyer, M.] Univ Paris 06, LPNHE, CNRS IN2P3, Paris, France. [Aublin, J.; Billoir, P.; Blanco, M.; Bonifazi, C.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.; Muenchmeyer, M.] Univ Paris 07, LPNHE, CNRS IN2P3, Paris, France. [Ave, M.; Bluemer, H.; Dembinski, H.; Fuchs, B.; Huber, D.; Katkov, I.; Link, K.; Ludwig, M.; Melissas, M.; Palmieri, N.] Karlsruhe Inst Technol, Inst Expt Kernphys IEKP, D-76021 Karlsruhe, Germany. [Avenier, M.; Berat, C.; Chauvin, J.; Koang, D. -H.; Le Coz, S.; Lebrun, D.; Louedec, K.; Montanet, F.; Stutz, A.] Univ Grenoble 1, LPSC, INPG, CNRS IN2P3, Grenoble, France. [Avila, G.; Contreras, F.; del Rio, M.; Gomez Vitale, P. F.; Kleinfeller, J.; Marin, J.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Sato, R.; Squartini, R.] Observ Pierre Auger, Malargue, Argentina. [Avila, G.; Gomez Vitale, P. F.] Comis Nacl Energia Atom, Malargue, Argentina. [Baecker, T.; Buchholz, P.; Froehlich, U.; Kuempel, D.; Niechciol, M.; Pontz, M.; Risse, M.; Settimo, M.; Tcaciuc, R.; Younk, P.; Ziolkowski, M.] Univ Siegen, D-57068 Siegen, Germany. [Badescu, A. M.; Fratu, O.; Tartare, M.] Univ Politehn Bucuresti, Bucharest, Romania. [Balzer, M.; Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Ruehle, C.; Schmidt, A.; Weber, M.; Zhu, Y.] Karlsruher Inst Technol, Inst Prozessdatenverarbeitung & Elekt, Karlsruhe, Germany. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Harrison, T. A.; Herve, A. E.; Holmes, V. C.; Sorokin, J.; Wahrlich, P.; Whelan, B. J.] Univ Adelaide, Adelaide, SA, Australia. [Barbosa, A. F.; Diaz Castro, M. L.; dos Anjos, J. C.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, RJ, Brazil. [Bardenet, R.; Cordier, A.; Dagoret-Campagne, S.; Garcia-Gamez, D.; Kegl, B.; Louedec, K.; Ragaigne, D. Monnier; Urban, M.] Univ Paris 11, LAL, CNRS IN2P3, Orsay, France. [Barroso, S. L. C.] Univ Estadual Sudoeste Bahia, Vitoria Da Conquista, BA, Brazil. [Baughman, B.] Univ Maryland, College Pk, MD 20742 USA. [Baeuml, J.; Bluemer, H.; Daumiller, K.; Engel, R.; Gonzalez, J. G.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Maurel, D.; Oehlschlaeger, J.; Pierog, T.; Porcelli, A.; Roth, M.; Schieler, H.; Schroeder, F.; Smida, R.; Szuba, M.; Ulrich, R.; Unger, M.; Weindl, A.; Werner, F.; Will, M.; Wommer, M.] Karlsruhe Inst Technol, Inst Kernphys, D-76021 Karlsruhe, Germany. [Becker, B. R.; Gold, M. S.; Lauer, R.; Matthews, J. A. J.] Univ New Mexico, Albuquerque, NM 87131 USA. [Becker, K. H.; Bleve, C.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Neuser, J.; Niemietz, L.; Nierstenhoefer, N.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Tascau, O.; Zimbres Silva, M.] Berg Univ Wuppertal, Wuppertal, Germany. [Belletoile, A.; Dallier, R.; Lautridou, P.; Marin, V.; Martin, L.; Ravel, O.; Revenu, B.] Univ Nantes, CNRS IN2P3, Ecole Mines Nantes, SUBATECH, Nantes, France. [Biermann, P. L.; Caramete, L.; Curutiu, A.; Dutan, I.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Blanco, M.; del Peral, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala De Henares, Madrid, Spain. [Bohacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Mandat, D.; Necesal, P.; Nozka, L.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Tomankova, L.; Travnicek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Boncioli, D.; del Rio, M.; Di Giulio, C.; Matthiae, G.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Boncioli, D.; del Rio, M.; Di Giulio, C.; Matthiae, G.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Bonifazi, C.; de Mello Neto, J. R. T.; Lyberis, H.; Santos, E. M.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, RJ, Brazil. [Borodai, N.; Homola, P.; Pekala, J.; Stasielak, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Brack, J.; Dorofeev, A.; Fracchiolla, C. E.; Gookin, B.; Harton, J. L.; Mostafa, M.; Petrov, Y.; Greus, F. Salesa; Thomas, D.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brancus, I.; Saftoiu, A.; Toma, G.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Bruijn, R.; Cook, H.; Knapp, J.; Lu, L.; Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Bruijn, R.] Univ Lausanne, Lausanne, Switzerland. [Bueno, A.; Gascon Bravo, A.; Lozano Bahilo, J.; Molina-Bueno, L.; Navarro, J. L.; Navas, S.; Zamorano Garcia, B.] Univ Granada, Granada, Spain. [Bueno, A.; Gascon Bravo, A.; Lozano Bahilo, J.; Molina-Bueno, L.; Navarro, J. L.; Navas, S.; Zamorano Garcia, B.] CAFPE, Granada, Spain. [Burton, R. E.; Covault, C. E.; Ferguson, A. P.; LaHurd, D.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Caballero-Mora, K. S.; Cheng, S. H.; Coutu, S.; Criss, A.; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Caccianiga, B.; Miramonti, L.; Rivera, H.; Scherini, V.] Univ Milan, Milan, Italy. [Caccianiga, B.; Miramonti, L.; Rivera, H.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Scuderi, M.; Trovato, E.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Scuderi, M.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Catalano, O.; La Rosa, G.; Maccarone, M. C.; Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Martello, D.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Cester, R.; Maurizio, D.; Menichetti, E.; Mussa, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Diaz, J. Chirinos; Dhital, N.; Fick, B.; Kieckhafer, R. M.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA. [Coppens, J.; de Jong, S. J.; Grebe, S.; Nelles, A.; Schoorlemmer, H.; Timmermans, C.] Nikhef, Amsterdam, Netherlands. [Cronin, J.; San Luis, P. Facal; Hollon, N.; Ionita, F.; Kotera, K.; Monasor, M.; Olinto, A.; Privitera, P.; Rouille-d'Orfeuil, B.; Williams, C.; Yamamoto, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.] Inst Astron & Fis Espacio CONICET UBA, Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Piegaia, R.; Pieroni, P.; Tiffenberg, J.] Univ Buenos Aires, FCEyN, Dept Fis, Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Piegaia, R.; Pieroni, P.; Tiffenberg, J.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [de Almeida, R. M.] Univ Fed Fluminense, EEIMVR, Volta Redonda, RJ, Brazil. [De La Vega, G.; Garcia, B.; Gitto, J.; Videla, M.] Natl Technol Univ, Fac Mendoza CONICET CNEA, Mendoza, Argentina. [de Souza, V.; Todero Peixoto, C. J.] Univ Sao Paulo, Inst Fis, Sao Carlos, SP, Brazil. [de Vries, K. D.; Docters, W.; Fraenkel, E. D.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfys Versneller Inst, Groningen, Netherlands. [Deligny, O.; Dong, P. N.; Lhenry-Yvon, I.; Lyberis, H.; Salamida, F.; Suomijaervi, T.] Univ Paris 11, IPNO, CNRS IN2P3, Orsay, France. [Di Giulio, C.; Petrera, S.; Rizi, V.] Univ Aquila, I-67100 Laquila, Italy. [Di Giulio, C.; Petrera, S.; Rizi, V.] Ist Nazl Fis Nucl, Laquila, Italy. [Diep, P. N.; Dong, P. N.; Nhung, P. T.; Thao, N. T.] INST, Hanoi, Vietnam. [Erdmann, M.; Fliescher, S.; Grigat, M.; Hebbeker, T.; Kuempel, D.; Meurer, C.; Mueller, G.; Plum, M.; Scharf, N.; Schiffer, P.; Schulte, S.; Stephan, M.; Walz, D.; Weidenhaupt, K.; Winchen, T.] Rhein Westfal TH Aachen, Phy Inst A 3, Aachen, Germany. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Filipcic, A.; Szadkowski, Z.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Filipcic, A.; Stanic, S.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Gambetta, S.; Pesce, R.; Petrolini, A.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Gambetta, S.; Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Giller, M.; Smialkowski, A.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Grillo, A. F.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Laquila, Italy. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira De Santana, Brazil. [Horvath, P.; Hrabovsky, M.; Rossler, T.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Karhan, P.; Nosek, D.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Keivani, A.; Matthews, J.; Shadkam, A.; Sutherland, M. S.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Kulbartz, J. K.; Schiffer, P.; Sigl, G.] Univ Hamburg, Hamburg, Germany. [Leao, M. S. A. B.; Leigui de Oliveira, M. A.; Moura, C. A.] Univ Fed ABC, Santo Andre, SP, Brazil. [Lopez, R.; Martinez Bravo, O.; Moreno, E.; Pelayo, R.; Salazar, H.; Varela, E.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Marquez Falcon, H. R.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Marsella, G.; Perrone, L.] Univ Salento, Dipartimento Ingn Innovaz, Lecce, Italy. [Martinez, H.; Zepeda, A.] IPN CINVESTAV, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Matthews, J.] Southern Univ, Baton Rouge, LA USA. [Mertsch, P.; Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Micheletti, M. I.] CONICET UNR, Inst Fis Rosario IFIR, Rosario, Santa Fe, Argentina. [Micheletti, M. I.] Fac Ciencias Bioquim & Farmaceut UNR, Rosario, Santa Fe, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] CITEDEF, Ctr Invest Laseres & Aplicac, San Carlos De Bariloche, Rio Negro, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] Consejo Nacl Invest Cient & Tecn, San Carlos De Bariloche, Rio Negro, Argentina. [Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Paul, T.; Srivastava, Y. N.; Swain, J.; Widom, A.] Northeastern Univ, Boston, MA 02115 USA. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Sarazin, F.; Schuster, D.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Sima, O.] Univ Bucharest, Dept Phys, Bucharest, Romania. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Yamamoto, T.] Konan Univ, Kobe, Hyogo, Japan. [Younk, P.] Los Alamos Natl Lab, Los Alamos, NM USA. [Zaw, I.] NYU Abu Dhabi, Abu Dhabi, U Arab Emirates. RP Abreu, P (reprint author), Univ Tecn Lisboa, LIP, Lisbon, Portugal. RI Todero Peixoto, Carlos Jose/G-3873-2012; Nosek, Dalibor/F-1129-2017; Navas, Sergio/N-4649-2014; Blanco, Francisco/F-1131-2015; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Guarino, Fausto/I-3166-2012; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Falcke, Heino/H-5262-2012; Insolia, Antonio/M-3447-2015; Petrolini, Alessandro/H-3782-2011; de Mello Neto, Joao/C-5822-2013; Lozano-Bahilo, Julio/F-4881-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Arqueros, Fernando/K-9460-2014; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; De Domenico, Manlio/B-5826-2014; Abreu, Pedro/L-2220-2014; Dutan, Ioana/C-2337-2011; Sima, Octavian/C-3565-2011; Di Giulio, Claudio/B-3319-2015; Bueno, Antonio/F-3875-2015; Albuquerque, Ivone/H-4645-2012; Parente, Gonzalo/G-8264-2015; Alvarez-Muniz, Jaime/H-1857-2015; Valino, Ines/J-8324-2012; Carvalho Jr., Washington/H-9855-2015; Espadanal, Joao/I-6618-2015; De Donato, Cinzia/J-9132-2015; Martello, Daniele/J-3131-2012; Ridky, Jan/H-6184-2014; Chudoba, Jiri/G-7737-2014; Horvath, Pavel/G-6334-2014; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014; Rosado, Jaime/K-9109-2014; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Ros, German/L-4764-2014; Brogueira, Pedro/K-3868-2012; Alves Batista, Rafael/K-6642-2012; Moura, Celio/K-5672-2013; dos Santos, Eva/N-6351-2013; de souza, Vitor/D-1381-2012; Prouza, Michael/F-8514-2014; Mandat, Dusan/G-5580-2014; Pech, Miroslav/G-5760-2014; Bohacova, Martina/G-5898-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Vicha, Jakub/G-8440-2014; Travnicek, Petr/G-8814-2014; Smida, Radomir/G-6314-2014; Goncalves, Patricia /D-8229-2013; Assis, Pedro/D-9062-2013; Sarkar, Subir/G-5978-2011; Tome, Bernardo/J-4410-2013; Caramete, Laurentiu/C-2328-2011; Nierstenhofer, Nils/H-3699-2013; Pakk Selmi-Dei, Daniel/H-2675-2013; Ebr, Jan/H-8319-2012; Badescu, Alina/B-6087-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Fauth, Anderson/F-9570-2012 OI Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Dembinski, Hans/0000-0003-3337-3850; Catalano, Osvaldo/0000-0002-9554-4128; Ravignani, Diego/0000-0001-7410-8522; Kothandan, Divay/0000-0001-9048-7518; La Rosa, Giovanni/0000-0002-3931-2269; Mussa, Roberto/0000-0002-0294-9071; Ulrich, Ralf/0000-0002-2535-402X; Garcia, Beatriz/0000-0003-0919-2734; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Zamorano, Bruno/0000-0002-4286-2835; Bonino, Raffaella/0000-0002-4264-1215; Knapp, Johannes/0000-0003-1519-1383; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Marsella, Giovanni/0000-0002-3152-8874; Asorey, Hernan/0000-0002-4559-8785; Rizi, Vincenzo/0000-0002-5277-6527; Petrera, Sergio/0000-0002-6029-1255; Andringa, Sofia/0000-0002-6397-9207; Aramo, Carla/0000-0002-8412-3846; Aglietta, Marco/0000-0001-8354-5388; Maccarone, Maria Concetta/0000-0001-8722-0361; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; Yuan, Guofeng/0000-0002-1907-8815; Mertsch, Philipp/0000-0002-2197-3421; Nosek, Dalibor/0000-0001-6219-200X; de Jong, Sijbrand/0000-0002-3120-3367; Sigl, Guenter/0000-0002-4396-645X; Cataldi, Gabriella/0000-0001-8066-7718; Navarro Quirante, Jose Luis/0000-0002-9915-1735; Mantsch, Paul/0000-0002-8382-7745; Salamida, Francesco/0000-0002-9306-8447; Segreto, Alberto/0000-0001-7341-6603; Navas, Sergio/0000-0003-1688-5758; Blanco, Francisco/0000-0003-4332-434X; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; De Mitri, Ivan/0000-0002-8665-1730; Falcke, Heino/0000-0002-2526-6724; Insolia, Antonio/0000-0002-9040-1566; Petrolini, Alessandro/0000-0003-0222-7594; de Mello Neto, Joao/0000-0002-3234-6634; Lozano-Bahilo, Julio/0000-0003-0613-140X; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Arqueros, Fernando/0000-0002-4930-9282; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; De Domenico, Manlio/0000-0001-5158-8594; Abreu, Pedro/0000-0002-9973-7314; Di Giulio, Claudio/0000-0002-0597-4547; Bueno, Antonio/0000-0002-7439-4247; Albuquerque, Ivone/0000-0001-7328-0136; Parente, Gonzalo/0000-0003-2847-0461; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Valino, Ines/0000-0001-7823-0154; Carvalho Jr., Washington/0000-0002-2328-7628; Espadanal, Joao/0000-0002-1301-8061; De Donato, Cinzia/0000-0002-9725-1281; Martello, Daniele/0000-0003-2046-3910; Ridky, Jan/0000-0001-6697-1393; Horvath, Pavel/0000-0002-6710-5339; Garcia Pinto, Diego/0000-0003-1348-6735; Rosado, Jaime/0000-0001-8208-9480; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Ros, German/0000-0001-6623-1483; Brogueira, Pedro/0000-0001-6069-4073; Alves Batista, Rafael/0000-0003-2656-064X; Moura, Celio/0000-0001-7991-9025; dos Santos, Eva/0000-0002-0474-8863; Prouza, Michael/0000-0002-3238-9597; Cazon, Lorenzo/0000-0001-6748-8395; Goncalves, Patricia /0000-0003-2042-3759; Assis, Pedro/0000-0001-7765-3606; Sarkar, Subir/0000-0002-3542-858X; Tome, Bernardo/0000-0002-7564-8392; Ebr, Jan/0000-0001-8807-6162; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Fauth, Anderson/0000-0001-7239-0288 FU Comision Nacional de Energia Atomica; Fundacion Antorchas; Gobierno De La Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings; Valle Las Lenas; Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR, Czech Republic [AV0Z10100502, AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LG11044, MEB111003, MSM0021620859, LA08015, TACR TA01010517]; Centre de Calcul IN2P3/CNRS; Centre National de la Recherche Scientifique (CNRS); Conseil Regional Ile-deFrance; Departement Physique Nucleaire et Corpusculaire [PNC-IN2P3/CNRS]; Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Wurttemberg; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium fur Wissenschaft und Forschung; Nordrhein-Westfalen; Ministerium fur Wissenschaft; Forschung und Kunst; Baden-Wurttemberg, Germany FX The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. The authors are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LG11044, MEB111003, MSM0021620859, LA08015, and TACR TA01010517, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-deFrance, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), The Netherlands; Ministry of Science and Higher Education, Grants no. N N202 200239 and N N202 2038, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; Science and Technology Facilities Council, UK; Department of Energy, Contract nos. DE-AC02-07CH11359 and DE-FR02-04ER41300, National Science Foundation, Grant no. 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; ALFA-EC/HELEN and UNESCO. NR 50 TC 15 Z9 15 U1 3 U2 72 PU HINDAWI PUBLISHING CORPORATION PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-7357 J9 ADV HIGH ENERGY PHYS JI Adv. High. Energy Phys. PY 2013 AR 708680 DI 10.1155/2013/708680 PG 18 WC Physics, Particles & Fields SC Physics GA 120WS UT WOS:000317204500001 ER PT J AU Samset, BH Myhre, G Schulz, M Balkanski, Y Bauer, S Berntsen, TK Bian, H Bellouin, N Diehl, T Easter, RC Ghan, SJ Iversen, T Kinne, S Kirkevag, A Lamarque, JF Lin, G Liu, X Penner, JE Seland, O Skeie, RB Stier, P Takemura, T Tsigaridis, K Zhang, K AF Samset, B. H. Myhre, G. Schulz, M. Balkanski, Y. Bauer, S. Berntsen, T. K. Bian, H. Bellouin, N. Diehl, T. Easter, R. C. Ghan, S. J. Iversen, T. Kinne, S. Kirkevag, A. Lamarque, J. -F. Lin, G. Liu, X. Penner, J. E. Seland, O. Skeie, R. B. Stier, P. Takemura, T. Tsigaridis, K. Zhang, K. TI Black carbon vertical profiles strongly affect its radiative forcing uncertainty SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CLIMATE MODELS; AEROSOL DIRECT; AEROCOM; SIMULATIONS; SENSITIVITY; ATMOSPHERE; EMISSIONS; TRANSPORT; POLLUTION AB The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere. C1 [Samset, B. H.; Myhre, G.; Berntsen, T. K.; Skeie, R. B.] CICERO, Oslo, Norway. [Schulz, M.; Iversen, T.; Kirkevag, A.; Seland, O.] Norwegian Meteorol Inst, Oslo, Norway. [Balkanski, Y.] UVSQ, CNRS, CEA, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Bauer, S.; Tsigaridis, K.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Bauer, S.; Tsigaridis, K.] Columbia Earth Inst, New York, NY USA. [Bian, H.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Bellouin, N.] Met Off, Hadley Ctr, Exeter, Devon, England. [Diehl, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Diehl, T.] Univ Space Res Assoc, Columbia, MD USA. [Easter, R. C.; Ghan, S. J.; Liu, X.; Zhang, K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kinne, S.; Zhang, K.] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. [Iversen, T.] Univ Oslo, Dept Geosci, Oslo, MN USA. [Lamarque, J. -F.] Natl Ctr Atmospher Res, NCAR Earth Syst Lab, Boulder, CO 80307 USA. [Lin, G.; Penner, J. E.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Stier, P.] Univ Oxford, Dept Phys, Oxford, England. [Takemura, T.] Kyushu Univ, Res Inst Appl Mech, Fukuoka 812, Japan. [Iversen, T.] ECMWF, Reading RG2 9AX, Berks, England. RP Samset, BH (reprint author), CICERO, Oslo, Norway. EM b.h.samset@cicero.uio.no RI Stier, Philip/B-2258-2008; Schulz, Michael/A-6930-2011; U-ID, Kyushu/C-5291-2016; Ghan, Steven/H-4301-2011; Takemura, Toshihiko/C-2822-2009; Penner, Joyce/J-1719-2012; Liu, Xiaohong/E-9304-2011; Balkanski, Yves/A-6616-2011; Lamarque, Jean-Francois/L-2313-2014; Bauer, Susanne/P-3082-2014; Kyushu, RIAM/F-4018-2015; Myhre, Gunnar/A-3598-2008; Skeie, Ragnhild/K-1173-2015; Zhang, Kai/F-8415-2010 OI Stier, Philip/0000-0002-1191-0128; Bellouin, Nicolas/0000-0003-2109-9559; Schulz, Michael/0000-0003-4493-4158; Ghan, Steven/0000-0001-8355-8699; Takemura, Toshihiko/0000-0002-2859-6067; Liu, Xiaohong/0000-0002-3994-5955; Balkanski, Yves/0000-0001-8241-2858; Lamarque, Jean-Francois/0000-0002-4225-5074; Myhre, Gunnar/0000-0002-4309-476X; Skeie, Ragnhild/0000-0003-1246-4446; Zhang, Kai/0000-0003-0457-6368 FU US Department of Energy, Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program; Office of Science Earth System Modeling Program; National Science Foundation; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; FP6 project EUCAARI [34684]; Research Council of Norway through the EarthClim [207711/E10]; NOTUR/NorStore projects; Norwegian Space Centre through PM-VRAE; EU; Research Council of Norway; NASA-MAP (NASA award) [NNX09AK32G]; Joint DECC/Defra Met Office Hadley Centre Climate Programme [GA01101] FX S. Ghan, X. Liu and R. Easter were funded by the US Department of Energy, Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program and by the Office of Science Earth System Modeling Program. Computing resources were provided by the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. Simulations of the ECHAM5-HAM, INCA, CAM4-Oslo and HadGEM2 models have been supported with funds from the FP6 project EUCAARI (Contract 34684). A. Kirkevag, T. Iversen and O. Seland (CAM4-Oslo) were supported by the Research Council of Norway through the EarthClim (207711/E10) and NOTUR/NorStore projects, by the Norwegian Space Centre through PM-VRAE, and through the EU projects PEGASOS and ACCESS. G. Myhre and B. Samset were funded by the Research Council of Norway through the EarthClim and SLAC projects. K. Tsigaridis and S. Bauer were supported by NASA-MAP (NASA award NNX09AK32G). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. N. Bellouin was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). We also thank the two anonymous reviewers for their efforts. NR 37 TC 63 Z9 67 U1 3 U2 56 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2013 VL 13 IS 5 BP 2423 EP 2434 DI 10.5194/acp-13-2423-2013 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 117NP UT WOS:000316960500008 ER PT J AU Voulgarakis, A Naik, V Lamarque, JF Shindell, DT Young, PJ Prather, MJ Wild, O Field, RD Bergmann, D Cameron-Smith, P Cionni, I Collins, WJ Dalsoren, SB Doherty, RM Eyring, V Faluvegi, G Folberth, GA Horowitz, LW Josse, B MacKenzie, IA Nagashima, T Plummer, DA Righi, M Rumbold, ST Stevenson, DS Strode, SA Sudo, K Szopa, S Zeng, G AF Voulgarakis, A. Naik, V. Lamarque, J. -F. Shindell, D. T. Young, P. J. Prather, M. J. Wild, O. Field, R. D. Bergmann, D. Cameron-Smith, P. Cionni, I. Collins, W. J. Dalsoren, S. B. Doherty, R. M. Eyring, V. Faluvegi, G. Folberth, G. A. Horowitz, L. W. Josse, B. MacKenzie, I. A. Nagashima, T. Plummer, D. A. Righi, M. Rumbold, S. T. Stevenson, D. S. Strode, S. A. Sudo, K. Szopa, S. Zeng, G. TI Analysis of present day and future OH and methane lifetime in the ACCMIP simulations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GENERAL-CIRCULATION MODEL; GLOBAL LIGHTNING DISTRIBUTIONS; CHEMICAL-TRANSPORT MODEL; TROPOSPHERIC OZONE; ATMOSPHERIC CHEMISTRY; HYDROXYL RADICALS; CLIMATE-CHANGE; INTERANNUAL VARIABILITY; STRATOSPHERIC OZONE; PREINDUSTRIAL TIMES AB Results from simulations performed for the Atmospheric Chemistry and Climate Modeling Intercomparison Project (ACCMIP) are analysed to examine how OH and methane lifetime may change from present day to the future, under different climate and emissions scenarios. Present day (2000) mean tropospheric chemical lifetime derived from the ACCMIP multi-model mean is 9.8 +/- 1.6 yr (9.3 +/- 0.9 yr when only including selected models), lower than a recent observationally-based estimate, but with a similar range to previous multi-model estimates. Future model projections are based on the four Representative Concentration Pathways (RCPs), and the results also exhibit a large range. Decreases in global methane lifetime of 4.5 +/- 9.1% are simulated for the scenario with lowest radiative forcing by 2100 (RCP 2.6), while increases of 8.5 +/- 10.4% are simulated for the scenario with highest radiative forcing (RCP 8.5). In this scenario, the key driver of the evolution of OH and methane lifetime is methane itself, since its concentration more than doubles by 2100 and it consumes much of the OH that exists in the troposphere. Stratospheric ozone recovery, which drives tropospheric OH decreases through photolysis modifications, also plays a partial role. In the other scenarios, where methane changes are less drastic, the interplay between various competing drivers leads to smaller and more diverse OH and methane lifetime responses, which are difficult to attribute. For all scenarios, regional OH changes are even more variable, with the most robust feature being the large decreases over the remote oceans in RCP8.5. Through a regression analysis, we suggest that differences in emissions of non-methane volatile organic compounds and in the simulation of photolysis rates may be the main factors causing the differences in simulated present day OH and methane lifetime. Diversity in predicted changes between present day and future OH was found to be associated more strongly with differences in modelled temperature and stratospheric ozone changes. Finally, through perturbation experiments we calculated an OH feedback factor (F) of 1.24 from present day conditions (1.50 from 2100 RCP8.5 conditions) and a climate feedback on methane lifetime of 0.33 +/- 0.13 yr K-1, on average. Models that did not include interactive stratospheric ozone effects on photolysis showed a stronger sensitivity to climate, as they did not account for negative effects of climate-driven stratospheric ozone recovery on tropospheric OH, which would have partly offset the overall OH/methane lifetime response to climate change. C1 [Voulgarakis, A.; Shindell, D. T.; Field, R. D.; Faluvegi, G.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Voulgarakis, A.; Shindell, D. T.; Field, R. D.; Faluvegi, G.] Columbia Earth Inst, New York, NY USA. [Voulgarakis, A.; Eyring, V.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London, England. [Naik, V.] NOAA, UCAR, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Lamarque, J. -F.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Young, P. J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Young, P. J.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Young, P. J.; Wild, O.] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England. [Prather, M. J.] Univ Calif Irvine, Irvine, CA USA. [Field, R. D.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Bergmann, D.; Cameron-Smith, P.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Cionni, I.] Agenzia Nazl Nuove Tecnol, Energia & Sviluppo Econ Sostenibile ENEA, Bologna, Italy. [Collins, W. J.; Folberth, G. A.; Rumbold, S. T.] Met Off Hadley Ctr, Exeter, Devon, England. [Collins, W. J.] Univ Reading, Dept Meteorol, Reading RG6 2AH, Berks, England. [Dalsoren, S. B.] CICERO, Oslo, Norway. [Doherty, R. M.; MacKenzie, I. A.; Stevenson, D. S.] Univ Edinburgh, Edinburgh, Midlothian, Scotland. [Horowitz, L. W.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Josse, B.] CNRS, Meteo France, GAME, Toulouse, France. [Nagashima, T.; Sudo, K.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Plummer, D. A.] Environm Canada, Victoria, BC, Canada. [Strode, S. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Strode, S. A.] Univ Space Res Assoc, Greenbelt, MD USA. [Szopa, S.] IPSL, UVSQ, CNRS, CEA,LSCE, Paris, France. [Zeng, G.] Natl Inst Water & Atmospher Res, Lauder, New Zealand. RP Voulgarakis, A (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM a.voulgarakis@imperial.ac.uk RI Strode, Sarah/H-2248-2012; Eyring, Veronika/O-9999-2016; Manager, CSD Publications/B-2789-2015; Righi, Mattia/I-5120-2013; Cameron-Smith, Philip/E-2468-2011; Szopa, Sophie/F-8984-2010; Shindell, Drew/D-4636-2012; Horowitz, Larry/D-8048-2014; Naik, Vaishali/A-4938-2013; Lamarque, Jean-Francois/L-2313-2014; Collins, William/A-5895-2010; Stevenson, David/C-8089-2012; Wild, Oliver/A-4909-2009; mackenzie, ian/E-9320-2013; Bergmann, Daniel/F-9801-2011; Young, Paul/E-8739-2010 OI Strode, Sarah/0000-0002-8103-1663; Eyring, Veronika/0000-0002-6887-4885; Folberth, Gerd/0000-0002-1075-440X; Righi, Mattia/0000-0003-3827-5950; Cameron-Smith, Philip/0000-0002-8802-8627; Szopa, Sophie/0000-0002-8641-1737; Horowitz, Larry/0000-0002-5886-3314; Naik, Vaishali/0000-0002-2254-1700; Lamarque, Jean-Francois/0000-0002-4225-5074; Collins, William/0000-0002-7419-0850; Stevenson, David/0000-0002-4745-5673; Wild, Oliver/0000-0002-6227-7035; Bergmann, Daniel/0000-0003-4357-6301; Young, Paul/0000-0002-5608-8887 FU International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) projects under the International Geosphere-Biosphere Project (IGBP); World Climate Research Program (WCRP); U.S. Dept. of Energy (BER); LLNL [DE-AC52-07NA2734]; NERSC [DE11AC02-05CH11231]; Norwegian Research Council; DLR Earth System Model Validation (ESMVal) project; ENEA National Integrated Model to support the international negotiation on atmospheric pollution (Minni) project; NASA Modeling, Analysis and Prediction program; NASA; Joint DECC and Defra Integrated Climate Programme [GA01101]; Meteo-France; CNRS; Environment Research and Technology Development Fund of the Ministry of the Environment, Japan [S-7]; National Science Foundation; Office of 1 Science (BER) of the US Department of Energy; UK research council [NE/I008063/1]; New Zealand Ministry of Science and Innovation FX ACCMIP is organised under the auspices of the International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) projects under the International Geosphere-Biosphere Project (IGBP) and World Climate Research Program (WCRP). The authors are grateful to the British Atmospheric Data Centre (BADC), which is part of the NERC National Centre for Atmospheric Science (NCAS), for collecting and archiving the ACCMIP data. For CESM-CAM-superfast, DB and PC were funded by the U.S. Dept. of Energy (BER), performed under the auspices of LLNL under Contract DE-AC52-07NA27344, and used the supercomputing resources of NERSC under contract No. DE11AC02-05CH11231. The CICERO-OsloCTM2 simulations were done within the projects SLAC (Short Lived Atmospheric Components) and EarthClim funded by the Norwegian Research Council. DP would like to thank the Canadian Foundation for Climate and Atmospheric Sciences for their long-running support of CMAM development. For EMAC, the work of VE and MR was funded by the DLR Earth System Model Validation (ESMVal) project and used the supercomputing resources of the German Climate Computing Center (DKRZ) and the Leibniz Supercomputing Centre (LRZ), and the work of IC was funded by the ENEA National Integrated Model to support the international negotiation on atmospheric pollution (Minni) project. The GEOSCCM work was supported by the NASA Modeling, Analysis and Prediction program, with computing resources provided by NASA's High-End Computing Program through the NASA Advanced Supercomputing Division. VN and LWH acknowledge efforts of GFDL's Global Atmospheric Model Development Team in the development of the GFDL-AM3 and Modeling Services Group for assistance with data processing. For the GISS models, support is acknowledged from the NASA MAP and ACMAP programs. For HadGEM2, WJC, GAF, and STR were supported by the Joint DECC and Defra Integrated Climate Programme (GA01101). The LMDz-OR-INCA simulations were done using computing resources provided by the CCRT/GENCI computer center of the CEA. The MOCAGE simulations were supported by Meteo-France and CNRS. Supercomputing time was provided by Meteo-France/DSI supercomputing centre. The MIROC-CHEM calculations were performed on the NIES supercomputer system (NEC SX-8R), and supported by the Environment Research and Technology Development Fund (S-7) of the Ministry of the Environment, Japan. The CESM project, including NCAR-CAM3.5, is supported by the National Science Foundation and the Office of 1 Science (BER) of the US Department of Energy. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. The STOC-HadAM3 work was supported by cross UK research council grant NE/I008063/1 and used facilities provided by the UK's national high-performance computing service, HECToR, through Computational Modelling Services (CMS), part of the NERC National Centre for Atmospheric Science (NCAS). For UM-CAM, GZ acknowledges NIWA HPCF facility and funding from New Zealand Ministry of Science and Innovation. AV thanks Chris Holmes for clarifications on the observational methane lifetime estimate. NR 97 TC 73 Z9 75 U1 5 U2 61 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2013 VL 13 IS 5 BP 2563 EP 2587 DI 10.5194/acp-13-2563-2013 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 117NP UT WOS:000316960500017 ER PT J AU Lee, YH Lamarque, JF Flanner, MG Jiao, C Shindell, DT Berntsen, T Bisiaux, MM Cao, J Collins, WJ Curran, M Edwards, R Faluvegi, G Ghan, S Horowitz, LW McConnell, JR Ming, J Myhre, G Nagashima, T Naik, V Rumbold, ST Skeie, RB Sudo, K Takemura, T Thevenon, F Xu, B Yoon, JH AF Lee, Y. H. Lamarque, J. -F. Flanner, M. G. Jiao, C. Shindell, D. T. Berntsen, T. Bisiaux, M. M. Cao, J. Collins, W. J. Curran, M. Edwards, R. Faluvegi, G. Ghan, S. Horowitz, L. W. McConnell, J. R. Ming, J. Myhre, G. Nagashima, T. Naik, V. Rumbold, S. T. Skeie, R. B. Sudo, K. Takemura, T. Thevenon, F. Xu, B. Yoon, J. -H. TI Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BIOMASS BURNING EMISSIONS; AEROSOL LIGHT-ABSORPTION; LONG-TERM TRENDS; ICE CORE; ARCTIC SNOW; SOOT; DEPOSITION; TRANSPORT; SIMULATION; PARTICLES AB As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996-2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5-3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period. We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe under-estimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores indicates a strong influence from Western Europe, but the modeled BC increases in that period are consistent with the emission changes in Eastern Europe, the Middle East, South and East Asia. At the Alps site, the simulated BC suggests a strong influence from Europe, which agrees with the Alps ice core observations. At Zuoqiupu on the Tibetan Plateau, models successfully simulate the higher BC concentrations observed du