FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Costa, A
Keane, MM
Raftery, P
O'Donnell, J
AF Costa, Andrea
Keane, Marcus M.
Raftery, Paul
O'Donnell, James
TI Key factors methodology-A novel support to the decision making process
of the building energy manager in defining optimal operation strategies
SO ENERGY AND BUILDINGS
LA English
DT Article
DE Building energy manager; Building energy simulation; Decision making
process; Building operation strategies; Energy consumption; Thermal
comfort
ID SYSTEM
AB This paper presents the key factors methodology that supports energy managers in determining the optimal building operation strategy in relation to both energy consumption and thermal comfort. The methodology is supported by the utilization of calibrated building energy simulation models that match measured data gathered by an extensive measurement framework Building management systems, do not allow energy managers to test the impact of changes in control settings of energy systems on energy consumption and thermal comfort. The proposed methodology and prototype tool chain enables energy managers to virtually develop and test the impact of proposed changes to the control settings in the building energy systems prior to their implementation in the physical building. The paper outlines the proposed methodology defining the underpinning concepts and illustrating the performance metrics required to capture the effect of different building operation strategies. A case study is discussed to demonstrate the application of the methodology. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Costa, Andrea; Keane, Marcus M.; Raftery, Paul] Natl Univ Ireland, Dept Civil Engn, IRUSE, Galway, Ireland.
[O'Donnell, James] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Costa, A (reprint author), Natl Univ Ireland Galway, Dept Civil Engn, Univ Rd, Galway, Ireland.
EM andrea.costa@nuigalway.ie
FU Enterprise Ireland (BuildWise project); Science Foundation Ireland
(ITOBO project)
FX This paper was made possible by funding from Enterprise Ireland
(BuildWise project) and Science Foundation Ireland (ITOBO project).
NR 23
TC 5
Z9 5
U1 0
U2 11
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0378-7788
EI 1872-6178
J9 ENERG BUILDINGS
JI Energy Build.
PD JUN
PY 2012
VL 49
BP 158
EP 163
DI 10.1016/j.enbuild.2012.02.001
PG 6
WC Construction & Building Technology; Energy & Fuels; Engineering, Civil
SC Construction & Building Technology; Energy & Fuels; Engineering
GA 966ZI
UT WOS:000305875500017
ER
PT J
AU Edwards, RE
New, J
Parker, LE
AF Edwards, Richard E.
New, Joshua
Parker, Lynne E.
TI Predicting future hourly residential electrical consumption: A machine
learning case study
SO ENERGY AND BUILDINGS
LA English
DT Article
DE Energy modeling; Sensors; Machine learning
ID BUILDING ENERGY-CONSUMPTION; ARTIFICIAL NEURAL-NETWORKS; SUPPORT VECTOR
MACHINES; EM ALGORITHM; REGRESSION
AB Traditional whole building energy modeling suffers from several factors, including the large number of inputs required for building characterization, simplifying assumptions, and the gap between the as-designed and as-built building. Prior work has attempted to mitigate these problems by using sensor-based machine learning approaches to statistically model energy consumption, applying the techniques primarily to commercial building data, which makes use of hourly consumption data. It is unclear, however, whether these techniques can translate to residential buildings, since the energy usage patterns may vary significantly. Until now, most residential modeling research only had access to monthly electrical consumption data. In this article, we report on the evaluation of seven different machine learning algorithms applied to a new residential data set that contains sensor measurements collected every 15 min, with the objective of determining which techniques are most successful for predicting next hour residential building consumption. We first validate each learner's correctness on the ASHRAE Great Energy Prediction Shootout, confirming existing conclusions that Neural Network-based methods perform best on commercial buildings. However, our additional results show that these methods perform poorly on residential data, and that Least Squares Support Vector Machines perform best - a technique not previously applied to this domain. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Edwards, Richard E.; Parker, Lynne E.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
[New, Joshua] Oak Ridge Natl Lab, Bldg Envelopes Res Grp, Oak Ridge, TN USA.
RP Edwards, RE (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
EM redwar15@eecs.utk.edu; newjr@ornl.gov; parker@eecs.utk.edu
FU Department of Energy Building Technology Activity [CEBT105, BT0305000];
Tennessee Valley Authority (TVA); U.S. Dept. of Energy
[DE-AC05-00OR22725]; U.S. Department of Energy [DE-AC05-00OR22725]
FX This work was funded by field work proposal CEBT105 under the Department
of Energy Building Technology Activity number BT0305000. The Campbell
Creek research project was funded by the Tennessee Valley Authority
(TVA). The authors would like to thank David Dinse (TVA CC project
manager), Jeff Christian (ORNL CC project manager), Tony Gehl (ORNL data
acquisition system and entropy warrior), and Philip Boudreaux (occupancy
simulation expert) for providing the data that made this study possible.
We also appreciate the anonymous review comments, which helped us
improve this paper's discussion.; Oak Ridge National Laboratory is
managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract
DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle,
LLC, under contract number DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes.
NR 33
TC 38
Z9 38
U1 2
U2 17
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0378-7788
J9 ENERG BUILDINGS
JI Energy Build.
PD JUN
PY 2012
VL 49
BP 591
EP 603
DI 10.1016/j.enbuild.2012.03.010
PG 13
WC Construction & Building Technology; Energy & Fuels; Engineering, Civil
SC Construction & Building Technology; Energy & Fuels; Engineering
GA 966ZI
UT WOS:000305875500069
ER
PT J
AU Graw, F
Leitner, T
Ribeiro, RM
AF Graw, Frederik
Leitner, Thomas
Ribeiro, Ruy M.
TI Agent-based and phylogenetic analyses reveal how HIV-1 moves between
risk groups: Injecting drug users sustain the heterosexual epidemic in
Latvia
SO EPIDEMICS
LA English
DT Article
DE Agent-based model; Social structure; Transmission chain; Evolution;
Phylodynamics
ID HUMAN-IMMUNODEFICIENCY-VIRUS; HEPATITIS-C VIRUS; ANTIRETROVIRAL THERAPY;
INFECTIOUS-DISEASES; POPULATION BIOLOGY; EVOLUTIONARY RATE;
HOMOSEXUAL-MEN; EASTERN-EUROPE; SUBTYPE-B; TRANSMISSION
AB Injecting drug users (IDUs) are a driving force for the spread of HIV-1 in Latvia and other Baltic States, accounting for a majority of cases. However, in recent years, heterosexual cases have increased disproportionately. It is unclear how the changes in incidence patterns in Latvia can be explained, and how important IDUs are for the heterosexual sub-epidemic. We introduce a novel epidemic model and use phylogenetic analyses in parallel to examine the spread of HIV-1 in Latvia between 1987 and 2010. Using a hybrid framework with a mean-field description for the susceptible population and an agent-based model for the infecteds. we track infected individuals and follow transmission histories dynamically formed during the simulation.
The agent-based simulations and the phylogenetic analysis show that more than half of the heterosexual transmissions in Latvia were caused by IDU, which sustain the heterosexual epidemic. Indeed, we find that heterosexual clusters are characterized by short transmission chains with up to 63% of the chains dying out after the first introduction. In the simulations, the distribution of transmission chain sizes follows a power law distribution, which is confirmed by the phylogenetic data. Our models indicate that frequent introductions reduced the extinction probability of an autonomously spreading heterosexual HIV-1 epidemic, which now has the potential to dominate the spread of the overall epidemic in the future. Furthermore, our model shows that social heterogeneity of the susceptible population can explain the shift in HIV-1 incidence in Latvia over the course of the epidemic. Thus, the decrease in IDU incidence may be due to local heterogeneities in transmission, rather than the implementation of control measures. Increases in susceptibles, through social or geographic movement of IDU, could lead to a boost in HIV-1 infections in this risk group. Targeting individuals that bridge social groups would help prevent further spread of the epidemic. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Graw, Frederik; Leitner, Thomas; Ribeiro, Ruy M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Ribeiro, RM (reprint author), Univ Lisbon, Fac Med, Inst Mol Med, P-1699 Lisbon, Portugal.
EM ruy@lanl.gov
OI Ribeiro, Ruy/0000-0002-3988-8241
FU U.S. Department of Energy; NIH [5R01AI08752002, AI028433]; National
Center for Research Resources; Office of Research Infrastructure
Programs (ORIP) [8R01-OD011095-21]; European Union
[PCOFUND-GA-2009-246542]; Foundation for Science and Technology of
Portugal
FX We thank Helena Skar and Tim Wallstrom for helpful discussions. Portions
of this work were done under the auspices of the U.S. Department of
Energy. Funding support from NIH through grants 5R01AI08752002 and
AI028433 and the National Center for Research Resources and the Office
of Research Infrastructure Programs (ORIP) through grant
8R01-OD011095-21. RMR has received partial funding from the European
Union 7th Framework Programme under grant no. PCOFUND-GA-2009-246542 and
from the Foundation for Science and Technology of Portugal. The funding
agencies had no role in study design, analysis of data and the
preparation of the manuscript.
NR 76
TC 18
Z9 19
U1 1
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1755-4365
J9 EPIDEMICS-NETH
JI Epidemics
PD JUN
PY 2012
VL 4
IS 2
BP 104
EP 116
DI 10.1016/j.epidem.2012.04.002
PG 13
WC Infectious Diseases
SC Infectious Diseases
GA 966UG
UT WOS:000305862300006
PM 22664069
ER
PT J
AU Nickels, JD
Curtis, JE
O'Neill, H
Sokolov, AP
AF Nickels, Jonathan D.
Curtis, Joseph E.
O'Neill, Hugh
Sokolov, Alexei P.
TI Role of methyl groups in dynamics and evolution of biomolecules
SO JOURNAL OF BIOLOGICAL PHYSICS
LA English
DT Article
DE Protein dynamics; RNA world; RNA dynamics; Nucleic acid dynamics
ID NMR-SPECTROSCOPY; PROTEIN DYNAMICS; HYDROPHOBIC CORE; LOW-TEMPERATURE;
TRANSFER-RNA; HYDRATION; ENZYME; SIMULATIONS; TRANSITION; CATALYSIS
AB Recent studies have discovered strong differences between the dynamics of nucleic acids (RNA and DNA) and proteins, especially at low hydration and low temperatures. This difference is caused primarily by dynamics of methyl groups that are abundant in proteins, but are absent or very rare in RNA and DNA. In this paper, we present a hypothesis regarding the role of methyl groups as intrinsic plasticizers in proteins and their evolutionary selection to facilitate protein dynamics and activity. We demonstrate the profound effect methyl groups have on protein dynamics relative to nucleic acid dynamics, and note the apparent correlation of methyl group content in protein classes and their need for molecular flexibility. Moreover, we note the fastest methyl groups of some enzymes appear around dynamical centers such as hinges or active sites. Methyl groups are also of tremendous importance from a hydrophobicity/folding/entropy perspective. These significant roles, however, complement our hypothesis rather than preclude the recognition of methyl groups in the dynamics and evolution of biomolecules.
C1 [Nickels, Jonathan D.; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Nickels, Jonathan D.; Sokolov, Alexei P.] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA.
[Curtis, Joseph E.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[O'Neill, Hugh] Oak Ridge Natl Lab, Biol & Soft Matter Div, Energy & Environm Grp, Oak Ridge, TN 37831 USA.
RP Nickels, JD (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
EM jnickels@alumni.nd.edu; sokolov@utk.edu
RI Nickels, Jonathan/I-1913-2012;
OI Nickels, Jonathan/0000-0001-8351-7846; O'Neill, Hugh/0000-0003-2966-5527
FU DOE support through the EPSCoR program [DE-FG02-08ER46528]; SNS through
UT-Battelle; Center for Structural Molecular Biology (CSMB); Office of
Biological and Environmental Research under FWP [ERKP291]; U.S.
Department of Energy [DE-AC05-00OR22725]
FX JDN and APS acknowledge DOE support through the EPSCoR program (grant
DE-FG02-08ER46528) and support from SNS through UT-Battelle. HON
acknowledges support of the Center for Structural Molecular Biology
(CSMB) funded by the Office of Biological and Environmental Research
under FWP ERKP291, using facilities supported by the U.S. Department of
Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for
the U.S. Department of Energy under contract No. DE-AC05-00OR22725.
NR 20
TC 9
Z9 9
U1 1
U2 15
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0092-0606
J9 J BIOL PHYS
JI J. Biol. Phys.
PD JUN
PY 2012
VL 38
IS 3
BP 497
EP 505
DI 10.1007/s10867-012-9268-6
PG 9
WC Biophysics
SC Biophysics
GA 968DQ
UT WOS:000305957600008
PM 23729910
ER
PT J
AU Chen, XJ
Dinh, NP
Zhao, J
Wang, YT
Li, SP
Svec, F
AF Chen, Xiao-Jia
Ngoc Phuoc Dinh
Zhao, Jing
Wang, Yi-Tao
Li, Shao-Ping
Svec, Frantisek
TI Effect of ion adsorption on CEC separation of small molecules using
hypercrosslinked porous polymer monolithic capillary columns
SO JOURNAL OF SEPARATION SCIENCE
LA English
DT Article
DE Capillary electrochromatography; Hypercrosslinking; Ion adsorption;
Polymer monolith
ID PERFORMANCE LIQUID-CHROMATOGRAPHY; STEARYL-ACRYLATE MONOLITHS; LARGE
SURFACE-AREA; STATIONARY PHASES; EFFICIENT SEPARATION;
ELECTROCHROMATOGRAPHY; PEPTIDES; SOLUTES; MEDIA; PROTEINS
AB Both poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) and poly(4-methylstyrene-co-vinylbenzyl chloride-co-divinylbenzene) monolithic columns have been hypercrosslinked and for the first time used to achieve capillary electrochromatographic separations. Although these columns do not contain ionizable functionalities, electroosmotic flow was observed due to adsorption of ions from a buffer solution contained in the mobile phase on the surface of the hydrophobic polymer. An increase of more than one order of magnitude was observed with the use of both monolithic polymers. The hypercrosslinking reaction creates a large surface area thus enabling adsorption of a much larger number of ions. Alkylbenzenes were successfully separated using the hypercrosslinked monolithic columns.
C1 [Chen, Xiao-Jia; Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Ngoc Phuoc Dinh] Umea Univ, Dept Chem, Umea, Sweden.
[Ngoc Phuoc Dinh] Merck SeQuant AB, Umea, Sweden.
RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
EM lishaoping@hotmail.com; fsvec@lbl.gov
RI Chen, Xiao-jia/E-4425-2017
OI Chen, Xiao-jia/0000-0001-5872-5790
FU Office of Science, Office of Basic Energy Sciences, Scientific User
Facilities Division of the U.S. Department of Energy
[DE-AC02-05CH11231]; University of Macau [UL015/09-Y4]
FX All experimental and characterization work performed at the Molecular
Foundry, Lawrence Berkeley National Laboratory and F. S. were supported
by the Office of Science, Office of Basic Energy Sciences, Scientific
User Facilities Division of the U.S. Department of Energy, under
Contract No. DE-AC02-05CH11231. Financial support of X. C. by a grant of
University of Macau (UL015/09-Y4) is gratefully acknowledged.
NR 34
TC 11
Z9 11
U1 2
U2 32
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1615-9306
J9 J SEP SCI
JI J. Sep. Sci.
PD JUN
PY 2012
VL 35
IS 12
BP 1502
EP 1505
DI 10.1002/jssc.201200138
PG 4
WC Chemistry, Analytical
SC Chemistry
GA 968UP
UT WOS:000306010900013
PM 22740260
ER
PT J
AU Bordbar, A
Mo, ML
Nakayasu, ES
Schrimpe-Rutledge, AC
Kim, YM
Metz, TO
Jones, MB
Frank, BC
Smith, RD
Peterson, SN
Hyduke, DR
Adkins, JN
Palsson, BO
AF Bordbar, Aarash
Mo, Monica L.
Nakayasu, Ernesto S.
Schrimpe-Rutledge, Alexandra C.
Kim, Young-Mo
Metz, Thomas O.
Jones, Marcus B.
Frank, Bryan C.
Smith, Richard D.
Peterson, Scott N.
Hyduke, Daniel R.
Adkins, Joshua N.
Palsson, Bernhard O.
TI Model-driven multi-omic data analysis elucidates metabolic
immunomodulators of macrophage activation
SO MOLECULAR SYSTEMS BIOLOGY
LA English
DT Article
DE constraint-based modeling; immunometabolism; metabolic network
reconstruction; RAW 264.7
ID INDUCIBLE NITRIC-OXIDE; MOUSE PERITONEAL-MACROPHAGES; RAW 264.7
MACROPHAGES; MURINE MACROPHAGES; CELL-LINE; ALVEOLAR MACROPHAGE;
LIPOTEICHOIC ACID; IMMUNE-RESPONSE; KETONE-BODIES; NETWORK
AB Macrophages are central players in immune response, manifesting divergent phenotypes to control inflammation and innate immunity through release of cytokines and other signaling factors. Recently, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features that are critical for macrophage activation. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of activation. Metabolites well-known to be associated with immunoactivation (glucose and arginine) and immunosuppression (tryptophan and vitamin D3) were among the most critical effectors. Intracellular metabolic mechanisms were assessed, identifying a suppressive role for de-novo nucleotide synthesis. Finally, underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying connections between activation and metabolic effectors. Molecular Systems Biology 8: 558; published online 26 June 2012; doi:10.1038/msb.2012.21
C1 [Bordbar, Aarash; Mo, Monica L.; Hyduke, Daniel R.; Palsson, Bernhard O.] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA.
[Nakayasu, Ernesto S.; Schrimpe-Rutledge, Alexandra C.; Kim, Young-Mo; Metz, Thomas O.; Frank, Bryan C.; Smith, Richard D.; Adkins, Joshua N.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Jones, Marcus B.; Peterson, Scott N.] J Craig Venter Inst, Rockville, MD USA.
RP Palsson, BO (reprint author), Univ Calif San Diego, Dept Bioengn, 417 Powell Focht Bioengn Hall,9500 Gilman Dr,Mail, La Jolla, CA 92093 USA.
EM palsson@ucsd.edu
RI Kim, Young-Mo/D-3282-2009; Smith, Richard/J-3664-2012; Adkins,
Joshua/B-9881-2013;
OI Kim, Young-Mo/0000-0002-8972-7593; Smith, Richard/0000-0002-2381-2349;
Adkins, Joshua/0000-0003-0399-0700; Metz, Tom/0000-0001-6049-3968
FU US National Institute of Allergy and Infectious Diseases
[Y1-AI-8401-01]; National Institutes of Health [GM068837]
FX We would like to thank Nathan E Lewis for helping us with the figures.
This work was supported by the US National Institute of Allergy and
Infectious Diseases agreement Y1-AI-8401-01 and the National Institutes
of Health Grant GM068837. Proteomics analyses were performed in the
Environmental Molecular Sciences Laboratory, a US DOE BER national
scientific user facility at Pacific Northwest National Laboratory using
instrumentation developed under support from the US Department of Energy
(DOE) Office of Biological and the NIH National Center for Research
Resources (RR018522).
NR 77
TC 53
Z9 54
U1 4
U2 54
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1744-4292
J9 MOL SYST BIOL
JI Mol. Syst. Biol.
PD JUN
PY 2012
VL 8
AR 558
DI 10.1038/msb.2012.21
PG 12
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 968AQ
UT WOS:000305949800001
PM 22735334
ER
PT J
AU Kim, SW
Nam, KW
Seo, DH
Hong, J
Kim, H
Gwon, H
Kang, K
AF Kim, Sung-Wook
Nam, Kyung-Wan
Seo, Dong-Hwa
Hong, Jihyun
Kim, Hyungsub
Gwon, Hyeokjo
Kang, Kisuk
TI Energy storage in composites of a redox couple host and a lithium ion
host
SO NANO TODAY
LA English
DT Article
DE Energy storage; Li -ion batteries; Electrochemistry; Positive electrode;
Composite materials
ID METAL FLUORIDE NANOCOMPOSITES; CATHODE MATERIAL; HIGH-POWER; BATTERIES;
ELECTROCHEMISTRY
AB The quest for new positive electrodes for rechargeable lithium-ion batteries has been escalating in recent years. Until now, candidates of positive electrode were limited to crystals that contain both redox-active element (usually transition-metal) and lithium ion in the open framework with few exceptions. Here, we demonstrate lithium-free compounds, a material with little activity by itself, can be activated electrochemically by addition of LiF after the first charging. This general strategy is exemplified in various lithium-free iron compounds. Reversible lithium ion extraction and reinsertion take place for Fe2+F2, Fe2+ SO4, and Fe22+P2O7, when blended with LiF in nanoscale, in which a simultaneous valence change of Fe2+/3+ occurs above 3 V. FeF2-LiF could deliver 190 mAh g(-1) (similar to 3.53 V) at 50 mA g(-1) which is even higher energy density than that crystalline LiFePO4 can offer. Various combinations of blending are possible using this approach, which can bring a new branch of material group for positive electrodes in lithium-ion batteries. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Kim, Sung-Wook; Seo, Dong-Hwa; Hong, Jihyun; Kim, Hyungsub; Kang, Kisuk] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea.
[Nam, Kyung-Wan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Gwon, Hyeokjo] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea.
RP Kang, K (reprint author), Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea.
EM matlgen1@snu.ac.kr
RI Nam, Kyung-Wan Nam/G-9271-2011; Kim, Jinsoo/G-3929-2012; Kim,
Hyungsub/J-6018-2014; Nam, Kyung-Wan/E-9063-2015; Hong,
Jihyun/G-5146-2012; Gwon, Hyeokjo/B-9821-2011; Seo,
Dong-Hwa/D-1446-2011; Nam, Kyung-Wan/B-9029-2013; Kim,
Sung-Wook/B-9818-2011; Kang, Kisuk/B-5776-2011
OI Nam, Kyung-Wan/0000-0001-6278-6369; Hong, Jihyun/0000-0001-7210-2901;
Seo, Dong-Hwa/0000-0002-7200-7186; Nam, Kyung-Wan/0000-0001-6278-6369;
Kim, Sung-Wook/0000-0002-5537-4793;
FU Energy Efficiency and Resources R&D program under the Ministry of
Knowledge Economy, Republic of Korea [20112020100070]; Human Resources
Development of the Korea Institute of Energy Technology Evaluation and
Planning (KETEP); Korea government Ministry of Knowledge Economy
[20114010203120]; Converging Research Center Program through the
Ministry of Education, Science and Technology [2011K000691];
Northeastern Center for Chemical Energy Storage; Energy Frontier
Research Center; U.S. DOE, BES [DE-SC0001294]
FX This work was supported by Energy Efficiency and Resources R&D program
(20112020100070) under the Ministry of Knowledge Economy, Republic of
Korea. This work was also supported by Human Resources Development of
the Korea Institute of Energy Technology Evaluation and Planning (KETEP)
grant funded by the Korea government Ministry of Knowledge Economy
(20114010203120) and by the Converging Research Center Program through
the Ministry of Education, Science and Technology (2011K000691). The
work at BNL was supported by the Northeastern Center for Chemical Energy
Storage, and Energy Frontier Research Center funded by the U.S. DOE, BES
under award No. DE-SC0001294. The authors would like to express their
gratitude to Professor Glen. G. Amatucci for his valuable discussion in
this work.
NR 21
TC 14
Z9 14
U1 0
U2 68
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1748-0132
J9 NANO TODAY
JI Nano Today
PD JUN
PY 2012
VL 7
IS 3
BP 168
EP 173
DI 10.1016/j.nantod.2012.04.004
PG 6
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 969BX
UT WOS:000306031800006
ER
PT J
AU Galland, C
Ghosh, Y
Steinbruck, A
Hollingsworth, JA
Htoon, H
Klimov, VI
AF Galland, Christophe
Ghosh, Yagnaseni
Steinbrueck, Andrea
Hollingsworth, Jennifer A.
Htoon, Han
Klimov, Victor I.
TI Lifetime blinking in nonblinking nanocrystal quantum dots
SO NATURE COMMUNICATIONS
LA English
DT Article
ID SEMICONDUCTOR NANOCRYSTALS; PHOTOLUMINESCENCE; INTERMITTENCY; INTENSITY;
CHARGE
AB Nanocrystal quantum dots are attractive materials for applications as nanoscale light sources. One impediment to these applications is fluctuations of single-dot emission intensity, known as blinking. Recent progress in colloidal synthesis has produced nonblinking nanocrystals; however, the physics underlying blinking suppression remains unclear. Here we find that ultra-thick-shell CdSe/CdS nanocrystals can exhibit pronounced fluctuations in the emission lifetimes (lifetime blinking), despite stable nonblinking emission intensity. We demonstrate that lifetime variations are due to switching between the neutral and negatively charged state of the nanocrystal. Negative charging results in faster radiative decay but does not appreciably change the overall emission intensity because of suppressed nonradiative Auger recombination for negative trions. The Auger process involving excitation of a hole (positive trion pathway) remains efficient and is responsible for charging with excess electrons, which occurs via Auger-assisted ionization of biexcitons accompanied by ejection of holes.
C1 [Galland, Christophe; Htoon, Han; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Galland, Christophe; Klimov, Victor I.] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA.
[Ghosh, Yagnaseni; Steinbrueck, Andrea; Hollingsworth, Jennifer A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Ghosh, Yagnaseni; Steinbrueck, Andrea; Hollingsworth, Jennifer A.; Htoon, Han] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Htoon, H (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
EM htoon@lanl.gov; klimov@lanl.gov
RI Galland, Christophe/A-1075-2013;
OI Galland, Christophe/0000-0001-5627-0796; Klimov,
Victor/0000-0003-1158-3179; Htoon, Han/0000-0003-3696-2896
FU Center for Advanced Solar Photophysics, an Energy Frontier Research
Center; U.S. Department of Energy (DOE), Office of Science, Office of
Basic Energy Sciences (BES); Los Alamos National Laboratory Directed
Research and Development Funds; NIH-NIGMS [1R01GM084702-01]; BES, DOE
[2009LANL1096]
FX C.G. and V.I.K. acknowledge support from the Center for Advanced Solar
Photophysics, an Energy Frontier Research Center funded by the U.S.
Department of Energy (DOE), Office of Science, Office of Basic Energy
Sciences (BES). Y.G. and A.S. were supported by Los Alamos National
Laboratory Directed Research and Development Funds, which also provided
support for C.G. J.A.H. is partially supported by NIH-NIGMS Grant
1R01GM084702-01. H.H. acknowledges a Single-Investigator Small-Group
Research Award (2009LANL1096), BES, DOE. This work was conducted, in
part, at the Center for Integrated Nanotechnologies, a DOE/BES user
facility. C.G. thanks Benjamin D. Mangum for technical assistance.
NR 34
TC 106
Z9 106
U1 5
U2 116
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD JUN
PY 2012
VL 3
AR 908
DI 10.1038/ncomms1916
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 970AG
UT WOS:000306099900035
PM 22713750
ER
PT J
AU Nica, N
Singh, B
AF Nica, Ninel
Singh, Balraj
TI Nuclear Data Sheets for A=34
SO NUCLEAR DATA SHEETS
LA English
DT Article
ID NEUTRON-RICH NUCLEI; HIGH-SPIN STATES; N=20 SHELL CLOSURE; FERMI
BETA-DECAY; GAMMA-RAY SPECTROSCOPY; DOUBLE-CHARGE-EXCHANGE; LOW-LYING
LEVELS; S-D SHELL; N = 20; PROTON TRANSITION DENSITIES
AB Nuclear spectroscopic information for experimentally investigated nuclides of mass 34 (Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca) has been evaluated. The principal sources of the Adopted Levels presented for nuclides close to the stability line are Endt's evaluations (1990En08, 1978En02). The data sets for reactions and decays, including all available gamma-ray data, are based mostly on the original literature. There are no data available for the excited states in Ne-34 and Na-34. The existence of the K-34 and Ca-34 nuclides has been searched and reported in a secondary publication but no evidence was found for their detection. Both nuclides are possible candidates for one or two-proton emission. Only upper limits of half-lives have been proposed based on expected cross sections. Decay schemes for the p decays of Ne-34, Na-34, Mg-34, and Si-34 are not known. Very little information is available for beta-delayed neutron decays of Na-35, Mg-35 and Si-35 which lead to population of levels in A=34 nuclides. Neutron-rich nuclides in this mass region are relevant to "island of inversion'.
C1 [Nica, Ninel] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA.
[Nica, Ninel] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA.
[Singh, Balraj] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada.
RP Nica, N (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA.
FU Office of Nuclear Physics, Office Science of the DOE of the United
States; NSERC of Canada
FX Work supported by the Office of Nuclear Physics, Office Science of the
DOE of the United States. At McMaster, partial funding was received from
the NSERC of Canada.
NR 394
TC 9
Z9 9
U1 0
U2 8
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0090-3752
J9 NUCL DATA SHEETS
JI Nucl. Data Sheets
PD JUN-JUL
PY 2012
VL 113
IS 6-7
BP 1563
EP 1733
DI 10.1016/j.nds.2012.06.001
PG 171
WC Physics, Nuclear
SC Physics
GA 966TE
UT WOS:000305859500001
ER
PT J
AU McCutchan, EA
AF McCutchan, E. A.
TI Nuclear Data Sheets for A=68
SO NUCLEAR DATA SHEETS
LA English
DT Article
ID HIGH-SPIN STATES; PROTON INELASTIC-SCATTERING; BEAM GAMMA-SPECTROSCOPY;
NEUTRON-RICH NUCLEI; FP-SHELL NUCLEI; ELASTIC ELECTRON-SCATTERING;
MULTIPLE BAND-STRUCTURES; LYING COLLECTIVE STATES; NEGATIVE-PARITY
STATES; RAY MAXIMUM ENERGY
AB The experimental results from the various reaction and radioactive decay studies leading to nuclides in the A=68 mass chain have been reviewed. Nuclides ranging from Cr (Z=24) to Br (Z=35) are included. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given. This work supersedes the previous evaluation of the data on these nuclides (2002Bu29).
C1 Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA.
RP McCutchan, EA (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA.
FU Office of Nuclear Physics, Office of Science, US Department of Energy
[DE-AC02-98CH10946]
FX Research sponsored by Office of Nuclear Physics, Office of Science, US
Department of Energy, under contract DE-AC02-98CH10946.
NR 340
TC 21
Z9 21
U1 2
U2 7
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0090-3752
EI 1095-9904
J9 NUCL DATA SHEETS
JI Nucl. Data Sheets
PD JUN-JUL
PY 2012
VL 113
IS 6-7
BP 1735
EP 1870
DI 10.1016/j.nds.2012.06.002
PG 136
WC Physics, Nuclear
SC Physics
GA 966TE
UT WOS:000305859500002
ER
PT J
AU Cekic, BDJ
Umicevic, AB
Ivanovski, VN
Hu, RW
Petrovic, C
David, B
Barudzija, T
AF Cekic, Bozidar D. J.
Umicevic, Ana B.
Ivanovski, Valentin N.
Hu, Rongwei
Petrovic, Cedomir
David, Bohumil
Barudzija, Tanja
TI PERTURBED ANGULAR CORRELATION INVESTIGATION OF THE ELECTRIC FIELD
GRADIENT AT Ta-181 PROBE IN THE Hf2Ni7 COMPOUND
SO NUCLEAR TECHNOLOGY & RADIATION PROTECTION
LA English
DT Article
DE intermetallics; hyperfine interactions; perturbed angular correlation;
magnetization; X-ray diffraction
ID TEMPERATURE-DEPENDENCE; HYPERFINE INTERACTIONS; HF ALLOY; ZR2NI7
AB The perturbed angular correlation method was employed to study the temperature dependence of electric field gradients at the Ta-181 probe in the polycrystalline Hf2Ni7 compound. The temperature evolution of the sample content was measured using high-temperature X-ray diffraction. To check the magnetic order of the sample, magnetization measurements and additional perturbed angular correlation measurements with externally applied magnetic field were performed. All obtained spectra showed no evidence of magnetic order of the Hf2Ni7 phase. Within the experimental resolution of the apparatus, the measured electric field gradients at Ta-181 probe for the two inequivalent Hf-181/Ta-181 sites in the Hf2Ni7 compound appeared as one in the range of 78-944 K. A single quadrupole interaction implies that the electric field gradients at the two Hf sites must be quite similar. At 293 K, the measured quadrupole interaction parameters are v(Q) = 433(1) MHz and eta = 0.300(4). An increase of the quadrupole frequency and a gradual rising of the asymmetry parameter were observed with increasing temperature. The high-temperature X-ray diffraction indicated a build up of HfO2 above 693 K.
C1 [Cekic, Bozidar D. J.; Umicevic, Ana B.; Ivanovski, Valentin N.; Barudzija, Tanja] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia.
[Hu, Rongwei; Petrovic, Cedomir] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[David, Bohumil] Acad Sci Czech Republic, Inst Phys Mat, Brno, Czech Republic.
RP Umicevic, AB (reprint author), Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia.
EM umicev@vinca.rs
RI Petrovic, Cedomir/A-8789-2009; David, Bohumil/E-3689-2012
OI Petrovic, Cedomir/0000-0001-6063-1881;
FU Ministry of Education and Science of the Republic of Serbia [171001];
Office of Basic Energy Sciences, U.S. Department of Energy
[DE-Ac02-98CH10886]
FX This work has been supported by the Ministry of Education and Science of
the Republic of Serbia, Grant No. 171001. This work was partly carried
out at the Brookhaven National Laboratory, which is operated for the
Office of Basic Energy Sciences, U.S. Department of Energy by Brookhaven
Science Associates (DE-Ac02-98CH10886) (C. P. and R. H.).
NR 17
TC 0
Z9 0
U1 0
U2 12
PU VINCA INST NUCLEAR SCI
PI BELGRADE
PA MIHAJLA PETROVICA-ALASA 12-14 VINCA, 11037 BELGRADE. POB 522, BELGRADE,
11001, SERBIA
SN 1451-3994
J9 NUCL TECHNOL RADIAT
JI Nucl. Technol. Radiat. Prot.
PD JUN
PY 2012
VL 27
IS 2
BP 95
EP 102
DI 10.2298/NTRP1202095C
PG 8
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 969DT
UT WOS:000306036600001
ER
PT J
AU Fang, AA
Huang, Z
Koschny, T
Soukoulis, CM
AF Fang, Anan
Huang, Zhixiang
Koschny, Thomas
Soukoulis, Costas M.
TI Loss compensated negative index material at optical wavelengths
SO PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS
LA English
DT Article
DE Fishnet metamaterial; Gain materials; Loss compensation; Magnetic
resonance
ID REFRACTIVE-INDEX; METAMATERIALS; GAIN
AB We present a computational approach, allowing for a self-consistent treatment of three-dimensional (3D) fishnet metamaterial operating at 710 nm wavelength coupled to a gain material incorporated into the nanostructure. We show numerically that loss-free negative index material is achievable by incorporating gain material inside the fishnet structure. The effective gain coefficient of the combined fishnet-gain system is much larger than its bulk counterpart and the figure-of-merit (FOM = vertical bar Re(n)/Im(n)vertical bar) increases dramatically with gain. Transmission, reflection, and absorption data, as well as the retrieved effective parameters, are presented for the fishnet structure with and without gain. Published by Elsevier B.V.
C1 [Fang, Anan; Huang, Zhixiang; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Fang, Anan; Huang, Zhixiang; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Huang, Zhixiang] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Peoples R China.
[Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece.
[Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, Inst Elect Struct & Laser, FORTH, Iraklion 71110, Crete, Greece.
RP Fang, AA (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
EM aafang@iastate.edu
RI Huang, Zhixiang/C-3416-2014; Soukoulis, Costas/A-5295-2008
OI Huang, Zhixiang/0000-0002-8023-9075;
FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358];
European Community FET project PHOME [213390]; Laboratory-Directed
Research and Development Program at Sandia National Laboratories;
National Natural Science Foundation of China [60931002]
FX Work at Ames Laboratory was supported by the Department of Energy (Basic
Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was
partially supported by the European Community FET project PHOME
(Contract No. 213390) and by Laboratory-Directed Research and
Development Program at Sandia National Laboratories. The author Z. Huang
gratefully acknowledges support of the National Natural Science
Foundation of China (Grant No. 60931002).
NR 36
TC 3
Z9 4
U1 0
U2 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1569-4410
J9 PHOTONIC NANOSTRUCT
JI Photonics Nanostruct.
PD JUN
PY 2012
VL 10
IS 3
BP 276
EP 280
DI 10.1016/j.photonics.2011.05.003
PG 5
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Optics; Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Optics; Physics
GA 967AE
UT WOS:000305877700007
ER
PT J
AU Fiksel, G
Hu, SX
Goncharov, VA
Meyerhofer, DD
Sangster, TC
Smalyuk, VA
Yaakobi, B
Bonino, MJ
Jungquist, R
AF Fiksel, G.
Hu, S. X.
Goncharov, V. A.
Meyerhofer, D. D.
Sangster, T. C.
Smalyuk, V. A.
Yaakobi, B.
Bonino, M. J.
Jungquist, R.
TI Experimental reduction of laser imprinting and Rayleigh-Taylor growth in
spherically compressed, medium-Z-doped plastic targets
SO PHYSICS OF PLASMAS
LA English
DT Article
ID INERTIAL CONFINEMENT FUSION; PLANAR TARGETS; OMEGA; PERFORMANCE;
ADIABAT; SYSTEM; PICKET
AB The effect of medium-Z doping of plastic ablators on laser imprinting and Rayleigh-Taylor (RT) instability growth was studied using spherical direct-drive implosions on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1977)]. The targets were spherical plastic (CH) shells, with an outer diameter of 860 mu m and a thickness of 22 mu m, volume doped with a varied concentration of Si (4.3% and 7.4%) and Ge (3.9%). The targets were imploded with 48 beams with a low-adiabat, triple-picket laser shape pulse with a peak intensity of 4 x 10(14)W/cm(2), and a pulse duration of 2.5 ns. The shells were x-ray radiographed through a 400-mu m opening in the side of the target. The results show that volumetric impurity doping strongly reduces the shell density modulation and the instability growth rate. The amplitude of the initial imprint is reduced by a factor of 2.5 +/- 0.5 for CH[4.3% Si] targets and by a factor of 3 +/- 0.5 for CH[7.4% Si] and CH[3.9% Ge] targets. At the end of the acceleration phase, the reduction factor becomes 3 +/- 0.5 and 5 +/- 0.5, correspondingly. The RT instability growth rate in doped targets is reduced by a factor of 1.5 compared to undoped ones. Simulations using the two-dimensional, radiation-hydrodynamics code DRACO show good agreement with the measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729732]
C1 [Fiksel, G.; Hu, S. X.; Goncharov, V. A.; Meyerhofer, D. D.; Sangster, T. C.; Yaakobi, B.; Bonino, M. J.; Jungquist, R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA.
[Smalyuk, V. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA.
[Meyerhofer, D. D.] Univ Rochester, Dept Phys, Rochester, NY 14627 USA.
RP Fiksel, G (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA.
EM gfik@lle.rochester.edu
RI Hu, Suxing/A-1265-2007
OI Hu, Suxing/0000-0003-2465-3818
FU U.S. Department of Energy Office of Inertial Confinement Fusion
[DE-FC52-08NA28302]; University of Rochester; New York State Energy
Research and Development Authority
FX This work was supported the U.S. Department of Energy Office of Inertial
Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302,
the University of Rochester, and the New York State Energy Research and
Development Authority. The support of DOE does not constitute an
endorsement by DOE of the views expressed in this article.
NR 24
TC 21
Z9 21
U1 0
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUN
PY 2012
VL 19
IS 6
AR 062704
DI 10.1063/1.4729732
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA 966JY
UT WOS:000305835100036
ER
PT J
AU Friedman, A
AF Friedman, Alex
TI Arc-based smoothing of ion beam intensity on targets
SO PHYSICS OF PLASMAS
LA English
DT Article
ID CYLINDRICAL IMPLOSIONS DRIVEN; FUSION ENERGY PROGRAM; HEAVY-ION;
SYMMETRY; PHYSICS
AB By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy ("heavy-ion fusion"). Here, we consider an approach to such smoothing that is based on rapidly "wobbling" each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729841]
C1 [Friedman, Alex] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Friedman, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM af@llnl.gov
FU USDOE by LLNL [DE-AC52-07NA27344]
FX This work was performed under the auspices of the USDOE by LLNL under
Contract DE-AC52-07NA27344.
NR 21
TC 2
Z9 2
U1 3
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUN
PY 2012
VL 19
IS 6
AR 063111
DI 10.1063/1.4729841
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA 966JY
UT WOS:000305835100054
ER
PT J
AU Guo, ZH
Tang, XZ
AF Guo, Zehua
Tang, Xian-Zhu
TI Parallel transport of long mean-free-path plasma along open magnetic
field lines: Parallel heat flux
SO PHYSICS OF PLASMAS
LA English
DT Article
ID HYDROMAGNETIC EQUATIONS; GENERAL-THEORY
AB In a long mean-free-path plasma where temperature anisotropy can be sustained, the parallel heat flux has two components with one associated with the parallel thermal energy and the other the perpendicular thermal energy. Due to the large deviation of the distribution function from local Maxwellian in an open field line plasma with low collisionality, the conventional perturbative calculation of the parallel heat flux closure in its local or non-local form is no longer applicable. Here, a non-perturbative calculation is presented for a collisionless plasma in a two-dimensional flux expander bounded by absorbing walls. Specifically, closures of previously unfamiliar form are obtained for ions and electrons, which relate two distinct components of the species parallel heat flux to the lower order fluid moments such as density, parallel flow, parallel and perpendicular temperatures, and the field quantities such as the magnetic field strength and the electrostatic potential. The plasma source and boundary condition at the absorbing wall enter explicitly in the closure calculation. Although the closure calculation does not take into account wave-particle interactions, the results based on passing orbits from steady-state collisionless drift-kinetic equation show remarkable agreement with fully kinetic-Maxwell simulations. As an example of the physical implications of the theory, the parallel heat flux closures are found to predict a surprising observation in the kinetic-Maxwell simulation of the 2D magnetic flux expander problem, where the parallel heat flux of the parallel thermal energy flows from low to high parallel temperature region. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4725494]
C1 [Guo, Zehua; Tang, Xian-Zhu] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Guo, ZH (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RI guo, zehua/E-4454-2014
FU U.S. Department of Energy Office of Fusion Energy Sciences
[DE-AC52-06NA25396]
FX We wish to thank Herb Berk for useful discussions and U.S. Department of
Energy Office of Fusion Energy Sciences for support under Contract
DE-AC52-06NA25396.
NR 25
TC 4
Z9 4
U1 0
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUN
PY 2012
VL 19
IS 6
AR 062501
DI 10.1063/1.4725494
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA 966JY
UT WOS:000305835100025
ER
PT J
AU Islam, T
AF Islam, Tanim
TI Axisymmetric nonlinear waves and structures in Hall plasmas
SO PHYSICS OF PLASMAS
LA English
DT Article
ID MAGNETIC RECONNECTION; MAGNETOROTATIONAL INSTABILITY; MOLECULAR CLOUDS;
DUSTY PLASMA; SIMULATIONS; DISSIPATION; IONIZATION; EVOLUTION; STARS;
DISCS
AB In this paper, a general equation for the evolution of an axisymmetric magnetic field in a Hall plasma is derived, with an integral similar to the Grad-Shafranov equation. Special solutions arising from curvature-whistler drift modes that propagate along the electron drift as a Burger's shock and nonlinear periodic and soliton-like solutions to the generalized Grad-Shafranov integral-are analyzed. We derive analytical and numerical solutions in a classical electron-ion Hall plasma, in which electrons and ions are the only species in the plasmas. Results may then be applied to the following low-ionized astrophysical plasmas: in protostellar disks, in which the ions may be coupled to the motion of gases; and in molecular clouds and protostellar jets, in which the much heavier charged dust in a dusty Hall plasma may be collisionally coupled to the gas. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729681]
C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Islam, T (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA.
EM islam5@llnl.gov
NR 38
TC 0
Z9 0
U1 0
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUN
PY 2012
VL 19
IS 6
AR 062903
DI 10.1063/1.4729681
PG 9
WC Physics, Fluids & Plasmas
SC Physics
GA 966JY
UT WOS:000305835100041
ER
PT J
AU La Haye, RJ
Buttery, RJ
Gerhardt, SP
Sabbagh, SA
Brennan, DP
AF La Haye, R. J.
Buttery, R. J.
Gerhardt, S. P.
Sabbagh, S. A.
Brennan, D. P.
TI Aspect ratio effects on neoclassical tearing modes from comparison
between DIII-D and National Spherical Torus Experiment
SO PHYSICS OF PLASMAS
LA English
DT Article
ID RESISTIVE INSTABILITIES; NONLINEAR DYNAMICS; MAGNETIC ISLANDS; TOKAMAK
PLASMAS; BETA-LIMITS; LONG-PULSE; COMPASS-D; DISCHARGES; STABILITY;
THRESHOLD
AB Neoclassical tearing mode islands are sustained by helically perturbed bootstrap currents arising at finite beta from toroidal effects that trap a fraction of the particles in non-circulating orbits. DIII-D and NSTX are here operated with similar shape and cross-sectional area but almost a factor of two difference in inverse aspect ratio a/R. In these experiments, destabilized n = 1 tearing modes were self-stabilized (reached the "marginal point") by reducing neutral-beam power and thus beta. The measure of the marginal island gives information on the small-island stabilizing physics that in part (with seeding) governs onset. The marginal island width on NSTX is found to be about three times the ion banana width and agrees with that measured in DIII-D, except for DIII-D modes closer to the magnetic axis, which are about two times the ion banana width. There is a balance of the helically perturbed bootstrap term with small island effects with the sum of the classical and curvature terms in the modified Rutherford equation for tearing-mode stability at the experimental marginal point. Empirical evaluation of this sum indicates that while the stabilizing effect of the curvature term is negligible in DIII-D, it is important in NSTX. The mode temporal behavior from the start of neutral-beam injection reduction also suggests that NSTX operates closer to marginal classical tearing stability; this explains why there is little hysteresis in beta between mode onset, saturation, and self-stabilization (while DIII-D has large hysteresis in beta). NIMROD code module component calculations based on DIII-D and NSTX reconstructed experimental equilibria are used to diagnose and confirm the relative importance of the stabilizing curvature effect, an advantage for low aspect ratio; the relatively greater curvature effect makes for less susceptibility to NTM onset even if the classical tearing stability index is near marginal. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729658]
C1 [La Haye, R. J.; Buttery, R. J.] Gen Atom Co, San Diego, CA 92186 USA.
[Gerhardt, S. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Sabbagh, S. A.] Columbia Univ, New York, NY 10027 USA.
[Brennan, D. P.] Univ Tulsa, Tulsa, OK 74104 USA.
RP La Haye, RJ (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA.
FU U.S. Department of Energy [DE-FG02-04ER54698, DE-AC02-09CH11466,
DE-FG02-04ER54761]
FX Thanks to Scott Kruger of the Tech-X Corp. for discussions on the NIMROD
code. This work was supported in part by the U.S. Department of Energy
under DE-FG02-04ER54698, DE-AC02-09CH11466, and DE-FG02-04ER54761.
Thanks to the DIII-D and NSTX Teams.
NR 47
TC 5
Z9 5
U1 1
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUN
PY 2012
VL 19
IS 6
AR 062506
DI 10.1063/1.4729658
PG 11
WC Physics, Fluids & Plasmas
SC Physics
GA 966JY
UT WOS:000305835100030
ER
PT J
AU Ryutov, DD
Cuneo, ME
Herrmann, MC
Sinars, DB
Slutz, SA
AF Ryutov, D. D.
Cuneo, M. E.
Herrmann, M. C.
Sinars, D. B.
Slutz, S. A.
TI Simulating the magnetized liner inertial fusion plasma confinement with
smaller-scale experiments
SO PHYSICS OF PLASMAS
LA English
DT Article
ID TARGET FUSION; HEAT-TRANSPORT; PHYSICS BASIS; LASER; FIELD
AB The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. This observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729726]
C1 [Ryutov, D. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.; Slutz, S. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
FU U.S. DoE by LLNL [DE-AC52-07NA27344]; U.S. DOE's NNSA
[DE-AC04-94AL85000]
FX Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344;
Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. DOE's NNSA under Contract
DE-AC04-94AL85000.
NR 28
TC 8
Z9 8
U1 0
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUN
PY 2012
VL 19
IS 6
AR 062706
DI 10.1063/1.4729726
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA 966JY
UT WOS:000305835100038
ER
PT J
AU Shin, YM
AF Shin, Young-Min
TI Superimposed coherent terahertz wave radiation from mono-energetically
bunched multi-beam
SO PHYSICS OF PLASMAS
LA English
DT Article
AB Intense coherent radiation is obtained from multiple electron beams monochromatically bunched over the wide higher-order-mode (HOM) spectral band in the THz regime. The overmoded waveguide corrugated by dielectric-implanted staggered gratings superimposes evanescent waves emitted from the low energy electron beams. The dispersion and transmission simulations of the three-beam slow wave structure show that the first two fundamental modes (TE10 and TE20) are considerably suppressed (similar to-50 dB) below the multi-beam resonating mode (TE30) at the THz regime (0.8-1.24 THz). The theoretical calculations and particle-in-cell simulations show that with significantly higher interaction impedance and power growth rate radiation of the TE30 mode is similar to 23 dBm and similar to 50 dBm stronger than the TE10 and TE20 modes around 1 THz, respectively. This highly selective HOM multi-beam interaction has potential applications for power THz sources and high intensity accelerators. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731695]
C1 [Shin, Young-Min] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Shin, Young-Min] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA.
RP Shin, YM (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
EM yshin@niu.edu
NR 23
TC 4
Z9 4
U1 0
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUN
PY 2012
VL 19
IS 6
AR 063115
DI 10.1063/1.4731695
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA 966JY
UT WOS:000305835100058
ER
PT J
AU Wallace, GM
Faust, IC
Meneghini, O
Parker, RR
Shiraiwa, S
Baek, SG
Bonoli, PT
Hubbard, AE
Hughes, JW
LaBombard, BL
Lau, C
Ma, Y
Reinke, ML
Terry, JL
Whyte, DG
Wright, JC
Wukitch, SJ
Harvey, RW
Schmidt, AE
Smirnov, AP
Wilson, JR
AF Wallace, G. M.
Faust, I. C.
Meneghini, O.
Parker, R. R.
Shiraiwa, S.
Baek, S. G.
Bonoli, P. T.
Hubbard, A. E.
Hughes, J. W.
LaBombard, B. L.
Lau, C.
Ma, Y.
Reinke, M. L.
Terry, J. L.
Whyte, D. G.
Wright, J. C.
Wukitch, S. J.
Harvey, R. W.
Schmidt, A. E.
Smirnov, A. P.
Wilson, J. R.
TI Lower hybrid current drive at high density in the multi-pass regime
SO PHYSICS OF PLASMAS
LA English
DT Article
ID ALCATOR C-MOD; PARAMETRIC-INSTABILITIES; TOKAMAK; WAVES; FREQUENCIES;
PLASMAS; DESIGN
AB Assessing the performance of lower hybrid current drive (LHCD) at high density is critical for developing non-inductive current drive systems on future steady-state experiments. Excellent LHCD efficiency has been observed during fully non-inductive operation (eta = 2.0 - 2.5 x 10(19) AW(-1)m(-2) at (n) over bar (e) = 0.5 x 10(20) m(-3)) on Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] under conditions (ne, magnetic field and topology, and LHCD frequency) relevant to ITER [S. Shiraiwa et al., Nucl. Fusion 51, 103024 (2011)]. To extend these results to advanced tokamak regimes with higher bootstrap current fractions on C-Mod, it is necessary to increase (n) over bar (e) to 1.0 - 1.5 x 10(20) m(-3). However, the number of current-carrying, non-thermal electrons generated by LHCD drops sharply in diverted configurations at densities that are well below the density limit previously observed on limited tokamaks. In these cases, changes in scrape off layer (SOL) ionization and density profiles are observed during LHCD, indicating that significant power is transferred from the LH waves to the SOL. Fokker-Planck simulations of these discharges utilizing ray tracing and full wave propagation codes indicate that LH waves in the high density, multi-pass absorption regime linger in the plasma edge, and SOL region, where absorption near or outside the LCFS results in the loss of current drive efficiency. Modeling predicts that non-thermal emission increases with stronger single-pass absorption. Experimental data show that increasing T-e in high density LH discharges results in higher non-thermal electron emission, as predicted by the models. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729734]
C1 [Wallace, G. M.; Faust, I. C.; Meneghini, O.; Parker, R. R.; Shiraiwa, S.; Baek, S. G.; Bonoli, P. T.; Hubbard, A. E.; Hughes, J. W.; LaBombard, B. L.; Lau, C.; Ma, Y.; Reinke, M. L.; Terry, J. L.; Whyte, D. G.; Wright, J. C.; Wukitch, S. J.; Schmidt, A. E.] MIT, Plasma Sci & Fusion Ctr, Cambridge, MA 02139 USA.
[Harvey, R. W.] CompX, Del Mar, CA 92014 USA.
[Smirnov, A. P.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Wilson, J. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Wallace, GM (reprint author), MIT, Plasma Sci & Fusion Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
RI Smirnov, Alexander /A-4886-2014
FU US Department of Energy [DE-FC02-99ER54512, DE-AC02-09CH11466]
FX The authors would like to thank the C-Mod LHCD engineering team for
their efforts in keeping the system running. This work was supported by
US Department of Energy awards DE-FC02-99ER54512 and DE-AC02-09CH11466.
NR 38
TC 21
Z9 21
U1 2
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUN
PY 2012
VL 19
IS 6
AR 062505
DI 10.1063/1.4729734
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA 966JY
UT WOS:000305835100029
ER
PT J
AU Keegan, KP
Trimble, WL
Wilkening, J
Wilke, A
Harrison, T
D'Souza, M
Meyer, F
AF Keegan, Kevin P.
Trimble, William L.
Wilkening, Jared
Wilke, Andreas
Harrison, Travis
D'Souza, Mark
Meyer, Folker
TI A Platform-Independent Method for Detecting Errors in Metagenomic
Sequencing Data: DRISEE
SO PLOS COMPUTATIONAL BIOLOGY
LA English
DT Article
ID MICROBIAL COMMUNITIES; QUALITY ASSESSMENT; RARE BIOSPHERE; SHORT-READ;
DIVERSITY; GENOME; PYROSEQUENCES; WRINKLES
AB We provide a novel method, DRISEE (duplicate read inferred sequencing error estimation), to assess sequencing quality (alternatively referred to as "noise'' or "error'') within and/or between sequencing samples. DRISEE provides positional error estimates that can be used to inform read trimming within a sample. It also provides global (whole sample) error estimates that can be used to identify samples with high or varying levels of sequencing error that may confound downstream analyses, particularly in the case of studies that utilize data from multiple sequencing samples. For shotgun metagenomic data, we believe that DRISEE provides estimates of sequencing error that are more accurate and less constrained by technical limitations than existing methods that rely on reference genomes or the use of scores (e.g. Phred). Here, DRISEE is applied to (non amplicon) data sets from both the 454 and Illumina platforms. The DRISEE error estimate is obtained by analyzing sets of artifactual duplicate reads (ADRs), a known by-product of both sequencing platforms. We present DRISEE as an open-source, platform-independent method to assess sequencing error in shotgun metagenomic data, and utilize it to discover previously uncharacterized error in de novo sequence data from the 454 and Illumina sequencing platforms.
C1 [Keegan, Kevin P.; Trimble, William L.; Wilkening, Jared; Wilke, Andreas; Harrison, Travis; D'Souza, Mark; Meyer, Folker] Argonne Natl Lab, Argonne, IL 60439 USA.
[Keegan, Kevin P.; Wilkening, Jared; Wilke, Andreas; Harrison, Travis; D'Souza, Mark; Meyer, Folker] Univ Chicago, Chicago, IL 60637 USA.
[Keegan, Kevin P.; Wilkening, Jared; Wilke, Andreas; Harrison, Travis; D'Souza, Mark; Meyer, Folker] Inst Genom & Syst Biol, Chicago, IL USA.
RP Keegan, KP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM kkeegan@anl.gov
OI Trimble, William L./0000-0001-7029-2676; Meyer,
Folker/0000-0003-1112-2284
FU U.S. Department of Energy, Office of Biological and Environmental
Research [DE-AC02-06CH11357]; Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy
[DE-AC02-06CH11357]
FX This work was supported by the U.S. Department of Energy, Office of
Biological and Environmental Research under Contract DE-AC02-06CH11357
as part of the DOE Systems Biology Knowledgebase. Computing for this
work was supported in part by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under
Contract DE-AC02-06CH11357. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the
manuscript.
NR 32
TC 25
Z9 25
U1 1
U2 6
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1553-7358
J9 PLOS COMPUT BIOL
JI PLoS Comput. Biol.
PD JUN
PY 2012
VL 8
IS 6
AR e1002541
DI 10.1371/journal.pcbi.1002541
PG 11
WC Biochemical Research Methods; Mathematical & Computational Biology
SC Biochemistry & Molecular Biology; Mathematical & Computational Biology
GA 968GM
UT WOS:000305965300014
PM 22685393
ER
PT J
AU Pawelek, KA
Huynh, GT
Quinlivan, M
Cullinane, A
Rong, LB
Perelson, AS
AF Pawelek, Kasia A.
Huynh, Giao T.
Quinlivan, Michelle
Cullinane, Ann
Rong, Libin
Perelson, Alan S.
TI Modeling Within-Host Dynamics of Influenza Virus Infection Including
Immune Responses
SO PLOS COMPUTATIONAL BIOLOGY
LA English
DT Article
ID NATURAL-KILLER-CELLS; ADAPTED RECOMBINANT VIRUSES; A H5N1 VIRUSES;
DENDRITIC CELLS; MATHEMATICAL-MODEL; VIRAL-INFECTION; GENE-EXPRESSION;
NS1 PROTEIN; IFN-GAMMA; RECOGNITION
AB Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By comparing modeling predictions with both interferon and viral kinetic data, we examined the relative roles of target cell availability, and innate and adaptive immune responses in controlling the virus. Our results show that the rapid and substantial viral decline (about 2 to 4 logs within 1 day) after the peak can be explained by the killing of infected cells mediated by interferon activated cells, such as natural killer cells, during the innate immune response. After the viral load declines to a lower level, the loss of interferon-induced antiviral effect and an increased availability of target cells due to loss of the antiviral state can explain the observed short phase of viral plateau in which the viral level remains unchanged or even experiences a minor second peak in some animals. An adaptive immune response is needed in our model to explain the eventual viral clearance. This study provides a quantitative understanding of the biological factors that can explain the viral and interferon kinetics during a typical influenza virus infection.
C1 [Pawelek, Kasia A.; Huynh, Giao T.; Rong, Libin] Oakland Univ, Dept Math & Stat, Rochester, MI 48063 USA.
[Quinlivan, Michelle; Cullinane, Ann] Irish Equine Ctr, Virol Unit, Naas, Kildare, Ireland.
[Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Pawelek, KA (reprint author), Oakland Univ, Dept Math & Stat, Rochester, MI 48063 USA.
EM rong2@oakland.edu; asp@lanl.gov
FU US Department of Energy [DE-AC52-06NA25396]; NIH [P30-EB011339,
HHSN272201000055C]; National Center for Research Resources and the
Office of Research Infrastructure Programs (ORIP) [8R01-OD011095-21];
NSF [DMS-1122290, PHY-0551164]; Los Alamos National Laboratory LDRD
Program
FX Portions of this work were done under the auspices of the US Department
of Energy under contract DE-AC52-06NA25396, supported by the NIH grant
P30-EB011339 and contract HHSN272201000055C, the National Center for
Research Resources and the Office of Research Infrastructure Programs
(ORIP) through grant 8R01-OD011095-21, NSF grants DMS-1122290 and
PHY-0551164, and the Los Alamos National Laboratory LDRD Program. The
funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.
NR 67
TC 43
Z9 43
U1 1
U2 18
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1553-7358
J9 PLOS COMPUT BIOL
JI PLoS Comput. Biol.
PD JUN
PY 2012
VL 8
IS 6
AR e1002588
DI 10.1371/journal.pcbi.1002588
PG 13
WC Biochemical Research Methods; Mathematical & Computational Biology
SC Biochemistry & Molecular Biology; Mathematical & Computational Biology
GA 968GM
UT WOS:000305965300045
PM 22761567
ER
PT J
AU Blanton, T
Havrilla, G
AF Blanton, Tom
Havrilla, George
TI Sixtieth Denver X-ray Conference and selected papers for the special
June Powder Diffraction issue
SO POWDER DIFFRACTION
LA English
DT Editorial Material
C1 [Blanton, Tom] Eastman Kodak Co, Rochester, NY 14650 USA.
[Havrilla, George] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Blanton, T (reprint author), Eastman Kodak Co, Rochester, NY 14650 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU J C P D S-INT CENTRE DIFFRACTION DATA
PI NEWTOWN SQ
PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA
SN 0885-7156
J9 POWDER DIFFR
JI Powder Diffr.
PD JUN
PY 2012
VL 27
IS 2
SI SI
BP 70
EP 70
PG 1
WC Materials Science, Characterization & Testing
SC Materials Science
GA 969AQ
UT WOS:000306028500002
ER
PT J
AU Schmeling, M
Burnett, DS
Jurewicz, AJG
Veryovkin, IV
AF Schmeling, Martina
Burnett, Donald S.
Jurewicz, Amy J. G.
Veryovkin, Igor V.
TI Steps toward accurate large-area analyses of Genesis solar wind samples:
evaluation of surface cleaning methods using total reflection X-ray
fluorescence spectrometry
SO POWDER DIFFRACTION
LA English
DT Article; Proceedings Paper
CT 60th Denver X-ray Conference (DXC)
CY AUG 01-05, 2011
CL Colorado Springs, CO
DE total reflection X-ray fluorescence spectrometry; genesis solar samples
AB Total reflection X-ray fluorescence spectrometry (TXRF) was used to analyze residual surface contamination on Genesis solar wind samples and to evaluate different cleaning methods. To gauge the suitability of a cleaning method, two samples were analyzed following cleaning by lab-based TXRF. The analysis comprised an overview and a crude manual mapping of the samples by orienting them with respect to the incident X-ray beam in such a way that different regions were covered. The results show that cleaning with concentrated hydrochloric acid and a combination of hydrochloric acid and hydrofluoric acid decreased persistent inorganic contaminants substantially on one sample. The application of CO2 snow for surface cleaning tested on the other sample appears to be effective in removing one persistent Genesis contaminant, namely germanium. Unfortunately, the TXRF analysis results of the second sample were impacted by relatively high background contamination. This was mostly due to the relatively small sample size and that the solar wind collector was already mounted with silver glue for resonance ion mass spectrometry (RIMS) on an aluminium stub. Further studies are planned to eliminate this problem. In an effort to identify the location of very persistent contaminants, selected samples were also subjected to environmental scanning electron microscopy. The results showed excellent agreement with TXRF analysis. (C) 2012 International Centre for Diffraction Data. [doi:10.1017/S0885715612000346]
C1 [Schmeling, Martina] Loyola Univ, Chicago, IL 60660 USA.
[Burnett, Donald S.] CALTECH, Pasadena, CA 91125 USA.
[Jurewicz, Amy J. G.] Arizona State Univ, Tempe, AZ 85287 USA.
[Veryovkin, Igor V.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Schmeling, M (reprint author), Loyola Univ, Chicago, IL 60660 USA.
EM mschmel@luc.edu
FU NASA/JPL [1369203]; NASA [NNX10AH05G, NNH09AM48I]; UChicago Argonne, LLC
[DE-AC02-06CH11357]
FX This work was supported by NASA/JPL grant 1369203 and NASA grant
NNX10AH05G. The work of I.V.V was supported by NASA through grant
NNH09AM48I, and by UChicago Argonne, LLC, under contract No.
DE-AC02-06CH11357. We thank C. E. Tripa for his help in preparing the
CO2 snow cleaned samples.
NR 20
TC 1
Z9 1
U1 0
U2 8
PU J C P D S-INT CENTRE DIFFRACTION DATA
PI NEWTOWN SQ
PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA
SN 0885-7156
EI 1945-7413
J9 POWDER DIFFR
JI Powder Diffr.
PD JUN
PY 2012
VL 27
IS 2
SI SI
BP 75
EP 78
DI 10.1017/S0885715612000346
PG 4
WC Materials Science, Characterization & Testing
SC Materials Science
GA 969AQ
UT WOS:000306028500004
ER
PT J
AU Haugh, MJ
Charest, MR
Ross, PW
Lee, JJ
Schneider, MB
Palmer, NE
Teruya, AT
AF Haugh, Michael J.
Charest, Michael R.
Ross, Patrick W.
Lee, Joshua J.
Schneider, Marilyn B.
Palmer, Nathan E.
Teruya, Alan T.
TI Calibration of X-ray imaging devices for accurate intensity measurement
SO POWDER DIFFRACTION
LA English
DT Article; Proceedings Paper
CT 60th Denver X-ray Conference (DXC)
CY AUG 01-05, 2011
CL Colorado Springs, CO
DE X-ray imaging devices; intensity measurement
AB National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is a key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) was used to calibrate the silicon photodiodes over the energy range from 50 to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. The X-ray energies ranged from 720 to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back and front illuminated CCD (charge-coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID camera types differ significantly in some of their properties that affect the accuracy of the X-ray intensity measurements. All the cameras discussed here are silicon based. The measurements of the quantum efficiency variation with the X-ray energy are compared to the models for the sensor structure. The cameras that are not back-thinned are compared to those that are. (C) 2012 International Centre for Diffraction Data. [doi:10.1017/S0885715612000413]
C1 [Haugh, Michael J.; Charest, Michael R.; Ross, Patrick W.; Lee, Joshua J.] Natl Secur Technol LLC, Livermore, CA 94550 USA.
[Schneider, Marilyn B.; Palmer, Nathan E.; Teruya, Alan T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Haugh, MJ (reprint author), Natl Secur Technol LLC, 161 S Vasco Rd,Suite A, Livermore, CA 94550 USA.
EM haughmj@nv.doe.gov
FU U.S. Department of Energy [DE-AC52-06NA25946]
FX This manuscript has been authored by National Security Technologies,
LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of
Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes. DOE/NV/25946-1435.
NR 9
TC 2
Z9 2
U1 1
U2 8
PU J C P D S-INT CENTRE DIFFRACTION DATA
PI NEWTOWN SQ
PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA
SN 0885-7156
EI 1945-7413
J9 POWDER DIFFR
JI Powder Diffr.
PD JUN
PY 2012
VL 27
IS 2
SI SI
BP 79
EP 86
DI 10.1017/S0885715612000413
PG 8
WC Materials Science, Characterization & Testing
SC Materials Science
GA 969AQ
UT WOS:000306028500005
ER
PT J
AU Rodriguez, MA
Kotula, PG
Griego, JJM
Heath, JE
Bauer, SJ
Wesolowski, DE
AF Rodriguez, Mark A.
Kotula, Paul G.
Griego, James J. M.
Heath, Jason E.
Bauer, Stephen J.
Wesolowski, Daniel E.
TI Multivariate statistical analysis of micro-X-ray fluorescence spectral
images
SO POWDER DIFFRACTION
LA English
DT Article; Proceedings Paper
CT 60th Denver X-ray Conference (DXC)
CY AUG 01-05, 2011
CL Colorado Springs, CO
DE multivariate; statistical analysis; micro-XRF; CAES
ID SIGNAL EXTRACTION; BATTERIES
AB Multivariate statistical analysis (MSA) is applied to the extraction of chemically relevant signals acquired with a micro-X-ray fluorescence (mu-XRF) mapping (full-spectral imaging) system. The separation of components into individual histograms enables separation of overlapping peaks, which is useful in qualitatively determining the presence of chemical species that have overlapping emission lines, and holds potential for quantitative analysis of constituent phases via these same histograms. The usefulness of MSA for mu-XRF analysis is demonstrated by application to a geological rock core obtained from a subsurface compressed air energy storage (CAES) site. Coupling of the mu-XRF results to those of quantitative powder X-ray diffraction analysis enables improved detection of trace phases present in the geological specimen. The MSA indicates that the spatial distribution of pyrite, a potentially reactive phase by oxidation, has low concentration and thus minimal impact on CAES operations. (C) International Centre for Diffraction Data [doi:10.1017/S0885715612000243]
C1 [Rodriguez, Mark A.; Kotula, Paul G.; Griego, James J. M.; Heath, Jason E.; Bauer, Stephen J.; Wesolowski, Daniel E.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Rodriguez, MA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM marodri@sandia.gov
RI Kotula, Paul/A-7657-2011
OI Kotula, Paul/0000-0002-7521-2759
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX Sandia is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the United States Department of Energy's National Nuclear Security
Administration, under contract DE-AC04-94AL85000.
NR 11
TC 3
Z9 3
U1 0
U2 11
PU J C P D S-INT CENTRE DIFFRACTION DATA
PI NEWTOWN SQ
PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA
SN 0885-7156
EI 1945-7413
J9 POWDER DIFFR
JI Powder Diffr.
PD JUN
PY 2012
VL 27
IS 2
SI SI
BP 108
EP 113
DI 10.1017/S0885715612000243
PG 6
WC Materials Science, Characterization & Testing
SC Materials Science
GA 969AQ
UT WOS:000306028500010
ER
PT J
AU Coker, EN
Rodriguez, MA
Ambrosini, A
Miller, JE
Stechel, EB
AF Coker, Eric N.
Rodriguez, Mark A.
Ambrosini, Andrea
Miller, James E.
Stechel, Ellen B.
TI Using in-situ techniques to probe high-temperature reactions:
thermochemical cycles for the production of synthetic fuels from CO2 and
water
SO POWDER DIFFRACTION
LA English
DT Article; Proceedings Paper
CT 60th Denver X-ray Conference (DXC)
CY AUG 01-05, 2011
CL Colorado Springs, CO
DE in situ high-temperature XRD; TGA; ferrite; yttria-stabilized zirconia;
synthetic fuel
ID YTTRIA-STABILIZED ZIRCONIA; HYDROGEN-PRODUCTION; SOLAR HEAT; OXIDE;
SYSTEM; PHASE; ZRO2; ZRO2-FE2O3; ENERGY; OXYGEN
AB Ferrites are promising materials for enabling solar-thermochemical cycles. Such cycles utilize solar-thermal energy to reduce the metal oxide, which is then re-oxidized by H2O or CO2, producing H-2 or CO, respectively. Mixing ferrites with zirconia or yttria-stabilized zirconia (YSZ) greatly improves their cyclabilities. In order to understand this system, we have studied the behavior of iron oxide/8YSZ (8 mol-% Y2O3 in ZrO2) using in situ X-ray diffraction and thermogravimetric analyses at temperatures up to 1500 degrees C and under controlled atmosphere. The solubility of iron oxide in 8YSZ measured by XRD at room temperature was 9.4 mol-% Fe. The solubility increased to at least 10.4 mol-% Fe when heated between 800 and 1000 degrees C under inert atmosphere. Furthermore iron was found to migrate in and out of the 8YSZ phase as the temperature and oxidation state of the iron changed. In samples containing >9.4 mol-% Fe, stepwise heating to 1400 degrees C under helium caused reduction of Fe2O3 to Fe3O4 to FeO. Exposure of the FeO-containing material to CO2 at 1100 degrees C re-oxidized FeO to Fe3O4 with evolution of CO. Thermogravimetric analysis during thermo-chemical cycling of materials with a range of iron contents showed that samples with mostly dissolved iron utilized a greater proportion of the iron atoms present than did samples possessing a greater fraction of un-dissolved iron oxides. (C) International Centre for Diffraction Data [doi:10.1017/S0885715612000255]
C1 [Coker, Eric N.; Rodriguez, Mark A.; Ambrosini, Andrea; Miller, James E.; Stechel, Ellen B.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Coker, EN (reprint author), Sandia Natl Labs, POB 5800,MS 1349, Albuquerque, NM 87185 USA.
EM encoker@sandia.gov
RI Miller, James/C-1128-2011
OI Miller, James/0000-0001-6811-6948
FU Laboratory Directed Research and Development program at Sandia National
Laboratories; United States Department of Energy's National Nuclear
Security Administration [DE-AC04-94AL85000]
FX This work was supported by the Laboratory Directed Research and
Development program at Sandia National Laboratories, in the form of a
Grand Challenge project entitled "Reimagining Liquid Transportation
Fuels: Sunshine to Petrol," Ellen Stechel, program manager. Sandia is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy's National
Nuclear Security Administration under contract DE-AC04-94AL85000. We
thank James NMI Griego and Jonathan Torres for help with HT-XRD data
collection and analysis.
NR 33
TC 2
Z9 2
U1 0
U2 22
PU J C P D S-INT CENTRE DIFFRACTION DATA
PI NEWTOWN SQ
PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA
SN 0885-7156
EI 1945-7413
J9 POWDER DIFFR
JI Powder Diffr.
PD JUN
PY 2012
VL 27
IS 2
SI SI
BP 117
EP 125
DI 10.1017/S0885715612000255
PG 9
WC Materials Science, Characterization & Testing
SC Materials Science
GA 969AQ
UT WOS:000306028500012
ER
PT J
AU Karadzic, I
Maupin-Furlow, J
Humbard, M
Prunetti, L
Singh, P
Goodlett, DR
AF Karadzic, Ivanka
Maupin-Furlow, Julie
Humbard, Matthew
Prunetti, Laurence
Singh, Pragya
Goodlett, David R.
TI Chemical cross-linking, mass spectrometry, and in silico modeling of
proteasomal 20S core particles of the haloarchaeon Haloferax volcanii
SO PROTEOMICS
LA English
DT Article
DE Cross-linking; Haloarchaea; Microbiology; Modeling; Proteasomes; Tandem
mass spectrometry
ID PROTEIN-STRUCTURE; STRESS RESPONSES; RESOLUTION; GROWTH
AB A fast and accurate method is reported to generate distance constraints between juxtaposited amino acids and to validate molecular models of halophilic protein complexes. Proteasomal 20S core particles (CPs) from the haloarchaeon Haloferax volcanii were used to investigate the quaternary structure of halophilic proteins based on their symmetrical, yet distinct subunit composition. Proteasomal CPs are cylindrical barrel-like structures of four-stacked homoheptameric rings of a- and beta-type subunits organized in a7 beta 7 beta 7a7 stoichiometry. The CPs of H. volcanii are formed from a single type of beta subunit associated with a1 and/or a2 subunits. Tandem affinity chromatography and new genetic constructs were used to separately isolate a17 beta 7 beta 7a17 and a27 beta 7 beta 7a27 CPs from H. volcanii. Chemically cross-linked peptides of the H. volcanii CPs were analyzed by high-performance mass spectrometry and an open modification search strategy to first generate and then to interpret the resulting tandem mass spectrometric data. Distance constraints obtained by chemical cross-linking mass spectrometry, together with the available structural data of nonhalophilic CPs, facilitated the selection of accurate models of H. volcanii proteasomal CPs composed of a1-, a2-, and beta-homoheptameric rings from several different possible structures from Protein Data Bank.
C1 [Maupin-Furlow, Julie; Humbard, Matthew; Prunetti, Laurence] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA.
[Karadzic, Ivanka] Univ Belgrade, Sch Med, Dept Chem, Belgrade, Serbia.
[Singh, Pragya] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Goodlett, David R.] Univ Washington, Sch Pharm, Dept Med Chem, Seattle, WA 98195 USA.
RP Maupin-Furlow, J (reprint author), Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA.
EM jmaupin@ufl.edu; goodlett@uw.edu
FU NIH [R01 GM057498]; DOE [DE-FG02-05ER15650, 1S10RR023044-01,
1U54AI57141-01]; Fulbright Association; MNRS-III [43004]
FX This work was funded in part by NIH R01 GM057498 and DOE
DE-FG02-05ER15650 to J. M. F.; 1S10RR023044-01 and 1U54AI57141-01 to D.
R. G.; and Fulbright Association and MNRS-III 43004 to I. M. K. Authors
thank Dr. Priska von Haller (Proteomics Resource, University of
Washington) for her assistance with mass spectrometry analysis. Special
thanks to Yi-Hsuan Tsai (University of North Carolina) for assistance
with bioinformatics and Branko Drakulic (University of Belgrade) for
homology modeling.
NR 28
TC 9
Z9 9
U1 0
U2 7
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1615-9853
J9 PROTEOMICS
JI Proteomics
PD JUN
PY 2012
VL 12
IS 11
BP 1806
EP 1814
DI 10.1002/pmic.201100260
PG 9
WC Biochemical Research Methods; Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 965CE
UT WOS:000305742900008
PM 22623373
ER
PT J
AU Ren, HY
Halvorsen, MB
Deng, ZD
Carlson, TJ
AF Ren, Huiying
Halvorsen, Michele B.
Deng, Zhiqun Daniel
Carlson, Thomas J.
TI Aquatic Acoustic Metrics Interface Utility for Underwater Sound
Monitoring and Analysis
SO SENSORS
LA English
DT Article
DE underwater sound monitoring; software; noise recording; audiograms;
sound exposure level
ID RECORDING DEVICE; HIGH-INTENSITY; HEARING; FISH; ENVIRONMENT; DESIGN;
IMPLEMENTATION; EXPLOSIONS; SYSTEM
AB Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. In this paper, we provide a detailed description of a new software package, the Aquatic Acoustic Metrics Interface (AAMI), specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame. The features of the AAMI software are discussed, and several case studies are presented to illustrate its functionality.
C1 [Halvorsen, Michele B.; Carlson, Thomas J.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA.
[Ren, Huiying; Deng, Zhiqun Daniel] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA.
RP Halvorsen, MB (reprint author), Pacific NW Natl Lab, Marine Sci Lab, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA.
EM Huiying.ren@pnnl.gov; Michele.Halvorsen@pnnl.gov; Zhiqun.deng@pnnl.gov;
Thomas.carlson@pnnl.gov
RI Deng, Daniel/A-9536-2011
OI Deng, Daniel/0000-0002-8300-8766
FU U.S. Department of Energy Office of Energy Efficiency and Renewable
Energy Wind & Water Power Program
FX The work described in this article was funded by the U.S. Department of
Energy Office of Energy Efficiency and Renewable Energy Wind & Water
Power Program. The study was conducted at Pacific Northwest National
Laboratory (PNNL) in Richland, Washington, which is operated by Battelle
for the U.S. Department of Energy. The authors are grateful for the
contributions and input of Brian Polagye of University of Washington and
many PNNL staff, including Andrea Copping, Andrea Currie, Jayson
Martinez, Josh Myers, Jeff Ward, Mark Weiland, and Christa Woodley.
NR 37
TC 2
Z9 3
U1 2
U2 28
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 1424-8220
J9 SENSORS-BASEL
JI Sensors
PD JUN
PY 2012
VL 12
IS 6
BP 7438
EP 7450
DI 10.3390/s120607438
PG 13
WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
SC Chemistry; Electrochemistry; Instruments & Instrumentation
GA 965XR
UT WOS:000305801400033
PM 22969353
ER
PT J
AU Carr, JA
Nalwa, KS
Mahadevapuram, R
Chen, YQ
Anderegg, J
Chaudhary, S
AF Carr, John A.
Nalwa, Kanwar S.
Mahadevapuram, Rakesh
Chen, Yuqing
Anderegg, James
Chaudhary, Sumit
TI Plastic-Syringe Induced Silicone Contamination in Organic Photovoltaic
Fabrication: Implications for Small-Volume Additives
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE organic; photovoltaic; solar; polymer; silicone; plastic; PDMS; P3HT
ID POLYMER SOLAR-CELLS; PHASE-SEPARATION; PERFORMANCE; EFFICIENCY;
POLY(3-HEXYLTHIOPHENE); POLYDIMETHYLSILOXANE; HETEROJUNCTIONS;
ENHANCEMENT
AB Herein, the implications of silicone contamination found in solution-processed conjugated polymer solar cells are explored. Similar to a previous work based on molecular cells, we find this contamination as a result of the use of plastic syringes during fabrication. However, in contrast to the molecular case, we find that glass-syringe fabricated devices give superior performance than plastic-syringe fabricated devices in poly(3-hexylthiophene)-based cells. We find that the unintentional silicone addition alters the solution's wettability, which translates to a thinner, less absorbent film on spinning. With many groups studying the effects of small-volume additives, this work should be closely considered as many of these additives may also directly alter the solutions' wettability, or the amount of silicone dissolved off the plastic syringes, or both. Thereby, film thickness, which generally is not reported in detail, can vary significantly from device to device.
C1 [Carr, John A.; Chen, Yuqing; Chaudhary, Sumit] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA.
[Nalwa, Kanwar S.; Mahadevapuram, Rakesh; Chaudhary, Sumit] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
[Anderegg, James] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA.
RP Chaudhary, S (reprint author), Iowa State Univ, Dept Elect & Comp Engn, 2124 Coover Hall, Ames, IA 50011 USA.
EM sumitc@iastate.edu
FU National Science Foundation [ECCS - 1055930]; Iowa State University
[DE-AC02-07CH11358]; U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering
FX We thank National Science Foundation (ECCS - 1055930) for financial
support. XPS studies were carried out at the Ames Laboratory, which is
operated for the U.S. Department of Energy by Iowa State University
under Contract No. DE-AC02-07CH11358. These studies were supported by
the U.S. Department of Energy, Office of Basic Energy Sciences, Division
of Materials Sciences and Engineering.
NR 28
TC 11
Z9 11
U1 0
U2 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD JUN
PY 2012
VL 4
IS 6
BP 2831
EP 2835
DI 10.1021/am3001677
PG 5
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 964SL
UT WOS:000305716900001
PM 22587913
ER
PT J
AU Zhang, HX
Bhat, VV
Gallego, NC
Contescu, CI
AF Zhang, Hongxin
Bhat, Vinay V.
Gallego, Nidia C.
Contescu, Cristian I.
TI Thermal Treatment Effects on Charge Storage Performance of
Graphene-Based Materials for Supercapacitors
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE graphene-based materials; supercapacitor; thermal treatment; surface
modification
ID DOUBLE-LAYER CAPACITANCE; CARBIDE-DERIVED CARBONS; ELECTROCHEMICAL
CAPACITORS; ELECTRODE MATERIALS; NANOPOROUS CARBON; FUNCTIONAL-GROUPS;
GRAPHITE OXIDES; SURFACE OXIDES; ADSORPTION; CHEMISTRY
AB Graphene materials were synthesized by reduction of exfoliated graphite oxide and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction pattern analysis, and nitrogen adsorption/desorption studies. RGO forms a continuous network of crumpled sheets, which consist of large amounts of few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. These results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving its specific capacitance, energy, and power density.
C1 [Zhang, Hongxin; Bhat, Vinay V.; Gallego, Nidia C.; Contescu, Cristian I.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Contescu, CI (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008,MS-6087, Oak Ridge, TN 37831 USA.
EM contescuci@ornl.gov
OI Contescu, Cristian/0000-0002-7450-3722; Gallego,
Nidia/0000-0002-8252-0194
FU Oak Ridge National Laboratory; Oak Ridge National Laboratory by the
Division of Scientific User Facilities, U.S. Department of Energy;
ORISE/ORNL postdoctoral program
FX This research was supported by the Laboratory Director Research and
Development Program of Oak Ridge National Laboratory, managed by U.T.
Battelle LLC for the US Department of Energy. SEM and X-ray diffraction
were performed at the Shared Research Equipment (SHaRE) user facility,
and Raman and AFM characterization were performed at the Center for
Nanophase Materials Science (CNMS), both of which are supported at Oak
Ridge National Laboratory by the Division of Scientific User Facilities,
U.S. Department of Energy. The authors acknowledge Mr. Jimmy Zahra for
the kind assistance during galvanostatic charge-discharge, CV, and EIS
measurements. HZ acknowledges support from ORISE/ORNL postdoctoral
program.
NR 52
TC 24
Z9 24
U1 1
U2 55
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD JUN
PY 2012
VL 4
IS 6
BP 3239
EP 3246
DI 10.1021/am300593k
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 964SL
UT WOS:000305716900058
PM 22680779
ER
PT J
AU She, XY
Kwak, JH
Sun, JM
Hu, JZ
Hu, MY
Wang, CM
Peden, CHF
Wang, Y
AF She, Xiaoyan
Kwak, Ja Hun
Sun, Junming
Hu, Jianzhi
Hu, Mary Y.
Wang, Chongmin
Peden, Charles H. F.
Wang, Yong
TI Highly Dispersed and Active ReOx on Alumina-Modified SBA-15 Silica for
2-Butanol Dehydration
SO ACS CATALYSIS
LA English
DT Article
DE rhenia catalyst; catalyst stability; 2-butanol dehydration; SBA-15; in
situ UV-vis (DRS); aberration-corrected TEM; Al-27 MAS NMR
ID RHENIUM OXIDE CATALYSTS; CARBON-SUPPORTED PLATINUM; MESOPOROUS SILICA;
TUNGSTEN-OXIDE; OLEFIN METATHESIS; SELECTIVE OXIDATION;
RAMAN-SPECTROSCOPY; SYNTHESIS GAS; SURFACE; HYDROGENATION
AB SBA-15 silica supported rhenium catalysts were synthesized using solution-based atomic layer deposition method, and their activity and stability were studied in the acid-catalyzed 2-butanol dehydration. We find that ReOx/SBA-15 exhibited an extremely high initial activity but a fast deactivation for 2-butanol dehydration at 90-105 degrees C. Fast deactivation was likely due to the sintering, sublimation, and reduction of rhenia as confirmed by TEM, elemental analysis, and in situ UV-vis (DRS) measurements. To overcome these issues, ReOx/AlOx/SBA-15 catalysts with significantly improved stability were prepared by first modifying the surface identity of SBA-15 with alumina followed by dispersion of rhenia using atomic layer deposition. The AlOx phase stabilizes the dispersion of small and uniform rhenia clusters (<2 nm) as as confirmed by TEM, STEM, and UV-vis (DRS) characterizations. Additional Al-27 MAS NMR characterization revealed that modification of the SBA-15 surface with alumina introduces a strong interaction between rhenia and alumina, which consequently improves the stability of supported rhenia catalysts by suppressing the sintering, sublimation, and reduction of rhenia albeit at a moderately reduced initial catalytic dehydration activity.
C1 [She, Xiaoyan; Kwak, Ja Hun; Sun, Junming; Hu, Jianzhi; Hu, Mary Y.; Wang, Chongmin; Peden, Charles H. F.; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
RP Wang, Y (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
EM yongwang@pnl.gov
RI Sun, Junming/B-3019-2011; Wang, Yong/C-2344-2013; Kwak, Ja
Hun/J-4894-2014; Hu, Jian Zhi/F-7126-2012;
OI Sun, Junming/0000-0002-0071-9635; Peden, Charles/0000-0001-6754-9928
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences and Biosciences; DOE Office
of Biological and Environmental Research; U.S. Department of Energy,
Office of Energy Efficiency and Renewable Energy
FX This work was supported by U.S. Department of Energy (DOE), Office of
Basic Energy Sciences, Division of Chemical Sciences, Geosciences and
Biosciences. The research was performed in the Environmental Molecular
Sciences Laboratory, a national scientific user facility sponsored by
the DOE Office of Biological and Environmental Research, and located at
Pacific Northwest National Laboratory. PNNL is operated for DOE by
Battelle. J.S. thanks Liang Zhang (PNNL) for the HR-STEM images recorded
at Oak Ridge National Laboratory's High Temperature Materials
Laboratory, sponsored by the U.S. Department of Energy, Office of Energy
Efficiency and Renewable Energy, Vehicle Technologies Program.
NR 43
TC 6
Z9 6
U1 1
U2 70
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD JUN
PY 2012
VL 2
IS 6
BP 1020
EP 1026
DI 10.1021/cs2006444
PG 7
WC Chemistry, Physical
SC Chemistry
GA 950WR
UT WOS:000304682600015
ER
PT J
AU Xie, C
Chen, YS
Engelhard, MH
Song, CS
AF Xie, Chao
Chen, Yongsheng
Engelhard, Mark H.
Song, Chunshan
TI Comparative Study on the Sulfur Tolerance and Carbon Resistance of
Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon
Fuel
SO ACS CATALYSIS
LA English
DT Article
DE noble metal catalyst; sulfur poisoning; carbon deposition; hydrocarbon
reforming; deactivation; hydrogen; XANES
ID RAY-ABSORPTION-SPECTROSCOPY; CELL APPLICATIONS; NI CATALYSTS; USY
ZEOLITE; PALLADIUM CATALYST; RH/AL2O3 CATALYST; RH/CEO2 CATALYST;
LOW-TEMPERATURE; OXIDE-SUPPORT; RH CATALYSTS
AB This work was conducted to clarify the influence of the type of metal and support on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbons. Al2O3-supported noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalysts on different supports (Al2O3, CeO2, SiO2, and MgO), and Pt catalysts supported on CeO2 and Al2O3, were examined for steam reforming of a liquid hydrocarbon fuel (Norpar13 from Exxon Mobil) at 800 degrees C for 55 h. The results indicate that (1) Rh/Al2O3 shows higher sulfur tolerance than the Ru, Pt, and Pd catalysts on the same support; (2) both Al2O3 and CeO2 are promising supports for Rh catalyst to process sulfur-containing hydrocarbons; and (3) Pt/CeO2 exhibits better catalytic performance than Pt/Al2O3 in the reaction with sulfur. Transmission electron microscopy (TEM) results demonstrate that the metal particles in Rh/Al2O3 were better dispersed (mostly in 1-3 nm) compared with the other catalysts after reforming the sulfur-containing feed. As revealed by X-ray photoelectron spectroscopy (XPS), the binding energy of Rh 3d for Rh/Al2O3 is notably higher than that for Rh/CeO2, implying the formation of electron-deficient Rh particles in the former. The strong sulfur tolerance of Rh/Al2O3 may be related to the formation of well-dispersed electron-deficient Rh particles on the Al2O3 support. Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy illustrates the preferential formation of sulfonate and sulfate on Rh/Al2O3, which may be beneficial for improving its sulfur tolerance as their oxygen-shielded sulfur structure may hinder direct Rh S interaction. Because of its strong sulfur tolerance, the carbon deposition on Rh/Al2O3 was significantly lower than that on the Al2O3-supported Ru, Pt, and Pd catalysts after the reaction with sulfur. The superior catalytic performance of CeO2-supported Rh and Pt catalysts in the presence of sulfur can be ascribed mainly to the promotion effect of CeO2 on carbon gasification, leading to much lower carbon deposition compared with that for the Rh/Al2O3, Rh/MgO, Rh/SiO2, and Pt/Al2O3 catalysts.
C1 [Xie, Chao; Chen, Yongsheng; Song, Chunshan] Penn State Univ, Clean Fuels & Catalysis Program, EMS Energy Inst, University Pk, PA 16802 USA.
[Xie, Chao] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Chen, Yongsheng; Song, Chunshan] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA.
[Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Song, CS (reprint author), Penn State Univ, Clean Fuels & Catalysis Program, EMS Energy Inst, 209 Acad Projects Bldg, University Pk, PA 16802 USA.
EM csong@psu.edu
RI Song, Chunshan/B-3524-2008; Engelhard, Mark/F-1317-2010; Xie,
Chao/J-3681-2014; Chen, Yongsheng/P-4800-2014;
OI Song, Chunshan/0000-0003-2344-9911; Engelhard, Mark/0000-0002-5543-0812
FU U.S. Department of Energy National Energy Technology Laboratory
[DE-NT0004396]; U.S. Office of Naval Research through ONR NAVSEA
[N00014-06-1-0320]; Office of Basic Energy Sciences of the U.S.
Department of Energy; National Science Foundation Division of Materials
Research; Office of Basic Energy Sciences of the U.S. Department of
Energy [W-31-109-Eng-38]
FX This work was supported in part by U.S. Department of Energy National
Energy Technology Laboratory under Grant DE-NT0004396 and by U.S. Office
of Naval Research through an ONR NAVSEA Grant N00014-06-1-0320. Sulfur
XANES work at the CMC Beamline is supported in part by the Office of
Basic Energy Sciences of the U.S. Department of Energy and by the
National Science Foundation Division of Materials Research. Use of the
Advanced Photon Source is supported by the Office of Basic Energy
Sciences of the U.S. Department of Energy under Contract No.
W-31-109-Eng-38. The Environmental Molecular Sciences Laboratory (EMSL),
a national scientific user facility at Pacific Northwest National
Laboratory (PNNL), Richland, WA, is gratefully acknowledged for XPS
measurements under general user proposal 37791.
NR 73
TC 16
Z9 16
U1 6
U2 78
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD JUN
PY 2012
VL 2
IS 6
BP 1127
EP 1137
DI 10.1021/cs200695t
PG 11
WC Chemistry, Physical
SC Chemistry
GA 950WR
UT WOS:000304682600027
ER
PT J
AU Singh, JA
Overbury, SH
Dudney, NJ
Li, MJ
Veith, GM
AF Singh, Joseph A.
Overbury, Steven H.
Dudney, Nancy J.
Li, Meijun
Veith, Gabriel M.
TI Gold Nanoparticles Supported on Carbon Nitride: Influence of Surface
Hydroxyls on Low Temperature Carbon Monoxide Oxidation
SO ACS CATALYSIS
LA English
DT Article
DE gold; CO oxidation; carbon nitride; hydroxyls; sputtering
ID RUTILE TIO2 110; CO OXIDATION; CATALYTIC-ACTIVITY; THERMAL-STABILITY;
AU/TIO2 CATALYST; AU NANOPARTICLES; HYDRATION WATER; VISIBLE-LIGHT;
CLUSTERS; SPECTROSCOPY
AB This paper reports the synthesis of 2.5 am gold clusters on the oxygen free and chemically labile support carbon nitride (C3N4). Despite having small particle sizes and high enough water partial pressure these Au/C3N4 catalysts are inactive for the gas phase and liquid phase oxidation of carbon monoxide. The reason for the lack of activity is attributed to the lack of surface -OH groups on the C3N4. These OH groups are argued to be responsible for the activation of CO in the oxidation of CO. The importance of basic -OH groups explains the well documented dependence of support isoelectric point versus catalytic activity.
C1 [Singh, Joseph A.; Dudney, Nancy J.; Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Overbury, Steven H.; Li, Meijun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Veith, GM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM veithgm@ornl.gov
RI Overbury, Steven/C-5108-2016; Dudney, Nancy/I-6361-2016;
OI Overbury, Steven/0000-0002-5137-3961; Dudney, Nancy/0000-0001-7729-6178;
Singh, Joseph/0000-0001-5249-2121
FU Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy; Division of Chemical Sciences, Geosciences,
and Biosciences, Office of Basic Energy Sciences, U.S. Department of
Energy; Materials Sciences and Engineering Division, Office of Basic
Energy Sciences, U.S. Department of Energy; UT-Battelle, LLC
FX A portion of this research was done using facilities at Oak Ridge
National Laboratory's Center for Nanophase Materials Sciences (STEM) and
at the SHaRE User Facility (TEM), which are sponsored by the Scientific
User Facilities Division, Office of Basic Energy Sciences, U.S.
Department of Energy. Research contributions were sponsored by the
Division of Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences, U.S. Department of Energy (S.H.O. and M.L.) and
by the Materials Sciences and Engineering Division, Office of Basic
Energy Sciences, U.S. Department of Energy under contract with
UT-Battelle, LLC (JA.S., N.J.D., G.M.V.).
NR 65
TC 59
Z9 60
U1 13
U2 195
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD JUN
PY 2012
VL 2
IS 6
BP 1138
EP 1146
DI 10.1021/cs3001094
PG 9
WC Chemistry, Physical
SC Chemistry
GA 950WR
UT WOS:000304682600028
ER
PT J
AU Rodriguez, JA
Campbell, CT
AF Rodriguez, Jose A.
Campbell, Charles T.
TI Professor D. Wayne Goodman, 1945-2012
SO ACS CATALYSIS
LA English
DT Editorial Material
C1 [Rodriguez, Jose A.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Campbell, Charles T.] Univ Washington, Seattle, WA 98195 USA.
RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
NR 0
TC 0
Z9 0
U1 0
U2 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD JUN
PY 2012
VL 2
IS 6
BP 1219
EP 1220
DI 10.1021/cs300285j
PG 2
WC Chemistry, Physical
SC Chemistry
GA 950WR
UT WOS:000304682600036
ER
PT J
AU Du, WX
Deskins, NA
Su, D
Teng, XW
AF Du, Wenxin
Deskins, Nathaniel A.
Su, Dong
Teng, Xiaowei
TI Iridium-Ruthenium Alloyed Nanoparticles for the Ethanol Oxidation Fuel
Cell Reactions
SO ACS CATALYSIS
LA English
DT Article
DE Ir-Ru nanoparticle; alloy; ethanol oxidation reaction; DFT calculations
ID PT-RU ALLOYS; METHANOL ELECTROOXIDATION; QUANTITATIVE DEMS; ANODE
CATALYSTS; ELECTROCATALYSTS; ELECTRODES; REDUCTION; PLATINUM; TECHNOLOGY
AB In this study, carbon supported Ir-Ru nanoparticles with average sizes ranging from 2.9 to 3.7 nm were prepared using a polyol method. The combined character- so ization techniques, that is, scanning transmission electron 7F. 40 microscopy equipped with electron energy loss spectroscopy, 2 high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, were used to determine an Ir-Ru alloy nanostructure. Both cyclic voltammetry and chronoamperometry (CA) results demonstrate that Ir77Ru23/C bears superior catalytic activities for the ethanol oxidation reaction compared to Ir/C and commercial Pt/C catalysts. In particular, the Ir77Ru23/C catalyst shows more than 21 times higher mass current density than that of Pt/C after 2 h reaction at a potential of 0.2 V vs Ag/AgCl in CA measurement. Density functional theory simulations also demonstrate the superiority of Ir-Ru alloys compared to Ir for the ethanol oxidation reaction.
C1 [Du, Wenxin; Teng, Xiaowei] Univ New Hampshire, Dept Chem Engn, Durham, NH 03824 USA.
[Deskins, Nathaniel A.] Worcester Polytech Inst, Dept Chem Engn, Worcester, MA 01609 USA.
[Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Teng, XW (reprint author), Univ New Hampshire, Dept Chem Engn, Durham, NH 03824 USA.
EM xw.teng@unh.edu
RI Deskins, Nathaniel/H-3954-2012; Su, Dong/A-8233-2013; Du,
Wenxin/P-9195-2014
OI Su, Dong/0000-0002-1921-6683;
FU University of New Hampshire; U.S. Department of Energy, Office of Basic
Energy Sciences [DE-AC02-98CH10886]
FX This work is supported in part by the University of New Hampshire (X.T.,
W.D.). Research carried out in part at the Center for Functional
Nanomaterials, Brookhaven National Laboratory, which is supported by the
U.S. Department of Energy, Office of Basic Energy Sciences, under
Contract No. DE-AC02-98CH10886.
NR 39
TC 13
Z9 14
U1 7
U2 93
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD JUN
PY 2012
VL 2
IS 6
BP 1226
EP 1231
DI 10.1021/cs3002308
PG 6
WC Chemistry, Physical
SC Chemistry
GA 950WR
UT WOS:000304682600038
ER
PT J
AU Chen, YS
Xu, YQ
Perry, K
Sokolov, AP
More, K
Pang, Y
AF Chen, Yusheng
Xu, Yongqian
Perry, Kelly
Sokolov, Alexei P.
More, Karren
Pang, Yi
TI Achieving Diameter-Selective Separation of Single-Walled Carbon
Nanotubes by Using Polymer Conformation-Confined Helical Cavity
SO ACS MACRO LETTERS
LA English
DT Article
ID RECOGNITION; TRANSISTORS; DISPERSION; COPOLYMER
AB A water-soluble poly[(m-phenylenevinylene)-alt-(p-phenylenevinylene)] (PmPV) 2 has been synthesized, which exhibits an unsymmetrical substitution pattern on the paraphenylene unit. With one substituent being hydrophilic while the other being hydrophobic, the polymer chain has a higher tendency to fold in aqueous solution, thereby promoting helical conformation. The polymer is found to selectively disperse the single-walled nanotubes (SWNTs) of small diameters (d = 0.75-0.84 nm), in sharp contrast to PmPV 1 with a symmetrical substitution pattern. The intriguing diameter-based selectivity is believed to be associated with the confined helical conformation, which provides a suitable cavity to host the SWNT of proper sizes. The study thus provides a useful demonstration that the polymer conformation can have a profound impact on the SWNT sorting.
C1 [Chen, Yusheng; Xu, Yongqian; Pang, Yi] Univ Akron, Dept Chem, Akron, OH 44325 USA.
[Chen, Yusheng; Xu, Yongqian; Pang, Yi] Univ Akron, Maurice Morton Inst Polymer Sci, Akron, OH 44325 USA.
[Perry, Kelly; Sokolov, Alexei P.; More, Karren] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Pang, Y (reprint author), Univ Akron, Dept Chem, Akron, OH 44325 USA.
EM yp5@uakron.edu
RI More, Karren/A-8097-2016
OI More, Karren/0000-0001-5223-9097
FU AFOSR [FA9550-10-1-0254]; Materials Science and Engineering Division;
SHaRE user Facility; Office of Basic Energy Sciences, U.S. Department of
Energy
FX This work was supported by AFOSR (Grant FA9550-10-1-0254). A.P.S.
acknowledges partial support from the Materials Science and Engineering
Division and the SHaRE user Facility, which are sponsored by the Office
of Basic Energy Sciences, U.S. Department of Energy. We also thank
Professor Mark Foster of University of Akron for assistance in acquiring
part of Raman spectra and thank Professor Khalid Lafdi at University of
Dayton for assistance in acquiring 2D fluorescence spectra.
NR 28
TC 13
Z9 13
U1 2
U2 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2161-1653
J9 ACS MACRO LETT
JI ACS Macro Lett.
PD JUN
PY 2012
VL 1
IS 6
BP 701
EP 705
DI 10.1021/mz3001308
PG 5
WC Polymer Science
SC Polymer Science
GA 959NX
UT WOS:000305320600011
ER
PT J
AU Wang, XJ
Chen, JH
Hong, KL
Mays, JW
AF Wang, Xiaojun
Chen, Jihua
Hong, Kunlun
Mays, Jimmy W.
TI Well-Defined Polyisoprene-b-Poly(acrylic
acid)/Polystyrene-b-Polyisoprene-b-Poly(acrylic acid) Block Copolymers:
Synthesis and Their Self-Assembled Hierarchical Structures in Aqueous
Media
SO ACS MACRO LETTERS
LA English
DT Article
ID MULTICOMPARTMENT MICELLES; POLYMER MICELLES; ESTERS; METHACRYLATE);
MICELLIZATION; HYDROLYSIS; ACRYLATE); CLEAVAGE; DIBLOCK
AB The synthesis and characterization of well-defined polyacid based block copolymers containing polyisoprene (PI) are reported. The challenge of maintaining the integrity of the polydiene while producing polyacid from the tert-butyl ester precursor is addressed in this communication. A general purification method was also developed, taking advantage of the different polarities of each block. The polystyrene-b-polyisoprene-b-poly-(acrylic acid) (PS-b-PI-b-PAA) triblock terpolymers form multicompartmental micelles via aqueous self-assembly. Our work reveals the morphological consequences of unique balances among global and local interactions.
C1 [Wang, Xiaojun; Mays, Jimmy W.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Chen, Jihua; Hong, Kunlun; Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Mays, JW (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
EM jimmymays@utk.edu
RI Wang, Xiaojun/E-5510-2012; Chen, Jihua/F-1417-2011; Hong,
Kunlun/E-9787-2015
OI Chen, Jihua/0000-0001-6879-5936; Hong, Kunlun/0000-0002-2852-5111
FU Division of Materials Science and Engineering, Office of Basic Energy
Sciences, U.S. Department of Energy; Scientific User Facilities
Division, Office of Basic Energy Sciences, U.S. Department of Energy
FX We are grateful for support from the Division of Materials Science and
Engineering, Office of Basic Energy Sciences, U.S. Department of Energy.
Research conducted at the Center for Nanophase Materials Sciences is
sponsored at ORNL by the Scientific User Facilities Division, Office of
Basic Energy Sciences, U.S. Department of Energy.
NR 34
TC 8
Z9 8
U1 1
U2 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2161-1653
J9 ACS MACRO LETT
JI ACS Macro Lett.
PD JUN
PY 2012
VL 1
IS 6
BP 743
EP 747
DI 10.1021/mz300192u
PG 5
WC Polymer Science
SC Polymer Science
GA 959NX
UT WOS:000305320600021
ER
PT J
AU Allcock, DTC
Harty, TP
Janacek, HA
Linke, NM
Ballance, CJ
Steane, AM
Lucas, DM
Jarecki, RL
Habermehl, SD
Blain, MG
Stick, D
Moehring, DL
AF Allcock, D. T. C.
Harty, T. P.
Janacek, H. A.
Linke, N. M.
Ballance, C. J.
Steane, A. M.
Lucas, D. M.
Jarecki, R. L., Jr.
Habermehl, S. D.
Blain, M. G.
Stick, D.
Moehring, D. L.
TI Heating rate and electrode charging measurements in a scalable,
microfabricated, surface-electrode ion trap
SO APPLIED PHYSICS B-LASERS AND OPTICS
LA English
DT Article
ID QUANTUM COMPUTER
AB We characterise the performance of a surface-electrode ion "chip" trap fabricated using established semiconductor integrated circuit and micro-electro-mechanical-system (MEMS) microfabrication processes, which are in principle scalable to much larger ion trap arrays, as proposed for implementing ion trap quantum information processing. We measure rf ion micromotion parallel and perpendicular to the plane of the trap electrodes, and find that on-package capacitors reduce this to a parts per thousand(2)10 nm in amplitude. We also measure ion trapping lifetime, charging effects due to laser light incident on the trap electrodes, and the heating rate for a single trapped ion. The performance of this trap is found to be comparable with others of the same size scale.
C1 [Allcock, D. T. C.; Harty, T. P.; Janacek, H. A.; Linke, N. M.; Ballance, C. J.; Steane, A. M.; Lucas, D. M.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England.
[Jarecki, R. L., Jr.; Habermehl, S. D.; Blain, M. G.; Stick, D.; Moehring, D. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Allcock, DTC (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England.
EM d.allcock1@physics.ox.ac.uk
RI Allcock, David/C-7582-2013;
OI Allcock, David/0000-0002-7317-5560; Harty, Thomas/0000-0003-4077-226X
FU EPSRC; IARPA; U.S. Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX We are grateful to Luca Guidoni for helpful comments on the manuscript
and to Derek Stacey, Graham Quelch, Jack Devlin and Martin Felle for
laboratory support. This work was supported by the EPSRC Science and
Innovation programme and by IARPA. Sandia National Laboratories is a
multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000.
NR 24
TC 17
Z9 17
U1 1
U2 15
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0946-2171
J9 APPL PHYS B-LASERS O
JI Appl. Phys. B-Lasers Opt.
PD JUN
PY 2012
VL 107
IS 4
BP 913
EP 919
DI 10.1007/s00340-011-4788-5
PG 7
WC Optics; Physics, Applied
SC Optics; Physics
GA 964XO
UT WOS:000305730200005
ER
PT J
AU Zhu, ZG
Sun, FF
Zhang, XZ
Zhang, YHP
AF Zhu, Zhiguang
Sun, Fangfang
Zhang, Xiaozhou
Zhang, Y-H Percival
TI Deep oxidation of glucose in enzymatic fuel cells through a synthetic
enzymatic pathway containing a cascade of two thermostable
dehydrogenases
SO BIOSENSORS & BIOELECTRONICS
LA English
DT Article
DE Deep oxidation; Enzymatic fuel cell; Glucose biobattery; Thermoenzyme;
Synthetic enzymatic pathway
ID BIOFUEL CELLS; RIBOSE-5-PHOSPHATE ISOMERASE; CLOSTRIDIUM-THERMOCELLUM;
ESCHERICHIA-COLI; PURIFICATION; DESIGN
AB A synthetic enzymatic pathway was designed for the deep oxidation of glucose in enzymatic fuel cells (EFCs). Polyphosphate glucokinase converts glucose to glucose-6-phosphate using low-cost, stable polyphosphate rather than costly ATP. Two NAD-dependent dehydrogenases (glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydronase) that were immobilized on the bioanode were responsible for generating two NADH per glucose-6-phosphate (i.e., four electrons were generated per glucose via a diaphorase-vitamin K-3 electron shuttle system at the anode). Additionally, to prolong the enzyme lifetime and increase the power output, all of the recombinant enzymes that originated from thermophiles were expressed in Escherichia coli and purified to homogeneity. The maximum power density of the EFC with two dehydrogenases was 0.0203 mW cm(-2) in 10 mM glucose at room temperature, which was 32% higher than that of an EFC with one dehydrogenase, suggesting that the deep oxidation of glucose hard occurred. When the temperature was increased to 50 degrees C, the maximum power density increased to 0.322 mW cm(-2), which was approximately eight times higher than that based on mesophilic enzymes at the same temperature. Our results suggest that the deep oxidation of glucose could be achieved by using multiple dehydrogenases in synthetic cascade pathways and that high power output could be achieved by using thermostable enzymes at elevated temperatures. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Zhu, Zhiguang; Sun, Fangfang; Zhang, Xiaozhou; Zhang, Y-H Percival] Virginia Polytech Inst & State Univ, Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA.
[Zhang, Y-H Percival] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24061 USA.
[Zhang, Y-H Percival] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA.
[Zhang, Xiaozhou; Zhang, Y-H Percival] Gate Fuels Inc, Blacksburg, VA 24060 USA.
RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Virginia Tech, Dept Biol Syst Engn, 304 Seitz Hall, Blacksburg, VA 24061 USA.
EM ypzhang@vt.edu
RI Zhu, Zhiguang/I-3936-2016
FU Air Force Office of Scientific Research MURI [FA9550-08-1-0145]; DOE
Bioenergy Science Center (BESC); CALS Bioprocessing and Biodesign Center
FX This work was supported mainly by the Air Force Office of Scientific
Research MURI grant (FA9550-08-1-0145), and partially by DOE Bioenergy
Science Center (BESC) and CALS Bioprocessing and Biodesign Center.
NR 33
TC 23
Z9 23
U1 3
U2 52
PU ELSEVIER ADVANCED TECHNOLOGY
PI OXFORD
PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,
OXFORD OX5 1GB, OXON, ENGLAND
SN 0956-5663
J9 BIOSENS BIOELECTRON
JI Biosens. Bioelectron.
PD JUN-JUL
PY 2012
VL 36
IS 1
BP 110
EP 115
DI 10.1016/j.bios.2012.04.001
PG 6
WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical;
Electrochemistry; Nanoscience & Nanotechnology
SC Biophysics; Biotechnology & Applied Microbiology; Chemistry;
Electrochemistry; Science & Technology - Other Topics
GA 964BC
UT WOS:000305667700018
PM 22521942
ER
PT J
AU Barker, D
Huang, XY
Liu, ZQ
Auligne, T
Zhang, X
Rugg, S
Ajjaji, R
Bourgeois, A
Bray, J
Chen, YS
Demirtas, M
Guo, YR
Henderson, T
Huang, W
Lin, HC
Michalakes, J
Rizvi, S
Zhang, XY
AF Barker, Dale
Huang, Xiang-Yu
Liu, Zhiquan
Auligne, Tom
Zhang, Xin
Rugg, Steven
Ajjaji, Raji
Bourgeois, Al
Bray, John
Chen, Yongsheng
Demirtas, Meral
Guo, Yong-Run
Henderson, Tom
Huang, Wei
Lin, Hui-Chuan
Michalakes, John
Rizvi, Syed
Zhang, Xiaoyan
TI THE WEATHER RESEARCH AND FORECASTING MODEL'S COMMUNITY
VARIATIONAL/ENSEMBLE DATA ASSIMILATION SYSTEM WRFDA
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Article
ID MESOSCALE PREDICTION SYSTEM; TRANSFORM KALMAN FILTER; RADAR DATA
ASSIMILATION; SEVERE WIND EVENT; TYPHOON RUSA 2002; PART I; BIAS
CORRECTION; SATELLITE DATA; SCHEME; IMPACT
C1 [Huang, Xiang-Yu; Liu, Zhiquan; Auligne, Tom; Zhang, Xin; Bourgeois, Al; Guo, Yong-Run; Huang, Wei; Lin, Hui-Chuan; Rizvi, Syed; Zhang, Xiaoyan] NCAR, MMM Div, Boulder, CO 80307 USA.
[Barker, Dale] Met Off, Exeter, Devon, England.
[Rugg, Steven] USAF, Weather Agcy, Offutt AFB, NE USA.
[Ajjaji, Raji] AF & Air Def Meteorol Dept, Abu Dhabi, U Arab Emirates.
[Chen, Yongsheng] York Univ, Toronto, ON M3J 2R7, Canada.
[Demirtas, Meral] Turkish State Meteorol Serv, Ankara, Turkey.
[Henderson, Tom] NOAA, Earth Syst Res Lab, Boulder, CO USA.
[Michalakes, John] Natl Renewable Energy Lab, Golden, CO USA.
RP Huang, XY (reprint author), NCAR, MMM Div, POB 3000, Boulder, CO 80307 USA.
EM huangx@ucar.edu
RI Zhang, Xin/L-7141-2015; Demirtas, Meral/Q-8555-2016
OI Demirtas, Meral/0000-0002-3026-9276
NR 58
TC 90
Z9 98
U1 1
U2 24
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD JUN
PY 2012
VL 93
IS 6
BP 831
EP 843
DI 10.1175/BAMS-D-11-00167.1
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 964VI
UT WOS:000305724400011
ER
PT J
AU Vogelmann, AM
McFarquhar, GM
Ogren, JA
Turner, DD
Comstock, JM
Feingold, G
Long, CN
Jonsson, HH
Bucholtz, A
Collins, DR
Diskin, GS
Gerber, H
Lawson, RP
Woods, RK
Andrews, E
Yang, HJ
Chiu, JC
Hartsock, D
Hubbe, JM
Lo, CM
Marshak, A
Monroe, JW
McFarlane, SA
Schmid, B
Tomlinson, JM
Toto, T
AF Vogelmann, Andrew M.
McFarquhar, Greg M.
Ogren, John A.
Turner, David D.
Comstock, Jennifer M.
Feingold, Graham
Long, Charles N.
Jonsson, Haflidi H.
Bucholtz, Anthony
Collins, Don R.
Diskin, Glenn S.
Gerber, Hermann
Lawson, R. Paul
Woods, Roy K.
Andrews, Elisabeth
Yang, Hee-Jung
Chiu, J. Christine
Hartsock, Daniel
Hubbe, John M.
Lo, Chaomei
Marshak, Alexander
Monroe, Justin W.
McFarlane, Sally A.
Schmid, Beat
Tomlinson, Jason M.
Toto, Tami
TI RACORO EXTENDED-TERM AIRCRAFT OBSERVATIONS OF BOUNDARY LAYER CLOUDS
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Article
ID LIQUID WATER PATH; GROUND-BASED MEASUREMENTS; DIURNAL CYCLE; MICROWAVE
RADIOMETERS; CONVECTION OVERLAND; CONDENSATION NUCLEI; STRATIFORM
CLOUDS; INDIAN-OCEAN; ARM CART; IN-SITU
C1 [Vogelmann, Andrew M.; Toto, Tami] Brookhaven Natl Lab, Upton, NY 11973 USA.
[McFarquhar, Greg M.; Yang, Hee-Jung] Univ Illinois, Urbana, IL USA.
[Ogren, John A.; Feingold, Graham; Andrews, Elisabeth] NOAA, Earth Syst Res Lab, Boulder, CO USA.
[Turner, David D.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA.
[Turner, David D.] Univ Wisconsin, Madison, WI USA.
[Comstock, Jennifer M.; Long, Charles N.; Hubbe, John M.; Lo, Chaomei; McFarlane, Sally A.; Schmid, Beat; Tomlinson, Jason M.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Jonsson, Haflidi H.; Woods, Roy K.] USN, Postgrad Sch, Monterey, CA USA.
[Bucholtz, Anthony] USN, Res Lab, Monterey, CA USA.
[Collins, Don R.] Texas A&M Univ, College Stn, TX USA.
[Diskin, Glenn S.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Gerber, Hermann] Gerber Sci Inc, Reston, VA USA.
[Lawson, R. Paul] SPEC Inc, Boulder, CO USA.
[Andrews, Elisabeth] Univ Colorado, Boulder, CO 80309 USA.
[Chiu, J. Christine] Univ Reading, Reading, Berks, England.
[Hartsock, Daniel; Monroe, Justin W.] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA.
[Marshak, Alexander] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Vogelmann, AM (reprint author), Brookhaven Natl Lab, Bldg 490D, Upton, NY 11973 USA.
EM vogelmann@bnl.gov
RI Collins, Don/F-9617-2012; Tomlinson, Jason/C-6566-2009; Feingold,
Graham/B-6152-2009; Chiu, Christine/E-5649-2013; Marshak,
Alexander/D-5671-2012; Vogelmann, Andrew/M-8779-2014; Ogren,
John/M-8255-2015; Manager, CSD Publications/B-2789-2015;
OI Chiu, Christine/0000-0002-8951-6913; Vogelmann,
Andrew/0000-0003-1918-5423; Ogren, John/0000-0002-7895-9583; McFarquhar,
Greg/0000-0003-0950-0135
FU U.S. Department of Energy's Atmospheric Science Program Atmospheric
System Research; Earth System Modeling Program via the FASTER Project
[DE-AC06-76RLO 1,830, DE-FG02-05ER64062, DE-AI05-09OR23371,
DE-SC0000543, DE-AI-02-08ER64562, DE-FG02-08ER64563, DE-FG02-08ER54564];
Office of Science, Office of Biological and Environmental Research
[DE-AC02-98CH10886]
FX We gratefully acknowledge the many contributions by Debbie Ronfeld (AAF
logistics point of contact), pilots Mike Hubbell and Chris McGuire,
copilot Dave McSwaggan, Jesse Barge (cabin instrument operations), and
Greg Cooper (CIRPAS aircraft operations) and the web and media support
by Sherman Beus and Lynne Roeder, respectively. We are delighted to
acknowledge the NASA King Air team for their collaborative participation
and excellent flight coordination (PIs Rich Ferrare, Chris Hostetler,
and Brian Cairns). Data used in this article are from the U.S.
Department of Energy AAF RACORO campaign and from the SGP ARM Climate
Research Facility. This research was supported by the U.S. Department of
Energy's Atmospheric Science Program Atmospheric System Research, an
Office of Science, Office of Biological and Environmental Research
program, under the following grants/contracts: DE-AC02-98CH10886 and the
Earth System Modeling Program via the FASTER Project (AMV, TT);
DE-SC0005008 (JAO, EA); DE-FG02-08ER64538 (DDT); DE-FG02-02ER63337 (GM,
HJY); DE-FG02-07ER64378 (GM, HJY); DE-FG02-09ER64770 (GM, HJY);
DE-SC0001279 (GM, HJY); DE-SC0005507 (GM, HJY); DE-SC0002037 (GF);
DE-AC06-76RLO 1,830 (CNL, SAM); DE-FG02-05ER64062 (DH, JWM);
DE-AI05-09OR23371 (AB); DE-SC0000543 (GSD); DE-AI-02-08ER64562 (AM);
DE-FG02-08ER64563 (AM, JCC); and DE-FG02-08ER54564 (AM).
NR 56
TC 31
Z9 31
U1 0
U2 12
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD JUN
PY 2012
VL 93
IS 6
BP 861
EP 878
DI 10.1175/BAMS-D-11-00189.1
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 964VI
UT WOS:000305724400013
ER
PT J
AU Levine, JA
Jadhav, S
Bhatia, H
Pascucci, V
Bremer, PT
AF Levine, J. A.
Jadhav, S.
Bhatia, H.
Pascucci, V.
Bremer, P. -T.
TI A Quantized Boundary Representation of 2D Flows
SO COMPUTER GRAPHICS FORUM
LA English
DT Article
ID VECTOR-FIELDS; MORSE DECOMPOSITIONS; SIMPLIFICATION; VISUALIZATION;
STREAMLINES
AB Analysis and visualization of complex vector fields remain major challenges when studying large scale simulation of physical phenomena. The primary reason is the gap between the concepts of smooth vector field theory and their computational realization. In practice, researchers must choose between either numerical techniques, with limited or no guarantees on how they preserve fundamental invariants, or discrete techniques which limit the precision at which the vector field can be represented. We propose a new representation of vector fields that combines the advantages of both approaches. In particular, we represent a subset of possible streamlines by storing their paths as they traverse the edges of a triangulation. Using only a finite set of streamlines creates a fully discrete version of a vector field that nevertheless approximates the smooth flow up to a user controlled error bound. The discrete nature of our representation enables us to directly compute and classify analogues of critical points, closed orbits, and other common topological structures. Further, by varying the number of divisions (quantizations) used per edge, we vary the resolution used to represent the field, allowing for controlled precision. This representation is compact in memory and supports standard vector field operations.
C1 [Levine, J. A.; Jadhav, S.; Bhatia, H.; Pascucci, V.; Bremer, P. -T.] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA.
[Bhatia, H.; Bremer, P. -T.] Lawrence Livermore Natl Lab, Livermore, CA USA.
RP Levine, JA (reprint author), Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA.
FU NSF [IIS-1045032, OCI-0904631, OCI-0906379, CCF-0702817]; KAUST
[KUS-C1-016-04]; U.S. DOE by the Univ. of Utah [DE-SC0001922,
DE-AC52-07NA27344, DE-FC02-06ER25781]; LLNL [DE-AC52-07NA27344]
FX This work is supported in part by NSF awards IIS-1045032, OCI-0904631,
OCI-0906379 and CCF-0702817, and by KAUST Award KUS-C1-016-04. This work
was performed under the auspices of the U.S. DOE by the Univ. of Utah
under contracts DE-SC0001922, DE-AC52-07NA27344, and DE-FC02-06ER25781,
and LLNL under contract DE-AC52-07NA27344. We thank Guoning Chen, Eugene
Zhang, and Andrzej Szymczak for helping us generate Fig. 9. We are
grateful for data from Jackie Chen (Figs. 10 and 11(b)), Han-Wei Shen
(Fig. 11(a)), and Mathew Maltrud from the Climate, Ocean and Sea Ice
Modelling program at LANL and the BER Office of Science UV-CDAT team
(Figs. 1, 5, 8, 9). LLNL-CONF-548652.
NR 29
TC 4
Z9 4
U1 0
U2 2
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0167-7055
J9 COMPUT GRAPH FORUM
JI Comput. Graph. Forum
PD JUN
PY 2012
VL 31
IS 3
BP 945
EP 954
DI 10.1111/j.1467-8659.2012.03087.x
PN 1
PG 10
WC Computer Science, Software Engineering
SC Computer Science
GA 963ER
UT WOS:000305603400010
ER
PT J
AU Williams, S
Petersen, M
Hecht, M
Maltrud, M
Patchett, J
Ahrens, J
Hamann, B
AF Williams, S.
Petersen, M.
Hecht, M.
Maltrud, M.
Patchett, J.
Ahrens, J.
Hamann, B.
TI Interface Exchange as an Indicator for Eddy Heat Transport
SO COMPUTER GRAPHICS FORUM
LA English
DT Article
DE Computer Graphics [I.3.8]: Applications; Oceanography Simulation and
Modeling [I.6.6]: Simulation Output Analysis; Ocean General Circulation
Models
ID VORTEX REGIONS; OCEAN; GULF; FLOW; SEA
AB The ocean contains many large-scale, long-lived vortices, called mesoscale eddies, that are believed to have a role in the transport and redistribution of salt, heat, and nutrients throughout the ocean. Determining this role, however, has proven to be a challenge, since the mechanics of eddies are only partly understood; a standard definition for these ocean eddies does not exist and, therefore, scientifically meaningful, robust methods for eddy extraction, characterization, tracking and visualization remain a challenge. To shed light on the nature and potential roles of eddies, we extend our previous work on eddy identification and tracking to construct a new metric to characterize the transfer of water into and out of eddies across their boundary, and produce several visualizations of this new metric to provide clues about the role eddies play in the global ocean.
C1 [Williams, S.; Petersen, M.; Hecht, M.; Patchett, J.; Ahrens, J.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA.
[Williams, S.; Hamann, B.] Univ Calif Davis, IDAV, Dept Comp Sci, Davis, CA 95616 USA.
[Maltrud, M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Williams, S (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA.
OI Hecht, Matthew/0000-0003-0946-4007; Petersen, Mark/0000-0001-7170-7511
FU UV-CDAT project in the Climate and Earth System Modeling programs under
the Office of Biological and Environmental Research within the US
Department of Energy's Office of Science; Earth System Modeling and
Regional and Global Climate Modeling programs of the Office of
Biological and Environmental Research within the US Department of
Energy's Office of Science
FX This work was supported by the UV-CDAT project in the Climate and Earth
System Modeling programs under the Office of Biological and
Environmental Research within the US Department of Energy's Office of
Science. This work was also supported by the Earth System Modeling and
Regional and Global Climate Modeling programs of the Office of
Biological and Environmental Research within the US Department of
Energy's Office of Science.
NR 26
TC 4
Z9 4
U1 0
U2 4
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0167-7055
J9 COMPUT GRAPH FORUM
JI Comput. Graph. Forum
PD JUN
PY 2012
VL 31
IS 3
BP 1125
EP 1134
DI 10.1111/j.1467-8659.2012.03105.x
PN 3
PG 10
WC Computer Science, Software Engineering
SC Computer Science
GA 963EU
UT WOS:000305603700002
ER
PT J
AU Joseph, I
AF Joseph, I.
TI Edge-Localized Mode Control and Transport Generated by Externally
Applied Magnetic Perturbations
SO CONTRIBUTIONS TO PLASMA PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Workshop on Plasma Edge Theory in Fusion Devices
CY SEP 19-21, 2011
CL South Lake Tahoe, CA
DE Tokamak; edge localized mode control; magnetic perturbations;
quasilinear transport
ID RADIAL ELECTRIC-FIELD; DIII-D PLASMAS; TOKAMAK PLASMAS; ERGODIC
DIVERTOR; TEARING MODES; ERROR-FIELD; INSTABILITIES; CONDUCTIVITY;
CONFINEMENT; STABILITY
AB This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic perturbations and proposes theoretical mechanisms that may be responsible for the induced transport changes. The first question that must be addressed is: what is the structure of magnetic field within the plasma? Although initial hypotheses focused on the possibility of the creation of a region of stochastic field lines at the tokamak edge, drift magnetohydrodynamics theory predicts that magnetic reconnection is strongly suppressed over the region of the pedestal with steep gradients and fast perpendicular rotation. Reconnection can only occur near the location where the perpendicular electron velocity vanishes, and hence the electron impedance nearly vanishes, or near the foot of the pedestal, where the plasma is sufficiently cold and resistive. The next question that must be addressed is: which processes are responsible for the observed transport changes, nonlinearity, turbulence, or stochasticity? Over the pedestal region where ions and electrons rotate in opposite directions relative to the perturbation, the quasilinear Lorentz force decelerates the electron fluid and accelerates the ion fluid. The quasilinear magnetic flutter flux is proportional to the force and produces an outward convective transport that can be significant. Over the pedestal region where the E x B flow and the electrons rotate in opposite directions relative to the perturbation, magnetic islands with a width on the order of the ion gyroradius can directly radiate drift waves. In addition, the combination of quasilinear electron transport and ion viscous transport can lead to a large net particle flux. Since there are many transport mechanisms that may be active simultaneously, it is important to determine which physical mechanisms are responsible for ELM control and to predict the scaling to future devices ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Joseph, I (reprint author), Lawrence Livermore Natl Lab, POB 808,L-637, Livermore, CA 94551 USA.
EM joseph5@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX The author gratefully acknowledges fruitful collaborations and
discussions with F. L. Waelbroeck and A. H. Boozer and would like to
thank M. A. Dorf for a careful reading of the manuscript. The author
would also like to thank the DIII-D team for the permission to analyze
data for ELM suppression discharge 126006 and T. H. Osborne, in
particular, for the use of his Python analysis tools. This work was
performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NR 113
TC 8
Z9 8
U1 2
U2 19
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0863-1042
EI 1521-3986
J9 CONTRIB PLASM PHYS
JI Contrib. Plasma Phys.
PD JUN
PY 2012
VL 52
IS 5-6
SI SI
BP 326
EP 347
DI 10.1002/ctpp.201210014
PG 22
WC Physics, Fluids & Plasmas
SC Physics
GA 965GD
UT WOS:000305754400007
ER
PT J
AU Angus, JR
Umansky, M
Krasheninnikov, SI
AF Angus, J. R.
Umansky, M.
Krasheninnikov, S. I.
TI 3D Blob Modelling with BOUT++
SO CONTRIBUTIONS TO PLASMA PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Workshop on Plasma Edge Theory in Fusion Devices
CY SEP 19-21, 2011
CL South Lake Tahoe, CA
DE Blobs; Tokamaks; ELMS
ID TURBULENCE; TRANSPORT; EDGE
AB Plasma blobs found in the edge region of tokamaks are important to understand because they contribute to a large amount of the plasma particle transport in the SOL (scrape off layer). Most of the work to date is limited to 2D theory and simulations by ignoring the variation of blob parameters along the magnetic field line. 3D effects are examined in the electrostatic limit in this paper using the code BOUT++ by allowing for the variation of blob density and potential along the field line. It is demonstrated that the 3D variation of these parameters can lead to a Boltzmann potential relation that will cause the blob to spin and induce turbulent motion via unstable drift waves ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
C1 [Angus, J. R.; Krasheninnikov, S. I.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Umansky, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Angus, JR (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA.
EM jangus@ucsd.edu
NR 6
TC 7
Z9 7
U1 0
U2 20
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0863-1042
EI 1521-3986
J9 CONTRIB PLASM PHYS
JI Contrib. Plasma Phys.
PD JUN
PY 2012
VL 52
IS 5-6
SI SI
BP 348
EP 352
DI 10.1002/ctpp.201210015
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA 965GD
UT WOS:000305754400008
ER
PT J
AU Xia, TY
Xu, XQ
Dudson, BD
Li, J
AF Xia, T. Y.
Xu, X. Q.
Dudson, B. D.
Li, J.
TI Nonlinear Simulations of Peeling-Ballooning Modes with Parallel Velocity
Perturbation
SO CONTRIBUTIONS TO PLASMA PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Workshop on Plasma Edge Theory in Fusion Devices
CY SEP 19-21, 2011
CL South Lake Tahoe, CA
DE ELM; two-fluid; rf waves; simulation; H-mode
ID EDGE LOCALIZED INSTABILITIES; MHD STABILITY; TOKAMAKS; PLASMAS
AB The fast-reconnection simulation of ELMs in high-confinement mode tokamak discharges with non-ideal physics effects has been reported by Xu, et al [1] with a minimum set of three-field two-fluid equations. Here we improve the simulation by adding the perturbed parallel velocity and Hall effect, then extend the model to a set of four-field two-fluid equations to describe the pedestal collapse with the BOUT++ simulation code. Compared to the previous results, we find that the perturbed parallel velocity can decrease the growth rate by 20.0%, and the ELM size is decreased by 12.1%. The Hall effect influences the linear growth rate effectively. Without perturbed parallel velocity, the Hall effect will increase the growth rate by 9.8%. It is increased by 19.1% if the parallel velocity is considered. These results are consistent with the qualitative theoretical analysis. In order to smooth the perturbed zigzags of the profiles of variables, we add the hyper-diffusion terms in the equations. We use the hyper-diffusion of pressure which does not affect the linear growth rate and the ELM structure obviously, but they can smooth the profiles effectively on grid scales. Last the effects of other differencing methods are discussed and we find that lower order method yeilds lower fluctuation level and smaller ELM size ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
C1 [Xia, T. Y.; Li, J.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China.
[Xia, T. Y.; Xu, X. Q.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Dudson, B. D.] Univ York, York YO10 5DD, N Yorkshire, England.
RP Xia, TY (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China.
EM xiaty@ipp.ac.cn
OI Dudson, Benjamin/0000-0002-0094-4867
FU U.S. Department of Energy by Lawrence Livermore National Security, LLC,
Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; China
Natural Science Foundation [10721505]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344, and is supported
by the China Natural Science Foundation under Contract No. 10721505.
NR 20
TC 7
Z9 7
U1 3
U2 11
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0863-1042
EI 1521-3986
J9 CONTRIB PLASM PHYS
JI Contrib. Plasma Phys.
PD JUN
PY 2012
VL 52
IS 5-6
SI SI
BP 353
EP 359
DI 10.1002/ctpp.201210016
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA 965GD
UT WOS:000305754400009
ER
PT J
AU Kagan, G
Marr, KD
Pusztai, I
Landreman, M
Catto, PJ
Lipschultz, B
AF Kagan, G.
Marr, K. D.
Pusztai, I.
Landreman, M.
Catto, P. J.
Lipschultz, B.
TI Neoclassical Theory of Pedestal Flows and Comparison with Alcator C-Mod
Measurements
SO CONTRIBUTIONS TO PLASMA PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Workshop on Plasma Edge Theory in Fusion Devices
CY SEP 19-21, 2011
CL South Lake Tahoe, CA
DE Edge plasma; pedestal; flows; neoclassical
AB Neoclassical implications of the strong radial electric field, inherently present in an H-mode tokamak pedestal, are considered. The main ion poloidal flow in the pedestal is predicted to be reduced in magnitude, or even reversed, compared with its core counterpart. The resulting change in the neoclassical formula for the impurity flow is shown to result in improved agreement with boron measurements in the Alcator C-Mod pedestal. In addition, due to the ion flow being modified, the bootstrap current is expected to be enhanced in the pedestal over conventional predictions ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
C1 [Kagan, G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Marr, K. D.] USN, Res Lab, Washington, DC 20375 USA.
[Pusztai, I.] Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden.
[Pusztai, I.] Euratom VR Assoc, SE-41296 Gothenburg, Sweden.
[Landreman, M.; Catto, P. J.; Lipschultz, B.] Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
RP Kagan, G (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM kagan@lanl.gov
RI Lipschultz, Bruce/J-7726-2012; Landreman, Matt/C-7684-2017
OI Lipschultz, Bruce/0000-0001-5968-3684; Landreman,
Matt/0000-0002-7233-577X
FU U.S. Department of Energy Office of Fusion Energy Sciences at the Los
Alamos National Laboratory [DE-AC52-06NA25396]; U.S. Department of
Energy Office of Fusion Energy Sciences at the Plasma Science and Fusion
Center of the Massachusetts Institute of Technology [DE-FG02-91ER-54109]
FX This work was supported by the U.S. Department of Energy Office of
Fusion Energy Sciences under contracts DE-AC52-06NA25396 at the Los
Alamos National Laboratory and DE-FG02-91ER-54109 at the Plasma Science
and Fusion Center of the Massachusetts Institute of Technology.
NR 11
TC 0
Z9 0
U1 0
U2 4
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0863-1042
EI 1521-3986
J9 CONTRIB PLASM PHYS
JI Contrib. Plasma Phys.
PD JUN
PY 2012
VL 52
IS 5-6
SI SI
BP 365
EP 371
DI 10.1002/ctpp.201210018
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA 965GD
UT WOS:000305754400011
ER
PT J
AU Friedman, B
Umansky, MV
Carter, TA
AF Friedman, B.
Umansky, M. V.
Carter, T. A.
TI Grid Convergence Study in a Simulation of LAPD Turbulence
SO CONTRIBUTIONS TO PLASMA PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Workshop on Plasma Edge Theory in Fusion Devices
CY SEP 19-21, 2011
CL South Lake Tahoe, CA
DE Plasma; turbulent; finite difference; wavenumber spectrum; numerical
diffusion; dissipation range
AB Grid convergence of plasma drift turbulence simulations in the Large Plasma Device is studied. When first order upwind advection schemes are used, numerical finite difference diffusion errors cause turbulence statistics, especially saturation levels to vary when grid spacing is changed. The significance and magnitude of the variation is explored, and it is found that use of very fine meshes or higher order advection schemes combined with artificial diffusion and viscosity can lead to grid convergence, while maintaining experimentally consistent saturation levels. It is also found that the details of dissipation range dynamics, such as the level of diffusion, have a significant impact on driven range dynamics due to the lack of a large inertial range in the simulations ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
C1 [Friedman, B.; Carter, T. A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Friedman, B (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
EM friedman@physics.ucla.edu
RI Carter, Troy/E-7090-2010
OI Carter, Troy/0000-0002-5741-0495
FU U.S. Department of Energy; Oak Ridge Associated Universities
FX This research was performed under appointment to the Fusion Energy
Sciences Fellowship Program administered by Oak Ridge Institute for
Science and Education under a contract between the U.S. Department of
Energy and the Oak Ridge Associated Universities.
NR 8
TC 2
Z9 2
U1 0
U2 3
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0863-1042
EI 1521-3986
J9 CONTRIB PLASM PHYS
JI Contrib. Plasma Phys.
PD JUN
PY 2012
VL 52
IS 5-6
SI SI
BP 412
EP 416
DI 10.1002/ctpp.201210025
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA 965GD
UT WOS:000305754400018
ER
PT J
AU Umansky, MV
Brunner, D
LaBombard, B
Rognlien, TD
AF Umansky, M. V.
Brunner, D.
LaBombard, B.
Rognlien, T. D.
TI Modeling of Local Edge Plasma Perturbations Induced by a Biased Probe
SO CONTRIBUTIONS TO PLASMA PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Workshop on Plasma Edge Theory in Fusion Devices
CY SEP 19-21, 2011
CL South Lake Tahoe, CA
DE Tokamak; plasma divertor
ID DETACHMENT; DIVERTOR; SIMULATION; CODE
AB The Langmuir probe is a standard diagnostic tool for laboratory plasmas, routinely used for edge plasmas in magnetic fusion devices. However, recent studies on the Alcator C-Mod tokamak indicate the possibility of a substantial local plasma perturbation by a negatively biased divertor plate target probe under high recycling conditions when the electron temperature is under similar to 10 eV. The effects of the probe perturbation of the plasma are studied using the tokamak edge plasma code UEDGE for parameters relevant to Alcator C-Mod edge. It is found that at sufficiently negative bias voltage, the probe substantially modifies the local plasma characteristics. In particular, this is relevant to the experimentally known death-ray phenomenon, where the plasma pressure near the probe strongly exceeds the upstream value. Certain features of the death-ray phenomenon are reproduced in the modeling, pointing to interplay of plasma and neutrals transport, atomic physics, and sheath heat-flux boundary conditions ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
C1 [Umansky, M. V.; Rognlien, T. D.] LLNL, Livermore, CA 94550 USA.
[Brunner, D.; LaBombard, B.] MIT Plasma Sci & Fus Ctr, Cambridge, MA USA.
RP Umansky, MV (reprint author), LLNL, Livermore, CA 94550 USA.
EM umansky1@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 16
TC 2
Z9 2
U1 0
U2 9
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0863-1042
EI 1521-3986
J9 CONTRIB PLASM PHYS
JI Contrib. Plasma Phys.
PD JUN
PY 2012
VL 52
IS 5-6
SI SI
BP 417
EP 423
DI 10.1002/ctpp.201210026
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA 965GD
UT WOS:000305754400019
ER
PT J
AU Smirnov, RD
Krasheninnikov, SI
Pigarov, AY
Rognlien, TD
Mansfield, DK
Skinner, CH
Roquemore, AL
AF Smirnov, R. D.
Krasheninnikov, S. I.
Pigarov, A. Yu.
Rognlien, T. D.
Mansfield, D. K.
Skinner, C. H.
Roquemore, A. L.
TI Impurity Seeding with Dust Injection in Tokamak Edge Plasmas
SO CONTRIBUTIONS TO PLASMA PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Workshop on Plasma Edge Theory in Fusion Devices
CY SEP 19-21, 2011
CL South Lake Tahoe, CA
DE Dust; impurity; radiation; divertor
ID DYNAMICS
AB Impurity seeding of tokamak edge plasmas in the form of dust is modeled using the recently coupled DUSTT/UEDGE code. The effects on edge plasma performance due to lithium and carbon dust continuously injected at different poloidal locations in NSTX and ITER are modeled. Modeling demonstrates that dust injection into the edge plasma with rates of the order of several 10 mg . s1 for NSTX and 1 g . s1 for ITER can significantly increase radiation power losses leading to substantial reduction of the divertor heat load. The impact of different rates of dust injection on plasma operation and stability is discussed. The simulated edge plasma performance with injected dust is compared with the case of injection of an equivalent amount of dust material in the form of atomic vapor. It is shown that injection of dust in ITER can lead to better assimilation of impurities in the divertor plasma as compared to neutral gas injection ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
C1 [Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Rognlien, T. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Mansfield, D. K.; Skinner, C. H.; Roquemore, A. L.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Smirnov, RD (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA.
EM rsmirnov@ucsd.edu
RI Skinner, Charles/C-2314-2013; Smirnov, Roman/B-9916-2011
OI Smirnov, Roman/0000-0002-9114-5330
FU U.S. Department of Energy at UCSD [DE-FG02-06ER54852]
FX The work was performed in part under the auspices of the U.S. Department
of Energy at UCSD under Grant No DE-FG02-06ER54852.
NR 11
TC 3
Z9 3
U1 0
U2 13
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0863-1042
EI 1521-3986
J9 CONTRIB PLASM PHYS
JI Contrib. Plasma Phys.
PD JUN
PY 2012
VL 52
IS 5-6
SI SI
BP 435
EP 439
DI 10.1002/ctpp.201210029
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA 965GD
UT WOS:000305754400022
ER
PT J
AU Pigarov, AY
Krstic, P
Krasheninnikov, SI
Doerner, R
Rognlien, TD
AF Pigarov, A. Yu
Krstic, P.
Krasheninnikov, S. I.
Doerner, R.
Rognlien, T. D.
TI Dynamic Models for Plasma-Wall Interactions
SO CONTRIBUTIONS TO PLASMA PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Workshop on Plasma Edge Theory in Fusion Devices
CY SEP 19-21, 2011
CL South Lake Tahoe, CA
DE Plasma-wall interaction; recycling; sputtering; retention
ID RADIATION-ENHANCED SUBLIMATION; HYDROGEN RETENTION; DIFFUSION;
SIMULATION; BERYLLIUM; GRAPHITE; SURFACE; ENERGY; SATURATION; KINETICS
AB In theory and modeling of plasma-wall interactions, very different spatial and temporal scales need to be resolved. Hierarchy of material models (e.g. macroscopic transport, Kinetic Monte Carlo, Molecular Dynamics, and quantum models) used in fusion applications is reviewed and a way of their integration is highlighted. Physics background, theory and applications of macroscopic transport models, which are the main focus of the paper, are thoroughly discussed. The results on self-consistent macroscopic modeling of major physics phenomena, e.g. hydrogen recycling, retention, chemistry, chemical sputtering, and radiation enhanced sublimation for fusion related materials are presented. An example of coupled plasma and material transport simulations is given. The results on Molecular Dynamics modeling of deuterium irradiation of carbon leading to formation of supersaturated surfaces and chemical sputtering are presented ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
C1 [Pigarov, A. Yu; Krasheninnikov, S. I.; Doerner, R.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Krstic, P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Rognlien, T. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Pigarov, AY (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA.
EM apigarov@ucsd.edu
NR 72
TC 6
Z9 6
U1 1
U2 22
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0863-1042
EI 1521-3986
J9 CONTRIB PLASM PHYS
JI Contrib. Plasma Phys.
PD JUN
PY 2012
VL 52
IS 5-6
SI SI
BP 465
EP 477
DI 10.1002/ctpp.201210035
PG 13
WC Physics, Fluids & Plasmas
SC Physics
GA 965GD
UT WOS:000305754400028
ER
PT J
AU Dorf, MA
Cohen, RH
Compton, JC
Dorr, M
Rognlien, TD
Angus, J
Krasheninnikov, S
Colella, P
Martin, D
McCorquodale, P
AF Dorf, M. A.
Cohen, R. H.
Compton, J. C.
Dorr, M.
Rognlien, T. D.
Angus, J.
Krasheninnikov, S.
Colella, P.
Martin, D.
McCorquodale, P.
TI Progress with the COGENT Edge Kinetic Code: Collision Operator Options
SO CONTRIBUTIONS TO PLASMA PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Workshop on Plasma Edge Theory in Fusion Devices
CY SEP 19-21, 2011
CL South Lake Tahoe, CA
DE Edge; plasma; simulation; kinetic; gyrokinetic
AB COGENT is a continuum gyrokinetic code for edge plasmas being developed by the Edge Simulation Laboratory collaboration. The code is distinguished by application of the fourth order conservative discretization, and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. It is written in v?-mu (parallel velocity magnetic moment) velocity coordinates, and making use of the gyrokinetic Poisson equation for the calculation of a self-consistent electric potential. In the present manuscript we report on the implementation and initial testing of a succession of increasingly detailed collision operator options, including a simple drag-diffusion operator in the parallel velocity space, Lorentz collisions, and a linearized model Fokker-Planck collision operator conserving momentum and energy ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
C1 [Dorf, M. A.; Cohen, R. H.; Compton, J. C.; Dorr, M.; Rognlien, T. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Angus, J.; Krasheninnikov, S.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Colella, P.; Martin, D.; McCorquodale, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Dorf, MA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM dorf1@llnl.gov
FU U.S. Department of Energy at Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy at Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344.
NR 10
TC 4
Z9 4
U1 1
U2 9
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0863-1042
EI 1521-3986
J9 CONTRIB PLASM PHYS
JI Contrib. Plasma Phys.
PD JUN
PY 2012
VL 52
IS 5-6
SI SI
BP 518
EP 522
DI 10.1002/ctpp.201210042
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA 965GD
UT WOS:000305754400035
ER
PT J
AU Guo, Z
Tang, XZ
AF Guo, Z.
Tang, X. -Z.
TI Heat Flux Dependence of Ambipolar Potential and Plasma Profile in a Long
Mean-Free-Path Plasma Along Non-Uniform Open Magnetic Field Lines
SO CONTRIBUTIONS TO PLASMA PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Workshop on Plasma Edge Theory in Fusion Devices
CY SEP 19-21, 2011
CL South Lake Tahoe, CA
DE Heat flux; parallel transport; ambipolar potential; anisotropy; long
mean-free-path; open magnetic field line; mirror force
ID HYDROMAGNETIC EQUATIONS; COLLISIONLESS
AB Parallel transport along an open magnetic field line produces and sustains temperature anisotropy for a long mean-free-path plasma. The parallel variation of ambipolar potential (F) and plasma profiles such as density (n), parallel and perpendicular temperature (T? and T?), and parallel flow (u), is found to be critically dependent on the two distinct components of the parallel heat flux, qn and qs. Both their profile (qn/B and qs/B2) and the upstream values of the ratio of the conductive and convective thermal flux (qn/nuT? and qs/nuT?) provide the controlling physics, in addition to B modulation ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
C1 [Guo, Z.; Tang, X. -Z.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Guo, Z (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM guo@lanl.gov
RI guo, zehua/E-4454-2014
FU Department of Energy Office of Fusion Energy Sciences
[DE-AC52-06NA25396]
FX We wish to thank Herb Berk for useful discussions and Department of
Energy Office of Fusion Energy Sciences for support under contract
DE-AC52-06NA25396.
NR 11
TC 1
Z9 1
U1 0
U2 3
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0863-1042
EI 1521-3986
J9 CONTRIB PLASM PHYS
JI Contrib. Plasma Phys.
PD JUN
PY 2012
VL 52
IS 5-6
SI SI
BP 523
EP 528
DI 10.1002/ctpp.201210043
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA 965GD
UT WOS:000305754400036
ER
PT J
AU Cohen, RH
Dorf, M
Dorr, M
AF Cohen, R. H.
Dorf, M.
Dorr, M.
TI Reduced Electron Models for Edge Simulation
SO CONTRIBUTIONS TO PLASMA PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Workshop on Plasma Edge Theory in Fusion Devices
CY SEP 19-21, 2011
CL South Lake Tahoe, CA
DE Edge plasma; simulation; kinetic
AB We consider the treatment of electrons in kinetic simulations of edge plasmas. A fully kinetic treatment of electrons is expensive because of the short timescales associated with rapid streaming along field lines. Hence we survey a number of reduced options, of varying complexity, with particular attention to the adiabatic model commonly used for core plasmas. We note that the adiabatic model is the linear limit of a Boltzmann model, whose nonlinear form is more appropriate for the large potential variations in edge plasmas, and then consider extensions to the Boltzmann model which render it applicable to a plasma which includes end-loss in the scrape-off layer ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
C1 [Cohen, R. H.; Dorf, M.; Dorr, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Cohen, RH (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA.
EM rcohen@llnl.gov
FU U.S. Department of Energy at Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX The authors thank D. Ryutov for a proofreading of and comments on the
manuscript. This work was performed under the auspices of the U.S.
Department of Energy at Lawrence Livermore National Laboratory under
contract DE-AC52-07NA27344.
NR 7
TC 1
Z9 1
U1 0
U2 2
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0863-1042
EI 1521-3986
J9 CONTRIB PLASM PHYS
JI Contrib. Plasma Phys.
PD JUN
PY 2012
VL 52
IS 5-6
SI SI
BP 529
EP 533
DI 10.1002/ctpp.201210044
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA 965GD
UT WOS:000305754400037
ER
PT J
AU Ryutov, DD
Cohen, RH
Rognlien, TD
Umansky, MV
AF Ryutov, D. D.
Cohen, R. H.
Rognlien, T. D.
Umansky, M. V.
TI Plasma Convection Near the Magnetic Null of a Snowflake Divertor During
an ELM Event
SO CONTRIBUTIONS TO PLASMA PHYSICS
LA English
DT Article
DE Tokamak; Snowflake divertor; ELM; Heat exhaust
ID PEDESTAL
AB A snowflake magnetic configuration is created in a tokamak when the poloidal magnetic field and its first spatial derivatives become zero at a certain point. The separatrix then acquires a characteristic hexagonal shape reminiscent of a snowflake. We study new features of the plasma macroscopic equilibrium and stability in the vicinity of the snowflake null. We note that, compared to the standard X-point divertor, the zone of weak poloidal magnetic field is much larger. The weak poloidal field leads to development of intense plasma convection over the expanded area around the null-point during the ejection phase of an edge localized mode (ELM) event when the plasma pressure in the scrape-off layer increases compared to its inter-ELM value. Intense convection may lead to a roughly-equal splitting of the heat flux between the 4 snowflake divertor legs and to a broadening of the plasma wetted area in each leg, thereby mitigating damage to divertor plates ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
C1 [Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM ryutov1@llnl.gov
FU U.S. DoE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
FX The authors are grateful to V. Soukhanovskii (NSTX) and to the members
of a TCV team for helpful discussions. This work was performed for U.S.
DoE by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 17
TC 19
Z9 19
U1 1
U2 5
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0863-1042
J9 CONTRIB PLASM PHYS
JI Contrib. Plasma Phys.
PD JUN
PY 2012
VL 52
IS 5-6
SI SI
BP 539
EP 543
DI 10.1002/ctpp.201210046
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA 965GD
UT WOS:000305754400039
ER
PT J
AU Beckham, GT
Dai, ZY
Matthews, JF
Momany, M
Payne, CM
Adney, WS
Baker, SE
Himmel, ME
AF Beckham, Gregg T.
Dai, Ziyu
Matthews, James F.
Momany, Michelle
Payne, Christina M.
Adney, William S.
Baker, Scott E.
Himmel, Michael E.
TI Harnessing glycosylation to improve cellulase activity
SO CURRENT OPINION IN BIOTECHNOLOGY
LA English
DT Review
ID CARBOHYDRATE-BINDING MODULE; TRICHODERMA-REESEI CELLULASES;
CELLOBIOHYDROLASE-I; HYPOCREA-JECORINA; O-GLYCOSYLATION; PROCESSIVE
CELLULASE; MUTATIONAL ANALYSIS; MULTIPLE FUNCTIONS; PICHIA-PASTORIS;
N-GLYCOSYLATION
AB Cellulases and hemicellulases are responsible for the turnover of plant cell wall polysaccharides in the biosphere, and thus form the foundation of enzyme engineering efforts in biofuels research. Many of these carbohydrate-active enzymes from filamentous fungi contain both N-linked and O-linked glycosylation, the extent and heterogeneity of which depends on growth conditions, expression host, and the presence of glycan trimming enzymes in the secretome, all of which in turn impact enzyme activity. As the roles of glycosylation in enzyme function have not been fully elucidated, here we discuss the potential roles of glycosylation on glycoside hydrolase enzyme structure and function after secretion. We posit that glycosylation, instead of hindering cellulase engineering, can be used as an additional tool to enhance enzyme activity, given deeper understanding of its molecular-level role in biomass deconstruction.
C1 [Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA.
[Beckham, Gregg T.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA.
[Dai, Ziyu; Baker, Scott E.] Pacific NW Natl Lab, Chem & Biol Proc Dev Grp, Richland, WA 99352 USA.
[Matthews, James F.; Payne, Christina M.; Adney, William S.; Himmel, Michael E.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO USA.
[Momany, Michelle] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA.
RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA.
EM gregg.beckham@nrel.gov
RI Payne, Christina/C-7338-2011; Momany, Michelle/L-2327-2016;
OI Payne, Christina/0000-0001-5264-0964; Momany,
Michelle/0000-0001-7110-063X
FU U.S. Department of Energy Office of the Biomass Program; Bioenergy
Systems Research Initiative at the University of Georgia [BSRI1104]
FX GTB, ZD, JFM, CMP, WSA, SEB, and MEH thank the U.S. Department of Energy
Office of the Biomass Program for funding. MM acknowledges award
BSRI1104 from the Bioenergy Systems Research Initiative at the
University of Georgia.
NR 52
TC 48
Z9 48
U1 6
U2 75
PU CURRENT BIOLOGY LTD
PI LONDON
PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND
SN 0958-1669
J9 CURR OPIN BIOTECH
JI Curr. Opin. Biotechnol.
PD JUN
PY 2012
VL 23
IS 3
BP 338
EP 345
DI 10.1016/j.copbio.2011.11.030
PG 8
WC Biochemical Research Methods; Biotechnology & Applied Microbiology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
GA 966UE
UT WOS:000305862100008
PM 22186222
ER
PT J
AU Kontur, WS
Noguera, DR
Donohue, TJ
AF Kontur, Wayne S.
Noguera, Daniel R.
Donohue, Timothy J.
TI Maximizing reductant flow into microbial H-2 production
SO CURRENT OPINION IN BIOTECHNOLOGY
LA English
DT Review
ID METABOLIC-FLUX ANALYSIS; FERMENTATIVE HYDROGEN-PRODUCTION;
ESCHERICHIA-COLI STRAINS; CHLAMYDOMONAS-REINHARDTII;
RHODOBACTER-SPHAEROIDES; BIOHYDROGEN PRODUCTION; PHOTOSYSTEM-I;
ELECTRON-TRANSPORT; LIGHT; DARK
AB Developing microbes into a sustainable source of hydrogen gas (H-2) will require maximizing intracellular reductant flow toward the H-2-producing enzymes. Recent attempts to increase H-2 production in dark fermentative bacteria include increasing oxidation of organic substrates through metabolic engineering and expression of exogenous hydrogenases. In photofermentative bacteria, H-2 production can be increased by minimizing reductant flow into competing pathways such as biomass formation and the Calvin cycle. One method of directing reductant toward H-2 production being investigated in oxygenic phototrophs, which could potentially be applied to other H-2-producing organisms, is the tethering of electron donors and acceptors, such as hydrogenase and photosystem I, to create new intermolecular electron transfer pathways.
C1 [Kontur, Wayne S.; Donohue, Timothy J.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA.
[Noguera, Daniel R.] Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA.
[Kontur, Wayne S.; Noguera, Daniel R.; Donohue, Timothy J.] US DOE, Great Lakes Bioenergy Res Ctr, Madison, WI USA.
RP Donohue, TJ (reprint author), Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA.
EM tdonohue@bact.wisc.edu
OI Donohue, Timothy/0000-0001-8738-2467
FU Department of Energy, Office of Science, Biological and Environmental
Research [DE-FG02-07ER64495]; Great Lakes Bioenergy Research Center
[DE-FC02-07ER64494]
FX This work was funded partly by the Department of Energy, Office of
Science, Biological and Environmental Research (DE-FG02-07ER64495) and
the Great Lakes Bioenergy Research Center (DE-FC02-07ER64494).
NR 56
TC 15
Z9 15
U1 0
U2 24
PU CURRENT BIOLOGY LTD
PI LONDON
PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND
SN 0958-1669
J9 CURR OPIN BIOTECH
JI Curr. Opin. Biotechnol.
PD JUN
PY 2012
VL 23
IS 3
BP 382
EP 389
DI 10.1016/j.copbio.2011.10.003
PG 8
WC Biochemical Research Methods; Biotechnology & Applied Microbiology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
GA 966UE
UT WOS:000305862100012
PM 22036711
ER
PT J
AU Blanch, HW
AF Blanch, Harvey W.
TI Bioprocessing for biofuels
SO CURRENT OPINION IN BIOTECHNOLOGY
LA English
DT Review
ID IONIC LIQUIDS; CORN STOVER; ENZYMATIC SACCHARIFICATION; CRYSTALLINE
CELLULOSE; BIOMASS RECALCITRANCE; MICROBIAL-PRODUCTION;
TRICHODERMA-REESEI; CARBON-MONOXIDE; DILUTE-ACID; ETHANOL
AB While engineering of new biofuels pathways into microbial hosts has received considerable attention, innovations in bioprocessing are required for commercialization of both conventional and next-generation fuels. For ethanol and butanol, reducing energy costs for product recovery remains a challenge. Fuels produced from heterologous aerobic pathways in yeast and bacteria require control of aeration and cooling at large scales. Converting lignocellulosic biomass to sugars for fuels production requires effective biomass pretreatment to increase surface area, decrystallize cellulose and facilitate enzymatic hydrolysis. Effective means to recover microalgae and extract their intracellular lipids remains a practical and economic bottleneck in algal biodiesel production.
C1 Univ Calif Berkeley, Dept Chem & Biomol Engn, Joint BioEnergy Inst, Berkeley, CA 94720 USA.
RP Blanch, HW (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Joint BioEnergy Inst, Berkeley, CA 94720 USA.
EM blanch@berkeley.edu
RI Hu, Xiaojuan/C-4383-2014
FU U.S. Department of Energy, Office of Science, Office of Biological and
Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National
Laboratory; U.S. Department of Energy
FX This work was part of the DOE Joint BioEnergy Institute
(http://www.jbei.org) supported by the U.S. Department of Energy, Office
of Science, Office of Biological and Environmental Research, through
contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory
and the U.S. Department of Energy.
NR 71
TC 22
Z9 22
U1 4
U2 113
PU CURRENT BIOLOGY LTD
PI LONDON
PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND
SN 0958-1669
J9 CURR OPIN BIOTECH
JI Curr. Opin. Biotechnol.
PD JUN
PY 2012
VL 23
IS 3
BP 390
EP 395
DI 10.1016/j.copbio.2011.10.002
PG 6
WC Biochemical Research Methods; Biotechnology & Applied Microbiology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
GA 966UE
UT WOS:000305862100013
PM 22033175
ER
PT J
AU Olson, DG
McBride, JE
Shaw, AJ
Lynd, LR
AF Olson, Daniel G.
McBride, John E.
Shaw, A. Joe
Lynd, Lee R.
TI Recent progress in consolidated bioprocessing
SO CURRENT OPINION IN BIOTECHNOLOGY
LA English
DT Review
ID QUANTITATIVE PROTEOMIC ANALYSIS; STRUCTURE-GUIDED RECOMBINATION; DIRECT
ETHANOL-PRODUCTION; THERMOPHILUM DSM 6725; SACCHAROMYCES-CEREVISIAE;
CLOSTRIDIUM-THERMOCELLUM; TRICHODERMA-REESEI; CELLULOSE HYDROLYSIS;
MICROBIAL-PRODUCTION; CELLOBIOHYDROLASE-I
AB Consolidated bioprocessing, or CBP, the conversion of lignocellulose into desired products in one step without added enzymes, has been a subject of increased research effort in recent years. In this review, the economic motivation for CBP is addressed, advances and remaining obstacles for CBP organism development are reviewed, and we comment briefly on fundamental aspects. For CBP organism development beginning with microbes that have native ability to utilize insoluble components of cellulosic biomass, key recent advances include the development of genetic systems for several cellulolytic bacteria, engineering a thermophilic bacterium to produce ethanol at commercially attractive yields and titers, and engineering a cellulolytic microbe to produce butanol. For CBP organism development, beginning with microbes that do not have this ability and thus requiring heterologous expression of a saccharolytic enzyme system, high-yield conversion of model cellulosic substrates and heterologous expression of CBH1 and CBH2 in yeast at levels believed to be sufficient for an industrial process have recently been demonstrated. For both strategies, increased emphasis on realizing high performance under industrial conditions is needed. Continued exploration of the underlying fundamentals of microbial cellulose utilization is likely to be useful in order to guide the choice and development of CBP systems.
C1 [Olson, Daniel G.; Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA.
[McBride, John E.; Shaw, A. Joe; Lynd, Lee R.] Mascoma Corp, Lebanon, NH 03766 USA.
[Lynd, Lee R.] Dartmouth Coll, Dept Biol, Hanover, NH 03755 USA.
[Olson, Daniel G.; Lynd, Lee R.] BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA.
RP Lynd, LR (reprint author), Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA.
EM Lee.R.Lynd@Dartmouth.EDU
RI Lynd, Lee/N-1260-2013; Olson, Daniel/F-2058-2011
OI Lynd, Lee/0000-0002-5642-668X; Olson, Daniel/0000-0001-5393-6302
FU United States Department of Energy BioEnergy Science Center; Mascoma
Corporation; Office of Biological and Environmental Research in the DOE
Office of Science
FX This work was supported by the United States Department of Energy
BioEnergy Science Center and the Mascoma Corporation. The BioEnergy
Science Center is a U.S. Department of Energy Bioenergy Research Center
supported by the Office of Biological and Environmental Research in the
DOE Office of Science.
NR 79
TC 180
Z9 188
U1 12
U2 138
PU CURRENT BIOLOGY LTD
PI LONDON
PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND
SN 0958-1669
J9 CURR OPIN BIOTECH
JI Curr. Opin. Biotechnol.
PD JUN
PY 2012
VL 23
IS 3
BP 396
EP 405
DI 10.1016/j.copbio.2011.11.026
PG 10
WC Biochemical Research Methods; Biotechnology & Applied Microbiology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
GA 966UE
UT WOS:000305862100014
PM 22176748
ER
PT J
AU Yilmaz, S
Singh, AK
AF Yilmaz, Suzan
Singh, Anup K.
TI Single cell genome sequencing
SO CURRENT OPINION IN BIOTECHNOLOGY
LA English
DT Review
ID MULTIPLE DISPLACEMENT AMPLIFICATION; PHI-29 DNA-POLYMERASE; IN-SITU
HYBRIDIZATION; BACTERIAL-CELLS; ORGANISMS; MICROBIOLOGY; TECHNOLOGIES;
PROTISTS; REVEALS; CLONING
AB Whole genome amplification and next-generation sequencing of single cells have become a powerful approach for studying uncultivated microorganisms that represent 90-99% of all environmental microbes. Single cell sequencing enables not only the identification of microbes but also linking of functions to species, a feat not achievable by metagenomic techniques. Moreover, it allows the analysis of low abundance species that may be missed in community-based analyses. It has also proved very useful in complementing metagenomics in the assembly and binning of single genomes. With the advent of drastically cheaper and higher throughput sequencing technologies, it is expected that single cell sequencing will become a standard tool in studying the genome and transcriptome of microbial communities.
C1 [Yilmaz, Suzan; Singh, Anup K.] Sandia Natl Labs, Dept Bioengn & Biotechnol, Livermore, CA 94551 USA.
RP Singh, AK (reprint author), Sandia Natl Labs, Dept Bioengn & Biotechnol, Livermore, CA 94551 USA.
EM aksingh@sandia.gov
FU NIDCR [R01 DE020891]; NIGMS; U.S. Department of Energy, Office of
Science, Office of Biological and Environmental Research
FX Financial support for preparation and some of the work included was
provided by the grants: R01 DE020891, funded by the NIDCR; P50GM085273
(the New Mexico Spatiotemporal Modeling Center) funded by the NIGMS; and
ENIGMA, a Lawrence Berkeley National Laboratory Scientific Focus Area
Program supported by the U.S. Department of Energy, Office of Science,
Office of Biological and Environmental Research. Sandia is a multi
program laboratory operated by Sandia Corp., a Lockheed Martin Co., for
the United States Department of Energy under Contract DE-AC04-94AL85000.
NR 46
TC 24
Z9 27
U1 4
U2 70
PU CURRENT BIOLOGY LTD
PI LONDON
PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND
SN 0958-1669
J9 CURR OPIN BIOTECH
JI Curr. Opin. Biotechnol.
PD JUN
PY 2012
VL 23
IS 3
BP 437
EP 443
DI 10.1016/j.copbio.2011.11.018
PG 7
WC Biochemical Research Methods; Biotechnology & Applied Microbiology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
GA 966UE
UT WOS:000305862100020
PM 22154471
ER
PT J
AU Chakraborty, R
Wu, CH
Hazen, TC
AF Chakraborty, Romy
Wu, Cindy H.
Hazen, Terry C.
TI Systems biology approach to bioremediation
SO CURRENT OPINION IN BIOTECHNOLOGY
LA English
DT Review
ID IN-SITU BIOREMEDIATION; 16S RIBOSOMAL-RNA; MICROBIAL COMMUNITIES;
NATURAL ATTENUATION; CONTAMINATED SOIL; ENVIRONMENTAL-SAMPLES; DEGRADING
BACTERIA; CLONE LIBRARY; URANIUM; GROUNDWATER
AB Bioremediation has historically been approached as a 'black box' in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the 'black box'.
C1 [Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA.
[Hazen, Terry C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37966 USA.
[Hazen, Terry C.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37966 USA.
[Hazen, Terry C.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.
RP Hazen, TC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA.
EM tchazen@utk.edu
RI Chakraborty, Romy/D-9230-2015; Hazen, Terry/C-1076-2012
OI Chakraborty, Romy/0000-0001-9326-554X; Hazen, Terry/0000-0002-2536-9993
NR 66
TC 22
Z9 23
U1 4
U2 63
PU CURRENT BIOLOGY LTD
PI LONDON
PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND
SN 0958-1669
J9 CURR OPIN BIOTECH
JI Curr. Opin. Biotechnol.
PD JUN
PY 2012
VL 23
IS 3
BP 483
EP 490
DI 10.1016/j.copbio.20.12.01.015
PG 8
WC Biochemical Research Methods; Biotechnology & Applied Microbiology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
GA 966UE
UT WOS:000305862100026
PM 22342400
ER
PT J
AU Lamendella, R
VerBerkmoes, N
Jansson, JK
AF Lamendella, Regina
VerBerkmoes, Nathan
Jansson, Janet K.
TI 'Omics' of the mammalian gut - new insights into function
SO CURRENT OPINION IN BIOTECHNOLOGY
LA English
DT Review
ID NECROTIZING ENTEROCOLITIS; FECAL MICROBIOTA; METAGENOMICS; METABOLISM;
PROFILES; OBESITY; TWINS; DIET; DIVERSITY; EVOLUTION
AB To understand the role of gut microbes in host health, it is imperative to probe their genetic potential, expression, and ecological status. The current high-throughput sequencing revolution, in addition to advances in mass spectrometry-based proteomics, have recently enabled deep access to these complex environments, and are revealing important insights into the roles of the gastrointestinal (GI) microbiota in host physiology and health. This review discusses examples of how the integration of cutting-edge 'meta-omics' technologies are providing new knowledge about the relationships between host health status in mammals and the microbes inhabiting the GI tract. In addition, we address some promises that these techniques hold for future therapeutic and diagnostic applications.
C1 [Lamendella, Regina; Jansson, Janet K.] Lawrence Berkley Natl Lab, Berkeley, CA 92597 USA.
[VerBerkmoes, Nathan] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
[Jansson, Janet K.] Joint Genome Inst, Walnut Creek, CA 94598 USA.
[Jansson, Janet K.] Joint BioEnergy Inst, Emeryville, CA 94608 USA.
[Jansson, Janet K.] Joint BioEnergy Inst, Berkeley, CA 94720 USA.
RP Jansson, JK (reprint author), Lawrence Berkley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 92597 USA.
EM JRJansson@lbl.gov
FU National Institutes of Health [UH2DK083991]; National Institute of
Allergy and Infectious Diseases [U19 AI082655]; US Department of Energy
EO Lawrence Fellowship [USDOE301931]
FX This study was funded partly by National Institutes of Health grants
UH2DK083991 (Human Microbiome Program) and National Institute of Allergy
and Infectious Diseases U19 AI082655 (Cooperative Center for
Translational Research in Human Immunology and Biodefense; CCHI), and US
Department of Energy EO Lawrence Fellowship to R.L. (USDOE301931). The
content is solely the responsibility of the authors and does not
necessarily represent the official views of the NIAID or the NIH.
NR 54
TC 17
Z9 17
U1 3
U2 52
PU CURRENT BIOLOGY LTD
PI LONDON
PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND
SN 0958-1669
J9 CURR OPIN BIOTECH
JI Curr. Opin. Biotechnol.
PD JUN
PY 2012
VL 23
IS 3
BP 491
EP 500
DI 10.1016/j.copbio.2012.01.016
PG 10
WC Biochemical Research Methods; Biotechnology & Applied Microbiology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
GA 966UE
UT WOS:000305862100027
PM 22626866
ER
PT J
AU Dey, S
Maiti, AK
Hegde, ML
Hegde, PM
Boldogh, I
Sarkar, PS
Abdel-Rahman, SZ
Sarker, AH
Hang, B
Xie, JW
Tomkinson, AE
Zhou, MA
Shen, BH
Wang, GH
Wu, C
Yu, DK
Lin, DX
Cardenas, V
Hazra, TK
AF Dey, Sanjib
Maiti, Amit K.
Hegde, Muralidhar L.
Hegde, Pavana M.
Boldogh, Istvan
Sarkar, Partha S.
Abdel-Rahman, Sherif Z.
Sarker, Altaf H.
Hang, Bo
Xie, Jingwu
Tomkinson, Alan E.
Zhou, Mian
Shen, Binghui
Wang, Guanghai
Wu, Chen
Yu, Dianke
Lin, Dongxin
Cardenas, Victor
Hazra, Tapas K.
TI Increased risk of lung cancer associated with a functionally impaired
polymorphic variant of the human DNA glycosylase NEIL2
SO DNA REPAIR
LA English
DT Article
DE BER; Lung cancer; NEIL2; SNP
ID BASE EXCISION-REPAIR; ESCHERICHIA-COLI; OXIDIZED BASES; TRANSCRIPTIONAL
MUTAGENESIS; ENDONUCLEASE-VIII; SENSITIVE METHOD; MAMMALIAN-CELLS;
DAMAGE; IDENTIFICATION; EXPRESSION
AB Human NEIL2, one of five oxidized base-specific DNA glycosylases, is unique in preferentially repairing oxidative damage in transcribed genes. Here we show that depletion of NEIL2 causes a 6-7-fold increase in spontaneous mutation frequency in the HPRT gene of the V79 Chinese hamster lung cell line. This prompted us to screen for NEIL2 variants in lung cancer patients' genomic DNA. We identified several polymorphic variants, among which R103Q and R257L were frequently observed in lung cancer patients. We then characterized these variants biochemically, and observed a modest decrease in DNA glycosylase activity relative to the wild type (WT) only with the R257L mutant protein. However, in reconstituted repair assays containing WT NEIL2 or its R257L and R103Q variants together with other DNA base excision repair (BER) proteins (PNKP, Pol beta, Lig III alpha and XRCC1) or using NEIL2-FLAG immunocomplexes, an similar to 5-fold decrease in repair was observed with the R257L variant compared to WT or R103Q NEIL2, apparently due to the R257L mutant's lower affinity for other repair proteins, particularly Pol beta. Notably, increased endogenous DNA damage was observed in NEIL2 variant (R257L)-expressing cells relative to WT cells. Taken together, our results suggest that the decreased DNA repair capacity of the R257L variant can induce mutations that lead to lung cancer development. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Hazra, Tapas K.] Univ Texas Med Branch, Dept Internal Med, Div Pulm & Crit Care Med, Galveston, TX 77555 USA.
[Hegde, Muralidhar L.; Hegde, Pavana M.; Hazra, Tapas K.] Univ Texas Med Branch, Dept Biochem & Mol Biol, Galveston, TX 77555 USA.
[Boldogh, Istvan] Univ Texas Med Branch, Dept Microbiol & Immunol, Galveston, TX 77555 USA.
[Sarkar, Partha S.] Univ Texas Med Branch, Dept Neurol & Neurosci & Cell Biol, Galveston, TX 77555 USA.
[Abdel-Rahman, Sherif Z.] Univ Texas Med Branch, Dept Obstet & Gynecol, Galveston, TX 77555 USA.
[Sarker, Altaf H.; Hang, Bo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Xie, Jingwu] Indiana Univ Purdue Univ, Dept Pediat, Indianapolis, IN 46202 USA.
[Tomkinson, Alan E.] Univ New Mexico, Ctr Canc, Albuquerque, NM 87131 USA.
[Tomkinson, Alan E.] Dept Internal Med, Albuquerque, NM USA.
[Zhou, Mian; Shen, Binghui] City Hope Natl Med Ctr, Dept Canc Biol, Duarte, CA USA.
[Wang, Guanghai; Wu, Chen; Yu, Dianke; Lin, Dongxin] Chinese Acad Med Sci, Inst Canc, State Key Lab Mol Oncol, Beijing 100021, Peoples R China.
RP Hazra, TK (reprint author), Univ Texas Med Branch, Dept Internal Med, Div Pulm & Crit Care Med, 6-136 Med Res Bldg, Galveston, TX 77555 USA.
EM tkhazra@utmb.edu
OI Dixit, Pavana/0000-0003-0811-3942; Hegde, Muralidhar/0000-0001-7333-8123
FU USPHS [CA102271, ES017353, CA81063, ES 012512, CA92584, CA94160,
R21CA143583]
FX This research was supported by USPHS grants CA102271 and ES017353 (TKH),
and CA81063 (Sankar Mitra), and ES 012512 and CA92584 (AET), CA94160
(JX) and R21CA143583 (BS). We acknowledge the generous help of Drs.
Chandrasekha Yallampalli for allowing us to use Fluorescent Microscope
and Michael Weinfeld for giving us PNKP Ab. We thank Dr. David Konkel
for critically editing this manuscript.
NR 51
TC 16
Z9 16
U1 2
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1568-7864
J9 DNA REPAIR
JI DNA Repair
PD JUN 1
PY 2012
VL 11
IS 6
BP 570
EP 578
DI 10.1016/j.dnarep.2012.03.005
PG 9
WC Genetics & Heredity; Toxicology
SC Genetics & Heredity; Toxicology
GA 964DR
UT WOS:000305674400005
PM 22497777
ER
PT J
AU Glebov, BL
Simmons-Potter, K
Fox, BP
Meister, DC
AF Glebov, Boris L.
Simmons-Potter, Kelly
Fox, Brian P.
Meister, Dorothy C.
TI Improved Hardness of Single-Crystal Nd3+:YAG to Ionizing Radiation via
Co-Doping with Cr3+
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Chromium neodymium YAG; gamma; neodymium YAG; photodarkening;
radiation-hardened; transient radiation-induced absorption; YAG laser
material
ID YTTRIUM ALUMINUM GARNET; COLOR-CENTERS; YAG CRYSTALS; ND-YAG; LASER
CRYSTALS; IRRADIATION; ABSORPTION; FLUORESCENCE; PERFORMANCE; SPECTRA
AB The proliferation of optical elements in systems that are subject to harsh ionizing radiation environments prompts the need for commercially available radiation-hard materials, such as laser materials. In the present study, changes in the material optical absorption are compared for a suite of single-crystal YAG, Nd3+ : YAG, and Cr3+, Nd3+ : YAG laser materials in response to high-dose-rate gamma radiation events. It is found that the addition of Cr3+ yields radiation hardened material.
C1 [Glebov, Boris L.; Simmons-Potter, Kelly; Fox, Brian P.] Univ Arizona, Tucson, AZ 85721 USA.
[Meister, Dorothy C.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Glebov, BL (reprint author), Univ Arizona, Tucson, AZ 85721 USA.
EM bpf@email.arizona.edu
FU University of Arizona; State of Arizona TRIF; Sandia National
Laboratories [DE-AC04-94AL85000]; Sandia National Laboratories; United
States Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX This work was supported in part by the University of Arizona and the
State of Arizona TRIF funds and in part by Sandia National Laboratories,
under Contract DE-AC04-94AL85000.; This work was jointly supported by
the University of Arizona, State of Arizona TRIF Optics Initiative
funding and by Sandia National Laboratories. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company for
the United States Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000.
NR 25
TC 0
Z9 0
U1 1
U2 18
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
EI 1558-1578
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD JUN
PY 2012
VL 59
IS 3
BP 612
EP 618
DI 10.1109/TNS.2012.2190746
PN 2
PG 7
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA 962VS
UT WOS:000305576100005
ER
PT J
AU Rafiei, R
Boardman, D
Sarbutt, A
Prokopovich, DA
Kim, K
Reinhard, MI
Bolotnikov, AE
James, RB
AF Rafiei, R.
Boardman, D.
Sarbutt, A.
Prokopovich, D. A.
Kim, K.
Reinhard, M. I.
Bolotnikov, A. E.
James, R. B.
TI Investigation of the Charge Collection Efficiency of CdMnTe Radiation
Detectors
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Alpha particle spectroscopy; CdMnTe; charge collection efficiency; CMT;
crystal growth; detector fabrication; IBIC; mobility-lifetime;
semiconductor radiation detector; Te inclusions
ID DILUTED MAGNETIC SEMICONDUCTORS; GAMMA-RAY DETECTORS; X-RAY; CDZNTE;
CDTE; CRYSTALS; GROWTH; RESISTIVITY; CD1-XMNXTE
AB This paper presents the growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe) crystals grown by the vertical Bridgman technique. The 10 x 10 x 1.9 mm(3) samples have been fabricated, and the charge collection properties of the CdMnTe detectors have been measured. Alpha-particle spectroscopy measurements have yielded an average charge collection efficiency approaching 100%. Ion beam induced charge (IBIC) measurements have been performed by raster scanning focused 5.5 MeV He-4 beams onto the detectors. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of Te inclusions within the detector bulk, and the reduction in charge collection efficiency in their locality has been quantified. It has been shown that the role of Te inclusions in degrading charge collection is reduced with increasing values of bias voltage. IBIC measurements for a range of low biases have highlighted the evolution of the charge collection uniformity across the detectors.
C1 [Rafiei, R.; Boardman, D.; Sarbutt, A.; Prokopovich, D. A.; Reinhard, M. I.] Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia.
[Kim, K.; Bolotnikov, A. E.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Rafiei, R (reprint author), Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia.
EM ramin.rafiei@ansto.gov.au
FU Cooperative Research Centre for Biomedical Imaging Development
FX This work was supported in part by the Cooperative Research Centre for
Biomedical Imaging Development. This work was performed in part at the
ACT node of the Australian National Fabrication Facility. A company
established under the National Collaborative Research Infrastructure
Strategy to provide nano and microfabrication facilities for Australia's
researchers.
NR 32
TC 3
Z9 4
U1 1
U2 17
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD JUN
PY 2012
VL 59
IS 3
BP 634
EP 641
DI 10.1109/TNS.2012.2190941
PN 2
PG 8
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA 962VS
UT WOS:000305576100008
ER
PT J
AU Anton, SR
Erturk, A
Inman, DJ
AF Anton, Steven R.
Erturk, Alper
Inman, Daniel J.
TI Bending Strength of Piezoelectric Ceramics and Single Crystals for
Multifunctional Load-Bearing Applications
SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL
LA English
DT Article
ID PZT; DEFORMATION; ACTUATORS; COMPOSITE; BEHAVIOR
AB The topic of multifunctional material systems using active or smart materials has recently gained attention in the research community. Multifunctional piezoelectric systems present the ability to combine multiple functions into a single active piezoelectric element, namely, combining sensing, actuation, or energy conversion ability with load-bearing capacity. Quantification of the bending strength of various piezoelectric materials is, therefore, critical in the development of load-bearing piezoelectric systems. Three-point bend tests are carried out on a variety of piezoelectric ceramics including soft monolithic piezoceramics (PZT-5A and PZT-5H), hard monolithic ceramics (PZT-4 and PZT-8), single-crystal piezoelectrics (PMN-PT and PMN-PZT), and commercially packaged composite devices (which contain active PZT-5A layers). A common 3-point bend test procedure is used throughout the experimental tests. The bending strengths of these materials are found using Euler-Bernoulli beam theory to be 44.9 MPa for PMN-PZT, 60.6 MPa for PMN-PT, 114.8 MPa for PZT-5H, 123.2 MPa for PZT-4, 127.5 MPa for PZT-8, 140.4 MPa for PZT-5A, and 186.6 MPa for the commercial composite. The high strength of the commercial configuration is a result of the composite structure that allows for shear stresses on the surfaces of the piezoelectric layers, whereas the low strength of the single-crystal materials is due to their unique crystal structure, which allows for rapid propagation of cracks initiating at flaw sites. The experimental bending strength results reported, which are linear estimates without nonlinear ferroelastic considerations, are intended for use in the design of multifunctional piezoelectric systems in which the active device is subjected to bending loads.
C1 [Anton, Steven R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA.
[Erturk, Alper] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA.
[Inman, Daniel J.] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA.
RP Anton, SR (reprint author), Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA.
EM sranton@lanl.gov
RI Erturk, Alper/B-6365-2009
FU Air Force Office of Scientific Research MURI [F9550-06-1-0326]
FX The authors gratefully acknowledge the support of the Air Force Office
of Scientific Research MURI under Grant No. F9550-06-1-0326 "Energy
Harvesting and Storage Systems for Future Air Force Vehicles," monitored
by Dr. B. L. Lee.
NR 33
TC 11
Z9 11
U1 2
U2 33
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-3010
J9 IEEE T ULTRASON FERR
JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control
PD JUN
PY 2012
VL 59
IS 6
BP 1085
EP 1092
DI 10.1109/TUFFC.2012.2299
PG 8
WC Acoustics; Engineering, Electrical & Electronic
SC Acoustics; Engineering
GA 965ID
UT WOS:000305760000002
PM 22711404
ER
PT J
AU Ally, MR
Munk, JD
Baxter, V
Gehl, AC
AF Ally, Moonis R.
Munk, Jeffrey D.
Baxter, Van D.
Gehl, Anthony C.
TI Exergy analysis and operational efficiency of a horizontal ground-source
heat pump system operated in low-energy test house under simulated
occupancy conditions
SO INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID
LA English
DT Article
DE Exergy analysis; Energy analysis; Heat pump; Thermodynamics; R410A;
Renewable energy; Ground source
ID EXCHANGERS
AB This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345 m(2) house whose envelope is made of structural insulated panels. The entire house thermal load with R-SI-3.7 (R-US-21) walls, triple-pane windows (U-factor of 1.64 W m(-2) K (0.29 Btu h(-1) ft(-2) degrees F-1)) and solar heat gain coefficient of 0.25, a roof assembly with overall thermal resistance of about R-SI-8.8 (R-US-50), and low leakage rates of 0.74 ACH at 50 Pa, was satisfied with a 2.16 ton (7.56 kW) GSHP unit. Coefficient of performance is calculated on the basis of the total power input (including duct, ground loop, and control power losses). Exergy analysis provides a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work - the root cause of system inefficiencies and wasted energy. Published by Elsevier Ltd.
C1 [Ally, Moonis R.; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Ally, MR (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,Bldg 3147,MS 6070, Oak Ridge, TN 37831 USA.
EM allymr@ornl.gov
FU UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy;
Tennessee Valley Authority
FX This manuscript has been authored by UT-Battelle, LLC, under Contract
No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains
a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes.; The authors are grateful to
Dr. Bo Shen, Dr. Brian Fricke, and Dr. Som Shrestha, Edward Vineyard,
and Robert DeVault, Oak Ridge National Laboratory, for reviewing this
paper and providing comments to improve its quality. The authors also
thank the U.S Department of Energy and the Tennessee Valley Authority
for supporting this work.
NR 19
TC 9
Z9 9
U1 2
U2 13
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0140-7007
J9 INT J REFRIG
JI Int. J. Refrig.-Rev. Int. Froid
PD JUN
PY 2012
VL 35
IS 4
BP 1092
EP 1103
DI 10.1016/j.ijrefrig.2012.01.013
PG 12
WC Thermodynamics; Engineering, Mechanical
SC Thermodynamics; Engineering
GA 963WI
UT WOS:000305655300035
ER
PT J
AU Krenkova, J
Foret, F
Svec, F
AF Krenkova, Jana
Foret, Frantisek
Svec, Frantisek
TI Less common applications of monoliths: V. Monolithic scaffolds modified
with nanostructures for chromatographic separations and tissue
engineering
SO JOURNAL OF SEPARATION SCIENCE
LA English
DT Review
DE Monolith; Nanoparticles; Separation
ID TUBULAR CAPILLARY ELECTROCHROMATOGRAPHY; PERFORMANCE
LIQUID-CHROMATOGRAPHY; SOLID-PHASE EXTRACTION; POROUS POLYMER MONOLITHS;
WALLED CARBON NANOTUBES; TIME-OF-FLIGHT; DESORPTION/IONIZATION
MASS-SPECTROMETRY; TITANIUM-DIOXIDE NANOPARTICLES; CAPPED GOLD
NANOPARTICLES; ENVIRONMENTAL WATER SAMPLES
AB Scaffolds modified with nanostructures are recently finding use in a broad range of applications spanning from chromatographic separations to tissue engineering. This continuation of the review series on design and applications of monolithic materials covers some of the less common monoliths including use of nanostructures in preparation, modifications, and applications.
C1 [Krenkova, Jana] ASCR, Inst Analyt Chem, Vvi, Brno 60200, Czech Republic.
[Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Krenkova, J (reprint author), ASCR, Inst Analyt Chem, Vvi, Brno 60200, Czech Republic.
EM krenkova@iach.cz; fsvec@lbl.gov
RI Foret, Frantisek/D-9495-2012
FU SoMoPro programme; European Community within the Seventh Framework
Programme [229603]; South Moravian Region; Grant Agency of the Czech
Republic [P301/11/2055, P206/12/G014]; Office of Science, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering,
of the US Department of Energy [DE-AC02-05CH11231]; [AV0Z40310501]
FX The Project is funded from the SoMoPro programme. Research leading to
these results has received a financial contribution from the European
Community within the Seventh Framework Programme (FP/2007-2013) under
Grant Agreement No. 229603. The research is also cofinanced by the South
Moravian Region. Financial support from the Grant Agency of the Czech
Republic (P301/11/2055 and P206/12/G014) and the institutional research
plan (AV0Z40310501) is also acknowledged. F. S. was supported by the
Director, Office of Science, Office of Basic Energy Sciences, Division
of Materials Sciences and Engineering, of the US Department of Energy
under Contract No. DE-AC02-05CH11231.
NR 209
TC 19
Z9 19
U1 2
U2 70
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1615-9306
EI 1615-9314
J9 J SEP SCI
JI J. Sep. Sci.
PD JUN
PY 2012
VL 35
IS 10-11
BP 1266
EP 1283
DI 10.1002/jssc.201100956
PG 18
WC Chemistry, Analytical
SC Chemistry
GA 964KS
UT WOS:000305694100008
PM 22733507
ER
PT J
AU Lee, T
Baskes, MI
Lawson, AC
Chen, SP
Valone, SM
AF Lee, Tongsik
Baskes, Michael I.
Lawson, A. C.
Chen, Shao Ping
Valone, Steven M.
TI Atomistic Modeling of the Negative Thermal Expansion in delta-Plutonium
Based on the Two-State Description
SO MATERIALS
LA English
DT Article
DE plutonium; negative thermal expansion; Invar; Weiss model; modified
embedded atom method; Monte Carlo method
ID EMBEDDED-ATOM POTENTIALS; PHASE-STABILITY; GA ALLOYS; INVAR; PU; IRON;
SIMULATIONS; TRANSITION; ELECTRONS; VALENCE
AB The delta phase of plutonium with the fcc structure exhibits an unusual negative thermal expansion (NTE) over its narrow temperature range of stability, 593-736 K. An accurate description of the anomalous high-temperature volume effect of plutonium goes beyond the current capability of electronic-structure calculations. We propose an atomistic scheme to model the thermodynamic properties of delta-Pu based on the two-state model of Weiss for the Invar alloys, inspired by the simple free-energy analysis previously conducted by Lawson et al. The two-state mechanism is incorporated into the atomistic description of a many-body interacting system. Two modified embedded atom method potentials are employed to represent the binding energies of two competing electronic states in delta-Pu. We demonstrate how the NTE takes place in delta-Pu by means of Monte Carlo simulations implemented with the two-state mechanism.
C1 [Lee, Tongsik; Baskes, Michael I.; Lawson, A. C.; Chen, Shao Ping; Valone, Steven M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Baskes, Michael I.] Univ Calif San Diego, Jacobs Sch Engn, La Jolla, CA 92093 USA.
RP Lee, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM tongsik_lee@lanl.gov; baskes@lanl.gov; aclawson@cybermesa.com;
sc@lanl.gov; smv@lanl.gov
FU U.S. Department of Energy, National Nuclear Security Agency, by the Los
Alamos National Laboratory [DE-AC52-06NA25396]
FX T. L. is grateful to Graeme Ackland, Alfredo Caro, Jim Doll, Olle
Eriksson, Jim Gubernatis, Keonwook Kang, and Toshio Yokoyama for
stimulating discussions. This work was performed under the auspices of
the U.S. Department of Energy, National Nuclear Security Agency, by the
Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.
NR 54
TC 3
Z9 3
U1 1
U2 33
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 1996-1944
J9 MATERIALS
JI Materials
PD JUN
PY 2012
VL 5
IS 6
BP 1040
EP 1054
DI 10.3390/ma5061040
PG 15
WC Materials Science, Multidisciplinary
SC Materials Science
GA 965XD
UT WOS:000305800000003
ER
PT J
AU Gaillard, MK
AF Gaillard, Mary K.
TI BRST invariant PV regularization of SUSY Yang-Mills and SUGRA
SO PRAMANA-JOURNAL OF PHYSICS
LA English
DT Article
DE Supersymmetry; supergravity; Pauli-Villars regulation; anomalies;
quantum field theory
ID PAULI-VILLARS REGULARIZATION; SOFT SUPERSYMMETRY BREAKING; DEPENDENT
GAUGE COUPLINGS; HIGGS-KIBBLE MODEL; ONE-LOOP; FIELD-THEORIES; CHIRAL
MATTER; STRING THEORY; D-TERMS; SUPERGRAVITY
AB Pauli-Villars regularization of Yang Mills theories and of supergravity theories is outlined, with an emphasis on BRST invariance. Applications to phenomenology and the anomaly structure of supergravity are discussed.
C1 [Gaillard, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA.
[Gaillard, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA.
RP Gaillard, MK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA.
EM mkgaillard@lbl.gov
FU Office of Science, Office of High Energy and Nuclear Physics, Division
of High Energy Physics of the U.S. Department of Energy
[DE-AC02-05CH11231]; National Science Foundation [PHY-0457315]
FX This work was supported in part by the Director, Office of Science,
Office of High Energy and Nuclear Physics, Division of High Energy
Physics of the U.S. Department of Energy under Contract
DE-AC02-05CH11231, in part by the National Science Foundation under
grant PHY-0457315.
NR 44
TC 2
Z9 2
U1 0
U2 0
PU INDIAN ACAD SCIENCES
PI BANGALORE
PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA
SN 0304-4289
J9 PRAMANA-J PHYS
JI Pramana-J. Phys.
PD JUN
PY 2012
VL 78
IS 6
SI SI
BP 875
EP 890
DI 10.1007/s12043-012-0314-5
PG 16
WC Physics, Multidisciplinary
SC Physics
GA 964TQ
UT WOS:000305720000005
ER
PT J
AU Manes, J
Stora, R
Zumino, B
AF Manes, Juan
Stora, Raymond
Zumino, Bruno
TI Algebraic study of chiral anomalies
SO PRAMANA-JOURNAL OF PHYSICS
LA English
DT Article
DE Chiral anomalies; gauge theories; bundles; connections; quantum field
theory
ID GRAVITATIONAL ANOMALIES; WARD IDENTITIES; DIFFERENTIAL GEOMETRY; HIGHER
DIMENSIONS; GAUGE; COHOMOLOGY; CONSTRUCTION; LAGRANGIANS
AB The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. Some of the techniques used in the study of the anomaly are improved or generalized, including a systematic way of generating towers of 'descent equations'.
C1 [Manes, Juan; Zumino, Bruno] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Stora, Raymond] LAPP, Annecy Le Vieux, France.
[Zumino, Bruno] Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA.
RP Zumino, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM bzumino@lbl.gov
FU Office of Energy Research, Office of High Energy and Nuclear Physics,
Division of High Energy Physics of the US Department of Energy
[DE-AC03-76SF00098]; National Science Foundation [PHY81-18547]
FX This work was supported in part by the Director, Office of Energy
Research, Office of High Energy and Nuclear Physics, Division of High
Energy Physics of the US Department of Energy under contract
DE-AC03-76SF00098 and in part by the National Science Foundation under
research grant PHY81-18547.
NR 37
TC 0
Z9 0
U1 0
U2 0
PU INDIAN ACAD SCIENCES
PI BANGALORE
PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA
SN 0304-4289
J9 PRAMANA-J PHYS
JI Pramana-J. Phys.
PD JUN
PY 2012
VL 78
IS 6
SI SI
BP 907
EP 925
DI 10.1007/s12043-012-0316-3
PG 19
WC Physics, Multidisciplinary
SC Physics
GA 964TQ
UT WOS:000305720000008
ER
PT J
AU Yuan, J
Wei, BY
Lipton, MS
Gao, HC
AF Yuan, Jie
Wei, Buyun
Lipton, Mary S.
Gao, Haichun
TI Impact of ArcA loss in Shewanella oneidensis revealed by comparative
proteomics under aerobic and anaerobic conditions
SO PROTEOMICS
LA English
DT Article
DE Aerobic and anaerobic; ArcA; Microbiology; Peptide utilization;
Shewanella oneidensis
ID ESCHERICHIA-COLI; POSTTRANSCRIPTIONAL REGULATION; HYPOTHETICAL PROTEINS;
STRAIN MR-1; EXPRESSION; IDENTIFICATION; RESPIRATION; REDUCTION;
SEQUENCE; SYSTEMS
AB Shewanella inhabit a wide variety of niches in nature and can utilize a broad spectrum of electron acceptors under anaerobic conditions. How they modulate their gene expression to adapt is poorly understood. ArcA, homologue of a global regulator controlling hundreds of genes involved in aerobic and anaerobic respiration in E. coli, was shown to be important in aerobiosis/anaerobiosis of S. oneidensis as well. Loss of ArcA, in addition to altering transcription of many genes, resulted in impaired growth under aerobic condition, which was not observed in E. coli. To further characterize the impact of ArcA loss on gene expression on the level of proteome under aerobic and anaerobic conditions, liquid-chromatography-mass-spectrometry (LC-MS) based proteomic approach was employed. Results show that ArcA loss led to globally altered gene expression, generally consistent with that observed with transcripts. Comparison of transcriptomic and proteomic data permitted identification of 17 high-confidence ArcA targets. Moreover, our data indicate that ArcA is required for regulation of cytochrome c proteins, and the menaquinone level may play a role in regulating ArcA as in E. coli. Proteomic data-guided growth assay revealed that the aerobic growth defect of ArcA mutant is presumably due to impaired peptide utilization.
C1 [Yuan, Jie; Wei, Buyun; Gao, Haichun] Zhejiang Univ, Inst Microbiol, Hangzhou 310058, Zhejiang, Peoples R China.
[Yuan, Jie; Wei, Buyun; Gao, Haichun] Zhejiang Univ, Coll Life Sci, Hangzhou 310058, Zhejiang, Peoples R China.
[Lipton, Mary S.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Lipton, Mary S.] Univ Wisconsin, US Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI USA.
RP Gao, HC (reprint author), Zhejiang Univ, Inst Microbiol, Hangzhou 310058, Zhejiang, Peoples R China.
EM haichung@zju.edu.cn
RI Gao, Haichun/A-2160-2014
FU Major State Basic Research Development Program (973 Program)
[2010CB833803]; National Natural Science Foundation of China [30870032];
Major Program of Science and Technology Department of Zhejiang
[2009C12061]; Fundamental Research Funds for the Central Universities;
Zhejiang RD program [2009R50G2010001]
FX This research was supported by Major State Basic Research Development
Program (973 Program: 2010CB833803), National Natural Science Foundation
of China (30870032), Major Program of Science and Technology Department
of Zhejiang (grant number 2009C12061), the Fundamental Research Funds
for the Central Universities to HG; and by Zhejiang R&D program
(2009R50G2010001) to JY.
NR 49
TC 9
Z9 9
U1 2
U2 16
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1615-9853
J9 PROTEOMICS
JI Proteomics
PD JUN
PY 2012
VL 12
IS 12
BP 1957
EP 1969
DI 10.1002/pmic.201100651
PG 13
WC Biochemical Research Methods; Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 965UQ
UT WOS:000305793200008
PM 22623420
ER
PT J
AU Li, X
Mupondwa, E
Panigrahi, S
Tabil, L
Sokhansanj, S
Stumborg, M
AF Li, Xue
Mupondwa, Edmund
Panigrahi, Satya
Tabil, Lope
Sokhansanj, Shahab
Stumborg, Mark
TI A review of agricultural crop residue supply in Canada for cellulosic
ethanol production
SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS
LA English
DT Review
DE Crop production; Straw yield; Available straw; Cellulosic bioethanol;
Canada
ID CORN STOVER; REMOVAL; BIOETHANOL; IMPACT
AB This paper estimates the availability of agricultural crop residue feedstocks in Canada for cellulosic ethanol production. Canada's major field crops generate 100.6 million dry mega grams (Mg) of crops per year while non-forage crops produce 67 million dry Mg, leaving abundant agricultural residues for use as second generation feedstock for cellulosic ethanol production. This study used crop production and livestock data from Statistics Canada for a 10-year period (2001-2010), as well as tillage data from Statistics Canada census years 2001 and 2006, to estimate crop residue availability by province and soil zone. Total residue yield from crops is calculated by incorporating straw to grain ratios. Total agricultural residues available for ethanol production are computed by deducting soil conservation and livestock uses. An average of 48 million dry Mg of agricultural residues is available per year, with a minimum of 24.5 million dry Mg in drought year 2002. This implies an average yearly potential ethanol production of 13 billion litres from crop residues over the 2001-2010 period, with a minimum of 6.6 billion litres in 2002. Ontario, Manitoba, Saskatchewan, and Quebec have enough agricultural residue supply to set up ethanol plants using agricultural crop residues as primary lignocellulosic feedstocks. There is great variability in agricultural residue production between the provinces and by soil zone. Understanding variability in feedstock supply is important for the economics and operational planning of a cellulosic ethanol biorefinery. Factors such as residue yield per hectare and soil zone will influence cellulosic ethanol plant establishment in order to exploit the abundance of lignocellulosic biomass for an ethanol plant. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.
C1 [Li, Xue; Mupondwa, Edmund] Agr & Agri Food Canada, Bioprod & Bioproc, Natl Sci Program, Saskatoon Res Ctr, Saskatoon, SK S7N 0X2, Canada.
[Panigrahi, Satya; Tabil, Lope] Univ Saskatchewan, Fac Engn, Dept Chem & Biol Engn, Saskatoon, SK S7N 5A9, Canada.
[Sokhansanj, Shahab] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada.
[Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Stumborg, Mark] Agr & Agri Food Canada, Bioprod & Bioproc, Semiarid Prairie Agr Res Ctr, Swift Current, SK S9H 3X2, Canada.
RP Mupondwa, E (reprint author), Agr & Agri Food Canada, Bioprod & Bioproc, Natl Sci Program, Saskatoon Res Ctr, 107 Sci Pl, Saskatoon, SK S7N 0X2, Canada.
EM xue.li@usask.ca; edmund.mupondwa@agr.gc.ca; sap382@mail.usask.ca;
lope.tabil@usask.ca; shahabs@interchange.ubc.ca; mark.stumborg@agr.gc.ca
FU Canadian Cellulosic Biofuels Network under the Agricultural Bioproducts
Innovation Program (ABIP) of Agriculture and Agri-Food Canada
FX The authors would like to thank the Canadian Cellulosic Biofuels Network
under the Agricultural Bioproducts Innovation Program (ABIP) of
Agriculture and Agri-Food Canada for its financial support.
NR 39
TC 12
Z9 13
U1 2
U2 30
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1364-0321
J9 RENEW SUST ENERG REV
JI Renew. Sust. Energ. Rev.
PD JUN
PY 2012
VL 16
IS 5
BP 2954
EP 2965
DI 10.1016/j.rser.2012.02.013
PG 12
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels
SC Science & Technology - Other Topics; Energy & Fuels
GA 959YN
UT WOS:000305354200051
ER
PT J
AU Defne, Z
Haas, KA
Fritz, HM
Jiang, LD
French, SP
Shi, X
Smith, BT
Neary, VS
Stewart, KM
AF Defne, Zafer
Haas, Kevin A.
Fritz, Hermann M.
Jiang, Lide
French, Steven P.
Shi, Xuan
Smith, Brennan T.
Neary, Vincent S.
Stewart, Kevin M.
TI National geodatabase of tidal stream power resource in USA
SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS
LA English
DT Review
DE Tidal energy; Tidal currents; Resource mapping; Numerical modeling; GIS
ID GEORGIA
AB A geodatabase of tidal constituents is developed to present the regional assessment of tidal stream power resource in the USA. Tidal currents are numerically modeled with the Regional Ocean Modeling System (ROMS) and calibrated with the available measurements of tidal current speeds and water level surfaces. The performance of the numerical model in predicting the tidal currents and water levels is assessed by an independent validation. The geodatabase is published on a public domain via a spatial database engine with interactive tools to select, query and download the data. Regions with the maximum average kinetic power density exceeding 500 W/m(2) (corresponding to a current speed of 1 m/s), total surface area larger than 0.5 km(2) and depth greater than 5 m are defined as hotspots and documented. The regional assessment indicates that the state of Alaska (AK) has the largest number of locations with considerably high kinetic power density, followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA). and Florida (FL). (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Defne, Zafer; Haas, Kevin A.; Fritz, Hermann M.] Georgia Inst Technol, Sch Civil & Environm Engn, Savannah, GA 31407 USA.
[Jiang, Lide] NOAA, Ctr Satellite Applicat & Res, Camp Springs, MD 20746 USA.
[French, Steven P.; Shi, Xuan] Georgia Inst Technol, Atlanta, GA 30332 USA.
[Smith, Brennan T.; Neary, Vincent S.; Stewart, Kevin M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
RP Defne, Z (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, 210 Technol Circle, Savannah, GA 31407 USA.
EM zafer.defne@gatech.edu; khaas@gatech.edu; fritz@gatech.edu;
lide.jiang@noaa.gov; steve.french@coa.gatech.edu;
xuan.shi@coa.gatech.edu; smithbt@ornl.gov; nearyvs@ornl.gov;
stewartkm@ornl.gov
RI Jiang, Lide/G-2041-2010; Fritz, Hermann/H-5618-2013;
OI Jiang, Lide/0000-0002-9883-4411; Fritz, Hermann/0000-0002-6798-5401;
Defne, Zafer/0000-0003-4544-4310
FU Department of Energy, Wind and Hydropower Technologies Program
[DE-FG36-08GO18174]
FX This study was supported by the Department of Energy, Wind and
Hydropower Technologies Program award number DE-FG36-08GO18174. Any
opinions, findings, and conclusions or recommendations expressed herein
are those of the author(s) and do not necessarily reflect the views of
the Department of Energy.
NR 35
TC 14
Z9 14
U1 1
U2 34
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1364-0321
J9 RENEW SUST ENERG REV
JI Renew. Sust. Energ. Rev.
PD JUN
PY 2012
VL 16
IS 5
BP 3326
EP 3338
DI 10.1016/j.rser.2012.02.061
PG 13
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels
SC Science & Technology - Other Topics; Energy & Fuels
GA 959YN
UT WOS:000305354200087
ER
PT J
AU Kim, J
Moridis, GJ
Yang, D
Rutqvist, J
AF Kim, J.
Moridis, G. J.
Yang, D.
Rutqvist, J.
TI Numerical Studies on Two-Way Coupled Fluid Flow and Geomechanics in
Hydrate Deposits
SO SPE JOURNAL
LA English
DT Article; Proceedings Paper
CT SPE Reservoir Simulation Symposium on Improved Oil Recovery
CY FEB 21-23, 2011
CL The Woodlands, TX
SP SPE, 3M, Chevron, Shell, Saudi Aramco, PDO, Schlumberger, Total, BP, Petrobras, Univ Texas, Ctr Petr & Geosystems Engn
ID BIOTS CONSOLIDATION PROBLEM; FINITE-ELEMENT METHODS; SEQUENTIAL-METHODS;
GAS-PRODUCTION; STABILITY; RESERVOIR; CONVERGENCE; FORMULATION;
SIMULATION; ACCURACY
AB Coupled flow and geomechanics play an important role in the analysis of gas-hydrate reservoirs under production. The stiffness of the rock skeleton and the deformation of the reservoir, as well as porosity and permeability, are directly influenced by (and interrelated with) changes in pressure and temperature and in fluid(water and gas) and solid- (hydrate and ice) phase saturations. Fluid and solid phases may coexist, which, coupled with steep temperature and pressure gradients, result in strong nonlinearities in the coupled flow and mechanics processes, making the description of system behavior in dissociating hydrate deposits exceptionally complicated.
In previous studies, the geological stability of hydrate-bearing sediments was investigated using one-way coupled analysis, in which the changes in fluid properties affect mechanics within the gas-hydrate reservoirs, but with no feedback from geomechanics to fluid flow. In this paper, we develop and test a rigorous two-way coupling between fluid flow and geomechanics, in which the solutions from mechanics are reflected in the solution of the flow problem through the adjustment of affected hydraulic properties. We employ the fixed-stress split method, which results in a convergent sequential implicit scheme.
In this study of several hydrate-reservoir cases, we find noticeable differences between the results from one- and two-way couplings. The nature of the elliptic boundary value problem of quasistatic mechanics results in instantaneous compaction or dilation over the domain through loading from reservoir-fluid production. This induces a pressure rise or drop at early times (low-pressure diffusion), and consequently changes the effective stress instantaneously, possibly causing geological instability. Additionally, the pressure and temperature regime affects the various phase saturations, the rock stiffness, porosity, and permeability, thus affecting the fluid-flow regime. These changes are not captured accurately by the simpler one-way coupling. The tightly coupled sequential approach we propose provides a rigorous, two-way coupling model that captures the interrelationship between geomechanical and flow properties and processes, accurately describes the system behavior, and can be readily applied to large-scale problems of hydrate behavior in geologic media.
C1 [Kim, J.; Moridis, G. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Yang, D.] Texas A&M Univ, Dept Petr Engn, College Stn, TX 77843 USA.
RP Kim, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM JRutqvist@lbl.gov
RI Rutqvist, Jonny/F-4957-2015
OI Rutqvist, Jonny/0000-0002-7949-9785
NR 50
TC 12
Z9 12
U1 6
U2 33
PU SOC PETROLEUM ENG
PI RICHARDSON
PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA
SN 1086-055X
EI 1930-0220
J9 SPE J
JI SPE J.
PD JUN
PY 2012
VL 17
IS 2
BP 485
EP 501
PG 17
WC Engineering, Petroleum
SC Engineering
GA 962LP
UT WOS:000305546900013
ER
PT J
AU Dewalque, J
Cloots, R
Dubreuil, O
Krins, N
Vertruyen, B
Henrist, C
AF Dewalque, Jennifer
Cloots, Rudi
Dubreuil, Olivier
Krins, Natacha
Vertruyen, Benedicte
Henrist, Catherine
TI Microstructural evolution of a TiO2 mesoporous single layer film under
calcination: Effect of stabilization and repeated thermal treatments on
the film crystallization and surface area
SO THIN SOLID FILMS
LA English
DT Article
DE Titania, thin films; Templating; Mesoporous films; Thermal treatment
ID TITANIA THIN-FILMS; PHOTOCATALYTIC PROPERTIES; POROUS TIO2;
CRYSTALLINITY; SIZE
AB This study quantifies the highest perturbation encountered by the first layer of a TiO2 12 layers-mesoporous coating, which is submitted to a multistep calcination process. Besides, we propose an alternative thermal treatment in order to limit the degradation induced by repeated calcinations. This paper reports and compares the modifications in film thickness, surface area, anatase crystallite size and global crystallinity of films obtained from different thermal treatments. It defines the maximum crystal size compatible with the preservation of the mesoarchitecture initially induced by templating. Differences in microporosity and rate of crystallization are also discussed. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Dewalque, Jennifer; Cloots, Rudi; Dubreuil, Olivier; Krins, Natacha; Vertruyen, Benedicte; Henrist, Catherine] Univ Liege, Grp Res Energy & Environm Mat, Lab Inorgan Struct Chem GREENMAT LCIS, B-4000 Liege, Belgium.
[Cloots, Rudi; Henrist, Catherine] Univ Liege, Ctr Appl Technol Microscopy CAT, B-4000 Liege, Belgium.
[Krins, Natacha] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA USA.
RP Dewalque, J (reprint author), Univ Liege, Grp Res Energy & Environm Mat, Lab Inorgan Struct Chem GREENMAT LCIS, B6 Sart Tilman, B-4000 Liege, Belgium.
EM Jennifer.Dewalque@ulg.ac.be
FU Walloon Region under the MINERGIBAT [PHOTOCEL - 0616464/0616465];
Belgian Science Policy (Belgian State) under the Interuniversity
Attraction Poles program [INANOMAT - P6/17]
FX Part of this work was supported by the Walloon Region under the
MINERGIBAT program (PHOTOCEL - 0616464/0616465) and by the Belgian
Science Policy (Belgian State) under the Interuniversity Attraction
Poles program (INANOMAT - P6/17).
NR 26
TC 6
Z9 6
U1 0
U2 11
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD JUN 1
PY 2012
VL 520
IS 16
BP 5272
EP 5276
DI 10.1016/j.tsf.2012.03.044
PG 5
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 964TG
UT WOS:000305719000030
ER
PT J
AU Colby, DA
Tsai, AS
Bergman, RG
Ellman, JA
AF Colby, Denise A.
Tsai, Andy S.
Bergman, Robert G.
Ellman, Jonathan A.
TI Rhodium Catalyzed Chelation-Assisted C-H Bond Functionalization
Reactions
SO ACCOUNTS OF CHEMICAL RESEARCH
LA English
DT Review
ID (+)-LITHOSPERMIC ACID; AROMATIC IMINES; ALPHA,BETA-UNSATURATED IMINES;
INTRAMOLECULAR ALKYLATION; PYRIDINE-DERIVATIVES; ACTIVATION; ALKENES;
OLEFINS; RH; ALKYNES
AB Over the last several decades, researchers have achieved remarkable progress in the field of organometallic chemistry. The development of metal-catalyzed cross-coupling reactions represents a paradigm shift in chemical synthesis, and today synthetic chemists can readily access carbon carbon and carbon-heteroatom bonds from a vast array of starting compounds. Although we cannot understate the importance of these methods, the required prefunctionalization to carry out these reactions adds cost and reduces the availability of the starting reagents.
The use of C-H bond activation in lieu of prefunctionalization has presented a tantalizing alternative to classical cross-coupling reactions. Researchers have met the challenges of selectivity and reactivity associated with the development of C-H bond functionalization reactions with an explosion of creative advances in substrate and catalyst design. Literature reports on selectivity based on steric effects, acidity, and electronic and directing group effects are now numerous.
Our group has developed an array of C-H bond functionalization reactions that take advantage of a chelating directing group, and this Account surveys our progress in this area. The use of chelation control in C-H bond functionalization offers several advantages with respect to substrate scope and application to total synthesis. The predictability and decreased dependence on the inherent stereoelectronics of the substrate generally result in selective and high yielding transformations with broad applicability. The nature of the chelating moiety can be chosen to serve as a functional handle in subsequent elaborations.
Our work began with the use of Rh(I) catalysts in intramolecular aromatic C-H annulations, which we further developed to include enantioselective transformations. The application of this chemistry to the simple olefinic C-H bonds found in alpha, beta-unsaturated imines allowed access to highly substituted olefins, pyridines, and piperidines. We observed complementary reactivity with Rh(III) catalysts and developed an oxidative coupling with unactivated alkenes. Further studies on the Rh(III) catalysts led us to develop methods for the coupling of C-H bonds to polarized pi bonds such as those in imines and isocyanates. In several cases the methods that we have developed for chelation-controlled C-H bond functionalization have been applied to the total synthesis of complex molecules such as natural products, highlighting the utility of these methods in organic synthesis.
C1 [Bergman, Robert G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Ellman, Jonathan A.] Yale Univ, Dept Chem, New Haven, CT 06520 USA.
RP Bergman, RG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM rbergman@berkeley.edu; jonathan.ellman@yale.edu
RI Ellman, Jonathan/C-7732-2013
FU National Institutes of Health [R01 GM069559]; Office of Energy Research,
Office of Basic Energy Sciences, Chemical Sciences Division, U.S.
Department of Energy [DE-AC02-05CH11231]
FX We gratefully acknowledge the following agencies for funding: National
Institutes of Health (R01 GM069559 to J.A.E.) and the Director, Office
of Energy Research, Office of Basic Energy Sciences, Chemical Sciences
Division, U.S. Department of Energy (DE-AC02-05CH11231 to R.G.B.).
NR 55
TC 618
Z9 618
U1 27
U2 333
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0001-4842
J9 ACCOUNTS CHEM RES
JI Accounts Chem. Res.
PD JUN
PY 2012
VL 45
IS 6
BP 814
EP 825
DI 10.1021/ar200190g
PG 12
WC Chemistry, Multidisciplinary
SC Chemistry
GA 959OB
UT WOS:000305321100005
PM 22148885
ER
PT J
AU Provis, JL
Myers, RJ
White, CE
Rose, V
van Deventer, JSJ
AF Provis, John L.
Myers, Rupert J.
White, Claire E.
Rose, Volker
van Deventer, Jannie S. J.
TI X-ray microtomography shows pore structure and tortuosity in
alkali-activated binders
SO CEMENT AND CONCRETE RESEARCH
LA English
DT Article
DE Alkali activated cement; Microstructure; X-ray microtomography;
Transport properties
ID FLY-ASH; SYNCHROTRON MICROTOMOGRAPHY; SLAG CONCRETE; CEMENT PASTES;
HYDRATION; PERCOLATION; GEOPOLYMER; STRENGTH; MICROSTRUCTURE;
NANOTOMOGRAPHY
AB Durability of alkali-activated binders is of vital importance in their commercial application, and depends strongly on microstructure and pore network characteristics. X-ray microtomography (mu CT) offers, for the first time, direct insight into microstructural and pore structure characteristics in three dimensions. Here, mu CT is performed on a set of sodium metasilicate-activated fly ash/slag blends, using a synchrotron beamline instrument. Segmentation of the samples into pore and solid regions is then conducted, and pore tortuosity is calculated by a random walker method. Segmented porosity and diffusion tortuosity are correlated, and vary as a function of slag content (slag addition reduces porosity and increases tortuosity), and sample age (extended curing gives lower porosity and higher tortuosity). This is particularly notable for samples with >= 50% slag content, where a space-filling calcium (alumino)silicate hydrate gel provides porosity reductions which are not observed for the sodium aluminosilicate ('geopolymer') gels which do not chemically bind water of hydration. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Provis, John L.; Myers, Rupert J.; White, Claire E.; van Deventer, Jannie S. J.] Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia.
[Rose, Volker] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[van Deventer, Jannie S. J.] Zeobond Pty Ltd, Somerton, Vic 3062, Australia.
RP Provis, JL (reprint author), Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia.
EM jprovis@unimelb.edu.au
RI White, Claire/A-1722-2011; Provis, John/A-7631-2008; Rose,
Volker/B-1103-2008;
OI White, Claire/0000-0002-4800-7960; Provis, John/0000-0003-3372-8922;
Rose, Volker/0000-0002-9027-1052; Myers, Rupert/0000-0001-6097-2088
FU Australian Research Council (ARC); Particulate Fluids Processing Centre,
a Special Research Centre of the ARC; Zeobond Research; Banksia
Environmental Foundation; U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-AC02-06CH11357]
FX This work was funded by the Australian Research Council (ARC), including
some funding through the Particulate Fluids Processing Centre, a Special
Research Centre of the ARC, and also via a Linkage Project grant
co-sponsored by the ARC and Zeobond Research. Travel funding for J.L.
Provis to conduct experimental work at Argonne National Laboratory was
provided by the Banksia Environmental Foundation through the award of
the Brian Robinson Fellowship. We also thank Adam Kilcullen for his
assistance in conducting the sample synthesis, and Dr Xianghui Xiao and
Dr Francesco de Carlo for assistance in the data collection and
processing on the 2BM instrument Use of the Advanced Photon Source was
supported by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, under Contract DE-AC02-06CH11357. Special thanks
are also due to Dr Y. Nakashima and Dr S. Kayima, the authors of
reference [34], as their freely available Mathematica 5.2 scripts
Clabel.nb, Pre_Rwalk_image.nb and Rwalk.nb were instrumental in enabling
the tortuosity calculations presented in this study, and to an anonymous
reviewer for insightful comments which have helped to improve the
manuscript
NR 44
TC 78
Z9 83
U1 12
U2 108
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0008-8846
J9 CEMENT CONCRETE RES
JI Cem. Concr. Res.
PD JUN
PY 2012
VL 42
IS 6
BP 855
EP 864
DI 10.1016/j.cemconres.2012.03.004
PG 10
WC Construction & Building Technology; Materials Science, Multidisciplinary
SC Construction & Building Technology; Materials Science
GA 957ZD
UT WOS:000305204700012
ER
PT J
AU Fang, IJ
Slowing, II
Wu, KCW
Lin, VSY
Trewyn, BG
AF Fang, I-Ju
Slowing, Igor I.
Wu, Kevin C-W
Lin, Victor S-Y
Trewyn, Brian G.
TI Ligand Conformation Dictates Membrane and Endosomal Trafficking of
Arginine-Glycine-Aspartate (RGD)-Functionalized Mesoporous Silica
Nanoparticles
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE cell recognition; endocytosis; integrin; mesoporous materials; RGD
ID CELL-ADHESION MOLECULES; CANCER-CELLS; DRUG-DELIVERY;
CONTROLLED-RELEASE; INTEGRIN; FUNCTIONALIZATION; METASTASIS; STABILITY;
CARRIERS
AB Recent breakthrough research on mesoporous silica nanoparticle (MSN) materials has illustrated their significant potential in biological applications due to their excellent drug delivery and endocytotic behavior. We set out to determine if MSN, covalently functionalized with conformation specific bioactive molecules (either linear or cyclic RGD ligands), behave towards mammalian cells in a similar manner as the free ligands. We discovered that RGD immobilized on the MSN surface did not influence the integrity of the porous matrix and improved the endocytosis efficiency of the MSN materials. Through competition experiments with free RGD ligands, we also discovered a conformation specific receptorintegrin association. The interaction between RGD immobilized on the MSN surface and integrins plays an important role in endosome trafficking, specifically dictating the kinetics of endosomal escape. Thus, covalent functionalization of biomolecules on MSN assists in the design of a system for controlling the interface with cancer cells.
C1 [Fang, I-Ju; Lin, Victor S-Y; Trewyn, Brian G.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[Slowing, Igor I.; Lin, Victor S-Y] US DOE, Ames Lab, Chem & Biol Sci Div, Ames, IA 50011 USA.
RP Trewyn, BG (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
EM bgtrewyn@mail.iastate.edu
RI Wu, Kevin C.-W. /F-8281-2012;
OI Wu, Kevin C.-W./0000-0003-0590-1396; Slowing, Igor/0000-0002-9319-8639
FU US National Science Foundation [CHE-0809521]; US Department of Energy,
Ames Laboratory, Office of Basic Energy Sciences [DE-AC02-07CH11358]
FX B.G.T. and I.J.F. would like to thank the US National Science Foundation
(CHE-0809521) and I. I. S. would like to thank the US Department of
Energy, Ames Laboratory, Office of Basic Energy Sciences (Contract No.:
DE-AC02-07CH11358) for support to complete this project.
NR 32
TC 19
Z9 19
U1 5
U2 52
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD JUN
PY 2012
VL 18
IS 25
BP 7787
EP 7792
DI 10.1002/chem.201200023
PG 6
WC Chemistry, Multidisciplinary
SC Chemistry
GA 957TV
UT WOS:000305187300019
PM 22589085
ER
PT J
AU Mueller, CJ
Cannella, WJ
Bruno, TJ
Bunting, B
Dettman, HD
Franz, JA
Huber, ML
Natarajan, M
Pitz, WJ
Ratcliff, MA
Wright, K
AF Mueller, Charles J.
Cannella, William J.
Bruno, Thomas J.
Bunting, Bruce
Dettman, Heather D.
Franz, James A.
Huber, Marcia L.
Natarajan, Mani
Pitz, William J.
Ratcliff, Matthew A.
Wright, Ken
TI Methodology for Formulating Diesel Surrogate Fuels with Accurate
Compositional, Ignition-Quality, and Volatility Characteristics
SO ENERGY & FUELS
LA English
DT Article
ID ADVANCED DISTILLATION CURVE; THERMOPHYSICAL PROPERTIES; OXYGENATE
ADDITIVES; PHYSICOCHEMICAL AUTHENTICITY; MIXTURE MODEL; TEMPERATURE;
COMBUSTION; KEROSENE; IMPROVEMENTS; ENTHALPY
AB In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of C-13 and H-1 nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur #2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found.
C1 [Mueller, Charles J.] Sandia Natl Labs, Livermore, CA 94550 USA.
[Cannella, William J.] Chevron Corp, Richmond, CA 94802 USA.
[Bruno, Thomas J.; Huber, Marcia L.] NIST, Boulder, CO 80305 USA.
[Bunting, Bruce] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Dettman, Heather D.] Nat Resources Canada CanmetENERGY, Devon, AB T9G 1A6, Canada.
[Franz, James A.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Natarajan, Mani] Marathon Petr Co, Findlay, OH 45840 USA.
[Pitz, William J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Ratcliff, Matthew A.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Wright, Ken] Phillips 66 Co, Bartlesville, OK 74003 USA.
RP Mueller, CJ (reprint author), Sandia Natl Labs, East Ave, Livermore, CA 94550 USA.
EM cjmuell@sandia.gov
FU U.S. Department of Energy (U.S. DOE) Office of Vehicle Technologies;
Coordinating Research Council (CRC); U.S. DOE's National Nuclear
Security Administration [DE-AC04-94AL85000]; U.S. DOE at Lawrence
Livermore National Laboratory [DE-AC52-07NA27344]; U.S. DOE
[DE-AC36-08GO28308]; Natural Resources Canada; Canadian Program for
Energy Research and Development; ecoEnergy Technology Initiative
FX This paper is dedicated to the memory of our friend and colleague Jim
Franz. Funding for this research was provided by the U.S. Department of
Energy (U.S. DOE) Office of Vehicle Technologies, and by the
Coordinating Research Council (CRC) and the companies that employ the
CRC members. The study was conducted under the auspices of CRC. The
authors thank U.S. DOE program manager Kevin Stork for supporting the
participation of the U.S. national laboratories in this study. C.J.M.'s
portion of the research was conducted at the Combustion Research
Facility, Sandia National Laboratories, Livermore, California. Sandia is
a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the U.S. DOE's National Nuclear Security
Administration under contract DE-AC04-94AL85000. W.J.P.'s portion of the
research was performed under the auspices of the U.S. DOE at Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344. M.A.R.'s
portion of the research was conducted at the National Renewable Energy
Laboratory (NREL). The valuable technical assistance of NREL colleague
Jon Luecke with surrogate treating, blending, and measurement of the
ignition properties is gratefully acknowledged. NREL is operated by the
Alliance for Sustainable Energy, LLC, for the U.S. DOE under contract
DE-AC36-08GO28308. Rafal Gieleciak and Darcy Hager at the Natural
Resources Canada (CanmetENERGY) Laboratory in Devon, Alberta, were
responsible for the gas-chromatographic analyses of the fuels, palette
compounds, and palette-compound mixtures, while Sara Salmon ran the
proton and carbon NMR analyses. Elemental analyses were performed by the
CanmetENERGY Analytical Group. The participation of CanmetENERGY in this
project was funded by Natural Resources Canada through partial funding
from the Canadian Program for Energy Research and Development and from
the ecoEnergy Technology Initiative.
NR 88
TC 68
Z9 68
U1 4
U2 57
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
J9 ENERG FUEL
JI Energy Fuels
PD JUN
PY 2012
VL 26
IS 6
BP 3284
EP 3303
DI 10.1021/ef300303e
PG 20
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 961DP
UT WOS:000305444400020
ER
PT J
AU Beatty, WL
Schroeder, K
Beatty, CLK
AF Beatty, William Lee
Schroeder, Karl
Beatty, Candace L. Kairies
TI Mineralogical Associations of Mercury in FGD Products
SO ENERGY & FUELS
LA English
DT Article
ID FLUE-GAS DESULFURIZATION; SEQUENTIAL EXTRACTION PROCEDURE; COMBUSTION
BY-PRODUCTS; SPECIATION; SEDIMENTS; MOBILITY; FRACTIONATION; SORPTION;
SOILS; REDISTRIBUTION
AB The natural mode of retention of mercury (Hg) in flue gas desulfurization (FGD) gypsum used in wallboard manufacturing has been investigated using a series of phase-targeted reagents. The sequence of batch extractions, based on the geochemical literature, allowed for separation of particular mineral phases and subsequent testing for the appearance of Hg in the resulting extract. Results indicated that Hg was associated with two distinct phases. Most of the Hg was solubilized by the extraction targeting iron oxides and hydroxides. The reagent targeting the organic matter and sulfide minerals also typically yielded significant amounts of Hg. Analysis of the extract indicated the presence of another phase, possibly clay minerals, that may have been associated with the retained Hg in addition to, or instead of, the targeted phase. Hg was solubilized only under extremely acidic (pH < 1) and oxidizing conditions at high temperature. Virtually no Hg was found in the extracts produced by weaker reagents.
C1 [Beatty, William Lee; Schroeder, Karl; Beatty, Candace L. Kairies] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
RP Beatty, WL (reprint author), Winona State Univ, Dept Geosci, POB 5838, Winona, MN 55987 USA.
EM WBeatty@winona.edu
FU U.S. DOE Fossil Energy Postgraduate Research Participation Program at
the NETL
FX This work was supported by the U.S. DOE Fossil Energy Postgraduate
Research Participation Program at the NETL administered by the Oak Ridge
Institute for Science and Education. We thank the three anonymous
reviewers for their efforts and insightful comments.
NR 49
TC 3
Z9 4
U1 1
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
J9 ENERG FUEL
JI Energy Fuels
PD JUN
PY 2012
VL 26
IS 6
BP 3399
EP 3406
DI 10.1021/ef300033u
PG 8
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 961DP
UT WOS:000305444400030
ER
PT J
AU Mastalerz, M
Goodman, A
Chirdon, D
AF Mastalerz, Maria
Goodman, Angela
Chirdon, Danielle
TI Coal Lithotypes before, during, and after Exposure to CO2: Insights from
Direct Fourier Transform Infrared Investigation
SO ENERGY & FUELS
LA English
DT Article
ID CARBON-DIOXIDE STORAGE; ADSORPTION; SPECTROSCOPY; SORPTION; IR;
SEQUESTRATION; METHANE; SEAMS
AB Vitrain, clarain, and fusain lithotypes of Pennsylvanian age high volatile bituminous coal from the Springfield Coal Member of the Petersburg Formation and the Lower Block Coal Member of the Brazil Formation from Indiana were examined using standard and in situ attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) prior, during, and after exposure to CO2 to investigate any potential physical or chemical alterations of the coal lithotypes. These lithotypes were distinct petrographically (vitrinite content ranged from 94.0 to 11.6 vol %), as well as with regard to surface area, microporosity, mesoporosity, and Langmuir parameters (volumes and pressures). Specifically, BET surface area for the Springfield Coal ranged from 6.0 m(2)/g in fusain to 10.0 m(2)/g in vitrain and for the Lower Block Coal ranged from 15.9 m(2)/g in fusain to 115.4 m(2)/g in vitrain. For the Lower Block Coal, Langmuir volumes (on an as-received basis) were 51 cm(3)/g in vitrain, 37 cm(3)/g in clarain, and 34 cm(3)/g in fusain; for the Springfield Coal, 42 cm(3)/g in vitrain, 42 cm(3)/g in clarain, and 24 cm(3)/g in fusain. During experiments performed at 17 degrees C and CO2 pressure up to 4.1 MPa (600 psig), the only observed changes in the infrared spectra were due to sorption of CO2 reflected by bands at 2333 cm(-1) (with a shoulder at 2320 cm(-1)) and at 657 cm(-1). These absorption bands increased in intensity as CO2 pressure increased, but they disappeared after desorption of CO2 in flowing nitrogen, suggesting physical sorption of a reversible nature. Absorption bands characteristic of the lithotypes did not change during or after CO2 exposure. Comparing the CO2 sorption capacity among various lithotypes suggests that vitrains adsorb the most CO2 and fusains the least. Also varying amounts of time were needed to fill the available pore space; more time was needed to saturate vitrains with CO2 than the other lithotypes,
C1 [Mastalerz, Maria] Indiana Univ, Indiana Geol Survey, Bloomington, IN 47405 USA.
[Goodman, Angela] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Chirdon, Danielle] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15261 USA.
RP Mastalerz, M (reprint author), Indiana Univ, Indiana Geol Survey, 611 N Walnut Grove Ave, Bloomington, IN 47405 USA.
EM mmastale@indiana.edu
NR 30
TC 5
Z9 5
U1 0
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
J9 ENERG FUEL
JI Energy Fuels
PD JUN
PY 2012
VL 26
IS 6
BP 3586
EP 3591
DI 10.1021/ef3003813
PG 6
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 961DP
UT WOS:000305444400051
ER
PT J
AU Elliott, DC
Oasmaa, A
Preto, F
Meier, D
Bridgwater, AV
AF Elliott, Douglas C.
Oasmaa, Anja
Preto, Fernando
Meier, Dietrich
Bridgwater, Anthony V.
TI Results of the IEA Round Robin on Viscosity and Stability of Fast
Pyrolysis Bio-oils
SO ENERGY & FUELS
LA English
DT Article
ID STANDARDS; LIQUIDS; NORMS
AB An international round robin study of the stability of fast pyrolysis bio-oil was undertaken. Fifteen laboratories in five different countries contributed. Two bio-oil samples were distributed to the laboratories for stability testing and further analysis. The stability test was defined in a method provided with the bio-oil samples. Viscosity measurement was a key input. The change in viscosity of a sealed sample of bio-oil held for 24 h at 80 degrees C was the defining element of stability. Subsequent analyses included ultimate analysis, density, moisture, ash, filterable solids, and TAN/pH determination, and gel permeation chromatography. The results showed that kinematic viscosity measurement was more generally conducted and more reproducibly performed versus dynamic viscosity measurement. The variation in the results of the stability test was great and a number of reasons for the variation were identified. The subsequent analyses proved to be at the level of reproducibility, as :found in earlier round robins on bio-oil analysis. Clearly, the analyses were more straightforward and reproducible with a bio-oil sample low in filterable solids (0.2%), compared to one with a higher (2%) solids loading. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace.
C1 [Elliott, Douglas C.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Oasmaa, Anja] Tech Res Ctr Finland, FIN-02150 Espoo, Finland.
[Preto, Fernando] CanmetENERGY, Ottawa, ON, Canada.
[Meier, Dietrich] VTI Inst Wood Technol & Biol, Hamburg, Germany.
[Bridgwater, Anthony V.] Aston Univ, Birmingham B4 7ET, W Midlands, England.
RP Elliott, DC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM dougc.elliott@pnnl.gov
OI Bridgwater, Tony/0000-0001-7362-6205
FU IEA Bioenergy Task 34: Natural Resources Canada; U.S. Department of
Energy, TEKES Finland, Fachagentur Nachwaachsende Rohstoffe e.V.
Germany; Department of Energy and Climate Change, U.K.
FX The authors acknowledge the tremendous effort by the participating
laboratories in performing in a timely manner and submitting the results
of the analyses as reported here. Also, they acknowledge the financial
support from the funding agencies from each of the five countries that
participate in the IEA Bioenergy Task 34: Natural Resources Canada, the
U.S. Department of Energy, TEKES Finland, Fachagentur Nachwaachsende
Rohstoffe e.V. Germany, and the Department of Energy and Climate Change,
U.K.
NR 21
TC 31
Z9 31
U1 3
U2 46
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
J9 ENERG FUEL
JI Energy Fuels
PD JUN
PY 2012
VL 26
IS 6
BP 3769
EP 3776
DI 10.1021/ef300384t
PG 8
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 961DP
UT WOS:000305444400072
ER
PT J
AU Smith, EA
Park, S
Klein, AT
Lee, YJ
AF Smith, Erica A.
Park, Soojin
Klein, Adam T.
Lee, Young Jin
TI Bio-oil Analysis Using Negative Electrospray Ionization: Comparative
Study of High-Resolution Mass Spectrometers and Phenolic versus Sugaric
Components
SO ENERGY & FUELS
LA English
DT Article
ID FAST PYROLYSIS; LIGNIN; LEVOGLUCOSAN; PRODUCTS; BIOFUEL; ACIDS
AB We have previously demonstrated that a petroleomic analysis could be performed for bio-oils and revealed the complex nature of bio-oils for the nonvolatile phenolic compounds (Smith, E.; Lee, Y. J. Energy Fuels 2010, 24, 5190-5198). As a subsequent study, we have adapted electrospray ionization in negative-ion mode to characterize a wide variety of bio-oil compounds. A comparative study of three common high-resolution mass spectrometers was performed to validate the methodology and to investigate the differences in mass discrimination and resolution. The mass spectrum is dominated by low mass compounds with m/z of 100-250, with some compounds being analyzable by gas chromatography-mass spectrometry (GC-MS). We could characterize over 800 chemical compositions, with only about 40 of them being previously known in GC-MS. This unveiled a much more complex nature of bio-oils than typically shown by GC-MS. The pyrolysis products of cellulose and hemicellulose, particularly polyhydroxy cyclic hydrocarbons (or what we call "sugaric" compounds), such as levoglucosan, could be effectively characterized with this approach. Phenolic compounds from lignin pyrolysis could be clearly distinguished in a contour map of double bond equivalent (DBE) versus the number of carbons from these sugaric compounds.
C1 [Smith, Erica A.; Park, Soojin; Klein, Adam T.; Lee, Young Jin] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[Smith, Erica A.; Park, Soojin; Klein, Adam T.; Lee, Young Jin] US DOE, Ames Lab, Ames, IA 50011 USA.
RP Lee, YJ (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
EM yjlee@iastate.edu
RI Lee, Young Jin/F-2317-2011
OI Lee, Young Jin/0000-0002-2533-5371
FU ConocoPhillips; U.S. Department of Education; National Research
Foundation of Korea; Division of Chemical Sciences, Geosciences, and
Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy
(DOE); DOE [DEAC02-07CH11358]; National Science Foundation
FX This work was supported by a grant from ConocoPhillips. The authors
thank Robert C. Brown, Center for Sustainable Environmental Technology
at Iowa State University, and his group members for bio-oil samples and
valuable discussions. The authors are also grateful to David Stranz,
Sierra Analytics, for kindly providing an evaluator version of Composer
software for this study. Erica A. Smith acknowledges partial support
from the Graduate Assistance in Areas of National Need (GAANN)
fellowship from the U.S. Department of Education. Soojin Park was
partially supported by a fund from the National Research Foundation of
Korea and the Division of Chemical Sciences, Geosciences, and
Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy
(DOE). The Ames Laboratory is operated by Iowa State University under
DOE Contract DEAC02-07CH11358. The FT-ICR used in the current study was
acquired through a National Science Foundation Major Research Instrument
grant to the W.M. Keck Metabolomics Research Facility at Iowa State
University.
NR 25
TC 47
Z9 47
U1 2
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
J9 ENERG FUEL
JI Energy Fuels
PD JUN
PY 2012
VL 26
IS 6
BP 3796
EP 3802
DI 10.1021/ef3003558
PG 7
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 961DP
UT WOS:000305444400075
ER
PT J
AU Peng, JH
Bi, HT
Sokhansanj, S
Lim, JC
AF Peng, J. H.
Bi, H. T.
Sokhansanj, S.
Lim, J. C.
TI A Study of Particle Size Effect on Biomass Torrefaction and
Densification
SO ENERGY & FUELS
LA English
DT Article
ID WOOD; TEMPERATURE; PYROLYSIS; KINETICS
AB The particle size effect on torrefaction of pine particles and formation of torrefied pellets has been studied in a thermogravimetric analyzer (TGA) and a tubular fixed bed reactor. The fixed bed reactor was also used to produce torrefied samples for a single-die press unit for the densification test. Both the TGA and fixed bed reactor torrefaction test results showed that the torrefaction rate was affected by the particle size, especially at high temperatures. Although the temperature gradient inside particles smaller than I mm is very small during torrefaction, the internal diffusion of generated vapors inside particles imposes an impact on the global torrefaction reaction rate. The hard core or nonshrinkage particle model with a first order torrefaction reaction can predict the reaction data reasonably well, with the data-fitted effective vapor diffusivity coefficient. The densification tests showed that more energy was required to make pellets from larger torrefied particles, while the water uptake and Meyer hardness tests of pellets revealed that good quality torrefied pellets could be obtained from fine torrefied sawdust particles.
C1 [Peng, J. H.; Bi, H. T.; Sokhansanj, S.; Lim, J. C.] Univ British Columbia, Clean Energy Res Ctr, Vancouver, BC V5Z 1M9, Canada.
[Peng, J. H.; Bi, H. T.; Sokhansanj, S.; Lim, J. C.] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V5Z 1M9, Canada.
[Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
RP Bi, HT (reprint author), Univ British Columbia, Clean Energy Res Ctr, Vancouver, BC V5Z 1M9, Canada.
EM xbi@chbe.ubc.ca
FU Natural Science and Engineering Research Council (NSERC) of Canada; Wood
Pellet Association of Canada; BC Innovation Council; U.S. Department of
Energy
FX The authors are grateful to the financial support from Natural Science
and Engineering Research Council (NSERC) of Canada, Wood Pellet
Association of Canada, BC Innovation Council, and U.S. Department of
Energy.
NR 28
TC 28
Z9 29
U1 2
U2 46
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
J9 ENERG FUEL
JI Energy Fuels
PD JUN
PY 2012
VL 26
IS 6
BP 3826
EP 3839
DI 10.1021/ef3004027
PG 14
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 961DP
UT WOS:000305444400079
ER
PT J
AU Oasmaa, A
Kalli, A
Lindfors, C
Elliott, DC
Springer, D
Peacocke, C
Chiaramonti, D
AF Oasmaa, Anja
Kalli, Anssi
Lindfors, Christian
Elliott, Douglas C.
Springer, Dave
Peacocke, Cordner
Chiaramonti, David
TI Guidelines for Transportation, Handling, and Use of Fast Pyrolysis
Bio-Oil. 1. Flammability and Toxicity
SO ENERGY & FUELS
LA English
DT Article
ID VEGETABLE-OILS; LIQUIDS
AB An alternative sustainable fuel, biomass-derived fast pyrolysis oil or "bio-oil", is coming into the market in Europe. Fast pyrolysis pilot and demonstration plants for fuel applications producing tonnes of bio-oil are in operation, and commercial plants are under design. There will be increasingly larger amounts of bio-oil transportation on water and by land, leading to a need for further specifications and supporting documentation. The properties of bio-oil are different from conventional liquid fuels and, therefore, may need to overcome both technical and marketing hurdles for its acceptability in the fuels market. Multiple material safety data sheets (MSDSs) are currently being used by different producers, but there is a desire to update these as more information becomes available. In order to standardize bio-oil, quality specifications are being adopted. The first bio-oil burner fuel standard in ASTM D7544 was approved in 2010. CEN standardization has been initiated in Europe. In the EU, a new chemical regulation system REACH (Registration, Evaluation and Authorisation of Chemicals) exists. Registration under REACH has to be perfomed if bio-oil is produced or imported into the EU. In the USA and Canada, bio-oil has to be filed under the TSCA (US Toxic Substances Control Act) and DSL (Domestic Substance List), respectively. In this paper, the state of the art on standardization is discussed, and new data for the transportation guidelines is presented. The focus is on flammability and toxicity.
C1 [Oasmaa, Anja; Kalli, Anssi; Lindfors, Christian] Tech Res Ctr Finland, Helsinki, Finland.
[Elliott, Douglas C.; Springer, Dave] Pacific NW Natl Lab, Washington, DC USA.
[Chiaramonti, David] Univ Florence, CREAR, Florence, Italy.
[Chiaramonti, David] Univ Florence, RE CORD, Florence, Italy.
RP Oasmaa, A (reprint author), Tech Res Ctr Finland, Helsinki, Finland.
EM anja.oasmaa@vtt.fi
OI Chiaramonti, David/0000-0002-1720-7820
FU Tekes; VTT; Metso; UPM; Fortum
FX IEA Bioenergy Task 34 Pyrolysis members are acknowledged for their
contribution. EU Biotox project NNE5-2001-00744 is acknowledged for
providing toxicological data. Risto Markkula from DGM (Dangerous Goods
Management Finland Oy) Finland is acknowledged for transportation
guidelines and reviewing this paper. Kimmo Kaukanen from VTT Expert
Services Ltd. is acknowledged for sustained combustion tests. At VTT,
Eeva Kuoppala and Jaana Korhonen are acknowledged for analyses. Tekes,
VTT, Metso, UPM, and Fortum are acknowledged for funding.
NR 26
TC 17
Z9 18
U1 2
U2 36
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
J9 ENERG FUEL
JI Energy Fuels
PD JUN
PY 2012
VL 26
IS 6
BP 3864
EP 3873
DI 10.1021/ef300418d
PG 10
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 961DP
UT WOS:000305444400082
ER
PT J
AU Elliott, DC
Hart, TR
Neuenschwander, GG
Rotness, LJ
Olarte, MV
Zacher, AH
Solantausta, Y
AF Elliott, Douglas C.
Hart, Todd R.
Neuenschwander, Gary G.
Rotness, Leslie J.
Olarte, Mariefel V.
Zacher, Alan H.
Solantausta, Yrjo
TI Catalytic Hydroprocessing of Fast Pyrolysis Bio-oil from Pine Sawdust
SO ENERGY & FUELS
LA English
DT Article
AB Catalytic hydroprocessing has been applied to the fast pyrolysis liquid product (bio-oil) from softwood biomass in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. This paper is focused on the process experimentation and product analysis. A range of operating parameters, including temperature from 170 or 250 to 400 degrees C in the two-stage reactor and flow rate of 0.19 liquid hourly space velocity, was tested with bio-oil derived from pine wood. Times on stream of up to 90 h were evaluated, and losses of catalyst activity were assessed. Product yields of 0.35-0.45 g of oil product/g of dry bio-oil feed with hydrogen consumptions from 342 to 669 L/L of bio-oil feed were measured. Analyses determined that product oils with densities of 0.82-0.92 g/mL had oxygen contents of 0.2-2.7 wt % and total acid number (TAN) of <0.01-2.7 mg of KOH/g. In summation, the paper provides an initial understanding of the efficacy of hydroprocessing as applied to the Finnish pine bio-oil.
C1 [Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Solantausta, Yrjo] Tech Res Ctr Finland VTT, Espoo 02044, Finland.
RP Elliott, DC (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA.
EM dougc.elliott@pnnl.gov
RI Olarte, Mariefel/D-3217-2013;
OI Olarte, Mariefel/0000-0003-2989-1110; Hart, Todd/0000-0001-8013-0689
FU Office of the Biomass Program at the U.S. Department of Energy; Battelle
for the United States Department of Energy [DE-ACO5-76RL01830]
FX This research was supported by the Office of the Biomass Program at the
U.S. Department of Energy, and the authors specifically acknowledge the
support of Mr. Paul Grabowski, former manager for the Thermochemical
Conversion Platform. The Pacific Northwest National Laboratory is
operated by Battelle for the United States Department of Energy under
Contract DE-ACO5-76RL01830. The authors acknowledge the supply of
bio-oil feedstock provided for these experiments by the Technical
Research Center of Finland (VTT) and the effort of Dr. Anja Oasmaa.
NR 15
TC 68
Z9 75
U1 6
U2 81
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
J9 ENERG FUEL
JI Energy Fuels
PD JUN
PY 2012
VL 26
IS 6
BP 3891
EP 3896
DI 10.1021/ef3004587
PG 6
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 961DP
UT WOS:000305444400085
ER
PT J
AU Tsimpanogiannis, IN
Lichtner, PC
AF Tsimpanogiannis, Ioannis N.
Lichtner, Peter C.
TI Fluid Displacement and Solid Formation in a Porous Medium Using Invasion
Percolation in a Gradient with Pore Blocking
SO ENERGY & FUELS
LA English
DT Article
ID CRITICAL GAS SATURATION; GEOCHEMICAL REACTION-RATES; NETWORK MODEL;
MULTIPHASE FLOW; CAPILLARY-PRESSURE; WORMHOLE FORMATION; METHANE
HYDRATE; BUBBLE-GROWTH; HEAT-TRANSFER; SCALE
AB We utilize a modified form of the theory of invasion percolation in a gradient (IPG) in pore networks to simulate numerically immiscible displacement and reaction (solid formation and precipitation) in porous media. We examine the two-dimensional invasion patterns that result, as well as the change in prosity due to the solid precipitation and the subsequent pore blocking and how they depend on various parameters including the solid formation kinetics and the strength of the percolation gradient. This work clearly demonstrates that for two-dimensional systems it is not the overall change of porosity in the system that controls the ability of the porous medium to accommodate flow, but its transverse average. This is because localized pore blocking occurring in narrow zones perpendicular to the invasion front can completely eliminate flow.
C1 [Tsimpanogiannis, Ioannis N.] Natl Ctr Sci Res Demokritos, Environm Res Lab, Athens 15310, Greece.
[Lichtner, Peter C.] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA.
RP Tsimpanogiannis, IN (reprint author), Natl Ctr Sci Res Demokritos, Environm Res Lab, Athens 15310, Greece.
EM tsimpano@usc.edu
FU Los Alamos National Laboratory [LDRD-DR 20030059DR, LDRD-DR 20040042DR];
European Commission EC Grant PERL [REGPOT-2008-1-229773]
FX Part of this work was completed when I.N.T. was at the Hydrology,
Geochemistry, and Geology Group (EES-6), Earth and Environmental
Sciences Division, Los Alamos National Laboratory, Los Alamos, NM.
Partial financial support by LDRD-DR 20030059DR and LDRD-DR 20040042DR
projects, funded by Los Alamos National Laboratory, is gratefully
acknowledged. Partial financial support by the European Commission EC
Grant PERL (Contract No. REGPOT-2008-1-229773) is gratefully
acknowledged.
NR 83
TC 1
Z9 1
U1 2
U2 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
J9 ENERG FUEL
JI Energy Fuels
PD JUN
PY 2012
VL 26
IS 6
BP 3935
EP 3950
DI 10.1021/ef300192x
PG 16
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 961DP
UT WOS:000305444400091
ER
PT J
AU Chen, WQ
Gan, JY
Rice, TM
Zhang, FC
AF Chen, Wei-Qiang
Gan, J. Y.
Rice, T. M.
Zhang, F. C.
TI Interlayer couplings and the coexistence of antiferromagnetic and d-wave
pairing order in multilayer cuprates
SO EPL
LA English
DT Article
ID VARIATIONAL MONTE-CARLO; T-J MODEL; SUPERCONDUCTORS
AB A more extended low-density region of coexisting uniform antiferromagnetism and d-wave superconductivity has been reported in multilayer cuprates, when compared to single-layer or bilayer cuprates. This coexistence could be due to the enhanced screening of random potential modulations in inner layers or to the interlayer Heisenberg and Josephson couplings. A theoretical analysis using a renormalized mean-field theory favors the former explanation. The potential for an improved determination of the antiferromagnetic and superconducting order parameters in an ideal single layer from zero-field NMR and infrared Josephson plasma resonances in multilayer cuprates is discussed. Copyright (C) EPLA, 2012
C1 [Chen, Wei-Qiang] S Univ Sci & Technol China, Dept Phys, Shenzhen 518055, Guangdong, Peoples R China.
[Chen, Wei-Qiang; Rice, T. M.; Zhang, F. C.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
[Chen, Wei-Qiang; Rice, T. M.; Zhang, F. C.] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China.
[Gan, J. Y.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.
[Rice, T. M.] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland.
[Rice, T. M.] Brookhaven Natl Lab, Dept Mat Sci, Upton, NY 11973 USA.
RP Chen, WQ (reprint author), S Univ Sci & Technol China, Dept Phys, Shenzhen 518055, Guangdong, Peoples R China.
EM chen.wq@sustc.edu.cn
RI CHEN, Weiqiang/D-3058-2009
FU Hong Kong RGC GRF [HKU706507, HKU701010]; National Natural Science
Foundation of China [10804125]; Swiss Nationalfond and MANEP network
FX We are grateful to C. BERNHARD, Y. KITAOKA, H. MUKUDA and S. UCHIDA for
helpful discussions. We acknowledge financial support in part from Hong
Kong RGC GRF grant HKU706507, HKU701010, the National Natural Science
Foundation of China 10804125, and also from the Swiss Nationalfond and
MANEP network.
NR 19
TC 3
Z9 3
U1 0
U2 12
PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
PI MULHOUSE
PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE
SN 0295-5075
J9 EPL-EUROPHYS LETT
JI EPL
PD JUN
PY 2012
VL 98
IS 5
AR 57005
DI 10.1209/0295-5075/98/57005
PG 6
WC Physics, Multidisciplinary
SC Physics
GA 958YJ
UT WOS:000305276600029
ER
PT J
AU Beale, TAW
Beutier, G
Bland, SR
Bombardi, A
Bouchenoire, L
Bunau, O
Di Matteo, S
Fernandez-Rodriguez, J
Hamann-Borrero, JE
Herrero-Martin, J
Jacques, VLR
Johnson, RD
Juhin, A
Matsumura, T
Mazzoli, C
Mulders, AM
Nakao, H
Okamoto, J
Partzsch, S
Princep, AJ
Scagnoli, V
Strempfer, J
Vecchini, C
Wakabayashi, Y
Walker, HC
Wermeille, D
Yamasaki, Y
AF Beale, T. A. W.
Beutier, G.
Bland, S. R.
Bombardi, A.
Bouchenoire, L.
Bunau, O.
Di Matteo, S.
Fernandez-Rodriguez, J.
Hamann-Borrero, J. E.
Herrero-Martin, J.
Jacques, V. L. R.
Johnson, R. D.
Juhin, A.
Matsumura, T.
Mazzoli, C.
Mulders, A. M.
Nakao, H.
Okamoto, J.
Partzsch, S.
Princep, A. J.
Scagnoli, V.
Strempfer, J.
Vecchini, C.
Wakabayashi, Y.
Walker, H. C.
Wermeille, D.
Yamasaki, Y.
TI REXS contribution to electronic ordering investigation in solids
SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
LA English
DT Review
ID X-RAY-SCATTERING; RESONANT MAGNETIC SCATTERING; ANOMALOUS SCATTERING;
FORBIDDEN REFLECTIONS; BRAGG-DIFFRACTION; CHARGE; TRANSITION;
POLARIZATION; IRON; LA0.5SR1.5MNO4
AB Resonant Elastic X-Ray Scattering (REXS) has played a fundamental role in understanding electronic properties and in revealing hidden order, local symmetries and exotic states realized in correlated solids. This article reports on some of the relevant scientific contributions and technical advances over the last 20 years, by providing a list of related publications produced by various groups all around the world. The given perspective is that of a group of young scientists involved at various times in the investigation of the beauty of electronic ordering by the REXS technique.
C1 [Beale, T. A. W.; Bland, S. R.] Univ Durham, Dept Phys, Durham DH1 3LE, England.
[Beutier, G.] Grenoble INP CNRS UJF, SIMaP, F-38402 St Martin Dheres, France.
[Bland, S. R.; Vecchini, C.] Diamond Light Source Ltd, Rutherford Appleton Lab, Didcot OX11 0DE, Oxon, England.
[Bouchenoire, L.; Wermeille, D.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England.
[Bouchenoire, L.; Wermeille, D.] European Synchrotron Radiat Facil, XMaS CRG Beamline BM28, F-38043 Grenoble, France.
[Bunau, O.; Juhin, A.] Univ Paris 06, CNRS, IMPMC, F-75252 Paris 5, France.
[Di Matteo, S.] Univ Rennes 1, Equipe Phys Surfaces & Interfaces, Inst Phys Rennes, CNRS,UMR UR1 6251, F-35042 Rennes, France.
[Fernandez-Rodriguez, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Hamann-Borrero, J. E.; Partzsch, S.] Leibniz Inst Solid State & Mat Res IFW Dresden, D-01069 Dresden, Germany.
[Herrero-Martin, J.] CSIC, Inst Ciencia Mat Barcelona, E-08193 Barcelona, Spain.
[Johnson, R. D.] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England.
[Matsumura, T.] Hiroshima Univ, Dept Quantum Matter, AdSM, Higashihiroshima 7398530, Japan.
[Mazzoli, C.] Politecn Milan, CNISM Dipartimento Fis, I-20133 Milan, Italy.
[Mulders, A. M.; Princep, A. J.] UNSW, Sch PEMS, Canberra, ACT 2600, Australia.
[Nakao, H.; Okamoto, J.; Yamasaki, Y.] High Energy Accelerator Org, Condensed Matter Res Ctr, Tsukuba, Ibaraki 3050801, Japan.
[Nakao, H.; Okamoto, J.; Yamasaki, Y.] High Energy Accelerator Org, Inst Mat Struct Sci, Photon Factory, Tsukuba, Ibaraki 3050801, Japan.
[Scagnoli, V.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
[Strempfer, J.; Walker, H. C.] Deutsch Elektronen Synchrotron Hasylab DESY, D-22607 Hamburg, Germany.
[Wakabayashi, Y.] Osaka Univ, Div Mat Phys, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan.
RP Beale, TAW (reprint author), Univ Durham, Dept Phys, Rochester Bldg,South Rd, Durham DH1 3LE, England.
EM claudio.mazzoli@polimi.it
RI Wakabayashi, Yusuke/F-1621-2010; Walker, Helen/C-4201-2011; Mazzoli,
Claudio/J-4360-2012; Bombardi, Alessandro/J-8098-2012; Yamasaki,
Yuichi/A-5320-2010; Mulders, Annemieke/B-4236-2013; scagnoli,
valerio/C-6833-2008; Matsumura, Takeshi/B-3734-2011; Hamann Borrero,
Jorge Enrique/J-4241-2014; Herrero-Martin, Javier/H-8167-2015; JUHIN,
Amelie/C-3502-2015
OI Wakabayashi, Yusuke/0000-0003-3107-0338; Walker,
Helen/0000-0002-7859-5388; scagnoli, valerio/0000-0002-8116-8870; Hamann
Borrero, Jorge Enrique/0000-0003-2729-9594; Herrero-Martin,
Javier/0000-0003-1986-8128; JUHIN, Amelie/0000-0003-0752-3034
NR 198
TC 7
Z9 7
U1 0
U2 30
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1951-6355
J9 EUR PHYS J-SPEC TOP
JI Eur. Phys. J.-Spec. Top.
PD JUN
PY 2012
VL 208
IS 1
BP 89
EP 98
DI 10.1140/epjst/e2012-01609-0
PG 10
WC Physics, Multidisciplinary
SC Physics
GA 960QX
UT WOS:000305404200009
ER
PT J
AU Beale, TAW
Wilkins, SB
Johnson, RD
Prabhakaran, D
Boothroyd, AT
Steadman, P
Dhesi, SS
Hatton, PD
AF Beale, T. A. W.
Wilkins, S. B.
Johnson, R. D.
Prabhakaran, D.
Boothroyd, A. T.
Steadman, P.
Dhesi, S. S.
Hatton, P. D.
TI Advances in the understanding of multiferroics through soft X-ray
diffraction
SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
LA English
DT Article
ID MAGNETITE FE3O4; FERROELECTRICITY
AB The magneto-electric multiferroic TbMn2O5 has a complex magnetic structure in three different magnetically ordered phases. We have determined the nature of the induced magnetic order on the oxygen sites in the commensurate magnetic phase through full linear X-ray polarisation analysis at the oxygen K edge. This has been achieved rotating the linear polarisation of the incident beam at the source, and using multilayers to analyse the polarisation state of the scattered X-ray beam. We have confirmed that the anisotropy of the magnetic scattering at the oxygen edge is consistent with the anisotropy of the manganese magnetic structure.
C1 [Beale, T. A. W.; Hatton, P. D.] Univ Durham, Dept Phys, Durham DH1 3LE, England.
[Wilkins, S. B.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
[Johnson, R. D.; Prabhakaran, D.; Boothroyd, A. T.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England.
[Johnson, R. D.] Rutherford Appleton Lab STFC, ISIS Facil, Didcot OX11 0QX, Oxon, England.
[Steadman, P.; Dhesi, S. S.] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England.
RP Beale, TAW (reprint author), Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England.
EM p.d.hatton@dur.ac.uk
RI Hatton, Peter/J-8445-2014
FU Office of Science, U.S. Department of Energy, Division of Materials
Science [DE-AC02-98CH10886]
FX The work at Brookhaven National Laboratory is supported by the Office of
Science, U.S. Department of Energy, Division of Materials Science, under
contract no. DE-AC02-98CH10886.
NR 33
TC 1
Z9 1
U1 1
U2 25
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1951-6355
J9 EUR PHYS J-SPEC TOP
JI Eur. Phys. J.-Spec. Top.
PD JUN
PY 2012
VL 208
IS 1
BP 99
EP 106
DI 10.1140/epjst/e2012-01610-7
PG 8
WC Physics, Multidisciplinary
SC Physics
GA 960QX
UT WOS:000305404200010
ER
PT J
AU Partzsch, S
Wilkins, SB
Schierle, E
Hamann-Borrero, JE
Wadati, H
Soltwisch, V
Hill, JP
Weschke, E
Souptel, D
Buchner, B
Geck, J
AF Partzsch, S.
Wilkins, S. B.
Schierle, E.
Hamann-Borrero, J. E.
Wadati, H.
Soltwisch, V.
Hill, J. P.
Weschke, E.
Souptel, D.
Buechner, B.
Geck, J.
TI Resonant soft X-ray scattering studies of multiferroic YMn2O5
SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
LA English
DT Article
ID MAGNETIC CIRCULAR-DICHROISM; POLARIZATION; CONSTANTS
AB We performed soft X-ray resonant scattering at the MnL (2,3)- and OK edges of YMn2O5. While the resonant intensity at the Mn L (2,3) edges reflects the magnetic order parameter, the resonant scattering at the O K edge is found to be directly related to the macroscopic ferroelectric polarization. The latter observation reveals the important role of the spin-dependent Mn-O hybridization for the multiferroicity of YMn2O5. We present details about how to obtain correct energy dependent lineshapes and discuss the origin of the resonant intensity at the O K edge.
C1 [Partzsch, S.; Hamann-Borrero, J. E.; Souptel, D.; Buechner, B.; Geck, J.] Leibniz Inst Solid State & Mat Res IFW Dresden, D-01069 Dresden, Germany.
[Partzsch, S.; Wilkins, S. B.; Hill, J. P.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Schierle, E.; Soltwisch, V.; Weschke, E.] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany.
[Wadati, H.] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1130032, Japan.
[Wadati, H.] Univ Tokyo, QPEC, Bunkyo Ku, Tokyo 1130032, Japan.
RP Partzsch, S (reprint author), Leibniz Inst Solid State & Mat Res IFW Dresden, Helmholtzstr 20, D-01069 Dresden, Germany.
EM s.partzsch@ifw-dresden.de
RI Schierle, Enrico/J-4356-2013; Weschke, Eugen/J-4404-2013; Hamann
Borrero, Jorge Enrique/J-4241-2014; Buchner, Bernd/E-2437-2016
OI Schierle, Enrico/0000-0002-6981-2301; Weschke,
Eugen/0000-0002-2141-0944; Hamann Borrero, Jorge
Enrique/0000-0003-2729-9594; Buchner, Bernd/0000-0002-3886-2680
FU DFG [GE 1647/2-1]; Funding Program for World-Leading Innovative R&D on
Science and Technology (FIRST Program); US Department of Energy,
Division of Materials Science [DE-AC02-98CH10886]
FX Many thanks to the organizers of the REXS 2011 conference in Aussois and
to Gerry Lander for helpful discussions. We thank D.S. Coburn, W.
Leonhardt, W. Schoenig and S. Wirick for technical support at X1A2. S.P.
and J.G. thank the DFG for the support through the Emmy Noether Program
(Grant GE 1647/2-1). H.W. thanks the Funding Program for World-Leading
Innovative R&D on Science and Technology (FIRST Program). Work performed
at BNL was supported by the US Department of Energy, Division of
Materials Science, under contract No. DE-AC02-98CH10886.
NR 31
TC 3
Z9 3
U1 0
U2 27
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1951-6355
J9 EUR PHYS J-SPEC TOP
JI Eur. Phys. J.-Spec. Top.
PD JUN
PY 2012
VL 208
IS 1
BP 133
EP 139
DI 10.1140/epjst/e2012-01614-y
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 960QX
UT WOS:000305404200014
ER
PT J
AU Haskel, D
Kravtsov, E
Choi, Y
Lang, JC
Islam, Z
Srajer, G
Jiang, JS
Bader, SD
Canfield, PC
AF Haskel, D.
Kravtsov, E.
Choi, Y.
Lang, J. C.
Islam, Z.
Srajer, G.
Jiang, J. S.
Bader, S. D.
Canfield, P. C.
TI Charge-magnetic interference resonant scattering studies of
ferromagnetic crystals and thin films
SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
LA English
DT Review
ID X-RAY-SCATTERING; EXCHANGE SCATTERING; POLARIZATION DEPENDENCE;
PHASE-TRANSITIONS; ROUGH SURFACES; SUPERLATTICES; ND2FE14B; DIFFRACTION
AB The element- and site-specificity of X-ray resonant magnetic scattering (XRMS) makes it an ideal tool for furthering our understanding of complex magnetic systems. In the hard X-rays, XRMS is readily applied to most antiferromagnets where the relatively weak resonant magnetic scattering (10(-2)-10(-6) I (c) ) is separated in reciprocal space from the stronger, Bragg charge scattered intensity, I (c) . In ferro(ferri)magnetic materials, however, such separation does not occur and measurements of resonant magnetic scattering in the presence of strong charge scattering are quite challenging. We discuss the use of charge-magnetic interference resonant scattering for studies of ferromagnetic (FM) crystals and layered films. We review the challenges and opportunities afforded by this approach, particularly when using circularly polarized X-rays. We illustrate current capabilities at the Advanced Photon Source with studies aimed at probing site-specific magnetism in ferromagnetic crystals, and interfacial magnetism in films.
C1 [Haskel, D.; Kravtsov, E.; Choi, Y.; Lang, J. C.; Islam, Z.; Srajer, G.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Kravtsov, E.] Russian Acad Sci, Inst Met Phys, Ekaterinburg, Russia.
[Kravtsov, E.] Ural Fed Univ, Ekaterinburg, Russia.
[Jiang, J. S.; Bader, S. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Canfield, P. C.] Iowa State Univ, Dept Phys, Ames, IA USA.
[Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA USA.
RP Haskel, D (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM haskel@aps.anl.gov
RI Bader, Samuel/A-2995-2013; Kravtsov, Evgeny/J-3593-2013; Canfield,
Paul/H-2698-2014
OI Kravtsov, Evgeny/0000-0002-5663-5692;
FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357,
DE-AC02-07CH11358]
FX Work at Argonne and Ames is supported by the U.S. Department of Energy,
Office of Science, under contract Nos. DE-AC02-06CH11357 and
DE-AC02-07CH11358, respectively. We thank S. Sinha, D. R. Lee, M. van
Veenendaal, H. Hashizume, H. Hosoito, R. Camley. J. Meersschaut,
Christie Nelson, A. Ankudinov, J. Pollmann, A. Cady, G. Subias, J.
Garcia, E. Lorenzo, J. Cross, M. Newville, S. te Velthuis and B. Kirby
for valuable input in theoretical, experimental and modeling aspects of
this work.
NR 39
TC 4
Z9 4
U1 0
U2 8
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1951-6355
J9 EUR PHYS J-SPEC TOP
JI Eur. Phys. J.-Spec. Top.
PD JUN
PY 2012
VL 208
IS 1
BP 141
EP 155
DI 10.1140/epjst/e2012-01615-2
PG 15
WC Physics, Multidisciplinary
SC Physics
GA 960QX
UT WOS:000305404200015
ER
PT J
AU Kim, MG
Kreyssig, A
Lee, YB
McQueeney, RJ
Harmon, BN
Goldman, AI
AF Kim, M. G.
Kreyssig, A.
Lee, Y. B.
McQueeney, R. J.
Harmon, B. N.
Goldman, A. I.
TI Fe K-edge X-ray resonant magnetic scattering from Ba(Fe1-x Co (x)
)(2)As-2 superconductors
SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
LA English
DT Article
AB We present an X-ray resonant magnetic scattering study at the Fe-K absorption edge of the BaFe2As2 compound. The energy spectrum of the resonant scattering, together with our calculation using the full-potential linear-augmented plane wave method with a local density functional suggests that the observed resonant scattering arises from electric dipole (E1) transitions. We discuss the role of Fe K-edge X-ray resonant magnetic scattering in understanding the relationship between the structure and the antiferromagnetic transition in the doped Ba(Fe1-x Co (x) )(2)As-2 superconductors.
C1 [Kim, M. G.] US DOE, Ames Lab, Ames, IA 50011 USA.
Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Kim, MG (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.
EM mgkim@iastate.edu
RI Kim, Min Gyu/B-8637-2012; McQueeney, Robert/A-2864-2016
OI Kim, Min Gyu/0000-0001-7676-454X; McQueeney, Robert/0000-0003-0718-5602
FU Division of Materials Sciences and Engineering, Office of Basic Energy
Sciences; U. S. Department of Energy (US DOE) [DE-AC02-06CH11357]; Iowa
State University [DEAC02-07CH11358]
FX The samples used in these studies were grown and characterized by A.
Thaler, N. Ni, S. L. Bud'ko, and P. C. Canfield. We thank J. W. Kim for
the experimental support at the APS. We acknowledge valuable discussions
with J. Lang, R. M. Fernandes, and J. Schmalian. This work was supported
by the Division of Materials Sciences and Engineering, Office of Basic
Energy Sciences, the U. S. Department of Energy (US DOE). Ames
Laboratory is operated for the US DOE by Iowa State University under
Contract No. DEAC02-07CH11358. Use of the Advanced Photon Source was
supported by the US DOE under Contract No. DE-AC02-06CH11357.
NR 38
TC 1
Z9 1
U1 1
U2 9
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1951-6355
J9 EUR PHYS J-SPEC TOP
JI Eur. Phys. J.-Spec. Top.
PD JUN
PY 2012
VL 208
IS 1
BP 157
EP 164
DI 10.1140/epjst/e2012-01616-1
PG 8
WC Physics, Multidisciplinary
SC Physics
GA 960QX
UT WOS:000305404200016
ER
PT J
AU Barois, P
Gleeson, H
Huang, CC
Pindak, R
AF Barois, P.
Gleeson, H.
Huang, C. C.
Pindak, R.
TI Application of X-ray resonant diffraction to structural studies of
liquid crystals
SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
LA English
DT Article
ID SMECTIC-PHASE; SCATTERING; MESOPHASES; MOLECULES
AB Liquid crystals are soft materials that combine the fluidity of disordered liquids and the long range orientational or positional order of crystalline solids along one or two directions of space. X-ray scattering is widely and generally successfully used to investigate and characterize the microscopic structure of most liquid crystals. In many cases however, the Bragg reflections are forbidden by special symmetries of the unit cell and the low dimensional structure of the liquid crystalline phases are out of reach of conventional X-ray experiments. We show in this paper that this problem can be overcome by resonant scattering of X-rays as it reveals the anisotropy of the tensor structure factor. We review various examples in which the restored forbidden reflections reveal unambiguously the hidden structure of liquid crystalline phases. Moreover, we show that in some cases, a fine analysis of the polarization of the Bragg reflections enables one to discriminate between different structural models. These studies solved long standing questions about biaxial liquid crystal structures and provided new insights into physical phenomena such as supercritical behaviour or commensurate-incommensurate transitions.
C1 [Barois, P.] Univ Bordeaux, Ctr Rech Paul Pascal, F-33600 Pessac, France.
[Gleeson, H.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England.
[Huang, C. C.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Pindak, R.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA.
RP Barois, P (reprint author), Univ Bordeaux, Ctr Rech Paul Pascal, F-33600 Pessac, France.
EM barois@crpp-bordeaux.cnrs.fr
FU CNRS
FX Special thanks and gratitude are due to Dr. Anne-Marie Levelut who
initiated the resonant scattering studies in liquid crystals. PB thanks
the "Formation Permanente" action of CNRS for financial support at the
REXS 2011 Conference in Aussois.
NR 39
TC 4
Z9 4
U1 5
U2 18
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1951-6355
J9 EUR PHYS J-SPEC TOP
JI Eur. Phys. J.-Spec. Top.
PD JUN
PY 2012
VL 208
IS 1
BP 333
EP 350
DI 10.1140/epjst/e2012-01628-9
PG 18
WC Physics, Multidisciplinary
SC Physics
GA 960QX
UT WOS:000305404200028
ER
PT J
AU Janecek, M
AF Janecek, Martin
TI Reflectivity Spectra for Commonly Used Reflectors
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Fluorescence; Lambertian reflection; reflection coefficient; specular
reflection
ID SCINTILLATORS; STANDARD; EFFICIENT; DETECTOR; PAINT
AB Monte Carlo simulations play an important role in developing and evaluating the performance of radiation detection systems. To accurately model a reflector in an optical Monte Carlo simulation, the reflector's spectral response has to be known. We have measured the reflection coefficient for many commonly used reflectors for wavelengths from 250 nm to 800 nm. The reflectors were also screened for fluorescence and angular distribution changes with wavelength. The reflectors examined in this work include several polytetrafluoroethylene (PTFE) reflectors, Spectralon, GORE diffuse reflector, titanium dioxide paint, magnesium oxide, nitrocellulose filter paper, Tyvek paper, Lumirror, Melinex, ESR films, and aluminum foil. All PTFE films exhibited decreasing reflectivity with longer wavelengths due to transmission. To achieve > 0.95 reflectivity in the 380 to 500 nm range, the PTFE films have to be at least 0.5 mm thick-nitrocellulose is a good alternative if a thin diffuse reflector is needed. Several of the reflectors have sharp declines in reflectivity below a cut-off wavelength, including TiO2 (420 nm), ESR film (395 nm), nitrocellulose (330 nm), Lumirror (325 nm), and Melinex (325 nm). PTFE-like reflectors were the only examined reflectors that had reflectivity above 0.90 for wavelengths below 300 nm. Lumirror, Melinex, and ESR film exhibited fluorescence. Lumirror and Melinex are excited by wavelengths between 320 and 420 nm and have their emission peaks located at 440 nm, while ESR film is excited by wavelengths below 400 nm and the emission peak is located at 430 nm. Lumirror and Melinex also exhibited changing angular distributions with wavelength.
C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Janecek, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM mjanecek@lbl.gov
FU Office of Science, Office of Biological and Environmental Research,
Biological Systems Science Division of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX This work was supported by the Director, Office of Science, Office of
Biological and Environmental Research, Biological Systems Science
Division of the U.S. Department of Energy under Contract
DE-AC02-05CH11231.
NR 27
TC 13
Z9 13
U1 1
U2 12
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD JUN
PY 2012
VL 59
IS 3
BP 490
EP 497
DI 10.1109/TNS.2012.2183385
PN 1
PG 8
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA 962VO
UT WOS:000305575700001
ER
PT J
AU Onar, OC
Kobayashi, J
Erb, DC
Khaligh, A
AF Onar, Omer C.
Kobayashi, Jonathan
Erb, Dylan C.
Khaligh, Alireza
TI A Bidirectional High-Power-Quality Grid Interface With a Novel
Bidirectional Noninverted Buck-Boost Converter for PHEVs
SO IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
LA English
DT Article
DE Alternating current/direct current (ac/dc)-dc/ac grid interface
converter; bidirectional converters; noninverted buck-boost dc/dc
converter; plug-in hybrid electric vehicles (PHEVs); vehicle-to-grid
(V2G)
ID HYBRID ELECTRIC VEHICLES; PLUG-IN; BATTERY CHARGERS; VOLTAGE;
ELECTRONICS; STRATEGY; SYSTEMS; AC/DC
AB Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc-dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck-boost converter that interfaces the energy storage device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.
C1 [Onar, Omer C.] Oak Ridge Natl Lab, Energy & Transportat Div, Oak Ridge, TN 37831 USA.
[Kobayashi, Jonathan] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Erb, Dylan C.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
[Erb, Dylan C.] MIT, MIT Energy Initiat, Cambridge, MA 02139 USA.
[Khaligh, Alireza] Univ Maryland, Dept Elect & Comp Engn, Power Elect Energy Harvesting & Renewable Energie, College Pk, MD 20742 USA.
RP Onar, OC (reprint author), Oak Ridge Natl Lab, Energy & Transportat Div, Oak Ridge, TN 37831 USA.
RI Khaligh, Alireza/B-8435-2012
FU U.S. National Science Foundation [0801860, 1157633, 0852013]
FX This work was supported in part by the U.S. National Science Foundation
under Grant 0801860, Grant 1157633, and Grant 0852013. The review of
this paper was coordinated by Prof. F. Assadian.
NR 48
TC 22
Z9 22
U1 0
U2 27
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9545
J9 IEEE T VEH TECHNOL
JI IEEE Trans. Veh. Technol.
PD JUN
PY 2012
VL 61
IS 5
BP 2018
EP 2032
DI 10.1109/TVT.2012.2192459
PG 15
WC Engineering, Electrical & Electronic; Telecommunications; Transportation
Science & Technology
SC Engineering; Telecommunications; Transportation
GA 962VY
UT WOS:000305576800007
ER
PT J
AU Curran, SJ
Hanson, RM
Wagner, RM
AF Curran, Scott J.
Hanson, Reed M.
Wagner, Robert M.
TI Reactivity controlled compression ignition combustion on a
multi-cylinder light-duty diesel engine
SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH
LA English
DT Article
DE Reactivity controlled compression ignition; thermal efficiency; engine
performance; low-temperature combustion; emission reductions
AB Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.
C1 [Curran, Scott J.; Wagner, Robert M.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA.
RP Curran, SJ (reprint author), Oak Ridge Natl Lab, 2360 Cherahala Blvd, Knoxville, TN 37932 USA.
EM curransj@ornl.gov
OI Curran, Scott/0000-0002-4665-0231
FU US Department of Energy (DOE), Office of Vehicle Technologies; General
Motors and Delphi; US Government [DE-AC05-000R22725]
FX This work was supported by the US Department of Energy (DOE), Office of
Vehicle Technologies.; The authors gratefully acknowledge the support
and guidance of Gurpreet Singh, Ken Howden, and Kevin Stork at the DOE.
The authors would like to acknowledge input from their collogues at the
University of Wisconsin, Professor Rolf Reitz and Sage Kokjohn, and
support from General Motors and Delphi.; This manuscript has been
authored by a contractor for the US Government under contract number
DE-AC05-000R22725. Accordingly, the US Government retains a
nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for the US
Government.
NR 23
TC 20
Z9 21
U1 1
U2 11
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1468-0874
J9 INT J ENGINE RES
JI Int. J. Engine Res.
PD JUN
PY 2012
VL 13
IS 3
SI SI
BP 216
EP 225
DI 10.1177/1468087412442324
PG 10
WC Thermodynamics; Engineering, Mechanical; Transportation Science &
Technology
SC Thermodynamics; Engineering; Transportation
GA 961MG
UT WOS:000305467900004
ER
PT J
AU Dubuis, G
Bollinger, AT
Pavuna, D
Bozovic, I
AF Dubuis, G.
Bollinger, A. T.
Pavuna, D.
Bozovic, I.
TI Electric field effect on superconductivity in La2-xSrxCuO4
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID INTERFACE SUPERCONDUCTIVITY; IONIC LIQUIDS; FILMS; MODULATION;
INSULATOR; DENSITY; OXIDES
AB We demonstrate a method to tune the carrier concentration of a high temperature superconductor over a wide range, using an applied electric field. Thin film devices were made in an electrical double layer transistor configuration utilizing an ionic liquid. In this way, the surface carrier density in La2-xSrxCuO4 films can be varied between 0.01 and 0.14 carriers per Cu atom with a resulting change in critical temperature of 25K (similar to 70% of the maximum critical temperature in this compound). This allows one to study a large segment of the cuprate phase diagram without altering the level of disorder. We used this method [A. T. Bollinger et al., Nature 472, 458-460 (2011)] to study the quantum critical point at the superconductor to insulator phase transition on the underdoped side of superconducting dome, and concluded that this transition is driven by quantum phase fluctuations and Cooper pair delocalization. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726158]
C1 [Dubuis, G.; Bollinger, A. T.; Bozovic, I.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Dubuis, G.; Pavuna, D.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland.
RP Dubuis, G (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
RI Dubuis, Guy/A-6849-2012
OI Dubuis, Guy/0000-0002-8199-4953
NR 20
TC 7
Z9 7
U1 1
U2 71
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 1
PY 2012
VL 111
IS 11
AR 112632
DI 10.1063/1.4726158
PG 6
WC Physics, Applied
SC Physics
GA 960PW
UT WOS:000305401400033
ER
PT J
AU Erhart, P
AF Erhart, Paul
TI A first-principles study of helium storage in oxides and at oxide-iron
interfaces
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID STRENGTHENED FERRITIC STEELS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY
CALCULATIONS; AUGMENTED-WAVE METHOD; FBR CORE APPLICATION; ELASTIC BAND
METHOD; SADDLE-POINTS; BASIS-SET; DIFFRACTION; IMPROVEMENT
AB Density-functional theory calculations based on conventional as well as hybrid exchange-correlation functionals have been carried out to study the properties of helium in various oxides (Al2O3, TiO2, Y2O3, YAP, YAG, YAM, MgO, CaO, BaO, SrO) as well as at oxide-iron interfaces. Helium interstitials in bulk oxides are shown to be energetically more favorable than substitutional helium, yet helium binds to existing vacancies. The solubility of He in oxides is systematically higher than in iron and scales with the free volume at the interstitial site nearly independently of the chemical composition of the oxide. In most oxides, He migration is significantly slower and He-He binding is much weaker than in iron. To quantify the solubility of helium at oxide-iron interfaces two prototypical systems are considered (Fe-MgO, Fe-FeO-MgO). In both cases, the He solubility is markedly enhanced in the interface compared to either of the bulk phases. The results of the calculations allow to construct a schematic energy landscape for He interstitials in iron. The implications of these results are discussed in the context of helium sequestration in oxide dispersion strengthened steels, including the effects of interfaces and lattice strain. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4707944]
C1 [Erhart, Paul] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA.
[Erhart, Paul] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden.
RP Erhart, P (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA.
EM erhart@chalmers.se
RI Erhart, Paul/G-6260-2011
OI Erhart, Paul/0000-0002-2516-6061
NR 60
TC 15
Z9 16
U1 4
U2 49
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 1
PY 2012
VL 111
IS 11
AR 113502
DI 10.1063/1.4707944
PG 12
WC Physics, Applied
SC Physics
GA 960PW
UT WOS:000305401400050
ER
PT J
AU Godwal, BK
Yan, J
Clark, SM
Jeanloz, R
AF Godwal, B. K.
Yan, J.
Clark, S. M.
Jeanloz, R.
TI High-pressure behavior of osmium: An analog for iron in Earth's core
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT 6th International Conference on the Study of Matter at Extreme
Conditions (SMEC)
CY MAR 27-APR 02, 2011
CL High Pressure Sci Soc Amer (HiPSSA), Miami, FL
SP Florida Int Univ, Ctr Study Matter Extreme Condit (CeSMEC), Florida Int Univ, Coll Engn
HO High Pressure Sci Soc Amer (HiPSSA)
ID EQUATION-OF-STATE; TRANSITION-METALS; TRAVEL-TIMES; INNER-CORE;
1ST-PRINCIPLES; ANISOTROPY; CRYSTAL; PKIKP; OS
AB High-resolution x-ray diffraction with diamond-anvil cells, using argon as a quasi-hydrostatic pressure medium, documents the crystal structure and equation of state of osmium to over 60 GPa at room temperature. We find the zero-pressure bulk modulus in fair agreement with other experiments as well as with relativistic electronic band-structure calculations: Osmium is the densest but not the most incompressible element at ambient conditions. We also find no evidence for anomalies in the ratio of unit-cell parameters, c/a, or in the compressibility of osmium as a function of pressure. This is in agreement with other experiments and quantum mechanical calculations but disagrees with recent claims that the electronic structure and equation of state of osmium exhibit anomalies at pressures of similar to 15-25 GPa; the discrepancies are may be due to the effects of texturing. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726203]
C1 [Godwal, B. K.; Yan, J.; Clark, S. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Jeanloz, R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
RP Godwal, BK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RI Clark, Simon/B-2041-2013
OI Clark, Simon/0000-0002-7488-3438
NR 34
TC 6
Z9 6
U1 1
U2 17
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 1
PY 2012
VL 111
IS 11
AR 112608
DI 10.1063/1.4726203
PG 5
WC Physics, Applied
SC Physics
GA 960PW
UT WOS:000305401400009
ER
PT J
AU Gooch, M
Lorenz, B
Huang, SX
Chien, CL
Chu, CW
AF Gooch, M.
Lorenz, B.
Huang, S. X.
Chien, C. L.
Chu, C. W.
TI Pressure effects on strained FeSe0.5Te0.5 thin films
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT 6th International Conference on the Study of Matter at Extreme
Conditions (SMEC)
CY MAR 27-APR 02, 2011
CL High Pressure Sci Soc Amer (HiPSSA), Miami, FL
SP Florida Int Univ, Ctr Study Matter Extreme Condit (CeSMEC), Florida Int Univ, Coll Engn
HO High Pressure Sci Soc Amer (HiPSSA)
ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; 43 K; COMPOUND; PHASE; GAPS
AB The pressure effect on the resistivity and superconducting T-c of prestrained thin films of the iron chalcogenide superconductor FeSe0.5Te0.5 is studied. Films with different anion heights above the Fe layer showing different values of ambient pressure T-c's are compressed up to a pressure of 1.7 GPa. All films exhibit a significant increase of T-c with pressure. The results cannot solely be explained by a pressure-induced decrease of the anion height but other parameters have to be considered to explain the data for all films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726209]
C1 [Gooch, M.; Lorenz, B.; Chu, C. W.] Univ Houston, TCSUH, Houston, TX 77204 USA.
[Gooch, M.; Lorenz, B.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA.
[Huang, S. X.; Chien, C. L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Chu, C. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Gooch, M (reprint author), Univ Houston, TCSUH, Houston, TX 77204 USA.
EM mjgooch@mail.uh.edu
RI Huang, Sunxiang/J-8568-2012
NR 32
TC 5
Z9 5
U1 2
U2 23
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 1
PY 2012
VL 111
IS 11
AR 112610
DI 10.1063/1.4726209
PG 4
WC Physics, Applied
SC Physics
GA 960PW
UT WOS:000305401400011
ER
PT J
AU Hopkins, PE
Kaehr, B
Piekos, ES
Dunphy, D
Brinker, CJ
AF Hopkins, Patrick E.
Kaehr, Bryan
Piekos, Edward S.
Dunphy, Darren
Brinker, C. Jeffrey
TI Minimum thermal conductivity considerations in aerogel thin films
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID TRANSPORT; CRYSTALS; PLATEAU; 3-OMEGA; DEVICES; SOLIDS; BODIES
AB We demonstrate the use time domain thermoreflectance (TDTR) to measure the thermal conductivity of the solid silica network of aerogel thin-films. TDTR presents a unique experimental capability for measuring the thermal conductivity of porous media due to the nanosecond time domain aspect of the measurement. In short, TDTR is capable of explicitly measuring the change in temperature with time of the solid portion of porous media independently from the pores or effective media. This makes TDTR ideal for determining the thermal transport through the solid network of the aerogel film. We measure the thermal conductivity of the solid silica networks of an aerogel film that is 10% solid, and the thermal conductivity of the same type of film that has been calcined to remove the terminating methyl groups. We find that for similar densities, the thermal conductivity through the silica in the aerogel thin films is similar to that of bulk aerogels. We theoretically describe the thermal transport in the aerogel films with a modified minimum limit to thermal conductivity that accounts for porosity through a reduction in phonon velocity. Our porous minimum limit agrees well with a wide range of experimental data in addition to sound agreement with differential effective medium theory. This porous minimum limit therefore demonstrates an approach to predict the thermal conductivity of porous disordered materials with no a priori knowledge of the corresponding bulk phase, unlike differential effective medium theory. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729325]
C1 [Hopkins, Patrick E.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA.
[Kaehr, Bryan; Piekos, Edward S.; Brinker, C. Jeffrey] Sandia Natl Labs, Albuquerque, NM 87123 USA.
[Kaehr, Bryan; Dunphy, Darren; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87106 USA.
RP Hopkins, PE (reprint author), Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA.
EM phopkins@virginia.edu
NR 34
TC 12
Z9 12
U1 5
U2 44
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 1
PY 2012
VL 111
IS 11
AR 113532
DI 10.1063/1.4729325
PG 7
WC Physics, Applied
SC Physics
GA 960PW
UT WOS:000305401400080
ER
PT J
AU Mayer, MA
Yu, KM
Haller, EE
Walukiewicz, W
AF Mayer, Marie A.
Yu, Kin Man
Haller, Eugene E.
Walukiewicz, Wladek
TI Tuning structural, electrical, and optical properties of oxide alloys:
ZnO1-xSex
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID SEMICONDUCTOR ALLOYS; ZNO FILMS; BAND; POLYCRYSTALLINE
AB Previously we showed that it is possible to narrow the band gap of zinc oxide from 3.3 to similar to 2 eV through the addition of Se. Here, we use thin film samples of ZnO1-xSex grown by pulsed laser deposition to describe in detail the effect of growth parameters (temperature, pressure, and fluence) on the chemistry, structure, and optoelectronic properties of oxide alloys. We analyze the influences of temperature, laser fluence, and pressure during growth on the structure and composition of the films and define the parameter space in which homogeneous ZnO1-xSex alloy films can in fact be synthesized. Electronic transport in films grown under different conditions was characterized by resistivity, thermopower, and Hall effect measurements. We discuss how the electron affinity and native defects in polycrystalline oxide alloys enable reasonable mobilities (similar to 15 cm(2)/Vs) relative to their single crystalline counterparts. Finally, we elaborate on the model of optical structure in ZnO1-xSex and discuss the dependence of optical properties on growth temperature and fluence. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724336]
C1 [Mayer, Marie A.; Yu, Kin Man; Haller, Eugene E.; Walukiewicz, Wladek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Mayer, Marie A.; Haller, Eugene E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Mayer, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RI Yu, Kin Man/J-1399-2012
OI Yu, Kin Man/0000-0003-1350-9642
NR 22
TC 3
Z9 3
U1 2
U2 26
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 1
PY 2012
VL 111
IS 11
AR 113505
DI 10.1063/1.4724336
PG 6
WC Physics, Applied
SC Physics
GA 960PW
UT WOS:000305401400053
ER
PT J
AU Sidorov, AN
Gaskill, K
Nardelli, MB
Tedesco, JL
Myers-Ward, RL
Eddy, CR
Jayasekera, T
Kim, KW
Jayasingha, R
Sherehiy, A
Stallard, R
Sumanasekera, GU
AF Sidorov, Anton N.
Gaskill, Kurt
Nardelli, Marco Buongiorno
Tedesco, Joseph L.
Myers-Ward, Rachel L.
Eddy, Charles R., Jr.
Jayasekera, Thushari
Kim, Ki Wook
Jayasingha, Ruwantha
Sherehiy, Andriy
Stallard, Robert
Sumanasekera, Gamini U.
TI Charge transfer equilibria in ambient-exposed epitaxial graphene on
(000(1)over-bar) 6 H-SiC
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID WALLED CARBON NANOTUBES; REDOX COUPLE; GAS; SILICON
AB The transport properties of electronic materials have been long interpreted independently from both the underlying bulk-like behavior of the substrate or the influence of ambient gases. This is no longer the case for ultra-thin graphene whose properties are dominated by the interfaces between the active material and its surroundings. Here, we show that the graphene interactions with its environments are critical for the electrostatic and electrochemical equilibrium of the active device layers and their transport properties. Based on the prototypical case of epitaxial graphene on (000 (1) over bar) 6 H-SiC and using a combination of in-situ thermoelectric power and resistance measurements and simulations from first principles, we demonstrate that the cooperative occurrence of an electrochemically mediated charge transfer from the graphene to air, combined with the peculiar electronic structure of the graphene/SiC interface, explains the wide variation of measured conductivity and charge carrier type found in prior reports. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4725413]
C1 [Sidorov, Anton N.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Gaskill, Kurt; Tedesco, Joseph L.; Myers-Ward, Rachel L.; Eddy, Charles R., Jr.] USN, Adv SiC Epitaxial Res Lab, Res Lab, Washington, DC 20375 USA.
[Nardelli, Marco Buongiorno; Jayasekera, Thushari] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
[Nardelli, Marco Buongiorno] Univ N Texas, Dept Phys, Denton, TX 76203 USA.
[Nardelli, Marco Buongiorno] Univ N Texas, Dept Chem, Denton, TX 76203 USA.
[Kim, Ki Wook] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Jayasingha, Ruwantha; Sherehiy, Andriy; Stallard, Robert; Sumanasekera, Gamini U.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA.
RP Sidorov, AN (reprint author), Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
RI Buongiorno Nardelli, Marco/C-9089-2009
NR 31
TC 14
Z9 14
U1 3
U2 41
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 1
PY 2012
VL 111
IS 11
AR 113706
DI 10.1063/1.4725413
PG 6
WC Physics, Applied
SC Physics
GA 960PW
UT WOS:000305401400087
ER
PT J
AU Wang, JY
Yang, WG
Wang, S
Xiao, XH
De Carlo, F
Liu, YJ
Mao, WL
AF Wang, Junyue
Yang, Wenge
Wang, Steve
Xiao, Xianghui
De Carlo, Francesco
Liu, Yijin
Mao, Wendy L.
TI High pressure nano-tomography using an iterative method
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT 6th International Conference on the Study of Matter at Extreme
Conditions (SMEC)
CY MAR 27-APR 02, 2011
CL High Pressure Sci Soc Amer (HiPSSA), Miami, FL
SP Florida Int Univ, Ctr Study Matter Extreme Condit (CeSMEC), Florida Int Univ, Coll Engn
HO High Pressure Sci Soc Amer (HiPSSA)
ID X-RAY-DIFFRACTION; IMAGE-RECONSTRUCTION; MICROTOMOGRAPHY
AB An iterative method has been developed to improve the quality of 3D tomography data with limited angular access. Within 10 iteration cycles, the reconstructed data error can be improved by an order of magnitude and reach below 1%. This algorithm was applied to high pressure tomography data collected in a panoramic diamond anvil cell with the transmission x-ray microscopy technique, in which only 135 degrees of data can be obtained. We found that the volumes measured for a tin (Sn) particle across the beta-Sn to body-centered-tetragonal (bct) high pressure phase transition match the equation of state for Sn determined by x-ray diffraction. This result demonstrates the exciting potential for a wide range of high pressure imaging studies which are now enabled by use of the iteration method to reconstruct 3D tomography data. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726249]
C1 [Wang, Junyue; Wang, Steve; Xiao, Xianghui; De Carlo, Francesco] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Wang, Junyue; Yang, Wenge] Carnegie Inst Sci, HPSynC, Argonne, IL 60439 USA.
[Liu, Yijin] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Mao, Wendy L.] Stanford Univ, Stanford, CA 94305 USA.
[Mao, Wendy L.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
RP Wang, JY (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM junyuewang@gmail.com; wyang@ciw.edu
RI Mao, Wendy/D-1885-2009; Yang, Wenge/H-2740-2012; Liu, Yijin/O-2640-2013
OI Liu, Yijin/0000-0002-8417-2488
NR 17
TC 9
Z9 10
U1 1
U2 15
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 1
PY 2012
VL 111
IS 11
AR 112626
DI 10.1063/1.4726249
PG 5
WC Physics, Applied
SC Physics
GA 960PW
UT WOS:000305401400027
ER
PT J
AU Washington, AL
Teague, LC
Duff, MC
Burger, A
Groza, M
Buliga, V
AF Washington, Aaron L., II
Teague, Lucile C.
Duff, Martine C.
Burger, Arnold
Groza, Michael
Buliga, Vladimir
TI Wavelength dependence on the space charge collection in CdZnTe detectors
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID CADMIUM-ZINC-TELLURIDE; GAMMA-RAY DETECTORS; ELECTRIC-FIELD; INTERBAND
ABSORPTION; RADIATION DETECTORS; CDTE; LIGHT; CRYSTALS; CONTACTS
AB The distribution of the internal electric field in Cd1-xZnxTe (CZT) materials has significant effects on the charge collection ability. Light exposure at various wavelengths is a relatively unexplored process that alters charge collection at the anode contact. The use of multiple wavelengths can target charge carriers at various trap energies and positions throughout the crystal. The controlled illumination increases charge collection by releasing trapped electron and hole carriers in the crystal despite differences in light energy. Our study presents the results from our investigation of the effect of external illumination of CZT on the internal electric field via the Pockels effect. The space charge collection is further analyzed based on location and intensity relative to the specific wavelength of illumination. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4725493]
C1 [Washington, Aaron L., II; Teague, Lucile C.; Duff, Martine C.] Savannah River Natl Lab, Aiken, SC 29808 USA.
[Burger, Arnold; Groza, Michael; Buliga, Vladimir] Fisk Univ, Nashville, TN 37208 USA.
RP Washington, AL (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA.
EM aaron.washington@srnl.doe.gov
NR 25
TC 9
Z9 9
U1 1
U2 12
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 1
PY 2012
VL 111
IS 11
AR 113715
DI 10.1063/1.4725493
PG 6
WC Physics, Applied
SC Physics
GA 960PW
UT WOS:000305401400096
ER
PT J
AU Yu, T
Chen, JH
Ehm, L
Huang, S
Guo, QZ
Luo, SN
Parise, J
AF Yu, Tony
Chen, Jiuhua
Ehm, Lars
Huang, Shu
Guo, Quanzhong
Luo, Sheng-Nian
Parise, John
TI Study of liquid gallium at high pressure using synchrotron x-ray
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT 6th International Conference on the Study of Matter at Extreme
Conditions (SMEC)
CY MAR 27-APR 02, 2011
CL High Pressure Sci Soc Amer (HiPSSA), Miami, FL
SP Florida Int Univ, Ctr Study Matter Extreme Condit (CeSMEC), Florida Int Univ, Coll Engn
HO High Pressure Sci Soc Amer (HiPSSA)
ID PHASE-TRANSITION; DIFFRACTION; TEMPERATURE; DENSITY; MELTS
AB Liquid gallium has been studied at high pressure up to 2 GPa and ambient temperature in a diamond anvil cell using high energy synchrotron x-ray beam. The total x-ray scattering data of liquid gallium were collected up to Q -12 angstrom(-1) and analyzed using pair distribution functions (PDF). The results indicate that the first nearest neighbor peak and second nearest neighbor (shoulder) peak of PDF in liquid gallium does not change with pressure, whereas the higher order (i.e., third and fourth) nearest neighbor peaks shift towards shorter distance with increasing pressure. Reverse Monte Carlo modeling based on the observed data shows that the coordination number in the liquid gallium increases with pressure from 10.5 at 0.3 GPa to 11.6 at 2 GPa. An atomic arrangement similar to the crystalline phase of Ga(II) with coordination number of 12 is proposed for the locally dense-packed rigid unit in liquid gallium. The volume compression data derived from the structure modeling yield a bulk modulus of 12.1(6) GPa for liquid gallium. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726256]
C1 [Yu, Tony; Chen, Jiuhua; Ehm, Lars; Guo, Quanzhong; Parise, John] SUNY Stony Brook, Dept Geosci, Inst Mineral Phys, Stony Brook, NY 11794 USA.
[Chen, Jiuhua; Huang, Shu] Florida Int Univ, Dept Mech & Mat Engn, Ctr Study Matters Extreme Condit, Miami, FL 33199 USA.
[Ehm, Lars] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Luo, Sheng-Nian] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA.
RP Yu, T (reprint author), SUNY Stony Brook, Dept Geosci, Inst Mineral Phys, Stony Brook, NY 11794 USA.
RI Luo, Sheng-Nian /D-2257-2010
OI Luo, Sheng-Nian /0000-0002-7538-0541
NR 32
TC 5
Z9 5
U1 2
U2 32
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 1
PY 2012
VL 111
IS 11
AR 112629
DI 10.1063/1.4726256
PG 4
WC Physics, Applied
SC Physics
GA 960PW
UT WOS:000305401400030
ER
PT J
AU Yu, XH
Zhang, JZ
Zhang, YY
Wang, LP
Zhao, YS
AF Yu, Xiaohui
Zhang, Jianzhong
Zhang, Yingying
Wang, Liping
Zhao, Yusheng
TI Comparative studies of yield strength and elastic compressibility
between nanocrystalline and bulk cobalt
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID HIGH-PRESSURE; MECHANICAL-PROPERTIES; TEMPERATURE; NICKEL; DEFORMATION;
DIAMOND; ALLOYS; COPPER; THERMOMECHANICS; EQUATION
AB Comparative studies of yield strength and elastic compressibility between nanocrystalline and bulk cobalt were conducted using synchrotron x-ray diffraction under tri-axial pressure loading-unloading conditions. Relative to micron Co, nano Co exhibits higher flow stress (2.9GPa compared with 2.1GPa in micro Co), extra degree of strain-induced peak broadening during loading yet a better strain recoverability after unloading. These observations suggest different deformation mechanisms with intergranular strains dominated in nano Co and intragranular strains in micron Co. The determined bulk modulus for nano Co is 216 GPa, similar to 17% higher than that of micron Co (185 GPa). This finding supports a generalized model of nanocrystals with pre-compressed surface layers and indicates that the grain-size induced elastic strengthening and weakening are primarily determined by the nature of internal stress (compressed vs. tensile) present in the surface layer of a nanocrystal. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724338]
C1 [Yu, Xiaohui; Zhang, Jianzhong; Zhao, Yusheng] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA.
[Zhang, Yingying] Los Alamos Natl Lab, CINT, Los Alamos, NM 87545 USA.
[Wang, Liping; Zhao, Yusheng] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA.
[Wang, Liping; Zhao, Yusheng] Univ Nevada, High Pressure Sci & Engn Ctr HiPSEC, Las Vegas, NV 89154 USA.
RP Yu, XH (reprint author), Los Alamos Natl Lab, LANSCE Div, POB 1663, Los Alamos, NM 87545 USA.
EM xiaohui@lanl.gov; yusheng.zhao@unlv.edu
RI Lujan Center, LANL/G-4896-2012; Zhang, Yingying/A-7260-2009;
OI Zhang, Yingying/0000-0002-8448-3059; Zhang,
Jianzhong/0000-0001-5508-1782
NR 44
TC 4
Z9 4
U1 0
U2 22
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 1
PY 2012
VL 111
IS 11
AR 113506
DI 10.1063/1.4724338
PG 5
WC Physics, Applied
SC Physics
GA 960PW
UT WOS:000305401400054
ER
PT J
AU Zhang, SJ
Zhang, JL
Yu, XH
Zhu, J
Kong, PP
Feng, SM
Liu, QQ
Yang, LX
Wang, XC
Cao, LZ
Yang, WG
Wang, L
Mao, HK
Zhao, YS
Liu, HZ
Dai, X
Fang, Z
Zhang, SC
Jin, CQ
AF Zhang, S. J.
Zhang, J. L.
Yu, X. H.
Zhu, J.
Kong, P. P.
Feng, S. M.
Liu, Q. Q.
Yang, L. X.
Wang, X. C.
Cao, L. Z.
Yang, W. G.
Wang, L.
Mao, H. K.
Zhao, Y. S.
Liu, H. Z.
Dai, X.
Fang, Z.
Zhang, S. C.
Jin, C. Q.
TI The comprehensive phase evolution for Bi2Te3 topological compound as
function of pressure
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article; Proceedings Paper
CT 6th International Conference on the Study of Matter at Extreme
Conditions (SMEC)
CY MAR 27-APR 02, 2011
CL High Pressure Sci Soc Amer (HiPSSA), Miami, FL
SP Florida Int Univ, Ctr Study Matter Extreme Condit (CeSMEC), Florida Int Univ, Coll Engn
HO High Pressure Sci Soc Amer (HiPSSA)
ID HGTE QUANTUM-WELLS; SINGLE DIRAC CONE; INDUCED SUPERCONDUCTIVITY; SPIN;
INSULATOR; TRANSITION; SURFACE
AB The recently discovered three-dimensional topological insulator Bi2Te3 is studied as function of pressure in terms of crystal structures, resistance, and Hall coefficient. The superconductivity is found in phase I (ambient phase) Bi2Te3 with T-c similar to 3 K, which is related to the topological features. The evolution of crystal structure with pressure is investigated by high pressure synchrotron radiation experiments that reveal structural transitions occurring at about 8 GPa, 13 GPa, and 16 GPa, respectively. Furthermore, the high pressure phases of Bi2Te3 are also superconducting but with much higher T-c similar to 8 K. The superconducting transitions are compared with those for Bi, Te elements. A global phase diagram of Bi2Te3 as function of pressure up to 30 GPa is obtained. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726258]
C1 [Zhang, S. J.; Zhang, J. L.; Yu, X. H.; Zhu, J.; Kong, P. P.; Feng, S. M.; Liu, Q. Q.; Yang, L. X.; Wang, X. C.; Dai, X.; Fang, Z.; Jin, C. Q.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.
[Zhang, J. L.; Cao, L. Z.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China.
[Yu, X. H.; Liu, H. Z.] Harbin Inst Technol, Nat Sci Res Ctr, Harbin 150080, Peoples R China.
[Yang, W. G.; Wang, L.; Mao, H. K.] Carnegie Inst Sci, HPSynC, Geophys Lab, Argonne, IL 60439 USA.
[Yang, W. G.; Wang, L.; Mao, H. K.] Carnegie Inst Sci, Geophys Lab, HPCAT, Argonne, IL 60439 USA.
[Zhao, Y. S.] Los Alamos Natl Lab, LANSCE, Los Alamos, NM 87545 USA.
[Zhao, Y. S.] Univ Nevada, Dept Phys & Astron, HiPSEC, Las Vegas, NV 89154 USA.
[Zhang, S. C.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
RP Jin, CQ (reprint author), Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.
EM JIN@iphy.ac.cn
RI Lujan Center, LANL/G-4896-2012; WANG, LIN/G-7884-2012; Yang,
Wenge/H-2740-2012; Liu, Haozhe/E-6169-2011; Zhang,
Shou-Cheng/B-2794-2010; Mao, Hokwang/K-8013-2013; Fang,
Zhong/D-4132-2009
NR 22
TC 22
Z9 22
U1 2
U2 36
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 1
PY 2012
VL 111
IS 11
AR 112630
DI 10.1063/1.4726258
PG 6
WC Physics, Applied
SC Physics
GA 960PW
UT WOS:000305401400031
ER
PT J
AU Zinin, PV
Ming, LC
Ishii, HA
Jia, R
Acosta, T
Hellebrand, E
AF Zinin, P. V.
Ming, L. C.
Ishii, H. A.
Jia, R.
Acosta, T.
Hellebrand, E.
TI Phase transition in BCx system under high-pressure and high-temperature:
Synthesis of cubic dense BC3 nanostructured phase
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID ENERGY-LOSS SPECTROSCOPY; RAMAN-SPECTROSCOPY; DOPED DIAMOND; BORON;
SUPERHARD; GRAPHITE; BC2N; EELS; SPECTRUM; CARBONS
AB We synthesized a cubic BC3 (c-BC3) phase, by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell. A combination of x-ray diffraction, electron diffraction, transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC3. High-resolution TEM imaging of the c-BC3 specimen recovered at ambient conditions demonstrates that the c-BC3 is a single, uniform, nanocrystalline phase with a grain size of about 3-5 nm. The EELS measurements show that the atoms inside the cubic structure are bonded by sp(3) bonds. The zero-pressure lattice parameter of the c-BC3 calculated from diffraction peaks was found to be a = 3.589 +/- 0.007 angstrom. The composition of the c-BC3 is determined from EELS measurements. The ratio of carbon to boron, C/B, is approximately 3 (2.8 +/- 0.7). (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723275]
C1 [Zinin, P. V.; Ming, L. C.; Jia, R.; Acosta, T.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
[Ishii, H. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA.
[Hellebrand, E.] Univ Hawaii, Dept Geol & Geophys, Honolulu, HI 96822 USA.
RP Zinin, PV (reprint author), Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
EM zinin@soest.hawaii.edu
RI Hellebrand, Eric/L-2898-2013; Zinin, Pavel/F-9434-2014
OI Zinin, Pavel/0000-0002-5816-8792
NR 62
TC 23
Z9 23
U1 6
U2 50
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD JUN 1
PY 2012
VL 111
IS 11
AR 114905
DI 10.1063/1.4723275
PG 9
WC Physics, Applied
SC Physics
GA 960PW
UT WOS:000305401400166
ER
PT J
AU Chen, F
Falta, RW
Murdoch, LC
AF Chen, Fei
Falta, Ronald W.
Murdoch, Lawrence C.
TI Numerical analysis of contaminant removal from fractured rock during
boiling
SO JOURNAL OF CONTAMINANT HYDROLOGY
LA English
DT Article
DE Fractured rock; Chlorinated volatile organic compound (CVOC); Thermal
remediation; TMVOC; MINC
ID MULTIPHASE TRACER TRANSPORT; NONAQUEOUS PHASE LIQUIDS; HEAT-PULSE
METHOD; POROUS-MEDIA; STEAM-INJECTION; GEOTHERMAL-RESERVOIRS; GEOLOGIC
MEDIA; SOIL; SIMULATION; REMEDIATION
AB A multiphase heat transfer numerical model is used to simulate a laboratory experiment of contaminant removal at boiling temperatures from a rock core representing the matrix adjacent to a fracture. The simulated temperature, condensate production, contaminant and bromide concentrations are similar to experimental data. A key observation from the experiment and simulation is that boiling out approximately 1/2 pore volume (50 mL) of water results in the removal of essentially 100% of the dissolved volatile contaminant (1,2-DCA). A field-scale simulation using the multiple interacting continua (MINC) discretization approach is conducted to illustrate possible applications of thermal remediation of fractured geologic media, assuming uniform heating. The results show that after 28% of the pore water (including both steam vapor and liquid water) was extracted, and essentially all the 1,2-DCA mass (more than 99%) was removed. Published by Elsevier B.V.
C1 [Chen, Fei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Chen, Fei; Falta, Ronald W.; Murdoch, Lawrence C.] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA.
RP Chen, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM fei.chen@lbl.gov
RI Chen, Fei/G-5444-2014
FU Strategic Environmental and Development Program (SERDP) [ER-1553]
FX The authors gratefully acknowledge financial support from the Strategic
Environmental and Development Program (SERDP) through the Project
ER-1553.
NR 42
TC 5
Z9 5
U1 2
U2 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0169-7722
J9 J CONTAM HYDROL
JI J. Contam. Hydrol.
PD JUN
PY 2012
VL 134
BP 12
EP 21
DI 10.1016/j.jconhyd.2012.04.004
PG 10
WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources
SC Environmental Sciences & Ecology; Geology; Water Resources
GA 964BD
UT WOS:000305667800002
PM 22579665
ER
PT J
AU Tan, ZF
Zhang, HJ
Xu, J
Wang, JH
Yu, C
Zhang, JL
AF Tan, Zhongfu
Zhang, Huijuan
Xu, Jun
Wang, Jianhui
Yu, Chao
Zhang, Jinliang
TI Photovoltaic Power Generation in China: Development Potential, Benefits
of Energy Conservation and Emission Reduction
SO JOURNAL OF ENERGY ENGINEERING-ASCE
LA English
DT Article
DE Photovoltaic; Generation cost; Wholesale price; Energy conservation and
emission reduction
AB Photovoltaic (PV) power generation is a significant way to deal with the energy crisis and protect the environment both in China and overseas. On the basis of analysis of the four factors that impact the development of China's PV power generation, including solar-energy resources in China, PV industry conditions, research and development of solar-cell technology, and related PV policies, the prospects and development potential of PV power generation in China are discussed. Using actual data on China's PV power generation, the cost of PV modules and the potential decrease in the initial investment required to establish PV systems are analyzed, and the declining trends in the generation cost and purchase price of PV power in China are estimated. The economic feasibility of PV power generation is studied by comparing the trends of generation costs for PV and thermal power. Finally, the energy conservation and emission reduction benefits of PV power generation are analyzed. DOI: 10.1061/(ASCE)EY.1943-7897.0000062. (C) 2012 American Society of Civil Engineers.
C1 [Tan, Zhongfu; Zhang, Huijuan; Xu, Jun; Yu, Chao; Zhang, Jinliang] N China Elect Power Univ, Sch Econ & Management, Beijing, Peoples R China.
[Tan, Zhongfu; Wang, Jianhui] Shanghai Univ Elect Power, Sch Econ & Management, Shanghai, Peoples R China.
[Wang, Jianhui] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Zhang, HJ (reprint author), N China Elect Power Univ, Sch Econ & Management, Beijing, Peoples R China.
EM zhanghuijuan1213@163.com
FU National Natural Science Foundation of China [71071053]
FX The work described in this paper was supported by the National Natural
Science Foundation of China, Grant No. 71071053.
NR 15
TC 8
Z9 9
U1 0
U2 22
PU ASCE-AMER SOC CIVIL ENGINEERS
PI RESTON
PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA
SN 0733-9402
J9 J ENERG ENG-ASCE
JI J. Energy Eng.-ASCE
PD JUN
PY 2012
VL 138
IS 2
SI SI
BP 73
EP 86
DI 10.1061/(ASCE)EY.1943-7897.0000062
PG 14
WC Energy & Fuels; Engineering, Civil
SC Energy & Fuels; Engineering
GA 952WU
UT WOS:000304826500006
ER
PT J
AU Stadler, M
Marnay, C
Kloess, M
Cardoso, G
Mendes, G
Siddiqui, A
Sharma, R
Megel, O
Lai, J
AF Stadler, M.
Marnay, C.
Kloess, M.
Cardoso, G.
Mendes, G.
Siddiqui, A.
Sharma, R.
Megel, O.
Lai, J.
TI Optimal Planning and Operation of Smart Grids with Electric Vehicle
Interconnection
SO JOURNAL OF ENERGY ENGINEERING-ASCE
LA English
DT Article
DE Carbon emissions; Combined heat and power; Commercial buildings;
Distributed energy resources; Electric vehicle; Load shifting;
Microgrid; Optimization; Smart grid; Storage technologies
ID MICROGRIDS
AB Connection of electric storage technologies to smart grids will have substantial implications for building energy systems. Local storage will enable demand response. When connected to buildings, mobile storage devices, such as electric vehicles (EVs), are in competition with conventional stationary sources at the building. These EVs can change the financial and environmental attractiveness of on-site generation [e. g., photovoltaic (PV) or fuel cells (FCs)]. To examine the effect of EVs on building energy costs and carbon dioxide (CO2) emissions, a distributed-energy resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions and solved for 2020 technology assumptions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California, and example results and the aggregated economic and environmental benefits are reported. Special constraints for the available PV, solar thermal, and EV parking lots at the commercial buildings are considered. The research shows that EV batteries can be used to reduce utility-related energy costs at the smart grid or commercial building due to arbitrage of energy between buildings with different tariffs. However, putting more emphasis on CO2 emissions makes stationary storage more attractive, and stationary storage capacities increase, whereas the attractiveness of EVs decreases. The limited availability of EVs at the commercial building decreases the attractiveness of EVs, and if PV is chosen by the optimization, then it is mostly used to charge the stationary storage at the commercial building and not the EVs connected to the building. DOI: 10.1061/(ASCE)EY.1943-7897.0000070. (C) 2012 American Society of Civil Engineers.
C1 [Siddiqui, A.] UCL, London, England.
[Siddiqui, A.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Stadler, M.; Marnay, C.; Kloess, M.; Lai, J.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Stadler, M.] Ctr Energy & Innovat Technol, Hofamt Priel, Austria.
[Kloess, M.] Vienna Univ Technol, A-1040 Vienna, Austria.
[Cardoso, G.; Mendes, G.] Inst Super Tecn, MIT Portugal Program, Lisbon, Portugal.
[Sharma, R.] NEC Labs Amer Inc, Princeton, NJ USA.
[Megel, O.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland.
RP Siddiqui, A (reprint author), UCL, London, England.
EM MStadler@lbl.gov; ChrisMarnay@lbl.gov; Kloess@eeg.tuwien.ac.at;
Goncalo.cardoso@ist.utl.pt; Goncalo.P.Mendes@ist.utl.pt;
Afzal@stats.ac.ucl.uk; Ratnesh@sv.nec-labs.com; Olivier.Megel@epfl.ch;
JLai@lbl.gov
OI Mendes, Goncalo/0000-0001-9309-0110
FU Office of Electricity Delivery and Energy Reliability of the U.S.
Department of Energy [DE-AC02-05CH11231]; NEC Laboratories America Inc.
FX The work described in this paper was funded by the Office of Electricity
Delivery and Energy Reliability, Distributed Energy Program of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231 and by NEC
Laboratories America Inc. We also want to thank Professor Dr. Tomas
Gomez and Ilan Momber for their very valuable contributions to previous
versions of DER-CAM.
NR 25
TC 13
Z9 14
U1 0
U2 50
PU ASCE-AMER SOC CIVIL ENGINEERS
PI RESTON
PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA
SN 0733-9402
J9 J ENERG ENG-ASCE
JI J. Energy Eng.-ASCE
PD JUN
PY 2012
VL 138
IS 2
SI SI
BP 95
EP 108
DI 10.1061/(ASCE)EY.1943-7897.0000070
PG 14
WC Energy & Fuels; Engineering, Civil
SC Energy & Fuels; Engineering
GA 952WU
UT WOS:000304826500008
ER
PT J
AU Stanley, SJ
Lennox, K
Farfan, EB
Coleman, JR
Adamovics, J
Thomas, A
Oldham, M
AF Stanley, S. J.
Lennox, K.
Farfan, E. B.
Coleman, J. R.
Adamovics, J.
Thomas, A.
Oldham, M.
TI Locating, quantifying and characterising radiation hazards in
contaminated nuclear facilities using a novel passive non-electrical
polymer based radiation imaging device
SO JOURNAL OF RADIOLOGICAL PROTECTION
LA English
DT Article
ID 3D DOSIMETRY SYSTEM; DETECTOR
AB This paper provides a summary of recent trials which took place at the US Department of Energy Oak Ridge National Laboratory (ORNL) during December 2010. The overall objective for the trials was to demonstrate that a newly developed technology could be used to locate, quantify and characterise the radiological hazards within two separate ORNL hot cells (B and C). The technology used, known as RadBall (R), is a novel, passive, non-electrical polymer based radiation detection device which provides a 3D visualisation of radiation from areas where effective measurements have not been previously possible due to lack of access. This is particularly useful in the nuclear industry prior to the decommissioning of facilities where the quantity, location and type of contamination are often unknown. For hot cell B, the primary objective of demonstrating that the technology could be used to locate, quantify and characterise three radiological sources was met with 100% success. Despite more challenging conditions in hot cell C, two sources were detected and accurately located. To summarise, the technology performed extremely well with regards to detecting and locating radiation sources and, despite the challenging conditions, moderately well when assessing the relative energy and intensity of those sources. Due to the technology's unique deployability, non-electrical nature and its directional awareness the technology shows significant promise for the future characterisation of radiation hazards prior to and during the decommissioning of contaminated nuclear facilities.
C1 [Stanley, S. J.; Lennox, K.] Natl Nucl Lab, Warrington WA3 6AE, Cheshire, England.
[Farfan, E. B.; Coleman, J. R.] SRS, Savannah River Natl Lab, Aiken, SC 29808 USA.
[Adamovics, J.] Heuris Pharma Llc, Lawrenceville, NJ 08648 USA.
[Thomas, A.; Oldham, M.] Duke Univ, Med Ctr, Durham, NC 27710 USA.
RP Stanley, SJ (reprint author), Natl Nucl Lab, Chadwick House,Warrington Rd,Birchwood Pk, Warrington WA3 6AE, Cheshire, England.
EM sjs20@nnl.co.uk
FU US Department of Energy-Office of Environmental Management [EM-44]
FX The authors would like to acknowledge the following organisations: the
UK's National Nuclear Laboratory for investing in the development of the
technology; the US Department of Energy-Office of Environmental
Management (EM-44) for providing funding to test and validate the
technology; Savannah River National Laboratory for supporting the NNL
during the recent trials ORNL trials; Duke Medical University for
providing the optical CT scanning system during the trials as well as
Heuris Pharma for providing the radiation sensitive polymers used during
the trials.
NR 14
TC 1
Z9 1
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0952-4746
J9 J RADIOL PROT
JI J. Radiol. Prot.
PD JUN
PY 2012
VL 32
IS 2
BP 131
EP 145
DI 10.1088/0952-4746/32/2/131
PG 15
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 960PP
UT WOS:000305400700002
PM 22555190
ER
PT J
AU Chen, SY
Tenforde, TS
AF Chen, S. Y.
Tenforde, Thomas S.
TI Optimizing decision making for late-phase recovery one year after the
Fukushima nuclear accident
SO JOURNAL OF RADIOLOGICAL PROTECTION
LA English
DT Letter
C1 [Chen, S. Y.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Tenforde, Thomas S.] Natl Council Radiat Protect & Measurements, Bethesda, MD 20814 USA.
RP Chen, SY (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM sychen@anl.gov; tenforde@NCRPonline.org
NR 5
TC 1
Z9 1
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0952-4746
J9 J RADIOL PROT
JI J. Radiol. Prot.
PD JUN
PY 2012
VL 32
IS 2
BP 191
EP 192
DI 10.1088/0952-4746/32/2/L01
PG 2
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 960PP
UT WOS:000305400700008
PM 22674029
ER
PT J
AU Collett, TS
Boswell, R
AF Collett, Timothy S.
Boswell, Ray
TI Resource and hazard implications of gas hydrates in the Northern Gulf of
Mexico: Results of the 2009 Joint Industry Project Leg II Drilling
Expedition Preface
SO MARINE AND PETROLEUM GEOLOGY
LA English
DT Editorial Material
C1 [Collett, Timothy S.] US Geol Survey, Denver, CO 80225 USA.
[Boswell, Ray] US DOE, Natl Energy Technol Lab, Morgantown, WV USA.
RP Collett, TS (reprint author), US Geol Survey, Box 25046, Denver, CO 80225 USA.
EM tcollett@usgs.gov
NR 19
TC 5
Z9 5
U1 2
U2 12
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0264-8172
J9 MAR PETROL GEOL
JI Mar. Pet. Geol.
PD JUN
PY 2012
VL 34
IS 1
BP 1
EP 3
DI 10.1016/j.marpetgeo.2012.01.002
PG 3
WC Geosciences, Multidisciplinary
SC Geology
GA 960GJ
UT WOS:000305375700001
ER
PT J
AU Boswell, R
Collett, TS
Frye, M
Shedd, W
McConnell, DR
Shelander, D
AF Boswell, Ray
Collett, Timothy S.
Frye, Matthew
Shedd, William
McConnell, Daniel R.
Shelander, Dianna
TI Subsurface gas hydrates in the northern Gulf of Mexico
SO MARINE AND PETROLEUM GEOLOGY
LA English
DT Article
DE Gas Hydrate; Northern Gulf of Mexico
ID ALAMINOS CANYON 21; CONTINENTAL-SLOPE; MARINE-SEDIMENTS; METHANE
HYDRATE; DEEP-WATER; RESOURCE; WELL; ACCUMULATIONS; EXPLORATION;
CALIBRATION
AB The northern Gulf of Mexico (GoM) has long been a focus area for the study of gas hydrates. Throughout the 1980s and 1990s, work focused on massive gas hydrates deposits that were found to form at and near the seafloor in association with hydrocarbon seeps. However, as global scientific and industrial interest in assessment of the drilling hazards and resource implications of gas hydrate accelerated, focus shifted to understanding the nature and abundance of "buried" gas hydrates. Through 2005, despite the drilling of more than 1200 oil and gas industry wells through the gas hydrate stability zone, published evidence of significant sub-seafloor gas hydrate in the GoM was lacking. A 2005 drilling program by the GoM Gas Hydrate Joint Industry Project (the JIP) provided an initial confirmation of the occurrence of gas hydrates below the GoM seafloor. In 2006, release of data from a 2003 industry well in Alaminos Canyon 818 provided initial documentation of gas hydrate occurrence at high concentrations in sand reservoirs in the GoM. From 2006 to 2008, the JIP facilitated the integration of geophysical and geological data to identify sites prospective for gas hydrate-bearing sands, culminating in the recommendation of numerous drilling targets within four sites spanning a range of typical deepwater settings. Concurrent with, but independent of, the JIP prospecting effort, the Bureau of Ocean Energy Management (BOEM) conducted a preliminary assessment of the GoM gas hydrate petroleum system, resulting in an estimate of 607 trillion cubic meters (21,444 trillion cubic feet) gas-in-place of which roughly one-third occurs at expected high concentrations in sand reservoirs. In 2009, the JIP drilled seven wells at three sites, discovering gas hydrate at high saturation in sand reservoirs in four wells and suspected gas hydrate at low to moderate saturations in two other wells. These results provide an initial confirmation of the complex nature and occurrence of gas hydrate-bearing sands in the GoM, the efficacy of the integrated geological/geophysical prospecting approach used to identify the JIP drilling sites, and the relevance of the 2008 BOEM assessment. Published by Elsevier Ltd.
C1 [Boswell, Ray] US DOE, Natl Energy Technol Lab, Morgantown, WV USA.
[Collett, Timothy S.] US Geol Survey, Denver, CO 80225 USA.
[Frye, Matthew] US Bur Ocean Energy Management, Herndon, VA USA.
[Shedd, William] US Bur Ocean Energy Management, New Orleans, LA USA.
[McConnell, Daniel R.] AOA Geophys, Houston, TX USA.
[Shelander, Dianna] Schlumberger, Houston, TX USA.
RP Boswell, R (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV USA.
EM ray.boswell@netl.doe.gov
OI Boswell, Ray/0000-0002-3824-2967
NR 97
TC 63
Z9 68
U1 9
U2 56
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0264-8172
J9 MAR PETROL GEOL
JI Mar. Pet. Geol.
PD JUN
PY 2012
VL 34
IS 1
BP 4
EP 30
DI 10.1016/j.marpetgeo.2011.10.003
PG 27
WC Geosciences, Multidisciplinary
SC Geology
GA 960GJ
UT WOS:000305375700002
ER
PT J
AU Shedd, W
Boswell, R
Frye, M
Godfriaux, P
Kramer, K
AF Shedd, William
Boswell, Ray
Frye, Matthew
Godfriaux, Paul
Kramer, Kody
TI Occurrence and nature of "bottom simulating reflectors" in the northern
Gulf of Mexico
SO MARINE AND PETROLEUM GEOLOGY
LA English
DT Article
DE Bottom simulating reflectors; Gas hydrates; Gulf of Mexico; Seafloor
anomalies
ID GAS-HYDRATE HORIZONS; MARINE-SEDIMENTS; VELOCITY; BASINS; SEA
AB Subsurface interpretation, utilizing a database of more than 450,000 km(2) (175,000 mi(2)) of three-dimensional (3-D) seismic in the northern Gulf of Mexico (GoM), reveals 145 discrete areas, totaling 4450 km(2) (1.1 million acres) where the base of gas hydrate stability (BGHS) can be confidently inferred from seismic data. Unlike many other areas of the world, the majority of these features are not Bottom Simulating Reflectors (BSRs) in the "classic" sense, meaning continuous coherent events that cross-cut primary stratigraphy. Those typical, or continuous BSRs, are noted in only 24% of the features identified within this study. In contrast, the most common seismic manifestation of the BGHS in the GoM (59%) is the discontinuous "BSR", delineated by widely separated anomalous seismic events that align in general conformance with seafloor bathymetry. A third type of seismic feature, pluming "BSRs", are continuous events that are not bottom-simulating, but are bowed toward the seafloor and represent areas where large, but areally-limited increases in heat flow (linked to strong vertical fluid flux), perturb the BGHS. The limited nature of continuous BSRs and the relative abundance of discontinuous and pluming forms are attributed to the strong lithologic and structural heterogeneity of the northern GoM basin. This lithologic and structural complexity has served to disrupt and localize regionally pervasive and homogeneous gas flux that is consistent with the formation of large, continuous BSRs noted across other less complex continental margins. The various BSR forms identified in this study are shown to be closely associated (125 of 145) with the occurrence of seafloor amplitude anomalies, which are in turn usually associated with the flanks and crests of salt-cored ridges. These associations are interpreted to reflect the co-dependence of BSRs and seafloor reflectivity along the migration pathways that typify this geologic setting. Published by Elsevier Ltd.
C1 [Shedd, William; Godfriaux, Paul; Kramer, Kody] US Bur Ocean Energy Management, New Orleans, LA 70123 USA.
[Frye, Matthew] US Bur Ocean Energy Management, Herndon, VA USA.
[Boswell, Ray] US DOE, Natl Energy Technol Lab, Morgantown, WV USA.
RP Shedd, W (reprint author), US Bur Ocean Energy Management, New Orleans, LA 70123 USA.
EM william.shedd@boemre.gov
OI Boswell, Ray/0000-0002-3824-2967
NR 32
TC 21
Z9 22
U1 0
U2 17
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0264-8172
J9 MAR PETROL GEOL
JI Mar. Pet. Geol.
PD JUN
PY 2012
VL 34
IS 1
BP 31
EP 40
DI 10.1016/j.marpetgeo.2011.08.005
PG 10
WC Geosciences, Multidisciplinary
SC Geology
GA 960GJ
UT WOS:000305375700003
ER
PT J
AU Boswell, R
Frye, M
Shelander, D
Shedd, W
McConnelle, DR
Cook, A
AF Boswell, Ray
Frye, Matthew
Shelander, Dianna
Shedd, William
McConnelle, Daniel R.
Cook, Ann
TI Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green
Canyon 955, and Alaminos Canyon 21: Northern deepwater Gulf of Mexico
SO MARINE AND PETROLEUM GEOLOGY
LA English
DT Article
DE Gas hydrates; Gulf of Mexico; Pleistocene sands; Reservoir architecture
ID FACIES
AB Logging-while-drilling data acquired during the 2009 Gulf of Mexico (GoM) Gas Hydrate joint Industry Project Leg II program combined with features observed in seismic data allow assessment of the depositional environment, geometry, and internal architecture of gas-hydrate-bearing sand reservoirs from three sites in the northern Gulf of Mexico (GoM): Walker Ridge 313, Alaminos Canyon 21, and Green Canyon 955. The site descriptions assist in the understanding of the geological development of gas-hydrate-bearing sands and in the assessment of their energy production potential. Three sand-rich units are described from the Walker Ridge site, including multiple ponded sand-bodies representing turbidite channel and associated levee and terminal lobe environments within the Terrebonne basin on the lower slope of the GoM. Older units display fewer but greater-reservoir-quality channel and proximal levee facies as compared to thinner, more continuous, and unconfined sheet-like sands that characterize the younger units, suggesting a decrease in depositional gradient with time in the basin. The three wells in the Green Canyon 955 site penetrated proximal levee sands within a previously recognized Late Pleistocene basin floor turbidite-channel-levee complex. Reservoirs encountered in GC955 exhibit thin-bedded internal structure and complex fault compartmentalization. Two wells drilled in the Alaminos Canyon 21 site tested a large, shallow, sand unit within the Diana mini-basin that exhibits steep lateral margins, non-sinuous elongate form, and flat base with hummocky upper surface. These features suggest deposition as a mass-transport deposit consisting of remobilized sand-rich turbidites or as a large basin-floor fan that was potentially eroded and buried by later-stage, mud-prone, mass-transport deposits. Published by Elsevier Ltd.
C1 [Boswell, Ray] US DOE, Natl Energy Technol Lab, Morgantown, WV USA.
[Frye, Matthew] US Bur Ocean Energy Management, Herndon, VA USA.
[Shelander, Dianna] Schlumberger Ltd, Houston, TX USA.
[Shedd, William] US Bur Ocean Energy Management, New Orleans, LA USA.
[McConnelle, Daniel R.] AOA Geophys, Houston, TX USA.
[Cook, Ann] Lamont Doherty Earth Observ, Palisades, NY USA.
RP Boswell, R (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV USA.
EM ray.boswell@netl.doe.gov
RI Cook, Ann/D-8798-2013;
OI Cook, Ann/0000-0002-5658-0329; Boswell, Ray/0000-0002-3824-2967
NR 36
TC 24
Z9 27
U1 0
U2 20
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0264-8172
J9 MAR PETROL GEOL
JI Mar. Pet. Geol.
PD JUN
PY 2012
VL 34
IS 1
BP 134
EP 149
DI 10.1016/j.marpetgeo.2011.08.010
PG 16
WC Geosciences, Multidisciplinary
SC Geology
GA 960GJ
UT WOS:000305375700011
ER
PT J
AU Frye, M
Shedd, W
Boswell, R
AF Frye, Matthew
Shedd, William
Boswell, Ray
TI Gas hydrate resource potential in the Terrebonne Basin, Northern Gulf of
Mexico
SO MARINE AND PETROLEUM GEOLOGY
LA English
DT Article
DE Gas hydrate; Northern Gulf of Mexico; Terrebonne basin; In-place
resources
ID PROJECT LEG II; GREEN CANYON 955; CONTINENTAL-SLOPE; RESERVOIRS; ORIGIN;
FACIES; WELL
AB The Terrebonne Basin is a salt-withdrawal mini-basin within the northeast portion of the Walker Ridge protraction area in northern Gulf of Mexico continental slope that contains a thick sequence of upper Pliocene and Pleistocene clastic sediment. Data acquired during the 2009 Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (JIP Leg II) logging-while-drilling (LWD) program confirmed the presence of gas hydrate within a variety of sand and clay units. Integration of the Leg II LWD data with regional seismic mapping allows for the identification of various facies assemblages within the sand units and an initial estimation of the gas hydrate in-place resources throughout the Terrebonne basin. A total of similar to 4.4 x 10(9) m(3) (1.55 x 10(11) ft(3)) of gas occurs within highly saturated gas hydrate accumulations within channel, proximal levee, and distal levee facies of four primary Lower Pleistocene sand reservoirs. These sand accumulations occur at the base of gas hydrate stability and locally trap additional, unquantified accumulations of free gas. A number of additional thin hydrate-bearing sand units are also observed to occur at shallower depths. Potential recoverable volumes from this accumulation compare favorably with those realized from conventional deepwater gas reservoirs in the vicinity. In addition, Leg II LWD data delineated the occurrence of a stratal-bound occurrence of gas hydrate-filled fractures at low bulk volume saturations within a thick, shallow, and predominantly fine-grained unit. This unit is estimated to contain roughly 17.0 x 10(9) m(3) (5.87 x 10(11) ft(3)) of gas. The areal gas hydrate resource density within the Terrebonne basin is calculated at 1.183 x 10(9) m(3) per km(2) where delineated sand reservoirs are present and 0.32 x 10(9) m(3) per km(2) where sands are thought to be absent. Published by Elsevier Ltd.
C1 [Frye, Matthew] US Bur Ocean Energy Management Regulat & Enforcem, Herndon, VA USA.
[Shedd, William] US Bur Ocean Energy Management Regulat & Enforcem, New Orleans, LA USA.
[Boswell, Ray] US DOE, Natl Energy Technol Lab, Morgantown, WV USA.
RP Frye, M (reprint author), US Bur Ocean Energy Management Regulat & Enforcem, Herndon, VA USA.
EM matt.frye@boemre.gov
OI Boswell, Ray/0000-0002-3824-2967
NR 35
TC 22
Z9 22
U1 6
U2 14
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0264-8172
J9 MAR PETROL GEOL
JI Mar. Pet. Geol.
PD JUN
PY 2012
VL 34
IS 1
BP 150
EP 168
DI 10.1016/j.marpetgeo.2011.08.001
PG 19
WC Geosciences, Multidisciplinary
SC Geology
GA 960GJ
UT WOS:000305375700012
ER
PT J
AU Myshakin, EM
Gaddipati, M
Rose, K
Anderson, BJ
AF Myshakin, Evgeniy M.
Gaddipati, Manohar
Rose, Kelly
Anderson, Brian J.
TI Numerical simulations of depressurization-induced gas production from
gas hydrate reservoirs at the Walker Ridge 313 site, northern Gulf of
Mexico
SO MARINE AND PETROLEUM GEOLOGY
LA English
DT Article
DE Gas hydrates; 2D and 3D reservoir simulations; Numerical simulations;
Marine hydrate deposits; Gulf of Mexico Gas Hydrates Joint Industry;
Project
ID STRATIGRAPHIC TEST WELL; METHANE HYDRATE; SLOPE
AB In 2009, the Gulf of Mexico (GOM) Gas Hydrates Joint-Industry-Project (JIP) Leg II drilling program confirmed that gas hydrate occurs at high saturations within reservoir-quality sands in the GOM. A comprehensive logging-while-drilling dataset was collected from seven wells at three sites, including two wells at the Walker Ridge 313 site. By constraining the saturations and thicknesses of hydrate-bearing sands using logging-while-drilling data, two-dimensional (2D), cylindrical, r-z and three-dimensional (3D) reservoir models were simulated. The gas hydrate occurrences inferred from seismic analysis are used to delineate the areal extent of the 3D reservoir models. Numerical simulations of gas production from the Walker Ridge reservoirs were conducted using the depressurization method at a constant bottomhole pressure. Results of these simulations indicate that these hydrate deposits are readily produced, owing to high intrinsic reservoir-quality and their proximity to the base of hydrate stability. The elevated in situ reservoir temperatures contribute to high (5-40 MMscf/day) predicted production rates. The production rates obtained from the 2D and 3D models are in close agreement. To evaluate the effect of spatial dimensions, the 2D reservoir domains were simulated at two outer radii. The results showed increased potential for formation of secondary hydrate and appearance of lag time for production rates as reservoir size increases. Similar phenomena were observed in the 3D reservoir models. The results also suggest that interbedded gas hydrate accumulations might be preferable targets for gas production in comparison with massive deposits. Hydrate in such accumulations can be readily dissociated due to heat supply from surrounding hydrate-free zones. Special cases were considered to evaluate the effect of overburden and underburden permeability on production. The obtained data show that production can be significantly degraded in comparison with a case using impermeable boundaries. The main reason for the reduced productivity is water influx from the surrounding strata; a secondary cause is gas escape into the overburden. The results dictate that in order to reliably estimate production potential, permeability of the surroundings has to be included in a model. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Myshakin, Evgeniy M.; Gaddipati, Manohar; Rose, Kelly; Anderson, Brian J.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA.
[Myshakin, Evgeniy M.] URS, Pittsburgh, PA 15236 USA.
[Gaddipati, Manohar; Anderson, Brian J.] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA.
RP Myshakin, EM (reprint author), US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA USA.
EM Evgeniy.Myshakin@netl.doe.gov
FU National Energy Technology Laboratory's Office of Research and
Development [DE-FE0004000, 4000.4.605.261.001]
FX E.M., M.G., and B.A. performed this work under contract DE-FE0004000,
Subtask 4000.4.605.261.001 in support of the National Energy Technology
Laboratory's Office of Research and Development.
NR 40
TC 14
Z9 14
U1 3
U2 31
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0264-8172
J9 MAR PETROL GEOL
JI Mar. Pet. Geol.
PD JUN
PY 2012
VL 34
IS 1
BP 169
EP 185
DI 10.1016/j.marpetgeo.2011.09.001
PG 17
WC Geosciences, Multidisciplinary
SC Geology
GA 960GJ
UT WOS:000305375700013
ER
PT J
AU McConnell, DR
Zhang, ZJ
Boswell, R
AF McConnell, Daniel R.
Zhang, Zijian
Boswell, Ray
TI Review of progress in evaluating gas hydrate drilling hazards
SO MARINE AND PETROLEUM GEOLOGY
LA English
DT Article
DE Gas hydrate; Shallow gas; Geohazards; JIP Leg II; GC955; Seismic
interpretation
ID GULF-OF-MEXICO; BOTTOM-SIMULATING REFLECTORS; GREEN CANYON 955; SEISMIC
DATA; BEARING SEDIMENTS; METHANE HYDRATE; UNCONSOLIDATED SEDIMENTS;
GEOPHYSICAL EVIDENCE; ACCRETIONARY PRISM; ELASTIC PROPERTIES
AB Shallow drilling hazard assessment consists of geological/geophysical review of drill sites to enable the avoidance or effective mitigation of problems that can affect the safe drilling of the "top-hole" section of wells. Primary seafloor hazards include infrastructure, hardgrounds, chemosynthetic communities, and areas of high slope or potential seafloor instability. Shallow subsurface hazards include strata that may contain overpressured water, free gas, or gas hydrate. Among these issues, the potential hazards posed by gas hydrate have historically been the most difficult to quantify and constrain. This paper reviews the history of gas hydrate shallow hazard assessment, much of which has been framed by difficulties in remote detection and quantification of typical low-saturation, mud-hosted hydrate occurrences. Recent drilling results indicate that such accumulations can be safely drilled using existing industry protocols. However, assessment of drilling hazards associated with high saturation, sand-hosted hydrates warrant further investigation, and therefore was a key focus of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (JIP Leg II) program conducted in 2009. Pre-drill site hazard assessment for JIP Leg II utilized standard industry methods in which geohazards associated with gas hydrate and free gas were identified in a primarily-qualitative manner using seismic amplitude analysis, seismic stratigraphic interpretation, and geo-pressure analysis. While these methods can reliably detect shallow hydrocarbons, including highly-concentrated gas hydrates, they are not sufficient to determine if free gas may exist below gas hydrate, particularly where they occur in close vertical succession. Such undetected free gas occurrences can pose potential drilling hazards that can be quantitatively assessed using advanced seismic methods. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [McConnell, Daniel R.; Zhang, Zijian] Fugro GeoConsulting, Houston, TX USA.
[Zhang, Zijian] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX USA.
[Boswell, Ray] Natl Energy Technol Lab, Morgantown, WV USA.
RP McConnell, DR (reprint author), Fugro GeoConsulting, Houston, TX USA.
EM dmcconnell2@fugro.com
OI Boswell, Ray/0000-0002-3824-2967
FU AOA Geophysics Inc.
FX We thank and acknowledge the many scientists that worked with the Gulf
of Mexico Gas Hydrate Joint Industry Project that made this study
possible. In addition, the authors thank Emrys Jones, who guided the JIP
from its start through the JIP Leg II expedition, John Balczewski
(Chevron), and the JIP Executive Board. We thank Tim Collett (USGS), for
his leadership in all aspects of this expedition. We thank our
colleague, Brenda Monsalve, and the other scientists at AOA Geophysics
(now Fugro GeoConsulting), for the pre-drill hazards work at WR313 and
other sites for the JIP. We especially thank JIP contributor,
WesternGeco, for permission to show the data and AOA Geophysics Inc. for
the support of this study. The authors thank JIP members Conoco Phillips
and Statoil for the permission to describe the hazards studies and
outcomes at the Jolliet Field and at GC955. Finally, Dan McConnell
thanks Kerry J. Campbell (Fugro GeoConsulting) and Jim Hooper, retired,
who provided him insights and early encouragement to think about gas
hydrate systems in the Gulf of Mexico.
NR 104
TC 22
Z9 26
U1 3
U2 45
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0264-8172
J9 MAR PETROL GEOL
JI Mar. Pet. Geol.
PD JUN
PY 2012
VL 34
IS 1
BP 209
EP 223
DI 10.1016/j.marpetgeo.2012.02.010
PG 15
WC Geosciences, Multidisciplinary
SC Geology
GA 960GJ
UT WOS:000305375700015
ER
PT J
AU Lo, CC
Xie, G
Bonner, CA
Jensen, RA
AF Lo, Chien-Chi
Xie, Gary
Bonner, Carol A.
Jensen, Roy A.
TI The Alternative Translational Profile That Underlies the Immune-Evasive
State of Persistence in Chlamydiaceae Exploits Differential Tryptophan
Contents of the Protein Repertoire
SO MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS
LA English
DT Review
ID AMINO-ACID-COMPOSITION; OBLIGATE INTRACELLULAR PATHOGEN;
TRANSFER-RNA-SYNTHETASE; COHESION GROUP-APPROACH; QUORUM-SENSING SYSTEM;
III SECRETION SYSTEM; INTERFERON-GAMMA; MEMBRANE-PROTEINS; IN-VITRO;
ESCHERICHIA-COLI
C1 [Bonner, Carol A.; Jensen, Roy A.] Univ Florida, Plant Tissue Culture Lab, Gainesville, FL 32611 USA.
[Bonner, Carol A.] Univ Florida, Microbiol Lab, Gainesville, FL USA.
[Xie, Gary] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA.
RP Jensen, RA (reprint author), Univ Florida, Plant Tissue Culture Lab, Gainesville, FL 32611 USA.
EM xie@lanl.gov; rjensen@ufl.edu
OI xie, gary/0000-0002-9176-924X
FU NIH NIDCR [Y1-DE-6006-02]; Taiwan National Science Council
[NSC-97-3112-B-010-019]
FX This project was partially supported by an NIH NIDCR grant
(Y1-DE-6006-02 to G. X. and C.-C. L.). Additional support was provided
by Taiwan National Science Council grant NSC-97-3112-B-010-019 to
C.-C.L.
NR 140
TC 11
Z9 11
U1 0
U2 2
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 1092-2172
J9 MICROBIOL MOL BIOL R
JI Microbiol. Mol. Biol. Rev.
PD JUN
PY 2012
VL 76
IS 2
BP 405
EP 443
DI 10.1128/MMBR.05013-11
PG 39
WC Microbiology
SC Microbiology
GA 961ZH
UT WOS:000305508000009
PM 22688818
ER
PT J
AU Fitzgerald, SP
Aubry, S
Dudarev, SL
Cai, W
AF Fitzgerald, S. P.
Aubry, S.
Dudarev, S. L.
Cai, W.
TI Dislocation dynamics simulation of Frank-Read sources in anisotropic
alpha-Fe
SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING
LA English
DT Article
ID HIGH-TEMPERATURE; CRYSTALS; IRON
AB Frank-Read sources are among the most important examples of dislocation sources in crystals, and their operation facilitates dislocation multiplication and hence yield and plastic flow. Iron is known to become highly elastically anisotropic as the alpha-gamma transition at 912 degrees C is approached, a temperature regime of critical importance for emerging technologies such as fusion and next-generation fission power generation. Using dislocation dynamics simulations based on anisotropic linear elasticity theory, we show that the isotropic elastic approximation leads to large errors in the activation stress of Frank-Read sources in iron at high temperatures. The critical stresses obtained from anisotropic elasticity are very different from the isotropic calculations and vary significantly between orientations. In particular, the increased variation of the dislocation energy with orientation leads to certain source configurations becoming operational at very low applied stresses, a result which is incompatible with isotropic elasticity, and is consistent with the very low yield stresses observed experimentally in alpha-Fe at high temperatures.
C1 [Fitzgerald, S. P.; Dudarev, S. L.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
[Aubry, S.; Cai, W.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA.
[Aubry, S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Fitzgerald, SP (reprint author), EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
OI Cai, Wei/0000-0001-5919-8734
FU Army High Performance Computing Research Center at Stanford; European
Community under EURATOM; European Community under CCFE; RCUK Energy
Programme [EP/I501045]; US Department of Energy by Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]
FX The authors thank Professor D M Barnett for countless stimulating
discussions and helpful suggestions, and Mr J Yin for collaboration
during work on [11]. S Aubry is supported by the Army High Performance
Computing Research Center at Stanford. This work was partly funded by
the European Communities under the Contracts of Association between
EURATOM and CCFE, and was carried out within the framework of European
Fusion Development Agreement. The views and opinions expressed herein do
not necessarily reflect those of the European Commission. Work at CCFE
was partially funded by the RCUK Energy Programme under Grant No
EP/I501045. This work performed under the auspices of the US Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 16
TC 7
Z9 7
U1 0
U2 19
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0965-0393
J9 MODEL SIMUL MATER SC
JI Model. Simul. Mater. Sci. Eng.
PD JUN
PY 2012
VL 20
IS 4
AR 045022
DI 10.1088/0965-0393/20/4/045022
PG 8
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 961PH
UT WOS:000305477800022
ER
PT J
AU Mendelev, MI
AF Mendelev, M. I.
TI Molecular dynamics simulation of solidification and devitrification in a
one-component system
SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING
LA English
DT Article
ID INTERATOMIC POTENTIALS; LIQUID; AL; ALLOYS; CU
AB A specially designed semi-empirical potential of the Finnis-Sinclair type was used to simulate the phase transformation in a disordered one-component system. The potential provides that the face-centered cubic (fcc) phase is the most stable phase in the system below the melting temperature, T-m; however, the potential does not lead to the fcc nucleation during molecular dynamics (MD) simulation, allowing studying the liquid-glass transformation. The potential also allows studying the fcc-liquid and fcc-glass interface migration. It was found that the liquid-glass transformation described by this potential is of the first order. The Wilson-Frenkel theory of the solid-liquid interface (SLI) migration satisfactory describes the results of the MD simulation in the temperature interval from 0.55 T-m to T-m while the Broughton-Gilmer-Jackson theory is less accurate in describing the temperature dependence of the SLI velocity in the same temperature interval. Below 0.55 T-m, the results of the MD simulation strongly depend on how the disordered phase model was prepared and none of the existing theories is capable of reproducing the temperature dependence of the interface velocity.
C1 Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA.
RP Mendelev, MI (reprint author), Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA.
EM mendelev@ameslab.gov
FU US Department of Energy, Office of Basic Energy Science, Division of
Materials Sciences and Engineering; US Department of Energy by Iowa
State University [DE-AC02-07CH11358]
FX The author gratefully acknowledges useful discussions with Dr M J
Kramer. This work was supported by the US Department of Energy, Office
of Basic Energy Science, Division of Materials Sciences and Engineering.
The research was performed at the Ames Laboratory. Ames Laboratory is
operated for the US Department of Energy by Iowa State University under
Contract No DE-AC02-07CH11358.
NR 26
TC 6
Z9 6
U1 2
U2 30
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0965-0393
J9 MODEL SIMUL MATER SC
JI Model. Simul. Mater. Sci. Eng.
PD JUN
PY 2012
VL 20
IS 4
AR 045014
DI 10.1088/0965-0393/20/4/045014
PG 17
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 961PH
UT WOS:000305477800014
ER
PT J
AU Stukowski, A
AF Stukowski, Alexander
TI Structure identification methods for atomistic simulations of
crystalline materials
SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING
LA English
DT Article
ID MOLECULAR-DYNAMICS; NUCLEATION; LIQUIDS
AB We discuss existing and new computational analysis techniques to classify local atomic arrangements in large-scale atomistic computer simulations of crystalline solids. This article includes a performance comparison of typical analysis algorithms such as common neighbor analysis (CNA), centrosymmetry analysis, bond angle analysis, bond order analysis and Voronoi analysis. In addition we propose a simple extension to the CNA method that makes it suitable for multi-phase systems. Finally, we introduce a new structure identification algorithm, the neighbor distance analysis, which is designed to identify atomic structure units in grain boundaries.
C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Stukowski, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM alexander@stukowski.de
RI Albe, Karsten/F-1139-2011;
OI Stukowski, Alexander/0000-0001-6750-3401
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX The author thanks Paul Erhart and Tomas Oppelstrup for helpful
discussions. This work was performed under the auspices of the US
Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.
NR 31
TC 154
Z9 154
U1 4
U2 75
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0965-0393
J9 MODEL SIMUL MATER SC
JI Model. Simul. Mater. Sci. Eng.
PD JUN
PY 2012
VL 20
IS 4
AR 045021
DI 10.1088/0965-0393/20/4/045021
PG 15
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 961PH
UT WOS:000305477800021
ER
PT J
AU Luo, XF
Mohanty, B
Ritter, HG
Xu, N
AF Luo, Xiaofeng
Mohanty, Bedangadas
Ritter, Hans Georg
Xu, Nu
TI Higher moments of net-proton multiplicity distributions
SO PHYSICS OF ATOMIC NUCLEI
LA English
DT Article
ID QCD PHASE-DIAGRAM; CRITICAL-POINT; COLLISIONS; FLUCTUATIONS; TRANSITION
AB Higher moments of event-by-event net-proton multiplicity distributions have been applied to search for the QCD critical point. Model results are used to provide a baseline for this search. The measured moment products, kappa sigma (2) and S sigma of net-proton distributions, which are directly connected to the thermodynamical baryon number susceptibility ratio in Lattice QCD and Hadron Resonance Gas (HRG) model, are compared to the transport and thermal model results. We argue that a non-monotonic dependence of kappa sigma (2) and S sigma as a function of beam energy can be used to search for the QCD critical point.
C1 [Luo, Xiaofeng] Cent China Normal Univ, Inst Particle Phys, Wuhan, Peoples R China.
[Luo, Xiaofeng] Cent China Normal Univ, Key Lab Quark & Lepton Phys, Minist Educ, Wuhan, Peoples R China.
[Luo, Xiaofeng; Ritter, Hans Georg; Xu, Nu] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Mohanty, Bedangadas] Ctr Variable Energy Cyclotron, Kolkata, India.
RP Luo, XF (reprint author), Cent China Normal Univ, Inst Particle Phys, Wuhan, Peoples R China.
EM xfluo@lbl.gov
OI Mohanty, Bedangadas/0000-0001-9610-2914
FU U.S. Department of Energy [DE-AC03-76SF00098]; National Natural
Foundation of China [10835005, 10979003]; Major Basic Research
Development Program [2008CB817702]; DAE-BRNS [2010/21/15-BRNS/2026]
FX This work was supported in part by the U.S. Department of Energy under
Contract no. DE-AC03-76SF00098 and National Natural Foundation of China
under Grant no. 10835005, 10979003 and Major Basic Research Development
Program (2008CB817702). BM is supported by DAE-BRNS project Sanction no.
2010/21/15-BRNS/2026.
NR 25
TC 5
Z9 6
U1 0
U2 4
PU MAIK NAUKA/INTERPERIODICA/SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA
SN 1063-7788
EI 1562-692X
J9 PHYS ATOM NUCL+
JI Phys. Atom. Nuclei
PD JUN
PY 2012
VL 75
IS 6
BP 676
EP 678
DI 10.1134/S1063778812060348
PG 3
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 960UG
UT WOS:000305416000008
ER
PT J
AU Randrup, J
AF Randrup, J.
TI Spinodal phase decomposition with dissipative fluid dynamics
SO PHYSICS OF ATOMIC NUCLEI
LA English
DT Article
ID COLLISIONS
AB The spinodal amplification of density fluctuations is treated perturbatively within dissipative fluid dynamics including not only shear and bulk viscosity but also heat conduction, as well as a gradient term in the local pressure. The degree of spinodal amplification is calculated along specific dynamical phase trajectories and the results suggest that the effect can be greatly enhanced by tuning the collision energy so that maximum compression occurs inside the region of spinodal instability.
C1 Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA USA.
RP Randrup, J (reprint author), Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA USA.
EM JRandrup@LBL.gov
FU Office of Energy Research, Office of High Energy and Nuclear Physics,
Nuclear Physics Division of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX We wish to acknowledge helpful discussions with I. L. Iosilevskiy, V.
Koch, J. Liao, H. C. Song, and D.N. Voskresensky. This work was
supported by the Director, Office of Energy Research, Office of High
Energy and Nuclear Physics, Nuclear Physics Division of the U.S.
Department of Energy under contract no. DE-AC02-05CH11231.
NR 20
TC 2
Z9 2
U1 0
U2 0
PU MAIK NAUKA/INTERPERIODICA/SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA
SN 1063-7788
J9 PHYS ATOM NUCL+
JI Phys. Atom. Nuclei
PD JUN
PY 2012
VL 75
IS 6
BP 764
EP 769
DI 10.1134/S1063778812050195
PG 6
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 960UG
UT WOS:000305416000031
ER
PT J
AU Zhang, XP
AF Zhang Xiaoping
CA STAR Collaboration
TI The Elliptic Flow of Multi-Strange Hadrons in root S-NN=200 GeV Au + Au
Collisions at STAR
SO PLASMA SCIENCE & TECHNOLOGY
LA English
DT Article
DE elliptic flow; multi-strange hadrons; number of quark scaling; mass
ordering
ID RELATIVISTIC NUCLEAR COLLISIONS; ANISOTROPY; STAR
AB Azimuthal anisotropy, especially for the multi-strange hadrons, is expected to be sensitive to the dynamical evolution in the early stage of high energy nuclear collisions. In this paper we present the latest results of multi-strange hadron elliptic flow in Au + Au collisions at,root S-NN = 200 GeV from the STAR experiment at RHIC. The number-of-quark scaling is evidenced with phi(s (s) over bar) and Omega(sss) with highly statistical data, which shows strange quark collectivity at RHIC. The nu(2) of phi meson is found to be consistent with that of proton within statistical error bars at p(T) < 1 GeV/c.
C1 [Zhang Xiaoping] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China.
[Zhang Xiaoping] Tsinghua Univ, Key Lab Particle & Radiat Imaging, Minist Educ, Beijing 100084, Peoples R China.
[Zhang Xiaoping] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Zhang, XP (reprint author), Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China.
EM xpzhangnju@gmail.com
FU National Natural Science Foundation of China [10905029]; China
Postdoctoral Science Foundation [20100480017]; U.S. Department of Energy
[DE-AC03-76SF00098]
FX supported by National Natural Science Foundation of China (No.
10905029), by China Postdoctoral Science Foundation (No. 20100480017),
and by the U.S. Department of Energy Contract No DE-AC03-76SF00098
NR 20
TC 1
Z9 1
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1009-0630
J9 PLASMA SCI TECHNOL
JI Plasma Sci. Technol.
PD JUN
PY 2012
VL 14
IS 6
DI 10.1088/1009-0630/14/6/02
PG 3
WC Physics, Fluids & Plasmas
SC Physics
GA 961OI
UT WOS:000305474800002
ER
PT J
AU Watanabe, S
Datta-Gupta, A
AF Watanabe, Shingo
Datta-Gupta, Akhil
TI Use of Phase Streamlines for Covariance Localization in Ensemble Kalman
Filter for Three-Phase History Matching
SO SPE RESERVOIR EVALUATION & ENGINEERING
LA English
DT Article
ID DATA ASSIMILATION; ERROR; SIMULATION; FIELD
AB The ensemble Kalman filter (EnKF) has gained increased popularity for history matching and continuous reservoir-model updating. It is a sequential Monte Carlo approach that works with an ensemble of reservoir models. Specifically, the method uses cross covariance between measurements and model parameters estimated from the ensemble. For practical field applications, the ensemble size needs to be kept small for computational efficiency. However, this leads to poor approximations of the cross covariance and can cause loss of geologic realism from unrealistic model updates outside the region of the data influence and/or loss of variance leading to ensemble collapse. A common approach to remedy the situation is to limit the influence of the data through covariance localization.
In this paper, we show that for three-phase-flow conditions, the region of covariance localization strongly depends on the underlying flow dynamics as well as on the particular data type that is being assimilated, for example, water cut or gas/oil ratio (GOR). This makes the traditional distance-based localizations suboptimal and, often, ineffective. Instead, we propose the use of water- and gas-phase streamlines as a means for covariance localization for water-cut- and GOR-data assimilation. The phase streamlines can be computed on the basis of individual-phase velocities which are readily available after flow simulation. Unlike the total velocity streamlines, phase streamlines can be discontinuous. We show that the discontinuities in water-phase and gas-phase streamlines naturally define the region of influence for water-cut and GOR data and provide a flow-relevant covariance localization during EnKF updating.
We first demonstrate the validity of the proposed localization approach using a waterflood example in a quarter-five-spot pattern. Specifically, we compare the phase streamline trajectories with cross-covariance maps computed using an ensemble size of 2,000 for both water-cut and GOR data. The results show a close correspondence between the time evolution of phase streamlines and the cross-covariance maps of water-cut and GOR data. A benchmark uncertainty quantification (the PUNQ-S3) (Carter 2007) model application shows that our proposed localization outperforms the distance-based localization method. The updated models show improved forecasts while preserving geologic realism.
C1 [Watanabe, Shingo; Datta-Gupta, Akhil] Texas A&M Univ, College Stn, TX 77843 USA.
[Datta-Gupta, Akhil] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
RP Watanabe, S (reprint author), Texas A&M Univ, College Stn, TX 77843 USA.
FU Model Calibration and Efficient Reservoir Imaging; Texas A&M University
Brazos High Performance Computing (HPC) cluster
FX The authors acknowledge the sponsors of Model Calibration and Efficient
Reservoir Imaging and the Texas A&M University Brazos High Performance
Computing (HPC) cluster that contributed to the research reported here.
NR 32
TC 1
Z9 1
U1 1
U2 9
PU SOC PETROLEUM ENG
PI RICHARDSON
PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA
SN 1094-6470
J9 SPE RESERV EVAL ENG
JI SPE Reserv. Eval. Eng.
PD JUN
PY 2012
VL 15
IS 3
BP 273
EP 289
PG 17
WC Energy & Fuels; Engineering, Petroleum; Geosciences, Multidisciplinary
SC Energy & Fuels; Engineering; Geology
GA 961BU
UT WOS:000305439700001
ER
PT J
AU Warren, JM
Iversen, CM
Garten, CT
Norby, RJ
Childs, J
Brice, D
Evans, RM
Gu, L
Thornton, P
Weston, DJ
AF Warren, J. M.
Iversen, C. M.
Garten, C. T., Jr.
Norby, R. J.
Childs, J.
Brice, D.
Evans, R. M.
Gu, L.
Thornton, P.
Weston, D. J.
TI Timing and magnitude of C partitioning through a young loblolly pine
(Pinus taeda L.) stand using C-13 labeling and shade treatments
SO TREE PHYSIOLOGY
LA English
DT Article
DE carbon allocation; carbon partitioning; (CO2)-C-13; loblolly pine; Pinus
taeda; respiration; shade; soil CO2 efflux
ID SOIL CO2 EFFLUX; CARBON-ISOTOPE COMPOSITION; BELOW-GROUND CARBON; HIGH
TEMPORAL RESOLUTION; FINE-ROOT DYNAMICS; TEMPERATE FOREST; NUTRIENT
AVAILABILITY; VIRGINIA PIEDMONT; RESPIRATION; PHOTOSYNTHESIS
AB The dynamics of rapid changes in carbon (C) partitioning within forest ecosystems are not well understood, which limits improvement of mechanistic models of C cycling. Our objective was to inform model processes by describing relationships between C partitioning and accessible environmental or physiological measurements, with a special emphasis on short-term C flux through a forest ecosystem. We exposed eight 7-year-old loblolly pine (Pinus taeda L.) trees to air enriched with (CO2)-C-13 and then implemented adjacent light shade (LS) and heavy shade (HS) treatments in order to manipulate C uptake and flux. The impacts of shading on photosynthesis, plant water potential, sap flow, basal area growth, root growth and soil CO2 efflux rate (CER) were assessed for each tree over a 3-week period. The progression of the C-13 label was concurrently tracked from the atmosphere through foliage, phloem, roots and surface soil CO2 efflux. The HS treatment significantly reduced C uptake, sap flow, stem growth and fine root standing crop, and resulted in greater residual soil water content to 1 m depth. Soil CER was strongly correlated with sap flow on the previous day, but not the current day, with no apparent treatment effect on the relationship. Although there were apparent reductions in new C flux belowground, the HS treatment did not noticeably reduce the magnitude of belowground autotrophic and heterotrophic respiration based on surface soil CER, which was overwhelmingly driven by soil temperature and moisture. The C-13 label was immediately detected in foliage on label day (half-life = 0.5 day), progressed through phloem by Day 2 (half-life = 4.7 days), roots by Days 2-4, and subsequently was evident as respiratory release from soil which peaked between Days 3 and 6. The delta C-13 of soil CO2 efflux was strongly correlated with phloem delta C-13 on the previous day, or 2 days earlier. While the C-13 label was readily tracked through the ecosystem, the fate of root C through respiratory, mycorrhizal or exudative release pathways was not assessed. These data detail the timing and relative magnitude of C flux through various components of a young pine stand in relation to environmental conditions.
C1 [Warren, J. M.; Iversen, C. M.; Garten, C. T., Jr.; Norby, R. J.; Childs, J.; Brice, D.; Gu, L.; Thornton, P.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Weston, D. J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.
[Evans, R. M.] Univ Tennessee, Forest Resources Res Ctr, Knoxville, TN USA.
RP Warren, JM (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
EM warrenjm@ornl.gov
RI Norby, Richard/C-1773-2012; Warren, Jeffrey/B-9375-2012; Thornton,
Peter/B-9145-2012; Gu, Lianhong/H-8241-2014
OI Norby, Richard/0000-0002-0238-9828; Warren, Jeffrey/0000-0002-0680-4697;
Thornton, Peter/0000-0002-4759-5158; Gu, Lianhong/0000-0001-5756-8738
FU US Department of Energy, Office of Science; US Department of Energy
[DE-AC05-00OR22725]
FX Research was sponsored by the US Department of Energy, Office of
Science, Biological and Environmental Research Program. Oak Ridge
National Laboratory is managed by UT-Battelle, LLC, for the US
Department of Energy under contract DE-AC05-00OR22725.
NR 55
TC 14
Z9 14
U1 4
U2 74
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0829-318X
EI 1758-4469
J9 TREE PHYSIOL
JI Tree Physiol.
PD JUN
PY 2012
VL 32
IS 6
SI SI
BP 799
EP 813
DI 10.1093/treephys/tpr129
PG 15
WC Forestry
SC Forestry
GA 962XY
UT WOS:000305585000013
PM 22210530
ER
PT J
AU Page, RC
Xu, Z
Amick, J
Nix, JC
Misra, S
AF Page, Richard C.
Xu, Zhen
Amick, Joseph
Nix, Jay C.
Misra, Saurav
TI Crystallization and preliminary X-ray crystallographic analysis of the
Bag2 amino-terminal domain from Mus musculus
SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION
COMMUNICATIONS
LA English
DT Article
DE Bag2; selenomethionine; SAD phasing
ID PROTEIN-STRUCTURE; NUCLEOTIDE EXCHANGE; COCHAPERONE BAG2; PREDICTION;
SECONDARY; QUALITY; HSP70; CHIP; DEGRADATION; CHAPERONES
AB Bag2, an atypical member of the Bag family of Hsp70 co-chaperones, acts as both an Hsp70 nucleotide-exchange factor and an inhibitor of the Hsp70-binding E3 ubiquitin ligase CHIP (carboxyl-terminus of Hsp70-interacting protein). The amino-terminal domain of Bag2 (Bag2-NTD), which is required for inhibition of CHIP, has no sequence homologs in the PDB. Native and selenomethionyl (SeMet) forms of Bag2-NTD were crystallized by hanging-drop vapor diffusion. Native Bag2-NTD crystals diffracted to 2.27 angstrom resolution and belonged to space group P212121, with unit-cell parameters a = 75.5, b = 84.7, c = 114.1 angstrom. SeMet Bag2-NTD crystals diffracted to 3.10 angstrom resolution and belonged to space group P212121, with unit-cell parameters a = 37.2, b = 53.3, c = 86.7 angstrom. Phases for the SeMet Bag2-NTD crystal were solved by single-wavelength anomalous diffraction. Initial phasing and model building using the 3.10 angstrom resolution SeMet Bag2-NTD data set suggested that Bag2-NTD forms a dimer and adopts a fold distinct from those of any domains annotated in the Pfam or SMART domain databases.
C1 [Page, Richard C.; Amick, Joseph; Misra, Saurav] Cleveland Clin, Lerner Res Inst, Dept Mol Cardiol, Cleveland, OH 44195 USA.
[Xu, Zhen] Blood Ctr Wisconsin, Blood Res Ctr, Milwaukee, WI 53226 USA.
[Nix, Jay C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biol Consortium, Adv Light Source, Berkeley, CA 94720 USA.
RP Page, RC (reprint author), Cleveland Clin, Lerner Res Inst, Dept Mol Cardiol, 9500 Euclid Ave, Cleveland, OH 44195 USA.
EM pager2@ccf.org; misras@ccf.org
OI Misra, Saurav/0000-0002-1385-8554; Page, Richard/0000-0002-3006-3171
FU US National Institutes of Health [RO1-GM080271]; National Institutes of
Health Public Health Service [T32 HL007914]; US Department of Energy at
Lawrence Berkeley National Laboratory [DE-AC03-76SF00098]
FX The authors acknowledge financial support from the US National
Institutes of Health (grant RO1-GM080271 to SM). RCP was supported by
National Institutes of Health Public Health Service Kirschstein National
Research Service Award Postdoctoral Fellowship T32 HL007914. The
Advanced Light Source is supported by the US Department of Energy under
contract No. DE-AC03-76SF00098 at Lawrence Berkeley National Laboratory.
NR 39
TC 1
Z9 1
U1 0
U2 6
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1744-3091
J9 ACTA CRYSTALLOGR F
JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
PD JUN
PY 2012
VL 68
BP 647
EP 651
DI 10.1107/S1744309112013267
PN 6
PG 5
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 956EU
UT WOS:000305073600008
PM 22684061
ER
PT J
AU Gu, Y
Wang, C
Russell, TP
AF Gu, Yu
Wang, Cheng
Russell, Thomas P.
TI Multi-Length-Scale Morphologies in PCPDTBT/PCBM Bulk-Heterojunction
Solar Cells
SO ADVANCED ENERGY MATERIALS
LA English
DT Article
DE additives; multi-length-scale morphologies; solar cells; low bandgap
polymers; active layer
ID INTERPENETRATING NETWORK; SOLVENT ADDITIVES; ALKANE DITHIOLS; EFFICIENCY
AB Additives are known to improve the performance of organic photovoltaic devices based on mixtures of a low bandgap polymer, poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). The evolution of the morphology during the evaporation of the mixed solvent, which comprises additive and chlorobenzene (CB), is investigated by in-situ grazing incidence X-ray scattering, providing insight into the key role the additive plays in developing a multi-length-scale morphology. Provided the additive has a higher vapor pressure and a selective solubility for PCBM, as the host solvent (CB) evaporates, the mixture of the primary solvent and additive becomes less favorable for the PCPDTBT, while completely solubilizing the PCBM. During this process, the PCPDTBT first crystallizes into fibrils and then the PCBM, along with the remaining PCPDTBT, is deposited, forming a phase-separated morphology comprising domains of pure, crystalline PCPDTBT fibrils and another domain that is a PCBM-rich mixture with amorphous PCPDTBT. X-ray/neutron scattering and diffraction methods, in combination with UVvis absorption spectroscopy and transmission electron microscopy, are used to determine the crystallinity and phase separation of the resultant PCPDTBT/PCBM thin films processed with or without additives. Additional thermal annealing is carried out and found to change the packing of the PCPDTBT. The two factors, degree of crystallinity and degree of phase separation, control the multi-length-scale morphology of the thin films and significantly influence device performance.
C1 [Gu, Yu; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA.
[Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Russell, Thomas P.] Tohoku Univ, WPI Adv Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan.
RP Russell, TP (reprint author), Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA.
EM russell@mail.pse.umass.edu
RI Wang, Cheng /E-7399-2012; Wang, Cheng/A-9815-2014
FU Department of Energy (DOE) [DE-PS02-08ER15944]; NSF [DMR-0820506]; World
Premier International Research Center Initiative (WPI), MEXT, Japan;
Advanced Light Source, Berkeley National Laboratory; DOE, Office of
Science; DOE, Office of Basic Energy Sciences
FX This work was supported by the Department of Energy supported Energy
Frontier Research Center at the University of Massachusetts (T.P.R.,
Y.G.; DOE DE-PS02-08ER15944) and the NSF-supported Materials Research
Science and Engineering Center at the University of Massachusetts (Y.G.;
DMR-0820506).; T.P.R's work was supported, in part, by World Premier
International Research Center Initiative (WPI), MEXT, Japan. We
acknowledge the support of the National Institute of Standards and
Technology, US Department of Commerce, in providing the neutron research
facilities used in this work. Portions of this research (C. W.) were
carried out and supported by the Advanced Light Source, Berkeley
National Laboratory, which was supported by the DOE, Office of Science,
and Office of Basic Energy Sciences.
NR 26
TC 114
Z9 115
U1 6
U2 124
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1614-6832
J9 ADV ENERGY MATER
JI Adv. Energy Mater.
PD JUN
PY 2012
VL 2
IS 6
BP 683
EP 690
DI 10.1002/aenm.201100726
PG 8
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Chemistry; Energy & Fuels; Materials Science; Physics
GA 957QY
UT WOS:000305179000011
ER
PT J
AU Mishra, PK
Vesselinov, VV
Kuhlman, KL
AF Mishra, Phoolendra K.
Vesselinov, Velimir V.
Kuhlman, Kristopher L.
TI Saturated-unsaturated flow in a compressible leaky-unconfined aquifer
SO ADVANCES IN WATER RESOURCES
LA English
DT Article
DE Unconfined aquifer; Aquitard; Leakage; Wellbore storage; Unsaturated
zone; Laplace-Hankel transform
ID PUMPING-INDUCED LEAKAGE; SEMIANALYTICAL SOLUTION; WATER-TABLE; WELL;
APPLICABILITY; DRAWDOWN; EQUATION; YIELD
AB An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Mishra, Phoolendra K.; Vesselinov, Velimir V.] Los Alamos Natl Lab, Computat Earth Sci Grp, Los Alamos, NM 87545 USA.
[Kuhlman, Kristopher L.] Sandia Natl Labs, Repository Performance Dept, Carlsbad, NM 88220 USA.
RP Mishra, PK (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp, MS T003, Los Alamos, NM 87545 USA.
EM pkmishra@lanl.gov
RI Kuhlman, Kristopher/I-7283-2012; Vesselinov, Velimir/P-4724-2016
OI Kuhlman, Kristopher/0000-0003-3397-3653; Vesselinov,
Velimir/0000-0002-6222-0530
FU Environmental Programs Directorate of the Los Alamos National
Laboratory; US Department of Energys National Nuclear Security
Administration [DE-AC52-06NA25396, DE-AC04-94AL85000]
FX This research was partially funded by the Environmental Programs
Directorate of the Los Alamos National Laboratory. Los Alamos National
Laboratory is a multi-program laboratory managed and operated by Los
Alamos National Security CLANS) Inc. for the US Department of Energys
National Nuclear Security Administration under contract
DE-AC52-06NA25396. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energys National Nuclear Security Administration under contract
DE-AC04-94AL85000.
NR 28
TC 3
Z9 3
U1 1
U2 14
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0309-1708
J9 ADV WATER RESOUR
JI Adv. Water Resour.
PD JUN
PY 2012
VL 42
BP 62
EP 70
DI 10.1016/j.advwatres.2012.03.007
PG 9
WC Water Resources
SC Water Resources
GA 958UM
UT WOS:000305266200006
ER
PT J
AU Mori, H
Borowsky, AD
Bhat, R
Ghajar, CM
Seiki, M
Bissell, MJ
AF Mori, Hidetoshi
Borowsky, Alexander D.
Bhat, Ramray
Ghajar, Cyrus M.
Seiki, Motoharu
Bissell, Mina J.
TI Laser Scanning-Based Tissue Autofluorescence/Fluorescence Imaging
(LS-TAFI), a New Technique for Analysis of Microanatomy in Whole-Mount
Tissues
SO AMERICAN JOURNAL OF PATHOLOGY
LA English
DT Article
ID MAMMARY-GLAND; MICROSCOPY; FLUORESCENCE; CELLS; MICE
AB Intact organ structure is essential in maintaining tissue specificity and cellular differentiation. Small physiological or genetic variations lead to changes in microanatomy that, if persistent, could have functional consequences and may easily be masked by the heterogeneity of tissue anatomy. Current imaging techniques rely on histological, two-dimensional sections requiring sample manipulation that are essentially two dimensional. We have developed a method for three-dimensional imaging of whole-mount, unsectioned mammalian tissues to elucidate subtle and detailed micro- and macroanatomies in adult organs and embryos. We analyzed intact or dissected organ whole mounts with laser scanning-based tissue autofluorescence/fluorescence imaging (LS-TAFI). We obtained dear visualization of microstructures within murine mammary glands and mammary tumors and other organs without the use of immunostaining and without probes or fluorescent reporter genes. Combining autofluorescence with reflected light signals from chromophore-stained tissues allowed identification of individual cells within three-dimensional structures of whole-mounted organs. This technique could be useful for rapid diagnosis of human clinical samples and possibly the effect of subtle variations such as low dose radiation. (Am J Pathol 2012, 180:2249-2254 http://dx.doi.org/10.1016/j.ajpath.2012.02.032)
C1 [Mori, Hidetoshi; Bhat, Ramray; Ghajar, Cyrus M.; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Borowsky, Alexander D.] Univ Calif Davis, Dept Pathol, Ctr Comparat Med, Davis, CA 95616 USA.
[Seiki, Motoharu] Univ Tokyo, Inst Med Sci, Tokyo, Japan.
RP Bissell, MJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd,Mailstop 977-225A, Berkeley, CA 94720 USA.
EM hmori@lbl.gov; mjbissell@lbl.gov
RI Seiki, Motoharu/K-9443-2015
FU U.S. Department of Energy, Office of Biological and Environmental
Research and Low Dose Radiation [DE-AC02-05CH1123]; National Cancer
Institute (Bay Area Physical Sciences-Oncology Center, University of
California, Berkeley, California) [R37CA064786, U54CA126552,
R01CA057621, U54CA112970, U01CA143233, U54CA143836]; U.S. Department of
Defense [W81XWH0810736]; Susan G. Komen Breast Cancer Foundation
[02-1591, KG111229]; NIH National Center for Research Resources [K26
RR024037]; NIH National Cancer Institute [U01 CA14582]; Lawrence
Berkeley National Laboratory
FX Supported by grants from the U.S. Department of Energy, Office of
Biological and Environmental Research and Low Dose Radiation Program
(contract no. DE-AC02-05CH1123), the National Cancer Institute (awards
R37CA064786, U54CA126552, R01CA057621, U54CA112970, U01CA143233, and
U54CA143836 - Bay Area Physical Sciences-Oncology Center, University of
California, Berkeley, California), the U.S. Department of Defense
(W81XWH0810736), the Susan G. Komen Breast Cancer Foundation (02-1591 to
H.M, KG111229 to R.B), the NIH National Center for Research Resources
(K26 RR024037 to A.D.B.), the NIH National Cancer Institute (U01 CA14582
to A.D.B.), a Glenn T. Seaborg postdoctoral fellowship from Lawrence
Berkeley National Laboratory (C.M.G.).
NR 16
TC 11
Z9 11
U1 0
U2 8
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0002-9440
J9 AM J PATHOL
JI Am. J. Pathol.
PD JUN
PY 2012
VL 180
IS 6
BP 2249
EP 2256
DI 10.1016/j.ajpath.2012.02.032
PG 8
WC Pathology
SC Pathology
GA 956PJ
UT WOS:000305101300010
PM 22542846
ER
PT J
AU Cooperman, A
Dieckmann, J
Brodrick, J
AF Cooperman, Alissa
Dieckmann, John
Brodrick, James
TI Control Systems & LEED
SO ASHRAE JOURNAL
LA English
DT Article
C1 [Cooperman, Alissa; Dieckmann, John] TIAX LLC, Mech Syst Grp, Lexington, MA 02421 USA.
[Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA.
RP Cooperman, A (reprint author), TIAX LLC, Mech Syst Grp, Lexington, MA 02421 USA.
NR 13
TC 0
Z9 0
U1 0
U2 2
PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC,
PI ATLANTA
PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA
SN 0001-2491
J9 ASHRAE J
JI ASHRAE J.
PD JUN
PY 2012
VL 54
IS 6
BP 96
EP 99
PG 4
WC Thermodynamics; Construction & Building Technology; Engineering,
Mechanical
SC Thermodynamics; Construction & Building Technology; Engineering
GA 957OF
UT WOS:000305171600023
ER
PT J
AU Guyon, O
Bendek, EA
Eisner, JA
Angel, R
Woolf, NJ
Milster, TD
Ammons, SM
Shao, M
Shaklan, S
Levine, M
Nemati, B
Pitman, J
Woodruff, RA
Belikov, R
AF Guyon, Olivier
Bendek, Eduardo A.
Eisner, Josh A.
Angel, Roger
Woolf, Neville J.
Milster, Thomas D.
Ammons, S. Mark
Shao, Michael
Shaklan, Stuart
Levine, Marie
Nemati, Bijan
Pitman, Joe
Woodruff, Robert A.
Belikov, Ruslan
TI HIGH-PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE astrometry; planets and satellites: detection; techniques: high angular
resolution; telescopes
ID PHOTOMETRY
AB Astrometric detection and mass determination of Earth-mass exoplanets require sub-mu as accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must, however, overcome astrometric distortions, which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star's immediate surroundings. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg(2) field we adopt as a baseline design achieves 0.2 mu as single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-mu as astrometry without relying on the accurate pointing, external metrology, or high-stability hardware required with previously proposed high-precision astrometry concepts.
C1 [Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[Guyon, Olivier] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA.
[Bendek, Eduardo A.; Milster, Thomas D.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA.
[Ammons, S. Mark] Lawrence Livermore Natl Lab, Phys Div L 210, Livermore, CA 94550 USA.
[Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Pitman, Joe] Explorat Sci, Pine, CO 80470 USA.
[Belikov, Ruslan] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Guyon, O (reprint author), Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
EM guyon@naoj.org
FU NASA Astronomy and Physics Research and Analysis (APRA); State of
Arizona Technology Research Initiative Fund (TRIF)
FX This work is funded by the NASA Astronomy and Physics Research and
Analysis (APRA) program and the State of Arizona Technology Research
Initiative Fund (TRIF).
NR 13
TC 17
Z9 17
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0067-0049
J9 ASTROPHYS J SUPPL S
JI Astrophys. J. Suppl. Ser.
PD JUN
PY 2012
VL 200
IS 2
AR 11
DI 10.1088/0067-0049/200/2/11
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 956KH
UT WOS:000305088000001
ER
PT J
AU Mendelssohn, IA
Andersen, GL
Baltz, DM
Caffey, RH
Carman, KR
Fleeger, JW
Joye, SB
Lin, QX
Maltby, E
Overton, EB
Rozas, LP
AF Mendelssohn, Irving A.
Andersen, Gary L.
Baltz, Donald M.
Caffey, Rex H.
Carman, Kevin R.
Fleeger, John W.
Joye, Samantha B.
Lin, Qianxin
Maltby, Edward
Overton, Edward B.
Rozas, Lawrence P.
TI Oil Impacts on Coastal Wetlands: Implications for the Mississippi River
Delta Ecosystem after the Deepwater Horizon Oil Spill
SO BIOSCIENCE
LA English
DT Article
DE wetlands; environmental science; ecology; coastal ecosystems;
microbiology
ID LOUISIANA BRACKISH MARSH; GULF-OF-MEXICO; SALT-MARSH; CRUDE-OIL;
HYDROCARBON CONTAMINATION; ANAEROBIC BIODEGRADATION; VEGETATION;
PETROLEUM; RECOVERY; CONSEQUENCES
AB On 20 April 2010, the Deepwater Horizon explosion, which released a US government estimated 4.9 million barrels of crude oil into the Gulf of Mexico, was responsible for the death of 11 oil workers and, possibly, for an environmental disaster unparalleled in US history. For 87 consecutive days, the Macondo well continuously released crude oil into the Gulf of Mexico. Many kilometers of shoreline in the northern Gulf of Mexico were affected, including the fragile and ecologically important wetlands of Louisiana's Mississippi River Delta ecosystem. These wetlands are responsible for a third of the nation's fish production and, ironically, help to protect an energy infrastructure that provides a third of the nation's oil and gas supply. Here, we provide a basic overview of the chemistry and biology of oil spills in coastal wetlands and an assessment of the potential and realized effects on the ecological condition of the Mississippi River Delta and its associated flora and fauna.
C1 [Mendelssohn, Irving A.; Baltz, Donald M.; Lin, Qianxin] Louisiana State Univ, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA.
[Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA.
[Caffey, Rex H.] Louisiana State Univ, Dept Agr Econ & Agribusiness, Baton Rouge, LA 70803 USA.
[Carman, Kevin R.; Fleeger, John W.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA.
[Joye, Samantha B.] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA.
[Maltby, Edward] Univ Liverpool, Sch Environm Sci, Liverpool L69 3BX, Merseyside, England.
[Overton, Edward B.] Louisiana State Univ, Dept Environm Sci, Baton Rouge, LA 70803 USA.
[Rozas, Lawrence P.] Fisheries Serv, NOAA, SE Fisheries Sci Ctr, Lafayette, LA USA.
[Rozas, Lawrence P.] Estuarine Habitats & Coastal Fisheries Ctr, Lafayette, LA USA.
RP Mendelssohn, IA (reprint author), Louisiana State Univ, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA.
EM imendel@lsu.edu
RI Fleeger, John/A-6215-2013; Baltz, Donald/A-9374-2009; Andersen,
Gary/G-2792-2015;
OI Andersen, Gary/0000-0002-1618-9827; Joye, Samantha/0000-0003-1610-451X
FU Gulf Research Initiative; Northern Gulf Institute; Louisiana Sea Grant
Program, a part of the National Sea Grant Program; National Science
Foundation; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231];
US Department of Energy
FX This review was made possible through support from the Gulf Research
Initiative to Louisiana State University (to IAM, QL, KRC, and JWF);
from the Northern Gulf Institute (to IAM and QL); from the Louisiana Sea
Grant Program, a part of the National Sea Grant Program maintained by
the National Oceanic and Atmospheric Administration (NOAA) of the US
Department of Commerce (to IAM, QL, and EM, who is a Sea Grant Laborde
Endowed Chair); from the National Science Foundation (to SBJ); and from
the Lawrence Berkeley National Laboratory under contract
DE-AC02-05CH11231 with the US Department of Energy (to GLA). The
findings and conclusions in this article are those of the authors and do
not necessarily represent the views of NOAA or any other federal, state,
or private agency.
NR 65
TC 71
Z9 72
U1 12
U2 178
PU AMER INST BIOLOGICAL SCI
PI WASHINGTON
PA 1444 EYE ST, NW, STE 200, WASHINGTON, DC 20005 USA
SN 0006-3568
J9 BIOSCIENCE
JI Bioscience
PD JUN
PY 2012
VL 62
IS 6
BP 562
EP 574
DI 10.1525/bio.2012.62.6.7
PG 13
WC Biology
SC Life Sciences & Biomedicine - Other Topics
GA 958TB
UT WOS:000305262500007
ER
PT J
AU Van Cuyk, S
Deshpande, A
Hollander, A
Franco, DO
Teclemariam, NP
Layshock, JA
Ticknor, LO
Brown, MJ
Omberg, KM
AF Van Cuyk, Sheila
Deshpande, Alina
Hollander, Attelia
Franco, David O.
Teclemariam, Nerayo P.
Layshock, Julie A.
Ticknor, Lawrence O.
Brown, Michael J.
Omberg, Kristin M.
TI TRANSPORT OF BACILLUS THURINGIENSIS VAR. KURSTAKI FROM AN OUTDOOR
RELEASE INTO BUILDINGS: PATHWAYS OF INFILTRATION AND A RAPID METHOD TO
IDENTIFY CONTAMINATED BUILDINGS
SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE
LA English
DT Article
ID PERFORMANCE; DEPOSITION
AB Understanding the fate and transport of biological agents into buildings will be critical to recovery and restoration efforts after a biological attack in an urban area. As part of the Interagency Biological Restoration Demonstration (IBRD), experiments were conducted in Fairfax County, VA, to study whether a biological agent can be expected to infiltrate into buildings following a wide-area release. Bacillus thuringiensis var. kurstaki is a common organic pesticide that has been sprayed in Fairfax County for a number of years to control the gypsy moth. Because the bacterium shares many physical and biological properties with Bacillus anthracis, the results from these studies can be extrapolated to a bioterrorist release. In 2009, samples were collected from inside buildings located immediately adjacent to a spray block. A combined probabilistic and targeted sampling strategy and modeling were conducted to provide insight into likely methods of infiltration. Both the simulations and the experimental results indicate sampling entryways and heating, ventilation, and air conditioning (HVAC) filters are reasonable methods for "ruling in" a building as contaminated. Following a biological attack, this method is likely to provide significant savings in time and labor compared to more rigorous, statistically based characterization. However, this method should never be used to "rule out," or clear, a building.
C1 [Van Cuyk, Sheila] Los Alamos Natl Lab, Syst Engn & Integrat Grp, Decis Applicat Div, Los Alamos, NM 87545 USA.
[Hollander, Attelia] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA.
[Franco, David O.; Teclemariam, Nerayo P.] Sandia Natl Labs, Livermore, CA USA.
RP Van Cuyk, S (reprint author), Los Alamos Natl Lab, Syst Engn & Integrat Grp, Decis Applicat Div, Box 1663, Los Alamos, NM 87545 USA.
EM svancuyk@lanl.gov
RI Omberg, Kristin/I-5972-2013;
OI Brown, Michael J./0000-0002-8069-0835; Ticknor,
Lawrence/0000-0002-7967-7908
NR 29
TC 7
Z9 7
U1 0
U2 6
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1538-7135
J9 BIOSECUR BIOTERROR
JI Biosecur. Bioterror.
PD JUN
PY 2012
VL 10
IS 2
BP 215
EP 227
DI 10.1089/bsp.2011.0081
PG 13
WC Public, Environmental & Occupational Health; International Relations
SC Public, Environmental & Occupational Health; International Relations
GA 959DH
UT WOS:000305291200009
PM 22676846
ER
PT J
AU Liu, XB
Chen, Q
Wang, MR
Pan, N
Guo, ZY
AF Liu, Xiong-Bin
Chen, Qun
Wang, Moran
Pan, Ning
Guo, Zeng-Yuan
TI X.-B. Liu, Q. Chen, M. Wang, N. Pan and Z.-Y. Guo, Multidimensional
effect on optimal network structure for fluid distribution, Chemical
Engineering and Processing 49 (2010) 1038-1043 Reply
SO CHEMICAL ENGINEERING AND PROCESSING
LA English
DT Letter
C1 [Liu, Xiong-Bin; Chen, Qun; Guo, Zeng-Yuan] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.
[Chen, Qun; Pan, Ning] Univ Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA.
[Wang, Moran] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
RP Chen, Q (reprint author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.
EM chenqun@tsinghua.edu.cn; moralwang@gmail.com
RI Pan, Ning/B-1315-2008; 柳, 雄斌/H-7429-2016; Wang, Moran/A-1150-2010
OI Pan, Ning/0000-0002-8772-2596; 柳, 雄斌/0000-0002-6954-8547;
NR 2
TC 2
Z9 2
U1 0
U2 21
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0255-2701
J9 CHEM ENG PROCESS
JI Chem. Eng. Process.
PD JUN
PY 2012
VL 56
BP 35
EP 36
DI 10.1016/j.cep.2012.02.006
PG 2
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA 957XN
UT WOS:000305200500006
ER
PT J
AU Demkowicz, MJ
Misra, A
Caro, A
AF Demkowicz, M. J.
Misra, A.
Caro, A.
TI The role of interface structure in controlling high helium
concentrations
SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE
LA English
DT Review
DE Helium; Helium clusters; Helium bubbles; Interfaces; Grain boundaries;
Nanocomposites; Implantation; Mechanical properties; Atomistic modeling;
Transmission electron microscopy
ID AUSTENITIC STAINLESS-STEELS; GRAIN-BOUNDARY STRUCTURE;
EQUATION-OF-STATE; LAYERED COMPOSITES; COLLISION CASCADES;
RADIATION-DAMAGE; IMPLANTED COPPER; BUBBLE FORMATION; ION-IRRADIATION;
VOID FORMATION
AB Interfaces are good traps for implanted He, but are also susceptible to He-induced embrittlement. Better understanding of the mechanisms of He interactions with interfaces may enable design of interfaces that control He while remaining mechanically sound. We review recent work that aims to gain such insight by determining how interface structure influences He trapping and the equation of state of He in interface bubbles as well as how He-induced hardening depends on interface area per unit volume in composite materials. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Demkowicz, M. J.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
[Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87544 USA.
[Caro, A.] Los Alamos Natl Lab, Struct Properties Relat Grp MST8, Los Alamos, NM 87544 USA.
RP Demkowicz, MJ (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
EM demkowicz@mit.edu
FU Center for Materials in Irradiation and Mechanical Extremes (CMIME), an
Energy Frontier Research Center; US Department of Energy, Office of
Science, Office of Basic Energy Sciences [2008LANL1026]; Los Alamos
National Laboratory LDRD program
FX We thank G.R. Odette, M. Nastasi, J.P. Hirth, and R.G. Hoagland for
insightful discussions. This work was supported by the Center for
Materials in Irradiation and Mechanical Extremes (CMIME), an Energy
Frontier Research Center funded by the US Department of Energy, Office
of Science, Office of Basic Energy Sciences under award number
2008LANL1026 and by the Los Alamos National Laboratory LDRD program.
NR 84
TC 65
Z9 65
U1 10
U2 124
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-0286
J9 CURR OPIN SOLID ST M
JI Curr. Opin. Solid State Mat. Sci.
PD JUN
PY 2012
VL 16
IS 3
SI SI
BP 101
EP 108
DI 10.1016/j.cossms.2011.10.003
PG 8
WC Materials Science, Multidisciplinary; Physics, Applied; Physics,
Condensed Matter
SC Materials Science; Physics
GA 958UD
UT WOS:000305265300001
ER
PT J
AU Xu, DH
Wirth, BD
Li, MM
Kirk, MA
AF Xu, Donghua
Wirth, Brian D.
Li, Meimei
Kirk, Marquis A.
TI Recent work towards understanding defect evolution in thin molybdenum
foils through in situ ion irradiation under TEM and coordinated cluster
dynamics modeling
SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE
LA English
DT Review
DE Radiation defects; Molybdenum; Thin foils; In situ irradiation; Cluster
dynamics; Interstitial loops; Vacancies; Rate theory
ID INTERSTITIAL CLUSTERS; COMPUTER-SIMULATION; MONTE-CARLO; BCC IRON;
KINETICS; DAMAGE; FE; MICROSTRUCTURE; DESORPTION; ALLOYS
AB This paper provides a brief review of a recent joint effort towards better understanding of defect evolution in thin molybdenum foils during ion irradiation. In situ TEM ion irradiation experiments and spatially dependent cluster dynamics modeling were closely combined to reveal the fine details of the dose, dose rate and sample dimension dependencies of defect density and size distribution in the early stage of irradiation, and to validate different assumptions with respect to the damage production and defect mobilities. Earlier experimental and computational studies in Mo and in BCC iron as well as outstanding problems yet to be resolved are also discussed in this paper. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Xu, Donghua; Wirth, Brian D.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA.
[Li, Meimei] Argonne Natl Lab, Div Nucl Engn, Argonne, IL 60439 USA.
[Kirk, Marquis A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Xu, DH (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA.
EM xudh@utk.edu
RI Wirth, Brian/O-4878-2015
OI Wirth, Brian/0000-0002-0395-0285
FU US Department of Energy, Office of Fusion Energy Sciences
[DE-FG02-04GR54750]; US Department of Energy, Office of Nuclear
Engineering under Nuclear Engineering Research Initiative Consortium
Program (NERI-C) Award [DE-FG07-07ID14894]; Nuclear Engineering
University Program (NEUP) award; US Department of Energy, Office of
Nuclear Energy and Office of Sciences [DE-AC02-06CH11357]; Argonne
National Laboratory
FX DX and BDW acknowledge support by the US Department of Energy, Office of
Fusion Energy Sciences under grant DE-FG02-04GR54750 and the US
Department of Energy, Office of Nuclear Engineering under the Nuclear
Engineering Research Initiative Consortium Program (NERI-C) Award Number
DE-FG07-07ID14894 and Nuclear Engineering University Program (NEUP)
award. The material for the experiments was provided by Oak Ridge
National Laboratory. ML and MAK would like to thank Raymond Birtcher for
his help with experimental data analysis. Important assistance of Dennis
Graham and Bryan Miller in the group of Prof. Ian Robertson at
University of Illinois with the experiments is acknowledged. Support of
the US Department of Energy, Office of Nuclear Energy and Office of
Sciences, under Contract DE-AC02-06CH11357 with Argonne National
Laboratory, operated by UChicago Argonne, LLC. is also acknowledged.
NR 26
TC 3
Z9 3
U1 2
U2 32
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-0286
J9 CURR OPIN SOLID ST M
JI Curr. Opin. Solid State Mat. Sci.
PD JUN
PY 2012
VL 16
IS 3
SI SI
BP 109
EP 114
DI 10.1016/j.cossms.2011.11.001
PG 6
WC Materials Science, Multidisciplinary; Physics, Applied; Physics,
Condensed Matter
SC Materials Science; Physics
GA 958UD
UT WOS:000305265300002
ER
PT J
AU Stanek, CR
Uberuaga, BP
Scott, BL
Feller, RK
Marks, NA
AF Stanek, C. R.
Uberuaga, B. P.
Scott, B. L.
Feller, R. K.
Marks, N. A.
TI Accelerated chemical aging of crystalline nuclear waste forms
SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE
LA English
DT Review
DE Nuclear waste; Radiation effects; Accelerated aging; Transmutation
ID THRESHOLD DISPLACEMENT ENERGIES; RADIATION TOLERANCE; AQUEOUS
DURABILITY; IMMOBILIZATION; CERAMICS; DAMAGE; TRANSMUTATION; PLUTONIUM;
FISSION; OXIDES
AB Nuclear waste disposal is a significant technological issue, and the solution of this problem (or lack thereof) will ultimately determine whether nuclear energy is deemed environmentally friendly, despite significantly lower carbon emissions than fossil fuel energy sources. A critical component of any waste disposal strategy is the selection of the waste form that is tasked with preventing radionuclides from entering the environment. The design of robust nuclear waste forms requires consideration of several criteria, including: radiation tolerance, geological interaction and chemical durability; all of these criteria ensure that the radionuclides do not escape from the waste form. Over the past 30 years, there have been numerous and thorough studies of these criteria on candidate waste forms, including radiation damage and leaching. However, most of these efforts have focused on the performance of the candidate waste form at t = 0, with far less attention paid to the phase stability, and subsequent durability, of candidate waste forms during the course of daughter product formation; that is, the chemical aging of the material. Systematic understanding of phase evolution as a function of chemistry is important for predictions of waste form performance as well as informing waste form design. In this paper, we highlight the research challenges associated with understanding waste form stability when attempting to systematically study the effects of dynamic composition variation due to in situ radionuclide daughter production formation. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Stanek, C. R.; Uberuaga, B. P.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA.
[Scott, B. L.; Feller, R. K.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Marks, N. A.] Curtin Univ Technol, Nanochem Res Inst, Perth, WA 6845, Australia.
RP Stanek, CR (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA.
EM stanek@lanl.gov
RI Feller, Russell/H-3250-2014; Marks, Nigel/F-6084-2010; Scott,
Brian/D-8995-2017
OI Marks, Nigel/0000-0003-2372-1284; Scott, Brian/0000-0003-0468-5396
NR 53
TC 7
Z9 7
U1 1
U2 24
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-0286
EI 1879-0348
J9 CURR OPIN SOLID ST M
JI Curr. Opin. Solid State Mat. Sci.
PD JUN
PY 2012
VL 16
IS 3
SI SI
BP 126
EP 133
DI 10.1016/j.cossms.2012.01.002
PG 8
WC Materials Science, Multidisciplinary; Physics, Applied; Physics,
Condensed Matter
SC Materials Science; Physics
GA 958UD
UT WOS:000305265300004
ER
PT J
AU Katoh, Y
Snead, LL
Szlufarska, I
Weber, WJ
AF Katoh, Yutai
Snead, Lance L.
Szlufarska, Izabela
Weber, William J.
TI Radiation effects in SiC for nuclear structural applications
SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE
LA English
DT Review
DE Silicon carbide; Structural materials; Ceramic composites; Radiation
effect; Computational materials science; Nuclear materials; Accident
tolerant fuels; Nuclear waste; Fission product interactions; Fusion
energy
ID SILICON-CARBIDE COMPOSITES; SPENT HTR FUEL; THERMAL-CONDUCTIVITY;
DIFFUSION BEHAVIOR; MATRIX COMPOSITES; FISSION-PRODUCT;
ELEVATED-TEMPERATURES; MECHANICAL-PROPERTIES; SICF/SIC COMPOSITES;
NEUTRON-IRRADIATION
AB Silicon carbide has enjoyed both fundamental study and practical application since the early days of nuclear materials science. In the past decade, with the increased interest in increasing efficiency, solving the real issues of waste disposal, and the constant mission to improve safety of nuclear reactors, silicon carbide has become even more attractive. The purpose of this paper is to discuss recent research that not only strives to understand the remarkable radiation stability of this material, but also the practical application of silicon carbide as waste form and for fission and fusion power applications. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Katoh, Yutai; Snead, Lance L.; Weber, William J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Szlufarska, Izabela] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA.
[Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Katoh, Y (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA.
EM katohy@ornl.gov; sneadll@ornl.gov; szlufarska@wisc.edu; wjweber@utk.edu
RI Weber, William/A-4177-2008
OI Weber, William/0000-0002-9017-7365
FU United States Government [DE-AC05-000R22725]; United States Department
of Energy; United States Department of Energy, Office of Basic Energy
Sciences [DE-FG02-08ER46493]
FX This submission was partly (YK and LLS) sponsored by a contractor of the
United States Government under contract DE-AC05-000R22725 with the
United States Department of Energy. IS acknowledges financial support
from the United States Department of Energy, Office of Basic Energy
Sciences grant DE-FG02-08ER46493. WJW was supported by the US Department
of Energy, Office of Basic Energy Sciences.
NR 85
TC 88
Z9 89
U1 17
U2 171
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-0286
J9 CURR OPIN SOLID ST M
JI Curr. Opin. Solid State Mat. Sci.
PD JUN
PY 2012
VL 16
IS 3
SI SI
BP 143
EP 152
DI 10.1016/j.cossms.2012.03.005
PG 10
WC Materials Science, Multidisciplinary; Physics, Applied; Physics,
Condensed Matter
SC Materials Science; Physics
GA 958UD
UT WOS:000305265300006
ER
PT J
AU Sheridan, LB
Czerwiniski, J
Jayaraju, N
Gebregziabiher, DK
Stickney, JL
Robinson, DB
Soriaga, MP
AF Sheridan, Leah B.
Czerwiniski, Justin
Jayaraju, Nagarajan
Gebregziabiher, Daniel K.
Stickney, John L.
Robinson, David B.
Soriaga, Manuel P.
TI Electrochemical Atomic Layer Deposition (E-ALD) of Palladium Nanofilms
by Surface Limited Redox Replacement (SLRR), with EDTA Complexation
SO ELECTROCATALYSIS
LA English
DT Article
DE UPD; ALD; E-ALD; Pd; Electrodeposition; ECALE; Nanofilm
ID SCANNING-TUNNELING-MICROSCOPY; UNDERPOTENTIAL DEPOSITION; THIN-FILMS;
HYDROGEN ADSORPTION; ELECTRODE SURFACES; GOLD SURFACES; PD; ABSORPTION;
COPPER; MONOLAYER
AB Atomic-scale control in the formation of Pd thin films is being developed using electrochemical atomic layer deposition (E-ALD) via surface limited redox replacement (SLRR). Pd has unique hydrogen storage properties. To study hydrogen storage capacity, hydrogen charging and discharging kinetics and its catalytic properties at the nanoscale will require films with well-defined thickness and structure. SLRR is the use of underpotential deposition (UPD) to form a sacrificial atomic layer of a less noble metal, such as Cu or Pb, and to exchange it at open circuit potential (OCP) for a more noble metal (Pd) via galvanic displacement. The deposits were grown using an automated electrochemical flow cell system which allowed sequential variation of solutions and potentials. Electron probe microanalysis (EPMA) revealed excess growth at the flow cell ingress, suggesting that the SLRR mechanism involved electron transfer from substrate to Pd2+ ions, rather than direct electron exchange from sacrificial metal atom(s) to Pd2+ ions. Ethylenediaminetetraacetic acid (EDTA) was used to slow the galvanic displacement by complexing the Pd2+, in an attempt to form more uniform Pd deposits. The resulting films were more homogeneous and displayed the expected Pd voltammetry in H2SO4. The charge for UPD remained constant from cycle to cycle, indicating no roughening of the surface. Ways of optimizing complexing agent properties, as well as the flow cell design and deposition parameters are discussed.
C1 [Sheridan, Leah B.; Czerwiniski, Justin; Jayaraju, Nagarajan; Gebregziabiher, Daniel K.; Stickney, John L.] Univ Georgia, Dept Chem, Athens, GA 30602 USA.
[Robinson, David B.] Sandia Natl Labs, Energy Nanomat Dept, Livermore, CA 94550 USA.
[Soriaga, Manuel P.] Texas A&M Univ, Dept Chem, College Stn, TX 77840 USA.
RP Stickney, JL (reprint author), Univ Georgia, Dept Chem, Athens, GA 30602 USA.
EM Stickney@uga.edu
RI Soriaga, Manuel/D-5637-2015
OI Soriaga, Manuel/0000-0002-0077-6226
FU National Science Foundation; Division of Materials Science; Sandia
National Laboratories; U.S. Department of Energy's National Nuclear
Security Administration [DE-AC04-94AL85000]
FX Acknowledgment is made of the support of the National Science
Foundation, Division of Materials Science, as well as Sandia National
Laboratories, a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000.
NR 58
TC 17
Z9 17
U1 1
U2 69
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1868-2529
J9 ELECTROCATALYSIS-US
JI Electrocatalysis
PD JUN
PY 2012
VL 3
IS 2
BP 96
EP 107
DI 10.1007/s12678-012-0080-7
PG 12
WC Chemistry, Physical; Electrochemistry
SC Chemistry; Electrochemistry
GA 958IX
UT WOS:000305231200003
ER
PT J
AU Zuo, WD
Jin, MG
Chen, QY
AF Zuo, Wangda
Jin, Mingang
Chen, Qingyan
TI REDUCTION OF NUMERICAL DIFFUSION IN FFD MODEL
SO ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS
LA English
DT Article
DE fast fluid dynamics; indoor airflow; numerical diffusion;
semi-Lagrangian solver; hybrid interpolation
ID BACKWARD-FACING STEP; NAVIER-STOKES EQUATIONS; NATURAL-CONVECTION;
SQUARE CAVITY; AIR-FLOW; MULTIGRID METHOD; HEAT-TRANSFER; SIMULATION;
BUILDINGS; TIME
AB Fast flow simulations are needed for some applications in building industry, such as the conceptual design of indoor environment or teaching of Heating Ventilation and Air Conditioning (HVAC) system design in classroom. Instead of pursuing high accuracy, those applications require only conceptual distributions of the flow but within a short computing time. To meet these special needs, a Fast Fluid Dynamics (FFD) method was proposed to provide fast airflow simulation with some compromise in accuracy. This study is to further improve the FFD method by reducing the numerical viscosity that is caused by a linear interpolation in its semi-Lagrangian solver. We propose a hybrid scheme of a linear and a third-order interpolation to reduce the numerical diffusion in low order scheme and the numerical dispersion in high order scheme. The FFD model with both linear and hybrid interpolations are evaluated by simulating four different indoor flows. The results show that the hybrid interpolation can significantly improve the accuracy of the FFD model with a small amount of extra computing time.
C1 [Zuo, Wangda] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Zuo, Wangda] Chongqing Univ, Minist Educ, Key Lab Three Gorges Reservoir Reg Ecoenvironm, Chongqing 630044, Peoples R China.
[Jin, Mingang; Chen, Qingyan] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA.
RP Zuo, WD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd,MS 90-3147, Berkeley, CA 94720 USA.
EM wzuo@lbl.gov
FU Office of Building Technologies of the U.S. Department of Energy
[DE-AC02-05CH11231]; Chongqing University's Key Laboratory of Three
Gorges Reservoir Region's Eco-Environments under Ministry of Education;
U.S. Federal Aviation Administration (FAA) Office of Aerospace Medicine
through the National Air Transportation Center of Excellence
[10-C-RITE-PU]; FAA
FX Wangda Zuo was supported by the Assistant Secretary for Energy
Efficiency and Renewable Energy, Office of Building Technologies of the
U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. He also
would like to thank the support of the visiting scholar program at
Chongqing University's Key Laboratory of Three Gorges Reservoir Region's
Eco-Environments under Ministry of Education.; Mingang Jin and Qingyan
Chen would like to thank the U.S. Federal Aviation Administration (FAA)
Office of Aerospace Medicine for funding this project through the
National Air Transportation Center of Excellence for Research in the
Intermodal Transport Environment under Cooperative Agreement
10-C-RITE-PU. Although the FAA has sponsored this project, it neither
endorses nor rejects the findings of this research. The presentation of
this information is in the interest of invoking technical community
comment on the results and conclusions of the research.
NR 35
TC 9
Z9 9
U1 3
U2 9
PU HONG KONG POLYTECHNIC UNIV, DEPT CIVIL & STRUCTURAL ENG
PI HONG KONG
PA HUNG HOM, KOWLOON, HONG KONG, 00000, PEOPLES R CHINA
SN 1994-2060
J9 ENG APPL COMP FLUID
JI Eng. Appl. Comp. Fluid Mech.
PD JUN
PY 2012
VL 6
IS 2
BP 234
EP 247
PG 14
WC Engineering, Multidisciplinary; Engineering, Mechanical; Mechanics
SC Engineering; Mechanics
GA 957ZY
UT WOS:000305206800008
ER
PT J
AU Michalak, SE
DuBois, AJ
Storlie, CB
Quinn, HM
Rust, WN
DuBois, DH
Modl, DG
Manuzzato, A
Blanchard, SP
AF Michalak, Sarah E.
DuBois, Andrew J.
Storlie, Curtis B.
Quinn, Heather M.
Rust, William N.
DuBois, David H.
Modl, David G.
Manuzzato, Andrea
Blanchard, Sean P.
TI Assessment of the Impact of Cosmic-Ray-Induced Neutrons on Hardware in
the Roadrunner Supercomputer
SO IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY
LA English
DT Article
DE Failures in time (FIT); neutron-beam testing; silent data corruption
(SDC); single-event effect; soft error
ID SINGLE-EVENT UPSET; SOFT ERRORS; MICROPROCESSORS
AB Microprocessor-based systems are a common design for high-performance computing (HPC) platforms. In these systems, several thousands of microprocessors can participate in a single calculation that may take weeks or months to complete. When used in this manner, a fault in any of the microprocessors could cause the computation to crash or cause silent data corruption (SDC), i.e., computationally incorrect results that originate from an undetected fault. In recent years, neutron-induced effects in HPC hardware have been observed, and researchers have started to study how neutrons impact microprocessor-based computations. This paper presents results from an accelerated neutron-beam test focusing on two microprocessors used in Road-runner, which is the first petaflop supercomputer. Research questions of interest include whether the application running affects neutron susceptibility and whether different replicates of the hardware under test have different susceptibilities to neutrons. Estimated failures in time for crashes and for SDC are presented for the hardware under test, for the Triblade servers used for computation in Roadrunner, and for Roadrunner.
C1 [Michalak, Sarah E.; Storlie, Curtis B.; Rust, William N.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87544 USA.
[DuBois, Andrew J.; DuBois, David H.; Modl, David G.; Blanchard, Sean P.] Los Alamos Natl Lab, Syst Engn & Integrat Grp, Los Alamos, NM 87544 USA.
[Quinn, Heather M.] Los Alamos Natl Lab, Space Data Syst Grp, Los Alamos, NM 87545 USA.
[Manuzzato, Andrea] Univ Milan, Milan, Italy.
RP Michalak, SE (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87544 USA.
EM michalak@lanl.gov; ajd@lanl.gov; storlie@lanl.gov; hquinn@lanl.gov;
wnr@lanl.gov; dhd@lanl.gov; digem@lanl.gov; andrea.manuzzato@ieee.org;
seanb@lanl.gov
FU U.S. Department of Energy
FX Manuscript received September 23, 2011; revised January 26, 2012;
accepted February 27, 2012. Date of publication May 2, 2012; date of
current version June 6, 2012. This work was supported by the U.S.
Department of Energy.
NR 37
TC 16
Z9 16
U1 0
U2 5
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1530-4388
J9 IEEE T DEVICE MAT RE
JI IEEE Trans. Device Mater. Reliab.
PD JUN
PY 2012
VL 12
IS 2
BP 445
EP 454
DI 10.1109/TDMR.2012.2192736
PG 10
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA 956JE
UT WOS:000305085100034
ER
PT J
AU Seehra, MS
Akkineni, LP
Yalamanchi, M
Singh, V
Poston, J
AF Seehra, M. S.
Akkineni, L. P.
Yalamanchi, M.
Singh, V.
Poston, J.
TI Structural characteristics of nanoparticles produced by hydrothermal
pretreatment of cellulose and their applications for electrochemical
hydrogen generation
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE Cellulose; Hydrothermal treatment; Electrolysis; Hydrogen; Free
radicals; Nanoparticles
ID AMERICAN COALS; PYROLYSIS; BIOMASS; WATER; SPECTROSCOPY; ETHANOL;
ENERGY; COTTON; YIELD; FUELS
AB Hydrothermal pretreatment (HTP) of microcrystalline cellulose (MCC) and wood sawdust in water at 200 degrees C and 250 degrees C and at pressures up to about 600 psi for different heating times (<= 60 min) is shown to produce nanoparticles of about 210 nm diameter. For the shorter treatment times of 15 min, only partial conversion is observed. Investigations of the post-HIP solid products by scanning electron microscopy show that the original size of cellulose particles is reduced by a factor of about 50 to yield spherical nanoparticles of about 210 nm size. In X-ray diffraction studies, the characteristic Bragg peaks of the parent MCC and sawdust are not present in the post-HTP products with only a broad halo being observed, indicating that the crystallinity of cellulose has broken down under HTP. Electron spin resonance (ESR) spectroscopy shows the observation of free radicals in the post-HIP products whereas the parent MCC, sawdust and glucose are ESR inert. FTIR spectroscopy shows the breakdown of the bonds between glucose units of the cellulosic structure. As an application, the pre- and post-HTP cellulose and sawdust were tested for the electrochemical production of hydrogen. Whereas the pre-HTP samples were found to be inactive, the post-HIP cellulose treated at 250 degrees C for 60 min was nearly as active as carbon BP2000 (surface area = 1500 m(2)/g) for producing H-2 at energy efficient voltages. A comparative energy analysis for the electrochemical production of hydrogen using carbons and post-HTP cellulose vis-a-vis water electrolysis is also presented. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
C1 [Seehra, M. S.; Akkineni, L. P.; Yalamanchi, M.; Singh, V.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA.
[Poston, J.] Natl Energy Technol Lab, Morgantown, WV 26507 USA.
RP Seehra, MS (reprint author), W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA.
EM mseehra@wvu.edu
FU U. S. Department of Energy through the Consortium for Fossil Fuel
Science [DE-FC26-05NT42456]
FX At West Virginia University, financial support for this project was
provided by the U. S. Department of Energy (contract #
DE-FC26-05NT42456) awarded through the Consortium for Fossil Fuel
Science with G. P. Huffman as the director. MSS thanks Dr. John Zondlo
for assistance with the chemical analysis of the MCC and post-HTP
cellulose-based samples.
NR 35
TC 8
Z9 8
U1 2
U2 36
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD JUN
PY 2012
VL 37
IS 12
BP 9514
EP 9523
DI 10.1016/j.ijhydene.2012.03.083
PG 10
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 956RH
UT WOS:000305106300008
ER
PT J
AU Hu, PS
Lang, J
Wawrousek, K
Yu, JP
Maness, PC
Chen, J
AF Hu, Pingsha
Lang, Juan
Wawrousek, Karen
Yu, Jianping
Maness, Pin-Ching
Chen, Jin
TI Draft Genome Sequence of Rubrivivax gelatinosus CBS
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
ID RNA GENES; PATHWAY; CO
AB Rubrivivax gelatinosus CBS, a purple nonsulfur photosynthetic bacterium, can grow photosynthetically using CO and N-2 as the sole carbon and nitrogen nutrients, respectively. R. gelatinosus CBS is of particular interest due to its ability to metabolize CO and yield H-2. We present the 5-Mb draft genome sequence of R. gelatinosus CBS with the goal of providing genetic insight into the metabolic properties of this bacterium.
C1 [Hu, Pingsha; Chen, Jin] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA.
[Lang, Juan] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA.
[Wawrousek, Karen; Yu, Jianping; Maness, Pin-Ching] Natl Renewable Energy Lab, Golden, CO USA.
RP Chen, J (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA.
EM jinchen@msu.edu
FU Department of Energy, Office of Energy Efficiency and Renewable Energy,
Hydrogen and Fuel Cell Technologies [DE-AC36-08-GO28308]; National
Renewable Energy Laboratory; Department of Energy, Basic Energy
Sciences, Chemical Sciences, Geosciences and Biosciences Division
[DE-FG02-91ER20021]; MSU-DOE Plant Research Laboratory, Michigan State
University
FX This research is financially supported by the Department of Energy,
Office of Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell
Technologies Program under contract no. DE-AC36-08-GO28308 with the
National Renewable Energy Laboratory, and by the Department of Energy,
Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences
Division under contract no. DE-FG02-91ER20021 with the MSU-DOE Plant
Research Laboratory, Michigan State University.
NR 8
TC 2
Z9 2
U1 1
U2 2
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD JUN
PY 2012
VL 194
IS 12
BP 3262
EP 3262
DI 10.1128/JB.00515-12
PG 1
WC Microbiology
SC Microbiology
GA 954WJ
UT WOS:000304978400025
PM 22628496
ER
PT J
AU Zeytun, A
Malfatti, SA
Vergez, LM
Shin, M
Garcia, E
Chain, PSG
AF Zeytun, Ahmet
Malfatti, Stephanie A.
Vergez, Lisa M.
Shin, Maria
Garcia, Emilio
Chain, Patrick S. G.
TI Complete Genome Sequence of Francisella philomiragia ATCC 25017
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
AB Francisella philomiragia is a saprophytic gammaproteobacterium found only occasionally in immunocompromised individuals and is the nearest neighbor to the causative agent of tularemia and category A select agent Francisella tularensis. To shed insight into the key genetic differences and the evolution of these two distinct lineages, we sequenced the first complete genome of F. philomiragia strain ATCC 25017, which was isolated as a free-living microorganism from water in Bear River Refuge, Utah.
C1 [Zeytun, Ahmet; Chain, Patrick S. G.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA.
[Zeytun, Ahmet; Malfatti, Stephanie A.; Chain, Patrick S. G.] Joint Genome Inst, Walnut Creek, CA USA.
[Malfatti, Stephanie A.; Vergez, Lisa M.; Shin, Maria; Garcia, Emilio] Lawrence Livermore Natl Lab, Livermore, CA USA.
RP Chain, PSG (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA.
EM pchain@lanl.gov
RI chain, patrick/B-9777-2013;
OI Chain, Patrick/0000-0003-3949-3634
FU U.S. Department of Energy Joint Genome Institute through the Office of
Science of the U.S. Department of Energy [DE-AC02-05CH11231]
FX This study was supported in part by the U.S. Department of Energy Joint
Genome Institute through the Office of Science of the U.S. Department of
Energy under contract no. DE-AC02-05CH11231.
NR 8
TC 7
Z9 8
U1 1
U2 8
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD JUN
PY 2012
VL 194
IS 12
BP 3266
EP 3266
DI 10.1128/JB.00413-12
PG 1
WC Microbiology
SC Microbiology
GA 954WJ
UT WOS:000304978400028
PM 22628499
ER
PT J
AU Brown, SD
Palumbo, AV
Panikov, N
Arlyawansa, T
Klingeman, DM
Johnson, CM
Land, ML
Utturkar, SM
Epstein, SS
AF Brown, Steven D.
Palumbo, Anthony V.
Panikov, Nicolai
Arlyawansa, Thilini
Klingeman, Dawn M.
Johnson, Courtney M.
Land, Miriam L.
Utturkar, Sagar M.
Epstein, Slava S.
TI Draft Genome Sequence for Microbacterium laevaniformans Strain OR221, a
Bacterium Tolerant to Metals, Nitrate, and Low pH
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
AB Microbacterium laevaniformans strain OR221 was isolated from subsurface sediments obtained from the Field Research Center (FRC) in Oak Ridge, TN. It was characterized as a bacterium tolerant to heavy metals, such as uranium, nickel, cobalt, and cadmium, as well as nitrate and low pH. We present its draft genome sequence.
C1 [Arlyawansa, Thilini; Epstein, Slava S.] Northeastern Univ, Dept Biol, Boston, MA 02115 USA.
[Brown, Steven D.; Palumbo, Anthony V.; Klingeman, Dawn M.; Johnson, Courtney M.; Land, Miriam L.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.
[Panikov, Nicolai] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA.
[Brown, Steven D.; Utturkar, Sagar M.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN USA.
[Epstein, Slava S.] Northeastern Univ, Ctr Marine Sci, Nahant, MA 01908 USA.
RP Epstein, SS (reprint author), Northeastern Univ, Dept Biol, Boston, MA 02115 USA.
EM s.epstein@neu.edu
RI Palumbo, Anthony/A-4764-2011; Klingeman, Dawn/B-9415-2012; Land,
Miriam/A-6200-2011; Brown, Steven/A-6792-2011;
OI Palumbo, Anthony/0000-0002-1102-3975; Klingeman,
Dawn/0000-0002-4307-2560; Land, Miriam/0000-0001-7102-0031; Brown,
Steven/0000-0002-9281-3898; Utturkar, Sagar/0000-0002-3453-1948
FU Office of Biological and Environmental Research in the DOE Office of
Science; DOE [DE-FG02-04ER63782]
FX This article was supported by the Office of Biological and Environmental
Research in the DOE Office of Science and DOE grant DE-FG02-04ER63782 to
S.S.E.
NR 13
TC 5
Z9 5
U1 0
U2 7
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD JUN
PY 2012
VL 194
IS 12
BP 3279
EP 3280
DI 10.1128/JB.00474-12
PG 2
WC Microbiology
SC Microbiology
GA 954WJ
UT WOS:000304978400037
PM 22628508
ER
PT J
AU Brown, SD
Lamed, R
Morag, E
Borovok, I
Shoham, Y
Klingeman, DM
Johnson, CM
Yang, ZM
Land, ML
Utturkar, SM
Keller, M
Bayer, EA
AF Brown, Steven D.
Lamed, Raphael
Morag, Ely
Borovok, Ilya
Shoham, Yuval
Klingeman, Dawn M.
Johnson, Courtney M.
Yang, Zamin
Land, Miriam L.
Utturkar, Sagar M.
Keller, Martin
Bayer, Edward A.
TI Draft Genome Sequences for Clostridium thermocellum Wild-Type Strain YS
and Derived Cellulose Adhesion-Defective Mutant Strain AD2
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
ID ENZYME COMPLEXES; BETA-GLUCOSIDASE; BINDING DOMAIN; ETHANOL;
PURIFICATION; BACTERIA; XYLANASE; SYSTEM; GROWTH; GENE
AB Clostridium thermocellum wild-type strain YS is an anaerobic, thermophilic, cellulolytic bacterium capable of directly converting cellulosic substrates into ethanol. Strain YS and a derived cellulose adhesion-defective mutant strain, AD2, played pivotal roles in describing the original cellulosome concept. We present their draft genome sequences.
C1 [Morag, Ely; Bayer, Edward A.] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel.
[Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Yang, Zamin; Land, Miriam L.; Keller, Martin] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.
[Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Utturkar, Sagar M.; Keller, Martin] BioEnergy Sci Ctr, Oak Ridge, TN USA.
[Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Keller, Martin] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN USA.
[Lamed, Raphael; Borovok, Ilya] Tel Aviv Univ, Dept Mol Microbiol & Biotechnol, Ramat Aviv, Israel.
[Shoham, Yuval] Technion Israel Inst Technol, Dept Food Engn & Biotechnol, IL-32000 Haifa, Israel.
RP Bayer, EA (reprint author), Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel.
EM ed.bayer@weizmann.ac.il
RI Klingeman, Dawn/B-9415-2012; Land, Miriam/A-6200-2011; Brown,
Steven/A-6792-2011;
OI Klingeman, Dawn/0000-0002-4307-2560; Land, Miriam/0000-0001-7102-0031;
Brown, Steven/0000-0002-9281-3898; Utturkar, Sagar/0000-0002-3453-1948
FU Office of Biological and Environmental Research in the DOE Office of
Science through the BioEnergy Science Center; U.S. Department of Energy
[DE-AC05-00OR22725]; United States-Israel Binational Science Foundation
(BSF), Jerusalem, Israel; Israel Science Foundation [966/09, 24/11];
Israeli Centers of Research Excellence (I-CORE) [152/11]; Alternative
Energy Research Initiative (AERI) Bioenergy Consortium;
Technion-Niedersachsen Research Cooperation Program
FX This research was supported by the Office of Biological and
Environmental Research in the DOE Office of Science through the
BioEnergy Science Center, a U.S. DOE Bioenergy Research Center.U.S. DOE
Bioenergy Research Center.. ORNL is managed by UT-Battelle, LLC, for the
U.S. Department of Energy under contract no. DE-AC05-00OR22725. Grants
from the following foundations are gratefully acknowledged: the United
States-Israel Binational Science Foundation (BSF), Jerusalem, Israel;
the Israel Science Foundation (grant no. 966/09 and 24/11); The Israeli
Centers of Research Excellence (I-CORE) program (Center no. 152/11); The
Alternative Energy Research Initiative (AERI) Bioenergy Consortium; and
the Technion-Niedersachsen Research Cooperation Program. Y.S. holds the
Erwin and Rosl Pollak Chair in Biotechnology at the Technion, and E.A.B.
is the incumbent of The Maynard I. and Elaine Wishner Chair of
Bio-organic Chemistry.
NR 39
TC 13
Z9 13
U1 0
U2 10
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD JUN
PY 2012
VL 194
IS 12
BP 3290
EP 3291
DI 10.1128/JB.00473-12
PG 2
WC Microbiology
SC Microbiology
GA 954WJ
UT WOS:000304978400044
PM 22628515
ER
PT J
AU Schebb, NH
Buchholz, BA
Hammock, BD
Rice, RH
AF Schebb, Nils Helge
Buchholz, Bruce A.
Hammock, Bruce D.
Rice, Robert H.
TI Metabolism of the antibacterial triclocarban by human epidermal
keratinocytes to yield protein adducts
SO JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY
LA English
DT Article
DE Accelerator Mass Spectrometry; Biotransformation; Cytochrome P450;
Keratinocytes; Protein Adducts; Reactive Metabolites; TCDD; Triclocarban
ID ACCELERATOR MASS-SPECTROMETRY; ARYL-HYDROCARBON RECEPTOR; BIOCHEMICAL
SAMPLES; CELLS; SENSITIZATION; INHIBITORS; TRICLOSAN; DNA
AB Previous studies of triclocarban suggest that its biotransformation could yield reactive metabolites that form protein adducts. Since the skin is the major route of triclocarban exposure, present work examined this possibility in cultured human keratinocytes. The results provide evidence for considerable biotransformation and protein adduct formation when cytochrome P450 activity is induced in the cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a model Ah receptor ligand. Since detecting low adduct levels in cells and tissues is difficult, we utilized the novel approach of accelerator mass spectrometry for this purpose. Exploiting the sensitivity of the method, we demonstrated that a substantial portion of triclocarban forms adducts with keratinocyte protein under the P450 inducing conditions employed. (c) 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:230234, 2012; View this article online at . DOI 10.1002/jbt.21411
C1 [Rice, Robert H.] Univ Calif Davis, Dept Environm Toxicol, Davis, CA 95616 USA.
[Schebb, Nils Helge] Univ Vet Med Hannover, Inst Food Toxicol & Chem Anal, D-30173 Hannover, Germany.
[Buchholz, Bruce A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA.
[Hammock, Bruce D.] Univ Calif Davis, Dept Entomol, Davis, CA 95616 USA.
[Hammock, Bruce D.] Univ Calif Davis, Ctr Canc, Davis, CA 95616 USA.
RP Rice, RH (reprint author), Univ Calif Davis, Dept Environm Toxicol, Davis, CA 95616 USA.
EM rhrice@ucdavis.edu
RI Buchholz, Bruce/G-1356-2011;
OI Schebb, Nils Helge/0000-0003-1299-6629
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; National Institutes of Health [R01 ES002710, P42
ES004699, NCRR RR13461, 8 P41 GM103483-14]; National Institute for
Occupational Safety and Health; German Academic Exchange Service
FX We thank Qin Qin and Miranda Sarachine Falso for excellent technical
assistance. Bruce D. Hammock is a senior fellow of the American Asthma
Society. This work was performed in part under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.; Contract Grant Sponsor: National Institutes
of Health.; Contract Grant Numbers: R01 ES002710, P42 ES004699, NCRR
RR13461, and 8 P41 GM103483-14.; Contract Grant Sponsor: National
Institute for Occupational Safety and Health.; Contract Grant Sponsor:
German Academic Exchange Service (NHS).
NR 29
TC 5
Z9 5
U1 2
U2 20
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1095-6670
J9 J BIOCHEM MOL TOXIC
JI J. Biochem. Mol. Toxicol.
PD JUN
PY 2012
VL 26
IS 6
BP 230
EP 234
DI 10.1002/jbt.21411
PG 5
WC Biochemistry & Molecular Biology; Toxicology
SC Biochemistry & Molecular Biology; Toxicology
GA 959SY
UT WOS:000305334600003
PM 22711420
ER
PT J
AU Lee, JW
Nilson, RH
Templeton, JA
Griffiths, SK
Kung, A
Wong, BM
AF Lee, Jonathan W.
Nilson, Robert H.
Templeton, Jeremy A.
Griffiths, Stewart K.
Kung, Andy
Wong, Bryan M.
TI Comparison of Molecular Dynamics with Classical Density Functional and
Poisson-Boltzmann Theories of the Electric Double Layer in Nanochannels
SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION
LA English
DT Article
ID MONTE-CARLO; ATOMISTIC SIMULATION; COMPUTER EXPERIMENTS; ION
DISTRIBUTION; SLAB GEOMETRY; FLUIDS; MODEL; CAPACITANCE; INTERFACE;
LIQUIDS
AB Comparisons are made among Molecular Dynamics (MD), Classical Density Functional Theory (c-DFT), and Poisson-Boltzmann (PB) modeling of the electric double layer (EDL) for the nonprimitive three component model (3CM) in which the two ion species and solvent molecules are all of finite size. Unlike previous comparisons between c-DFT and Monte Carlo (MC), the present 3CM incorporates Lennard-Jones interactions rather than hard-sphere and hard-wall repulsions. c-DFT and MD results are compared over normalized surface charges ranging from 0.2 to 1.75 and bulk ion concentrations from 10 mM to 1 M. Agreement between the two, assessed by electric surface potential and ion density profiles, is found to be quite good. Wall potentials predicted by PB begin to depart significantly from c-DFT and MD for charge densities exceeding 0.3. Successive layers are observed to charge in a sequential manner such that the solvent becomes fully excluded from each layer before the onset of the next layer. Ultimately, this layer filling phenomenon results in fluid structures, Debye lengths, and electric surface potentials vastly different from the classical PB predictions.
C1 [Lee, Jonathan W.; Nilson, Robert H.; Templeton, Jeremy A.; Griffiths, Stewart K.; Kung, Andy; Wong, Bryan M.] Sandia Natl Labs, Livermore, CA USA.
RP Templeton, JA (reprint author), Sandia Natl Labs, Livermore, CA USA.
EM jatempl@sandia.gov
RI Wong, Bryan/B-1663-2009
OI Wong, Bryan/0000-0002-3477-8043
FU Sandia National Laboratories [DE-AC04-94AL85000]
FX Funding for this effort was provided by the Laboratory Directed Research
and Development (LDRD) program at Sandia National Laboratories, a
multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy's National
Nuclear Security Administration under contract DE-AC04-94AL85000.
NR 46
TC 17
Z9 17
U1 2
U2 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1549-9618
J9 J CHEM THEORY COMPUT
JI J. Chem. Theory Comput.
PD JUN
PY 2012
VL 8
IS 6
BP 2012
EP 2022
DI 10.1021/ct3001156
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 956LY
UT WOS:000305092400017
ER
PT J
AU Smith, DMA
Xiong, YJ
Straatsma, TP
Rosso, KM
Squier, TC
AF Smith, Dayle M. A.
Xiong, Yijia
Straatsma, T. P.
Rosso, Kevin M.
Squier, Thomas C.
TI Force-Field Development and Molecular Dynamics of [NiFe] Hydrogenase
SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; VULGARIS MIYAZAKI-F; RAY-STRUCTURE ANALYSIS;
GAUSSIAN-BASIS SETS; ACTIVE-SITE; FEFE HYDROGENASES; CRYSTAL-STRUCTURE;
IRON HYDROGENASE; SINGLE-CRYSTALS; SULFUR CLUSTERS
AB Classical molecular force-field parameters describing the structure and motion of metal dusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model dusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexible in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of C alpha and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H-2-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.
C1 [Smith, Dayle M. A.; Xiong, Yijia; Straatsma, T. P.; Rosso, Kevin M.; Squier, Thomas C.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Smith, DMA (reprint author), Pacific NW Natl Lab, POB 999,MSIN J4-33, Richland, WA 99352 USA.
EM dayle.smith@pnl.gov
RI vedha, angeline/F-7272-2012
FU Department of Energy Office of Basic Energy Sciences
FX Computer resources were provided by the Environmental Molecular Sciences
Laboratory at the Pacific Northwest National Laboratory. Research was
funded by the Department of Energy Office of Basic Energy Sciences. The
authors thank Thereza Soares of the Universidade Federal de Pernambuco
for many helpful discussions and her management of computing resources.
PNNL is operated by the Battelle Memorial Institute for the United
States Department of Energy.
NR 60
TC 13
Z9 13
U1 1
U2 41
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1549-9618
J9 J CHEM THEORY COMPUT
JI J. Chem. Theory Comput.
PD JUN
PY 2012
VL 8
IS 6
BP 2103
EP 2114
DI 10.1021/ct300185u
PG 12
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 956LY
UT WOS:000305092400027
PM 26593842
ER
PT J
AU Yun, J
Sonabend, AM
Ulasov, IV
Kim, DH
Rozhkova, EA
Novosad, V
Dashnaw, S
Brown, T
Canoll, P
Bruce, JN
Lesniak, MS
AF Yun, Jonathan
Sonabend, Adam M.
Ulasov, Ilya V.
Kim, Dong-Hyun
Rozhkova, Elena A.
Novosad, Valentyn
Dashnaw, Stephen
Brown, Truman
Canoll, Peter
Bruce, Jeffrey N.
Lesniak, Maciej S.
TI A novel adenoviral vector labeled with superparamagnetic iron oxide
nanoparticles for real-time tracking of viral delivery
SO JOURNAL OF CLINICAL NEUROSCIENCE
LA English
DT Article
DE Adenovirus; Gene therapy; Nanoparticle
ID CONVECTION-ENHANCED DELIVERY; GENE-TRANSFER EFFICIENCY; VIRUS-SIZED
PARTICLES; PHASE-I TRIAL; MALIGNANT GLIOMA; THERAPY; EXPRESSION; BRAIN;
GLIOBLASTOMA; INFUSION
AB In vivo tracking of gene therapy vectors challenges the investigation and improvement of biodistribution of these agents in the brain, a key feature for their targeting of infiltrative malignant gliomas. The glioma-targeting Ad5/3-cRGD gene therapy vector was covalently bound to super-paramagnetic iron oxide (Fe3O4) nanoparticles (SPION) to monitor its distribution by MRI. Transduction of labeled and unlabeled vectors was assessed on the U87 glioma cell line and normal human astrocytes (NHA), and was higher in U87 compared to NHA, but was similar between labeled and unlabeled virus. An in vivo study was performed by intracranial subcortical injection of labeled-Ad5/3-cRGD particles into a pig brain. The labeled vector appeared in vivo as a T2-weighted hyperintensity and a T2-gradient echo signal at the injection site, persisting up to 72 hours post-injection. We describe a glioma-targeting vector that is labeled with SPION, thereby allowing for MRI detection with no change in transduction capability. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Ulasov, Ilya V.; Lesniak, Maciej S.] Univ Chicago, Brain Tumor Ctr, Div Neurosurg, Chicago, IL 60637 USA.
[Yun, Jonathan; Sonabend, Adam M.; Canoll, Peter; Bruce, Jeffrey N.] Columbia Univ, Med Ctr, Gabriele Bartoli Brain Tumor Lab, New York, NY USA.
[Dashnaw, Stephen; Brown, Truman] Columbia Univ, Med Ctr, Hatch Ctr MRI Res, New York, NY USA.
[Kim, Dong-Hyun; Novosad, Valentyn] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Rozhkova, Elena A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Lesniak, MS (reprint author), Univ Chicago, Brain Tumor Ctr, Div Neurosurg, 5841 S Maryland Ave,MC 3026, Chicago, IL 60637 USA.
EM mlesniak@surgery.bsd.uchicago.edu
RI Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015;
OI Kim, Dong-Hyun/0000-0001-6815-3319
FU U. S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; NIH/NINDS [R01NS077388]; Alpha Omega Alpha
Carolyn L. Kuckein Research Fellowship
FX This work was supported in part by the Alpha Omega Alpha Carolyn L.
Kuckein Research Fellowship (JY). Work at Argonne, including the use of
the Center for Nanoscale Materials, was supported by the U. S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. Dr. Lesniak's research
was supported by a grant from NIH/NINDS R01NS077388.
NR 37
TC 10
Z9 10
U1 0
U2 23
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0967-5868
J9 J CLIN NEUROSCI
JI J. Clin. Neurosci.
PD JUN
PY 2012
VL 19
IS 6
BP 875
EP 880
DI 10.1016/j.jocn.2011.12.016
PG 6
WC Clinical Neurology; Neurosciences
SC Neurosciences & Neurology
GA 955SH
UT WOS:000305040700021
PM 22516547
ER
PT J
AU Forsbach, A
Muller, C
Montino, C
Kritzler, A
Nguyen, T
Weeratna, R
Jurk, M
Vollmer, J
AF Forsbach, Alexandra
Mueller, Christian
Montino, Carmen
Kritzler, Andrea
Toan Nguyen
Weeratna, Risini
Jurk, Marion
Vollmer, Joerg
TI Negative Regulation of the Type I Interferon Signaling Pathway by
Synthetic Toll-Like Receptor 7 Ligands
SO JOURNAL OF INTERFERON AND CYTOKINE RESEARCH
LA English
DT Article
ID PLASMACYTOID DENDRITIC CELLS; DOUBLE-STRANDED-RNA; BLOOD
MONONUCLEAR-CELLS; INHIBITS STAT3 PHOSPHORYLATION; PHASE RESPONSE
FACTOR/STAT3; GROWTH-SUPPRESSIVE ACTIVITY; IFN-ALPHA PRODUCTION; HUMAN
CANCER-CELLS; IMMUNE-RESPONSES; RIG-I
AB Ten Toll-like receptor (TLR) family members have been reported in humans. Here, the endoplasmatic receptors TLR9, TLR8, TLR7, and TLR3 respond to nucleic acids and derivatives or to small molecules (TLR7 and 8). Another cytoplasmic RNA receptor, retinoic acid inducible gene I (RIG-I), is stimulated by 5' triphosphate double-stranded RNA. We discovered that TLR7 small-molecule agonists inhibit nucleic acid-mediated TLR3, TLR7, TLR9, or RIG-I-dependent interferon-alpha (IFN-alpha) immune response. Other cytokines and chemokines stimulated by nucleic acid agonists remained unaffected. The observed blockage of TLR3, TLR7, TLR9, and RIG-I-mediated IFN-alpha response appears to be driven by a competitive mechanism at the type I IFN pathway. Besides type I IFN, IFN response genes such as IFIT-1, Mx1, OAS1, or IRF7 were affected, which indicates that the key element driving the inhibition is located in the type I IFN pathway. Indeed, the heterotrimeric complex formation of phosphor-signal transducer and activator of transcription factor 1 (STAT1), phosphor-STAT2, and IRF9 (called ISGF3, IFN-stimulated gene factor 3) is inhibited through the TLR7 small-molecule agonists by phosphor-STAT2 blockage. These findings provide novel insights into the use of synthetic TLR7 or TLR7/8 small molecules as ligands for immune activation and suppression.
C1 [Forsbach, Alexandra; Mueller, Christian; Montino, Carmen; Kritzler, Andrea; Jurk, Marion; Vollmer, Joerg] Coley Pharmaceut GmbH, Pfizer Oligonucleotide Therapeut Unit, Dusseldorf, Germany.
[Toan Nguyen] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Weeratna, Risini] Pfizer Vaccine Res, Ottawa, ON, Canada.
RP Forsbach, A (reprint author), Alten Broich 219, D-40764 Langenfeld, Germany.
EM aforsbach@gmx.de
NR 100
TC 4
Z9 4
U1 0
U2 10
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1079-9907
EI 1557-7465
J9 J INTERF CYTOK RES
JI J. Interferon Cytokine Res.
PD JUN
PY 2012
VL 32
IS 6
BP 254
EP 268
DI 10.1089/jir.2011.0091
PG 15
WC Biochemistry & Molecular Biology; Cell Biology; Immunology
SC Biochemistry & Molecular Biology; Cell Biology; Immunology
GA 957PS
UT WOS:000305175600003
PM 22540943
ER
PT J
AU Nuester, J
Vogt, S
Twining, BS
AF Nuester, Jochen
Vogt, Stefan
Twining, Benjamin S.
TI LOCALIZATION OF IRON WITHIN CENTRIC DIATOMS OF THE GENUS THALASSIOSIRA
SO JOURNAL OF PHYCOLOGY
LA English
DT Article
DE centric diatoms; element mapping; intrapopulation variability; iron
localization; single-cell analysis; synchrotron X-ray fluorescence;
vacuole
ID X-RAY-FLUORESCENCE; SACCHAROMYCES-CEREVISIAE; PHYTOPLANKTON GROWTH;
MARINE-PHYTOPLANKTON; TRACE-ELEMENTS; SOUTHERN-OCEAN; SEQUESTRATION;
LIMITATION; VACUOLE; STORAGE
AB The cellular iron (Fe) quota of centric diatoms has been shown to vary in response to the ambient dissolved Fe concentration; however, it is not known how centric diatoms store excess intracellular Fe. Here, we use synchrotron X-ray fluorescence (SXRF) element mapping to identify Fe storage features in cells of Thalassiosira pseudonana Hasle et Heimdal and Thalassiosira weissflogii G. A. Fryxell et Hasle grown at low and high Fe concentrations. Localized intracellular Fe storage features, defined as anomalously high Fe concentrations in regions of relatively low phosphorus (P), sulfur (S), silicon (Si), and zinc (Zn), were twice as common in T. weissflogii cells grown at high Fe compared to low-Fe cells. Cellular Fe quotas of this strain increased 2.9-fold, the spatial extent of the features increased 4.6-fold, and the Fe content of the features increased 14-fold under high-Fe conditions, consistent with a vacuole storage mechanism. The element stoichiometry of the Fe features is consistent with polyphosphate-bound Fe as a potential vacuolar Fe storage pool. Iron quotas increased 2.5-fold in T. pseudonana grown at high Fe, but storage features contained only 2-fold more Fe and did not increase in size compared to low-Fe cells. The differences in Fe storage observed between T. pseudonana and T. weissflogii may have been due to differences in the growth states of the cultures.
C1 [Nuester, Jochen; Twining, Benjamin S.] Bigelow Lab Ocean Sci, E Boothbay, ME 04544 USA.
[Vogt, Stefan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
RP Nuester, J (reprint author), Bigelow Lab Ocean Sci, E Boothbay, ME 04544 USA.
EM jnuester@bigelow.org
RI Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013;
OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513;
Twining, Benjamin/0000-0002-1365-9192
FU National Science Foundation [OCE 0913080]; U.S. DOE [DE-AC02-06CH11357]
FX This works was supported by the funding from the National Science
Foundation (OCE 0913080) to B. S. T. The use of the Advanced Photon
Source, an Office of Science User Facility operated for the U.S.
Department of Energy (DOE) Office of Science by Argonne National
Laboratory, was supported by the U.S. DOE under Contract No.
DE-AC02-06CH11357. We thank Adam Kustka for helpful discussions and the
editor and reviewers for comments that improved the manuscript.
NR 48
TC 14
Z9 14
U1 4
U2 45
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0022-3646
EI 1529-8817
J9 J PHYCOL
JI J. Phycol.
PD JUN
PY 2012
VL 48
IS 3
BP 626
EP 634
DI 10.1111/j.1529-8817.2012.01165.x
PG 9
WC Plant Sciences; Marine & Freshwater Biology
SC Plant Sciences; Marine & Freshwater Biology
GA 952RP
UT WOS:000304810200014
PM 27011078
ER
PT J
AU Newhouse, NL
Rawls, GB
Rana, MD
Shelley, BF
Gorman, MR
AF Newhouse, Norman L.
Rawls, George B.
Rana, Mahendra D.
Shelley, Bernard F.
Gorman, Michael R.
TI Development of ASME Section X Code Rules for High Pressure Composite
Hydrogen Pressure Vessels With Nonload Sharing Liners
SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME
LA English
DT Editorial Material
AB The purpose of this paper is to document the development of ASME Section X Code rules for high pressure vessels for containing hydrogen and to provide a technical basis of their content. The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15,000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with nonload sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 21 MPa (3000 psi) to 105 MPa (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 in.). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, including Acoustic Emission testing at the time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing. [DOI: 10.1115/1.4005856]
C1 [Newhouse, Norman L.] Lincoln Composites Inc, Lincoln, NE 68524 USA.
[Rawls, George B.] Savannah River Natl Lab, Aiken, SC 29808 USA.
[Rana, Mahendra D.] Praxair Inc, Tonawanda, NY 14151 USA.
[Shelley, Bernard F.] DuPont Engn Co, Wilmington, DE 19880 USA.
[Gorman, Michael R.] Digital Wave Corp, Centennial, CO 80111 USA.
RP Newhouse, NL (reprint author), Lincoln Composites Inc, 5117 NW 40th St, Lincoln, NE 68524 USA.
EM nnewhouse@lincolncomposites.com; george.rawls@srnl.doe.gov;
Mahendra_Rana@Praxair.com; bernard.f.shelley@usa.dupont.com;
mgorman@digitalwavecorp.com
NR 8
TC 0
Z9 0
U1 2
U2 12
PU ASME-AMER SOC MECHANICAL ENG
PI NEW YORK
PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0094-9930
J9 J PRESS VESS-T ASME
JI J. Press. Vessel Technol.-Trans. ASME
PD JUN
PY 2012
VL 134
IS 3
AR 030402
DI 10.1115/1.4005856
PG 8
WC Engineering, Mechanical
SC Engineering
GA 956VJ
UT WOS:000305117300004
ER
PT J
AU Poineau, F
Yeamans, CB
Silva, GWC
Cerefice, GS
Sattelberger, AP
Czerwinski, KR
AF Poineau, Frederic
Yeamans, Charles B.
Silva, G. W. C.
Cerefice, Gary S.
Sattelberger, Alfred P.
Czerwinski, Kenneth R.
TI X-ray absorption fine structure spectroscopic study of uranium nitrides
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE EXAFS; Uranium; Nitrides; Nuclear fuel
AB Uranium mononitride (UN), sesquinitride (U2N3) and dinitride (UN2) were characterized by extended X-Ray absorption fine structure spectroscopy. Analysis on UN indicate the presence of three uranium shells at distances of 3.46(3), 4.89(5) and 6.01(6) angstrom and a nitrogen shell at a distance of 2.46(2) angstrom. For U2N3, two absorbing uranium atoms at different crystallographic positions are present in the structure. One of the uranium atoms is surrounded by nitrogen atoms at 2.28(2) angstrom and by uranium atoms at 3.66(4) and 3.95(4) angstrom. The second type of uranium atom is surrounded by nitrogen atoms at 2.33(2) and 2.64(3) angstrom and by uranium atoms at 3.66(4), 3.95(4) and 5.31(5) angstrom. Results on UN2 indicate two uranium shells at 3.71(4) and 5.32(5) angstrom and two nitrogen shells at 2.28(2) and 4.34(4) angstrom. The lattice parameters of UN, U2N3 and UN2 unit cells were respectively determined to be 4.89(5), 10.62(10) and 5.32(5) angstrom. Those results are well in agreement with those obtained by X-Ray diffraction analysis.
C1 [Poineau, Frederic; Czerwinski, Kenneth R.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA.
[Yeamans, Charles B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Silva, G. W. C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA.
[Cerefice, Gary S.] Univ Nevada, Dept Hlth Phys, Las Vegas, NV 89154 USA.
[Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Argonne, IL 60439 USA.
RP Poineau, F (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA.
EM poineauf@unlv.nevada.edu
RI Silva, G W Chinthaka/K-8431-2012; Silva, Chinthaka/E-1416-2017
OI Silva, Chinthaka/0000-0003-4637-6030
FU U. S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX Use of the Advanced Photon Source was supported by the U. S. Department
of Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357.
NR 15
TC 12
Z9 13
U1 2
U2 33
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD JUN
PY 2012
VL 292
IS 3
BP 989
EP 994
DI 10.1007/s10967-011-1551-7
PG 6
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 958JJ
UT WOS:000305232400007
ER
PT J
AU Silver, GL
AF Silver, G. L.
TI Empirical method for preparing a plutonium predominance-region diagram
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Plutonium; Oxidation number; Predominance-region diagram
ID AQUEOUS PLUTONIUM
AB An empirical method for preparing a plutonium predominance-region diagram is illustrated by an example. The method estimates the boundaries of the forbidden, unique, and ambiguous regions as defined by the equilibrium fraction of hexavalent plutonium and the plutonium oxidation number.
C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Silver, GL (reprint author), Los Alamos Natl Lab, POB 1663,MS E502, Los Alamos, NM 87545 USA.
EM gsilver@lanl.gov
FU National Nuclear Security Administration of the US Department of Energy
[DE-AC52-06NA25396]
FX Los Alamos National Laboratory is operated by the Los Alamos National
Security, LLC for the National Nuclear Security Administration of the US
Department of Energy contract DE-AC52-06NA25396.
NR 11
TC 2
Z9 2
U1 0
U2 5
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD JUN
PY 2012
VL 292
IS 3
BP 1105
EP 1108
DI 10.1007/s10967-011-1570-4
PG 4
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 958JJ
UT WOS:000305232400024
ER
PT J
AU Silver, GL
AF Silver, G. L.
TI How reliable are estimates of hydrolysis constants?
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Plutonium; Hydrolysis; Disproportionation
ID PLUTONIUM
AB The equilibrium constant for the first hydrolysis reaction of tetravalent plutonium is surrounded by uncertainty. A new method illustrates criteria by which the reliabilities of the numerical estimates can be judged. The new formulas are simple, the method is easy to apply, and the results are easy to compare.
C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Silver, GL (reprint author), Los Alamos Natl Lab, POB 1663,MS E502, Los Alamos, NM 87545 USA.
EM gsilver@lanl.gov
NR 10
TC 4
Z9 4
U1 0
U2 20
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD JUN
PY 2012
VL 292
IS 3
BP 1193
EP 1195
DI 10.1007/s10967-012-1656-7
PG 3
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 958JJ
UT WOS:000305232400036
ER
PT J
AU Maar, D
Harmon, B
Chu, D
Schulz, B
Aguilar, HC
Lee, B
Negrete, OA
AF Maar, Dianna
Harmon, Brooke
Chu, David
Schulz, Belinda
Aguilar, Hector C.
Lee, Benhur
Negrete, Oscar A.
TI Cysteines in the Stalk of the Nipah Virus G Glycoprotein Are Located in
a Distinct Subdomain Critical for Fusion Activation
SO JOURNAL OF VIROLOGY
LA English
DT Article
ID NEWCASTLE-DISEASE VIRUS; HENDRA-VIRUS; PARAMYXOVIRUS FUSION;
RECEPTOR-BINDING; MEMBRANE-FUSION; HN PROTEIN; ATTACHMENT GLYCOPROTEIN;
STRUCTURAL BASIS; 4-HELIX BUNDLE; RESIDUES
AB Paramyxoviruses initiate entry through the concerted action of the tetrameric attachment glycoprotein (HN, H, or G) and the trimeric fusion glycoprotein (F). The ectodomains of HN/H/G contain a stalk region important for oligomeric stability and for the F triggering resulting in membrane fusion. Paramyxovirus HN, H, and G form a dimer-of-dimers consisting of disulfide-linked dimers through their stalk domain cysteines. The G attachment protein stalk domain of the highly pathogenic Nipah virus (NiV) contains a distinct but uncharacterized cluster of three cysteine residues (C146, C158, C162). On the basis of a panoply of assays, we report that C158 and C162 of NiV-G likely mediate covalent subunit dimerization, while C146 mediates the stability of higher-order oligomers. For HN or H, mutation of stalk cysteines attenuates but does not abrogate the ability to trigger fusion. In contrast, the NiV-G stalk cysteine mutants were completely deficient in triggering fusion, even though they could still bind the ephrinB2 receptor and associate with F. Interestingly, all cysteine stalk mutants exhibited constitutive exposure of the Mab45 receptor binding-enhanced epitope, previously implicated in F triggering. The enhanced binding of Mab45 to the cysteine mutants relative to wild-type NiV-G, without the addition of the receptor, implicates the stalk cysteines in the stabilization of a pre-receptor-bound conformation and the regulation of F triggering. Sequence alignments revealed that the stalk cysteines were adjacent to a proline-rich microdomain unique to the Henipavirus genus. Our data propose that the cysteine cluster in the NiV-G stalk functions to maintain oligomeric stability but is more importantly involved in stabilizing a unique microdomain critical for triggering fusion.
C1 [Maar, Dianna; Harmon, Brooke; Negrete, Oscar A.] Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94550 USA.
[Chu, David; Schulz, Belinda; Lee, Benhur] Univ Calif Los Angeles, David Geffen Sch Med, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA.
[Aguilar, Hector C.] Washington State Univ, Coll Vet Med, Dept Vet Microbiol & Pathol, Paul G Allen Sch Global Anim Hlth, Pullman, WA 99164 USA.
RP Negrete, OA (reprint author), Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94550 USA.
EM onegret@sandia.gov
RI Lee, Benhur/A-8554-2016
OI Lee, Benhur/0000-0003-0760-1709
FU Laboratory Directed Research and Development Grant; U.S. Department of
Energy's National Nuclear Security Administration [DE-AC04-94AL85000];
NIH [AI069317]; UCLA; Pacific Southwest Regional Center of Excellence
(PSWRCE) [U54 AI065359]
FX This work was supported by a Laboratory Directed Research and
Development Grant given to O.A.N. at Sandia National Laboratories (SNL).
SNL is a multiprogram laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000. Additional funding was
provided by NIH grant AI069317 to B.L. and a UCLA Undergraduate Research
Scholarship to D.C. We also acknowledge support from the Pacific
Southwest Regional Center of Excellence (PSWRCE) through a subproject
award to B.L. (U54 AI065359).
NR 39
TC 24
Z9 25
U1 2
U2 8
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0022-538X
J9 J VIROL
JI J. Virol.
PD JUN
PY 2012
VL 86
IS 12
BP 6632
EP 6642
DI 10.1128/JVI.00076-12
PG 11
WC Virology
SC Virology
GA 953SS
UT WOS:000304894100024
PM 22496210
ER
PT J
AU Haley, B
Gallo, JB
Kehr, A
Perry, M
Siao, D
Smallen, W
Torn, MS
Williams, JH
AF Haley, Benjamin
Gallo, Jean-Baptiste
Kehr, Abigail
Perry, Michael
Siao, David
Smallen, William
Torn, Margaret S.
Williams, James H.
TI The 2020 emissions reduction impact of urban water conservation in
California
SO JOURNAL OF WATER AND CLIMATE CHANGE
LA English
DT Article
DE California; climate change mitigation; embedded energy; water
conservation; water energy nexus
AB This paper assesses the potential greenhouse gas (GHG) emissions reduction impacts of urban water conservation. Using California as a case study, it estimates this co-benefit of California's statewide urban water conservation goal of 20% per capita reduction by 2020 (relative to a year 2000 baseline). We developed a model of a water supply system to assess the impact of reduced urban water demand on emissions. Embedded energy and emissions were established for each stage of the water supply cycle: supply and conveyance, treatment, distribution, end use and wastewater treatment. We conclude that water conservation, in addition to being an important strategy for adaptation to climate change, represents a significant opportunity for mitigation. Under policies that prioritize savings of water that is heated, the most energy-intensive process in the supply cycle, water conservation offers the potential to conserve 3.5 Mt CO(2)e in 2020. This result suggests that water conservation could be an important mitigation strategy in other states, even those that are not water-constrained and do not have highly energy intensive supply sources.
C1 [Haley, Benjamin] Energy & Environm Econ, San Francisco, CA 94104 USA.
[Haley, Benjamin; Gallo, Jean-Baptiste; Kehr, Abigail; Perry, Michael; Siao, David; Smallen, William; Williams, James H.] Monterey Inst Int Studies, Monterey, CA 93940 USA.
[Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Haley, B (reprint author), Energy & Environm Econ, San Francisco, CA 94104 USA.
EM Ben@ethree.com
RI Torn, Margaret/D-2305-2015
FU Energy and Environmental Economics, Inc.
FX The authors would like to thank Energy and Environmental Economics, Inc.
for their support of this research. Specific thanks to Eric Cutter for
his editing contributions and willingness to lend his expertise and time
at all stages of the research. Additional thanks to Clayton Snyder and
Tyler Espinoza for their contributions to supporting research.
NR 29
TC 0
Z9 0
U1 2
U2 41
PU IWA PUBLISHING
PI LONDON
PA ALLIANCE HOUSE, 12 CAXTON ST, LONDON SW1H0QS, ENGLAND
SN 2040-2244
J9 J WATER CLIM CHANGE
JI J. Water Clim. Chang.
PD JUN
PY 2012
VL 3
IS 2
BP 151
EP 162
DI 10.2166/wcc.2012.047
PG 12
WC Water Resources
SC Water Resources
GA 958AD
UT WOS:000305207300006
ER
PT J
AU Mehrtens, N
Romer, AK
Hilton, M
Lloyd-Davies, EJ
Miller, CJ
Stanford, SA
Hosmer, M
Hoyle, B
Collins, CA
Liddle, AR
Viana, PTP
Nichol, RC
Stott, JP
Dubois, EN
Kay, ST
Sahlen, M
Young, O
Short, CJ
Christodoulou, L
Watson, WA
Davidson, M
Harrison, CD
Baruah, L
Smith, M
Burke, C
Mayers, JA
Deadman, PJ
Rooney, PJ
Edmondson, EM
West, M
Campbell, HC
Edge, AC
Mann, RG
Sabirli, K
Wake, D
Benoist, C
da Costa, L
Maia, MAG
Ogando, R
AF Mehrtens, Nicola
Romer, A. Kathy
Hilton, Matt
Lloyd-Davies, E. J.
Miller, Christopher J.
Stanford, S. A.
Hosmer, Mark
Hoyle, Ben
Collins, Chris A.
Liddle, Andrew R.
Viana, Pedro T. P.
Nichol, Robert C.
Stott, John P.
Dubois, E. Naomi
Kay, Scott T.
Sahlen, Martin
Young, Owain
Short, C. J.
Christodoulou, L.
Watson, William A.
Davidson, Michael
Harrison, Craig D.
Baruah, Leon
Smith, Mathew
Burke, Claire
Mayers, Julian A.
Deadman, Paul-James
Rooney, Philip J.
Edmondson, Edward M.
West, Michael
Campbell, Heather C.
Edge, Alastair C.
Mann, Robert G.
Sabirli, Kivanc
Wake, David
Benoist, Christophe
da Costa, Luiz
Maia, Marcio A. G.
Ogando, Ricardo
TI The XMM Cluster Survey: optical analysis methodology and the first data
release
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE techniques: photometric; techniques: spectroscopic; surveys; galaxies:
clusters: individual: XMMXCS J091821; 9+211446; 0; galaxies: distances
and redshifts; X-rays: galaxies: clusters
ID DIGITAL-SKY-SURVEY; COLOR-MAGNITUDE RELATION; LUMINOUS GALAXY CLUSTER;
SPECTROSCOPIC CONFIRMATION; DATA REDUCTION; RED GALAXIES; LSS SURVEY;
X-RAYS; CATALOG; REDSHIFT
AB The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMMNewton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we present the first data release from the XMM Cluster Survey (XCS-DR1). This consists of 503 optically confirmed, serendipitously detected, X-ray clusters. Of these clusters, 256 are new to the literature and 357 are new X-ray discoveries. We present 463 clusters with a redshift estimate (0.06 < z < 1.46), including 261 clusters with spectroscopic redshifts. The remainder have photometric redshifts. In addition, we have measured X-ray temperatures (TX) for 401 clusters (0.4 < TX < 14.7 keV). We highlight seven interesting subsamples of XCS-DR1 clusters: (i) 10 clusters at high redshift (z > 1.0, including a new spectroscopically confirmed cluster at z= 1.01); (ii) 66 clusters with high TX (>5 keV); (iii) 130 clusters/groups with low TX (<2 keV); (iv) 27 clusters with measured TX values in the Sloan Digital Sky Survey (SDSS) Stripe 82 co-add region; (v) 77 clusters with measured TX values in the Dark Energy Survey region; (vi) 40 clusters detected with sufficient counts to permit mass measurements (under the assumption of hydrostatic equilibrium); (vii) 104 clusters that can be used for applications such as the derivation of cosmological parameters and the measurement of cluster scaling relations. The X-ray analysis methodology used to construct and analyse the XCS-DR1 cluster sample has been presented in a companion paper, Lloyd-Davies et al.
C1 [Mehrtens, Nicola; Romer, A. Kathy; Lloyd-Davies, E. J.; Hosmer, Mark; Liddle, Andrew R.; Young, Owain; Short, C. J.; Christodoulou, L.; Watson, William A.; Baruah, Leon; Mayers, Julian A.; Deadman, Paul-James; Rooney, Philip J.; Campbell, Heather C.; Sabirli, Kivanc] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England.
[Hilton, Matt] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Sci, ZA-4000 Durban, South Africa.
[Hilton, Matt] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
[Miller, Christopher J.; Harrison, Craig D.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA.
[Hoyle, Ben] Inst Ciencies Cosmos ICCUB IEEC, Dept Fis, Barcelona 08034, Spain.
[Hoyle, Ben; Nichol, Robert C.; Smith, Mathew; Edmondson, Edward M.; Campbell, Heather C.] Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Hoyle, Ben] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Collins, Chris A.; Stott, John P.; Burke, Claire] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England.
[Viana, Pedro T. P.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal.
[Viana, Pedro T. P.] Univ Porto, Dept Fis & Astron, Fac Ciencias, P-4169007 Oporto, Portugal.
[Stott, John P.; Edge, Alastair C.; Wake, David] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England.
[Kay, Scott T.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England.
[Sahlen, Martin] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, SE-10691 Stockholm, Sweden.
[Davidson, Michael; Mann, Robert G.] Univ Edinburgh, SUPA, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Smith, Mathew] Univ Cape Town, ACGC, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa.
[West, Michael] ESO, Santiago, Chile.
[Wake, David] Yale Univ, Dept Astron, New Haven, CT 06520 USA.
[Benoist, Christophe] Univ Nice, CNRS, Observ Cote Azur, CASSIOPEE,UMR 6202, F-06304 Nice 4, France.
[Benoist, Christophe; da Costa, Luiz; Maia, Marcio A. G.; Ogando, Ricardo] Lab Interinst & Astron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil.
[da Costa, Luiz; Maia, Marcio A. G.; Ogando, Ricardo] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil.
RP Mehrtens, N (reprint author), Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England.
EM n.mehrtens@sussex.ac.uk
RI Hilton, Matthew James/N-5860-2013; Ogando, Ricardo/A-1747-2010;
OI Ogando, Ricardo/0000-0003-2120-1154; hoyle, ben/0000-0002-2571-1357;
Viana, Pedro/0000-0003-1572-8531; Edge, Alastair/0000-0002-3398-6916;
Sahlen, Martin/0000-0003-0973-4804
FU NSF [AST-0071048]; SDSS; SDSS-II; Alfred P. Sloan Foundation; Space
Telescope Science Institute under U.S. Government [NAG W-2166]; Science
and Technology Facilities Council (STFC) [ST/F002858/1, ST/I000976/1,
ST/H002391/1, PP/E001149/1, ST/G002592/1]; University of KwaZulu-Natal
[ST/H002774/1, ST/I001204/1]; Leverhulme Trust; University of Sussex
[FP7-PEOPLE-2007-4D3-IRG n 20218]; Fundacao para a Ciencia e a
Tecnologia [PTDC/CTE-AST/64711/2006]; South East Physics Network;
Swedish Research Council (VR) through Oskar Klein Centre for
Cosmoparticle Physics; RAS Hosie Bequest; University of Edinburgh; U.S.
Department of Energy, National Nuclear Security Administration by the
University of California, Lawrence Livermore National Laboratory
[W-7405-Eng-48]; Greek State Scholarship Foundation, trustee of the Nik
FX We are most grateful to the support staff who operate the following
observatories and to the organizations that fund them: the ESA
XMM-Newton mission. The NOAO consists of KPNO near Tucson, Arizona, CTIO
near La Serena, Chile, and the NOAO Gemini Science Center. NOAO is
operated by the Association of Universities for Research in Astronomy
(AURA) under a cooperative agreement with the National Science
Foundation. The Gemini Observatory, which is operated by the Association
of Universities for Research in Astronomy, Inc., under a cooperative
agreement with the National Science Foundation (NSF) on behalf of the
Gemini partnership: the National Science Foundation (United States), the
Science and Technology Facilities Council (United Kingdom), the National
Research Council (Canada), CONICYT (Chile), the Australian Research
Council (Australia), Ministrio da Cincia e Tecnologia (Brazil) and
Ministerio de Ciencia, Tecnologa e Innovacin Productiva (Argentina). The
Keck Observatory. The analysis pipeline used to reduce the DEIMOS data
was developed at UC Berkeley with support from NSF grant AST-0071048.
The authors wish to recognize and acknowledge the very significant
cultural role and reverence that the summit of Mauna Kea has always had
within the indigenous Hawaiian community; we are fortunate to have the
opportunity to conduct observations from this mountain. The W. M. Keck
Observatory is a scientific partnership between the University of
California and the California Institute of Technology, made possible by
a generous gift of the W. M. Keck Foundation. The NTT ESO Telescope at
the La Silla Observatory under programmes 077.A-0437, 078.A-0325,
080.A-0024, 081.A-843. The William Herschel Telescope which is operated
on the island of La Palma by the Isaac Newton Group in the Spanish
Observatorio del Roque de los Muchachos of the Instituto de Astrofisica
de Canarias.; We also acknowledge the following public archives, surveys
and analysis tools: the SDSS. Funding for the SDSS and SDSS-II has been
provided by the Alfred P. Sloan Foundation, and a wide variety of the
Participating Institutions (see www.sdss.org for details). The DSS
produced at the Space Telescope Science Institute under U. S. Government
grant NAG W-2166. The NED which is operated by the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration. The Chandra Data Archive
(cxc.harvard.edu/cda). The IRAF reduction pipeline distributed by the
National Optical Astronomy Observatories, which are operated by the
Association of Universities for Research in Astronomy, Inc., under
cooperative agreement with the National Science Foundation. The X-Ray
Clusters Database (BAX) which is operated by the Laboratoire
d'Astrophysique de Tarbes-Toulouse (LATT), under contract with the
Centre National d'Etudes Spatiales (CNES). Montage, funded by the
National Aeronautics and Space Administration's Earth Science Technology
Office, Computation Technologies Project, under Cooperative Agreement
Number NCC5-626 between NASA and the California Institute of Technology.
Montage is maintained by the NASA/IPAC Infrared Science Archive. GAIA is
a derivative of the Skycat catalogue and image display tool, developed
as part of the VLT project at ESO. SKYCAT and GAIA are free software
under the terms of the GNU copyright.; Financial support for this
project includes: The Science and Technology Facilities Council (STFC)
through grants ST/F002858/1 and/or ST/I000976/1 (for EL-D, AKR, NM, MHo,
ARL and MS), ST/H002391/1 and PP/E001149/1 (for CAC and JPS),
ST/G002592/1 (for STK) and through studentships (for NM, HCC),
ST/H002774/1 and ST/I001204/1 (for EME) The University of KwaZulu-Natal
(for MHi). The Leverhulme Trust (for MHi). The University of Sussex
(MHo, HCC, PD). FP7-PEOPLE-2007-4D3-IRG n 20218 (for BH). Fundacao para
a Ciencia e a Tecnologia through the project PTDC/CTE-AST/64711/2006
(for PTPV). The South East Physics Network (for RCN, END, WAW). The
Swedish Research Council (VR) through the Oskar Klein Centre for
Cosmoparticle Physics (for MS). The RAS Hosie Bequest and the University
of Edinburgh (for MD). The U.S. Department of Energy, National Nuclear
Security Administration by the University of California, Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-48 (for
SAS). The Greek State Scholarship Foundation, trustee of the Nik. D.
Chrysovergis legacy (for LC). Parts of the manuscript were written
during a visit by AKR to the Aspen Physics Center.
NR 97
TC 58
Z9 58
U1 0
U2 5
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2012
VL 423
IS 2
BP 1024
EP 1052
DI 10.1111/j.1365-2966.2012.20931.x
PG 29
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 956DU
UT WOS:000305070900004
ER
PT J
AU Nordhaus, J
Brandt, TD
Burrows, A
Almgren, A
AF Nordhaus, J.
Brandt, T. D.
Burrows, A.
Almgren, A.
TI The hydrodynamic origin of neutron star kicks
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE hydrodynamics; stars: interiors; stars: neutron; pulsars: general;
supernovae: general
ID CORE-COLLAPSE SUPERNOVAE; ACCRETION-SHOCK INSTABILITY; CIRCLE-DOT STAR;
RADIATION HYDRODYNAMICS; PROPER MOTIONS; RADIO PULSARS; SIMULATIONS;
EXPLOSIONS; TRANSPORT; MECHANISM
AB We present results from a suite of axisymmetric, core-collapse supernova simulations in which hydrodynamic recoil from an asymmetric explosion produces large protoneutron star (PNS) velocities. We use the adaptive mesh refinement code castro to self-consistently follow core collapse, the formation of the PNS and its subsequent acceleration. We obtain recoil velocities of up to 620 km s-1 at 1 s after bounce. These velocities are consistent with the observed distribution of pulsar kicks and with PNS velocities obtained in other theoretical calculations. Our PNSs are still accelerating at several hundred km s-1 at the end of our calculations, suggesting that even the highest velocity pulsars may be explained by hydrodynamic recoil in generic, core-collapse supernovae.
C1 [Nordhaus, J.] Rochester Inst Technol, Ctr Computat Relat & Gravitat, Rochester, NY 14623 USA.
[Nordhaus, J.] Rochester Inst Technol, Natl Tech Inst Deaf, Rochester, NY 14623 USA.
[Nordhaus, J.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA.
[Nordhaus, J.; Brandt, T. D.; Burrows, A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Almgren, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
RP Nordhaus, J (reprint author), Rochester Inst Technol, Ctr Computat Relat & Gravitat, Rochester, NY 14623 USA.
EM nordhaus@astro.rit.edu
FU NSF [AST-1102738, DGE-0646086, ND201387, NSF PHY-0822648, OCI-0905046];
NASA HST [AR-12146.04-A]; DOE [DE-FG02-08ER41544]; Louisiana State
University [44592]; SciDAC program [DE-FC02-06ER41438]; Office of High
Energy Physics; Office of Mathematics, Information, and Computational
Sciences under the US Department of Energy [DE-AC02-05CH11231]; NSF via
Louisiana State University [44592]; National Energy Research Scientific
Computing Center (NERSC); Office of Science of the US Department of
Energy [DE-AC03-76SF00098]; NICS [TG-AST100001]; Princeton Institute for
Computational Science and Engineering (PICSciE); Princeton University
Office of Information Technology
FX The authors thank Noam Soker, Thomas Janka, Annop Wongwathanarat and
Ewald Mueller for comments which lead to an improved manuscript. JN is
supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship
under award AST-1102738 and by NASA HST grant AR-12146.04-A. TDB is
supported by an NSF Graduate Research Fellowship under grant number
DGE-0646086. AB is supported by the Scientific Discovery through
Advanced Computing (SciDAC) program of the DOE, under grant
DE-FG02-08ER41544, the NSF under the subaward ND201387 to the Joint
Institute for Nuclear Astrophysics (JINA, NSF PHY-0822648), and the NSF
PetaApps program, under award OCI-0905046 via a subaward 44592 from
Louisiana State University to Princeton University. Work at LBNL was
supported in part by the SciDAC program under contract
DE-FC02-06ER41438. AA is supported by the Office of High Energy Physics
and the Office of Mathematics, Information, and Computational Sciences
as part of the SciDAC program under the US Department of Energy under
contract no. DE-AC02-05CH11231. The authors thank the members of the
Center for Computational Sciences and Engineering (CCSE) at LBNL for
their invaluable support for CASTRO.; Support for HPC storage and
resources was provided by the National Energy Research Scientific
Computing Center (NERSC), which is supported by the Office of Science of
the US Department of Energy under contract DE-AC03-76SF00098, by NICS,
on the Kraken supercomputer, provided by the National Science Foundation
through the TeraGrid Advanced Support Program under grant TG-AST100001;
by the TIGRESS High Performance Computing and Visualization Center at
Princeton University, which is jointly supported by the Princeton
Institute for Computational Science and Engineering (PICSciE) and the
Princeton University Office of Information Technology.
NR 50
TC 24
Z9 24
U1 0
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2012
VL 423
IS 2
BP 1805
EP 1812
DI 10.1111/j.1365-2966.2012.21002.x
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 956DU
UT WOS:000305070900062
ER
PT J
AU Gesuele, F
Sfeir, MY
Koh, WK
Murray, CB
Heinz, TF
Wong, CW
AF Gesuele, F.
Sfeir, M. Y.
Koh, W-K
Murray, C. B.
Heinz, T. F.
Wong, C. W.
TI Ultrafast Supercontinuum Spectroscopy of Carrier Multiplication and
Biexcitonic Effects in Excited States of PbS Quantum Dots
SO NANO LETTERS
LA English
DT Article
DE Multiple-exciton generation; carrier multiplication; solar cells;
ultrafast spectroscopy
ID SEMICONDUCTOR NANOCRYSTALS; ELECTRONIC-STRUCTURE; OPTICAL-TRANSITIONS;
EFFICIENCY; GENERATION; RELAXATION; CONVERSION; DYNAMICS; ENERGY
AB We examine the population dynamics of multiple excitons in PbS quantum dots using spectrally resolved ultrafast supercontinuum transient absorption (SC-TA) measurements. We simultaneously probe the first three excitonic transitions. The transient spectra show the presence of bleaching of absorption for the 1S(h)-1S(e) transition, as well as transients associated with the 1P(h)-1P(e) transition. We examine signatures of carrier multiplication (multiple excitons arising from a single absorbed photon) from analysis of the bleaching features in the limit of low absorbed photon numbers (< N-abs > similar to 10(-2)) for pump photon energies from two to four times that of the band gap. The efficiency of multiple-exciton generation is discussed both in terms of the ratio between early- to long-time transient absorption signals and of a broadband global fit to the data. Analysis of the population dynamics shows that bleaching associated with biexciton population is red shifted with respect to the single exciton feature, which is in accordance with a positive binding energy for the biexciton.
C1 [Gesuele, F.; Wong, C. W.] Columbia Univ, Ctr Integrated Sci & Engn Solid State Sci & Engn, Opt Nanostruct Lab, New York, NY 10027 USA.
[Sfeir, M. Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Koh, W-K; Murray, C. B.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA.
[Murray, C. B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
[Heinz, T. F.] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Heinz, T. F.] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA.
RP Gesuele, F (reprint author), Columbia Univ, Ctr Integrated Sci & Engn Solid State Sci & Engn, Opt Nanostruct Lab, New York, NY 10027 USA.
EM fg2251@columbia.edu; cww2104@columbia.edu
RI gesuele, felice/C-9668-2013; Koh, Weon-kyu/G-8623-2013; gesuele,
felice/L-1372-2015; Heinz, Tony/K-7797-2015;
OI Heinz, Tony/0000-0003-1365-9464; Koh, Weon-kyu/0000-0002-6913-4184;
Sfeir, Matthew/0000-0001-5619-5722; GESUELE, Felice/0000-0003-3179-2074
FU Center for Redefining Photovoltaic Efficiency through Molecule Scale
Control; Energy Frontier Research Center; Office of Basic Energy
Sciences of the U.S. Department of Energy [DE-SC0001085]; National
Science Foundation [DMS-0935165]; Nano/Bio Interface Center
[DMR-0832802]; U.S. Department of Energy, Office of Basic Energy
Sciences [DE-AC02-98CH10886]
FX The authors acknowledge discussions with Drs. Jonathan Schuller,
Jonathan Owen, James Misewich, James Yardley, David Reichman, and
Charles Black. This work was supported by the Center for Redefining
Photovoltaic Efficiency through Molecule Scale Control, an Energy
Frontier Research Center funded by Office of Basic Energy Sciences of
the U.S. Department of Energy under Award DE-SC0001085. Sample
preparation by C.B.M. and W.K.K. was supported by the National Science
Foundation through Award DMS-0935165, with partial support through the
Nano/Bio Interface Center (Award NSEC DMR-0832802). Research carried out
in part at the Center for Functional Nanomaterials, Brookhaven National
Laboratory, which is supported by the U.S. Department of Energy, Office
of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.
NR 47
TC 31
Z9 31
U1 5
U2 99
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 2658
EP 2664
DI 10.1021/nl2021224
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400002
PM 22149990
ER
PT J
AU Lee, JRI
Whitley, HD
Meulenberg, RW
Wolcott, A
Zhang, JZ
Prendergast, D
Lovingood, DD
Strouse, GF
Ogitsu, T
Schwegler, E
Terminello, LJ
van Buuren, T
AF Lee, Jonathan R. I.
Whitley, Heather D.
Meulenberg, Robert W.
Wolcott, Abraham
Zhang, Jin Z.
Prendergast, David
Lovingood, Derek D.
Strouse, Geoffrey F.
Ogitsu, Tadashi
Schwegler, Eric
Terminello, Louis J.
van Buuren, Tony
TI Ligand-Mediated Modification of the Electronic Structure of CdSe Quantum
Dots
SO NANO LETTERS
LA English
DT Article
DE X-ray absorption spectroscopy; quantum dot; electronic structure; ab
initio modeling; surface passivation; CdSe
ID SURFACE; NANOCRYSTALLITES; EXCHANGE
AB X-ray absorption spectroscopy and ab initio modeling of the experimental spectra have been used to investigate the effects of surface passivation on the unoccupied electronic states of CdSe quantum dots (QDs). Significant differences are observed in the unoccupied electronic structure of the CdSe QDs, which are shown to arise from variations in specific ligand-surface bonding interactions.
C1 [Lee, Jonathan R. I.; Whitley, Heather D.; Ogitsu, Tadashi; Schwegler, Eric; van Buuren, Tony] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Meulenberg, Robert W.] Univ Maine, Surface Sci & Technol Lab, Orono, ME 04469 USA.
[Meulenberg, Robert W.] Univ Maine, Dept Phys & Astron, Orono, ME 04469 USA.
[Wolcott, Abraham; Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA.
[Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Lovingood, Derek D.; Strouse, Geoffrey F.] Florida State Univ, Dept Chem, Tallahassee, FL 32306 USA.
[Terminello, Louis J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Whitley, HD (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
EM whitley3@llnl.gov; robert.meulenberg@maine.edu
RI Schwegler, Eric/A-2436-2016;
OI Schwegler, Eric/0000-0003-3635-7418; Meulenberg,
Robert/0000-0003-2696-8792; Whitley, Heather/0000-0002-2344-8698
FU LDRD at LLNL [07-LW-041]; Office of Basic Energy Sciences (OBES),
Materials Science Division (MSD), of the U.S. DOE; LLNL
[DE-AC52-07NA27344]; Office of Science, OBES, MSD, of the U.S. DOE at
LBNL [DE-AC03-76SF00098]; OBES Division of the U.S. DOE
[DE-FG02-ER46232]
FX The authors thank beamline 9.3.1 and beamline 8.0.1 staff (W. Stolte, F.
Schlachter, J. Denlinger, and W. Yang) for outstanding support and Y.
Kanai for valuable discussions. Project 07-LW-041 was funded by the LDRD
Program at LLNL. This work was partially supported by the Office of
Basic Energy Sciences (OBES), Materials Science Division (MSD), under
the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.
Assistance in the theory, interpretation, and analysis of XAS provided
by D.P. through a User Project at the Molecular Foundry. The work
conducted at the ALS is supported by the Director, Office of Science,
OBES, MSD, of the U.S. DOE under Contract No. DE-AC03-76SF00098 at LBNL.
J.Z.Z. is grateful to the OBES Division of the U.S. DOE
(DE-FG02-ER46232) for support.
NR 20
TC 18
Z9 19
U1 2
U2 73
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 2763
EP 2767
DI 10.1021/nl300886h
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400019
PM 22594309
ER
PT J
AU Shi, YM
Zhou, W
Lu, AY
Fang, WJ
Lee, YH
Hsu, AL
Kim, SM
Kim, KK
Yang, HY
Li, LJ
Idrobo, JC
Kong, J
AF Shi, Yumeng
Zhou, Wu
Lu, Ang-Yu
Fang, Wenjing
Lee, Yi-Hsien
Hsu, Allen Long
Kim, Soo Min
Kim, Ki Kang
Yang, Hui Ying
Li, Lain-Jong
Idrobo, Juan-Carlos
Kong, Jing
TI van der Waals Epitaxy of MoS2 Layers Using Graphene As Growth Templates
SO NANO LETTERS
LA English
DT Article
DE Chemical vapor deposition; van der Waals epitaxy; molybdenum disulfide;
graphene; STEM imaging
ID CHEMICAL-VAPOR-DEPOSITION; PHOTOCATALYTIC H-2 EVOLUTION; VISIBLE-LIGHT
IRRADIATION; LARGE-AREA; HYDROTHERMAL SYNTHESIS; THERMAL-DECOMPOSITION;
VANDERWAALS EPITAXY; ATOMIC LAYERS; HIGH-QUALITY; FILMS
AB We present a method for synthesizing MoS2/Graphene hybrid heterostructures with a growth template of graphene-covered Cu foil. Compared to other recent reports,(1,2) a much lower growth temperature of 400 degrees C is required for this procedure. The chemical vapor deposition of MoS2 on the graphene surface gives rise to single crystalline hexagonal flakes with a typical lateral size ranging from several hundred nanometers to several micrometers. The precursor (ammonium thiomolybdate) together with solvent was transported to graphene surface by a carrier gas at room temperature, which was then followed by post annealing. At an elevated temperature, the precursor self-assembles to form MoS2 flakes epitaxially on the graphene surface via thermal decomposition. With higher amount of precursor delivered onto the graphene surface, a continuous MoS2 film on graphene can be obtained. This simple chemical vapor deposition method provides a unique approach for the synthesis of graphene heterostructures and surface functionalization of graphene. The synthesized two-dimensional MoS2/Graphene hybrids possess great potential toward the development of new optical and electronic devices as well as a wide variety of newly synthesizable compounds for catalysts.
C1 [Shi, Yumeng; Fang, Wenjing; Lee, Yi-Hsien; Hsu, Allen Long; Kim, Soo Min; Kim, Ki Kang; Kong, Jing] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA.
[Shi, Yumeng; Yang, Hui Ying] Singapore Univ Technol & Design, Singapore 138682, Singapore.
[Lu, Ang-Yu; Lee, Yi-Hsien; Li, Lain-Jong] Acad Sinica, Inst Atom & Mol Sci, Taipei 11529, Taiwan.
[Zhou, Wu] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Zhou, Wu; Idrobo, Juan-Carlos] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Kong, J (reprint author), MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA.
EM jingkong@mit.edu
RI Zhou, Wu/D-8526-2011; Li, Lain-Jong/D-5244-2011; Idrobo,
Juan/H-4896-2015; Lu, Ang-Yu/P-5563-2015; Shi, Yumeng/A-7349-2012
OI Zhou, Wu/0000-0002-6803-1095; Li, Lain-Jong/0000-0002-4059-7783; Idrobo,
Juan/0000-0001-7483-9034; Shi, Yumeng/0000-0002-9623-3778
FU National Science Foundation [DMR 0845358]; Interconnect Focus Center
(IFC); Materials, Structure, and Devices (MSD); Semiconductor Research
Corporation; National Research Foundation of Korea [DMR-0938330]; Korean
Government [NRF-2011-357- C00028]; Oak Ridge National Laboratory's
Shared Research Equipment (ShaRE) User Facility; Office of Basic Energy
Sciences, U.S. Department of Energy; Academia Sinica; National Science
Council in Taiwan [NSC-99-2112-M-001-021-MY3]
FX This work was supported by the National Science Foundation under Award
Number DMR 0845358. W.J.F. acknowledges the support from Interconnect
Focus Center (IFC), and K.K.K. acknowledges the support from the
Materials, Structure, and Devices (MSD); both are among the five
programs in the focus center research program (FCRP), a Semiconductor
Research Corporation program. S.M.K. acknowledges the support from
National Research Foundation of Korea Grant funded by the Korean
Government (NRF-2011-357- C00028). W.Z. acknowledges the support from
the National Science Foundation under award No. DMR-0938330; J.C.I.
acknowledges support from Oak Ridge National Laboratory's Shared
Research Equipment (ShaRE) User Facility, which is sponsored by the
Office of Basic Energy Sciences, U.S. Department of Energy. L.J.L.
acknowledges the support from Academia Sinica and National Science
Council in Taiwan (NSC-99-2112-M-001-021-MY3).
NR 52
TC 382
Z9 385
U1 77
U2 739
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 2784
EP 2791
DI 10.1021/nl204562J
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400023
PM 22642717
ER
PT J
AU Zhao, S
Fathololoumi, S
Bevan, KH
Liu, DP
Kibria, MG
Li, Q
Wang, GT
Guo, H
Mi, Z
AF Zhao, S.
Fathololoumi, S.
Bevan, K. H.
Liu, D. P.
Kibria, M. G.
Li, Q.
Wang, G. T.
Guo, Hong
Mi, Z.
TI Tuning the Surface Charge Properties of Epitaxial InN Nanowires
SO NANO LETTERS
LA English
DT Article
DE Nanowire; InN; electron accumulation; two-dimensional electron gas;
X-ray photoelectron spectroscopy; photoluminescence
ID BAND-GAP; SEMICONDUCTORS; PHOTOLUMINESCENCE
AB We have investigated the correlated surface electronic and optical properties of [0001]-oriented epitaxial InN nanowires grown directly on silicon. By dramatically improving the epitaxial growth process, we have achieved, for the first time, intrinsic InN both within the bulk and at nonpolar InN surfaces. The near-surface Fermi-level was measured to be similar to 0.55 eV above the valence band maximum for undoped InN nanowires, suggesting the absence of surface electron accumulation and Fermi-level pinning. This result is in direct contrast to the problematic degenerate two-dimensional electron gas universally observed on grown surfaces of n-type degenerate InN. We have further demonstrated that the surface charge properties of InN nanowires, including the formation of two-dimensional electron gas and the optical emission characteristics can be precisely tuned through controlled n-type doping. At relatively high doping levels in this study, the near-surface Fermi-level was found to be pinned at,similar to 0.95-1.3 eV above the valence band maximum. Through these trends, well captured by the effective mass and ab initio materials modeling, we have unambiguously identified the definitive role of surface doping in tuning the surface charge properties of InN.
C1 [Zhao, S.; Fathololoumi, S.; Kibria, M. G.; Mi, Z.] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 2A7, Canada.
[Bevan, K. H.] McGill Univ, Dept Min & Mat Engn, Montreal, PQ H3A 2A7, Canada.
[Liu, D. P.; Guo, Hong] McGill Univ, Dept Phys, Montreal, PQ H3A 2A7, Canada.
[Li, Q.; Wang, G. T.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Mi, Z (reprint author), McGill Univ, Dept Elect & Comp Engn, 3480 Univ St, Montreal, PQ H3A 2A7, Canada.
EM zetian.mi@mcgill.ca
RI Wang, George/C-9401-2009; Guo, Hong/A-8084-2010
OI Wang, George/0000-0001-9007-0173;
FU Natural Sciences and Engineering Research Council of Canada; Fonds de
recherche sur la nature et les technologies; Canada Foundation for
Innovation (CFI); U.S. Army Research Office; McGill University; U.S.
Department of Energy Office of Basic Energy Sciences, Division of
Materials Science and Engineering; U.S. Department of Energy's National
Nuclear Security Administration [DE-AC04-94AL 85000]
FX This work was supported by the Natural Sciences and Engineering Research
Council of Canada, the Fonds de recherche sur la nature et les
technologies, Canada Foundation for Innovation (CFI), U.S. Army Research
Office, and McGill University. Part of the work was performed in the
Micro-fabrication Facility at McGill University. Computational resources
were provided by the U.S. National Science Foundation Network for
Computational Nanotechnology and by Compute Canada through CFI. Some of
the XPS studies were performed at Sandia and funded by the U.S.
Department of Energy Office of Basic Energy Sciences, Division of
Materials Science and Engineering. Sandia National Laboratories is a
multiprogram laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000
NR 47
TC 54
Z9 54
U1 6
U2 53
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 2877
EP 2882
DI 10.1021/nl300476d
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400038
PM 22545811
ER
PT J
AU Deceglie, MG
Ferry, VE
Alivisatos, AP
Atwater, HA
AF Deceglie, Michael G.
Ferry, Vivian E.
Alivisatos, A. Paul
Atwater, Harry A.
TI Design of Nanostructured Solar Cells Using Coupled Optical and
Electrical Modeling
SO NANO LETTERS
LA English
DT Article
DE Thin film solar cells; plasmon; nanophotonic; light trapping;
simulation; device physics; silicon; photovoltaics
ID OPEN-CIRCUIT VOLTAGE
AB Nanostructured light trapping has emerged as a promising route toward improved efficiency in solar cells. We use coupled optical and electrical modeling to guide optimization of such nanostructures. We study thin-film n-i-p a-Si:H devices and demonstrate that nanostructures can be tailored to minimize absorption in the doped a-Si:H, improving carrier collection efficiency. This suggests a method for device optimization in which optical design not only maximizes absorption, but also ensures resulting carriers are efficiently collected.
C1 [Deceglie, Michael G.; Atwater, Harry A.] CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA.
[Ferry, Vivian E.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Ferry, Vivian E.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Atwater, HA (reprint author), CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA.
EM haa@caltech.edu
RI Alivisatos , Paul /N-8863-2015
OI Alivisatos , Paul /0000-0001-6895-9048
FU Energy Frontiers Research Center, United States Department of Energy
[DE-SC0001293]; LBL [DE-AC02-05CH11231]; Office of Basic Energy Sciences
[DOE DE-FG02-07ER46405]
FX We are grateful to Michael Kelzenberg, Daniel Turner-Evans, and Matthew
Sheldon for useful discussions and assistance with the manuscript. This
work was supported by the "Light-Material Interactions in Energy
Conversion" Energy Frontiers Research Center, United States Department
of Energy under Grant DE-SC0001293, LBL contract DE-AC02-05CH11231. M.D.
acknowledges support by the Office of Basic Energy Sciences under
contract number DOE DE-FG02-07ER46405.
NR 37
TC 122
Z9 124
U1 2
U2 77
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 2894
EP 2900
DI 10.1021/nl300483y
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400041
PM 22574816
ER
PT J
AU Laurence, TA
Braun, GB
Reich, NO
Moskovits, M
AF Laurence, Ted A.
Braun, Gary B.
Reich, Norbert O.
Moskovits, Martin
TI Robust SERS Enhancement Factor Statistics Using Rotational Correlation
Spectroscopy
SO NANO LETTERS
LA English
DT Article
DE Surface-enhanced Raman scattering; localized surface plasmons; metallic
nanoparticles; single particle spectroscopy; correlation spectroscopy
ID RAMAN-SCATTERING; PH
AB We characterize the distribution of surface-enhanced Raman spectroscopy (SERS) enhancement factors observed in individual hot spots of single Ag "nanocapsules", encapsulated Ag nanoparticle dimers formed via controlled nanoparticle linking, polymer encapsulation, and small molecule infusion. The enhancement factors are calculated for over 1000 individual nanocapsules by comparing Raman scattering intensities of 4-mercaptobenzoic acid (MBA) measured from single SERS hot spots to intensities measured from high-concentration solutions of MBA. Correlation spectroscopy measurements of the rotational diffusion identify nanocapsules with signals dominated by single hot spots via their strong polarization response. Averaging over the entire surface of the nanocapsules, the distribution of enhancement factors is found to range from 10(6) to 10(8), with a mean of 6 X 10(6). Averaging only over nanoparticle junctions (where most SERS signals are expected) increases this average value to 10(8), with a range from 2 X 10(7) to 2 X 10(9). This significant statistical sampling shows that very high SERS enhancement factors can be obtained on a consistent basis using nanoparticle linking.
C1 [Laurence, Ted A.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Braun, Gary B.; Reich, Norbert O.; Moskovits, Martin] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA.
RP Laurence, TA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, POB 5508, Livermore, CA 94550 USA.
EM laurence2@llnl.gov
RI Laurence, Ted/E-4791-2011; Braun, Gary/A-4913-2009
OI Laurence, Ted/0000-0003-1474-779X; Braun, Gary/0000-0002-6301-0228
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; Institute for Collaborative Biotechnologies from
U.S. Army Research Office [DAAD19-03-D- 0004]
FX This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. M.M. acknowledges support by the Institute for
Collaborative Biotechnologies through grant DAAD19-03-D- 0004 from the
U.S. Army Research Office.
NR 18
TC 20
Z9 21
U1 5
U2 43
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 2912
EP 2917
DI 10.1021/nl3005447
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400044
PM 22551121
ER
PT J
AU Lee, EK
Yin, L
Lee, Y
Lee, JW
Lee, SJ
Lee, J
Cha, SN
Whang, D
Hwang, GS
Hippalgaonkar, K
Majumdar, A
Yu, C
Choi, BL
Kim, JM
Kim, K
AF Lee, Eun Kyung
Yin, Liang
Lee, Yongjin
Lee, Jong Woon
Lee, Sang Jin
Lee, Junho
Cha, Seung Nam
Whang, Dongmok
Hwang, Gyeong S.
Hippalgaonkar, Kedar
Majumdar, Arun
Yu, Choongho
Choi, Byoung Lyong
Kim, Jong Min
Kim, Kinam
TI Large Thermoelectric Figure-of-Merits from SiGe Nanowires by
Simultaneously Measuring Electrical and Thermal Transport Properties
SO NANO LETTERS
LA English
DT Article
DE Simultaneous measurement; thermal conductivity reduction; alloy
scattering; boundary scattering
ID BULK ALLOYS; SILICON; CONDUCTIVITY; MODEL; GE
AB The strongly correlated thermoelectric properties have been a major hurdle for high-performance thermoelectric energy conversion. One possible approach to avoid such correlation is to suppress phonon transport by scattering at the surface of confined nanowire structures. However, phonon characteristic lengths are broad in crystalline solids, which makes nanowires insufficient to fully suppress heat transport. Here, we employed Si-Ge alloy as well as nanowire structures to maximize the depletion of heat-carrying phonons. This results in a thermal conductivity as low as similar to 1.2 W/m-K at 450 K, showing a large thermoelectric figure-of-merit (ZT) of similar to 0.46 compared with those of SiGe bulks and even ZT over 2 at 800 K theoretically. All thermoelectric properties were "simultaneously" measured from the same nanowires to facilitate accurate ZT measurements. The surface-boundary scattering is prominent when the nanowire diameter is over similar to 100 nm, whereas alloying plays a more important role in suppressing phonon transport for smaller ones.
C1 [Yin, Liang; Yu, Choongho] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
[Lee, Eun Kyung; Lee, Sang Jin; Cha, Seung Nam; Choi, Byoung Lyong; Kim, Jong Min] Samsung Elect, Samsung Adv Inst Technol, Frontier Res Lab, Yongin 446712, Kyunggi Do, South Korea.
[Lee, Yongjin; Hwang, Gyeong S.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA.
[Lee, Jong Woon; Whang, Dongmok] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon, Kyunggi Do, South Korea.
[Lee, Junho] Samsung Elect, Samsung Adv Inst Technol, Analyt Engn Grp, Yongin 446712, Kyunggi Do, South Korea.
[Hippalgaonkar, Kedar] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Majumdar, Arun] US DOE, ARPA E, Washington, DC 20585 USA.
RP Yu, C (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
EM chyu@tamu.edu; choibl@samsung.com; jong.kim@eng.ox.ac.uk
RI Yin, Liang /F-5972-2011; Lee, Yongjin/F-8762-2014; Hippalgaonkar,
Kedar/K-2196-2015;
OI Whang, Dongmok/0000-0001-9449-0597
FU U.S. National Science Foundation [0854467]; U.S. Air Force Office of
Scientific Research [FA9550-09-1-0609]; National Research Foundation of
Korea [2011-0001645]; Ministry of Education, Science, and Technology
(MEST)
FX C.Y. and L.Y. acknowledge the financial support from the U.S. National
Science Foundation (0854467), the U.S. Air Force Office of Scientific
Research (FA9550-09-1-0609), and the Pioneer Research Center Program
through the National Research Foundation of Korea (2011-0001645) funded
by the Ministry of Education, Science, and Technology (MEST).
NR 28
TC 70
Z9 70
U1 15
U2 103
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 2918
EP 2923
DI 10.1021/nl300587u
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400045
PM 22548377
ER
PT J
AU Cho, J
Smerdon, J
Gao, L
Suzer, O
Guest, JR
Guisinger, NP
AF Cho, Jongweon
Smerdon, Joseph
Gao, Li
Suezer, Oezguen
Guest, Jeffrey R.
Guisinger, Nathan P.
TI Structural and Electronic Decoupling of C-60 from Epitaxial Graphene on
SiC
SO NANO LETTERS
LA English
DT Article
DE Graphene; C-60 Sic; scanning tunneling spectroscopy; STM; photovoltaic;
charge transfer
ID SCANNING-TUNNELING-MICROSCOPY; ENERGY-LEVEL ALIGNMENT; BAND-GAP; METAL;
MOLECULES; GRAPHITE; SURFACES; CARBON; C-70; C60
AB We have investigated the initial stages of growth and the electronic structure of C-60 molecules on graphene grown epitaxially on SiC(0001) at the single molecule level using cryogenic ultrahigh vacuum scanning tunneling microscopy and spectroscopy. We observe that the first layer of C-60 molecules self-assembles into a well-ordered, close-packed arrangement on graphene upon molecular deposition at room temperature while exhibiting a subtle C-60 superlattice. We measure a highest occupied molecular orbital-lowest unoccupied molecular orbital gap of similar to 3.S eV for the C-60 molecules on graphene in submonolayer regime, indicating a significantly smaller amount of charge transfer from the graphene to C-60 and substrate-induced screening as compared to C-60 adsorbed on metallic substrates. Our results have important implications for the use of graphene device applications that require electronic decoupling between functional molecular adsorbates and substrates.
C1 [Cho, Jongweon; Smerdon, Joseph; Gao, Li; Suezer, Oezguen; Guest, Jeffrey R.; Guisinger, Nathan P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Cho, J (reprint author), CALTECH, Pasadena, CA 91125 USA.
EM jwcho@caltech.edu
RI Guest, Jeffrey/B-2715-2009; Cho, Jongweon/F-3704-2011; Suzer,
Ozgun/H-5149-2013
OI Guest, Jeffrey/0000-0002-9756-8801; Suzer, Ozgun/0000-0003-1032-5899
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, under "SISGR" [DE-FG02-09ER16109, DE-AC02-06CH11357]; DARPA
[MIPR 10-E533]
FX The use of the Center for Nanoscale Materials at Argonne National
Laboratory was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under "SISGR" Contract No.
DE-FG02-09ER16109 and Contract No. DE-AC02-06CH11357. This work is also
supported by DARPA contract MIPR 10-E533.
NR 47
TC 51
Z9 51
U1 4
U2 116
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 3018
EP 3024
DI 10.1021/nl3008049
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400062
PM 22577895
ER
PT J
AU Kundu, J
Ghosh, Y
Dennis, AM
Htoon, H
Hollingsworth, JA
AF Kundu, Janardan
Ghosh, Yagnaseni
Dennis, Allison M.
Htoon, Han
Hollingsworth, Jennifer A.
TI Giant Nanocrystal Quantum Dots: Stable Down-Conversion Phosphors that
Exploit a Large Stokes Shift and Efficient Shell-to-Core Energy
Relaxation
SO NANO LETTERS
LA English
DT Article
DE Giant nanocrystal quantum dot (g-NQD); stable red phosphor;
self-reabsorption; Stokes shift; down-conversion light-emitting device
ID LIGHT-EMITTING-DIODES; SEMICONDUCTOR-NANOCRYSTALS; CORE/SHELL
NANOCRYSTALS; POLYMER COMPOSITES; PHOTOLUMINESCENCE; EMISSION; FILMS;
CDSE
AB A new class of nanocrystal quantum dot (NQD), the "giant" NQD (g-NQD), was investigated for its potential to address outstanding issues associated with the use of NQDs as down-conversion phosphors in light-emitting devices, namely, insufficient chemical/photostability and extensive self-reabsorption when packed in high densities or in thick films. Here, we demonstrate that g-NQDs afford significantly enhanced operational stability compared to their conventional NQD counterparts and minimal self-reabsorption losses. The latter results from a characteristic large Stokes shift (>100 nm; >0.39 eV), which itself is a manifestation of the internal structure of these uniquely thick-shelled NQDs. In carefully prepared g-NQDs, light absorption occurs predominantly in the shell but emission occurs exclusively from the core. We directly compare for the first time the processes of shell -> core energy relaxation and core -> core energy transfer by evaluating CdS -> CdSe down-conversion of blue -> red light in g-NQDs and in a comparable mixed-NQD (CdSe and CdS) thin film, revealing that the internal energy relaxation process affords a more efficient and color-pure conversion of blue to red light compared to energy transfer. Lastly, we demonstrate the facile fabrication of white-light devices with correlated color temperature tuned from similar to 3200 to 5800 K.
C1 [Kundu, Janardan; Ghosh, Yagnaseni; Dennis, Allison M.; Htoon, Han; Hollingsworth, Jennifer A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Hollingsworth, JA (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
EM jenn@lanl.gov
RI Dennis, Allison/A-7654-2014;
OI Htoon, Han/0000-0003-3696-2896
FU Los Alamos National Laboratory Directed Research and Development (LDRD);
Single Investigator Small Group [2009LANL1096]; Office of Basic Energy
Sciences (OBES), Office of Science (OS), U.S. Department of Energy
(DOE); Center for Integrated Nanotechnologies (CINT)
FX Y.G. and H.H. acknowledge support by the Los Alamos National Laboratory
Directed Research and Development (LDRD) Program. A.M.D and J.A.H.
acknowledge a Single Investigator Small Group Research Grant
(2009LANL1096), Office of Basic Energy Sciences (OBES), Office of
Science (OS), U.S. Department of Energy (DOE). J.K. is supported in part
by a Center for Integrated Nanotechnologies (CINT) postdoctoral research
award. This work was performed at CINT, a U.S. DOE, OBES nanoscale
science research center and user facility.
NR 35
TC 39
Z9 39
U1 10
U2 89
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 3031
EP 3037
DI 10.1021/nl3008659
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400064
PM 22568894
ER
PT J
AU Pennycook, TJ
McBride, JR
Rosenthal, SJ
Pennycook, SJ
Pantelides, ST
AF Pennycook, Timothy J.
McBride, James R.
Rosenthal, Sandra J.
Pennycook, Stephen J.
Pantelides, Sokrates T.
TI Dynamic Fluctuations in Ultrasmall Nanocrystals Induce White Light
Emission
SO NANO LETTERS
LA English
DT Article
DE Nanocrystals; quantum dots; fluxionality; scanning transmission electron
microscopy; density functional theory
ID CADMIUM SELENIDE NANOCRYSTALS; SEMICONDUCTOR NANOCRYSTALS; SIZE;
CRYSTALLITES; PARTICLES; MOLECULES; POLYMER; STATE
AB Individual ultrasmall CdSe nanocrystals have recently been found to emit white light, but the ultimate origin of the phenomenon has remained elusive. Here we use a combination of state-of-the-art experiment and theory to show that excitation sets the ultrasmall nanocrystals into a fluxional state. Their energy gaps vary continuously on a femtosecond time scale, so that even an individual nanocrystal can emit across the entire visual range. In addition, we observe the outer layers of the larger monochromatic emitting nanocrystals to be fluxional. Such fluxionality should be considered when optimizing nanocrystals for applications. Thus, small is indeed different, but ultrasmall is different yet again.
C1 [Pennycook, Timothy J.; Rosenthal, Sandra J.; Pennycook, Stephen J.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Pennycook, Timothy J.; Rosenthal, Sandra J.; Pennycook, Stephen J.; Pantelides, Sokrates T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[McBride, James R.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA.
[Pantelides, Sokrates T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA.
RP Pennycook, TJ (reprint author), SuperSTEM, Daresbury, England.
EM timothy.pennycook@materials.ox.ac.uk
RI McBride, James/D-2934-2012; Pennycook, Timothy/B-4946-2014
OI McBride, James/0000-0003-0161-7283; Pennycook,
Timothy/0000-0002-0008-6516
FU U.S. Department of Energy [DE-FG02-09ER46554]; McMinn Endowment;
National Science Foundation [EPS 1004083]
FX The authors are grateful to A. R. Lupini for assistance with Digital
Micrograph scripting. Research at Vanderbilt was supported in part by
the U.S. Department of Energy Grant DE-FG02-09ER46554 (T.J.P. and
S.T.P.), the McMinn Endowment (S.T.P.), and the National Science
Foundation grant EPS 1004083 (J.R.M. and S.J.R). Research at Oak Ridge
National Laboratory was sponsored by the U.S. Department of Energy,
Office of Science, Materials Sciences and Engineering Division (S.J.P.).
Computations were performed at the National Energy Research Scientific
Computing Center at Lawrence Berkeley National Laboratory.
NR 31
TC 34
Z9 34
U1 0
U2 37
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 3038
EP 3042
DI 10.1021/nl3008727
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400065
PM 22568665
ER
PT J
AU Iablokov, V
Beaumont, SK
Alayoglu, S
Pushkarev, VV
Specht, C
Gao, JH
Alivisatos, AP
Kruse, N
Somorjai, GA
AF Iablokov, Viacheslav
Beaumont, Simon K.
Alayoglu, Selim
Pushkarev, Vladimir V.
Specht, Colin
Gao, Jinghua
Alivisatos, A. Paul
Kruse, Norbert
Somorjai, Gabor A.
TI Size-Controlled Model Co Nanoparticle Catalysts for CO2 Hydrogenation:
Synthesis, Characterization, and Catalytic Reactions
SO NANO LETTERS
LA English
DT Article
DE Cobalt nanoparticles; CO2 hydrogenation; heterogeneous catalysis;
catalytic poisoning
ID FISCHER-TROPSCH SYNTHESIS; COBALT NANORODS; CARBON-DIOXIDE; SHAPE
CONTROL; SPECTROSCOPY; NANOCRYSTALS; OXIDATION; FE
AB Model cobalt catalysts for CO2 hydrogenation were prepared using colloidal chemistry. The turnover frequency at 6 bar and at 200-300 degrees C increased with cobalt nanoparticle size from 3 to 10 nm. It was demonstrated that near monodisperse nanoparticles in the size range of 3-10 nm could be generated without using trioctylphosphine oxide, a capping ligand that we demonstrate results in phosphorus being present on the metal surface and poisoning catalyst activity in our application.
C1 [Alivisatos, A. Paul; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Iablokov, Viacheslav; Beaumont, Simon K.; Alayoglu, Selim; Pushkarev, Vladimir V.; Specht, Colin; Alivisatos, A. Paul; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Iablokov, Viacheslav; Kruse, Norbert] Univ Libre Brussels, B-1050 Brussels, Belgium.
[Gao, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Somorjai, GA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM somorjai@berkeley.edu
RI Beaumont, Simon/F-5272-2012; Alivisatos , Paul /N-8863-2015
OI Beaumont, Simon/0000-0002-1973-9783; Alivisatos , Paul
/0000-0001-6895-9048
FU U.S. Department of Energy [DE-AC02-05CH11231]; Total, France; BRIC
(Bureau des Relations Internationales et la Cooperation de l'ULB)
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the U.S. Department of Energy under contract no. DE-AC02-05CH11231.
Nanoparticle imaging and spectroscopy were performed as a user project
at the Molecular Foundry and National Center for Electron Microscopy,
and NEXAFS was performed at the Advanced Light Source, Lawrence Berkeley
National Laboratory, which is supported by the Office of Science, Office
of Basic Energy Sciences, of the U.S. Department of Energy under
contract no. DE-AC02-05CH11231. We gratefully acknowledge funding from
Total, France. V.I. gratefully acknowledges a BRIC grant (Bureau des
Relations Internationales et la Cooperation de l'ULB).
NR 26
TC 59
Z9 59
U1 9
U2 190
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 3091
EP 3096
DI 10.1021/nl300973b
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400073
PM 22551216
ER
PT J
AU Rathmell, AR
Nguyen, M
Chi, MF
Wiley, BJ
AF Rathmell, Aaron R.
Minh Nguyen
Chi, Miaofang
Wiley, Benjamin J.
TI Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent
Conducting Nanowire Networks
SO NANO LETTERS
LA English
DT Article
DE Nickel; copper; nanowires; transparent conductor
ID LIGHT-EMITTING-DIODES; CARBON NANOTUBE FILMS; THIN-FILMS; ELECTRODES;
POLYMER
AB Nanowires of copper can be coated from liquids to create flexible, transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these nanowire films is that copper is prone to oxidation. It was hypothesized that the resistance to oxidation could be improved by coating copper nanowires with nickel. This work demonstrates a method for synthesizing copper nanowires with nickel shells as well as the properties of cupronickel nanowires in transparent conducting films. Time- and temperature-dependent sheet resistance measurements indicate that the sheet resistance of copper and silver nanowire films will double after 3 and 36 months at room temperature, respectively. In contrast, the sheet resistance of cupronickel nanowires containing 20 mol % nickel will double in about 400 years. Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make cupronickel nanowires a promising alternative for the sustainable, efficient production of transparent conductors.
C1 [Rathmell, Aaron R.; Minh Nguyen; Wiley, Benjamin J.] Duke Univ, Dept Chem, Durham, NC 27708 USA.
[Chi, Miaofang] Oak Ridge Natl Lab, Microscopy Grp, Oak Ridge, TN 37831 USA.
RP Wiley, BJ (reprint author), Duke Univ, Dept Chem, 124 Sci Dr,Box 90354, Durham, NC 27708 USA.
EM benjamin.wiley@duke.edu
RI Wiley, Benjamin/A-7003-2008; Chi, Miaofang/Q-2489-2015
OI Chi, Miaofang/0000-0003-0764-1567
FU Duke University; NSF's Research Triangle MRSEC [DMR-1121107]; ORNL's
Share User Facility; Scientific User Facilities Division, Office of
Basic Energy Sciences, U.S. Department of Energy; Department of
Chemistry at Duke University; Ralph E. Powe Junior Faculty Enhancement
Award
FX This research was supported by start-up funds from Duke University,
NSF's Research Triangle MRSEC (DMR-1121107), and ORNL's Share User
Facility, which is sponsored by the Scientific User Facilities Division,
Office of Basic Energy Sciences, U.S. Department of Energy. A.R.R.
acknowledges support from the Paul M. Gross fellowship from the
Department of Chemistry at Duke University and the NSF's Research
Triangle MRSEC. B.J.W. acknowledges support from a Ralph E. Powe Junior
Faculty Enhancement Award.
NR 49
TC 134
Z9 135
U1 15
U2 220
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 3193
EP 3199
DI 10.1021/nl301168r
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400090
PM 22642652
ER
PT J
AU Liu, N
Wu, H
McDowell, MT
Yao, Y
Wang, CM
Cui, Y
AF Liu, Nian
Wu, Hui
McDowell, Matthew T.
Yao, Yan
Wang, Chongmin
Cui, Yi
TI A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy
Anodes
SO NANO LETTERS
LA English
DT Article
DE Silicon nanoparticle; Li-ion battery; anode; yolk-shell;
solid-electrolyte interphase; in situ TEM
ID SILICON NANOWIRES; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; LITHIUM;
SIZE; ELECTRODE; NANOPARTICLES; MICROSPHERES; LITHIATION; FRACTURE
AB Silicon is regarded as one of the most promising anode materials for next generation lithium-ion batteries. For use in practical applications, a Si electrode must have high capacity, long cycle life, high efficiency, and the fabrication must be industrially scalable. Here, we design and fabricate a yolk-shell structure to meet all these needs. The fabrication is carried out without special equipment and mostly at room temperature. Commercially available Si nanoparticles are completely sealed inside conformal, thin, self-supporting carbon shells, with rationally designed void space in between the particles and the shell. The well-defined void space allows the Si particles to expand freely without breaking the outer carbon shell, therefore stabilizing the solid-electrolyte interphase on the shell surface. High capacity (similar to 2800 mAh/g at C/10), long cycle life (1000 cycles with 74% capacity retention), and high Coulombic efficiency (99.84%) have been realized in this yolk-shell structured Si electrode.
C1 [Wu, Hui; McDowell, Matthew T.; Yao, Yan; Cui, Yi] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.
[Liu, Nian] Stanford Univ, Dept Chem, Stanford, CA 94305 USA.
[Wang, Chongmin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Cui, Yi] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA.
RP Cui, Y (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.
EM yicui@stanford.edu
RI Wu, Hui/I-7288-2012; Cui, Yi/L-5804-2013; Yao, Yan/D-7774-2011
OI Cui, Yi/0000-0002-6103-6352; Yao, Yan/0000-0002-8785-5030
FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office
of Vehicle Technologies of the U.S. Department of Energy
[DE-AC02-05CH11231]; Batteries for Advanced Transportation Technologies
(BATT) Program [6951379]; Chevron Stanford Graduate Fellowship; National
Defense Science and Engineering Graduate Fellowship; National Science
Foundation; Laboratory Directed Research and Development (LDRD) of
Pacific Northwest National Laboratory; DOE's Office of Biological and
Environmental Research; DOE [DE-AC05-76RLO1830]
FX This work was partially supported by the Assistant Secretary for Energy
Efficiency and Renewable Energy, Office of Vehicle Technologies of the
U.S. Department of Energy (contract no. DE-AC02-05CH11231) and the
Batteries for Advanced Transportation Technologies (BATT) Program
(subcontract no. 6951379). M.T.M. acknowledges support from the Chevron
Stanford Graduate Fellowship, the National Defense Science and
Engineering Graduate Fellowship, and the National Science Foundation
Graduate Fellowship. C.M.W. acknowledges support from the Laboratory
Directed Research and Development (LDRD) program of Pacific Northwest
National Laboratory. The in situ TEM work was conducted in the William
R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national
scientific user facility sponsored by DOE's Office of Biological and
Environmental Research and located at PNNL. PNNL is operated by Battelle
for the DOE under contract DE-AC05-76RLO1830.
NR 39
TC 589
Z9 600
U1 152
U2 1039
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 3315
EP 3321
DI 10.1021/nl3014814
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400110
PM 22551164
ER
PT J
AU Qian, F
Brewster, M
Lim, SK
Ling, YC
Greene, C
Laboutin, O
Johnson, JW
Gradecak, S
Cao, Y
Li, Y
AF Qian, Fang
Brewster, Megan
Lim, Sung K.
Ling, Yichuan
Greene, Christopher
Laboutin, Oleg
Johnson, Jerry W.
Gradecak, Silvija
Cao, Yu
Li, Yat
TI Controlled Synthesis of AlN/GaN Multiple Quantum Well Nanowire
Structures and Their Optical Properties
SO NANO LETTERS
LA English
DT Article
DE GaN; AlN; Nanowire Heterostructures; Multiple Quantum Wells;
Cathodoluminscence; Photoluminescence
ID CHEMICAL-VAPOR-DEPOSITION; ALLOY NANOWIRES; HETEROSTRUCTURES; GROWTH;
FIELD; TRANSISTORS; EMISSION; DEVICES; LASERS; GAN
AB We report the controlled synthesis of AlN/GaN multi-quantum well (MQW) radial nanowire heterostructures by metal-organic chemical vapor deposition. The structure consists of a single-crystal GaN nanowire core and an epitaxially grown (AlN/GaN)(m) (m = 3, 13) MQW shell. Optical excitation of individual MQW nanowires yielded strong, blue-shifted photoluminescence in the range 340-360 nm, with respect to the GaN near band-edge emission at 368.8 nm. Cathodoluminescence analysis on the cross-sectional MQW nanowire samples showed that the blue-shifted ultraviolet luminescence originated from the GaN quantum wells, while the defect-associated yellow luminescence was emitted from the GaN core. Computational simulation provided a quantitative analysis of the mini-band energies in the AlN/GaN superlattices and suggested the observed blue-shifted emission corresponds to the interband transitions between the second subbands of GaN, as a result of quantum confinement and strain effect in these AlN/GaN MQW nanowire structures.
C1 [Laboutin, Oleg; Johnson, Jerry W.; Cao, Yu] Kopin Corp, Taunton, MA 02780 USA.
[Qian, Fang] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Brewster, Megan; Lim, Sung K.; Gradecak, Silvija] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
[Ling, Yichuan; Greene, Christopher; Li, Yat] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA.
RP Cao, Y (reprint author), Kopin Corp, 200 John Hancock Rd, Taunton, MA 02780 USA.
EM yu_cao@kopin.com; yli@chemistry.ucsc.edu
RI Cao, Yu/E-4990-2011; Zong, Xu/B-7149-2013; Ling, Yichuan/I-9567-2016
OI Li, Yat/0000-0002-8058-2084;
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DEAC52-07NA27344]; UCSC; NSF [DMR-0847786, DMR-0745555]; National
Center for Electron Microscopy at Lawrence Berkeley National Laboratory
by U.S. Department of Energy [DE-AC02-05CH11231]
FX We are grateful to Professor Charles M. Lieber for offering fabrication
and measurement facilities as well as helpful discussions. We thank Tian
Fang for the helpful discussion on computational simulation. F.Q thanks
Lawrence Livermore National Laboratory institutional postdoctoral
support, under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DEAC52-07NA27344. Y.L.
acknowledges the support of this work by UCSC new faculty startup fund,
NSF (DMR-0847786), and National Center for Electron Microscopy at
Lawrence Berkeley National Laboratory, which is supported by the U.S.
Department of Energy (DE-AC02-05CH11231). S.G. acknowledges NSF CAREER
Award DMR-0745555.
NR 52
TC 33
Z9 34
U1 6
U2 85
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JUN
PY 2012
VL 12
IS 6
BP 3344
EP 3350
DI 10.1021/nl301690e
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 956RI
UT WOS:000305106400115
PM 22594533
ER
PT J
AU Knight, R
Jansson, J
Field, D
Fierer, N
Desai, N
Fuhrman, JA
Hugenholtz, P
van der Lelie, D
Meyer, F
Stevens, R
Bailey, MJ
Gordon, JI
Kowalchuk, GA
Gilbert, JA
AF Knight, Rob
Jansson, Janet
Field, Dawn
Fierer, Noah
Desai, Narayan
Fuhrman, Jed A.
Hugenholtz, Phil
van der Lelie, Daniel
Meyer, Folker
Stevens, Rick
Bailey, Mark J.
Gordon, Jeffrey I.
Kowalchuk, George A.
Gilbert, Jack A.
TI Unlocking the potential of metagenomics through replicated experimental
design
SO NATURE BIOTECHNOLOGY
LA English
DT Article
ID COMPARATIVE-ANALYSIS SYSTEM; WESTERN ENGLISH-CHANNEL; GUT MICROBIOME;
FUNCTIONAL-ANALYSIS; GLOBAL PATTERNS; BACTERIAL; COMMUNITIES; REVEALS;
GENOMES; ENTEROTYPES
AB Metagenomics holds enormous promise for discovering novel enzymes and organisms that are biomarkers or drivers of processes relevant to disease, industry and the environment. In the past two years, we have seen a paradigm shift in metagenomics to the application of cross-sectional and longitudinal studies enabled by advances in DNA sequencing and high-performance computing. These technologies now make it possible to broadly assess microbial diversity and function, allowing systematic investigation of the largely unexplored frontier of microbial life. To achieve this aim, the global scientific community must collaborate and agree upon common objectives and data standards to enable comparative research across the Earth's microbiome. Improvements in comparability of data will facilitate the study of biotechnologically relevant processes, such as bioprospecting for new glycoside hydrolases or identifying novel energy sources.
C1 [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA.
[Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
[Jansson, Janet] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Jansson, Janet] Lawrence Berkeley Natl Lab, Joint Genome Inst, Walnut Creek, CA USA.
[Jansson, Janet] Joint Bioenergy Inst, Emeryville, CA USA.
[Field, Dawn; Bailey, Mark J.] Ctr Ecol & Hydrol, Oxford, England.
[Fierer, Noah] Univ Colorado, Dept Ecol & Evolutionary Biol, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Desai, Narayan; Meyer, Folker; Stevens, Rick; Gilbert, Jack A.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Fuhrman, Jed A.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA.
[Hugenholtz, Phil] Univ Queensland, Australian Ctr Ecogen, Sch Chem & Mol Biosci, St Lucia, Qld, Australia.
[Hugenholtz, Phil] Univ Queensland, Inst Mol Biosci, St Lucia, Qld, Australia.
[van der Lelie, Daniel] RTI, Durham, NC USA.
[Meyer, Folker; Stevens, Rick] Univ Chicago, Computat Inst, Chicago, IL 60637 USA.
[Gordon, Jeffrey I.] Washington Univ, Sch Med, Ctr Genome Sci & Syst Biol, St Louis, MO USA.
[Kowalchuk, George A.] Netherlands Inst Ecol NIOO KNAW, Wageningen, Netherlands.
[Kowalchuk, George A.] Vrije Univ Amsterdam, Inst Ecol Sci, Amsterdam, Netherlands.
[Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA.
RP Knight, R (reprint author), Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA.
EM rob.knight@colorado.edu
RI Jansson, Janet/F-9951-2012; bailey, mark/I-7149-2012; Hugenholtz,
Philip/G-9608-2011; Fuhrman, Jed/C-6461-2013; Kowalchuk,
George/C-4298-2011; Knight, Rob/D-1299-2010;
OI bailey, mark/0000-0002-0147-7316; Meyer, Folker/0000-0003-1112-2284
FU US Department of Energy [DE-AC02-06CH11357, DE-AC02-05CH11231]; US
National Institutes of Health; Natural Environment Research Council, UK;
Crohn's and Colitis Foundation of America; Howard Hughes Medical
Institute
FX We wish to thank J. Eisen for his constant support of the Earth
Microbiome Project and his help with writing this work. This work was in
part supported by the US Department of Energy under contracts
DE-AC02-06CH11357 and DE-AC02-05CH11231, the US National Institutes of
Health, the Natural Environment Research Council, UK, the Crohn's and
Colitis Foundation of America, and the Howard Hughes Medical Institute.
We thank J. Reeder, J. Stombaugh, C. Lozupone, D. McDonald, J. Kuczynski
and J. Metcalf for comments on drafts.
NR 56
TC 101
Z9 104
U1 9
U2 154
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1087-0156
EI 1546-1696
J9 NAT BIOTECHNOL
JI Nat. Biotechnol.
PD JUN
PY 2012
VL 30
IS 6
BP 513
EP 520
DI 10.1038/nbt.2235
PG 8
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA 957JV
UT WOS:000305158600021
PM 22678395
ER
PT J
AU Bennetzen, JL
Schmutz, J
Wang, H
Percifield, R
Hawkins, J
Pontaroli, AC
Estep, M
Feng, L
Vaughn, JN
Grimwood, J
Jenkins, J
Barry, K
Lindquist, E
Hellsten, U
Deshpande, S
Wang, XW
Wu, XM
Mitros, T
Triplett, J
Yang, XH
Ye, CY
Mauro-Herrera, M
Wang, L
Li, PH
Sharma, M
Sharma, R
Ronald, PC
Panaud, O
Kellogg, EA
Brutnell, TP
Doust, AN
Tuskan, GA
Rokhsar, D
Devos, KM
AF Bennetzen, Jeffrey L.
Schmutz, Jeremy
Wang, Hao
Percifield, Ryan
Hawkins, Jennifer
Pontaroli, Ana C.
Estep, Matt
Feng, Liang
Vaughn, Justin N.
Grimwood, Jane
Jenkins, Jerry
Barry, Kerrie
Lindquist, Erika
Hellsten, Uffe
Deshpande, Shweta
Wang, Xuewen
Wu, Xiaomei
Mitros, Therese
Triplett, Jimmy
Yang, Xiaohan
Ye, Chu-Yu
Mauro-Herrera, Margarita
Wang, Lin
Li, Pinghua
Sharma, Manoj
Sharma, Rita
Ronald, Pamela C.
Panaud, Olivier
Kellogg, Elizabeth A.
Brutnell, Thomas P.
Doust, Andrew N.
Tuskan, Gerald A.
Rokhsar, Daniel
Devos, Katrien M.
TI Reference genome sequence of the model plant Setaria
SO NATURE BIOTECHNOLOGY
LA English
DT Article
ID FOXTAIL MILLET; C-4 PHOTOSYNTHESIS; MAIZE GENOME; SEGREGATION
DISTORTION; TRANSPOSABLE ELEMENTS; LTR RETROTRANSPOSONS; MOLECULAR
PHYLOGENY; MAXIMUM-LIKELIHOOD; SORGHUM-BICOLOR; GENETIC MAPS
AB We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The similar to 400-Mb assembly covers similar to 80% of the genome and > 95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with > 1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).
C1 [Bennetzen, Jeffrey L.] Univ Georgia, Dept Genet, BioEnergy Sci Ctr, Athens, GA 30602 USA.
[Schmutz, Jeremy; Grimwood, Jane; Jenkins, Jerry] HudsonAlpha Inst Biotechnol, Huntsville, AL USA.
[Schmutz, Jeremy; Grimwood, Jane; Jenkins, Jerry; Barry, Kerrie; Lindquist, Erika; Hellsten, Uffe; Deshpande, Shweta; Rokhsar, Daniel] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA.
[Estep, Matt; Triplett, Jimmy; Kellogg, Elizabeth A.] Univ Missouri, Dept Biol, St Louis, MO 63121 USA.
[Wang, Xuewen; Wu, Xiaomei; Devos, Katrien M.] Univ Georgia, Dept Crop & Soil Sci, Inst Plant Breeding Genet & Genom, Athens, GA 30602 USA.
[Wang, Xuewen; Wu, Xiaomei; Devos, Katrien M.] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA.
[Mitros, Therese] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA.
[Yang, Xiaohan; Ye, Chu-Yu; Tuskan, Gerald A.] Oak Ridge Natl Lab, Biosci Div, Plant Syst Biol Grp, Oak Ridge, TN USA.
[Yang, Xiaohan; Ye, Chu-Yu; Tuskan, Gerald A.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA.
[Wang, Lin; Li, Pinghua; Brutnell, Thomas P.] Cornell Univ, Boyce Thompson Inst, Ithaca, NY USA.
[Mauro-Herrera, Margarita; Doust, Andrew N.] Oklahoma State Univ, Dept Bot, Stillwater, OK 74078 USA.
[Sharma, Manoj; Sharma, Rita; Ronald, Pamela C.] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA.
[Sharma, Manoj; Sharma, Rita; Ronald, Pamela C.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA.
[Sharma, Manoj; Sharma, Rita; Ronald, Pamela C.] Joint Bioenergy Inst, Emeryville, CA USA.
[Panaud, Olivier] Univ Perpignan, F-66025 Perpignan, France.
RP Bennetzen, JL (reprint author), Univ Georgia, Dept Genet, BioEnergy Sci Ctr, Athens, GA 30602 USA.
EM maize@uga.edu
RI Schmutz, Jeremy/N-3173-2013; Wang, Hao/C-7651-2009; Feng,
Liang/I-5010-2014; Brutnell, Thomas/M-2840-2013; Devos,
Katrien/B-1380-2014; Wang, Xuewen/C-1362-2016; Kellogg,
Elizabeth/M-2845-2013; Tuskan, Gerald/A-6225-2011; Yang,
Xiaohan/A-6975-2011
OI Schmutz, Jeremy/0000-0001-8062-9172; Wang, Hao/0000-0002-9634-8778;
Brutnell, Thomas/0000-0002-3581-8211; Wang, Xuewen/0000-0003-2820-9255;
Kellogg, Elizabeth/0000-0003-1671-7447; Tuskan,
Gerald/0000-0003-0106-1289; Yang, Xiaohan/0000-0001-5207-4210
FU Office of Science of the US Department of Energy [DE-AC02-05CH11231,
DE-AC05-00OR22725]; Department of Energy [DE-FG02-08ER64636]; National
Institute of Food and Agriculture [2008-35504-04851]; National Science
Foundation [IOS-0701736, DBI-0607123]; Oklahoma Center for the
Advancement of Science and Technology [PSB08-007, PS11-035B]; University
of Missouri Research Board
FX The studies conducted by the US Department of Energy Joint Genome
Institute, the BioEnergy Science Center and the Joint Bioenergy
Institute are supported by the Office of Science of the US Department of
Energy under contract numbers DE-AC02-05CH11231, DE-AC05-00OR22725 and
DE-AC02-05CH11231, respectively. This research was also supported by
grants from the Department of Energy (DE-FG02-08ER64636), National
Institute of Food and Agriculture Plant Feedstock Genomics for Bioenergy
Program (no. 2008-35504-04851), National Science Foundation (IOS-0701736
and DBI-0607123), the Oklahoma Center for the Advancement of Science and
Technology (PSB08-007, PS11-035B), and the University of Missouri
Research Board. We thank C. Saski at Clemson University for the
construction of the Setaria italica and switchgrass BAC libraries, M.
Udvardi at the Noble Foundation for providing switchgrass genomic DNA
and B. Meyers at the University of Delaware for small RNA annotation
advice.
NR 80
TC 207
Z9 232
U1 9
U2 101
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1087-0156
J9 NAT BIOTECHNOL
JI Nat. Biotechnol.
PD JUN
PY 2012
VL 30
IS 6
BP 555
EP +
DI 10.1038/nbt.2196
PG 10
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA 957JV
UT WOS:000305158600026
PM 22580951
ER
PT J
AU Liu, LJ
Kohout, SC
Xu, Q
Muller, S
Kimberlin, CR
Isacoff, EY
Minor, DL
AF Liu, Lijun
Kohout, Susy C.
Xu, Qiang
Mueller, Simone
Kimberlin, Christopher R.
Isacoff, Ehud Y.
Minor, Daniel L., Jr.
TI A glutamate switch controls voltage-sensitive phosphatase function
SO NATURE STRUCTURAL & MOLECULAR BIOLOGY
LA English
DT Article
ID CI-VSP; SENSING PHOSPHATASE; TUMOR-SUPPRESSOR; CRYSTAL-STRUCTURE;
STRUCTURAL BASIS; PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE;
PHOSPHOINOSITIDE PHOSPHATASES; MULTIDRUG TRANSPORTER; MEMBRANE
ASSOCIATION; BINDING MOTIF
AB The Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) couples a voltage-sensing domain (VSD) to a lipid phosphatase that is similar to the tumor suppressor PTEN. How the VSD controls enzyme function has been unclear. Here, we present high-resolution crystal structures of the Ci-VSP enzymatic domain that reveal conformational changes in a crucial loop, termed the 'gating loop', that controls access to the active site by a mechanism in which residue Glu411 directly competes with substrate. Structure-based mutations that restrict gating loop conformation impair catalytic function and demonstrate that Glu411 also contributes to substrate selectivity. Structure-guided mutations further define an interaction between the gating loop and linker that connects the phosphatase to the VSD for voltage control of enzyme activity. Together, the data suggest that functional coupling between the gating loop and the linker forms the heart of the regulatory mechanism that controls voltage-dependent enzyme activation.
C1 [Liu, Lijun; Xu, Qiang; Mueller, Simone; Kimberlin, Christopher R.; Minor, Daniel L., Jr.] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94143 USA.
[Liu, Lijun; Xu, Qiang; Mueller, Simone; Kimberlin, Christopher R.; Minor, Daniel L., Jr.] Univ Calif San Francisco, Calif Inst Quantitat Biomed Res, San Francisco, CA 94143 USA.
[Kohout, Susy C.; Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Isacoff, Ehud Y.; Minor, Daniel L., Jr.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Isacoff, Ehud Y.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA.
[Minor, Daniel L., Jr.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA.
[Minor, Daniel L., Jr.] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA.
RP Minor, DL (reprint author), Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94143 USA.
EM daniel.minor@ucsf.edu
FU US National Institutes of Health (NIH) [R01 DC007664, R01 NS035549, U24
NS057631]; American Heart Association (AHA) [0740019N]
FX This work was supported by grants to D.L.M. from the US National
Institutes of Health (NIH), R01 DC007664, and the American Heart
Association (AHA), 0740019N, and to E.Y.I. from the NIH, R01 NS035549
and U24 NS057631. Ci-VSP in the pSD64TF vector was provided by Y.
Okamura (Osaka University). GFP-PLC-PH, GFP-TAPP-PH and GFP-GRP-PH were
provided by T. Meyer (Stanford University), T. Balla (NIH) and J. Falke
(University of Colorado), respectively. Kir2.1 was provided by E.
Reuveny (Weizmann Institute of Science). We thank members of the Minor
and Isacoff labs for support throughout these studies. D.L.M. is an AHA
Established Investigator.
NR 36
TC 22
Z9 22
U1 1
U2 17
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1545-9993
J9 NAT STRUCT MOL BIOL
JI Nat. Struct. Mol. Biol.
PD JUN
PY 2012
VL 19
IS 6
BP 633
EP +
DI 10.1038/nsmb.2289
PG 11
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA 954PD
UT WOS:000304958200012
PM 22562138
ER
PT J
AU Kim, IK
Kiefer, JR
Ho, CMW
Stegeman, RA
Classen, S
Tainer, JA
Ellenberger, T
AF Kim, In-Kwon
Kiefer, James R.
Ho, Chris M. W.
Stegeman, Roderick A.
Classen, Scott
Tainer, John A.
Ellenberger, Tom
TI Structure of mammalian poly(ADP- ribose) glycohydrolase reveals a
flexible tyrosine clasp as a substrate-binding element
SO NATURE STRUCTURAL & MOLECULAR BIOLOGY
LA English
DT Article
ID IDENTIFICATION; PURIFICATION; PARG; DNA; METABOLISM; MECHANISMS;
NETWORK; STRESS; THYMUS; DOMAIN
AB Reversible post-translational modification by poly(ADP-ribose) (PAR) regulates chromatin structure, DNA repair and cell fate in response to genotoxic stress. PAR glycohydrolase (PARG) removes PAR chains from poly(ADP-ribose) ylated proteins to restore protein function and release oligo(ADP-ribose) chains to signal damage. Here we report crystal structures of mammalian PARG and its complex with a substrate mimic that reveal an open substrate-binding site and a unique 'tyrosine clasp' enabling endoglycosidic cleavage of branched PAR chains.
C1 [Kim, In-Kwon; Kiefer, James R.; Ho, Chris M. W.; Stegeman, Roderick A.; Ellenberger, Tom] Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA.
[Classen, Scott] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA.
RP Ellenberger, T (reprint author), Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA.
EM tome@biochem.wustl.edu
FU US National Institutes of Health [5R01 GM052504]; US Department of
Energy [DE-AC0205CH11231]; [P01 CA92584]
FX We thank W. L. Kraus at University of Texas Southwestern Medical Center
for providing a pET28a-ratPARG(1-972) plasmid. This work was supported
in part by grants from the US National Institutes of Health (including
5R01 GM052504 to T. E.) and the Structural Cell Biology of DNA Repair
Program (P01 CA92584 to T.E. and J.A.T.). X-ray diffraction and
scattering technologies and their applications to the determination of
macromolecular structures and conformations at the SIBYLS beamline at
the Advanced Light Source, Lawrence Berkeley National Laboratory, are
supported in part by the US Department of Energy program Integrated
Diffraction Analysis Technologies under Contract Number DE-AC0205CH11231
with the US Department of Energy.
NR 28
TC 34
Z9 36
U1 0
U2 3
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1545-9993
J9 NAT STRUCT MOL BIOL
JI Nat. Struct. Mol. Biol.
PD JUN
PY 2012
VL 19
IS 6
BP 653
EP +
DI 10.1038/nsmb.2305
PG 5
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA 954PD
UT WOS:000304958200015
PM 22609859
ER
PT J
AU Biener, J
Dawedeit, C
Kim, SH
Braun, T
Worsley, MA
Chernov, AA
Walton, CC
Willey, TM
Kucheyev, SO
Shin, SJ
Wang, YM
Biener, MM
Lee, JRI
Kozioziemski, BJ
van Buuren, T
Wu, KJJ
Satcher, JH
Hamza, AV
AF Biener, J.
Dawedeit, C.
Kim, S. H.
Braun, T.
Worsley, M. A.
Chernov, A. A.
Walton, C. C.
Willey, T. M.
Kucheyev, S. O.
Shin, S. J.
Wang, Y. M.
Biener, M. M.
Lee, J. R. I.
Kozioziemski, B. J.
van Buuren, T.
Wu, K. J. J.
Satcher, J. H., Jr.
Hamza, A. V.
TI A new approach to foam-lined indirect-drive NIF ignition targets
SO NUCLEAR FUSION
LA English
DT Article
ID INERTIAL CONFINEMENT FUSION; LASER FUSION; AEROGEL; SHELLS; FABRICATION;
VISCOSITY; TOLUENE; FIREX; ICF
AB Taking full advantage of the unique laboratory environment created by the National Ignition Facility (NIF) will require the availability of foam-lined indirect-drive inertial confinement fusion targets. Here, we report on a new approach that enables fabrication of target structures that consist of a thin-walled (<30 mu m) ultra-low-density (<30 mg cm(-3)) hydrocarbon foam film inside a thick-walled, similar to 2 mm diameter ablator shell. In contrast to previous work on direct-drive targets that started with the fabrication of foam shells, we use a prefabricated ablator as a mold to cast the foam liner within the shell. This work summarizes crucial components of this new approach, including the aerogel chemistry, filling of the ablator shell with the aerogel precursor solution with nanolitre precision, creating uniform polymer gel coatings inside the ablator capsule, supercritical drying and doping.
C1 [Biener, J.; Dawedeit, C.; Kim, S. H.; Braun, T.; Worsley, M. A.; Chernov, A. A.; Walton, C. C.; Willey, T. M.; Kucheyev, S. O.; Shin, S. J.; Wang, Y. M.; Biener, M. M.; Lee, J. R. I.; Kozioziemski, B. J.; van Buuren, T.; Wu, K. J. J.; Satcher, J. H., Jr.; Hamza, A. V.] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA.
RP Biener, J (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, 7000 East Ave, Livermore, CA 94550 USA.
EM Biener2@llnl.gov
RI Wang, Yinmin (Morris)/F-2249-2010; Worsley, Marcus/G-2382-2014; Willey,
Trevor/A-8778-2011
OI Worsley, Marcus/0000-0002-8012-7727; Willey, Trevor/0000-0002-9667-8830
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; US Department of Energy, Office of Science, Basic
Energy Sciences [DE-AC02-05CH11231, DE-AC02-06CH11357]
FX This work performed under the auspices of the US Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
We would like to thank C. Wild and E. Woerner from Diamond Materials
GmbH, Germany, for providing the diamond capsules. The Advanced Light
Source and Advanced Photon source are supported by the US Department of
Energy, Office of Science, Basic Energy Sciences, under contracts
DE-AC02-05CH11231 and DE-AC02-06CH11357, respectively. TW thanks A.
MacDowell and D. Parkinson (ALS), and J. Ilavsky and A. Deriy (APS) for
their support.
NR 30
TC 16
Z9 16
U1 0
U2 40
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JUN
PY 2012
VL 52
IS 6
AR 062001
DI 10.1088/0029-5515/52/6/062001
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA 956LN
UT WOS:000305091200001
ER
PT J
AU Chapman, IT
La Haye, RJ
Buttery, RJ
Heidbrink, WW
Jackson, GL
Muscatello, CM
Petty, CC
Pinsker, RI
Tobias, BJ
Turco, F
AF Chapman, I. T.
La Haye, R. J.
Buttery, R. J.
Heidbrink, W. W.
Jackson, G. L.
Muscatello, C. M.
Petty, C. C.
Pinsker, R. I.
Tobias, B. J.
Turco, F.
TI Sawtooth control using electron cyclotron current drive in ITER
demonstration plasmas in DIII-D
SO NUCLEAR FUSION
LA English
DT Article
ID INTERNAL KINK MODE; TOKAMAK; STABILIZATION; STABILITY; SAWTEETH; PERIOD;
OSCILLATIONS; DISCHARGES; ROTATION; PHYSICS
AB Sawtooth control using electron cyclotron current drive (ECCD) has been demonstrated in ITER-like plasmas with a large fast ion fraction, wide q = 1 radius and long uncontrolled sawtooth period in DIII-D. The sawtooth period is minimized when the ECCD resonance is just inside the q = 1 surface. Sawtooth destabilization using driven current inside q = 1 avoids the triggering of performance-degrading neoclassical tearing modes (NTMs), even at much higher pressure than required in the ITER baseline scenario. Operation at beta(N) = 3 without 3/2 or 2/1 NTMs has been achieved in ITER demonstration plasmas when sawtooth control is applied using only modest ECCD power. Numerical modelling qualitatively confirms that the achieved driven current changes the local magnetic shear sufficiently to compensate for the stabilizing influence of the energetic particles in the plasma core.
C1 [Chapman, I. T.] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
[La Haye, R. J.; Buttery, R. J.; Jackson, G. L.; Petty, C. C.; Pinsker, R. I.] Gen Atom Co, San Diego, CA 92186 USA.
[Heidbrink, W. W.; Muscatello, C. M.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Tobias, B. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Turco, F.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA.
RP Chapman, IT (reprint author), Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
EM ian.chapman@ccfe.ac.uk
FU RCUK [EP/I501045]; EURATOM; CCFE; US Department of Energy
[DE-FC02-04ER54698, SC-G903402, DE-AC02-09CH11466]
FX This work was supported in part by the RCUK Energy Programme under grant
EP/I501045, the European Communities under the contract of Association
between EURATOM and CCFE and the US Department of Energy under
DE-FC02-04ER54698, SC-G903402, and DE-AC02-09CH11466. The views and
opinions expressed herein do not necessarily reflect those of the
European Commission.
NR 63
TC 23
Z9 23
U1 1
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUN
PY 2012
VL 52
IS 6
AR 063006
DI 10.1088/0029-5515/52/6/063006
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA 956LN
UT WOS:000305091200010
ER
PT J
AU Gerhardt, SP
Menard, J
Sabbagh, S
Scotti, F
AF Gerhardt, S. P.
Menard, J.
Sabbagh, S.
Scotti, F.
TI Characterization of disruption halo currents in the National Spherical
Torus Experiment
SO NUCLEAR FUSION
LA English
DT Article
ID DIII-D TOKAMAK; ALCATOR C-MOD; TIME EQUILIBRIUM RECONSTRUCTION; RUNAWAY
CURRENT TERMINATION; ASPECT-RATIO; MAJOR DISRUPTIONS; EXPERIMENT NSTX;
PLASMA CONTROL; CONTROL-SYSTEM; GAS INJECTION
AB This paper describes the general characteristics of disruption halo currents in the National Spherical Torus Experiment (Ono et al 2000 Nucl. Fusion 40 557). The commonly observed types of vertical motion and resulting halo current patterns are described, and it is shown that plasma discharges developing between components can facilitate halo current flow. The halo current fractions and toroidal peaking factors at various locations in the device are presented. The maximum product of these two metrics for localized halo current measurements is always significantly less than the worst-case expectations from conventional aspect ratio tokamaks (which are typically written in terms of the total halo current). The halo current fraction and impulse is often largest in cases with the fastest plasma current quenches and highest quench rates. The effective duration of the halo current pulse is comparable to or shorter than the plasma current quench time. The largest halo currents have tended to occur in lower beta and lower elongation plasmas. The sign of the poloidal halo current is reversed when the toroidal field direction is reversed.
C1 [Gerhardt, S. P.; Menard, J.; Scotti, F.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Sabbagh, S.] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA.
RP Gerhardt, SP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
OI Menard, Jonathan/0000-0003-1292-3286
FU United States Department of Energy
FX The authors would like to thank Henry Kugel, Robert Kaita, Eric
Fredrickson, and Hiro Takahashi for assistance and advice regarding the
design and fabrication of the halo current detection diagnostics. This
research was funded by the United States Department of Energy.
NR 90
TC 12
Z9 12
U1 2
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUN
PY 2012
VL 52
IS 6
AR 063005
DI 10.1088/0029-5515/52/6/063005
PG 16
WC Physics, Fluids & Plasmas
SC Physics
GA 956LN
UT WOS:000305091200009
ER
PT J
AU Hopkins, LB
Menard, J
Majeski, R
Lundberg, DP
Granstedt, E
Jacobson, C
Kaita, R
Kozub, T
Zakharov, L
AF Hopkins, L. Berzak
Menard, J.
Majeski, R.
Lundberg, D. P.
Granstedt, E.
Jacobson, C.
Kaita, R.
Kozub, T.
Zakharov, L.
TI Plasma equilibrium reconstructions in the lithium tokamak experiment
SO NUCLEAR FUSION
LA English
DT Article
ID CDX-U
AB The lithium tokamak experiment (LTX) ( R-0 = 0.4m, a = 0.26 m) is designed to explore the low-recycling, lithium wall operating regime for magnetically confined plasmas. A set of shell quadrants internal to the vacuum vessel and conformal to the plasma last closed flux surface is designed to be coated with lithium to produce the lithium plasma-facing surface. The shell quadrants are highly conductive in order to maintain an even thermal distribution, but this conductivity also permits eddy currents to flow that can be larger in magnitude than the plasma current. Due to this effect, plasma start-up is greatly complicated as is the development of an applicable equilibrium solver code. A suitable code, LTX LRDFIT, has been developed and benchmarked and has now been used to compare plasma flux surface reconstructions for discharges before and after initial lithium wall conditioning. Dramatic improvements in plasma performance and shaping have been noted with the introduction of lithium.
C1 [Hopkins, L. Berzak; Menard, J.; Majeski, R.; Lundberg, D. P.; Granstedt, E.; Jacobson, C.; Kaita, R.; Kozub, T.; Zakharov, L.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Hopkins, LB (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
OI Jacobson, Craig/0000-0001-7852-6932; Menard,
Jonathan/0000-0003-1292-3286
FU US DOE [DE-AC02-09CH11466.]
FX This work is supported by US DOE contract DE-AC02-09CH11466.; The
authors also wish to acknowledge the tireless efforts of the LTX
technical staff, including Jim Taylor, and make a special
acknowledgement of John Timberlake, who will be missed as part of the
LTX team and whose wealth of knowledge and expertise was critical to the
CDX-U and LTX lithium experiments.
NR 14
TC 5
Z9 5
U1 0
U2 6
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JUN
PY 2012
VL 52
IS 6
AR 063025
DI 10.1088/0029-5515/52/6/063025
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA 956LN
UT WOS:000305091200029
ER
PT J
AU Howard, NT
Greenwald, M
Mikkelsen, DR
Reinke, ML
White, AE
Ernst, D
Podpaly, Y
Candy, J
AF Howard, N. T.
Greenwald, M.
Mikkelsen, D. R.
Reinke, M. L.
White, A. E.
Ernst, D.
Podpaly, Y.
Candy, J.
TI Quantitative comparison of experimental impurity transport with
nonlinear gyrokinetic simulation in an Alcator C-Mod L-mode plasma
SO NUCLEAR FUSION
LA English
DT Article
ID ION TEMPERATURE; CHAPTER 2; CONFINEMENT; TOKAMAK
AB Nonlinear gyrokinetic simulations of impurity transport are compared to experimental impurity transport for the first time. The GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) was used to perform global, nonlinear gyrokinetic simulations of impurity transport for a standard Alcator C-Mod, L-mode discharge. The laser blow-off technique was combined with soft x-ray measurements of a single charge state of calcium to provide time-evolving profiles of this non-intrinsic, non-recycling impurity over a radial range of 0.0 <= r/a <= 0.6. Experimental transport coefficient profiles and their uncertainties were extracted from the measurements using the impurity transport code STRAHL and rigorous Monte Carlo error analysis. To best assess the agreement of gyrokinetic simulations with the experimental profiles, the sensitivity of the GYRO predicted impurity transport to a wide range of turbulence-relevant plasma parameters was investigated. A direct comparison of nonlinear gyrokinetic simulation and experiment is presented with an in depth discussion of error sources and a new data analysis methodology.
C1 [Howard, N. T.; Greenwald, M.; Reinke, M. L.; White, A. E.; Ernst, D.; Podpaly, Y.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
[Mikkelsen, D. R.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA.
[Candy, J.] Gen Atom Co, San Diego, CA 92121 USA.
RP Howard, NT (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
RI Ernst, Darin/A-1487-2010;
OI Ernst, Darin/0000-0002-9577-2809; Greenwald, Martin/0000-0002-4438-729X
FU Office of Science and US Department of Energy [DE-AC02-05CH11231]; MIT
PSFC; DOE [DE-FC02-99ER54512-CMOD]
FX The authors would like to thank all of the Alcator C-Mod scientific and
technical staff for their exceptional operation and maintenance of the
tokamak. We would like to also specifically thank Dr Ralph Dux and Dr
Thomas Puetterich for help setting up and debugging the STRAHL code, Dr
Ron Waltz and Dr Emily Belli for the development of the GYRO and NEO
codes, respectively, and Yunxing Ma for the density profile
calibrations. Computer simulations using GYRO were carried out at the
National Energy Research Computing Center supported by the Office of
Science and US Department of Energy under Contract No DE-AC02-05CH11231
and the MIT PSFC parallel AMD Opteron/Infinib and cluster Loki. This
work was also supported by DOE contract-DE-FC02-99ER54512-CMOD.
NR 32
TC 32
Z9 32
U1 0
U2 7
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JUN
PY 2012
VL 52
IS 6
AR 063002
DI 10.1088/0029-5515/52/6/063002
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA 956LN
UT WOS:000305091200006
ER
PT J
AU Ku, S
Abiteboul, J
Diamond, PH
Dif-Pradalier, G
Kwon, JM
Sarazin, Y
Hahm, TS
Garbet, X
Chang, CS
Latu, G
Yoon, ES
Ghendrih, P
Yi, S
Strugarek, A
Solomon, W
Grandgirard, V
AF Ku, S.
Abiteboul, J.
Diamond, P. H.
Dif-Pradalier, G.
Kwon, J. M.
Sarazin, Y.
Hahm, T. S.
Garbet, X.
Chang, C. S.
Latu, G.
Yoon, E. S.
Ghendrih, Ph.
Yi, S.
Strugarek, A.
Solomon, W.
Grandgirard, V.
TI Physics of intrinsic rotation in flux-driven ITG turbulence
SO NUCLEAR FUSION
LA English
DT Article
ID STATIONARY PLASMA ENERGY; STRONG EDGE RADIATION; HIGH-DENSITY; HIGH
CONFINEMENT; TEXTOR-94; TOKAMAK
AB Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale separation between turbulence and mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers, namely E x B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity.
C1 [Ku, S.; Chang, C. S.; Yoon, E. S.; Solomon, W.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Ku, S.; Diamond, P. H.; Kwon, J. M.; Yi, S.] Natl Fus Res Inst, Taejon, South Korea.
[Abiteboul, J.; Dif-Pradalier, G.; Sarazin, Y.; Garbet, X.; Latu, G.; Ghendrih, Ph.; Strugarek, A.; Grandgirard, V.] IRFM, CEA, F-13108 St Paul Les Durance, France.
[Diamond, P. H.; Dif-Pradalier, G.] Univ Calif San Diego, CMTFO, San Diego, CA 92103 USA.
[Diamond, P. H.; Dif-Pradalier, G.] Univ Calif San Diego, Dept Phys, San Diego, CA 92103 USA.
[Hahm, T. S.] Seoul Natl Univ, Dept Nucl Engn, Seoul, South Korea.
[Yoon, E. S.] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea.
RP Ku, S (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM sku@pppl.gov
RI Ku, Seung-Hoe/D-2315-2009; Dif-Pradalier, Guilhem/K-7442-2015;
OI Ku, Seung-Hoe/0000-0002-9964-1208; Dif-Pradalier,
Guilhem/0000-0003-4869-7049; Solomon, Wayne/0000-0002-0902-9876
FU World Class Institute (WCI) of the National Research Foundation of Korea
(NRF); Ministry of Education, Science and Technology of Korea (MEST)
(NRF) [WCI 2009-001]; National RD Program [2011-0018728]; US DOE
[DE-FC02-08ER54959, DE-FG02-06ER54845]; Office of Science of the
Department of Energy [DE-AC05-00OR22725, DE-AC02-05CH11231]
FX The authors thank O.D. Gurcan, C. McDevitt, J. Rice an d G. Tynan for
stimulating discussions. This work was supported by the World Class
Institute (WCI) Program of the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Technology of
Korea (MEST) (NRF Grant Number: WCI 2009-001) and National R&D Program
(2011-0018728), by the US DOE Contract No DE-FC02-08ER54959 and
DE-FG02-06ER54845. The work with XGC1p used resources of the Oak Ridge
Leadership Computing Facility, which is supported by the Office of
Science of the Department of Energy under Contract DE-AC05-00OR22725,
and resources of the National Energy Research Scientific Computing
Centre, which is supported by the Office of Science of the US Department
of Energy under Contract No. DE-AC02-05CH11231. The work with GYSELA was
granted access to the HPC resources of CCRT and CINES under the
allocation 2009052224 made by GENCI (Grand Equipement National de Calcul
Intensif), as well as on HPC-FF in Julich.
NR 33
TC 18
Z9 18
U1 2
U2 22
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUN
PY 2012
VL 52
IS 6
AR 063013
DI 10.1088/0029-5515/52/6/063013
PG 13
WC Physics, Fluids & Plasmas
SC Physics
GA 956LN
UT WOS:000305091200017
ER
PT J
AU Leonard, AW
Mahdavi, MA
Lasnier, CJ
Petrie, TW
Stangeby, PC
AF Leonard, A. W.
Mahdavi, M. A.
Lasnier, C. J.
Petrie, T. W.
Stangeby, P. C.
TI Scaling radiative divertor solutions to high power in DIII-D
SO NUCLEAR FUSION
LA English
DT Article
ID PLANT; CONVECTION
AB Detached radiative divertor plasmas are examined in DIII-D as a function of power. The 2D profile of plasma electron density and temperature is reconstructed from divertor Thomson data while energy transport is deduced from power balance measurements. The combination of plasma and energy diagnostics reveals that parallel energy transport transitions to convective flow at a constant 5-10 eV as a function of power. Simple considerations would imply divertor density proportional to power density for Mach 1 flow. However, the divertor, upstream separatrix and core plasma densities increase significantly less than linear with power density. During detached divertor operation H-mode core confinement is maintained though the edge pedestal can experience moderate degradation.
C1 [Leonard, A. W.; Mahdavi, M. A.; Petrie, T. W.] Gen Atom Co, San Diego, CA 92186 USA.
[Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Stangeby, P. C.] Univ Toronto, Inst Aerosp Studies, N York, ON M3H 5T6, Canada.
RP Leonard, AW (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA.
FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344]
FX This work was supported in part by the US Department of Energy under
DE-FC02-04ER54698 and DE-AC52-07NA27344.
NR 20
TC 13
Z9 13
U1 2
U2 15
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JUN
PY 2012
VL 52
IS 6
AR 063015
DI 10.1088/0029-5515/52/6/063015
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA 956LN
UT WOS:000305091200019
ER
PT J
AU Pace, DC
Pinsker, RI
Heidbrink, WW
Fisher, RK
Van Zeeland, MA
Austin, ME
McKee, GR
Garcia-Munoz, M
AF Pace, D. C.
Pinsker, R. I.
Heidbrink, W. W.
Fisher, R. K.
Van Zeeland, M. A.
Austin, M. E.
McKee, G. R.
Garcia-Munoz, M.
TI Scrape-off layer ion acceleration during fast wave injection in the
DIII-D tokamak
SO NUCLEAR FUSION
LA English
DT Article
ID CYCLOTRON HARMONICS; PARAMETRIC DECAY; CURRENT DRIVE; EDGE PLASMA;
ABSORPTION; RF; INSTABILITIES; SPECTROSCOPY; POWER
AB Fast wave injection is employed on the DIII-D tokamak as a current drive and electron heating method. Bursts of energetic ions with energy E-o > 20 keV are observed immediately following fast wave injection in experiments featuring the 8th ion cyclotron harmonic near the antenna. Using the energy and pitch angle of the energetic ion burst as measured by a fast-ion loss detector, it is possible to trace the origin of these ions to a particular antenna. The ion trajectories exist entirely within the scrape-off layer. These observations are consistent with the presence of parametric decay instabilities near the antenna strap. It is suggested that the phase space capabilities of the loss detector diagnostic can improve studies of wave injection coupling and efficiency in tokamaks by directly measuring the effects of parametric decay thresholds.
C1 [Pace, D. C.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA.
[Pinsker, R. I.; Fisher, R. K.; Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA.
[Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Austin, M. E.] Univ Texas Austin, Austin, TX 78712 USA.
[McKee, G. R.] Univ Wisconsin, Madison, WI 53706 USA.
[Garcia-Munoz, M.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany.
RP Pace, DC (reprint author), Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA.
EM pacedc@fusion.gat.com
RI garcia-munoz, manuel/C-6825-2008
OI garcia-munoz, manuel/0000-0002-3241-502X
FU US Department of Energy [DE-FC02-04ER54698, SC-G903402,
DE-FG03-97ER4415, DE-FG02-89ER53296, DE-FG02-08ER54999]
FX The work of DCP was supported by the US Department of Energy through an
appointment in the Fusion Energy Postdoctoral Research Program and the
US Department of Energy under DE-FC02-04ER54698. Co-authors work was
supported by the US Department of Energy under SC-G903402,
DE-FG03-97ER4415, DE-FG02-89ER53296 and DE-FG02-08ER54999. The authors
would like to thank S.J. Wukitch and C. Rost for discussing parametric
decay instabilities and A.E. White for supporting piggyback FILD
operation during fast wave experiments. In addition, the authors are
grateful to N.H. Brooks for providing supporting data, and to C.C. Petty
and X. Chen for reading a draft manuscript.
NR 40
TC 8
Z9 8
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JUN
PY 2012
VL 52
IS 6
AR 063019
DI 10.1088/0029-5515/52/6/063019
PG 9
WC Physics, Fluids & Plasmas
SC Physics
GA 956LN
UT WOS:000305091200023
ER
PT J
AU Poli, FM
Kessel, CE
Chance, MS
Jardin, SC
Manickam, J
AF Poli, F. M.
Kessel, C. E.
Chance, M. S.
Jardin, S. C.
Manickam, J.
TI Ideal MHD stability and performance of ITER steady-state scenarios with
ITBs
SO NUCLEAR FUSION
LA English
DT Article
ID REVERSED SHEAR DISCHARGES; ADVANCED TOKAMAK SCENARIO; BOOTSTRAP CURRENT;
ARBITRARY COLLISIONALITY; TRANSPORT BARRIERS; BURNING PLASMA; MAGNETIC
SHEAR; CURRENT DRIVE; DIII-D; PHYSICS
AB Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q greater than or similar to 5 operating above the ideal no-wall limit.
C1 [Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Poli, FM (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
RI poli, francesca/C-2226-2008
OI poli, francesca/0000-0003-3959-4371
FU US Department of Energy [DE-AC02-CH0911466]
FX P. Snyder is kindly acknowledged for providing the EPED1 calculations.
F. Poli acknowledges J.Chen for help with TSC, C. Ludescher-Furth, D.
McCune and T. Rafiq for help with TRANSP. The opinions expressed herein
do not necessarily state or reflect those of the ITER organization. This
work was supported by the US Department of Energy under contract
DE-AC02-CH0911466.
NR 50
TC 12
Z9 12
U1 0
U2 5
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JUN
PY 2012
VL 52
IS 6
AR 063027
DI 10.1088/0029-5515/52/6/063027
PG 17
WC Physics, Fluids & Plasmas
SC Physics
GA 956LN
UT WOS:000305091200031
ER
PT J
AU White, AE
Hubbard, AE
Hughes, JW
Bonoli, PT
Austin, ME
Bader, A
Harvey, RW
Lin, Y
Ma, Y
Reinke, ML
Wolfe, SM
Wukitch, SJ
AF White, A. E.
Hubbard, A. E.
Hughes, J. W.
Bonoli, P. T.
Austin, M. E.
Bader, A.
Harvey, R. W.
Lin, Y.
Ma, Y.
Reinke, M. L.
Wolfe, S. M.
Wukitch, S. J.
TI Investigation of the Thomson scattering-ECE discrepancy in ICRF heated
plasmas at Alcator C-Mod
SO NUCLEAR FUSION
LA English
DT Article
ID ELECTRON-TEMPERATURE MEASUREMENTS; ION-CYCLOTRON; RECONSTRUCTION;
DIAGNOSTICS; FREQUENCIES; EMISSION; ITER
AB This paper reports on new experiments at Alcator C-Mod that were performed in order to investigate the long-standing, unresolved discrepancy between Thomson scattering (TS) and electron cyclotron emission (ECE) measurements of electron temperature in high temperature tokamak plasmas. Ion cyclotron range of frequency (ICRF) heating is used to produce high temperature conditions where the type of TS-ECE discrepancy observed in the past at JET and TFTR should become observable. At Alcator C-Mod, plasmas with T-e(0) up to 8 keV are obtained using ion cyclotron resonance heating (ICRH), ICRF mode conversion heating and a combination of the two heating methods in order to explore the hypothesis that the presence of ICRH-generated fast ions may be related to the discrepancy. In all high temperature cases, the TS and ECE measurements of electron temperature agree to within experimental uncertainties. We find no evidence for the type of discrepancy reported at JET and TFTR. These results show that the TS-ECE discrepancy does not depend on high temperatures alone and also that the presence of ICRH-generated fast ions is insufficient to cause the TS-ECE discrepancy.
C1 [White, A. E.; Hubbard, A. E.; Hughes, J. W.; Bonoli, P. T.; Bader, A.; Lin, Y.; Ma, Y.; Wolfe, S. M.; Wukitch, S. J.] MIT, Cambridge, MA 02139 USA.
[Austin, M. E.] Univ Texas Austin, Austin, TX 78712 USA.
[Reinke, M. L.] ORISE, Oak Ridge, TN USA.
RP White, AE (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM whitea@mit.edu
FU US Department of Energy [DE-FC02-99ER54512]
FX We thank the Alcator C-Mod team for their support of the measurements
reported here. AEW gratefully acknowledges E. de la Luna, R. Prater and
C.C. Petty for their insights on probing the TS-ECE discrepancy and B.
Bray for helpful discussions of errors and uncertainty in TS
measurements. This work supported by the US Department of Energy under
DE-FC02-99ER54512.
NR 35
TC 4
Z9 4
U1 0
U2 12
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUN
PY 2012
VL 52
IS 6
AR 063021
DI 10.1088/0029-5515/52/6/063021
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA 956LN
UT WOS:000305091200025
ER
PT J
AU Novikova, IV
Hennelly, SP
Sanbonmatsu, KY
AF Novikova, Irina V.
Hennelly, Scott P.
Sanbonmatsu, Karissa Y.
TI Structural architecture of the human long non-coding RNA, steroid
receptor RNA activator
SO NUCLEIC ACIDS RESEARCH
LA English
DT Article
ID SECONDARY STRUCTURE MODEL; SELECTIVE 2'-HYDROXYL ACYLATION; SINGLE
NUCLEOTIDE RESOLUTION; PRIMER EXTENSION SHAPE; PROSTATE-CANCER CELLS;
PROTEIN-CODING GENE; MUSCLE DIFFERENTIATION; BINDING-PROTEIN; ENERGY
CONTENT; RIBOSOMAL-RNA
AB While functional roles of several long non-coding RNAs (lncRNAs) have been determined, the molecular mechanisms are not well understood. Here, we report the first experimentally derived secondary structure of a human lncRNA, the steroid receptor RNA activator (SRA), 0.87 kB in size. The SRA RNA is a non-coding RNA that coactivates several human sex hormone receptors and is strongly associated with breast cancer. Coding isoforms of SRA are also expressed to produce proteins, making the SRA gene a unique bifunctional system. Our experimental findings (SHAPE, in-line, DMS and RNase V1 probing) reveal that this lncRNA has a complex structural organization, consisting of four domains, with a variety of secondary structure elements. We examine the coevolution of the SRA gene at the RNA structure and protein structure levels using comparative sequence analysis across vertebrates. Rapid evolutionary stabilization of RNA structure, combined with frame-disrupting mutations in conserved regions, suggests that evolutionary pressure preserves the RNA structural core rather than its translational product. We perform similar experiments on alternatively spliced SRA isoforms to assess their structural features.
C1 [Novikova, Irina V.; Hennelly, Scott P.; Sanbonmatsu, Karissa Y.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Sanbonmatsu, KY (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM kys@lanl.gov
FU Laboratory Directed Research and Development program
FX Laboratory Directed Research and Development program. Funding for open
access charge: Laboratory Directed Research and Development program.
NR 78
TC 91
Z9 98
U1 1
U2 37
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0305-1048
EI 1362-4962
J9 NUCLEIC ACIDS RES
JI Nucleic Acids Res.
PD JUN
PY 2012
VL 40
IS 11
BP 5034
EP 5051
DI 10.1093/nar/gks071
PG 18
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 955PF
UT WOS:000305032500037
PM 22362738
ER
PT J
AU Kao, TY
Hu, Q
Reno, JL
AF Kao, Tsung-Yu
Hu, Qing
Reno, John L.
TI Perfectly phase-matched third-order distributed feedback terahertz
quantum-cascade lasers
SO OPTICS LETTERS
LA English
DT Article
AB We report a novel laser cavity design in third-order distributed feedback (DFB) terahertz quantum-cascade lasers based on a perfectly phase-matching technique. This approach substantially increases the usable length of the third-order DFB laser and leads to narrow beam patterns. Single frequency emissions from 151 apertures (5.6 mm long device) are coherently added up to form a narrow beam with (FWHM approximate to 6 x 11 degrees) divergence. A similar device with 40 apertures shows more than 5 mW of optical power with slope efficiency similar to 140 mW/A at 10 K pulsed operation. (C) 2012 Optical Society of America
C1 [Kao, Tsung-Yu; Hu, Qing] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA.
[Kao, Tsung-Yu; Hu, Qing] MIT, Elect Res Lab, Cambridge, MA 02139 USA.
[Reno, John L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA.
RP Kao, TY (reprint author), MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA.
EM wilt_kao@mit.edu
FU NASA; NSF; U.S. Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX This work is supported by NASA and NSF, and also performed, in part, at
the Center for Integrated Nanotechnologies, a U.S. Department of Energy,
Office of Basic Energy Sciences user facility. Sandia National
Laboratories is a multiprogram laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000.
NR 10
TC 36
Z9 36
U1 1
U2 7
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
J9 OPT LETT
JI Opt. Lett.
PD JUN 1
PY 2012
VL 37
IS 11
BP 2070
EP 2072
PG 3
WC Optics
SC Optics
GA 956JD
UT WOS:000305085000098
PM 22660124
ER
PT J
AU Drell, PS
AF Drell, Persis S.
TI What defines a healthy US particle-physics program?
SO PHYSICS TODAY
LA English
DT Editorial Material
C1 SLAC, Menlo Pk, CA USA.
RP Drell, PS (reprint author), SLAC, Menlo Pk, CA USA.
EM persis@slac.stanford.edu
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0031-9228
J9 PHYS TODAY
JI Phys. Today
PD JUN
PY 2012
VL 65
IS 6
BP 8
EP 9
PG 2
WC Physics, Multidisciplinary
SC Physics
GA 956OT
UT WOS:000305099700001
ER
PT J
AU Lederman, L
Hill, C
AF Lederman, Leon
Hill, Christopher
TI Sexism may be in the eye of the beholder reply
SO PHYSICS TODAY
LA English
DT Letter
C1 [Lederman, Leon; Hill, Christopher] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Lederman, L (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0031-9228
J9 PHYS TODAY
JI Phys. Today
PD JUN
PY 2012
VL 65
IS 6
BP 12
EP 12
PG 1
WC Physics, Multidisciplinary
SC Physics
GA 956OT
UT WOS:000305099700009
ER
PT J
AU Klein, S
AF Klein, Spencer
TI Coherence and precision in classical systems
SO PHYSICS TODAY
LA English
DT Letter
C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Klein, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM srklein@lbl.gov
NR 1
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0031-9228
J9 PHYS TODAY
JI Phys. Today
PD JUN
PY 2012
VL 65
IS 6
BP 13
EP 13
PG 1
WC Physics, Multidisciplinary
SC Physics
GA 956OT
UT WOS:000305099700013
ER
PT J
AU Hamann, DR
Isaacs, ED
AF Hamann, D. R.
Isaacs, Eric D.
TI Philip Moss Platzman obituary
SO PHYSICS TODAY
LA English
DT Biographical-Item
C1 [Hamann, D. R.] Rutgers State Univ, Piscataway, NJ 08854 USA.
[Isaacs, Eric D.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Hamann, DR (reprint author), Rutgers State Univ, Piscataway, NJ 08854 USA.
NR 1
TC 0
Z9 0
U1 2
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0031-9228
J9 PHYS TODAY
JI Phys. Today
PD JUN
PY 2012
VL 65
IS 6
BP 64
EP 65
PG 2
WC Physics, Multidisciplinary
SC Physics
GA 956OT
UT WOS:000305099700029
ER
PT J
AU Kirz, J
Jacobsen, C
Miao, JW
AF Kirz, Janos
Jacobsen, Chris
Miao, Jianwei
TI David Sayre obituary
SO PHYSICS TODAY
LA English
DT Biographical-Item
C1 [Kirz, Janos] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Jacobsen, Chris] Argonne Natl Lab, Argonne, IL 60439 USA.
[Miao, Jianwei] Univ Calif Los Angeles, Los Angeles, CA USA.
RP Kirz, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RI Jacobsen, Chris/E-2827-2015
OI Jacobsen, Chris/0000-0001-8562-0353
NR 1
TC 0
Z9 0
U1 0
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0031-9228
J9 PHYS TODAY
JI Phys. Today
PD JUN
PY 2012
VL 65
IS 6
BP 65
EP 66
PG 2
WC Physics, Multidisciplinary
SC Physics
GA 956OT
UT WOS:000305099700030
ER
PT J
AU Jin, HN
Song, ZH
Nikolau, BJ
AF Jin, Huanan
Song, Zhihong
Nikolau, Basil J.
TI Reverse genetic characterization of two paralogous acetoacetyl CoA
thiolase genes in Arabidopsis reveals their importance in plant growth
and development
SO PLANT JOURNAL
LA English
DT Article
DE acetoacetyl CoA thiolases; embryo lethality; pleiotropic phenotypes;
phytosterol; mevalonate pathway; Arabidopsis thaliana
ID ISOPENTENYL DIPHOSPHATE ISOMERASES; COENZYME-A REDUCTASE; ATP-CITRATE
LYASE; ISOPRENOID BIOSYNTHESIS; BRASSINOSTEROID BIOSYNTHESIS;
PHYLOGENETIC ANALYSIS; SYNTHASE GENES; MESSENGER-RNA; POLLEN GRAINS;
LIPID BODIES
AB Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT-encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T-DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol-localized, mevalonate-derived isoprenoid biosynthetic pathway.
C1 [Jin, Huanan; Song, Zhihong; Nikolau, Basil J.] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA.
[Song, Zhihong] US DOE, Ames Lab, Ames, IA 50011 USA.
[Nikolau, Basil J.] Iowa State Univ, Ctr Biorenewable Chem, Ames, IA 50011 USA.
RP Nikolau, BJ (reprint author), Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA.
EM dimmas@iastate.edu
FU US National Science Foundation through Engineering Research Center
[EEC-0813570]; Bioeconomy Institute of Iowa State University
FX This work was supported by the US National Science Foundation through
its Engineering Research Center Program (award number EEC-0813570),
leading to the Center for Biorenewable Chemicals (CBiRC) at Iowa State
University (http://www.cbirc.iastate.edu/). The authors also acknowledge
the support of the Bioeconomy Institute of Iowa State University
(http://www.biorenew.iastate.edu/), and use of the WM Keck Metabolomics
Research Laboratory, Iowa State University
(http://www.metabolomics.biotech.iastate.edu).
NR 71
TC 15
Z9 17
U1 2
U2 29
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0960-7412
J9 PLANT J
JI Plant J.
PD JUN
PY 2012
VL 70
IS 6
BP 1015
EP 1032
DI 10.1111/j.1365-313X.2012.04942.x
PG 18
WC Plant Sciences
SC Plant Sciences
GA 956WN
UT WOS:000305120400010
PM 22332816
ER
PT J
AU Srivastava, R
Chen, YN
Deng, Y
Brandizzi, F
Howell, SH
AF Srivastava, Renu
Chen, Yani
Deng, Yan
Brandizzi, Federica
Howell, Stephen H.
TI Elements proximal to and within the transmembrane domain mediate the
organelle-to-organelle movement of bZIP28 under ER stress conditions
SO PLANT JOURNAL
LA English
DT Article
DE endoplasmic reticulum; Golgi bodies; COPII vesicles; membrane-associated
transcription factors; site 2 protease; green fluorescent protein;
Arabidopsis thaliana
ID ENDOPLASMIC-RETICULUM EXPORT; CARGO SELECTION; TRANSCRIPTION FACTOR;
TRANSPORT VESICLES; GOLGI-APPARATUS; COPII VESICLES; MEMBRANE;
ARABIDOPSIS; BINDING; SITES
AB Arabidopsis bZIP28, an ER membrane-associated transcription factor, is activated in response to conditions that induce ER stressadverse environmental conditions or exposure to ER stress agents such as tunicamycin and dithiothreitol. Upon stress treatment, bZIP28 exits the ER and moves to the Golgi, where it is proteolytically processed, releasing its transcriptional component, which relocates to the nucleus. In this study, we tracked the movement of GFP-tagged bZIP28 in an effort to understand its mobilization from the ER and release from the Golgi. We identified a small region in bZIP28 that is rich in dibasic amino acids and proximal to the transmembrane domain required for its movement from the ER. In response to ER stress, bZIP28 showed enhanced interaction with Sar1 and Sec12, components of the COPII machinery. We demonstrated that the dibasic amino acid-rich region in bZIP28 is involved in the interaction with Sar1. Upon migration to the Golgi, bZIP28 is proteolytically processed by proteases S1P and S2P. We found a putative helix-breaking residue in the transmembrane domain of bZIP28 to be crucial for its processing and liberation from Golgi bodies. Thus, in response to stress, bZIP28 moves from organelle to organelle by interaction of critical elements in the molecule with the transport and/or proteolytic machinery resident in the various organelles.
C1 [Srivastava, Renu; Deng, Yan; Howell, Stephen H.] Iowa State Univ, Inst Plant Sci, Ames, IA 50011 USA.
[Chen, Yani; Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA.
RP Howell, SH (reprint author), Iowa State Univ, Inst Plant Sci, Ames, IA 50011 USA.
EM shh@iastate.edu
FU Iowa State University Plant Sciences Institute; US National Science
Foundation [IOS90917]; Chemical Sciences, Geosciences and Biosciences
Division, Office of Basic Energy Sciences, Office of Science, US
Department of Energy [DE-FG02-91ER20021]; National Aeronautics and Space
Agency [NNH08ZTT003N NRA - 08-FSB_Prop-0052]
FX This work was supported by the Iowa State University Plant Sciences
Institute and by grant IOS90917 from the US National Science Foundation
to S. H. H., and support for F. B. from the Chemical Sciences,
Geosciences and Biosciences Division, Office of Basic Energy Sciences,
Office of Science, US Department of Energy (award number
DE-FG02-91ER20021) and the National Aeronautics and Space Agency
(NNH08ZTT003N NRA - 08-FSB_Prop-0052). We are grateful to Dr Natasha
Raikhel (Center for Plant Cell Biology and the Institute for Integrative
Genome Biology, University of California at Riverside) for the Sec12
antibody. The authors have no conflicts of interest to declare.
NR 41
TC 23
Z9 28
U1 1
U2 23
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0960-7412
J9 PLANT J
JI Plant J.
PD JUN
PY 2012
VL 70
IS 6
BP 1033
EP 1042
DI 10.1111/j.1365-313X.2012.04943.x
PG 10
WC Plant Sciences
SC Plant Sciences
GA 956WN
UT WOS:000305120400011
PM 22335396
ER
PT J
AU Maienschein, JL
AF Maienschein, Jon L.
TI The Challenge of Improvised Explosives
SO PROPELLANTS EXPLOSIVES PYROTECHNICS
LA English
DT Editorial Material
C1 [Maienschein, Jon L.] Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94550 USA.
[Maienschein, Jon L.] Lawrence Livermore Natl Lab, Natl Explos Engn Sci Secur Ctr, Livermore, CA 94550 USA.
RP Maienschein, JL (reprint author), Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94550 USA.
NR 0
TC 1
Z9 1
U1 1
U2 5
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0721-3115
J9 PROPELL EXPLOS PYROT
JI Propellants Explos. Pyrotech.
PD JUN
PY 2012
VL 37
IS 3
BP 259
EP 260
DI 10.1002/prep.201280005
PG 2
WC Chemistry, Applied; Engineering, Chemical
SC Chemistry; Engineering
GA 958NV
UT WOS:000305247000002
ER
PT J
AU Benjamin, AS
Diaz, M
Matzen, LE
Johnson, B
AF Benjamin, Aaron S.
Diaz, Michael
Matzen, Laura E.
Johnson, Benjamin
TI Tests of the DRYAD Theory of the Age-Related Deficit in Memory for
Context: Not About Context, and Not About Aging
SO PSYCHOLOGY AND AGING
LA English
DT Article
DE recognition; source memory; context memory; attention; global deficit
ID OLDER-ADULTS; RESPONSE DEADLINE; DIVIDED ATTENTION; FALSE RECOGNITION;
REPETITION; YOUNG; RECOLLECTION; PERFORMANCE; ITEM; METAANALYSIS
AB Older adults exhibit a disproportionate deficit in their ability to recover contextual elements or source information about prior encounters with stimuli. A recent theoretical account, DRYAD, attributes this selective deficit to a global decrease in memory fidelity with age, moderated by weak representation of contextual information. The predictions of DRYAD are tested here in three experiments. We show that an age-related deficit obtains for whichever aspect of the stimulus subjects' attention is directed away from during encoding (Experiment 1), suggesting a central role for attention in producing the age-related deficit in context. We also show that an analogous deficit can be elicited within young subjects with a manipulation of study time (Experiment 2), suggesting that any means of reducing memory fidelity yields an interaction of the same form as the age-related effect. Experiment 3 evaluates the critical prediction of DRYAD that endorsement probability in an exclusion task should vary nonmonotonically with memory strength. This prediction was confirmed by assessing the shape of the forgetting function in a continuous exclusion task. The results are consistent with the DRYAD account of aging and memory judgments and do not support the widely held view that aging entails the selective disruption of processes involved in encoding, storing, or retrieving contextual information.
C1 [Benjamin, Aaron S.; Johnson, Benjamin] Univ Illinois, Dept Psychol, Champaign, IL 61820 USA.
[Diaz, Michael] Washington Univ, Dept Psychol, St Louis, MO 63130 USA.
[Matzen, Laura E.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Benjamin, AS (reprint author), Univ Illinois, Dept Psychol, 603 E Daniel St, Champaign, IL 61820 USA.
EM asbenjam@illinois.edu
FU NIA NIH HHS [R01 AG026263, R01 AG026263-01A1]; PHS HHS [026263]
NR 36
TC 5
Z9 5
U1 1
U2 4
PU AMER PSYCHOLOGICAL ASSOC
PI WASHINGTON
PA 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA
SN 0882-7974
J9 PSYCHOL AGING
JI Psychol. Aging
PD JUN
PY 2012
VL 27
IS 2
BP 418
EP 428
DI 10.1037/a0024786
PG 11
WC Gerontology; Psychology, Developmental
SC Geriatrics & Gerontology; Psychology
GA 956OJ
UT WOS:000305098700015
PM 21875219
ER
PT J
AU Cescatti, A
Marcolla, B
Vannan, SKS
Pan, JY
Roman, MO
Yang, XY
Ciais, P
Cook, RB
Law, BE
Matteucci, G
Migliavacca, M
Moors, E
Richardson, AD
Seufert, G
Schaaf, CB
AF Cescatti, Alessandro
Marcolla, Barbara
Vannan, Suresh K. Santhana
Pan, Jerry Yun
Roman, Miguel O.
Yang, Xiaoyuan
Ciais, Philippe
Cook, Robert B.
Law, Beverly E.
Matteucci, Giorgio
Migliavacca, Mirco
Moors, Eddy
Richardson, Andrew D.
Seufert, Guenther
Schaaf, Crystal B.
TI Intercomparison of MODIS albedo retrievals and in situ measurements
across the global FLUXNET network
SO REMOTE SENSING OF ENVIRONMENT
LA English
DT Article
DE MODIS; Surface albedo; Validation; FLUXNET; Terrestrial ecosystems;
Plant functional types; Remote sensing
ID REFLECTANCE DISTRIBUTION FUNCTION; BROAD-BAND ALBEDO; SURFACE ALBEDO;
BOREAL FORESTS; CLIMATE-CHANGE; VEGETATION; PRODUCTS; FEEDBACKS;
VALIDATION; INSTRUMENT
AB Surface albedo is a key parameter in the Earth's energy balance since it affects the amount of solar radiation directly absorbed at the planet surface. Its variability in time and space can be globally retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly values of satellite retrievals and in situ measurements was found (r(2) = 0.82). The mismatch is correlated with the spatial heterogeneity of surface albedo, stressing the relevance of land cover homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo are considered for different plant functional types, the match,. with surface observations is extremely good at all forest sites. On the contrary, satellite retrievals at non-forested sites (grasslands, savannas, croplands) underestimate in situ measurements across the seasonal cycle. The mismatch observed at grassland and cropland sites is likely due to the extreme fragmentation of these landscapes, as confirmed by geostatistical attributes derived from high resolution scenes. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Cescatti, Alessandro; Migliavacca, Mirco; Seufert, Guenther] Commiss European Communities, DG Joint Res Ctr, Inst Environm & Sustainabil, Climate Change Unit, I-21027 Ispra, VA, Italy.
[Marcolla, Barbara] Fdn Edmund Mach, IASMA Res & Innovat Ctr, Sustainable Agroecosyst & Bioresources Dept, I-38010 San Michele All Adige, Italy.
[Vannan, Suresh K. Santhana; Pan, Jerry Yun; Cook, Robert B.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Roman, Miguel O.] NASA, Goddard Space Flight Ctr, Terr Informat Syst Lab, Greenbelt, MD 20771 USA.
[Yang, Xiaoyuan; Schaaf, Crystal B.] Boston Univ, Dept Geog & Environm, Ctr Remote Sensing, Boston, MA 02215 USA.
[Ciais, Philippe] Joint Unit CEA CNRS UVSQ, Lab Sci Climat & Environm LSCE, Gif Sur Yvette, France.
[Law, Beverly E.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA.
[Matteucci, Giorgio] CNR ISAFOM, I-87036 Arcavacata Di Rende, CS, Italy.
[Moors, Eddy] Alterra Wageningen UR, ESS CC, Wageningen, Netherlands.
[Richardson, Andrew D.] Harvard Univ Hebaria, Dept Organism & Evolutionary Biol, Harvard Univ, Cambridge, MA 02138 USA.
[Schaaf, Crystal B.] Univ Massachusetts, Boston, MA 02125 USA.
RP Cescatti, A (reprint author), Commiss European Communities, DG Joint Res Ctr, Inst Environm & Sustainabil, Climate Change Unit, TP290,Via E Fermi 2749, I-21027 Ispra, VA, Italy.
EM alessandro.cescatti@jrc.ec.europa.eu
RI Migliavacca, mirco/C-1260-2011; Moors, Eddy/J-5165-2012; Richardson,
Andrew/F-5691-2011; Roman, Miguel/D-4764-2012; Seufert,
Gunther/J-9918-2013; Matteucci, Giorgio/N-3526-2015; Law,
Beverly/G-3882-2010;
OI Moors, Eddy/0000-0003-2309-2887; Richardson, Andrew/0000-0002-0148-6714;
Roman, Miguel/0000-0003-3953-319X; Seufert, Gunther/0000-0002-6019-6688;
Matteucci, Giorgio/0000-0002-4790-9540; Law,
Beverly/0000-0002-1605-1203; Marcolla, Barbara/0000-0001-6357-4616;
Cook, Robert/0000-0001-7393-7302
FU CFCAS; NSERC; BIOCAP; Environment Canada; NRCan; CarboEuropeIP;
FAO-GTOS-TCO; iLEAPS; Max Planck Institute for Biogeochemistry; National
Science Foundation; University of Tuscia; Universite Laval and
Environment Canada and US Department of Energy; Berkeley Water Center;
Lawrence Berkeley National Laboratory; Microsoft Research eScience; Oak
Ridge National Laboratory; University of California - Berkeley;
University of Virginia; NASA [NNX08AE94A]
FX This work is based on radiometric measurements acquired by the FLUXNET
community and in particular by the following networks: AmeriFlux (US
Department of Energy, Biological and Environmental Research, Terrestrial
Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)), AfriFlux,
AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux,
FLUXNET - Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada,
and NRCan), Green-Grass, KoFlux, LBA, NECC, OzFlux, TCOS - Siberia, and
USCCC. We acknowledge the support to data harmonization provided by
CarboEuropeIP, FAO-GTOS-TCO, iLEAPS (the Integrated Land
Ecosystem-Atmosphere Processes Study, a core project of IGBP), Max
Planck Institute for Biogeochemistry, National Science Foundation,
University of Tuscia, Universite Laval and Environment Canada and US
Department of Energy and the database development and technical support
from Berkeley Water Center, Lawrence Berkeley National Laboratory,
Microsoft Research eScience, Oak Ridge National Laboratory, University
of California - Berkeley, and University of Virginia. The processing of
MODIS data has been supported by NASA grant NNX08AE94A. Support for C.
Schaaf and X. Yang was provided by NASA grant NNX08AE94A.
NR 58
TC 98
Z9 103
U1 7
U2 60
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0034-4257
J9 REMOTE SENS ENVIRON
JI Remote Sens. Environ.
PD JUN
PY 2012
VL 121
BP 323
EP 334
DI 10.1016/j.rse.2012.02.019
PG 12
WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic
Technology
SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science &
Photographic Technology
GA 955WN
UT WOS:000305051700028
ER
PT J
AU Arthur, JL
Lapidus, SH
Stephens, PW
Miller, JS
AF Arthur, Jordan L.
Lapidus, Saul H.
Stephens, Peter W.
Miller, Joel S.
TI Structure and magnetostructural correlation of ferrimagnetic
meso-tetraphenylporphinatomanganese(III) dimethyl-N,N '-dicyanoquinone
diiminide, [MnTPP](+)[Me(2)DCNQI](center dot-)
SO SCIENCE CHINA-CHEMISTRY
LA English
DT Article
DE metalloporphyrin; magnetic ordering; ferrimagnet; crystal structure
ID MOLECULE-BASED FERRIMAGNET; MAGNETIC-PROPERTIES; ORGANIC MAGNETS;
LINEAR-CHAIN; DIMENSIONALITY CROSSOVERS; SPIN ALTERNATION; REDOX
SYSTEMS; 1ST EXAMPLE; T-C; TETRACYANOETHENIDE
AB The structure [(MnTPP)-T-III][Me(2)DCNQI] (TPP = tetraphenylporphinato; Me(2)DCNQI = 2,5-dimethyl-N,N'-dicyanoquinone-diimine) has been determined from X-ray powder diffraction data. The nonsolvated structure is composed of linear (1-D) chains of alternating [(MnTPP)-T-III](+) and mu-[Me(2)DCNQI](center dot-) with intrachain Mn...Mn separations of 12.83 , and a Mn-N-DCNQI distance of 2.18 . The dihedral angle between the mean Mn(N-4)(TPP) and [Me(2)DCNQI](center dot-) planes, and the Mn-(N-C)(DCNQI) angle are 84.18A degrees and 143.6A degrees, respectively. [(MnTPP)-T-III][Me(2)DCNQI] has a T (c) of 4.3 K from the 10 Hz chi aEuro(3)(T) data, 2-K coercivity of 5,600 Oe, and 6,300 emuOe/mol remnant magnetization that are reduced from that observed for related materials, and their inclusion extends the magnetostructural correlation between the intrachain coupling and both the dihedral angle between the mean Mn(N-4)(TPP) and [TCNE](center dot-) (TCNE = tetracyanoethylene) planes and Mn-(N-C)(TCNE) angles. This is in accord with the intrachain coupling arising from the overlap of the Mn-III -like singly occupied molecular orbital (SOMO) and the z component of the [TCNE](center dot-) pi* (pi(z)*) SOMO, which increases with decreasing dihedral angle between the mean Mn(N-4)(TPP) and [TCNE](center dot-) planes and Mn-(N-C)(TCNE) angle.
C1 [Lapidus, Saul H.; Stephens, Peter W.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Arthur, Jordan L.; Miller, Joel S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA.
[Stephens, Peter W.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA.
RP Stephens, PW (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
EM Peter.Stephens@stonybrook.edu; jsmiller@chem.utah.edu
FU Department of Energy Division of Material Science [DE-FG03-93ER45504];
U.S. Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX We appreciate the continued partial support by the Department of Energy
Division of Material Science (DE-FG03-93ER45504). Use of the National
Synchrotron Light Source, Brookhaven National Laboratory, was supported
by the U.S. Department of Energy, Office of Basic Energy Sciences, under
Contract No. DE-AC02-98CH10886.
NR 68
TC 2
Z9 2
U1 1
U2 12
PU SCIENCE PRESS
PI BEIJING
PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA
SN 1674-7291
EI 1869-1870
J9 SCI CHINA CHEM
JI Sci. China-Chem.
PD JUN
PY 2012
VL 55
IS 6
BP 987
EP 996
DI 10.1007/s11426-012-4591-0
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA 958LJ
UT WOS:000305238400016
ER
PT J
AU Robins, NA
Hagan, N
Halabi, S
Hsu-Kim, H
Gonzales, RDE
Morris, M
Woodall, G
Richter, DD
Heine, P
Zhang, T
Bacon, A
Vandenberg, J
AF Robins, Nicholas A.
Hagan, Nicole
Halabi, Susan
Hsu-Kim, Heileen
Espinoza Gonzales, Ruben Dario
Morris, Mark
Woodall, George
Richter, Daniel deB.
Heine, Paul
Zhang, Tong
Bacon, Allan
Vandenberg, John
TI Estimations of historical atmospheric mercury concentrations from
mercury refining and present-day soil concentrations of total mercury in
Huancavelica, Peru
SO SCIENCE OF THE TOTAL ENVIRONMENT
LA English
DT Article
DE Mercury; Silver; AERMOD; Soils; Huancavelica, Peru
ID ALMADEN MINING DISTRICT; CONTAMINATED SITES; SPAIN; FRACTIONATION;
GUIZHOU; CHINA; AREA
AB Detailed Spanish records of cinnabar mining and mercury production during the colonial period in Huancavelica, Peru were examined to estimate historical health risks to the community from exposure to elemental mercury (Hg) vapor resulting from cinnabar refining operations. Between 1564 and 1810, nearly 17,000 metric tons of Hg were released to the atmosphere in Huancavelica from Hg production. AERMOD was used with estimated emissions and source characteristics to approximate historic atmospheric concentrations of mercury vapor. Modeled 1-hour and long-term concentrations were compared with present-day inhalation reference values for elemental Hg. Estimated 1-hour maximum concentrations for the entire community exceeded present-day occupational inhalation reference values, while some areas closest to the smelters exceeded present-day emergency response guideline levels. Estimated long-term maximum concentrations for the entire community exceeded the EPA Reference Concentration (RfC) by a factor of 30 to 100, with areas closest to the smelters exceeding the RfC by a factor of 300 to 1000. Based on the estimated historical concentrations of Hg vapor in the community, the study also measured the extent of present-day contamination throughout the community through soil sampling and analysis. Total Hg in soils sampled from 20 locations ranged from 1.75 to 698 mg/kg and three adobe brick samples ranging from 47.4 to 284 mg/kg, consistent with other sites of mercury mining and use. The results of the soil sampling indicate that the present-day population of Huancavelica is exposed to levels of mercury from legacy contamination which is currently among the highest worldwide, consequently placing them at potential risk of adverse health outcomes. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Robins, Nicholas A.] N Carolina State Univ, Dept Hist, Raleigh, NC 27695 USA.
[Robins, Nicholas A.; Hagan, Nicole] US EPA, Oak Ridge Inst Sci & Educ, Res Triangle Pk, NC 27711 USA.
[Halabi, Susan] Duke Univ, Dept Biostat & Bioinformat, Med Ctr, Durham, NC 27710 USA.
[Hsu-Kim, Heileen; Zhang, Tong] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA.
[Espinoza Gonzales, Ruben Dario] Environm Hlth Council, Ascension, Huancavelica, Peru.
[Morris, Mark] US EPA, Off Air Qual Planning & Stand, Res Triangle Pk, NC USA.
[Woodall, George; Vandenberg, John] US EPA, Off Res & Dev, Res Triangle Pk, NC USA.
[Richter, Daniel deB.; Heine, Paul; Bacon, Allan] Duke Univ, Nicholas Sch Environm, LSRC, Durham, NC 27708 USA.
RP Robins, NA (reprint author), N Carolina State Univ, Dept Hist, Withers Hall 268, Raleigh, NC 27695 USA.
EM narobins@ncsu.edu; hagan.nicole@epa.gov; susan.halabi@duke.edu;
hsukim@duke.edu; espinozaii@hotmail.com; morris.mark@epa.gov;
woodall.george@epa.gov; drichter@duke.edu; pheine@duke.edu;
tong.zhang@duke.edu; allan.bacon@duke.edu; vandenberg.john@epa.gov
RI Hsu-Kim, Heileen/A-5409-2008; Woodall, George/M-5658-2014;
OI Hsu-Kim, Heileen/0000-0003-0675-4308; Vandenberg,
John/0000-0003-2619-9460
FU U.S. Environmental Protection Agency; U.S. EPA National Center for
Environmental Assessment, Office of Research and Development; Duke
Global Health Institute
FX The information in this document has been funded in part by the U.S.
Environmental Protection Agency. It has been subjected to review by the
National Center for Environmental Assessment and approved for
publication. The views expressed in this article are those of the
authors and do not necessarily represent the views or policies of the
U.S. Environmental Protection Agency.; Special thanks to Ted Palma,
James Hirtz, James Thurman, and Roger Brode of the U.S. EPA for their
support and contributions to this paper. Nicholas Robins additionally
thanks Joseph Graff and Diego Ballivian of the Council for the
International Exchange of Scholars Fulbright program, and Marcela Inch
former Director of the National Archive and Library of Bolivia, and her
staff, as well as Ruben Julio Ruiz Ortiz, Director of the Casa Nacional
de Moneda, Potosi and Sheila Beltran Lopez, Director of the Museum of
the Nacional de Moneda de Potosi, and Martin Crane Sr. and Jr. for their
support of this research. Additionally, the authors would like to thank
Richard Merrin, Miguel Yepez, and Carolina Aviles of the U.S. Embassy in
Peru, for their assistance. Nicholas Robins and Nicole Hagan would
jointly like to acknowledge support from Oak Ridge Institute of Science
and Education fellowships at the U.S. EPA National Center for
Environmental Assessment, Office of Research and Development. This
research was supported by a grant from the Duke Global Health Institute.
NR 37
TC 5
Z9 5
U1 1
U2 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0048-9697
J9 SCI TOTAL ENVIRON
JI Sci. Total Environ.
PD JUN 1
PY 2012
VL 426
BP 146
EP 154
DI 10.1016/j.scitotenv.2012.03.082
PG 9
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA 952LZ
UT WOS:000304795300016
PM 22542225
ER
PT J
AU Tuskan, GA
DiFazio, S
Faivre-Rampant, P
Gaudet, M
Harfouche, A
Jorge, V
Labbe, JL
Ranjan, P
Sabatti, M
Slavov, G
Street, N
Tschaplinski, TJ
Yin, TM
AF Tuskan, Gerald A.
DiFazio, Steve
Faivre-Rampant, Patricia
Gaudet, Muriel
Harfouche, Antoine
Jorge, Veronique
Labbe, Jessy L.
Ranjan, Priya
Sabatti, Maurizio
Slavov, Gancho
Street, Nathaniel
Tschaplinski, Timothy J.
Yin, Tongming
TI The obscure events contributing to the evolution of an incipient sex
chromosome in Populus: a retrospective working hypothesis
SO TREE GENETICS & GENOMES
LA English
DT Review
DE Gender determination; Sex chromosome; Single nucleotide polymorphisms
(SNP); MicroRNA (miRNA); Nucleotide-binding site-leucine-rich repeat
(NBS-LRR); Populus
ID SEXUALLY-TRANSMITTED-DISEASE; GENETIC-LINKAGE MAPS; GENOME-WIDE
ANALYSIS; RESISTANCE GENES; ARABIDOPSIS-THALIANA; BUD EXUDATE; SMALL
RNAS; GC-MS; NATURAL-SELECTION; FLOWERING PLANTS
AB Genetic determination of gender is a fundamental developmental and evolutionary process in plants. Although it appears that dioecy in Populus is genetically controlled, the precise gender-determining systems remain unclear. The recently released second draft assembly and annotated gene set of the Populus genome provided an opportunity to revisit this topic. We hypothesized that over evolutionary time, selective pressure has reformed the genome structure and gene composition in the peritelomeric region of the chromosome XIX, which has resulted in a distinctive genome structure and cluster of genes contributing to gender determination in Populus trichocarpa. Multiple lines of evidence support this working hypothesis. First, the peritelomeric region of the chromosome XIX contains significantly fewer single nucleotide polymorphisms than the rest of Populus genome and has a distinct evolutionary history. Second, the peritelomeric end of chromosome XIX contains the largest cluster of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) class of disease resistance genes in the entire Populus genome. Third, there is a high occurrence of small microRNAs on chromosome XIX, which is coincident to the region containing the putative gender-determining locus and the major cluster of NBS-LRR genes. Further, by analyzing the metabolomic profiles of floral bud in male and female Populus trees using a gas chromatography-mass spectrometry, we found that there are gender-specific accumulations of phenolic glycosides. Taken together, these findings led to the hypothesis that resistance to and regulation of a floral pathogen and gender determination coevolved, and that these events triggered the emergence of a nascent sex chromosome. Further studies of chromosome XIX will provide new insights into the genetic control of gender determination in Populus.
C1 [Tuskan, Gerald A.; Labbe, Jessy L.; Ranjan, Priya; Tschaplinski, Timothy J.] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA.
[DiFazio, Steve] W Virginia Univ, Dept Biol, Morgantown, WV 26506 USA.
[Faivre-Rampant, Patricia] INRA, UMR1165, Unite Rech Genom Vegetale, F-91057 Evry, France.
[Gaudet, Muriel; Harfouche, Antoine; Sabatti, Maurizio] Univ Tuscia, Dept Innovat Biol Agrofood & Forest Syst, I-01100 Viterbo, Italy.
[Jorge, Veronique] INRA, UR0588, F-45075 Orleans 2, France.
[Slavov, Gancho] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3EB, Dyfed, Wales.
[Street, Nathaniel] Umea Univ, S-90187 Umea, Sweden.
[Yin, Tongming] Nanjing Forestry Univ, Key Lab Forest Genet & Biotechnol, Nanjing 210037, Jiangsu, Peoples R China.
RP Tuskan, GA (reprint author), Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA.
EM gtk@ornl.gov; stephen.difazio@mail.wvu.edu; faivre@evry.inra.fr;
gaudet@unitus.it; aharfouche@unitus.it; veronique.jorge@orleans.inra.fr;
labbejj@ornl.gov; ranjanp@ornl.gov; sabatti@unitus.it; gts@aber.ac.uk;
nathaniel.street@plantphys.umu.se; t2t@ornl.gov; tmyin@njfu.com.cn
RI Street, Nathaniel/B-3920-2008; Gaudet, Muriel/J-8875-2012; Labbe,
Jessy/G-9532-2011; Tuskan, Gerald/A-6225-2011;
OI Street, Nathaniel/0000-0001-6031-005X; Labbe, Jessy/0000-0003-0368-2054;
Tuskan, Gerald/0000-0003-0106-1289; Tschaplinski,
Timothy/0000-0002-9540-6622
FU Office of Biological and Environmental Research in the DOE Office of
Science; Italian Ministry of Education, University and Research (MIUR)
FX General analysis and writing of this paper were supported by the
BioEnergy Science Center, a US Department of Energy Bioenergy Research
Facility supported by the Office of Biological and Environmental
Research in the DOE Office of Science. Oak Ridge National Laboratory is
managed by the University of Tennessee-Battelle LLC for the Department
of Energy. AH is supported by the Brain Gain Program (Rientro dei
cervelli) of the Italian Ministry of Education, University and Research
(MIUR).
NR 106
TC 21
Z9 24
U1 1
U2 58
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1614-2942
EI 1614-2950
J9 TREE GENET GENOMES
JI Tree Genet. Genomes
PD JUN
PY 2012
VL 8
IS 3
BP 559
EP 571
DI 10.1007/s11295-012-0495-6
PG 13
WC Forestry; Genetics & Heredity; Horticulture
SC Forestry; Genetics & Heredity; Agriculture
GA 958MJ
UT WOS:000305241900007
ER
PT J
AU Baker, EN
Dauter, Z
AF Baker, Edward N.
Dauter, Zbigniew
TI Small angle scattering - moving forward
SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY
LA English
DT Editorial Material
ID DEPOSITION
C1 [Baker, Edward N.] Univ Auckland, Sch Biol Sci, Auckland 1, New Zealand.
[Dauter, Zbigniew] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
RP Baker, EN (reprint author), Univ Auckland, Sch Biol Sci, Private Bag 92-019, Auckland 1, New Zealand.
NR 4
TC 0
Z9 0
U1 0
U2 3
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0907-4449
J9 ACTA CRYSTALLOGR D
JI Acta Crystallogr. Sect. D-Biol. Crystallogr.
PD JUN
PY 2012
VL 68
BP 619
EP 619
DI 10.1107/S0907444912021105
PN 6
PG 1
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 955FY
UT WOS:000305003700001
PM 22683783
ER
PT J
AU Brown, LS
Preston, DL
AF Brown, Lowell S.
Preston, Dean L.
TI Leading relativistic corrections to the Kompaneets equation
SO ASTROPARTICLE PHYSICS
LA English
DT Article
DE Kompaneets; Relativistic corrections; Sunyaev-Zel'dovich effect
ID FOKKER-PLANCK EQUATION; COMPTON; SCATTERING; RADIATION; ELECTRONS;
GALAXIES; CLUSTERS; UNIVERSE; PLASMA
AB We calculate the first relativistic corrections to the Kompaneets equation for the evolution of the photon frequency distribution brought about by Compton scattering. The Lorentz invariant Boltzmann equation for electron-photon scattering is first specialized to isotropic electron and photon distributions, the squared scattering amplitude and the energy-momentum conserving delta function are each expanded to order v(4)/c(4) averages over the directions of the electron and photon momenta are then carried out, and finally an integration over the photon energy yields our Fokker-Planck equation. The Kompaneets equation, which involves only first- and second-order derivatives with respect to the photon energy, results from the order v(2)/c(2) terms, while the first relativistic corrections of order v(4)/c(4) introduce third- and fourth-order derivatives. We emphasize that our result holds when neither the electrons nor the photons are in thermal equilibrium; two effective temperatures characterize a general, non-thermal electron distribution. When the electrons are in thermal equilibrium our relativistic Fokker-Planck equation is in complete agreement with the most recent published results, but we both disagree with older work. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Brown, Lowell S.; Preston, Dean L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Brown, LS (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM brownl@lanl.gov
NR 14
TC 2
Z9 2
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-6505
J9 ASTROPART PHYS
JI Astropart Phys.
PD JUN
PY 2012
VL 35
IS 11
BP 742
EP 748
DI 10.1016/j.astropartphys.2012.03.006
PG 7
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 952JC
UT WOS:000304787800003
ER
PT J
AU Cherwinka, J
Co, R
Cowen, DF
Grant, D
Halzen, F
Heeger, KM
Hsu, L
Karle, A
Kudryavtsev, VA
Maruyama, R
Pettus, W
Robinson, M
Spooner, NJC
AF Cherwinka, J.
Co, R.
Cowen, D. F.
Grant, D.
Halzen, F.
Heeger, K. M.
Hsu, L.
Karle, A.
Kudryavtsev, V. A.
Maruyama, R.
Pettus, W.
Robinson, M.
Spooner, N. J. C.
TI A search for the dark matter annual modulation in South Pole ice
SO ASTROPARTICLE PHYSICS
LA English
DT Article
DE Dark matter; Direct detection; Annual modulation; DAMA; South Pole
ID DAMA/LIBRA; CANDIDATES; LIMITS; CONSTRAINTS; EXPOSURE; HISTORY
AB Astrophysical observations and cosmological data have led to the conclusion that nearly one quarter of the Universe consists of dark matter. Should dark matter interact with nucleons, it has been postulated that an observable signature of dark matter is an annual modulation in the rate of dark matter-nucleon interactions taking place in an Earth-bound experiment. To search for this effect, we introduce the concept for a new dark matter experiment using NaI scintillation detectors deployed deep in the South Pole ice. This experiment complements dark matter search efforts in the Northern Hemisphere and will investigate the observed annual modulation in the DAMA/LIBRA and DAMA/NaI experiments. The unique location will permit the study of background effects correlated with seasonal variations and the surrounding environment. This paper describes the experimental concept and explores the sensitivity of a 250 kg NaI experiment at the South Pole. Published by Elsevier B.V.
C1 [Co, R.; Hsu, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Cherwinka, J.] Univ Wisconsin, Phys Sci Lab, Stoughton, WI 53589 USA.
[Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Cowen, D. F.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Halzen, F.; Heeger, K. M.; Karle, A.; Maruyama, R.; Pettus, W.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Kudryavtsev, V. A.; Robinson, M.; Spooner, N. J. C.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England.
RP Hsu, L (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
EM llhsu@fnal.gov
RI Maruyama, Reina/A-1064-2013;
OI Maruyama, Reina/0000-0003-2794-512X; Pettus, Walter/0000-0003-4947-7400;
Co, Raymond/0000-0002-8395-7056; Kudryavtsev, Vitaly/0000-0002-7018-5827
FU Wisconsin IceCube Particle Astrophysics Center; Wisconsin Alumni
Research Foundation; Sloan Research Foundation; National Science and
Engineering Research Council of Canada; University of Alberta;
Stewardship Science Graduate Fellowship; Science Undergraduate
Laboratory; Fermilab; United States Department of Energy
[De-AC02-07CH11359]
FX The concept of a dark matter annual modulation experiment in the
Southern Hemisphere has been discussed by several people in the past.
For the development of the experiment presented here, we wish to thank
Peter Fisher, Bernard Sadoulet and Christopher Stubbs for their
encouragement and input. We acknowledge Katherine Freese for useful
theoretical discussion. We wish to thank Jonghee Yoo for sharing the
Pipewimp limit calculation package, which was used to perform the
sensitivity studies presented in this paper. We thank SNOLAB for their
efforts on the low background measurements. We thank STFC and the Boulby
mine company CPL for support of low background measurements of NaI. This
work was supported by the Wisconsin IceCube Particle Astrophysics
Center, the Wisconsin Alumni Research Foundation, the Sloan Research
Foundation, the National Science and Engineering Research Council of
Canada, the University of Alberta, the Stewardship Science Graduate
Fellowship, the Science Undergraduate Laboratory Internships and
Fermilab, which is operated by Fermi Research Alliance, LLC under
Contract No. De-AC02-07CH11359 with the United States Department of
Energy.
NR 44
TC 22
Z9 22
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-6505
J9 ASTROPART PHYS
JI Astropart Phys.
PD JUN
PY 2012
VL 35
IS 11
BP 749
EP 754
DI 10.1016/j.astropartphys.2012.03.003
PG 6
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 952JC
UT WOS:000304787800004
ER
PT J
AU Richardson, DJ
Edwards, MJ
White, GF
Baiden, N
Hartshorne, RS
Fredrickson, J
Shi, L
Zachara, J
Gates, AJ
Butt, JN
Clarke, TA
AF Richardson, David J.
Edwards, Marcus J.
White, Gaye F.
Baiden, Nanakow
Hartshorne, Robert S.
Fredrickson, Jim
Shi, Liang
Zachara, John
Gates, Andrew J.
Butt, Julea N.
Clarke, Thomas A.
TI Exploring the biochemistry at the extracellular redox frontier of
bacterial mineral Fe(III) respiration
SO BIOCHEMICAL SOCIETY TRANSACTIONS
LA English
DT Article
DE cytochrome c; electron paramagnetic resonance (EPR); electron transfer;
iron respiration; protein film voltammetry; Shewanella
ID SHEWANELLA-ONEIDENSIS MR-1; MEMBRANE CYTOCHROMES MTRC; C-TYPE
CYTOCHROMES; OUTER-MEMBRANE; OMCA; REDUCTION
AB Many species of the bacterial Shewanella genus are notable for their ability to respire in anoxic environments utilizing insoluble minerals of Fe(III) and Mn(IV) as extracellular electron acceptors. In Shewanella oneidensis, the process is dependent on the decahaem electron-transport proteins that lie at the extracellular face of the outer membrane where they can contact the insoluble mineral substrates. These extracellular proteins are charged with electrons provided by an inter-membrane electron-transfer pathway that links the extracellular face of the outer membrane with the inner cytoplasmic membrane and thereby intracellular electron sources. In the present paper, we consider the common structural features of two of these outer-membrane decahaem cytochromes, MtrC and MtrF, and bring this together with biochemical, spectroscopic and voltammetric data to identify common and distinct properties of these prototypical members of different clades of the outer-membrane decahaem cytochrome superfamily.
C1 [Richardson, David J.; Edwards, Marcus J.; White, Gaye F.; Baiden, Nanakow; Hartshorne, Robert S.; Gates, Andrew J.; Butt, Julea N.; Clarke, Thomas A.] Univ E Anglia, Sch Biol Sci, Ctr Mol & Struct Biochem, Norwich NR4 7TJ, Norfolk, England.
[Fredrickson, Jim; Shi, Liang; Zachara, John] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Richardson, DJ (reprint author), Univ E Anglia, Sch Biol Sci, Ctr Mol & Struct Biochem, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England.
EM d.richardson@uea.ac.uk
RI Gates, Andrew/F-8218-2011; Richardson, David/E-2275-2011; clarke,
tom/D-1837-2009; Butt, Julea/E-2133-2011
OI Gates, Andrew/0000-0002-4594-5038; clarke, tom/0000-0002-6234-1914;
Butt, Julea/0000-0002-9624-5226
FU Biotechnology and Biological Sciences Research Council; EMSL
(Environmental Molecular Sciences Laboratory); U.S. Department of
Energy, Office of Biological and Environmental Research at Pacific
Northwest National Laboratory
FX This research was supported by the Biotechnology and Biological Sciences
Research Council and EMSL (Environmental Molecular Sciences Laboratory)
Scientific Grand Challenge project at the W. R. Wiley EMSL, a national
scientific user facility sponsored by the U.S. Department of Energy,
Office of Biological and Environmental Research programme located at
Pacific Northwest National Laboratory. The Pacific Northwest National
Laboratory is operated for the Department of Energy by Battelle. D.J.R.
is a Royal Society Wolfson Foundation Merit Award holder.
NR 17
TC 13
Z9 13
U1 2
U2 33
PU PORTLAND PRESS LTD
PI LONDON
PA THIRD FLOOR, EAGLE HOUSE, 16 PROCTER STREET, LONDON WC1V 6 NX, ENGLAND
SN 0300-5127
J9 BIOCHEM SOC T
JI Biochem. Soc. Trans.
PD JUN
PY 2012
VL 40
BP 493
EP 500
DI 10.1042/BST20120018
PN 3
PG 8
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 952PG
UT WOS:000304803900002
PM 22616858
ER
PT J
AU Ragsdale, SW
Yi, L
Bender, G
Gupta, N
Kung, Y
Yan, LF
Stich, TA
Doukov, T
Leichert, L
Jenkins, PM
Bianchetti, CM
George, SJ
Cramer, SP
Britt, RD
Jakob, U
Martens, JR
Phillips, GN
Drennan, CL
AF Ragsdale, Stephen W.
Yi, Li
Bender, Guenes
Gupta, Nirupama
Kung, Yan
Yan, Lifen
Stich, Troy A.
Doukov, Tzanko
Leichert, Lars
Jenkins, Paul M.
Bianchetti, Christopher M.
George, Simon J.
Cramer, Stephen P.
Britt, R. David
Jakob, Ursula
Martens, Jeffrey R.
Phillips, George N., Jr.
Drennan, Catherine L.
TI Redox, haem and CO in enzymatic catalysis and regulation
SO BIOCHEMICAL SOCIETY TRANSACTIONS
LA English
DT Article
DE acetyl-CoA synthase (ACS); carbon monoxide; carbon monoxide
dehydrogenase (CODH); catalysis; haem; redox regulation
ID ACETYL-COA; TRANSCRIPTION FACTORS; SIGNALING MOLECULE; SYNTHASE;
OXYGENASE; MOTIFS; BILIRUBIN; PROTEIN; SWITCH; INTERMEDIATE
AB The present paper describes general principles of redox catalysis and redox regulation in two diverse systems. The first is microbial metabolism of CO by the Wood-Ljungdahl pathway, which involves the conversion of CO or H-2/CO2 into acetyl-CoA, which then serves as a source of ATP and cell carbon. The focus is on two enzymes that make and utilize CO, CODH (carbon monoxide dehydrogenase) and ACS (acetylCoA synthase). In this pathway, CODH converts CO2 into CO and ACS generates acetyl-CoA in a reaction involving Ni center dot CO, methyl-Ni and acetyl-Ni as catalytic intermediates. A 70 angstrom (1 angstrom = 0.1 nm) channel guides CO, generated at the active site of CODH, to a CO 'cage' near the ACS active site to sequester this reactive species and assure its rapid availability to participate in a kinetically coupled reaction with an unstable Ni(I) state that was recently trapped by photolytic, rapid kinetic and spectroscopic studies. The present paper also describes studies of two haem-regulated systems that involve a principle of metabolic regulation interlinking redox, haem and CO. Recent studies with HO2 (haem oxygenase-2), a K+ ion channel (the BK channel) and a nuclear receptor (Rev-Erb) demonstrate that this mode of regulation involves a thiol-disulfide redox switch that regulates haem binding and that gas signalling molecules (CO and NO) modulate the effect of haem.
C1 [Ragsdale, Stephen W.; Yi, Li; Bender, Guenes; Gupta, Nirupama] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA.
[Kung, Yan; Drennan, Catherine L.] MIT, Dept Chem, Cambridge, MA 02139 USA.
[Kung, Yan; Drennan, Catherine L.] MIT, Dept Biol, Cambridge, MA 02139 USA.
[Yan, Lifen; Stich, Troy A.; George, Simon J.; Cramer, Stephen P.; Britt, R. David] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.
[Doukov, Tzanko] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Leichert, Lars; Jakob, Ursula] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA.
[Jenkins, Paul M.; Martens, Jeffrey R.] Univ Michigan, Dept Pharmacol, Ann Arbor, MI 48109 USA.
[Bianchetti, Christopher M.; Phillips, George N., Jr.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA.
[Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Ragsdale, SW (reprint author), Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA.
EM sragsdal@umich.edu
RI Yi, Li/A-3967-2013; Stich, Troy/F-1625-2013; Jenkins, Paul/C-9098-2015;
Leichert, Lars/B-4762-2009
OI Stich, Troy/0000-0003-0710-1456; Jenkins, Paul/0000-0002-4207-5823;
Leichert, Lars/0000-0002-5666-9681
FU National Institutes of Health [GM69857, GM39451, HL 102662, NIH GM65440,
GM48242, Y1-GM-1104, GM065318, AG027349]; National Science Foundation
[CHE-0745353]; Department of Energy Office of Biological and
Environmental Research (OBER)
FX Research was supported by the National Institutes of Health [grant
numbers GM69857 (to C. L. D.), GM39451 and HL 102662 (to S. W. R), NIH
GM65440 (to S. P. C.), GM48242 (to R. D. B.), Y1-GM-1104 (to G.N.P.),
GM065318 (to U.J.) and AG027349 (to U.J.)], the National Science
Foundation [grant number CHE-0745353 (to S. P. C.)] and Department of
Energy Office of Biological and Environmental Research (OBER) (to S. P.
C.). C. L. D. is an Howard Hughes Medical Institute (HHMI) Investigator.
NR 45
TC 8
Z9 8
U1 1
U2 25
PU PORTLAND PRESS LTD
PI LONDON
PA THIRD FLOOR, EAGLE HOUSE, 16 PROCTER STREET, LONDON WC1V 6 NX, ENGLAND
SN 0300-5127
J9 BIOCHEM SOC T
JI Biochem. Soc. Trans.
PD JUN
PY 2012
VL 40
BP 501
EP 507
DI 10.1042/BST20120083
PN 3
PG 7
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 952PG
UT WOS:000304803900003
PM 22616859
ER
PT J
AU Shu, JY
Lund, R
Xu, T
AF Shu, Jessica Y.
Lund, Reidar
Xu, Ting
TI Solution Structural Characterization of Coiled-Coil Peptide-Polymer
Side-Conjugates
SO BIOMACROMOLECULES
LA English
DT Article
ID BLOCK-COPOLYMER MICELLES; POLY(ETHYLENE OXIDE); POLYETHYLENE-GLYCOL;
HYDRODYNAMIC RADIUS; LIGHT-SCATTERING; AQUEOUS-SOLUTION; HELIX BUNDLE;
CHAIN-LENGTH; PROTEINS; PEGYLATION
AB Detailed structural characterization of protein-polymer conjugates and understanding of the interactions between covalently attached polymers and biomolecules will build a foundation to design and synthesize hybrid biomaterials. Conjugates based on simple protein structures are ideal model system to achieve these ends. Here we present a systematic structural study of coiled-coil peptide-poly(ethylene glycol) (PEG) side-conjugates in solution, using circular dichroism, dynamic light scattering, and small-angle X-ray scattering, to determine the conformation of conjugated PEG chains. The overall size and shape of side-conjugates were determined using a cylindrical form factor model. Detailed structural information of the covalently attached PEG chains was extracted using a newly developed model where each peptide-PEG conjugate was modeled as a Gaussian chain attached to a cylinder, which was further arranged in a bundle-like configuration of three or four cylinders. The peptide-polymer side-conjugates were found to retain helix bundle structure, with the polymers slightly compressed in comparison with the conformation of free polymers in solution. Such detailed structural characterization of the peptide-polymer conjugates, which elucidates the conformation of conjugated PEG around the peptide and assesses the effect of PEG on peptide structure, will contribute to the rational design of this new family of soft materials.
C1 [Shu, Jessica Y.; Lund, Reidar; Xu, Ting] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Xu, Ting] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Lund, Reidar; Xu, Ting] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Xu, T (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM tingxu@berkeley.edu
RI Lund, Reidar/F-3534-2014
FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; DOE
FX This work was supported by the U.S. Department of Energy (DOE) under
contract DE-AC02-05CH11231. Use of the Advanced Light Source, LBNL, was
supported by the DOE. We thank Prof. Manga in the Dept. of Earth and
Planetary Science, UC Berkeley for access to a densiometer. We also
thank Brian Panganiban and Joo Chuan Mg for helping to synthesize and
purify samples. Dr. Ilja Gunkel and Stephen Alvarez at the ALS are
acknowledged for assistance during the SAXS experiments.
NR 68
TC 24
Z9 24
U1 4
U2 57
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1525-7797
J9 BIOMACROMOLECULES
JI Biomacromolecules
PD JUN
PY 2012
VL 13
IS 6
BP 1945
EP 1955
DI 10.1021/bm300561y
PG 11
WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science
SC Biochemistry & Molecular Biology; Chemistry; Polymer Science
GA 954WO
UT WOS:000304978900027
PM 22575010
ER
PT J
AU Bisrat, S
DeShon, HR
Rowe, C
AF Bisrat, Shishay
DeShon, Heather R.
Rowe, Charlotte
TI Microseismic Swarm Activity in the New Madrid Seismic Zone
SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
LA English
DT Article
ID INTRAPLATE SEISMICITY; CLUSTERED MICROEARTHQUAKES; MISSISSIPPI
EMBAYMENT; EARTHQUAKE RELOCATION; FOCAL MECHANISM; FAULT; ALGORITHM;
TENNESSEE; STRAIN
AB We analyze event archives and continuous waveform data recorded by the Cooperative New Madrid Seismic Network from 1995 to 2008 in conjunction with waveform cross-correlation techniques to investigate the spatiotemporal distribution of small-magnitude (M-D < 2.4) earthquakes in the New Madrid Seismic Zone (NMSZ). The resulting clusters are divided into two major groups based on the interevent time period: (1) swarm clusters, in which the number of highly similar events recorded in a day is more than the seismic zone maximum daily rate (similar to 3 events/day) and (2) repeating earthquakes clusters, which consist of highly similar events separated by longer time periods. Most swarm clusters occur near Ridgely, Tennessee, and this 4-km x 2-km x 2-km elongated source zone produces swarms every 1-3 years that contain large numbers of strikingly similar events. Other swarms and repeating earthquake clusters occur at proposed fault intersections in the crystalline basement or along strong velocity contrasts. Focal mechanism solutions for NMSZ clusters are consistent with previously reported solutions for each major fault. We suggest that anomalously high pore-fluid pressure, inferred from artesian wells, porous intrusions, and faulted, fractured crustal rocks, is the most likely cause of swarm activity. Repeating earthquake ruptures are interpreted as reactivation of small asperities.
C1 [Bisrat, Shishay; DeShon, Heather R.] Univ Memphis, CERI, Memphis, TN 38152 USA.
[Bisrat, Shishay] Univ Memphis, Dept Earth Sci, Memphis, TN 38152 USA.
[Rowe, Charlotte] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Bisrat, S (reprint author), Univ Memphis, CERI, 3890 Cent Ave, Memphis, TN 38152 USA.
EM stbisrat@memphis.edu
FU Center for Earthquake Resources and Information; Institute of Geophysics
and Planetary Physics at Los Alamos National Laboratory (LANL); United
States Geological Survey [G10AP00013]
FX The authors thank Charles Langston, Associate Editor Guoqing Lin, and
three anonymous reviewers for critical comments that improved the
manuscript and Mitch Withers for making the 2008 continuous waveforms
available. We acknowledge support from the Center for Earthquake
Resources and Information, the Institute of Geophysics and Planetary
Physics at Los Alamos National Laboratory (LANL), and the United States
Geological Survey (award G10AP00013 to H. R. DeShon). This is LANL
publication number LA-UR 10-07616.
NR 60
TC 7
Z9 8
U1 0
U2 11
PU SEISMOLOGICAL SOC AMER
PI EL CERRITO
PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA
SN 0037-1106
J9 B SEISMOL SOC AM
JI Bull. Seismol. Soc. Amer.
PD JUN
PY 2012
VL 102
IS 3
BP 1167
EP 1178
DI 10.1785/0120100315
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 953LY
UT WOS:000304870500018
ER
PT J
AU Mellors, RJ
Jackson, J
Myers, S
Gok, R
Priestley, K
Yetirmishli, G
Turkelli, N
Godoladze, T
AF Mellors, R. J.
Jackson, J.
Myers, S.
Gok, R.
Priestley, K.
Yetirmishli, G.
Turkelli, N.
Godoladze, T.
TI Deep Earthquakes beneath the Northern Caucasus: Evidence of Active or
Recent Subduction in Western Asia (vol 102, pg 862, 2012)
SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
LA English
DT Correction
C1 [Mellors, R. J.; Myers, S.; Gok, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Jackson, J.; Priestley, K.] Univ Cambridge, Dept Earth Sci, Cambridge CB3 OEZ, England.
[Yetirmishli, G.] Natl Acad Sci, Republ Seism Survey Ctr, Baku, Azerbaijan.
[Turkelli, N.] Bogazici Univ, Dept Geophys, Kandilli Observ, Istanbul, Turkey.
[Turkelli, N.] Bogazici Univ, Dept Geophys, Earthquake Res Inst, Istanbul, Turkey.
[Godoladze, T.] Ilia State Univ, Earth Res Inst, Tbilisi, Rep of Georgia.
RP Mellors, RJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
EM mellors1@llnl.gov
RI Mellors, Robert/K-7479-2014; Gok, Rengin/O-6639-2014
OI Mellors, Robert/0000-0002-2723-5163;
NR 2
TC 0
Z9 0
U1 1
U2 4
PU SEISMOLOGICAL SOC AMER
PI EL CERRITO
PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA
SN 0037-1106
J9 B SEISMOL SOC AM
JI Bull. Seismol. Soc. Amer.
PD JUN
PY 2012
VL 102
IS 3
BP 1288
EP 1288
DI 10.1785/0120120100
PG 1
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 953LY
UT WOS:000304870500028
ER
PT J
AU Yang, ZW
Ding, MM
Chen, SM
Wang, Z
Zhang, F
Gao, YN
AF Yang Zhen-Wei
Ding Ming-Ming
Chen Shao-Min
Wang Zhe
Zhang Feng
Gao Yuan-Ning
TI Simulation study of neutrino nucleus cross section measurement in a
segmented detector at a spallation neutron source
SO CHINESE PHYSICS C
LA English
DT Article
DE unfolding; neutrino; differential cross section; segmented detector;
Monte Carlo; SNS; supernova
AB Knowledge of nu(e)-Fe/Pb differential cross sections for nu(e) energy below several tens of MeV scale is believed to be crucial in understanding supernova physics. In a segmented detector at a spallation neutron source, nu(e) energy reconstructed from the electron range measurement is strongly affected because both multiple scattering and electromagnetic showers occur along the electron passage in target materials. In order to estimate these effects, a simulation study has been performed with a cube block model assuming perfect tracking precision. The energy spectrum distortion is observed to be proportional to the atomic number of the target material. Feasibility of unfolding the distorted nu(e) energy spectrum is studied for both Fe and Pb. An evaluation of the statistical accuracy attainable is therefore provided for a segmented detector.
C1 [Yang Zhen-Wei; Ding Ming-Ming; Chen Shao-Min; Zhang Feng; Gao Yuan-Ning] Tsinghua Univ, Key Lab Particle & Radiat Imaging, Minist Educ, Beijing 100084, Peoples R China.
[Yang Zhen-Wei; Ding Ming-Ming; Chen Shao-Min; Zhang Feng; Gao Yuan-Ning] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China.
[Yang Zhen-Wei; Ding Ming-Ming; Chen Shao-Min; Wang Zhe; Zhang Feng; Gao Yuan-Ning] Tsinghua Univ, Ctr High Energy Phys, Beijing 100084, Peoples R China.
[Wang Zhe] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Yang, ZW (reprint author), Tsinghua Univ, Key Lab Particle & Radiat Imaging, Minist Educ, Beijing 100084, Peoples R China.
EM yangzhw@tsinghua.edu.cn
FU National Natural Science Foundation of China [10875062, 10905033]
FX Supported by National Natural Science Foundation of China (10875062,
10905033)
NR 15
TC 0
Z9 0
U1 2
U2 8
PU CHINESE PHYSICAL SOC
PI BEIJING
PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA
SN 1674-1137
J9 CHINESE PHYS C
JI Chin. Phys. C
PD JUN
PY 2012
VL 36
IS 6
BP 538
EP 543
DI 10.1088/1674-1137/36/6/010
PG 6
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 955QC
UT WOS:000305035000010
ER
PT J
AU Petra, CG
Anitescu, M
AF Petra, Cosmin G.
Anitescu, Mihai
TI A preconditioning technique for Schur complement systems arising in
stochastic optimization
SO COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
LA English
DT Article
DE Stochastic programming; Saddle-point preconditioning; Krylov methods;
Interior-point method; Sample average approximations; Parallel computing
ID INTERIOR-POINT METHODS; SYMMETRIC INDEFINITE SYSTEMS; STRUCTURED
LINEAR-PROGRAMS; DECOMPOSITION ALGORITHMS; QUADRATIC PROGRAMS; BARRIER
METHOD; SOLVER; FACTORIZATION; UNCERTAINTY; GENERATION
AB Deterministic sample average approximations of stochastic programming problems with recourse are suitable for a scenario-based parallelization. In this paper the parallelization is obtained by using an interior-point method and a Schur complement mechanism for the interior-point linear systems. However, the direct linear solves involving the dense Schur complement matrix are expensive, and adversely affect the scalability of this approach. We address this issue by proposing a stochastic preconditioner for the Schur complement matrix and by using Krylov iterative methods for the solution of the dense linear systems. The stochastic preconditioner is built based on a subset of existing scenarios and can be assembled and factorized on a separate process before the computation of the Schur complement matrix finishes on the remaining processes. The expensive factorization of the Schur complement is removed from the parallel execution flow and the scaling of the optimization solver is considerably improved with this approach. The spectral analysis indicates an exponentially fast convergence in probability to 1 of the eigenvalues of the preconditioned matrix with the number of scenarios incorporated in the preconditioner. Numerical experiments performed on the relaxation of a unit commitment problem show good performance, in terms of both the accuracy of the solution and the execution time.
C1 [Petra, Cosmin G.; Anitescu, Mihai] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA.
RP Anitescu, M (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM petra@mcs.anl.gov; anitescu@mcs.anl.gov
FU US Department of Energy [DE-AC02-06CH11357]
FX The authors are grateful to John Birge for discussions on the issues in
the manuscript, and to three referees whose constructive comments helped
to improve the paper. This work was supported by the US Department of
Energy through contract DE-AC02-06CH11357.
NR 58
TC 9
Z9 9
U1 0
U2 4
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0926-6003
J9 COMPUT OPTIM APPL
JI Comput. Optim. Appl.
PD JUN
PY 2012
VL 52
IS 2
BP 315
EP 344
DI 10.1007/s10589-011-9418-y
PG 30
WC Operations Research & Management Science; Mathematics, Applied
SC Operations Research & Management Science; Mathematics
GA 951BZ
UT WOS:000304697000001
ER
PT J
AU Maojo, V
Fritts, M
Martin-Sanchez, F
De la Iglesia, D
Cachau, RE
Garcia-Remesal, M
Crespo, J
Mitchell, JA
Anguita, A
Baker, N
Barreiro, JM
Benitez, SE
De la Calle, G
Facelli, JC
Ghazal, P
Geissbuhler, A
Gonzalez-Nilo, F
Graf, N
Grangeat, P
Hermosilla, I
Hussein, R
Kern, J
Koch, S
Legre, Y
Lopez-Alonso, V
Lopez-Campos, G
Milanesi, L
Moustakis, V
Munteanu, C
Otero, P
Pazos, A
Perez-Rey, D
Potamias, G
Sanz, F
Kulikowski, C
AF Maojo, Victor
Fritts, Martin
Martin-Sanchez, Fernando
De la Iglesia, Diana
Cachau, Raul E.
Garcia-Remesal, Miguel
Crespo, Jose
Mitchell, Joyce A.
Anguita, Alberto
Baker, Nathan
Maria Barreiro, Jose
Benitez, Sonia E.
De la Calle, Guillermo
Facelli, Julio C.
Ghazal, Peter
Geissbuhler, Antoine
Gonzalez-Nilo, Fernando
Graf, Norbert
Grangeat, Pierre
Hermosilla, Isabel
Hussein, Rada
Kern, Josipa
Koch, Sabine
Legre, Yannick
Lopez-Alonso, Victoria
Lopez-Campos, Guillermo
Milanesi, Luciano
Moustakis, Vassilis
Munteanu, Cristian
Otero, Paula
Pazos, Alejandro
Perez-Rey, David
Potamias, George
Sanz, Ferran
Kulikowski, Casimir
TI Nanoinformatics: developing new computing applications for nanomedicine
SO COMPUTING
LA English
DT Article
DE Nanoinformatics; Computing; Nanotechnology; Bioinformatics; Medical
Informatics; Nanomedicine
ID MEDICAL INFORMATICS; GENOMIC MEDICINE; MOLECULAR MEDICINE; HEALTH-CARE;
BIOINFORMATICS; ONTOLOGIES; SYNERGY; SUPPORT
AB Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended "nanotype" to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other -omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others.
C1 [Maojo, Victor; De la Iglesia, Diana; Garcia-Remesal, Miguel; Crespo, Jose; Anguita, Alberto; Maria Barreiro, Jose; De la Calle, Guillermo; Perez-Rey, David] Univ Politecn Madrid, Fac Informat, Dept Artificial Intelligence, Biomed Informat Grp, E-28660 Madrid, Spain.
[Cachau, Raul E.] NCI, Adv Biomed Comp Ctr, SAIC Frederick Inc, Frederick, MD 21701 USA.
[Martin-Sanchez, Fernando] Univ Melbourne, Med Sch IBES, Hlth & Biomed Informat Res Lab, Parkville, Vic 3052, Australia.
[Mitchell, Joyce A.; Facelli, Julio C.] Univ Utah, Biomed Informat Dept, Salt Lake City, UT USA.
[Baker, Nathan] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Benitez, Sonia E.; Otero, Paula] Hosp Italiano Buenos Aires, Dept Med Informat, Buenos Aires, DF, Argentina.
[Ghazal, Peter] Univ Edinburgh, Div Pathway Med, Edinburgh, Midlothian, Scotland.
[Geissbuhler, Antoine] Univ Hosp Geneva, Div Med Informat, Geneva, Switzerland.
[Gonzalez-Nilo, Fernando] Univ Talca, Ctr Bioinformat & Mol Simulat, Talca, Chile.
[Graf, Norbert] Univ Saarland, Dept Pediat Oncol & Hematol, D-6650 Homburg, Germany.
[Grangeat, Pierre] Commissariat Energie Atom & Energies Alternat CEA, LETI, Grenoble, France.
[Hermosilla, Isabel; Lopez-Alonso, Victoria; Lopez-Campos, Guillermo] Inst Hlth Carlos III, Dept Med Bioinformat, Madrid, Spain.
[Hussein, Rada] Minist Commun & Informat Technol, Inst Informat Technol, Cairo, Egypt.
[Kern, Josipa] Univ Zagreb, Sch Med, Andrija Stampar Sch Publ Hlth, Dept Med Stat Epidemiol & Med Informat, Zagreb 41001, Croatia.
[Koch, Sabine] Karolinska Inst, Dept Learning Informat Management & Eth, Hlth Informat Ctr, Stockholm, Sweden.
[Legre, Yannick] Hlth Grid Org, Clermont Ferrand, France.
[Milanesi, Luciano] CNR, Inst Biomed Technol, Milan, Italy.
[Moustakis, Vassilis] Tech Univ Crete, Khania, Crete, Greece.
[Moustakis, Vassilis; Potamias, George] FORTH, Inst Comp Sci, Iraklion, Crete, Greece.
[Munteanu, Cristian; Pazos, Alejandro] Univ A Coruna, Dept Informat & Commun Technol, La Coruna, Spain.
[Sanz, Ferran] Univ Pompeu Fabra, Biomed Informat Res Programme GRIB, IMIM, Barcelona, Spain.
[Kulikowski, Casimir] Rutgers State Univ, Dept Comp Sci, Newark, NJ USA.
[Ghazal, Peter] Univ Edinburgh, Ctr Syst Biol Edinburgh, Edinburgh, Midlothian, Scotland.
RP Maojo, V (reprint author), Univ Politecn Madrid, Fac Informat, Dept Artificial Intelligence, Biomed Informat Grp, E-28660 Madrid, Spain.
EM vmaojo@fi.upm.es
RI Gonzalez-Nilo, Fernando/M-5671-2016; Munteanu, Cristian/G-1714-2011;
Baker, Nathan/A-8605-2010; Koch, Sabine/F-8020-2010; Perez-Rey,
David/B-8172-2009; Garcia-Remesal, Miguel/G-3147-2013; Sanz,
Ferran/B-3852-2009; Moustakis, Vassilis/C-4484-2011; Lopez Campos,
Guillermo/G-2883-2015; Martin-Sanchez, Fernando/A-7587-2008; Barreiro,
Jose Maria/G-1389-2016; Gasull, Martina/A-6630-2013;
OI , Josipa/0000-0002-0896-3018; Munteanu,
Cristian-Robert/0000-0002-5628-2268; facelli, julio/0000-0003-1449-477X;
Gonzalez-Nilo, Fernando/0000-0001-6857-3575; Pazos Sierra,
Alejandro/0000-0003-2324-238X; Lopez-Campos,
Guillermo/0000-0003-3011-0940; Milanesi, Luciano/0000-0002-1201-3939;
Baker, Nathan/0000-0002-5892-6506; Perez-Rey, David/0000-0002-9021-2597;
Garcia-Remesal, Miguel/0000-0002-7532-9471; Sanz,
Ferran/0000-0002-7534-7661; Moustakis, Vassilis/0000-0003-2916-6277;
Martin-Sanchez, Fernando/0000-0002-7312-5707; Anguita,
Alberto/0000-0002-1607-8465; Otero, Paula/0000-0002-9812-4591
FU European Commission(ACTION) [FP7-224176]; Spanish Ministry of Science
and Innovation [FIS/AESPS09/00069]; RETICS COMBIOMED [RD07/0067/0006]
FX This work has been partially funded by the European Commission (the
ACTION-Grid Support Action, FP7-224176) and the Spanish Ministry of
Science and Innovation (FIS/AESPS09/00069 and RETICS COMBIOMED
RD07/0067/0006).
NR 36
TC 6
Z9 6
U1 0
U2 35
PU SPRINGER WIEN
PI WIEN
PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA
SN 0010-485X
J9 COMPUTING
JI Computing
PD JUN
PY 2012
VL 94
IS 6
BP 521
EP 539
DI 10.1007/s00607-012-0191-2
PG 19
WC Computer Science, Theory & Methods
SC Computer Science
GA 955OS
UT WOS:000305030800003
PM 22942787
ER
PT J
AU Rineau, F
Roth, D
Shah, F
Smits, M
Johansson, T
Canback, B
Olsen, PB
Persson, P
Grell, MN
Lindquist, E
Grigoriev, IV
Lange, L
Tunlid, A
AF Rineau, Francois
Roth, Doris
Shah, Firoz
Smits, Mark
Johansson, Tomas
Canback, Bjorn
Olsen, Peter Bjarke
Persson, Per
Grell, Morten Nedergaard
Lindquist, Erika
Grigoriev, Igor V.
Lange, Lene
Tunlid, Anders
TI The ectomycorrhizal fungus Paxillus involutus converts organic matter in
plant litter using a trimmed brown-rot mechanism involving Fenton
chemistry
SO ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID MYCORRHIZAL FUNGI; C-14-LABELED LIGNIN; VEGETATIVE MYCELIUM; ECOSYSTEM
PROCESSES; HUMIC SUBSTANCES; LACCARIA-BICOLOR; BOREAL FOREST; SOIL;
CARBON; DEGRADATION
AB Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matterprotein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matterprotein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems.
C1 [Rineau, Francois; Shah, Firoz; Johansson, Tomas; Canback, Bjorn; Tunlid, Anders] Microbial Ecol Grp, Dept Biol, SE-22362 Lund, Sweden.
[Roth, Doris; Grell, Morten Nedergaard; Lange, Lene] Aalborg Univ, Dept Biotechnol & Chem, DK-2750 Ballerup, Denmark.
[Smits, Mark] Hasselt Univ, Ctr Environm Sci, B-3590 Diepenbeek, Limburg, Belgium.
[Olsen, Peter Bjarke] Novozymes, DK-2880 Bagsvaerd, Denmark.
[Persson, Per] Umea Univ, Dept Chem, SE-90187 Umea, Sweden.
[Lindquist, Erika; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.
RP Tunlid, A (reprint author), Microbial Ecol Grp, Dept Biol, Ecol Bldg, SE-22362 Lund, Sweden.
EM anders.tunlid@biol.lu.se
RI Persson, Per/D-7388-2012; Smits, Mark/G-8243-2011; Lange,
Lene/Q-8051-2016
OI Persson, Per/0000-0001-9172-3068; Smits, Mark/0000-0002-2912-888X;
Lange, Lene/0000-0002-5336-1155
FU Swedish Research Council (VR); strategic research program Biodiversity
and Ecosystem Services in a Changing Climate (BECC); Danish Agency for
Science and Technology; Research Foundation - Flanders (FWO); Office of
Science of the US Department of Energy [DE-AC02-05CH1123.1]
FX The work was supported by grants from the Swedish Research Council (VR),
the strategic research program Biodiversity and Ecosystem Services in a
Changing Climate (BECC), the Danish Agency for Science and Technology,
and the Research Foundation - Flanders (FWO). 454 sequencing was
conducted by the US Department of Energy Joint Genome Institute,
supported by the Office of Science of the US Department of Energy under
Contract No. DE-AC02-05CH1123.1. We thank Charles G. Kurland for help
with the manuscript, and Jan Czech and professor Carleer for support
with the Py-GC/MS. Novozymes is acknowledged for a royalty-free license
to use the TAST technology for research purposes.
NR 59
TC 57
Z9 58
U1 4
U2 106
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1462-2912
EI 1462-2920
J9 ENVIRON MICROBIOL
JI Environ. Microbiol.
PD JUN
PY 2012
VL 14
IS 6
BP 1477
EP 1487
DI 10.1111/j.1462-2920.2012.02736.x
PG 11
WC Microbiology
SC Microbiology
GA 953KQ
UT WOS:000304866600011
PM 22469289
ER
PT J
AU Burke, JR
Hura, GL
Rubin, SM
AF Burke, Jason R.
Hura, Greg L.
Rubin, Seth M.
TI Structures of inactive retinoblastoma protein reveal multiple mechanisms
for cell cycle control
SO GENES & DEVELOPMENT
LA English
DT Article
DE Retinoblastoma protein; cell cycle regulation; multisite
phosphorylation; cyclin-dependent kinase; X-ray crystal structure;
small-angle X-ray scattering (SAXS)
ID SCATTERING DATA-ANALYSIS; X-RAY-SCATTERING; TUMOR-SUPPRESSOR; MULTISITE
PHOSPHORYLATION; CRYSTAL-STRUCTURE; DNA-REPLICATION; MOLECULAR-BASIS;
E2F; DOMAIN; PRB
AB Cyclin-dependent kinase (Cdk) phosphorylation of the Retinoblastoma protein (Rb) drives cell proliferation through inhibition of Rb complexes with E2F transcription factors and other regulatory proteins. We present the first structures of phosphorylated Rb that reveal the mechanism of its inactivation. S608 phosphorylation orders a flexible "pocket" domain loop such that it mimics and directly blocks E2F transactivation domain (E2F(TD)) binding. T373 phosphorylation induces a global conformational change that associates the pocket and N-terminal domains (RbN). This first multidomain Rb structure demonstrates a novel role for RbN in allosterically inhibiting the E2F(TD)-pocket association and protein binding to the pocket "LxCxE" site. Together, these structures detail the regulatory mechanism for a canonical growth-repressive complex and provide a novel example of how multisite Cdk phosphorylation induces diverse structural changes to influence cell cycle signaling.
C1 [Burke, Jason R.; Rubin, Seth M.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA.
[Hura, Greg L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Rubin, SM (reprint author), Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA.
EM srubin@ucsc.edu
FU National Institutes of Health [R01CA132685]; Department of Energy (DOE)
[DE-AC02-05CH11231]; NIH/NCI [P01CA92584]; The Pew Charitable Trusts
FX This work is supported by grants from the National Institutes of Health
(R01CA132685) to S.M.R. and the Department of Energy (DOE) Integrated
Diffraction Analysis (IDAT) grant contract number DE-AC02-05CH11231 for
SAXS data collection at the Advanced Light Source. J.R.B. is an ARCS
Foundation Scholar. G.H. is supported by NIH/NCI P01CA92584 Structural
Cell Biology of DNA Repair Machines. S.M.R. is a Pew Scholar in the
Biomedical Sciences, supported by The Pew Charitable Trusts.
NR 52
TC 45
Z9 45
U1 1
U2 9
PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
PI COLD SPRING HARBOR
PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA
SN 0890-9369
J9 GENE DEV
JI Genes Dev.
PD JUN 1
PY 2012
VL 26
IS 11
BP 1156
EP 1166
DI 10.1101/gad.189837.112
PG 11
WC Cell Biology; Developmental Biology; Genetics & Heredity
SC Cell Biology; Developmental Biology; Genetics & Heredity
GA 952CJ
UT WOS:000304767000004
PM 22569856
ER
PT J
AU Paulter, NG
Larson, DR
AF Paulter, Nicholas G.
Larson, Donald R.
TI Pulse Metrology - Part 2 Part 39 in a series of tutorials on
instrumentation and measurement
SO IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE
LA English
DT Article
DE Transmission line measurements; Pulse measurements; Tutorials;
Uncertainty; Measurement uncertainty; Semiconductor device measurement;
Metrology
ID SAMPLER CALIBRATION METHOD; UNCERTAINTY ANALYSIS; OSCILLOSCOPES;
CIRCUITS; NPL
C1 [Paulter, Nicholas G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Paulter, Nicholas G.] NIST, Gaithersburg, MD 20899 USA.
[Paulter, Nicholas G.; Larson, Donald R.] NIST, Law Enforcement Stand Off, Gaithersburg, MD 20899 USA.
[Paulter, Nicholas G.; Larson, Donald R.] NIST, Quantum Elect Metrol Div, Gaithersburg, MD 20899 USA.
[Larson, Donald R.] NIST, Div Optoelect, Boulder, CO USA.
EM paulter@nist.gov
NR 36
TC 2
Z9 2
U1 9
U2 11
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1094-6969
J9 IEEE INSTRU MEAS MAG
JI IEEE Instrum. Meas. Mag.
PD JUN
PY 2012
VL 15
IS 3
BP 43
EP 47
DI 10.1109/MIM.2012.6204873
PG 5
WC Engineering, Electrical & Electronic; Instruments & Instrumentation
SC Engineering; Instruments & Instrumentation
GA 953XF
UT WOS:000304906400008
ER
PT J
AU Massoudi, M
Kim, J
Antaki, JF
AF Massoudi, Mehrdad
Kim, Jeongho
Antaki, James F.
TI Modeling and numerical simulation of blood flow using the theory of
interacting continua
SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
LA English
DT Article
DE Mixture Theory; Blood; Continuum mechanics; Shear-thinning; Two-phase
flows
ID MACROSCOPIC RIGID SPHERES; NON-LINEAR DIFFUSION; FLUID-SOLID MIXTURE;
ARTICULAR-CARTILAGE; GRANULAR-MATERIALS; MECHANICAL-PROPERTIES; PASSIVE
TRANSPORT; POISEUILLE FLOW; SOFT-TISSUES; VISCOSITY
AB In this paper we use a modified form of the mixture theory developed by Massoudi and Rajagopal to study the blood flow in a simple geometry, namely flow between two plates. The blood is assumed to behave as a two-component mixture comprised of plasma and red blood cells (RBCs). The plasma is assumed to behave as a viscous fluid whereas the RBCs are given a granular-like structure where the viscosity also depends on the shear-rate. Published by Elsevier Ltd.
C1 [Massoudi, Mehrdad] US DOE, NETL, Pittsburgh, PA 15236 USA.
[Kim, Jeongho; Antaki, James F.] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA.
RP Massoudi, M (reprint author), US DOE, NETL, POB 10940, Pittsburgh, PA 15236 USA.
EM MASSOUDI@NETL.DOE.GOV
RI Antaki, James/S-3051-2016
OI Antaki, James/0000-0002-5430-7353
FU NIH [R01 HL089456-01]
FX This project was supported by NIH R01 HL089456-01.
NR 90
TC 10
Z9 10
U1 0
U2 18
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0020-7462
J9 INT J NONLIN MECH
JI Int. J. Non-Linear Mech.
PD JUN
PY 2012
VL 47
IS 5
BP 506
EP 520
DI 10.1016/j.ijnonlinmec.2011.09.025
PG 15
WC Mechanics
SC Mechanics
GA 953DX
UT WOS:000304848200011
PM 22611284
ER
PT J
AU Castillo, CKG
Levis, S
Thornton, P
AF Castillo, C. Kendra Gotangco
Levis, Samuel
Thornton, Peter
TI Evaluation of the New CNDV Option of the Community Land Model: Effects
of Dynamic Vegetation and Interactive Nitrogen on CLM4 Means and
Variability
SO JOURNAL OF CLIMATE
LA English
DT Article
ID ATMOSPHERE-BIOSPHERE MODEL; TERRESTRIAL CARBON; CLIMATE-CHANGE; CO2;
DIOXIDE; CYCLE
AB The Community Land Model, version 4 (CLM4) includes the option to run the prognostic carbon nitrogen (CN) model with dynamic vegetation (CNDV). CNDV, which simulates unmanaged vegetation, modifies the CN framework to implement plant biogeography updates. CNDV simulates a reasonable present-day distribution of plant functional types but underestimates tundra vegetation cover. The CNDV simulation is compared against a CN simulation using a vegetation distribution generated by CNDV and against a carbon-only simulation with prescribed nitrogen limitation (CDV). The comparisons focus on the means and variability of carbon pools and fluxes and biophysical factors, such as albedo, surface radiation, and heat fluxes. The study assesses the relative importance of incorporating interactive nitrogen (CDV to CNDV) versus interactive biogeography (CN to CNDV) in present-day equilibrium simulations. None of the three configurations performs consistently better in simulating carbon or biophysical variables compared to observational estimates. The interactive nitrogen (N) cycle reduces annual means and interannual variability more than dynamic vegetation. Dynamic vegetation reduces seasonal variability in leaf area and, therefore, in moisture fluxes and surface albedo. The interactive N cycle has the opposite effect of enhancing seasonal variability in moisture fluxes and albedo. CNDV contains greater degrees of freedom than CN or CDV by adjusting both through nitrogen-carbon interactions and through vegetation establishment and mortality. Thus, in these equilibrium simulations, CNDV acts as a stronger "regulator" of variability compared to the other configurations. Discussed are plausible explanations for this behavior, which has been shown in past studies to improve climate simulations through better represented climate vegetation interactions.
C1 [Castillo, C. Kendra Gotangco] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA.
[Castillo, C. Kendra Gotangco] Purdue Univ, Purdue Climate Change Res Ctr, W Lafayette, IN 47907 USA.
[Levis, Samuel] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Thornton, Peter] Oak Ridge Natl Lab, Div Environm Sci6, Oak Ridge, TN 37831 USA.
RP Castillo, CKG (reprint author), Manila Observ, POB 122,UP PO, Quezon City 1101, Philippines.
EM kgotangco@observatory.ph
RI Thornton, Peter/B-9145-2012
OI Thornton, Peter/0000-0002-4759-5158
FU Office of Science (BER) of the Department of Energy [DE-AC05-00OR22725];
National Science Foundation (NSF); Office of Science (BER) of the U.S.
Department of Energy; Purdue University
FX Computing resources were provided by the Oak Ridge Leadership Computing
Facility and the Climate Simulation Laboratory at the National Center
for Atmospheric Research (NCAR) Computational and Information Systems
Laboratory (CISL). The Oak Ridge Leadership Computing Facility is
located in the National Center for Computational Sciences at Oak Ridge
National Laboratory, which is supported by the Office of Science (BER)
of the Department of Energy under Contract DE-AC05-00OR22725. CISL is
sponsored by the NSF and other agencies. The CESM project is supported
by the National Science Foundation and the Office of Science (BER) of
the U.S. Department of Energy. We thank C. Nevison for sharing scripts
to extrapolate site-specific annual cycles of CO2
concentrations from simulated NEE. The NCAR Advanced Study Program,
Gordon Bonan, and Kevin Robert Gurney provided the opportunity and
support for the first author to conduct this study. Purdue University's
Blosser Environmental Travel Grant provided additional funding for
travel to NCAR.
NR 34
TC 24
Z9 25
U1 1
U2 31
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
J9 J CLIMATE
JI J. Clim.
PD JUN 1
PY 2012
VL 25
IS 11
BP 3702
EP 3714
DI 10.1175/JCLI-D-11-00372.1
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 951RC
UT WOS:000304736700003
ER
PT J
AU Zelinka, MD
Klein, SA
Hartmann, DL
AF Zelinka, Mark D.
Klein, Stephen A.
Hartmann, Dennis L.
TI Computing and Partitioning Cloud Feedbacks Using Cloud Property
Histograms. Part I: Cloud Radiative Kernels
SO JOURNAL OF CLIMATE
LA English
DT Article
ID CLIMATE FEEDBACKS; UNRESOLVED CLOUDS; ENERGY-BALANCE; TRANSFER MODEL;
ATMOSPHERE; ECMWF; ISCCP; PARAMETERIZATION; SENSITIVITY; ENSEMBLES
AB This study proposes a novel technique for computing cloud feedbacks using histograms of cloud fraction as a joint function of cloud-top pressure (CTP) and optical depth (tau). These histograms were generated by the International Satellite Cloud Climatology Project (ISCCP) simulator that was incorporated into doubled-CO2 simulations from 11 global climate models in the Cloud Feedback Model Intercomparison Project. The authors use a radiative transfer model to compute top of atmosphere flux sensitivities to cloud fraction perturbations in each bin of the histogram for each month and latitude. Multiplying these cloud radiative kernels with histograms of modeled cloud fraction changes at each grid point per unit of global warming produces an estimate of cloud feedback. Spatial structures and globally integrated cloud feedbacks computed in this manner agree remarkably well with the adjusted change in cloud radiative forcing. The global and annual mean model-simulated cloud feedback is dominated by contributions from medium thickness (3.6 < tau <= 23) cloud changes, but thick (tau > 23) cloud changes cause the rapid transition of cloud feedback values from positive in midlatitudes to negative poleward of 50 degrees S and 70 degrees N. High (CTP <= 440 hPa) cloud changes are the dominant contributor to longwave (LW) cloud feedback, but because their LW and shortwave (SW) impacts are in opposition, they contribute less to the net cloud feedback than do the positive contributions from low (CTP > 680 hPa) cloud changes. Midlevel (440 < CTP <= 680 hPa) cloud changes cause positive SW cloud feedbacks that are 80% as large as those due to low clouds. Finally, high cloud changes induce wider ranges of LW and SW cloud feedbacks across models than do low clouds.
C1 [Zelinka, Mark D.; Klein, Stephen A.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94551 USA.
[Zelinka, Mark D.; Hartmann, Dennis L.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA.
RP Zelinka, MD (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, 7000 East Ave,L-103, Livermore, CA 94551 USA.
EM zelinka1@llnl.gov
RI Zelinka, Mark/C-4627-2011; Klein, Stephen/H-4337-2016
OI Zelinka, Mark/0000-0002-6570-5445; Klein, Stephen/0000-0002-5476-858X
FU Office of Science, U.S. Department of Energy; NASA at the University of
Washington [NNX09AH73G]; U.S. Department of Energy by Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]
FX We acknowledge the international modeling groups, the Program for
Climate Model Diagnosis and Intercomparison (PCMDI), and the WCRP's
Working Group on Coupled Modelling (WGCM) for their roles in making
available the WCRP CFMIP multi-model dataset. Support of this dataset is
provided by the Office of Science, U.S. Department of Energy. We thank
Karen Shell and one anonymous reviewer for detailed critiques of this
manuscript, Brian Soden and Karen Shell for providing radiative kernels,
Rick Hemler for providing additional gfd1_mlm2_1 model output, Rob Wood,
Chris Bretherton, and Robert Pincus for useful discussion and
suggestions for improvement, and Marc Michelsen for computer support.
This research was supported by the Regional and Global Climate Modeling
Program of the Office of Science at the U.S. Department of Energy and by
NASA Grant NNX09AH73G at the University of Washington. This work was
performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NR 37
TC 64
Z9 64
U1 2
U2 32
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
J9 J CLIMATE
JI J. Clim.
PD JUN 1
PY 2012
VL 25
IS 11
BP 3715
EP 3735
DI 10.1175/JCLI-D-11-00248.1
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 951RC
UT WOS:000304736700004
ER
PT J
AU Zelinka, MD
Klein, SA
Hartmann, DL
AF Zelinka, Mark D.
Klein, Stephen A.
Hartmann, Dennis L.
TI Computing and Partitioning Cloud Feedbacks Using Cloud Property
Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude,
and Optical Depth
SO JOURNAL OF CLIMATE
LA English
DT Article
ID GENERAL-CIRCULATION MODELS; SEA-SURFACE TEMPERATURE; LIQUID WATER
FEEDBACK; CLIMATE FEEDBACKS; CARBON-DIOXIDE; TROPICAL CLOUD; CIRRUS
CLOUDS; STORM TRACKS; SENSITIVITY; THICKNESS
AB Cloud radiative kernels and histograms of cloud fraction, both as functions of cloud-top pressure and optical depth, are used to quantify cloud amount, altitude, and optical depth feedbacks. The analysis is applied to doubled-CO2 simulations from 11 global climate models in the Cloud Feedback Model Intercomparison Project.
Global, annual, and ensemble mean longwave (LW) and shortwave (SW) cloud feedbacks are positive, with the latter nearly twice as large as the former. The robust increase in cloud-top altitude in both the tropics and extratropics is the dominant contributor to the positive LW cloud feedback. The negative impact of reductions in cloud amount offsets more than half of the positive impact of rising clouds on LW cloud feedback, but the magnitude of compensation varies considerably across the models. In contrast, robust reductions in cloud amount make a large and virtually unopposed positive contribution to SW cloud feedback, though the intermodel spread is greater than for any other individual feedback component. Overall reductions in cloud amount have twice as large an impact on SW fluxes as on LW fluxes, such that the net cloud amount feedback is moderately positive, with no models exhibiting a negative value. As a consequence of large but partially offsetting effects of cloud amount reductions on LW and SW feedbacks, both the mean and intermodel spread in net cloud amount feedback are smaller than those of the net cloud altitude feedback. Finally, the study finds that the large negative cloud feedback at high latitudes results from robust increases in cloud optical depth, not from increases in total cloud amount as is commonly assumed.
C1 [Zelinka, Mark D.; Klein, Stephen A.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94551 USA.
[Zelinka, Mark D.; Hartmann, Dennis L.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA.
RP Zelinka, MD (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, 7000 East Ave,L-103, Livermore, CA 94551 USA.
EM zelinka1@llnl.gov
RI Zelinka, Mark/C-4627-2011; Klein, Stephen/H-4337-2016
OI Zelinka, Mark/0000-0002-6570-5445; Klein, Stephen/0000-0002-5476-858X
FU Office of Science, U.S. Department of Energy; NASA at the University of
Washington [NNX09AH73G]; U.S. Department of Energy by Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]
FX We acknowledge the international modeling groups, the Program for
Climate Model Diagnosis and Intercomparison (PCMDI), and the WCRP's
Working Group on Coupled Modelling (WGCM) for their roles in making
available the WCRP CFMIP multimodel dataset. Support of this dataset is
provided by the Office of Science, U.S. Department of Energy. We thank
Karen Shell and one anonymous reviewer for their detailed critiques of
this manuscript; Brian Soden for providing radiative kernels; Rick
Hemler for providing additional GFDL MLM2.1 model output; Rob Wood,
Chris Bretherton, and Robert Pincus for the useful discussion and their
suggestions for improvement; and Marc Michelsen for computer support.
This research was supported by the Regional and Global Climate Modeling
Program of the Office of Science at the U.S. Department of Energy and by
NASA Grant NNX09AH73G at the University of Washington. This work was
performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NR 63
TC 68
Z9 68
U1 1
U2 26
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD JUN 1
PY 2012
VL 25
IS 11
BP 3736
EP 3754
DI 10.1175/JCLI-D-11-00249.1
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 951RC
UT WOS:000304736700005
ER
PT J
AU Zhong, SY
Li, XP
Bian, XD
Heilman, WE
Leung, LR
Gustafson, WI
AF Zhong, Shiyuan
Li, Xiuping
Bian, Xindi
Heilman, Warren E.
Leung, L. Ruby
Gustafson, William I., Jr.
TI Evaluation of regional climate simulations over the Great Lakes region
driven by three global data sets
SO JOURNAL OF GREAT LAKES RESEARCH
LA English
DT Article
DE Regional climate model; Climate modeling of the Great Lakes region; MM5
ID WESTERN UNITED-STATES; SEASONAL PRECIPITATION; MODEL RESOLUTION; PART I;
SYSTEM; SENSITIVITY; REANALYSIS; PREDICTION; CALIFORNIA; STORMS
AB The performance of regional climate simulations is evaluated for the Great Lakes region. Three 10-year (1990-1999) current-climate simulations are performed using the MM5 regional climate model (RCM) with 36-km horizontal resolution. The simulations employed identical configuration and physical parameterizations, but different lateral boundary conditions and sea-surface temperatures derived from the NCEP Global Reanalysis and output from the CCSM3 and GISS general circulation models (GCMs). The simulation results are compared to the North American Regional Reanalysis (NARR). The three RCM simulations appeared to be more accurate in winter and least accurate in summer, and more accurate aloft than near the surface. The reanalysis-constrained simulation adequately captured the spatial distribution and seasonal cycle of the observed surface-air temperature and precipitation, but it produced consistently across all seasons a cold bias that is generally larger over the lakes than over land and a wet bias due to an overestimation of non-convective precipitation. The simulated seasonal cycle of moisture-flux convergence over the region was in very good agreement with NARR. The two GCM-driven runs adequately simulated the spatial and seasonal variation of temperature, but overestimated cold-season precipitation and underestimated summer precipitation, reversing the observed annual precipitation cycle. The GISS-driven run failed to simulate the prevailing low-level flow and moisture convergence patterns. All three RCM simulations successfully captured the impact of the Great Lakes on the region's climate, especially on winter precipitation, a significant improvement over coarse-resolution GCM simulations over the region. (C) 2012 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
C1 [Zhong, Shiyuan] Michigan State Univ, Dept Geog, E Lansing, MI 48824 USA.
[Zhong, Shiyuan] Michigan State Univ, Ctr Global Climate Change & Earth Observat, E Lansing, MI 48823 USA.
[Li, Xiuping] Beijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R China.
[Bian, Xindi; Heilman, Warren E.] USDA, Forest Serv, No Res Stn, E Lansing, MI 48823 USA.
[Leung, L. Ruby; Gustafson, William I., Jr.] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Zhong, SY (reprint author), Michigan State Univ, 116 Geog Bldg, E Lansing, MI 48823 USA.
EM zhongs@msu.edu; lixiuping@bnu.edu.cn; xbian@fs.fed.us;
wheilam@fs.fed.us; ruby.leung@pnl.gov; william.gustafson@pnl.gov
RI Gustafson, William/A-7732-2008
OI Gustafson, William/0000-0001-9927-1393
FU Michigan State University AgBio Research; USDA Forest Service Northern
Research Station [07-JV-11242300-138]; PNNL Integrated Regional Earth
System Modeling (iRESM) Initiative
FX This research is supported by the Michigan State University AgBio
Research and by the USDA Forest Service Northern Research Station under
agreement 07-JV-11242300-138. The work is also partly supported by the
PNNL Integrated Regional Earth System Modeling (iRESM) Initiative.
NR 46
TC 4
Z9 4
U1 0
U2 14
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0380-1330
J9 J GREAT LAKES RES
JI J. Gt. Lakes Res.
PD JUN
PY 2012
VL 38
IS 2
BP 212
EP 225
DI 10.1016/j.jglr.2012.03.012
PG 14
WC Environmental Sciences; Limnology; Marine & Freshwater Biology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology
GA 953BK
UT WOS:000304841700004
ER
PT J
AU Vo, NQ
Averback, RS
Ashkenazy, Y
Bellon, P
Wang, J
AF Vo, Nhon Q.
Averback, Robert S.
Ashkenazy, Yinon
Bellon, Pascal
Wang, Jian
TI Forced chemical mixing at Cu-Nb interfaces under severe plastic
deformation
SO JOURNAL OF MATERIALS RESEARCH
LA English
DT Article
ID SUPERSATURATED SOLID-SOLUTIONS; IMMISCIBLE ELEMENTS; ATOMIC-STRUCTURE;
ALLOYS; FE; MULTILAYERS; SYSTEM; COPPER
AB Forced chemical mixing during severe plastic deformation was investigated at Cu-Nb face-centered-cubic (fcc)/body-centered-cubic (bcc) interfaces using molecular-dynamics simulations. Three Cu-Nb interfaces were considered, with either Kurdjumov-Sachs or Nishiyama-Wassermann orientation relationship (OR) between fcc and bcc phases. Forced mixing of a spherical bcc-Nb precipitate in fcc-Cu was also studied for comparison. Deformation was imposed by shape-preserving cycles using two different modes, biaxial compression and biplanar shearing to investigate the effects of strain path. For biplanar shear, the chemical mixing rate is strongly dependent on structure of the interface, with the Kurdjumov-Sachs OR and a (111)(Cu)parallel to(110)(Nb) habit plane being particularly resistant to mixing. During compression, no such dependence was found. Influences of interface diffuseness and roughness on stability were also investigated. The simulations show the interface mixing is inversely related to interface shear strength during shear deformation, but dominated by dislocation-glide through the Cu phase and subsequent absorption at Cu-Nb interfaces during compression deformation.
C1 [Vo, Nhon Q.; Averback, Robert S.; Ashkenazy, Yinon; Bellon, Pascal] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
[Ashkenazy, Yinon] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel.
[Wang, Jian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Vo, NQ (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA.
EM nhonvo2@illinois.edu
RI Vo, Nhon/E-4599-2010; ashkenazy, yinon/D-1257-2012; Wang,
Jian/F-2669-2012
OI Wang, Jian/0000-0001-5130-300X
FU Center for Materials at Irradiation and Mechanical Extremes, an Energy
Frontier Research Center; U.S. Department of Energy, Office of Science,
Basic Energy Sciences [2008LANL1026, DEFG02-05ER46217]
FX This research was supported as part of the Center for Materials at
Irradiation and Mechanical Extremes, an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science, Basic Energy
Sciences, under Award No. 2008LANL1026. Additional support (for N.Q. Vo)
was provided by the U.S. Department of Energy, Office of Science, Basic
Energy Sciences under Grant DEFG02-05ER46217.
NR 39
TC 17
Z9 17
U1 2
U2 38
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0884-2914
J9 J MATER RES
JI J. Mater. Res.
PD JUN
PY 2012
VL 27
IS 12
BP 1621
EP 1630
DI 10.1557/jmr.2012.106
PG 10
WC Materials Science, Multidisciplinary
SC Materials Science
GA 954AU
UT WOS:000304916800009
ER
PT J
AU Was, GS
Byun, TS
Hu, SY
Morgan, D
Nagai, Y
Kerr, M
AF Was, Gary S.
Byun, Thak Sang
Hu, Shenyang
Morgan, Dane
Nagai, Yasuyoshi
Kerr, Matthew
TI Microstructural Processes in Irradiated Materials And Characterization
With Neutron And Synchrotron Radiation Preface
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Editorial Material
C1 [Was, Gary S.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA.
[Byun, Thak Sang] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Hu, Shenyang] Pacific NW Natl Lab, Radiol & Nucl Sci & Technol Div, Richland, WA 99352 USA.
[Morgan, Dane] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA.
[Nagai, Yasuyoshi] Tohoku Univ, Oarai, Ibaraki 3111313, Japan.
[Kerr, Matthew] US Nucl Regulatory Commiss, Off Nucl Regulatory Res, Washington, DC 20555 USA.
RP Was, GS (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA.
EM gsw@umich.edu; byunts@ornl.gov; shenyang.hu@pnnl.gov; ddmorgan@wisc.edu;
nagai@imr.tohoku.ac.jp; matthew.kerr@nrc.gov
RI Morgan, Dane/B-7972-2008
OI Morgan, Dane/0000-0002-4911-0046
NR 0
TC 0
Z9 0
U1 0
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 1
EP 1
DI 10.1016/j.jnucmat.2012.03.025
PG 1
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000001
ER
PT J
AU Beeler, B
Good, B
Rashkeev, S
Deo, C
Baskes, M
Okuniewski, M
AF Beeler, B.
Good, B.
Rashkeev, S.
Deo, C.
Baskes, M.
Okuniewski, M.
TI First-principles calculations of the stability and incorporation of
helium, xenon and krypton in uranium
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID AUGMENTED-WAVE METHOD
AB While metallic fuels have a long history of reactor use, their fundamental physical and thermodynamic properties are not well understood. Many metallic nuclear fuels are body-centered cubic alloys of uranium that swell under fission conditions, creating fission product gases such as helium, xenon and krypton. In this paper, helium, xenon, and krypton point defects are investigated in the alpha and gamma phases of metallic uranium using first principles calculations. A density functional theory (DFT) framework is utilized with projector augmented-wave (PAW) pseudopotentials. Formation and incorporation energies of He, Xe, and Kr are calculated at various defect positions for the prediction of fission gas behavior in uranium. In most cases, defect energies follow a size effect, with helium incorporation and formation energies being the smallest. The most likely position for the larger Xe and Kr atoms in uranium is the substitutional site. Helium atoms are likely to be found in a wide variety of defect positions due to the comparable formation energies of all defect configurations analyzed. This is the first detailed study of the stability and incorporation of fission gases in uranium. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Beeler, B.; Good, B.; Deo, C.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA.
[Rashkeev, S.; Okuniewski, M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Baskes, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Baskes, M.] Univ Calif San Diego, La Jolla, CA 92093 USA.
RP Beeler, B (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, 770 State St, Atlanta, GA 30332 USA.
EM benbeeler@gatech.edu
NR 19
TC 7
Z9 7
U1 0
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 2
EP 7
DI 10.1016/j.jnucmat.2011.08.014
PG 6
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000002
ER
PT J
AU Barnard, L
Tucker, JD
Choudhury, S
Allen, TR
Morgan, D
AF Barnard, L.
Tucker, J. D.
Choudhury, S.
Allen, T. R.
Morgan, D.
TI Modeling radiation induced segregation in Ni-Cr model alloys from first
principles
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID STRESS-CORROSION CRACKING; STAINLESS-STEELS; IRRADIATION; DIFFUSION;
BIAS
AB In this paper, a rate theory model is employed to study radiation induced segregation (RIS) in Ni-Cr model alloys. In contrast with similar previous models, model parameters have been obtained from first principles via density functional theory (OFT) calculation. Qualitative model behavior is compared and contrasted with the physical mechanisms that underlie conventional RIS models, and the effects of Cr-Cr interstitial trapping and defect sink bias are investigated. It is concluded that: (1) the parameters required in this RIS model are too sensitive to be rigorously determined by present OFT approaches alone, and fitting to experimental RIS data is necessary to produce an accurate model. (2) In contrast with the emphasis of previous RIS models, the best fit DFT-based RIS model suggests that under radiation, the interstitial flux should drive Cr strongly toward enrichment near defect sinks, while the vacancy flux should drive Cr strongly toward depletion, and that the vacancy effect should be slightly stronger resulting in moderate Cr depletion. (3) The effects on RIS of Cr-Cr interstitial trapping and biased defect sinks are relatively small compared with the effects associated with variations in the species dependent diffusivities. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Barnard, L.; Morgan, D.] Univ Wisconsin, Madison, WI 53706 USA.
[Tucker, J. D.] Knolls Atom Power Lab, Schenectady, NY 12301 USA.
[Choudhury, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Allen, T. R.] Univ Wisconsin, Dept Nucl Engn & Engn Phys, Madison, WI 53706 USA.
RP Morgan, D (reprint author), Univ Wisconsin, 1500 Engn Dr, Madison, WI 53706 USA.
EM lmbarnard@wisc.edu; tuckjd@kapl.gov; samrat@lanl.gov;
allen@engr.wisc.edu; ddmorgan@wisc.edu
RI Choudhury, Samrat/B-4115-2009; Tucker, Julie/E-9680-2014; Morgan,
Dane/B-7972-2008;
OI Morgan, Dane/0000-0002-4911-0046; Allen, Todd/0000-0002-2372-7259
NR 29
TC 13
Z9 13
U1 1
U2 38
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 8
EP 15
DI 10.1016/j.jnucmat.2011.08.022
PG 8
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000003
ER
PT J
AU Tschopp, MA
Solanki, KN
Baskes, MI
Gao, F
Sun, X
Horstemeyer, MF
AF Tschopp, M. A.
Solanki, K. N.
Baskes, M. I.
Gao, F.
Sun, X.
Horstemeyer, M. F.
TI Generalized framework for interatomic potential design: Application to
Fe-He system
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID EMBEDDED-ATOM POTENTIALS; FERRITIC/MARTENSITIC STEEL DEVELOPMENT; FUSION
POWER-SYSTEMS; ALPHA-FE; STRUCTURAL-MATERIALS; MARTENSITIC STEELS;
DEFECT PROPERTIES; VACANCY CLUSTERS; GRAIN-BOUNDARIES; INPUT VARIABLES
AB Radiation damage phenomena plays an important role in the lifetime of structural materials for future fusion power reactors. Developing predictive multiscale models for material behavior under irradiation conditions in a fusion reactor requires understanding the mechanisms associated with radiation damage phenomena, the He interaction with microstructures. and quantifying the associated uncertainties. Nanoscale simulations and interatomic potentials play an important role in exploring the physics of nanoscale structures. However, while interatomic potentials are designed for a specific purpose, they are often used for studying mechanisms outside of the intended purpose. Hence, a generalized framework for interatomic potential design is designed such that it can allow a researcher to tailor an interatomic potential towards specific properties. This methodology produces an interatomic potential design map, which contains multiple interatomic potentials and is capable of exploring different nanoscale phenomena observed in experiments. This methodology is efficient and provides the means to assess uncertainties in nanostructure properties due to the interatomic potential fitting process. As an initial example with relevance to fusion reactors, an Fe-He interatomic potential design map is developed using this framework to show its profound effect. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Tschopp, M. A.; Solanki, K. N.; Horstemeyer, M. F.] Mississippi State Univ, Ctr Adv Vehicular Syst, Starkville, MS 39759 USA.
[Baskes, M. I.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA.
[Gao, F.; Sun, X.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
[Solanki, K. N.] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA.
RP Tschopp, MA (reprint author), Mississippi State Univ, Ctr Adv Vehicular Syst, Starkville, MS 39759 USA.
EM mtschopp@cavs.msstate.edu
RI Gao, Fei/H-3045-2012; Solanki, Kiran/E-8337-2010; Tschopp,
Mark/B-1594-2008;
OI Tschopp, Mark/0000-0001-8471-5035; Solanki, Kiran/0000-0002-4385-620X;
Horstemeyer, Mark/0000-0003-4230-0063
NR 49
TC 16
Z9 17
U1 1
U2 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 22
EP 32
DI 10.1016/j.jnucmat.2011.08.003
PG 11
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000005
ER
PT J
AU Insepov, Z
Rest, J
Yacout, AM
Kuksin, AY
Norman, GE
Stegailov, VV
Starikov, SV
Yanilkin, AV
AF Insepov, Z.
Rest, J.
Yacout, A. M.
Kuksin, A. Yu.
Norman, G. E.
Stegailov, V. V.
Starikov, S. V.
Yanilkin, A. V.
TI Derivation of kinetic coefficients by atomistic methods for studying
defect behavior in Mo
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID TRANSITION-METALS; MONTE-CARLO; MOLYBDENUM; GROWTH; DAMAGE; IRRADIATION;
POTENTIALS; SIMULATION; EVOLUTION; MODEL
AB A multiscale concept for irradiated materials simulation is formulated based on coupling molecular dynamics simulations (MD) where the potential was obtained from ab initio data of energies of the basic defect structures, with kinetic mesoscale models. The evolution of a system containing self-interstitial atoms (SIAs) and vacancies in crystalline molybdenum is investigated by means of MD. The kinetics of formation of di-SIA clusters and SIA-vacancy recombination is analyzed via approaches used in the kinetic theory of radiation ageing. The effects of 1D diffusion of SIAs, temperature, and defect concentrations on the reaction rates are also studied. This approach can validate both the kinetic mechanisms and the appropriate kinetic coefficients, offering the potential to significantly reduce the uncertainty of the kinetic methodology and providing a powerful predictive tool for simulating irradiation behavior of nuclear materials. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Insepov, Z.; Rest, J.; Yacout, A. M.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Kuksin, A. Yu.; Norman, G. E.; Stegailov, V. V.; Starikov, S. V.; Yanilkin, A. V.] Joint Inst High Temp, Moscow, Russia.
RP Insepov, Z (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM insepov@anl.gov
RI Norman, Genri/E-1418-2013; Starikov, Sergey/B-8162-2013; Stegailov,
Vladimir/C-4756-2013; Insepov, Zinetula/L-2095-2013; Kuksin,
Alexey/F-3203-2014
OI Starikov, Sergey/0000-0002-9112-6033; Stegailov,
Vladimir/0000-0002-5349-3991; Insepov, Zinetula/0000-0002-8079-6293;
NR 40
TC 9
Z9 10
U1 1
U2 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 41
EP 47
DI 10.1016/j.jnucmat.2011.08.019
PG 7
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000007
ER
PT J
AU Topbasi, C
Motta, AT
Kirk, MA
AF Topbasi, Cem
Motta, Arthur T.
Kirk, Mark A.
TI In situ study of heavy ion induced radiation damage in NF616 (P92) alloy
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID STEELS; IRRADIATION
AB NF616 is a nominal 9Cr ferritic-martensitic steel that is amongst the primary candidates for cladding and duct applications in the Sodium-Cooled Fast Reactor, one of the Generation IV nuclear energy systems. In this study, an in situ investigation of the microstructure evolution in NF616 under heavy ion irradiation has been conducted. NF616 was irradiated to 8.4 dpa at 50 K and to 7.6 dpa at 473 K with 1 MeV Kr ions. Nano-sized defects first appeared as white dots in dark-field TEM images and their areal density increased until saturation (similar to 6 dpa). Dynamic observations at 50 K and 473 K showed appearance and disappearance of TEM-visible defect clusters under irradiation that continued above saturation dose. Quantitative analysis showed no significant change in the average size (similar to 3-4 nm) and distribution of defect clusters with increasing dose at 50 K and 473 K. These results indicate a cascade-driven process of microstructure evolution under irradiation in these alloys that involves both the formation of TEM-visible defect clusters by various degrees of cascade overlap and cascade induced defect cluster elimination. According to this mechanism, saturation of defect cluster density is reached when the rate of defect cluster formation by overlap is equal to the rate of cluster elimination during irradiation. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Topbasi, Cem; Motta, Arthur T.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Motta, Arthur T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA.
[Kirk, Mark A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Topbasi, C (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
EM cemt@psu.edu
NR 15
TC 13
Z9 13
U1 1
U2 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 48
EP 53
DI 10.1016/j.jnucmat.2011.08.046
PG 6
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000008
ER
PT J
AU Millett, PC
Tonks, MR
Biner, SB
Zhang, LZ
Chockalingam, K
Zhang, YF
AF Millett, Paul C.
Tonks, Michael R.
Biner, S. B.
Zhang, Liangzhe
Chockalingam, K.
Zhang, Yongfeng
TI Phase-field simulation of intergranular bubble growth and percolation in
bicrystals
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID IRRADIATED URANIUM DIOXIDE; FISSION GAS BUBBLES; NUCLEAR-FUELS; UO2
FUEL; RELEASE; MODEL; TEMPERATURE; POROSITY; KINETICS; METALS
AB Three-dimensional phase-field simulations of the growth and coalescence of intergranular bubbles in bicrystal grain geometries are presented. We investigate the dependency of bubble percolation on two factors:. the initial bubble density and the bubble shape, which is governed by the ratio of the grain boundary energy over the surface energy. The simulations show that variations of each of these factors can lead to large discrepancies in the bubble coalescence rate, and eventual percolation, which may partially explain this observed occurrence in experimental investigations. The results presented here do not account for concurrent gas production and bubble resolution due to irradiation, therefore this simulation study is most applicable to post-irradiation annealing. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Millett, Paul C.; Tonks, Michael R.; Biner, S. B.; Zhang, Liangzhe; Chockalingam, K.; Zhang, Yongfeng] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Millett, PC (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM Paul.Millett@inl.gov
NR 24
TC 7
Z9 7
U1 3
U2 41
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 130
EP 135
DI 10.1016/j.jnucmat.2011.07.034
PG 6
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000020
ER
PT J
AU Hosemann, P
Kiener, D
Wang, YQ
Maloy, SA
AF Hosemann, Peter
Kiener, Daniel
Wang, Yongqiang
Maloy, Stuart A.
TI Issues to consider using nano indentation on shallow ion beam irradiated
materials
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID HARDNESS; SIZE; PLASTICITY; ALLOYS; FILMS
AB Ion beam irradiation is a widely used method to cause radiation damage in materials in order to study materials degradation under radiation in a laboratory setting. Nanoindentation has become an often used tool to measure the mechanical property changes due to ion beam irradiation. While the combination of ion beam irradiation and nanoindentation is a powerful tool, difficulties arise and need to be discussed in detail. This work intends to draw attention to the potential issues one might face if nanoindentation is used to evaluate radiation induced hardening, especially if compared to other mechanical tests such as yield strength from tensile tests on irradiated materials and others. In this work we focus on issues associated with size and dose effects associated with quasi static nanoindentation on shallow irradiated Cu [100] single crystal material: It is shown that on 1 mu m deep irradiated material it is not possible to correlate a single dose to a specific hardness value, rather a dose range has to be considered. However, deeper indents will always sample contributions of the unirradiated material. Moreover, the correlation between the indentation hardness and macroscopic properties is not straight forward. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Hosemann, Peter] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA.
[Kiener, Daniel] Univ Leoben, Dept Mat Phys, Leoben, Austria.
[Wang, Yongqiang; Maloy, Stuart A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Hosemann, P (reprint author), Univ Calif Berkeley, Dept Nucl Engn, 4169 Etcheverry Hall, Berkeley, CA 94720 USA.
EM peterh@berkeley.edu
RI Kiener, Daniel/B-2202-2008; Maloy, Stuart/A-8672-2009;
OI Kiener, Daniel/0000-0003-3715-3986; Maloy, Stuart/0000-0001-8037-1319;
Hosemann, Peter/0000-0003-2281-2213
NR 24
TC 48
Z9 48
U1 6
U2 59
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 136
EP 139
DI 10.1016/j.jnucmat.2011.11.070
PG 4
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000021
ER
PT J
AU Yu, KY
Liu, Y
Sun, C
Wang, H
Shao, L
Fu, EG
Zhang, X
AF Yu, K. Y.
Liu, Y.
Sun, C.
Wang, H.
Shao, L.
Fu, E. G.
Zhang, X.
TI Radiation damage in helium ion irradiated nanocrystalline Fe
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID STAINLESS-STEEL MULTILAYERS; GRAIN-BOUNDARIES; VACANCY CLUSTERS;
ALPHA-FE; MICROSTRUCTURAL EVOLUTION; VOID FORMATION; BCC IRON; COPPER;
HE; DEFECTS
AB Fe films with an average columnar grain size varying from 49 to 96 nm are deposited by magnetron sputtering technique. Sputtered films have predominant body centered cubic structure together with a small fraction of face centered cubic phase. Bulk Fe with an average grain size of 700 nm is also irradiated at the same condition for comparison. Helium bubbles are observed in Fe films and bulk Fe irradiated by 100 keV helium ions to a fluence of 6 x 10(20) ions/m(2) at room temperature. Smaller grains lead to lower density of He bubbles. Radiation hardening in Fe films is much less than that of bulk Fe, and is a combined consequence of He bubble induced hardening and radiation induced compressive stress in Fe films. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Yu, K. Y.; Liu, Y.; Sun, C.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA.
[Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA.
[Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA.
[Fu, E. G.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA.
EM zhangx@tamu.edu
RI Sun, Cheng/G-8953-2013; Yu, Kaiyuan /B-8398-2014; Liu, Yue/H-4071-2014;
Zhang, Xinghang/H-6764-2013; Wang, Haiyan/P-3550-2014
OI Sun, Cheng/0000-0002-1368-243X; Yu, Kaiyuan /0000-0002-5442-2992; Liu,
Yue/0000-0001-8518-5734; Zhang, Xinghang/0000-0002-8380-8667; Wang,
Haiyan/0000-0002-7397-1209
NR 61
TC 44
Z9 45
U1 3
U2 62
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 140
EP 146
DI 10.1016/j.jnucmat.2011.10.052
PG 7
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000022
ER
PT J
AU Kim, JH
Byun, TS
Hoelzer, DT
AF Kim, Jeoung Han
Byun, Thak Sang
Hoelzer, D. T.
TI Stress relaxation behavior of nanocluster-strengthened ferritic alloy at
high temperatures
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID MECHANICAL-PROPERTIES; FRACTURE CHARACTERISTICS; MARTENSITIC STEEL;
DEFORMATION; METALS; ENERGY; 14YWT
AB Stress relaxation behavior was investigated for the nanoclusters/dispersoids-strengthened steels including the nanostructured ferritic alloy 14YWT (SM10), oxide-dispersion strengthened (ODS) Eurofer97, and commercial ODS steel PM2000. The stress relaxation tests were carried out at high temperatures ranging from 600 to 1000 degrees C. Overall, the relaxation rates of 14YWT and ODS-Eurofer97 were lower than that of PM2000. To analyze the strain rate sensitivity of the alloys, the load drop-time curves were converted to the stress-strain rate curves. In the log-log plots of these curves, no significant change in slope was observed in the strain rate range of 2 x 10(-5)-1 x 10(-3)s(-1). At 600 degrees C, 14YWT and ODS-Eurofer97 have similar activation values of similar to 50b(3) while PM2000 has similar to 100b(3). Above 700 degrees C, the differences of the activation energy among alloys become more noticeable with increasing temperature. The activation energies of the three alloys were derived and compared. The rate-controlling mechanisms in the stress relaxation of the three nanoclusters/dispersoids-hardened alloys include dislocation glide and climb, and further study is necessary to clarify detailed contributing mechanisms. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Kim, Jeoung Han] Korea Inst Mat Sci, Special Alloys Grp, Oak Ridge Natl Lab, Chang Won, South Korea.
[Byun, Thak Sang; Hoelzer, D. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA.
RP Kim, JH (reprint author), Korea Inst Mat Sci, Special Alloys Grp, Oak Ridge Natl Lab, Chang Won, South Korea.
EM kjh1754@kims.re.kr
RI Hoelzer, David/L-1558-2016
NR 37
TC 8
Z9 8
U1 1
U2 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 147
EP 155
DI 10.1016/j.jnucmat.2011.06.040
PG 9
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000023
ER
PT J
AU Keiser, DD
Jue, JF
Robinson, AB
Medvedev, P
Gan, J
Miller, BD
Wachs, DM
Moore, GA
Clark, CR
Meyer, MK
Finlay, MR
AF Keiser, Dennis D., Jr.
Jue, Jan-Fong
Robinson, Adam B.
Medvedev, Pavel
Gan, Jian
Miller, Brandon D.
Wachs, Daniel M.
Moore, Glenn A.
Clark, Curtis R.
Meyer, Mitchell K.
Finlay, M. Ross
TI Effects of irradiation on the microstructure of U-7Mo dispersion fuel
with Al-2Si matrix
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID ALLOY
AB The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles: as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Keiser, Dennis D., Jr.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA.
[Finlay, M. Ross] Australian Nucl Sci & Technol Org, Menai, NSW 2234, Australia.
RP Keiser, DD (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA.
EM Dennis.Keiser@inl.gov
OI Meyer, Mitchell/0000-0002-1980-7862
NR 32
TC 15
Z9 15
U1 2
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 156
EP 172
DI 10.1016/j.jnucmat.2012.01.013
PG 17
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000024
ER
PT J
AU Madison, JD
Tikare, V
Holm, EA
AF Madison, Jonathan D.
Tikare, Veena
Holm, Elizabeth A.
TI A hybrid simulation methodology for modeling dynamic recrystallization
in UO2 LWR nuclear fuels
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID RIM-STRUCTURE FORMATION; HIGH BURN-UP; COMPUTER-SIMULATION;
GRAIN-GROWTH; MESOSCALE SIMULATION; MOLECULAR-DYNAMICS;
THERMAL-GRADIENT; RADIATION-DAMAGE; IRRADIATED UO2; POINT-DEFECTS
AB High burn-up, rim structures within uranium dioxide (UO2) light water reactor fuels exhibit marked differences in microstructure that are attributed to dynamic recrystallization. The recrystallization process has three distinct, interacting components: damage accumulation, nucleation and growth of damage-free regions, and subsequent evolution of recrystallized grains. In this paper, microstructural-scale simulation techniques for all three processes are presented and assembled into a hybrid tool for modeling the entire dynamic recrystallization process. The components of the model include a phenomenological model for damage accumulation and nucleation, a Cellular Automaton (CA) model for the growth and impingement of recrystallized grains, and a kinetic Monte Carlo (kMC) Potts model for subsequent grain growth. Preliminary results of the hybrid model demonstrate the evolution of a steady state grain size. Parametric simulations show the dependence of the steady state grain size on physical variables and on system size. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Madison, Jonathan D.; Tikare, Veena; Holm, Elizabeth A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Madison, JD (reprint author), Sandia Natl Labs, POB 5800,MS-1411, Albuquerque, NM 87185 USA.
EM jdmadis@sandia.gov; vtikare@sandia.gov; eaholm@sandia.gov
RI Holm, Elizabeth/S-2612-2016
OI Holm, Elizabeth/0000-0003-3064-5769
NR 48
TC 7
Z9 7
U1 2
U2 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 173
EP 180
DI 10.1016/j.jnucmat.2011.10.023
PG 8
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000025
ER
PT J
AU Kim, YS
Hofman, GL
AF Kim, Yeon Soo
Hofman, G. L.
TI Irradiation behavior of the interaction product of U-Mo fuel particle
dispersion in an Al matrix
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
AB Irradiation performance of U-Mo fuel particles dispersed in Al matrix is stable in terms of fuel swelling and is suitable for the conversion of research and test reactors from highly enriched uranium (HEU) to low enriched uranium (LEU). However, tests of the fuel at high temperatures and high burnups revealed obstacles caused by the interaction layers forming between the fuel particle and matrix. In some cases, fission gas filled pores grow and interconnect in the interdiffusion layer resulting in fuel plate failure. Postirradiation observations are made to examine the behavior of the interdiffusion layers. The interdiffusion layers show a fluid-like behavior characteristic of amorphous materials. In the amorphous interdiffusion layers, fission gas diffusivity is high and the material viscosity is low so that the fission gas pores readily form and grow. Based on the observations, a pore formation mechanism is proposed and potential remedies to suppress the pore growth are also introduced. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Kim, Yeon Soo; Hofman, G. L.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Kim, YS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM yskim@anl.gov
NR 35
TC 12
Z9 12
U1 1
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 181
EP 187
DI 10.1016/j.jnucmat.2011.07.032
PG 7
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000026
ER
PT J
AU Bozzolo, G
Hofman, GL
Yacout, AM
Mosca, HO
AF Bozzolo, G.
Hofman, G. L.
Yacout, A. M.
Mosca, H. O.
TI Lanthanides migration and immobilization in U-Zr nuclear fuels
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID HF
AB Redistribution of lanthanides fission products during irradiation and migration to the surface of U-Zr based metallic fuels is a concern due to their interaction with the cladding. The existing remedy for preventing this effect is the introduction of diffusion barriers on the cladding inner surface or by adding thermodynamically stable compound-forming elements to the fuel. Exploring this second option, in this work atomistic modeling with the Bozzolo-Ferrante-Smith (BFS) method for alloys is used to study the formation of lanthanide-rich precipitates in U-Zr fuel and the segregation patterns of all constituents to the surface. Surface energies for all elements were computed and, together with the underlying concepts of the computational methodology and large scale simulations, the migration of lanthanides to the surface region in U-Zr fuels is explained. The role of additions to the fuel such as In, Ga, and Tl for immobilization of lanthanides is discussed. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Bozzolo, G.; Hofman, G. L.; Yacout, A. M.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Mosca, H. O.] CNEA, Buenos Aires, DF, Argentina.
RP Bozzolo, G (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM guille_bozzolo@yahoo.com
NR 9
TC 2
Z9 2
U1 0
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 188
EP 192
DI 10.1016/j.jnucmat.2011.05.013
PG 5
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000027
ER
PT J
AU Tang, M
Wynn, TA
Patel, MK
Won, J
Monnet, I
Pivin, JC
Mara, NA
Sickafus, KE
AF Tang, M.
Wynn, T. A.
Patel, M. K.
Won, J.
Monnet, I.
Pivin, J. C.
Mara, N. A.
Sickafus, K. E.
TI Structure and mechanical properties of swift heavy ion irradiated
tungsten-bearing delta-phase oxides Y6W1O12 and Yb6W1O12
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID INDUCED AMORPHIZATION; NUCLEAR-WASTE; RADIATION; IMMOBILIZATION;
TRANSFORMATION; PLUTONIUM; CERAMICS
AB We report on the relationship between structure and mechanical properties of complex oxides whose structures are derivatives of fluorite, following irradiation with swift heavy ion (92 MeV Xe) which approximately simulates fission product irradiation, where the electronic energy loss dominates. The two compounds of interest in this paper are Y6W1O12 and Yb6W1O12. These compounds possess an ordered, fluorite derivative crystal structure known as the delta (delta) phase, a rhombohedral structure belonging to space group R (3) over bar.
Structural changes induced by irradiation were examined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD investigations indicated an irradiation-induced amorphization in these compounds. This result is consistent with our previous study on Y6W1O12 under displacive radiation environment in which the nuclear energy loss is dominant. High resolution TEM also revealed that individual ion tracks was amorphized. The mechanical properties of both irradiated compounds, were determined by cross-sectional nano-indentation measurements as a function of ion penetration depth. The decreases in Young's modulus, E. and hardness, H (both by about 40% at the irradiated surface) suggest amorphization beyond simple defect accumulation occurs under this irradiation condition. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Tang, M.; Patel, M. K.; Won, J.; Sickafus, K. E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
[Wynn, T. A.; Mara, N. A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Monnet, I.] Univ Caen Normandie, CIMAP, CEA, CNRS,ENSICAEN, F-14070 Caen 5, France.
[Pivin, J. C.] Univ Paris 11, Ctr Spectrometrie Nucl & Spectrometrie Masse, CNRS, IN2P3,UMR 8609, F-91405 Orsay, France.
RP Tang, M (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Mail Stop G755, Los Alamos, NM 87545 USA.
EM mtang@lanl.gov
RI Mara, Nathan/J-4509-2014;
OI won, Jonghan/0000-0002-7612-1322
NR 18
TC 4
Z9 4
U1 0
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 193
EP 196
DI 10.1016/j.jnucmat.2011.11.029
PG 4
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000028
ER
PT J
AU Santisteban, JR
Vicente-Alvarez, MA
Vizcaino, P
Banchik, AD
Vogel, SC
Tremsin, AS
Vallerga, JV
McPhate, JB
Lehmann, E
Kockelmann, W
AF Santisteban, J. R.
Vicente-Alvarez, M. A.
Vizcaino, P.
Banchik, A. D.
Vogel, S. C.
Tremsin, A. S.
Vallerga, J. V.
McPhate, J. B.
Lehmann, E.
Kockelmann, W.
TI Texture imaging of zirconium based components by total neutron
cross-section experiments
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID DIFFRACTION; TRANSMISSION; TRANSFORMATION; ZIRCALOY-4; EFFICIENCY;
RESOLUTION; DETECTORS; PHASE; PLATE; WELD
AB The transmission of thermal neutrons through an object is affected by the microstructure and crystallographic texture of the composing material. As a result, the total neutron cross section of common metallic objects departs largely from that expected for polycrystalline materials without preferred orientation. In this work we present the wavelength dependence of the total cross section of different Zr-based components of nuclear reactors, such as pressure tubes, rolled plates and welds. The experimental values found for the total cross section are discussed in terms of the crystallographic texture that results from the component manufacturing. The discussion is based on energy-resolved radiographies taken at the ISIS Facility, UK, using a novel micro-channel plate detector: and theoretical calculations of the elastic coherent total cross section from the orientation distribution function (ODF) of the crystallites composing a sample. The connection existing between texture and neutron transmission is exploited to investigate the spatial variation of texture across Zr-based components. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Santisteban, J. R.; Vicente-Alvarez, M. A.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina.
[Santisteban, J. R.; Vicente-Alvarez, M. A.] Ctr Atom Bariloche, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina.
[Vizcaino, P.; Banchik, A. D.] Comis Nacl Energia Atom, Ctr Atom Ezeiza, RA-1429 Buenos Aires, DF, Argentina.
[Vogel, S. C.] Los Alamos Natl Lab, LANSCE, Los Alamos, NM 87545 USA.
[Tremsin, A. S.; Vallerga, J. V.; McPhate, J. B.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Lehmann, E.] Paul Scherrer Inst, Villigen, Switzerland.
[Kockelmann, W.] Rutherford Appleton Lab, ISIS Facil, Chilton OX11 0QX, England.
RP Santisteban, JR (reprint author), Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina.
EM J.R.Santisteban@cab.cnea.gov.ar
RI Lujan Center, LANL/G-4896-2012; Lehmann, Eberhard/K-2316-2014;
OI Lehmann, Eberhard/0000-0001-9145-9009; Vogel, Sven
C./0000-0003-2049-0361
NR 33
TC 14
Z9 14
U1 0
U2 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 218
EP 227
DI 10.1016/j.jnucmat.2011.06.043
PG 10
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000032
ER
PT J
AU Clausen, B
Brown, DW
Bourke, MAM
Saleh, TA
Maloy, SA
AF Clausen, B.
Brown, D. W.
Bourke, M. A. M.
Saleh, T. A.
Maloy, S. A.
TI In situ neutron diffraction and Elastic-Plastic Self-Consistent
polycrystal modeling of HT-9
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID TEXTURE ANALYSIS; DEFORMATION; STRAIN; REFINEMENT; STRESSES; CRACKING
AB Qualifying materials for use in reactors with fluences greater than 200 dpa (displacements per atom) requires development of advanced alloys and irradiations in fast reactors to test these alloys. Research into the mechanical behavior of these materials under reactor conditions is ongoing. In order to probe changes in deformation mechanisms due to radiation in these materials, samples of HT-9 were tested in tension in situ on the SMARTS instrument at Los Alamos Neutron Science Center. Experimental results, confirmed with modeling, show significant load sharing between the carbides and parent phase of the steel beyond yield, displaying the critical role of carbides during deformation, along with basic texture development. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Clausen, B.; Brown, D. W.; Bourke, M. A. M.; Saleh, T. A.; Maloy, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Clausen, B (reprint author), Los Alamos Natl Lab, POB 1663,MS H805, Los Alamos, NM 87545 USA.
EM clausen@lanl.gov
RI Lujan Center, LANL/G-4896-2012; Clausen, Bjorn/B-3618-2015; Maloy,
Stuart/A-8672-2009;
OI Clausen, Bjorn/0000-0003-3906-846X; Maloy, Stuart/0000-0001-8037-1319;
Saleh, Tarik/0000-0003-2108-4293
NR 21
TC 2
Z9 2
U1 2
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 228
EP 232
DI 10.1016/j.jnucmat.2011.05.011
PG 5
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000033
ER
PT J
AU Ice, GE
Specht, ED
AF Ice, Gene E.
Specht, Eliot D.
TI Microbeam, timing and signal-resolved studies of nuclear materials with
synchrotron X-ray sources
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID MICROSCOPY; GROWTH
AB The development of ultra-brilliant synchrotron X-ray sources enables characterization methods that are particularly important for nuclear materials. Here we discuss emerging synchrotron methods with unprecedented signal-to-noise, spatial and time resolution. Microprobe methods are discussed that extend virtually any X-ray characterization measurement to ultra-small sample volumes. This ability is critical to resolve heterogeneities in nuclear materials and for studies on volumes with vastly lower activity than are needed for traditional X-ray characterization. Specific methods discussed include for the characterization of local crystal structure and micro-spectroscopy techniques that allow for characterization of elemental distributions with sensitivity for daughter products, oxidation states and diffusion through buffer layers. Opportunities are also discussed that exploit the high brilliance and pulsed nature of synchrotron radiation to reduce backgrounds from sample radiation and to study materials dynamics. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Ice, Gene E.; Specht, Eliot D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Ice, GE (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM icege@ornl.gov
RI Specht, Eliot/A-5654-2009
OI Specht, Eliot/0000-0002-3191-2163
NR 24
TC 1
Z9 1
U1 0
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUN
PY 2012
VL 425
IS 1-3
BP 233
EP 237
DI 10.1016/j.jnucmat.2011.10.038
PG 5
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 952LC
UT WOS:000304793000034
ER
PT J
AU Sutorik, AC
Gilde, G
Cooper, C
Wright, J
Hilton, C
AF Sutorik, Anthony C.
Gilde, Gary
Cooper, Christopher
Wright, Jared
Hilton, Corydon
TI The Effect of Varied Amounts of LiF Sintering Aid on the Transparency of
Alumina Rich Spinel Ceramic with the Composition MgO center dot 1.5
Al2O3
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
ID MICROSTRUCTURE DEVELOPMENT
AB Magnesium aluminate spinel with the alumina rich composition MgO center dot 1.5 Al2O3 has been prepared as a transparent polycrystalline ceramic with average in-line transmission at 550 nm of 83.3 +/- 0.9% and >80% throughout the visible spectrum. This finding significantly increases the compositional range over which polycrystalline magnesium aluminates can be prepared as fully dense ceramics with high transparency to visible light. Starting powders are prepared from combinations of high purity Mg(OH)(2) and gamma-Al2O3 thoroughly mixed in an aqueous slurry, and the solids are collected, dried, calcined, mixed with LiF sintering aid, and sieved. The powders are sintered into dense ceramics by hot pressing at 1600 degrees C under vacuum and 20 MPa uniaxial load, followed by hot isostatic pressing at 1850 degrees C under 200 MPa Ar. The crucial parameter for forming highly transparent MgO center dot 1.5 Al2O3 ceramic from this procedure is to hold the amount of LiF to 0.25 wt%.
C1 [Sutorik, Anthony C.; Gilde, Gary; Cooper, Christopher] USA, Res Lab, Attn RDRL WMM E, Aberdeen Proving Ground, MD 21005 USA.
[Wright, Jared] UICTS Bowhead Sci & Technol LLC, Belcamp, MD 21017 USA.
[Hilton, Corydon] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA.
RP Sutorik, AC (reprint author), USA, Res Lab, Attn RDRL WMM E, Bldg 4600, Aberdeen Proving Ground, MD 21005 USA.
EM anthony.sutorik1@us.army.mil
NR 22
TC 7
Z9 7
U1 1
U2 21
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0002-7820
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD JUN
PY 2012
VL 95
IS 6
BP 1807
EP 1810
DI 10.1111/j.1551-2916.2012.05217.x
PG 4
WC Materials Science, Ceramics
SC Materials Science
GA 952BU
UT WOS:000304765500006
ER
PT J
AU Brown-Shaklee, HJ
Fahrenholtz, WG
Hilmas, GE
AF Brown-Shaklee, Harlan J.
Fahrenholtz, William G.
Hilmas, Greg E.
TI Densification Behavior and Thermal Properties of Hafnium Diboride with
the Addition of Boron Carbides
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
ID ZIRCONIUM DIBORIDE; TEMPERATURE APPLICATIONS; MECHANICAL-PROPERTIES;
TITANIUM DIBORIDE; ION-SCATTERING; CERAMICS; MICROSTRUCTURE; HFB2;
CONDUCTIVITY; CARBON
AB Densification behavior and thermal properties of hot-pressed HfB2-BxC particulate composites were studied. Boron carbide powders were synthesized throughout the homogeneity range (B4.3C-B-C-10) and beyond the carbon-saturated (B3C) and boron-saturated (B12C) limits for use as sintering additives in HfB2. Changes in the densification behavior of HfB2 were observed with changes in the B/C ratio of the boron carbide sintering additive. The most effective sintering additives were either the carbon or boron saturated boron carbides which produced composites with the highest relative densities. The improved densification behavior was caused by a combination of removal of surface oxides due to chemical reactivity and changes in the B- or Hf-vacancy concentration in the HfB2 matrix phase. Thermal conductivities of the ceramics were only affected slightly by boron carbide stoichiometry. Thermal conductivities of HfB2 with 10 mol% additions of boron carbides ranged from 114 to 131 W center dot(m center dot K)(-1) at room temperature and from 87 to 93 W center dot(m center dot K)(-1) at 1000 degrees C. Measureable changes in composite thermal conductivity with composition were attributed to slight differences in hot-pressed densities that resulted from different boron carbide B/C stoichiometries.
C1 [Brown-Shaklee, Harlan J.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Brown-Shaklee, Harlan J.; Fahrenholtz, William G.; Hilmas, Greg E.] Missouri Univ Sci & Technol, Rolla, MO USA.
RP Brown-Shaklee, HJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM hjbrown@sandia.gov
OI Fahrenholtz, William/0000-0002-8497-0092
FU National Science Foundation [DMR-0906584]; U.S. Department of Energy's
National Nuclear Security Administration [DE-AC04-94AL85000]
FX This research was completed at Missouri University of Science and
Technology and was supported by the National Science Foundation under
grant DMR-0906584.; Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract
DE-AC04-94AL85000.
NR 56
TC 4
Z9 4
U1 2
U2 23
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0002-7820
EI 1551-2916
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD JUN
PY 2012
VL 95
IS 6
BP 2035
EP 2043
DI 10.1111/j.1551-2916.2012.05208.x
PG 9
WC Materials Science, Ceramics
SC Materials Science
GA 952BU
UT WOS:000304765500042
ER
PT J
AU Zhou, TH
Geller, MA
Lin, WY
AF Zhou, Tiehan
Geller, Marvin A.
Lin, Wuyin
TI An Observational Study on the Latitudes Where Wave Forcing Drives
Brewer-Dobson Upwelling
SO JOURNAL OF THE ATMOSPHERIC SCIENCES
LA English
DT Article
ID QUASI-BIENNIAL OSCILLATION; TROPICAL TROPOPAUSE TEMPERATURES;
LOWER-STRATOSPHERIC TEMPERATURES; CLIMATE MODEL SIMULATIONS; DOUBLED CO2
CLIMATE; MIDDLE-ATMOSPHERE; ANNUAL CYCLE; INTERANNUAL VARIABILITY;
DIABATIC CIRCULATION; DOWNWARD CONTROL
AB The 40-yr ECMWF Re-Analysis (ERA-40) data are analyzed to demonstrate that wave forcing at lower latitudes plays a crucial role in driving the tropical upwelling portion of the Brewer-Dobson circulation. It is shown that subtropical wave forcing is correlated with tropical upwelling on both intraseasonal and interannual time scales when transient waves are taken into account, and that tropical wave forcing exerts its influence on tropical upwelling via its body force on the zonal mean flow.
C1 [Zhou, Tiehan] Columbia Univ, NASA Goddard Inst Space Studies, New York, NY 10025 USA.
[Zhou, Tiehan] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA.
[Geller, Marvin A.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA.
[Lin, Wuyin] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA.
RP Zhou, TH (reprint author), Columbia Univ, NASA Goddard Inst Space Studies, New York, NY 10025 USA.
EM tz2131@columbia.edu
FU NASA
FX This work was supported by NASA's Modeling and Analysis and Atmospheric
Composition, Modeling and Analysis programs. We also acknowledge helpful
suggestions from two anonymous reviewers.
NR 105
TC 9
Z9 9
U1 0
U2 12
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-4928
J9 J ATMOS SCI
JI J. Atmos. Sci.
PD JUN
PY 2012
VL 69
IS 6
BP 1916
EP 1935
DI 10.1175/JAS-D-11-0197.1
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 951RA
UT WOS:000304736500011
ER
PT J
AU Seiboth, B
Karimi, RA
Phatale, PA
Linke, R
Hartl, L
Sauer, DG
Smith, KM
Baker, SE
Freitag, M
Kubicek, CP
AF Seiboth, Bernhard
Karimi, Razieh Aghcheh
Phatale, Pallavi A.
Linke, Rita
Hartl, Lukas
Sauer, Dominik G.
Smith, Kristina M.
Baker, Scott E.
Freitag, Michael
Kubicek, Christian P.
TI The putative protein methyltransferase LAE1 controls cellulase gene
expression in Trichoderma reesei
SO MOLECULAR MICROBIOLOGY
LA English
DT Article
ID SECONDARY METABOLISM; HYPOCREA-JECORINA; TRANSCRIPTIONAL REGULATION;
FILAMENTOUS FUNGI; ENZYME-SYSTEM; REGULATOR; TRANSFORMATION;
BIOSYNTHESIS; METHYLATION; CLUSTERS
AB Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, beta-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified.
C1 [Linke, Rita; Kubicek, Christian P.] Vienna Univ Technol, Inst Chem Engn, ACIB, A-1060 Vienna, Austria.
[Phatale, Pallavi A.; Smith, Kristina M.; Freitag, Michael] Oregon State Univ, Dept Biochem & Biophys, Ctr Genome Res & Biocomp, Corvallis, OR 97331 USA.
[Baker, Scott E.] Pacific NW Natl Lab, Chem & Biol Proc Dev Grp, Fungal Biotechnol Team, Richland, WA 99352 USA.
RP Kubicek, CP (reprint author), Vienna Univ Technol, Inst Chem Engn, ACIB, Gumpendorferstr 1A, A-1060 Vienna, Austria.
EM ckubicek@mail.zserv.tuwien.ac.at
FU Austrian Science Foundation [P 21266]; OSU Computational and Genome
Biology Initiative; PNNL; NIH [P01GM068087]
FX The authors acknowledge the expert help of Irina S. Druzhinina and Lea
Atanasova in the phenotype array experiments. This study was supported
by a grant of the Austrian Science Foundation to C. P. K. (P 21266),
funds from the OSU Computational and Genome Biology Initiative and PNNL
to M. F. K. M. S. was supported by funds from an NIH grant
(P01GM068087).
NR 46
TC 65
Z9 71
U1 0
U2 23
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0950-382X
J9 MOL MICROBIOL
JI Mol. Microbiol.
PD JUN
PY 2012
VL 84
IS 6
BP 1150
EP 1164
DI 10.1111/j.1365-2958.2012.08083.x
PG 15
WC Biochemistry & Molecular Biology; Microbiology
SC Biochemistry & Molecular Biology; Microbiology
GA 952YO
UT WOS:000304832500013
PM 22554051
ER
PT J
AU Van Weverberg, K
Vogelmann, AM
Morrison, H
Milbrandt, JA
AF Van Weverberg, Kwinten
Vogelmann, Andrew M.
Morrison, Hugh
Milbrandt, Jason A.
TI Sensitivity of Idealized Squall-Line Simulations to the Level of
Complexity Used in Two-Moment Bulk Microphysics Schemes
SO MONTHLY WEATHER REVIEW
LA English
DT Article
ID CLOUD MICROPHYSICS; CONVECTIVE STORMS; PART I; DEEP CONVECTION; ICE
SCHEME; PARAMETERIZATION; PRECIPITATION; MODEL; MESOSCALE; IMPACT
AB This paper investigates the level of complexity that is needed within bulk microphysics schemes to represent the essential features associated with deep convection. To do so, the sensitivity of surface precipitation is evaluated in two-dimensional idealized squall-line simulations with respect to the level of complexity in the bulk microphysics schemes of H. Morrison et al. and of J. A. Milbrandt and M. K. Yau. Factors examined include the number of predicted moments for each of the precipitating hydrometeors, the number and nature of ice categories, and the conversion term formulations. First, it is shown that simulations of surface precipitation and cold pools are not only a two-moment representation of rain, as suggested by previous research, but also by two-moment representations for all precipitating hydrometeors. Cold pools weakened when both rain and graupel number concentrations were predicted, because size sorting led to larger graupel particles that melted into larger raindrops and caused less evaporative cooling. Second, surface precipitation was found to be less sensitive to the nature of the rimed ice species (hail or graupel). Production of hail in experiments including both graupel and hail strongly depends on an unphysical threshold that converts small hail back to graupel, indicating the need for a more physical treatment of the graupel-to-hail conversion. Third, it was shown that the differences in precipitation extremes between the two-moment microphysics schemes are mainly related to the treatment of drop breakup. It was also shown that, although the H. Morrison et al. scheme is dominated by deposition growth and low precipitation efficiency, the J. A. Milbrandt and M. K. Yau scheme is dominated by riming processes and high precipitation efficiency.
C1 [Van Weverberg, Kwinten; Vogelmann, Andrew M.] Brookhaven Natl Lab, Environm Sci Brookhaven Natl Lab, Upton, NY 11973 USA.
[Morrison, Hugh] Natl Ctr Atmospher Res, Boulder, CO USA.
[Milbrandt, Jason A.] Environm Canada, Numer Weather Predict Res Sect, Dorval, PQ, Canada.
RP Van Weverberg, K (reprint author), Brookhaven Natl Lab, Environm Sci Brookhaven Natl Lab, Bldg 490-D, Upton, NY 11973 USA.
EM kvweverberg@bnl.gov
RI Vogelmann, Andrew/M-8779-2014
OI Vogelmann, Andrew/0000-0003-1918-5423
FU National Science Foundation; U.S. Department of Energy's, an Office of
Science Office of Biological and Environmental Research
[DE-AC02-98CH10886]; Earth System Modeling Program via the FASTER
project; U.S. DOE ARM [DE-FG02-08ER64574]; NOAA [NA08OAR4310543]; NSF
Science and Technology Center for Multiscale Modeling of Atmospheric
Processes (CMMAP) [ATM-0425247]
FX The National Center for Atmospheric Research is sponsored by the
National Science Foundation.; We thank Wuyin Lin and Yangang Liu for
stimulating discussions. The research by K. Van Weverberg and A. M.
Vogelmann was supported by the U.S. Department of Energy's Atmospheric
Science Program Atmospheric System Research, an Office of Science Office
of Biological and Environmental Research program, under Contract
DE-AC02-98CH10886, and by the Earth System Modeling Program via the
FASTER project (http://www.bnl.gov/esm). Hugh Morrison was partially
supported by U.S. DOE ARM DE-FG02-08ER64574, NOAA Grant NA08OAR4310543,
and the NSF Science and Technology Center for Multiscale Modeling of
Atmospheric Processes (CMMAP) managed by Colorado State University under
Cooperative Agreement ATM-0425247. We also thank Amy Solomon for
providing the code on cloud activation in the MTT scheme.
NR 44
TC 34
Z9 34
U1 2
U2 21
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD JUN
PY 2012
VL 140
IS 6
BP 1883
EP 1907
DI 10.1175/MWR-D-11-00120.1
PG 25
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 953BC
UT WOS:000304840900011
ER
PT J
AU Hadley, OL
Kirchstetter, TW
AF Hadley, Odelle L.
Kirchstetter, Thomas W.
TI Black-carbon reduction of snow albedo
SO NATURE CLIMATE CHANGE
LA English
DT Article
ID SPECTRAL ALBEDO; DIRTY SNOW; SOOT; REFLECTANCE; PARTICLES; SURFACE;
MODEL; ABSORPTION; AEROSOLS; ICE
AB Climate models indicate that the reduction of surface albedo caused by black-carbon contamination of snow contributes to global warming and near-worldwide melting of ice(1,2). In this study, we generated and characterized pure and black-carbon-laden snow in the laboratory and verified that black-carbon contamination appreciably reduces snow albedo at levels that have been found in natural settingsa(1,3,4). Increasing the size of snow grains in our experiments decreased snow albedo and amplified the radiative perturbation of black carbon, which justifies the aging-related positive feedbacks that are included in climate models. Moreover, our data provide an extensive verification of the Snow, Ice and Aerosol Radiation model(1), which will be included in the next assessment of the Intergovernmental Panel on Climate Change(5).
C1 [Hadley, Odelle L.; Kirchstetter, Thomas W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Hadley, OL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM olhadley@lbl.gov
FU California Energy Commission; Department of Energy, Office of Biological
and Environmental Research; Lawrence Berkeley National Laboratory
FX This research was financially supported by the Public Interest Energy
Research programme of the California Energy Commission and the
Atmospheric Systems Research programme of the Department of Energy,
Office of Biological and Environmental Research. O.L.H. received
financial support from the E.O. Lawrence Fellowship at Lawrence Berkeley
National Laboratory. We thank M. Flanner for providing an executable
version of the SNICAR model online and modifying it to accommodate our
analysis, C. Preble for assistance in our laboratory and T. Novakov for
more than a decade of encouragement.
NR 29
TC 65
Z9 68
U1 3
U2 64
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1758-678X
EI 1758-6798
J9 NAT CLIM CHANGE
JI Nat. Clim. Chang.
PD JUN
PY 2012
VL 2
IS 6
BP 437
EP 440
DI 10.1038/NCLIMATE1433
PG 4
WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric
Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 955WM
UT WOS:000305051600024
ER
PT J
AU Peinado, H
Aleckovic, M
Lavotshkin, S
Matei, I
Costa-Silva, B
Moreno-Bueno, G
Hergueta-Redondo, M
Williams, C
Garcia-Santos, G
Ghajar, CM
Nitadori-Hoshino, A
Hoffman, C
Badal, K
Garcia, BA
Callahan, MK
Yuan, JD
Martins, VR
Skog, J
Kaplan, RN
Brady, MS
Wolchok, JD
Chapman, PB
Kang, YB
Bromberg, J
Lyden, D
AF Peinado, Hector
Aleckovic, Masa
Lavotshkin, Simon
Matei, Irina
Costa-Silva, Bruno
Moreno-Bueno, Gema
Hergueta-Redondo, Marta
Williams, Caitlin
Garcia-Santos, Guillermo
Ghajar, Cyrus M.
Nitadori-Hoshino, Ayuko
Hoffman, Caitlin
Badal, Karen
Garcia, Benjamin A.
Callahan, Margaret K.
Yuan, Jianda
Martins, Vilma R.
Skog, Johan
Kaplan, Rosandra N.
Brady, Mary S.
Wolchok, Jedd D.
Chapman, Paul B.
Kang, Yibin
Bromberg, Jacqueline
Lyden, David
TI Melanoma exosomes educate bone marrow progenitor cells toward a
pro-metastatic phenotype through MET
SO NATURE MEDICINE
LA English
DT Article
ID PREMETASTATIC NICHE; RELEASED EXOSOMES; SIGNALING PATHWAY; C-MET;
CANCER; MICROVESICLES; GROWTH; RECRUITMENT; EXPRESSION; MECHANISM
AB Tumor-derived exosomes are emerging mediators of tumorigenesis. We explored the function of melanoma-derived exosomes in the formation of primary tumors and metastases in mice and human subjects. Exosomes from highly metastatic melanomas increased the metastatic behavior of primary tumors by permanently 'educating' bone marrow progenitors through the receptor tyrosine kinase MET. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites and reprogrammed bone marrow progenitors toward a pro-vasculogenic phenotype that was positive for c-Kit, the receptor tyrosine kinase Tie2 and Met. Reducing Met expression in exosomes diminished the pro-metastatic behavior of bone marrow cells. Notably, MET expression was elevated in circulating CD45(-)C-KIT(low/+)TIE2(+) bone marrow progenitors from individuals with metastatic melanoma. RAB1A, RAB5B, RAB7 and RAB27A, regulators of membrane trafficking and exosome formation, were highly expressed in melanoma cells. Rab27A RNA interference decreased exosome production, preventing bone marrow education and reducing, tumor growth and metastasis. In addition, we identified an exosome-specific melanoma signature with prognostic and therapeutic potential comprised of TYRP2, VLA- 4, HSP70, an HSP90 isoform and the MET oncoprotein. Our data show that exosome production, transfer and education of bone marrow cells supports tumor growth and metastasis, has prognostic value and offers promise for new therapeutic directions in the metastatic process.
C1 [Callahan, Margaret K.; Wolchok, Jedd D.; Chapman, Paul B.; Bromberg, Jacqueline] Mem Sloan Kettering Canc Ctr, Dept Med, New York, NY 10021 USA.
[Peinado, Hector; Matei, Irina; Costa-Silva, Bruno; Williams, Caitlin; Garcia-Santos, Guillermo; Nitadori-Hoshino, Ayuko; Badal, Karen; Lyden, David] Weill Cornell Med Coll, Dept Pediat, Childrens Canc & Blood Fdn Labs, New York, NY USA.
[Peinado, Hector; Matei, Irina; Costa-Silva, Bruno; Williams, Caitlin; Garcia-Santos, Guillermo; Nitadori-Hoshino, Ayuko; Badal, Karen; Lyden, David] Weill Cornell Med Coll, Dept Cell, Childrens Canc & Blood Fdn Labs, New York, NY USA.
[Peinado, Hector; Matei, Irina; Costa-Silva, Bruno; Williams, Caitlin; Garcia-Santos, Guillermo; Nitadori-Hoshino, Ayuko; Badal, Karen; Lyden, David] Weill Cornell Med Coll, Dept Dev Biol, Childrens Canc & Blood Fdn Labs, New York, NY USA.
[Aleckovic, Masa; Garcia, Benjamin A.; Kang, Yibin] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA.
[Lavotshkin, Simon] Columbia Univ, Coll Phys & Surg, Dept Surg, New York, NY USA.
[Costa-Silva, Bruno; Martins, Vilma R.] AC Camargo Hosp, Int Ctr Res & Educ, Sao Paulo, Brazil.
[Moreno-Bueno, Gema; Hergueta-Redondo, Marta] Univ Autonoma Madrid, Inst Invest Biomed Alberto Sols, IdiPAZ Inst Invest Sanitaria La Paz, CSIC,Dept Bioquim, Madrid, Spain.
[Moreno-Bueno, Gema; Hergueta-Redondo, Marta] Fdn MD Anderson Canc Ctr, Madrid, Spain.
[Ghajar, Cyrus M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Hoffman, Caitlin] Weill Cornell Med Coll, Dept Neurosurg, New York, NY USA.
[Yuan, Jianda; Wolchok, Jedd D.] Sloan Kettering Inst, Ludwig Ctr Canc Immunotherapy, Dept Immunol, New York, NY USA.
[Skog, Johan] Exosome Diagnost Inc, New York, NY USA.
[Kaplan, Rosandra N.] NCI, Pediat Oncol Branch, NIH, Bethesda, MD 20892 USA.
[Brady, Mary S.] Mem Sloan Kettering Canc Ctr, Dept Surg, New York, NY 10021 USA.
[Kang, Yibin] Canc Inst New Jersey, Genom Instabil & Tumor Progress Program, New Brunswick, NJ USA.
[Kang, Yibin; Lyden, David] Champalimaud Metastasis Programme, Lisbon, Portugal.
[Lyden, David] Mem Sloan Kettering Canc Ctr, Dept Pediat, New York, NY 10021 USA.
RP Bromberg, J (reprint author), Mem Sloan Kettering Canc Ctr, Dept Med, 1275 York Ave, New York, NY 10021 USA.
EM bromberj@mskcc.org; dcl2001@med.cornell.edu
RI Peinado, Hector/A-6417-2013; Oncogenomica, Inct/H-9999-2013;
Neurociencia, Inct/I-1011-2013; Francisco, Suely/D-9065-2014; Martins,
Vilma/E-2547-2012; Moreno-Bueno, Gema/K-9354-2016;
OI Martins, Vilma/0000-0002-2909-8502; Moreno-Bueno,
Gema/0000-0002-5030-6687; Aleckovic, Masa/0000-0001-5653-8502
FU Children's Cancer and Blood Foundation; Manning Foundation; Hartwell
Foundation; Pediatric Oncology Experimental Therapeutics Investigators
Consortium; Stavros S. Niarchos Foundation; Champalimaud Foundation;
Nancy C. and Daniel P. Paduano Foundation; Mary Kay Foundation; American
Hellenic Educational Progressive Association; Malcolm Hewitt Wiener
Foundation; George Best Costacos Foundation; NCI [NCI-R01CA 098234-01];
National Foundation for Cancer Research; Susan G. Komen for the Cure;
Fundacion para el Fomento en Asturias de la Investigacion Cientifica
Aplicada y la Tecnologia; Fundacion Universidad de Oviedo; Beth C.
Tortolani Foundation; Sussman Family Fund; Charles and Marjorie Holloway
Foundation; Manhassat Breast Cancer Fund; NIH [CA87637, R01-CA134519,
R01-CA141062]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo
(FAPESP); National Science Foundation [CBET-0941143]; American Society;
[NCI-U54-CA143836]
FX We dedicate this work to the memory of James A. Paduano. We thank M. J.
Bissell, A. Cano, J. Wels and S.R. Granitto for critical reading of this
paper and suggestions. We also thank the members of our laboratories for
helpful discussions and the members of the Weill Cornell Medical College
electron microscopy and microarray core facilities for their support. We
thank V. Hearing, (US National Institutes of Health (NIH), National
Cancer Institute (NCI)) for providing the antibody to TYRP2 and D.C.
Bennett (St. George's University of London) for providing the melan-a
cell line. Our work is supported by grants from the Children's Cancer
and Blood Foundation (H.P. and D.L.), The Manning Foundation (B.C.-S.
and D.L.), The Hartwell Foundation (D.L.), Pediatric Oncology
Experimental Therapeutics Investigators Consortium (H.P. and D.L.),
Stavros S. Niarchos Foundation (D.L.), Champalimaud Foundation (H.P.,
Y.K. and D.L.), The Nancy C. and Daniel P. Paduano Foundation (H.P. and
D.L.), The Mary Kay Foundation (A.N.-H. and D.L.), American Hellenic
Educational Progressive Association 5th District (D.L.), The Malcolm
Hewitt Wiener Foundation (D.L.), The George Best Costacos Foundation
(D.L.), NCI (D.L., grant NCI-R01CA 098234-01), National Foundation for
Cancer Research (D.L.), Susan G. Komen for the Cure (H.P. and D.L.),
NCI-U54-CA143836 training grant (C.M.G. and D.L.), Fundacion para el
Fomento en Asturias de la Investigacion Cientifica Aplicada y la
Tecnologia (G.G.-S.), Fundacion Universidad de Oviedo (G.G.-S.), The
Beth C. Tortolani Foundation (H.P., D.L. and J.B.), Sussman Family Fund
(J.B.), Charles and Marjorie Holloway Foundation (J.B.), Manhassat
Breast Cancer Fund (J.B.), NIH-CA87637 (J.B.), Fundacao de Amparo a
Pesquisa do Estado de Sao Paulo (FAPESP, V.R.M. and B.C.-S.), NIH (Y.K.,
grants R01-CA134519 and R01-CA141062), National Science Foundation grant
CBET-0941143 and an American Society for Mass Spectrometry research
award (B.A.G.).
NR 58
TC 807
Z9 836
U1 46
U2 213
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1078-8956
J9 NAT MED
JI Nat. Med.
PD JUN
PY 2012
VL 18
IS 6
BP 883
EP +
DI 10.1038/nm.2753
PG 12
WC Biochemistry & Molecular Biology; Cell Biology; Medicine, Research &
Experimental
SC Biochemistry & Molecular Biology; Cell Biology; Research & Experimental
Medicine
GA 956VD
UT WOS:000305116600025
PM 22635005
ER
PT J
AU Larsen, PE
Field, D
Gilbert, JA
AF Larsen, Peter E.
Field, Dawn
Gilbert, Jack A.
TI Predicting bacterial community assemblages using an artificial neural
network approach
SO NATURE METHODS
LA English
DT Article
ID WESTERN ENGLISH-CHANNEL; SPECIES DISTRIBUTION; MODELS; ABUNDANCE
AB Understanding the interactions between the Earth's microbiome and the physical, chemical and biological environment is a fundamental goal of microbial ecology. We describe a bioclimatic modeling approach that leverages artificial neural networks to predict microbial community structure as a function of environmental parameters and microbial interactions. This method was better at predicting observed community structure than were any of several single-species models that do not incorporate biotic interactions. The model was used to interpolate and extrapolate community structure over time with an average Bray-Curtis similarity of 89.7. Additionally, community structure was extrapolated geographically to create the first microbial map derived from single-point observations. This method can be generalized to the many microbial ecosystems for which detailed taxonomic data are currently being generated, providing an observation-based modeling technique for predicting microbial taxonomic structure in ecological studies.
C1 [Larsen, Peter E.; Gilbert, Jack A.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
[Field, Dawn] NERC, Ctr Ecol & Hydrol, Wallingford, Oxon, England.
[Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA.
RP Gilbert, JA (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM gilbertjack@gmail.com
RI Sexton, Susan/E-9348-2012
FU US Department of Energy [DE-AC02-06CH11357]
FX This work was supported by the US Department of Energy under contract
DE-AC02-06CH11357.
NR 34
TC 55
Z9 59
U1 4
U2 103
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1548-7091
J9 NAT METHODS
JI Nat. Methods
PD JUN
PY 2012
VL 9
IS 6
BP 621
EP +
DI 10.1038/NMETH.1975
PG 7
WC Biochemical Research Methods
SC Biochemistry & Molecular Biology
GA 952GD
UT WOS:000304778500031
PM 22504588
ER
PT J
AU Lee, BY
Zhang, JX
Zueger, C
Chung, WJ
Yoo, SY
Wang, E
Meyer, J
Ramesh, R
Lee, SW
AF Lee, Byung Yang
Zhang, Jinxing
Zueger, Chris
Chung, Woo-Jae
Yoo, So Young
Wang, Eddie
Meyer, Joel
Ramesh, Ramamoorthy
Lee, Seung-Wuk
TI Virus-based piezoelectric energy generation
SO NATURE NANOTECHNOLOGY
LA English
DT Article
ID THIN-FILMS; BONE
AB Piezoelectric materials can convert mechanical energy into electrical energy(1,2), and piezoelectric devices made of a variety of inorganic materials(3-5) and organic polymers(6) have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures(7). Previously, it was shown that hierarchically organized natural materials such as bones(8), collagen fibrils(9,10) and peptide nanotubes(11,12) can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V-1. We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.
C1 [Lee, Byung Yang; Chung, Woo-Jae; Yoo, So Young; Wang, Eddie; Meyer, Joel; Lee, Seung-Wuk] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
[Zhang, Jinxing; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Zueger, Chris] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Lee, Byung Yang; Zueger, Chris; Chung, Woo-Jae; Yoo, So Young; Wang, Eddie; Meyer, Joel; Lee, Seung-Wuk] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Zhang, Jinxing; Ramesh, Ramamoorthy] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Lee, SW (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
EM leesw@berkeley.edu
OI Lee, Byung Yang/0000-0003-0125-2501; Wang, Eddie/0000-0002-9814-0102
FU National Science Foundation Center of Integrated Nanomechanical Systems
[EEC-0832819]; Lawrence Berkeley National Laboratory
FX The authors thank Jiyoung Chang and Liwei Lin (University of California,
Berkeley) for help with device fabrication and signal measurement. This
work was supported by the National Science Foundation Center of
Integrated Nanomechanical Systems (EEC-0832819) and the Laboratory
Directed Research and Development fund from the Lawrence Berkeley
National Laboratory.
NR 33
TC 95
Z9 96
U1 10
U2 134
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1748-3387
EI 1748-3395
J9 NAT NANOTECHNOL
JI Nat. Nanotechnol.
PD JUN
PY 2012
VL 7
IS 6
BP 351
EP 356
DI 10.1038/NNANO.2012.69
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 955HO
UT WOS:000305008200006
PM 22581406
ER
PT J
AU Li, YG
Zhou, W
Wang, HL
Xie, LM
Liang, YY
Wei, F
Idrobo, JC
Pennycook, SJ
Dai, HJ
AF Li, Yanguang
Zhou, Wu
Wang, Hailiang
Xie, Liming
Liang, Yongye
Wei, Fei
Idrobo, Juan-Carlos
Pennycook, Stephen J.
Dai, Hongjie
TI An oxygen reduction electrocatalyst based on carbon nanotube-graphene
complexes
SO NATURE NANOTECHNOLOGY
LA English
DT Article
ID TRANSITION-METAL MACROCYCLES; FE-BASED CATALYSTS; FUEL-CELLS;
ELECTRON-MICROSCOPY; ALKALINE-SOLUTIONS; O-2 REDUCTION; SPECTROSCOPY;
SUPPORTS
AB Oxygen reduction reaction catalysts based on precious metals such as platinum or its alloys are routinely used in fuel cells because of their high activity. Carbon-supported materials containing metals such as iron or cobalt as well as nitrogen impurities have been proposed to increase scalability and reduce costs, but these alternatives usually suffer from low activity and/or gradual deactivation during use. Here, we show that few-walled carbon nanotubes, following outer wall exfoliation via oxidation and high-temperature reaction with ammonia, can act as an oxygen reduction reaction electrocatalyst in both acidic and alkaline solutions. Under a unique oxidation condition, the outer walls of the few-walled carbon nanotubes are partially unzipped, creating nanoscale sheets of graphene attached to the inner tubes. The graphene sheets contain extremely small amounts of irons originated from nanotube growth seeds, and nitrogen impurities, which facilitate the formation of catalytic sites and boost the activity of the catalyst, as revealed by atomic-scale microscopy and electron energy loss spectroscopy. Whereas the graphene sheets formed from the unzipped part of the outer wall of the nanotubes are responsible for the catalytic activity, the inner walls remain intact and retain their electrical conductivity, which facilitates charge transport during electrocatalysis.
C1 [Li, Yanguang; Wang, Hailiang; Xie, Liming; Liang, Yongye; Dai, Hongjie] Stanford Univ, Dept Chem, Stanford, CA 94305 USA.
[Zhou, Wu; Idrobo, Juan-Carlos; Pennycook, Stephen J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Zhou, Wu; Idrobo, Juan-Carlos; Pennycook, Stephen J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Wei, Fei] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China.
RP Dai, HJ (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA.
EM hdai@stanford.edu
RI Xie, Liming/C-4639-2011; Wei, Fei/H-4674-2012; Wei, Fei/H-4809-2012;
Zhou, Wu/D-8526-2011; Liang, Yongye/D-9275-2012; Li,
Yanguang/A-2319-2014; Idrobo, Juan/H-4896-2015
OI Zhou, Wu/0000-0002-6803-1095; Li, Yanguang/0000-0003-0506-0451; Idrobo,
Juan/0000-0001-7483-9034
FU Stanford Precourt Institute for Energy; Intel; NCEM at Lawrence Berkeley
Laboratory; US DOE [DE-AC02-05CH11231]; NSF [DMR-0938330]; Oak Ridge
National Laboratory's Shared Research Equipment (ShaRE) User Facility;
Office of Basic Energy Sciences, US Department of Energy; Materials
Sciences and Engineering Division of the US DOE
FX This work was supported in part by a Stinehart Grant for Energy Research
at Stanford from the Stanford Precourt Institute for Energy, Intel and
NCEM at Lawrence Berkeley Laboratory, which was supported by the US DOE
(DE-AC02-05CH11231). W.Z. was supported by the NSF (DMR-0938330). J-C.I.
was supported by Oak Ridge National Laboratory's Shared Research
Equipment (ShaRE) User Facility, which is sponsored by the Office of
Basic Energy Sciences, US Department of Energy. S.J.P. was supported by
the Basic Energy Sciences programme of the Materials Sciences and
Engineering Division of the US DOE.
NR 41
TC 666
Z9 670
U1 108
U2 867
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1748-3387
J9 NAT NANOTECHNOL
JI Nat. Nanotechnol.
PD JUN
PY 2012
VL 7
IS 6
BP 394
EP 400
DI 10.1038/NNANO.2012.72
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 955HO
UT WOS:000305008200014
PM 22635099
ER
PT J
AU Thompson, IJ
Dardenne, YMXM
Kenneally, JM
Robertson, A
Ahle, LE
Hagmann, CA
Henderson, RA
Vogt, D
Wu, CY
Younes, W
AF Thompson, I. J.
Dardenne, Y. M. X. M.
Kenneally, J. M.
Robertson, A.
Ahle, L. E.
Hagmann, C. A.
Henderson, R. A.
Vogt, D.
Wu, C. -Y.
Younes, W.
TI Evaluations of Fission Chain Yields for Pu-239 from Fission-Spectrum
Neutrons
SO NUCLEAR SCIENCE AND ENGINEERING
LA English
DT Article
ID ENERGY 130-1700 KEV; MONOENERGETIC NEUTRONS; ABSOLUTE YIELDS; PRODUCT
YIELDS; FAST-REACTOR; MASS; NUCLIDES; BURNUP; U-235
AB Because of the importance of accurate data for fission chain yields (FCYs) for many applications, we present a rigorous "clean sheet" evaluation of all available data to provide an accurate set of pertinent FCYs. Because some nuclear data (e.g., half-lives, branching ratios, etc.) have been refined since the original analyses, where possible we update the data and their associated uncertainties. This evaluation is particularly topical since there are differences in the nuclear data used by radiochemists at different laboratories internationally and since some experiments from the 1970s have been recently reexamined with details published for the first time.
The focus of this work is the production of a small set of fission products (Zr-95, Mo-99, (144)ce, Nd-147) from plutonium irradiated by fission spectrum neutrons. Because Nd-147 is a common isotope used at several laboratories, its production rate is examined critically. We find that most of the interlaboratory discrepancies can be explained by a dependence of its yield on the energy of the neutron causing fission, so we consider in detail the statistical significance of this claim. The potential for neutron energy dependence of Nd-147 production from plutonium was first recognized in 1977 by Maeck and recently raised again as a possibility by Chadwick. The data for Zr-95, by contrast, demonstrate no statistically significant energy-dependence trends, but the data at the higher energies demonstrate significant scatter.
With the relatively small number of data points, and recognizing that measurement methods and technologies have likely significantly improved in the nearly 30 years since the last measurement, additional measurements to refine the assessment and improve the uncertainties may be warranted.
C1 [Thompson, I. J.; Dardenne, Y. M. X. M.; Kenneally, J. M.; Robertson, A.; Ahle, L. E.; Hagmann, C. A.; Henderson, R. A.; Vogt, D.; Wu, C. -Y.; Younes, W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Thompson, IJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM I-Thompson@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344.
NR 58
TC 6
Z9 6
U1 0
U2 4
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5639
EI 1943-748X
J9 NUCL SCI ENG
JI Nucl. Sci. Eng.
PD JUN
PY 2012
VL 171
IS 2
BP 85
EP 135
PG 51
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 956NP
UT WOS:000305096700001
ER
PT J
AU Jelinek, B
Groh, S
Horstemeyer, MF
Houze, J
Kim, SG
Wagner, GJ
Moitra, A
Baskes, MI
AF Jelinek, B.
Groh, S.
Horstemeyer, M. F.
Houze, J.
Kim, S. G.
Wagner, G. J.
Moitra, A.
Baskes, M. I.
TI Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe
alloys
SO PHYSICAL REVIEW B
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; METHOD INTERATOMIC POTENTIALS;
TRANSITION-METAL ALUMINIDES; STACKING-FAULT ENERGIES; POINT-DEFECT
PROPERTIES; AB-INITIO CALCULATIONS; AUGMENTED-WAVE METHOD; ATOMISTIC
SIMULATIONS; THERMODYNAMIC PROPERTIES; VACANCY CONCENTRATIONS
AB A set of modified embedded-atom method (MEAM) potentials for the interactions between Al, Si, Mg, Cu, and Fe was developed from a combination of each element's MEAM potential in order to study metal alloying. Previously published MEAM parameters of single elements have been improved for better agreement to the generalized stacking fault energy (GSFE) curves when compared with ab initio generated GSFE curves. The MEAM parameters for element pairs were constructed based on the structural and elastic properties of element pairs in the NaCl reference structure garnered from ab initio calculations, with adjustment to reproduce the ab initio heat of formation of the most stable binary compounds. The new MEAM potentials were validated by comparing the formation energies of defects, equilibrium volumes, elastic moduli, and heat of formation for several binary compounds with ab initio simulations and experiments. Single elements in their ground-state crystal structure were subjected to heating to test the potentials at elevated temperatures. An Al potential was modified to avoid formation of an unphysical solid structure at high temperatures. The thermal expansion coefficient of a compound with the composition of AA 6061 alloy was evaluated and compared with experimental values. MEAM potential tests performed in this work, utilizing the universal atomistic simulation environment (ASE), are distributed to facilitate reproducibility of the results.
C1 [Jelinek, B.; Groh, S.; Horstemeyer, M. F.] Ctr Adv Vehicular Syst, Starkville, MS 39759 USA.
[Houze, J.; Kim, S. G.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA.
[Wagner, G. J.] Sandia Natl Labs, Livermore, CA 94551 USA.
[Moitra, A.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA.
[Baskes, M. I.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Horstemeyer, M. F.] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA.
[Kim, S. G.] Mississippi State Univ, Ctr Computat Sci, Mississippi State, MS 39762 USA.
[Baskes, M. I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Jelinek, B (reprint author), Ctr Adv Vehicular Syst, 200 Res Blvd, Starkville, MS 39759 USA.
RI Jelinek, Bohumir/C-4376-2008; Wagner, Gregory/I-4377-2015;
OI Jelinek, Bohumir/0000-0002-2622-4235; Horstemeyer,
Mark/0000-0003-4230-0063
FU Center for Advanced Vehicular Systems at Mississippi State University;
US Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX The authors are grateful to the Center for Advanced Vehicular Systems at
Mississippi State University for supporting this study. Computer time
allocation has been provided by the High Performance Computing
Collaboratory (HPC2) at Mississippi State University.
Computational package LAMMPS146 with ASE147
interface was used to perform MD simulations. Much appreciated tests of
the new MEAM potentials, including the high-temperature simulations of
Al that revealed formation of unknown Al phase at 800 K, were performed
by Chandler Becker and Tanner Hamann at the Metallurgy Division of the
Material Measurement Laboratory, National Institute of Standards and
Technology (NIST). Comparison of ab initio elastic constants and related
discussion with Hannes Schweiger from Materials Design are also
appreciated. Classical MD potentials from other authors examined in this
study were downloaded from the Interatomic Potentials Repository Project
database.148 Sandia National Laboratories is a multiprogram
laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the US Department of
Energy's National Nuclear Security Administration under contract
DE-AC04-94AL85000.
NR 152
TC 58
Z9 58
U1 19
U2 124
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 1
PY 2012
VL 85
IS 24
AR 245102
DI 10.1103/PhysRevB.85.245102
PG 18
WC Physics, Condensed Matter
SC Physics
GA 951AS
UT WOS:000304693600004
ER
PT J
AU Zhou, XW
Ward, DK
Wong, BM
Doty, FP
Zimmerman, JA
Nielson, GN
Cruz-Campa, JL
Gupta, VP
Granata, JE
Chavez, JJ
Zubia, D
AF Zhou, X. W.
Ward, D. K.
Wong, B. M.
Doty, F. P.
Zimmerman, J. A.
Nielson, G. N.
Cruz-Campa, J. L.
Gupta, V. P.
Granata, J. E.
Chavez, J. J.
Zubia, D.
TI High-fidelity simulations of CdTe vapor deposition from a bond-order
potential-based molecular dynamics method
SO PHYSICAL REVIEW B
LA English
DT Article
ID FILM SOLAR-CELLS; CDZNTE RADIATION DETECTORS; MULTICOMPONENT SYSTEMS;
SELF-DIFFUSION; CRYSTAL-GROWTH; SURFACES; TECHNOLOGY; TELLURIDE; ENERGY;
SEMICONDUCTOR
AB CdTe has been a special semiconductor for constructing the lowest-cost solar cells, and the CdTe-based Cd1-xZnxTe alloy has been the leading semiconductor for radiation detection applications. The performance currently achieved for the materials, however, is still far below theoretical expectations. This is because the property-limiting nanoscale defects that are easily formed during the growth of CdTe crystals are difficult to explore in experiments. Here, we demonstrate the capability of a bond-order potential-based molecular dynamics method for predicting the crystalline growth of CdTe films during vapor deposition simulations. Such a method may begin to enable defects generated during vapor deposition of CdTe crystals to be accurately explored.
C1 [Zhou, X. W.; Zimmerman, J. A.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA.
[Ward, D. K.; Doty, F. P.] Sandia Natl Labs, Radiat & Nucl Detect Mat & Anal Dept, Livermore, CA 94550 USA.
[Wong, B. M.] Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94550 USA.
[Nielson, G. N.; Cruz-Campa, J. L.] Sandia Natl Labs, Adv MEMS Dept, Albuquerque, NM 87185 USA.
[Gupta, V. P.] Sandia Natl Labs, Mat Devices & Energy Technol Dept, Livermore, CA 94550 USA.
[Granata, J. E.] Sandia Natl Labs, Photovolta & Grid Integrat Dept, Livermore, CA 94550 USA.
[Chavez, J. J.; Zubia, D.] Univ Texas El Paso, Dept Elect Engn, El Paso, TX 79968 USA.
RP Zhou, XW (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA.
EM xzhou@sandia.gov
RI Wong, Bryan/B-1663-2009
OI Wong, Bryan/0000-0002-3477-8043
FU NNSA/DOE Office of Nonproliferation Research and Development; National
Institute for Nano-Engineering (NINE); US Department of Energy's
National Nuclear Security Administration [DE-AC04-94AL85000]
FX This work is supported by the NNSA/DOE Office of Nonproliferation
Research and Development, Proliferation Detection Program, Advanced
Materials Portfolio, and The National Institute for Nano-Engineering
(NINE). Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the US Department of Energy's National
Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
NR 58
TC 10
Z9 10
U1 1
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 1
PY 2012
VL 85
IS 24
AR 245302
DI 10.1103/PhysRevB.85.245302
PG 15
WC Physics, Condensed Matter
SC Physics
GA 951AS
UT WOS:000304693600008
ER
PT J
AU Gunsing, F
Berthoumieux, E
Aerts, G
Abbondanno, U
Alvarez, H
Alvarez-Velarde, F
Andriamonje, S
Andrzejewski, J
Assimakopoulos, P
Audouin, L
Badurek, G
Baumann, P
Becvar, F
Calvino, F
Cano-Ott, D
Capote, R
de Albornoz, AC
Cennini, P
Chepel, V
Chiaveri, E
Colonna, N
Cortes, G
Couture, A
Cox, J
Dahlfors, M
David, S
Dillman, I
Dolfini, R
Domingo-Pardo, C
Dridi, W
Duran, I
Eleftheriadis, C
Embid-Segura, M
Ferrant, L
Ferrari, A
Ferreira-Marques, R
Fitzpatrick, L
Frais-Koelbl, H
Fujii, K
Furman, W
Goncalves, I
Gonzalez-Romero, E
Goverdovski, A
Gramegna, F
Griesmayer, E
Guerrero, C
Haas, B
Haight, R
Heil, M
Herrera-Martinez, A
Igashira, M
Isaev, S
Jericha, E
Kappeler, F
Kadi, Y
Karadimos, D
Karamanis, D
Kerveno, M
Ketlerov, V
Koehler, P
Konovalov, V
Kossionides, E
Krticka, M
Lampoudis, C
Leeb, H
Lindote, A
Lopes, I
Lozano, M
Lukic, S
Marganiec, J
Marques, L
Marrone, S
Mastinu, P
Mengoni, A
Milazzo, PM
Moreau, C
Mosconi, M
Neves, F
Oberhummer, H
O'Brien, S
Oshima, M
Pancin, J
Papachristodoulou, C
Papadopoulos, C
Paradela, C
Patronis, N
Pavlik, A
Pavlopoulos, P
Perrot, L
Pigni, MT
Plag, R
Plompen, A
Plukis, A
Poch, A
Pretel, C
Quesada, J
Rauscher, T
Reifarth, R
Rosetti, M
Rubbia, C
Rudolf, G
Rullhusen, P
Salgado, J
Sarchiapone, L
Savvidis, I
Stephan, C
Tagliente, G
Tain, JL
Tassan-Got, L
Tavora, L
Terlizzi, R
Vannini, G
Vaz, P
Ventura, A
Villamarin, D
Vincente, MC
Vlachoudis, V
Vlastou, R
Voss, F
Walter, S
Wendler, H
Wiescher, M
Wisshak, K
AF Gunsing, F.
Berthoumieux, E.
Aerts, G.
Abbondanno, U.
Alvarez, H.
Alvarez-Velarde, F.
Andriamonje, S.
Andrzejewski, J.
Assimakopoulos, P.
Audouin, L.
Badurek, G.
Baumann, P.
Becvar, F.
Calvino, F.
Cano-Ott, D.
Capote, R.
Carrillo de Albornoz, A.
Cennini, P.
Chepel, V.
Chiaveri, E.
Colonna, N.
Cortes, G.
Couture, A.
Cox, J.
Dahlfors, M.
David, S.
Dillman, I.
Dolfini, R.
Domingo-Pardo, C.
Dridi, W.
Duran, I.
Eleftheriadis, C.
Embid-Segura, M.
Ferrant, L.
Ferrari, A.
Ferreira-Marques, R.
Fitzpatrick, L.
Frais-Koelbl, H.
Fujii, K.
Furman, W.
Goncalves, I.
Gonzalez-Romero, E.
Goverdovski, A.
Gramegna, F.
Griesmayer, E.
Guerrero, C.
Haas, B.
Haight, R.
Heil, M.
Herrera-Martinez, A.
Igashira, M.
Isaev, S.
Jericha, E.
Kaeppeler, F.
Kadi, Y.
Karadimos, D.
Karamanis, D.
Kerveno, M.
Ketlerov, V.
Koehler, P.
Konovalov, V.
Kossionides, E.
Krticka, M.
Lampoudis, C.
Leeb, H.
Lindote, A.
Lopes, I.
Lozano, M.
Lukic, S.
Marganiec, J.
Marques, L.
Marrone, S.
Mastinu, P.
Mengoni, A.
Milazzo, P. M.
Moreau, C.
Mosconi, M.
Neves, F.
Oberhummer, H.
O'Brien, S.
Oshima, M.
Pancin, J.
Papachristodoulou, C.
Papadopoulos, C.
Paradela, C.
Patronis, N.
Pavlik, A.
Pavlopoulos, P.
Perrot, L.
Pigni, M. T.
Plag, R.
Plompen, A.
Plukis, A.
Poch, A.
Pretel, C.
Quesada, J.
Rauscher, T.
Reifarth, R.
Rosetti, M.
Rubbia, C.
Rudolf, G.
Rullhusen, P.
Salgado, J.
Sarchiapone, L.
Savvidis, I.
Stephan, C.
Tagliente, G.
Tain, J. L.
Tassan-Got, L.
Tavora, L.
Terlizzi, R.
Vannini, G.
Vaz, P.
Ventura, A.
Villamarin, D.
Vincente, M. C.
Vlachoudis, V.
Vlastou, R.
Voss, F.
Walter, S.
Wendler, H.
Wiescher, M.
Wisshak, K.
CA n TOF Collaboration
TI Measurement of resolved resonances of Th-232(n, gamma) at the n_TOF
facility at CERN
SO PHYSICAL REVIEW C
LA English
DT Article
ID CAPTURE CROSS-SECTION; OF-FLIGHT FACILITY; ANGULAR-DISTRIBUTION;
ENERGY-RANGE; NEUTRON; REGION; SPECTROSCOPY; PARAMETERS; DETECTOR;
SPECTRA
AB The yield of the neutron capture reaction Th-232(n, gamma) has been measured at the neutron time-of-flight facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The reduction of the acquired data to the capture yield for resolved resonances from 1 eV to 4 keV is described and compared to a recent evaluated data set. The resonance parameters were used to assign an orbital momentum to each resonance. A missing level estimator was used to extract the s-wave level spacing of D-0 = 17.2 +/- 0.9 eV.
C1 [Gunsing, F.; Berthoumieux, E.; Aerts, G.; Andriamonje, S.; Dridi, W.; Pancin, J.; Perrot, L.; Plukis, A.] CEA Saclay, DSM, Irfu, SPhN, F-91191 Gif Sur Yvette, France.
[Abbondanno, U.; Fujii, K.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy.
[Alvarez, H.; Duran, I.; Paradela, C.] Univ Santiago de Compostela, Santiago De Compostela, Spain.
[Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Segura, M.; Gonzalez-Romero, E.; Guerrero, C.; Villamarin, D.; Vincente, M. C.] Ctr Invest Energet Medioambientales & Technol, Madrid, Spain.
[Andrzejewski, J.; Marganiec, J.] Univ Lodz, PL-90131 Lodz, Poland.
[Assimakopoulos, P.; Karadimos, D.; Karamanis, D.; Papachristodoulou, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece.
[Audouin, L.; Ferrant, L.; Isaev, S.; Stephan, C.; Tassan-Got, L.] Ctr Natl Rech Sci, IN2P3, IPN, Orsay, France.
[Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.] Vienna Univ Technol, Atominst Osterreich Univ, A-1060 Vienna, Austria.
[Baumann, P.; David, S.; Kerveno, M.; Lukic, S.; Rudolf, G.] Ctr Natl Rech Sci, IN2P3, IReS, Strasbourg, France.
[Becvar, F.; Krticka, M.] Charles Univ Prague, Prague, Czech Republic.
[Calvino, F.; Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, Barcelona, Spain.
[Capote, R.] IAEA, NAPC, Nucl Data Sect, A-1400 Vienna, Austria.
[Capote, R.; Lozano, M.; Quesada, J.] Univ Seville, Seville, Spain.
[Carrillo de Albornoz, A.; Marques, L.; Salgado, J.; Tavora, L.; Vaz, P.] ITN, Lisbon, Portugal.
[Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Fitzpatrick, L.; Herrera-Martinez, A.; Kadi, Y.; Ketlerov, V.; Konovalov, V.; Mengoni, A.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.] CERN, Geneva, Switzerland.
[Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, LIP Coimbra, Coimbra, Portugal.
[Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal.
[Colonna, N.; Marrone, S.; Tagliente, G.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy.
[Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Dillman, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] KIT, D-76021 Karlsruhe, Germany.
[Dolfini, R.; Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy.
[Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain.
[Eleftheriadis, C.; Lampoudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, GR-54006 Thessaloniki, Greece.
[Furman, W.; Konovalov, V.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia.
[Goverdovski, A.; Gramegna, F.; Ketlerov, V.] Inst Phys & Power Engn, Obninsk, Kaluga Region, Russia.
[Mastinu, P.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
[Haas, B.] Ctr Natl Rech Sci, IN2P3, CENBG, Bordeaux, France.
[Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Igashira, M.] Tokyo Inst Technol, Tokyo 152, Japan.
[Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Kossionides, E.] NCSR, Athens, Greece.
[Oshima, M.] Japan Atom Energy Res Inst, Tokai, Ibaraki 31911, Japan.
[Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, Athens, Greece.
[Pavlik, A.] Univ Vienna, Inst Isotopenforsch & Kernphys, Vienna, Austria.
[Pavlopoulos, P.] Pole Univ Leonard de Vinci, Paris, France.
[Plompen, A.; Rullhusen, P.] CEC, JRC, IRMM, Geel, Belgium.
[Rauscher, T.] Univ Basel, Dept Phys & Astron, Basel, Switzerland.
[Rosetti, M.; Ventura, A.] ENEA, Bologna, Italy.
[Vannini, G.] Univ Bologna, Dipartimento Fis, Bologna, Italy.
[Vannini, G.] Sez INFN Bologna, Bologna, Italy.
RP Gunsing, F (reprint author), CEA Saclay, DSM, Irfu, SPhN, F-91191 Gif Sur Yvette, France.
EM gunsing@cea.fr
RI Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014;
Capote Noy, Roberto/M-1245-2014; Duran, Ignacio/H-7254-2015; Alvarez
Pol, Hector/F-1930-2011; Paradela, Carlos/J-1492-2012; Calvino,
Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Jericha,
Erwin/A-4094-2011; Chepel, Vitaly/H-4538-2012; Rauscher,
Thomas/D-2086-2009; Lindote, Alexandre/H-4437-2013; Neves,
Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz,
Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Tain, Jose L./K-2492-2014;
Cano Ott, Daniel/K-4945-2014; Quesada Molina, Jose Manuel/K-5267-2014;
Guerrero, Carlos/L-3251-2014; Lozano, Manuel/L-6892-2014
OI Goncalves, Isabel/0000-0002-1997-955X; Chepel,
Vitaly/0000-0003-0675-4586; Lozano Leyva, Manuel
Luis/0000-0003-2853-4103; Paradela Dobarro, Carlos/0000-0003-0175-8334;
Gonzalez Romero, Enrique/0000-0003-2376-8920; Capote Noy,
Roberto/0000-0002-1799-3438; Alvarez Pol, Hector/0000-0001-9643-6252;
Calvino, Francisco/0000-0002-7198-4639; Mengoni,
Alberto/0000-0002-2537-0038; Pavlik, Andreas/0000-0001-7526-3372;
Jericha, Erwin/0000-0002-8663-0526; Rauscher,
Thomas/0000-0002-1266-0642; Lindote, Alexandre/0000-0002-7965-807X;
Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359;
Lopes, Isabel/0000-0003-0419-903X; Cano Ott, Daniel/0000-0002-9568-7508;
Quesada Molina, Jose Manuel/0000-0002-2038-2814; Guerrero,
Carlos/0000-0002-2111-546X;
FU European Commission [FIKW-CT-2000-00107]
FX This work has been supported by the European Commission's 5th Framework
Programme under Contract No. FIKW-CT-2000-00107 (n_TOF-ND-ADS Project).
The authors would like to thank R. Dagan from KIT for his help with MCNP
in relation to Doppler broadening.
NR 72
TC 12
Z9 12
U1 1
U2 26
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUN 1
PY 2012
VL 85
IS 6
AR 064601
DI 10.1103/PhysRevC.85.064601
PG 17
WC Physics, Nuclear
SC Physics
GA 951AT
UT WOS:000304693700002
ER
PT J
AU Lunardini, C
Razzaque, S
AF Lunardini, Cecilia
Razzaque, Soebur
TI High Energy Neutrinos from the Fermi Bubbles
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID GALACTIC COSMIC-RAYS; RX J1713.7-3946; EMISSION; HAZE
AB Recently the Fermi-LAT data have revealed two gamma-ray emitting bubble-shaped structures at the Galactic center. If the observed gamma rays have hadronic origin (collisions of accelerated protons), the bubbles must emit high energy neutrinos as well. This new, Galactic, neutrino flux should trace the gamma-ray emission in spectrum and spatial extent. Its highest energy part, above 20-50 TeV, is observable at a kilometer-scale detector in the northern hemisphere, such as the planned KM3NeT, while interesting constraints on it could be obtained by the IceCube Neutrino Observatory at the South Pole. The detection or exclusion of neutrinos from the Fermi bubbles will discriminate between hadronic and leptonic models, thus bringing unique information on the still mysterious origin of these objects and on the time scale of their formation.
C1 [Lunardini, Cecilia] Arizona State Univ, Tempe, AZ 85287 USA.
[Lunardini, Cecilia] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
[Razzaque, Soebur] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA.
USN, Res Lab, Div Space Sci, Washington, DC 20375 USA.
RP Lunardini, C (reprint author), Arizona State Univ, Tempe, AZ 85287 USA.
EM Cecilia.Lunardini@asu.edu; srazzaqu@gmu.edu
FU NSF [PHY-0854827]; NASA [NNH10ZDA001N]
FX We thank F. Aharonian, R. Crocker, N. Kurahashi, and M. Su for useful
discussions. Supports from the NSF Grant No. PHY-0854827 (C. L.) and
NASA Fermi Cycle 4 Guest Investigator Program NNH10ZDA001N (S. R.) are
acknowledged. Work of S. R. was performed at and while under contract
with the U.S. Naval Research Laboratory.
NR 26
TC 18
Z9 18
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 1
PY 2012
VL 108
IS 22
AR 221102
DI 10.1103/PhysRevLett.108.221102
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 951BP
UT WOS:000304695900004
PM 23003584
ER
PT J
AU Scudder, JD
Holdaway, RD
Daughton, WS
Karimabadi, H
Roytershteyn, V
Russell, CT
Lopez, JY
AF Scudder, J. D.
Holdaway, R. D.
Daughton, W. S.
Karimabadi, H.
Roytershteyn, V.
Russell, C. T.
Lopez, J. Y.
TI First Resolved Observations of the Demagnetized Electron-Diffusion
Region of an Astrophysical Magnetic-Reconnection Site
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SIMULATIONS; INSTRUMENT
AB Spatially resolved, diagnostic signatures across the X-line and electron-diffusion region (EDR) by the Polar spacecraft are reported at Earth's magnetopause. The X-line traversal has a local electron's skin depth scale. First, resolved EDR profiles are presented with peak electron thermal Mach numbers >1: 5, anisotropy >7, calibrated electron agyrotropy >1, and misordered expansion parameters indicative of demagnetization and strong (150 eV) increases in electron temperature. The amplitude and phase of these profiles correlate well with a guide geometry kinetic simulation of collisionless magnetic reconnection. Such high resolution diagnosis has been made possible by data processing techniques that afford an 11-fold reduction in the aliasing time for the electron moments.
C1 [Scudder, J. D.; Holdaway, R. D.; Lopez, J. Y.] Univ Iowa, Iowa City, IA 52442 USA.
[Daughton, W. S.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Karimabadi, H.; Roytershteyn, V.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Russell, C. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
RP Scudder, JD (reprint author), Univ Iowa, Iowa City, IA 52442 USA.
RI Russell, Christopher/E-7745-2012; Scudder, Jack/D-8417-2013; Daughton,
William/L-9661-2013;
OI Russell, Christopher/0000-0003-1639-8298; Scudder,
Jack/0000-0001-7975-5630; Roytershteyn, Vadim/0000-0003-1745-7587
FU NASA; [NNX07AF64G]; [NNX07AF54G]; [NNX12AI20G]; [ATM0802380]
FX We acknowledge support from Grants No. NNX07AF64G, No. NNX07AF54G, No.
NNX12AI20G, and No. ATM0802380. W. D. was supported by the NASA
Heliospheric Theory Program. Calibrated 3-axis Polar EFI data and
discussions with F. S. Mozer are gratefully acknowledged. NSF Kraken and
NASA Pleiades supercomputers were used.
NR 19
TC 34
Z9 34
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 1
PY 2012
VL 108
IS 22
AR 225005
DI 10.1103/PhysRevLett.108.225005
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 951BP
UT WOS:000304695900007
PM 23003609
ER
PT J
AU Crease, RP
AF Crease, Robert P.
TI Critical Point Quantum guidebooks
SO PHYSICS WORLD
LA English
DT Editorial Material
C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA.
[Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA.
EM rcrease@notes.cc.sunysb.edu
NR 0
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8585
J9 PHYS WORLD
JI Phys. World
PD JUN
PY 2012
VL 25
IS 6
BP 19
EP 20
PG 2
WC Physics, Multidisciplinary
SC Physics
GA 955SX
UT WOS:000305042300020
ER
PT J
AU Shiltsev, V
AF Shiltsev, Vladimir
TI Venus transits
SO PHYSICS WORLD
LA English
DT Letter
C1 Fermilab Natl Accelerator Lab, Batavia, IL USA.
RP Shiltsev, V (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL USA.
EM shiltsev@fnal.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8585
J9 PHYS WORLD
JI Phys. World
PD JUN
PY 2012
VL 25
IS 6
BP 21
EP 21
PG 1
WC Physics, Multidisciplinary
SC Physics
GA 955SX
UT WOS:000305042300021
ER
PT J
AU Xie, XK
Kirby, J
Keasling, JD
AF Xie, Xinkai
Kirby, James
Keasling, Jay D.
TI Functional characterization of four sesquiterpene synthases from Ricinus
communis (Castor bean)
SO PHYTOCHEMISTRY
LA English
DT Article
DE Castor bean; Ricinus communis; Euphorbiaceae; Genome mining; Secondary
metabolism; Terpenoids; alpha-Farnesene; delta-Cadinene; alpha-Copaene
ID TERPENE SYNTHASES; SACCHAROMYCES-CEREVISIAE; BACTERIAL EXPRESSION;
ARABIDOPSIS FLOWERS; ARTEMISIA-ANNUA; CDNA ISOLATION; CLONING;
BIOSYNTHESIS; GENES; CYCLASES
AB Genome sequence analysis of Ricinus communis has indicated the presence of at least 22 putative terpene synthase (TPS) genes, 13 of which appear to encode sesquiterpene synthases (SeTPSs); however, no SeTPS genes have been isolated from this plant to date. cDNAs were recovered for six SeTPS candidates, and these were subjected to characterization in vivo and in vitro. The RcSeTPS candidates were expressed in either Escherichia coli or Saccharomyces cerevisiae strains with engineered sesquiterpene biosynthetic pathways, but only two (RcSeTPS1 and RcSeTPS7) produced detectable levels of product. In order to check whether the engineered microbial hosts were adequately engineered for sesquiterpene production, a selection of SeTPS genes was chosen from other plant species and demonstrated consistently high sesquiterpene titers. Activity could be demonstrated in vitro for two of the RcSeTPS candidates (RcSeTPS5 and RcSeTPS10) that were not observed to be functional in our microbial hosts. RcSeTPS1 produced two products, (-)-alpha-copaene and (+)-delta-cadinene, while RcSeTPS7 produced a single product, (E, E)-alpha-farnesene. Both RcSeTPS5 and RcSeTPS10 produced multiple sesquiterpenes. (C) 2012 Published by Elsevier Ltd.
C1 [Keasling, Jay D.] Univ Calif, Joint BioEnergy Inst, Emeryville, CA 94608 USA.
[Xie, Xinkai; Kirby, James; Keasling, Jay D.] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94720 USA.
[Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Keasling, JD (reprint author), Univ Calif, Joint BioEnergy Inst, 5885 Hollis St,4th Floor, Emeryville, CA 94608 USA.
EM keasling@berkeley.edu
RI Keasling, Jay/J-9162-2012
OI Keasling, Jay/0000-0003-4170-6088
FU NIH [RC1 GM090980-01]
FX Funding for this work was provided by NIH RC1 GM090980-01.
NR 37
TC 13
Z9 27
U1 0
U2 30
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0031-9422
J9 PHYTOCHEMISTRY
JI Phytochemistry
PD JUN
PY 2012
VL 78
BP 20
EP 28
DI 10.1016/j.phytochem.2012.02.022
PG 9
WC Biochemistry & Molecular Biology; Plant Sciences
SC Biochemistry & Molecular Biology; Plant Sciences
GA 952KR
UT WOS:000304791900002
PM 22459969
ER
PT J
AU Anders, A
AF Anders, Andre
TI The evolution of ion charge states in cathodic vacuum arc plasmas: a
review
SO PLASMA SOURCES SCIENCE & TECHNOLOGY
LA English
DT Article
ID ELECTRON-BEAM ENHANCEMENT; MAGNETIC-FIELD; CURRENT-DENSITY; METAL-IONS;
MULTIPLE IONIZATION; TIME-DEPENDENCE; MARX-GENERATOR; ALLOY CATHODES;
GAS-PRESSURE; RANDOM-WALK
AB Cathodic vacuum arc plasmas are known to contain multiply charged ions. Twenty years after 'Pressure ionization: its role in metal vapour vacuum arc plasmas and ion sources' appeared in volume 1 of Plasma Sources Science and Technology, this is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the 'noise' in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges, putting decades of experimentation and modeling in perspective.
C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 53, Berkeley, CA 94720 USA.
EM aanders@lbl.gov
RI Anders, Andre/B-8580-2009
OI Anders, Andre/0000-0002-5313-6505
FU US Department of Energy [DE-AC02-05CH11231]
FX Many of the results collected here are based on ideas and contributions
by close friends and colleagues. Running the risk of offending those not
mentioned, I gratefully acknowledge the input over the years from just a
few: B Juttner, E Hantzsche, P Siemroth, T Schulke, I Brown, E Oks and G
Yushkov. This work was supported by the US Department of Energy under
Contract No DE-AC02-05CH11231.
NR 141
TC 13
Z9 14
U1 3
U2 26
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0963-0252
EI 1361-6595
J9 PLASMA SOURCES SCI T
JI Plasma Sources Sci. Technol.
PD JUN
PY 2012
VL 21
IS 3
AR 035014
DI 10.1088/0963-0252/21/3/035014
PG 15
WC Physics, Fluids & Plasmas
SC Physics
GA 952GZ
UT WOS:000304781800037
ER
PT J
AU Denholm, P
Mehos, M
AF Denholm, Paul
Mehos, Mark
TI Boosting CSP Production with Thermal Energy Storage
SO POWER
LA English
DT Article
C1 [Denholm, Paul; Mehos, Mark] Natl Renewable Energy Lab, Golden, CO USA.
RP Denholm, P (reprint author), Natl Renewable Energy Lab, Golden, CO USA.
EM paul.denholm@nrel.gov; mark.mehos@nrel.gov
NR 0
TC 0
Z9 0
U1 1
U2 6
PU TRADEFAIR GROUP
PI HOUSTON
PA 11000 RICHMOND, STE 500, HOUSTON, TX 77042 USA
SN 0032-5929
J9 POWER
JI Power
PD JUN
PY 2012
VL 156
IS 6
BP 46
EP 50
PG 5
WC Energy & Fuels
SC Energy & Fuels
GA 953TF
UT WOS:000304895400015
ER
PT J
AU Manger, RP
Hertel, NE
Burgett, EA
Ansari, A
AF Manger, R. P.
Hertel, N. E.
Burgett, E. A.
Ansari, A.
TI Using handheld plastic scintillator detectors to triage individuals
exposed to a radiological dispersal device
SO RADIATION PROTECTION DOSIMETRY
LA English
DT Article
AB After a radiological dispersal device (RDD) event, people could become internally contaminated by inhaling dispersed radioactive particles. A rapid method to screen individuals who are internally contaminated is desirable. Such initial screening can help in prompt identification of those who are highly contaminated and in prioritising individuals for further and more definitive evaluation such as laboratory testing. The use of handheld plastic scintillators to rapidly screen those exposed to an RDD with gamma-emitting radionuclides was investigated in this study. The Monte Carlo N-Particle transport code was used to model two commercially available plastic scintillation detectors in conjunction with anthropomorphic phantom models to determine the detector response to inhaled radionuclides. Biokinetic models were used to simulate an inhaled radionuclide and its progression through the anthropomorphic phantoms up to 30 d after intake. The objective of the study was to see if internal contamination levels equivalent to 250 mSv committed effective dose equivalent could be detected using these instruments. Five radionuclides were examined: Co-60, Cs-137, Ir-192, I-131 and Am-241. The results demonstrate that all of the radionuclides except Am-241 could be detected when placing either one of the two plastic scintillator detector systems on the posterior right torso of the contaminated individuals.
C1 [Manger, R. P.; Hertel, N. E.; Burgett, E. A.] Georgia Inst Technol, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA.
[Ansari, A.] Ctr Dis Control & Prevent, Radiat Studies Branch, Atlanta, GA USA.
RP Manger, RP (reprint author), Oak Ridge Natl Lab, 545 Oak Ridge Turnpike, Oak Ridge, TN 37830 USA.
EM mangerrp@ornl.gov
FU Centers for Disease Control and prevention; TKC Integration Services
FX This work was supported in part by funding from the Centers for Disease
Control and prevention through contract with TKC Integration Services.
The findings and conclusions in this report are those of the authors and
do not necessarily represent the views of the Centers for Disease
Control and Prevention.
NR 21
TC 3
Z9 3
U1 0
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0144-8420
J9 RADIAT PROT DOSIM
JI Radiat. Prot. Dosim.
PD JUN
PY 2012
VL 150
IS 1
BP 101
EP 108
DI 10.1093/rpd/ncr367
PG 8
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 952ZR
UT WOS:000304835900012
PM 22128361
ER
PT J
AU Coello, EA
Favela, F
Curiel, Q
Chavez, E
Huerta, A
Varela, A
Shapira, D
AF Coello, E. A.
Favela, F.
Curiel, Q.
Chavez, E.
Huerta, A.
Varela, A.
Shapira, D.
TI Position sensitive detection system for charged particles
SO REVISTA MEXICANA DE FISICA
LA English
DT Article
DE Scintillating charge particle detector; position sensitive; Anger logic
ID RESOLUTION
AB The position sensitive detection system presented in this work employs the Anger logic algorithm to determine the position of the light spark produced by the passage of charged particles on a 170 x 170 x 10 mm(3) scintillator material (PILOT-U). The detection system consists of a matrix of nine photomultipliers, covering a fraction of the back area of the scintillators. Tests made with a non-collimated alpha particle source together with a Monte Carlo simulation that reproduces the data, suggest an intrinsic position resolution of up to 6 mm is achieved.
C1 [Coello, E. A.; Favela, F.; Curiel, Q.; Chavez, E.; Huerta, A.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, DF, Mexico.
[Varela, A.] Inst Nacl Invest Nucl, Ocoyoacac 52750, Estado De Mexic, Mexico.
[Shapira, D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37830 USA.
RP Coello, EA (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Av Univ 3000,Ciudad Univ, Mexico City 04510, DF, Mexico.
FU CONACYT [51600, 123655]; DGAPA-IN [118310]
FX The authors gratefully acknowledge the efforts in electronics made by
Moises Cuautle and IFUNAM's mechanical workshop led by Marco Veytia, as
well as a careful correction of the manuscript and discussion with our
colleague from ININ, R. Policroniades. This work was possible thanks to
financial support by CONACYT contracts 51600 and 123655 and DGAPA-IN
contract 118310.
NR 5
TC 2
Z9 2
U1 0
U2 0
PU SOC MEXICANA FISICA
PI COYOACAN
PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO
SN 0035-001X
J9 REV MEX FIS
JI Rev. Mex. Fis.
PD JUN
PY 2012
VL 58
IS 3
BP 198
EP 204
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 955UZ
UT WOS:000305047700005
ER
PT J
AU Perumalla, KS
Aaby, BG
Yoginath, SB
Seal, SK
AF Perumalla, Kalyan S.
Aaby, Brandon G.
Yoginath, Srikanth B.
Seal, Sudip K.
TI Interactive, graphical processing unit-based evaluation of evacuation
scenarios at the state scale
SO SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION
INTERNATIONAL
LA English
DT Article
DE general-purpose computation on graphics processing unit; interactive
simulation; large-scale mobility models; vehicular simulations
ID CELL TRANSMISSION MODEL
AB In large-scale scenarios, transportation modeling and simulation is severely constrained by simulation time. For example, few real-time simulators scale to evacuation traffic scenarios at the level of an entire state, such as Louisiana (approximately 1 million links) or Florida (2.5 million links). New simulation approaches are needed to overcome severe computational demands of conventional (microscopic or mesoscopic) modeling techniques. Here, a new modeling and execution methodology is explored that holds the potential to provide a tradeoff among the level of behavioral detail, the scale of transportation network, and real-time execution capabilities. A novel, field-based modeling technique and its implementation on graphical processing units are presented. Although additional research with input from domain experts is needed for refining and validating the models, the techniques reported here afford interactive experience at very large scales of multi-million road segments. Illustrative experiments on a few state-scale networks are described based on an implementation of this approach in a software system called GARFIELD. Current modeling capabilities and implementation limitations are described, along with possible use cases and future research.
C1 [Perumalla, Kalyan S.; Aaby, Brandon G.; Yoginath, Srikanth B.; Seal, Sudip K.] Oak Ridge Natl Lab, High Performance Discrete Comp Syst Team, Oak Ridge, TN 37831 USA.
RP Perumalla, KS (reprint author), Oak Ridge Natl Lab, High Performance Discrete Comp Syst Team, POB 2008,MS 6085, Oak Ridge, TN 37831 USA.
EM perumallaks@ornl.gov
OI Perumalla, Kalyan/0000-0002-7458-0832
FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Department of
Homeland Security under the Southeast Region Research Initiative
(SERRI); DOE Office of Science
FX This paper has been authored by UT-Battelle, LLC, under contract
DE-AC05-00OR22725 with the U.S. Department of Energy (DOE). Accordingly,
the United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.; This research
was partly funded by the Department of Homeland Security under the
Southeast Region Research Initiative (SERRI), and partly supported by
the DOE Office of Science, Advanced Scientific Computing Research,
Career Research Program.
NR 32
TC 2
Z9 2
U1 0
U2 6
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0037-5497
J9 SIMUL-T SOC MOD SIM
JI Simul.-Trans. Soc. Model. Simul. Int.
PD JUN
PY 2012
VL 88
IS 6
BP 746
EP 761
DI 10.1177/0037549711425236
PG 16
WC Computer Science, Interdisciplinary Applications; Computer Science,
Software Engineering
SC Computer Science
GA 951GP
UT WOS:000304709200008
ER
PT J
AU Sims, B
Henke, CR
AF Sims, Benjamin
Henke, Christopher R.
TI Repairing credibility: Repositioning nuclear weapons knowledge after the
Cold War
SO SOCIAL STUDIES OF SCIENCE
LA English
DT Article
DE credibility; nuclear weapons; organizations; repair; sociotechnical
systems
ID NEW-ORLEANS; SCIENCE; ORDER; INFRASTRUCTURE; CONVERSATION; MAINTENANCE;
RISK
AB During the Cold War, the credibility of US nuclear weapons scientists was backed up by an integrated system for designing, testing, and manufacturing nuclear weapons. As the Cold War drew to a close in the 1990s, weapons scientists warned that their knowledge was so deeply embedded in the design and testing of nuclear weapons that it might not survive if this system were disrupted. Sociologists Donald MacKenzie and Graham Spinardi used this as evidence for the role of tacit knowledge in weapons design, suggesting that a halt to weapons design and testing could bring on a crisis of credibility, and possibly the 'uninvention' of nuclear weapons. In this paper, we examine how the weapons community has avoided such a crisis of credibility. Our analysis turns on the concept of sociotechnical repair - the processes communities and institutions engage in to sustain their existence, identity, and boundaries, particularly when faced with disruptive change. We examine two post-Cold War repair efforts that demonstrate how actors carefully balance discursive, institutional, and material change in the repair of complex sociotechnical systems. The Stockpile Stewardship Program positions weapons expertise as an abstract body of knowledge, and seeks to repair the credibility of weapons scientists by embedding their knowledge in a new sociotechnical context of computer simulation and experimental science. The Reliable Replacement Warhead concept emphasizes the close relationship between weapons knowledge and the design features of stockpile warheads, and seeks to repair credibility by introducing weapons designs optimized for long-term stockpile storage. These repair efforts show that weapons scientists' views of their own knowledge continued to evolve after the end of the Cold War. In particular, weapons scientists maintained credibility with key constituencies by treating tacit knowledge as a flexible resource that can be successfully integrated into new sociotechnical arrangements.
C1 [Sims, Benjamin] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA.
[Henke, Christopher R.] Colgate Univ, Dept Sociol & Anthropol, Hamilton, NY 13346 USA.
RP Sims, B (reprint author), Los Alamos Natl Lab, Stat Sci Grp, Mailstop F600, Los Alamos, NM 87545 USA.
EM bsims@lanl.gov
NR 60
TC 8
Z9 8
U1 1
U2 17
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0306-3127
EI 1460-3659
J9 SOC STUD SCI
JI Soc. Stud. Sci.
PD JUN
PY 2012
VL 42
IS 3
BP 324
EP 347
DI 10.1177/0306312712437778
PG 24
WC History & Philosophy Of Science
SC History & Philosophy of Science
GA 953PR
UT WOS:000304883400002
ER
PT J
AU Galvis, JA
Crespo, M
Guillamon, I
Suderow, H
Vieira, S
Hernandez, MG
Bud'ko, S
Canfield, PC
AF Galvis, J. A.
Crespo, M.
Guillamon, I.
Suderow, H.
Vieira, S.
Garcia Hernandez, M.
Bud'ko, S.
Canfield, P. C.
TI Magnetic and superconducting phase diagrams in ErNi2B2C
SO SOLID STATE COMMUNICATIONS
LA English
DT Article
DE Superconductors; Magnetic metals; Tunneling; Magnetic phase diagram
ID SINGLE-CRYSTAL; COEXISTENCE; STATE; ORDER
AB We present measurements of the superconducting upper critical field H-c2(T) and the magnetic phase diagram of the superconductor ErNi2B2C made with a scanning tunneling microscope (STM). The magnetic field was applied in the basal plane of the tetragonal crystal structure. We have found large gapless regions in the superconducting phase diagram of ErNi2B2C, extending between different magnetic transitions. A close correlation between magnetic transitions and H-c2(T) is found, showing that superconductivity is strongly linked to magnetism. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Galvis, J. A.; Crespo, M.; Guillamon, I.; Suderow, H.; Vieira, S.] Univ Autonoma Madrid, Lab Bajas Temp, Dept Fis Mat Condensada, Inst Ciencia Mat Nicolas Cabrera,Fac Ciencias, E-28049 Madrid, Spain.
[Guillamon, I.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
[Garcia Hernandez, M.] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain.
[Bud'ko, S.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Bud'ko, S.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Suderow, H (reprint author), Univ Autonoma Madrid, Lab Bajas Temp, Dept Fis Mat Condensada, Inst Ciencia Mat Nicolas Cabrera,Fac Ciencias, E-28049 Madrid, Spain.
EM hermann.suderow@uam.es
RI Garcia-Hernandez, Mar/J-9520-2014; Suderow, Hermann/L-6612-2013;
Canfield, Paul/H-2698-2014; vieira, sebastian/L-5216-2014; Guillamon,
Isabel/C-9744-2014
OI Garcia-Hernandez, Mar/0000-0002-5987-0647; Suderow,
Hermann/0000-0002-5902-1880; vieira, sebastian/0000-0002-3854-1377;
Guillamon, Isabel/0000-0002-2606-3355
FU U.S. Department of Energy, Office of Basic Energy Science, Division of
Materials Sciences and Engineering; U.S. Department of Energy by Iowa
State University [DE-AC02-07CH11358]; spanish MICINN [FIS2011-23488,
ACI-2009-090]; Comunidad de Madrid
FX The Laboratorio de Bajas Temperaturas is associated to the ICMM of the
CSIC. This work was supported by the U.S. Department of Energy, Office
of Basic Energy Science, Division of Materials Sciences and Engineering.
Part of this work was performed at the Ames Laboratory. Ames Laboratory
is operated for the U.S. Department of Energy by Iowa State University
under Contract no. DE-AC02-07CH11358. This work was also supported by
the spanish MICINN (Grant FIS2011-23488, ACI-2009-090 and Consolider
Ingenio 2010 Nanociencia Molecular) and the Comunidad de Madrid through
program Nanobiomagnet.
NR 41
TC 4
Z9 4
U1 0
U2 7
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-1098
J9 SOLID STATE COMMUN
JI Solid State Commun.
PD JUN
PY 2012
VL 152
IS 12
BP 1076
EP 1079
DI 10.1016/j.ssc.2012.03.021
PG 4
WC Physics, Condensed Matter
SC Physics
GA 952MB
UT WOS:000304795500022
ER
PT J
AU Mialitsin, A
Schmult, S
Solov'yov, IA
Fluegel, B
Mascarenhas, A
AF Mialitsin, Aleksej
Schmult, Stefan
Solov'yov, Ilia A.
Fluegel, Brian
Mascarenhas, Angelo
TI Eigenstate localization in an asymmetric coupled quantum well pair
SO SUPERLATTICES AND MICROSTRUCTURES
LA English
DT Article
DE Optical doping; Coupled quantum wells; Nextnano
ID SEMICONDUCTORS
AB Optical pumping of a type-I/type-II coupled asymmetric quantum well pair induces a spatially separated two dimensional charge carriers plasma in the well's wide and narrow parts. Treating the two coupled wells as a single system we find that the eigenstate probability distribution localizes exclusively either in the wide or the narrow parts of the well pair. The energy of the narrow-well localized state determines the minimal excitation energy for optically pumped charge carriers separation. In a previously used design [Guliamov et al., PRB 64 035314 (2001)] this narrow well transition energy was measured to correspond to a wavelength of 646 nm. We propose modifications to the design suggested earlier with the purpose of pushing up the energy required for the optical pumping of the two-dimensional plasma into the green and blue regions of the visible spectrum. Published by Elsevier Ltd.
C1 [Mialitsin, Aleksej; Fluegel, Brian; Mascarenhas, Angelo] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Schmult, Stefan] Max Planck Inst Feskorperforsch, D-70569 Stuttgart, Germany.
[Solov'yov, Ilia A.] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA.
[Solov'yov, Ilia A.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia.
RP Mialitsin, A (reprint author), Natl Renewable Energy Lab, 15013 Denver W Pkwy, Golden, CO 80401 USA.
EM aleksej.mialitsin@nrel.gov
OI Mialitsin, Aleksej/0000-0002-7033-5119
FU Beckman Fellow
FX A.M. thanks Dr. D. Beaton (NREL) for discussions. S.S. thanks Dr. W.
Dietsche (Max-Planck-Institute for Solid State Research, Stuttgart) for
lending his expertise in the MBE growth of the samples. I.S.
acknowledges financial support as a Beckman Fellow.
NR 13
TC 1
Z9 1
U1 1
U2 8
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0749-6036
J9 SUPERLATTICE MICROST
JI Superlattices Microstruct.
PD JUN
PY 2012
VL 51
IS 6
BP 834
EP 841
DI 10.1016/j.spmi.2012.03.019
PG 8
WC Physics, Condensed Matter
SC Physics
GA 951MO
UT WOS:000304724900012
ER
PT J
AU Russell, LM
Rasch, PJ
Mace, GM
Jackson, RB
Shepherd, J
Liss, P
Leinen, M
Schimel, D
Vaughan, NE
Janetos, AC
Boyd, PW
Norby, RJ
Caldeira, K
Merikanto, J
Artaxo, P
Melillo, J
Morgan, MG
AF Russell, Lynn M.
Rasch, Philip J.
Mace, Georgina M.
Jackson, Robert B.
Shepherd, John
Liss, Peter
Leinen, Margaret
Schimel, David
Vaughan, Naomi E.
Janetos, Anthony C.
Boyd, Philip W.
Norby, Richard J.
Caldeira, Ken
Merikanto, Joonas
Artaxo, Paulo
Melillo, Jerry
Morgan, M. Granger
TI Ecosystem Impacts of Geoengineering: A Review for Developing a Science
Plan
SO AMBIO
LA English
DT Review
DE Geoengineering; Ecosystems; Climate change; Carbon dioxide removal;
Solar radiation management
ID OCEAN IRON FERTILIZATION; LEVEL MARITIME CLOUDS; CLIMATE-CHANGE;
ATMOSPHERIC CO2; MOUNT-PINATUBO; CARBON SEQUESTRATION; ALBEDO
ENHANCEMENT; TERRESTRIAL; SYSTEM; 21ST-CENTURY
AB Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO2) removal (CDR), which removes CO2 from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research.
C1 [Russell, Lynn M.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
[Rasch, Philip J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Mace, Georgina M.] Univ London Imperial Coll Sci Technol & Med, Ctr Populat Biol, Ascot SL5 7PY, Berks, England.
[Jackson, Robert B.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA.
[Shepherd, John] Univ Southampton, Sch Ocean & Earth Sci, Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England.
[Vaughan, Naomi E.] Univ E Anglia, Sch Environm Sci, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, Norfolk, England.
[Leinen, Margaret] Harbor Branch Oceanog Inst Inc, Ft Pierce, FL 34946 USA.
[Schimel, David] NEON Inc, Boulder, CO 80305 USA.
[Janetos, Anthony C.] Univ Maryland, Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20740 USA.
[Boyd, Philip W.] Univ Otago, Dept Chem, NIWA Ctr Chem & Phys Oceanog, Dunedin, New Zealand.
[Norby, Richard J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Caldeira, Ken] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA.
[Merikanto, Joonas] Univ Helsinki, Dept Phys, Div Atmospher Sci, Helsinki 00014, Finland.
[Artaxo, Paulo] Univ Sao Paulo, Inst Phys, BR-05508090 Sao Paulo, Brazil.
[Melillo, Jerry] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA.
[Morgan, M. Granger] Carnegie Mellon Univ, Dept Engn & Publ Policy, Pittsburgh, PA 15213 USA.
RP Russell, LM (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr,Mail Code 0221, La Jolla, CA 92093 USA.
EM lmrussell@ucsd.edu; Philip.Rasch@pnnl.gov; g.mace@imperial.ac.uk;
jackson@duke.edu; j.g.shepherd@noc.soton.ac.uk; p.liss@uea.ac.uk;
mleinen@hboi.fau.edu; dschimel@neoninc.org; n.vaughan@uea.ac.uk;
anthony.janetos@pnnl.gov; Pboyd@chemistry.otago.ac.nz; rjn@ornl.gov;
kcaldeira@carnegie.stanford.edu; joonas.merikanto@helsinki.fi;
Artaxo@if.usp.br; jmelillo@mbl.edu; granger.morgan@andrew.cmu.edu
RI Caldeira, Ken/E-7914-2011; Norby, Richard/C-1773-2012; LISS,
Peter/A-8219-2013; Merikanto, Joonas/B-1039-2008; Boyd,
Philip/J-7624-2014; Artaxo, Paulo/E-8874-2010; Mace,
Georgina/I-3072-2016
OI Norby, Richard/0000-0002-0238-9828; Merikanto,
Joonas/0000-0002-1145-2569; Boyd, Philip/0000-0001-7850-1911; Artaxo,
Paulo/0000-0001-7754-3036; Mace, Georgina/0000-0001-8965-5211
FU U.S. National Science Foundation [AGS1111205]; U.K. Natural Environment
Research Council; International Geosphere-Biosphere Program
FX The authors gratefully acknowledge financial support from the U.S.
National Science Foundation grant AGS1111205 and the U.K. Natural
Environment Research Council, as well as seed funding and outreach
support from the International Geosphere-Biosphere Program. We also
gratefully acknowledge workshop participation from Richard Norris,
Richard Somerville, Susan Hassol, Kathy Barbeau, Luis Gylvan, Phil
Ineson, Ninad Bondre, Ben Kravitz, Spencer Hill, Lili Xia, Robin
Stevens, and Anita Johnson.
NR 96
TC 25
Z9 26
U1 3
U2 107
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0044-7447
EI 1654-7209
J9 AMBIO
JI Ambio
PD JUN
PY 2012
VL 41
IS 4
BP 350
EP 369
DI 10.1007/s13280-012-0258-5
PG 20
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 949ZM
UT WOS:000304617700004
PM 22430307
ER
PT J
AU Wei, C
Cai, L
Sonawane, B
Wang, SF
Dong, JY
AF Wei, Chuang
Cai, Lei
Sonawane, Bhushan
Wang, Shanfeng
Dong, Jingyan
TI High-precision flexible fabrication of tissue engineering scaffolds
using distinct polymers
SO BIOFABRICATION
LA English
DT Article
ID SOLID FREEFORM FABRICATION; CONTROLLED-PORE STRUCTURES; FREE-FORM
FABRICATION; PHOTO-CROSS-LINKING; POLY(PROPYLENE FUMARATE);
POLYCAPROLACTONE SCAFFOLDS; MICRO-STEREOLITHOGRAPHY; BIODEGRADABLE
SCAFFOLDS; MECHANICAL-PROPERTIES; PHYSICAL-PROPERTIES
AB Three-dimensional porous structures using biodegradable materials with excellent biocompatibility are critically important for tissue engineering applications. We present a multi-nozzle-based versatile deposition approach to flexibly construct porous tissue engineering scaffolds using distinct polymeric biomaterials such as thermoplastic and photo-crosslinkable polymers. We first describe the development of the deposition system and fabrication of scaffolds from two types of biodegradable polymers using this system. The thermoplastic sample is semi-crystalline poly(e-caprolactone) (PCL) that can be processed at a temperature higher than its melting point and solidifies at room temperature. The photo-crosslinkable one is polypropylene fumarate (PPF) that has to be dissolved in a reactive solvent as a resin for being cured into solid structures. Besides the direct fabrication of thermoplastic PCL scaffolds, we specifically develop a layer molding approach for the fabrication of crosslinkable polymers, which traditionally can only be fabricated by stereolithography. In this approach, a thermoplastic supporting material (paraffin wax) is first deposited to make a mold for each specific layer, and then PPF is deposited on demand to fill the mold and cured by the UV light. The supporting material can be removed to produce a porous scaffold of crosslinked PPF. Both PCL and crosslinked PPF scaffolds fabricated using the developed system have been characterized in terms of compressive mechanical properties, morphology, pore size and porosity. Mouse MC3T3-E1 pre-osteoblastic cell studies on the fabricated scaffolds have been performed to demonstrate their capability of supporting cell proliferation and ingrowth, aiming for bone tissue engineering applications.
C1 [Wei, Chuang; Sonawane, Bhushan; Dong, Jingyan] N Carolina State Univ, Edward P Fitts Dept Ind & Syst Engn, Raleigh, NC 27695 USA.
[Cai, Lei; Wang, Shanfeng] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Wang, Shanfeng] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
RP Wei, C (reprint author), N Carolina State Univ, Edward P Fitts Dept Ind & Syst Engn, Raleigh, NC 27695 USA.
EM swang16@utk.edu; jdong@ncsu.edu
RI Dong, Jingyan /B-3665-2010; Cai, Lei/D-1589-2013; Wei,
Chuang/F-2472-2017
OI Dong, Jingyan /0000-0003-2224-9168;
FU North Carolina State University; University of Tennessee
FX This work was majorly supported by the Start-up Research Funds from both
North Carolina State University and the University of Tennessee.
NR 53
TC 18
Z9 18
U1 1
U2 25
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1758-5082
J9 BIOFABRICATION
JI Biofabrication
PD JUN
PY 2012
VL 4
IS 2
AR 025009
DI 10.1088/1758-5082/4/2/025009
PG 12
WC Engineering, Biomedical; Materials Science, Biomaterials
SC Engineering; Materials Science
GA 948TE
UT WOS:000304524700010
PM 22635324
ER
PT J
AU Komatsu, DE
Thanos, PK
Mary, MN
Janda, HA
John, CM
Robison, L
Ananth, M
Swanson, JM
Volkow, ND
Hadjiargyrou, M
AF Komatsu, David E.
Thanos, Panayotis K.
Mary, Michelle N.
Janda, Haden A.
John, Christine M.
Robison, Lisa
Ananth, Mala
Swanson, James M.
Volkow, Nora D.
Hadjiargyrou, Michael
TI Chronic exposure to methylphenidate impairs appendicular bone quality in
young rats
SO BONE
LA English
DT Article
DE Methylphenidate; Growth suppression; Biomechanics; DXA; Testosterone
ID ATTENTION-DEFICIT/HYPERACTIVITY DISORDER; DEFICIT-HYPERACTIVITY
DISORDER; FOLLOW-UP; STIMULANT MEDICATION; GROWTH-RATES; CHILDREN; ADHD;
ASSOCIATIONS; BEHAVIOR; WEIGHT
AB Methylphenidate (MP) is a psychostimulant widely prescribed to treat Attention Deficit Hyperactivity Disorder (ADHD). Although generally well tolerated, growth deficits have been reported in children and adolescents undergoing MP treatment. This study was designed to elucidate the skeletal effects of chronic MP administration in adolescent rats. Male, 4-week-old rats received one of two doses of MP (MP-Low or MP-High) delivered for 8 h a day via drinking water, or were untreated (water only). After 13 weeks, half were sacrificed (N = 12/group) and the remaining rats were left to recover, untreated for 5 additional weeks. Femora, tibiae, and L5 vertebra were analyzed using calipers, DXA, and mechanical testing. Immediately following treatment, MP decreased femoral anterior-posterior diameter (5% and 9% for MP-Low and MP-High, respectively), femoral and tibial bone mineral density (BMD) (6% and 5% for MP-High femora and tibiae, respectively), and bone mineral content (BMC) (9% for MP-High femora and tibiae). In addition, femora from MP treated rats had reduced ultimate force (20% for MP-High) and energy to failure (20% and 33% for MP-Low and MP-High, respectively). However, after recovery, there were no statistically significant differences for any measured parameters. Despite these effects on the appendicular skeleton, no differences were identified between vertebral samples at either time-point. In summary, MP treatment resulted in smaller, less mineralized, and weaker bones at appendicular sites, but did not affect the axial site. Although these effects were ameliorated within 5 weeks, these data suggest that adolescents undergoing MP treatment may be at an increased risk for long bone fractures. (C) 2012 Elsevier Inc. All rights reserved.
C1 [Komatsu, David E.] SUNY Stony Brook, Dept Orthopaed, Stony Brook, NY 11794 USA.
[Thanos, Panayotis K.; Robison, Lisa; Ananth, Mala] Brookhaven Natl Lab, Behav Neuropharmacol & Neuroimaging Lab, Upton, NY 11973 USA.
[Thanos, Panayotis K.; Volkow, Nora D.] NIAAA, Lab Neuroimaging, NIH, Bethesda, MD 20892 USA.
[Mary, Michelle N.] St Jude Childrens Hosp, Memphis, TN 38105 USA.
[Janda, Haden A.; John, Christine M.] InMot Orthopaed Res Ctr, Memphis, TN 38103 USA.
[Swanson, James M.] Univ Calif Irvine, Child Dev Ctr, Irvine, CA 92612 USA.
[Hadjiargyrou, Michael] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA.
RP Komatsu, DE (reprint author), SUNY Stony Brook, Dept Orthopaed, HSC Level 18,Room 085, Stony Brook, NY 11794 USA.
EM david.komatsu@sbumed.org; thanos@bnl.gov; michellenmary@yahoo.com;
haden.janda@smith-nephew.com; csnearly@gmail.com; lrobison@bnl.gov;
mananth@bnl.gov; jmswanso@uci.edu; nvolkow@nida.nih.gov;
michael.hadjiargyrou@sunysb.edu
FU NIDA, NIAAA (LNI); InMotion Orthopaedic Research Center in Memphis, TN
FX The authors gratefully acknowledge support by: NIDA, NIAAA (Intramural
Research Program, LNI), as well as the InMotion Orthopaedic Research
Center in Memphis, TN. In addition, the authors thank R.J. Schroeder and
G.J. Wang who provided assistance in the early phases of these studies.
NR 29
TC 9
Z9 9
U1 1
U2 2
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 8756-3282
J9 BONE
JI Bone
PD JUN
PY 2012
VL 50
IS 6
BP 1214
EP 1222
DI 10.1016/j.bone.2012.03.011
PG 9
WC Endocrinology & Metabolism
SC Endocrinology & Metabolism
GA 948LC
UT WOS:000304503700002
PM 22465849
ER
PT J
AU Pontiggia, O
Sampayo, R
Raffo, D
Motter, A
Xu, R
Bissell, MJ
Joffe, EBD
Simian, M
AF Pontiggia, Osvaldo
Sampayo, Rocio
Raffo, Diego
Motter, Andrea
Xu, Ren
Bissell, Mina J.
de Kier Joffe, Elisa Bal
Simian, Marina
TI The tumor microenvironment modulates tamoxifen resistance in breast
cancer: a role for soluble stromal factors and fibronectin through beta
1 integrin
SO BREAST CANCER RESEARCH AND TREATMENT
LA English
DT Article
DE Breast cancer; Tamoxifen resistance; Estrogen receptor; Tumor
microenvironment; Fibronectin; Soluble stromal factors; beta 1 integrin
ID MAMMARY EPITHELIAL-CELLS; GROWTH-FACTOR RECEPTOR; ESTROGEN-RECEPTOR;
ENDOCRINE THERAPY; MATRIX METALLOPROTEINASES; BETA(1) INTEGRIN;
DRUG-RESISTANCE; IN-VIVO; EXPRESSION; MECHANISMS
AB Tamoxifen resistance has been largely attributed to genetic alterations in the epithelial tumor cells themselves, such as overexpression of HER-2/Neu. However, in the clinic, only about 15-20% of cases of HER-2/Neu amplification has actually been correlated to the acquisition of endocrine resistance, suggesting that other mechanisms must be involved as well. Using the epithelial LM05-E and the fibroblastic LM05-F cell lines, derived from the estrogen dependent spontaneous M05 mouse mammary tumor, as well as MCF-7 cells, we analyzed whether soluble stromal factors or extracellular matrix components protected against tamoxifen induced cell death. Involvement of signaling pathways was determined by using specific inhibitors and western blot, and phosphorylation of the estrogen receptor alpha by western blot and immunofluorescence. Soluble factors produced by the fibroblastic cells protect the epithelial tumor cells from tamoxifen-induced cell death through a mechanism that involves EGFR and matrix metalloproteinases upstream of PI3K/AKT. Exogenous fibronectin by itself confers endocrine resistance through interaction with beta 1 integrin and activation of PI3K/AKT and MAPK/ERK 1/2 pathways. The conferred resistance is reversed by blocking beta 1 integrin. We show also that treatment with both conditioned medium and fibronectin leads to the phosphorylation of the estrogen receptor at serine-118, suggesting stromal factors as modulators of ER activity. Our results show that the tumor microenvironment can modulate tamoxifen resistance, providing an alternative explanation for why patients become refractory to hormone-therapy.
C1 [Pontiggia, Osvaldo; Sampayo, Rocio; Raffo, Diego; Motter, Andrea; de Kier Joffe, Elisa Bal; Simian, Marina] Inst Oncol Angel H Roffo, Area Invest, Buenos Aires, DF, Argentina.
[Xu, Ren; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
RP Simian, M (reprint author), Inst Oncol Angel H Roffo, Area Invest, Av San Martin 5481,C1417DTB, Buenos Aires, DF, Argentina.
EM marina.simian@galuzzi.com
FU Susan G. Komen for the Cure Foundation [BCTR0600341]; ANPCyT
[PICT2008-0325/Prestamo BID, PICT 00417/Prestamo BID]; UBACyT [M003];
U.S. Department of Energy, OBER Office of Biological and Environmental
Research [DE-AC02-05CH1123]; Office of Health and Environmental
Research, Health Effects Division [03-76SF00098]; National Cancer
Institute [5 R01CA064786, R01CA057621, U54CA126552, U54CA112970]; U.S.
Department of Defense [W81XWH0810736]
FX MS work is supported by a Grant from the Susan G. Komen for the Cure
Foundation (BCTR0600341) and ANPCyT (PICT2008-0325/Prestamo BID); EBKJ
by ANPCyT (PICT 00417/Prestamo BID) and UBACyT (M003). MJB's laboratory
is supported by grants from the U.S. Department of Energy, OBER Office
of Biological and Environmental Research (DE-AC02-05CH1123), a
Distinguished Fellow Award and Low Dose Radiation Program and the Office
of Health and Environmental Research, Health Effects Division,
(03-76SF00098); by National Cancer Institute awards 5 R01CA064786,
R01CA057621, U54CA126552 and U54CA112970; by U.S. Department of Defense
(W81XWH0810736).
NR 39
TC 52
Z9 57
U1 1
U2 8
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0167-6806
J9 BREAST CANCER RES TR
JI Breast Cancer Res. Treat.
PD JUN
PY 2012
VL 133
IS 2
BP 459
EP 471
DI 10.1007/s10549-011-1766-x
PG 13
WC Oncology
SC Oncology
GA 949XJ
UT WOS:000304610600007
PM 21935603
ER
PT J
AU Schick, M
Hallstedt, B
Glensk, A
Grabowski, B
Hickel, T
Hampl, M
Grobner, J
Neugebauer, J
Schmid-Fetzer, R
AF Schick, Michael
Hallstedt, Bengt
Glensk, Albert
Grabowski, Blazej
Hickel, Tilmann
Hampl, Milan
Groebner, Joachim
Neugebauer, Joerg
Schmid-Fetzer, Rainer
TI Combined ab initio, experimental, and CALPHAD approach for an improved
thermodynamic evaluation of the Mg-Si system
SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
LA English
DT Article
DE Mg-Si; CALPHAD; ab initio; Calorimetry; Phase diagram
ID MAGNESIUM-SILICON; DEGREES K; ALLOYS; PHASE; MG2SI; DYNAMICS; ENERGY;
HEATS; GE
AB A new thermodynamic evaluation of the well-known Mg-Si system is presented with the aim to resolve persistent uncertainties in the Gibbs energy of its only compound, Mg2Si. For this purpose the heat capacity and enthalpy of melting of Mg2Si were measured by differential scanning calorimetry. Using finite temperature density functional theory and the quasiharmonic approximation, thermodynamic properties of Mg2Si were additionally calculated up to and above its melting temperature. Using these new data, in particular the heat capacity, the Mg-Si system was evaluated thermodynamically with the CALPHAD method leading to a thermodynamic description of the system within narrow bounds. In contrast to several previous evaluations there is no problem with an inverted miscibility gap in the liquid. Although present enthalpy of melting data turned out to be inconsistent with other data in this system, the new evaluation accurately describes all other available data in this system. In particular the Gibbs energy of Mg2Si can now be considered reliably described. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Schick, Michael; Hallstedt, Bengt] Rhein Westfal TH Aachen, D-52074 Aachen, Germany.
[Glensk, Albert; Grabowski, Blazej; Hickel, Tilmann; Neugebauer, Joerg] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany.
[Grabowski, Blazej] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Hampl, Milan; Groebner, Joachim; Schmid-Fetzer, Rainer] Tech Univ Clausthal, Inst Met, D-38678 Clausthal Zellerfeld, Germany.
RP Hallstedt, B (reprint author), Rhein Westfal TH Aachen, D-52074 Aachen, Germany.
EM hallstedt@mch.rwth-aachen.de
RI Hickel, Tilmann/J-8306-2012; Grabowski, Blazej/D-8430-2012; Hallstedt,
Bengt/J-1639-2014; Glensk, Albert/A-1926-2016; Neugebauer,
Joerg/K-2041-2015
OI Grabowski, Blazej/0000-0003-4281-5665; Hallstedt,
Bengt/0000-0001-5959-7030; Glensk, Albert/0000-0001-9265-9694;
Neugebauer, Joerg/0000-0002-7903-2472
FU Deutsche Forschungsgemeinschaft (DFG) [PAK 461]; US Department of Energy
by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
FX The funding of this work by the Deutsche Forschungsgemeinschaft (DFG)
within the joint project PAK 461 is gratefully acknowledged. Part of
this work was performed under the auspices of the US Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 55
TC 7
Z9 7
U1 1
U2 33
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0364-5916
EI 1873-2984
J9 CALPHAD
JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
PD JUN
PY 2012
VL 37
BP 77
EP 86
DI 10.1016/j.calphad.2012.02.001
PG 10
WC Thermodynamics; Chemistry, Physical; Materials Science,
Multidisciplinary; Metallurgy & Metallurgical Engineering
SC Thermodynamics; Chemistry; Materials Science; Metallurgy & Metallurgical
Engineering
GA 948LP
UT WOS:000304505000011
ER
PT J
AU Tomasi, D
Volkow, ND
AF Tomasi, Dardo
Volkow, Nora D.
TI Laterality Patterns of Brain Functional Connectivity: Gender Effects
SO CEREBRAL CORTEX
LA English
DT Article
DE connectivity; functional connectomes; laterality
ID ANTERIOR CINGULATE CORTEX; CEREBRAL ASYMMETRY; HEMISPHERIC-ASYMMETRY;
SEX-DIFFERENCES; DEVELOPMENTAL DYSLEXIA; PLANUM-TEMPORALE;
AUDITORY-CORTEX; SCHIZOPHRENIA; LANGUAGE; NETWORKS
AB Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism).
C1 [Tomasi, Dardo; Volkow, Nora D.] NIAAA, Lab Neuroimaging, LNI, Dept Med,Brookhaven Natl Lab, Upton, NY 11973 USA.
[Volkow, Nora D.] NIDA, Bethesda, MD 20892 USA.
RP Tomasi, D (reprint author), NIAAA, Lab Neuroimaging, LNI, Dept Med,Brookhaven Natl Lab, Bldg 490,30 Bell Ave, Upton, NY 11973 USA.
EM tomasi@bnl.gov
RI Tomasi, Dardo/J-2127-2015
FU National Institutes of Alcohol Abuse and Alcoholism [2RO1AA09481]
FX National Institutes of Alcohol Abuse and Alcoholism (2RO1AA09481).
NR 58
TC 53
Z9 55
U1 4
U2 34
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA
SN 1047-3211
J9 CEREB CORTEX
JI Cereb. Cortex
PD JUN
PY 2012
VL 22
IS 6
BP 1455
EP 1462
DI 10.1093/cercor/bhr230
PG 8
WC Neurosciences
SC Neurosciences & Neurology
GA 948YJ
UT WOS:000304539700021
PM 21878483
ER
PT J
AU Lin, HS
Ma, XS
Feng, WC
AF Lin, Heshan
Ma, Xiaosong
Feng, Wu-chun
TI Reliable MapReduce computing on opportunistic resources
SO CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND
APPLICATIONS
LA English
DT Article
DE MapReduce; Cloud computing; Volunteer computing
AB MapReduce offers an ease-of-use programming paradigm for processing large data sets, making it an attractive model for opportunistic compute resources. However, unlike dedicated resources, where MapReduce has mostly been deployed, opportunistic resources have significantly higher rates of node volatility. As a consequence, the data and task replication scheme adopted by existing MapReduce implementations is woefully inadequate on such volatile resources.
In this paper, we propose MOON, short for MapReduce On Opportunistic eNvironments, which is designed to offer reliable MapReduce service for opportunistic computing. MOON adopts a hybrid resource architecture by supplementing opportunistic compute resources with a small set of dedicated resources, and it extends Hadoop, an open-source implementation of MapReduce, with adaptive task and data scheduling algorithms to take advantage of the hybrid resource architecture. Our results on an emulated opportunistic computing system running atop a 60-node cluster demonstrate that MOON can deliver significant performance improvements to Hadoop on volatile compute resources and even finish jobs that are not able to complete in Hadoop.
C1 [Lin, Heshan; Feng, Wu-chun] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA.
[Ma, Xiaosong] N Carolina State Univ, Oak Ridge Natl Lab, Div Math & Comp Sci, Raleigh, NC 27695 USA.
[Ma, Xiaosong] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA.
RP Lin, HS (reprint author), Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA.
EM hlin2@cs.vt.edu; ma@cs.ncsu.edu; feng@cs.vt.edu
FU NSF [CNS-0546301, CNS-0915861, CSR-0916719]
FX This research is supported in part by NSF grants CNS-0546301,
CNS-0915861, and CSR-0916719 as well as Xiaosong Ma's joint appointment
between North Carolina State University and Oak Ridge National
Laboratory. We thank Advanced Research Computing at Virginia Tech
(ARC@VT) for the use of the System X cluster in support of this
research.
NR 22
TC 9
Z9 11
U1 0
U2 15
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1386-7857
J9 CLUSTER COMPUT
JI Cluster Comput.
PD JUN
PY 2012
VL 15
IS 2
SI SI
BP 145
EP 161
DI 10.1007/s10586-011-0158-7
PG 17
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
SC Computer Science
GA 950BV
UT WOS:000304625000004
ER
PT J
AU Docan, C
Parashar, M
Klasky, S
AF Docan, Ciprian
Parashar, Manish
Klasky, Scott
TI DataSpaces: an interaction and coordination framework for coupled
simulation workflows
SO CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND
APPLICATIONS
LA English
DT Article
DE Workflows; Data distribution; Virtual shared space
ID PARALLEL; TOKAMAKS; TOOLKIT; MODELS; I/O
AB Emerging high-performance distributed computing environments are enabling new end-to-end formulations in science and engineering that involve multiple interacting processes and data-intensive application workflows. For example, current fusion simulation efforts are exploring coupled models and codes that simultaneously simulate separate application processes, such as the core and the edge turbulence. These components run on different high performance computing resources, need to interact at runtime with each other and with services for data monitoring, data analysis and visualization, and data archiving. As a result, they require efficient and scalable support for dynamic and flexible couplings and interactions, which remains a challenge. This paper presents DataSpaces a flexible interaction and coordination substrate that addresses this challenge. DataSpaces essentially implements a semantically specialized virtual shared space abstraction that can be associatively accessed by all components and services in the application workflow. It enables live data to be extracted from running simulation components, indexes this data online, and then allows it to be monitored, queried and accessed by other components and services via the space using semantically meaningful operators. The underlying data transport is asynchronous, low-overhead and largely memory-to-memory. The design, implementation, and experimental evaluation of DataSpaces using a coupled fusion simulation workflow is presented.
C1 [Docan, Ciprian; Parashar, Manish] Rutgers State Univ, Ctr Auton Comp, Piscataway, NJ 08855 USA.
[Klasky, Scott] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Docan, C (reprint author), Rutgers State Univ, Ctr Auton Comp, Piscataway, NJ 08855 USA.
EM docan@cac.rutgers.edu; parashar@cac.rutgers.edu; klasky@ornl.gov
FU National Science Foundation [IIP 0758566, CCF-0833039, DMS-0835436, CNS
0426354, IIS 0430826, CNS 0723594]; Department of Energy
[DE-FG02-06ER54857]; IBM
FX The research presented in this paper is supported in part by National
Science Foundation via grants numbers IIP 0758566, CCF-0833039,
DMS-0835436, CNS 0426354, IIS 0430826, and CNS 0723594, by Department of
Energy via the grant number DE-FG02-06ER54857, and by an IBM Faculty
Award, and was conducted as part of the Center for Autonomic Computing
at Rutgers University. This material was conducted while author M.
Parashar was working at the National Science Foundation. Any opinion,
finding, and conclusions or recommendations expressed in this material;
are those of the author and do not necessarily reflect the views of the
National Science Foundation.
NR 28
TC 18
Z9 19
U1 1
U2 12
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1386-7857
J9 CLUSTER COMPUT
JI Cluster Comput.
PD JUN
PY 2012
VL 15
IS 2
SI SI
BP 163
EP 181
DI 10.1007/s10586-011-0162-y
PG 19
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
SC Computer Science
GA 950BV
UT WOS:000304625000005
ER
PT J
AU Zhou, XD
Templeton, JW
Nie, Z
Chen, H
Stevenson, JW
Pederson, LR
AF Zhou, X. -D.
Templeton, J. W.
Nie, Z.
Chen, H.
Stevenson, J. W.
Pederson, L. R.
TI Electrochemical performance and stability of the cathode for solid oxide
fuel cells: V. high performance and stable Pr2NiO4 as the cathode for
solid oxide fuel cells
SO ELECTROCHIMICA ACTA
LA English
DT Article
DE Cathode; Solid oxide fuel cells; Stability; Performance; Impedance
ID OXYGEN-SURFACE EXCHANGE; ELECTRICAL-CONDUCTIVITY; MIXED CONDUCTIVITY;
TEMPERATURE; NONSTOICHIOMETRY; PERMEABILITY; RELAXATION; DIFFUSION;
CERAMICS; GD
AB The polarization loss due to oxygen reduction at the cathode in solid oxide fuel cells is a thermally activated process; therefore, as temperature is lowered, the loss becomes substantial. Highly active cathodes have been investigated by several groups; equally important, if not more, is the stability of these electrodes. The high performance and stable Pr2NiO4 cathode was studied by impedance spectroscopy and dc current-potential sweeping methods. The power density in Pr2NiO4-based anode supported button cells was in the range between 0.65 and 0.7 W/cm(2) at 750 degrees C at the external load of 0.8 V. The degradation rate at 0.8 V was approximately 3% per 1000 h up to 2000 h. The electrode resistance is a function of external loads, thus also varies with current densities. The relationship between electrode resistance and external loads is non-linear, which may changes in lattice oxygen nonstoichiometry of the cathodes. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Zhou, X. -D.; Chen, H.] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA.
[Templeton, J. W.; Nie, Z.; Stevenson, J. W.; Pederson, L. R.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Zhou, XD (reprint author), Univ S Carolina, Dept Chem Engn, 301 Main St, Columbia, SC 29208 USA.
EM xiao-dong.zhou@sc.edu
FU U.S. Department of Energy's Solid-State Energy Conversion Alliance
(SECA); US Department of Energy [DE-AC06-76RLO 1830]; National Science
Foundation
FX The work presented in this paper was funded by the U.S. Department of
Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology
Program. Pacific Northwest National Laboratory is operated by Battelle
Memorial Institute for the US Department of Energy under contract no.
DE-AC06-76RLO 1830. Support by the Solid State and Materials Chemistry
Program at the National Science Foundation to XDZ is also appreciated.
NR 38
TC 14
Z9 14
U1 6
U2 54
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0013-4686
J9 ELECTROCHIM ACTA
JI Electrochim. Acta
PD JUN 1
PY 2012
VL 71
BP 44
EP 49
DI 10.1016/j.electacta.2012.03.067
PG 6
WC Electrochemistry
SC Electrochemistry
GA 948NW
UT WOS:000304510900008
ER
PT J
AU Zheng, HH
Li, J
Song, XY
Liu, G
Battaglia, VS
AF Zheng, Honghe
Li, Jing
Song, Xiangyun
Liu, Gao
Battaglia, Vincent S.
TI A comprehensive understanding of electrode thickness effects on the
electrochemical performances of Li-ion battery cathodes
SO ELECTROCHIMICA ACTA
LA English
DT Article
DE Lithium ion batteries; Electrode thickness; Rate capability; Energy
density; Power density
ID COMPOSITE CATHODE; CONDUCTIVE CARBON; POLYMERIC BINDER; LIFEPO4
CATHODES; CYCLE-LIFE; LITHIUM; DIFFUSION; DISCHARGE; MODEL; CELL
AB LiN1/3Co1/3Mn1/3O2 (NCM) and LiFePO4 (LFP) electrodes of different active material loadings are prepared. The impact of electrode thickness on the rate capability, energy and power density and long-term cycling behavior is comparatively investigated. Peukert coefficient slightly increases with increasing electrode thickness, showing a severe capacity loss at higher rate for thicker electrode. A power-law relation between the maximum working Crate and electrode loading is obtained. Increase of the specific resistance with increasing electrode thickness is not an important factor responsible for the poor rate performance for thicker electrode. The power-law relationship is typical for a diffusion-related system, indicating that Li ion diffusion within the electrode is the rate-determining step for the discharge process. As the result of the deterioration of rate capability, enhancing energy density through increasing electrode thickness is accompanied by a significant loss of power density. Long-term cycling performance is also deteriorated, which is attributed to the high internal resistance and poor mechanical integrity of thicker electrode. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Zheng, Honghe; Li, Jing] Soochow Univ, Sch Energy, Suzhou 215006, Jiangsu, Peoples R China.
[Zheng, Honghe; Song, Xiangyun; Liu, Gao; Battaglia, Vincent S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Zheng, HH (reprint author), Soochow Univ, Sch Energy, Suzhou 215006, Jiangsu, Peoples R China.
EM hhzheng66@yahoo.com.cn
FU Natural Science Foundation of China (NSFC) [21073129]; Department of
Science and technology of China [2009AA03Z225863]
FX The authors are greatly indebted to the funding of Natural Science
Foundation of China (NSFC, contract no. 21073129) and the Department of
Science and technology of China for the 863 project (2009AA03Z225863).
NR 42
TC 83
Z9 85
U1 21
U2 160
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0013-4686
J9 ELECTROCHIM ACTA
JI Electrochim. Acta
PD JUN 1
PY 2012
VL 71
BP 258
EP 265
DI 10.1016/j.electacta.2012.03.161
PG 8
WC Electrochemistry
SC Electrochemistry
GA 948NW
UT WOS:000304510900038
ER
PT J
AU Wagner, JL
Beresh, SJ
Kearney, SP
Trott, WM
Castaneda, JN
Pruett, BO
Baer, MR
AF Wagner, Justin L.
Beresh, Steven J.
Kearney, Sean P.
Trott, Wayne M.
Castaneda, Jaime N.
Pruett, Brian O.
Baer, Melvin R.
TI A multiphase shock tube for shock wave interactions with dense particle
fields
SO EXPERIMENTS IN FLUIDS
LA English
DT Article
ID DUSTY-GAS; SUSPENSIONS
AB Currently there is a substantial lack of data for interactions of shock waves with particle fields having volume fractions residing between the dilute and granular regimes. To close this gap, a novel multiphase shock tube has been constructed to drive a planar shock wave into a dense gas-solid field of particles. A nearly spatially isotropic field of particles is generated in the test section by a gravity-fed method that results in a spanwise curtain of spherical 100-micron particles having a volume fraction of about 20%. Interactions with incident shock Mach numbers of 1.66, 1.92, and 2.02 are reported. High-speed schlieren imaging simultaneous with high-frequency wall pressure measurements are used to reveal the complex wave structure associated with the interaction. Following incident shock impingement, transmitted and reflected shocks are observed, which lead to differences in particle drag across the streamwise dimension of the curtain. Shortly thereafter, the particle field begins to propagate downstream and spread. For all three Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced about 30-40% by the presence of the particle field.
C1 [Wagner, Justin L.; Beresh, Steven J.; Kearney, Sean P.; Trott, Wayne M.; Castaneda, Jaime N.; Pruett, Brian O.; Baer, Melvin R.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Wagner, JL (reprint author), Sandia Natl Labs, POB 5800,Mailstop 0825, Albuquerque, NM 87185 USA.
EM jwagner@sandia.gov
FU internal Laboratory Directed Research and Development (LDRD) grant;
Sandia National Laboratories; United States Department of Energy; U.S.
Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX This work was funded by an internal Laboratory Directed Research and
Development (LDRD) grant. The authors gratefully acknowledge this source
of support. The authors would also like to thank Marcia Cooper for her
assistance in the initial design phases of the shock tube. Finally, the
authors are grateful to Yue Ling and Professor Balachandar at the
University of Florida who recognized the presence of two contact
surfaces in the schlieren imaging. This work is supported by Sandia
National Laboratories and the United States Department of Energy. Sandia
National Laboratories is a multiprogram laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.
NR 18
TC 18
Z9 18
U1 4
U2 29
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0723-4864
J9 EXP FLUIDS
JI Exp. Fluids
PD JUN
PY 2012
VL 52
IS 6
BP 1507
EP 1517
DI 10.1007/s00348-012-1272-x
PG 11
WC Engineering, Mechanical; Mechanics
SC Engineering; Mechanics
GA 950CB
UT WOS:000304625600011
ER
PT J
AU Petryshyn, VA
Corsetti, FA
Berelson, WM
Beaumont, W
Lund, SP
AF Petryshyn, Victoria A.
Corsetti, Frank A.
Berelson, William M.
Beaumont, Will
Lund, Steve P.
TI Stromatolite lamination frequency, Walker Lake, Nevada: Implications for
stromatolites as biosignatures
SO GEOLOGY
LA English
DT Article
ID LEVEL FLUCTUATIONS; LAHONTAN BASIN; CARBONATES; C-14; AGES; USA
AB Lamination in stromatolites (considered some of the oldest fossils on Earth) is commonly interpreted to record the periodic response of a microbial community to daily, seasonal, or perhaps yearly environmental forcing, but the inability to date ancient stromatolites precludes an understanding of the lamination formation processes. We use high-resolution C-14 dating of Holocene stromatolites from Walker Lake, Nevada (United States), to construct a record of lamination rate over the course of accretion. Laminae formed with a period of 5.6 +/- 1.6 yr/lamination at the base of the structure, 1.6-2.8 +/- 1.9 yr/lamination in the middle, and 4.5 +/- 0.8 yr/lamination at the top of the laminated portion. The predominant 4-6 yr periodicity indicates that lamination formation is likely more closely related to regional climate forcing (e.g., El Nino Southern Oscillation) versus the typical diurnal or seasonal changes in microbial mats traditionally assumed for most ancient stromatolites. Thus, generalizations regarding the influence of microbial mats on stromatolite lamination and the use of stromatolites as biosignatures need careful consideration.
C1 [Petryshyn, Victoria A.; Corsetti, Frank A.; Berelson, William M.; Lund, Steve P.] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA.
[Beaumont, Will] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Petryshyn, VA (reprint author), Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA.
FU National Aeronautics and Space Administration Exobiology branch; Society
for Sedimentary Geology; Geological Society of America
FX Funding for this study was provided by the National Aeronautics and
Space Administration Exobiology branch, the Society for Sedimentary
Geology, and the Geological Society of America. We thank Doug Hammond,
Dave Bottjer, Doug Capone, Jake Bailey, Sean Loyd, and Kirk Domke for
their added insights. Dawn Sumner and two anonymous reviewers provided
very helpful comments to earlier drafts of this manuscript. We thank
Bradley Opdyke for his editorial insights.
NR 22
TC 20
Z9 20
U1 2
U2 22
PU GEOLOGICAL SOC AMER, INC
PI BOULDER
PA PO BOX 9140, BOULDER, CO 80301-9140 USA
SN 0091-7613
J9 GEOLOGY
JI Geology
PD JUN
PY 2012
VL 40
IS 6
BP 499
EP 502
DI 10.1130/G32675.1
PG 4
WC Geology
SC Geology
GA 948PL
UT WOS:000304515000005
ER
PT J
AU Fessenden, J
AF Fessenden, Julianna
TI Carbon sequestration and natural analogs
SO GEOLOGY
LA English
DT Editorial Material
ID CLIMATE-CHANGE; CO2; STORAGE; RESERVOIR; DIOXIDE; CAPTURE; IMPACT; SITE;
DISSOLUTION; CHEMISTRY
C1 Los Alamos Natl Lab, Decis Applicat Div, Los Alamos, NM 87545 USA.
RP Fessenden, J (reprint author), Los Alamos Natl Lab, Decis Applicat Div, POB 1663, Los Alamos, NM 87545 USA.
NR 30
TC 1
Z9 1
U1 0
U2 12
PU GEOLOGICAL SOC AMER, INC
PI BOULDER
PA PO BOX 9140, BOULDER, CO 80301-9140 USA
SN 0091-7613
J9 GEOLOGY
JI Geology
PD JUN
PY 2012
VL 40
IS 6
BP 575
EP 576
DI 10.1130/focus062012.1
PG 2
WC Geology
SC Geology
GA 948PL
UT WOS:000304515000025
ER
PT J
AU Revil, A
Karaoulis, M
Johnson, T
Kemna, A
AF Revil, A.
Karaoulis, M.
Johnson, T.
Kemna, A.
TI Review: Some low-frequency electrical methods for subsurface
characterization and monitoring in hydrogeology
SO HYDROGEOLOGY JOURNAL
LA English
DT Review
DE Geophysical methods; Groundwater hydraulics; Groundwater monitoring;
Hydraulic properties; Unsaturated zone; Review
ID SPECTRAL-INDUCED POLARIZATION; SELF-POTENTIAL DATA;
DOMAIN-INDUCED-POLARIZATION; SPHERICAL COLLOIDAL PARTICLES;
FINITE-ELEMENT METHOD; RESISTIVITY TOMOGRAPHY; SHALY SANDS;
ENVIRONMENTAL APPLICATIONS; DC-RESISTIVITY; DIELECTRIC-DISPERSION
AB Low-frequency geoelectrical methods include mainly self-potential, resistivity, and induced polarization techniques, which have potential in many environmental and hydrogeological applications. They provide complementary information to each other and to in-situ measurements. The self-potential method is a passive measurement of the electrical response associated with the in-situ generation of electrical current due to the flow of pore water in porous media, a salinity gradient, and/or the concentration of redox-active species. Under some conditions, this method can be used to visualize groundwater flow, to determine permeability, and to detect preferential flow paths. Electrical resistivity is dependent on the water content, the temperature, the salinity of the pore water, and the clay content and mineralogy. Time-lapse resistivity can be used to assess the permeability and dispersivity distributions and to monitor contaminant plumes. Induced polarization characterizes the ability of rocks to reversibly store electrical energy. It can be used to image permeability and to monitor chemistry of the pore water-minerals interface. These geophysical methods, reviewed in this paper, should always be used in concert with additional in-situ measurements (e.g. in-situ pumping tests, chemical measurements of the pore water), for instance through joint inversion schemes, which is an area of fertile on-going research.
C1 [Revil, A.] Univ Savoie, Equipe Volcan, CNRS, LGIT,UMR 5559, F-73376 Le Bourget Du Lac, France.
[Revil, A.; Karaoulis, M.] Colorado Sch Mines, Dept Geophys, Green Ctr, Golden, CO 80401 USA.
[Johnson, T.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Kemna, A.] Univ Bonn, Dept Geodynam & Geophys, D-53115 Bonn, Germany.
RP Revil, A (reprint author), Univ Savoie, Equipe Volcan, CNRS, LGIT,UMR 5559, F-73376 Le Bourget Du Lac, France.
EM arevil@mines.edu; karaouli@geo.auth.gr; tj@pnl.gov;
kemna@geo.uni-bonn.de
RI Karaoulis, Marios/C-9977-2013
FU NSF [DGE-0801692]; EPA
FX We thank NSF for funding the SmartGeo Educational Program (Project
IGERT: Intelligent Geosystems; DGE-0801692) and EPA (D. Werkema) for
funding M. Karaoulis. We thank A. Flores Orozco and K. H. Williams for
sharing Fig. 23 with us and M. Nabighian for bringing to our attention
key references about early works. K. Singha, L. Slater, and two
anonymous referees are thanked for their careful and very useful reviews
of this manuscript.
NR 268
TC 72
Z9 75
U1 8
U2 80
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1431-2174
EI 1435-0157
J9 HYDROGEOL J
JI Hydrogeol. J.
PD JUN
PY 2012
VL 20
IS 4
BP 617
EP 658
DI 10.1007/s10040-011-0819-x
PG 42
WC Geosciences, Multidisciplinary; Water Resources
SC Geology; Water Resources
GA 949XU
UT WOS:000304612000001
ER
PT J
AU Rademacher, N
Daemen, LL
Chronister, EL
Proffen, T
AF Rademacher, Nadine
Daemen, Luke L.
Chronister, Eric L.
Proffen, Thomas
TI Pair distribution function analysis of molecular compounds: significance
and modeling approach discussed using the example of p-terphenyl
SO JOURNAL OF APPLIED CRYSTALLOGRAPHY
LA English
DT Article
ID X-RAY-DIFFRACTION; DIFFUSE-SCATTERING; POWDER-DIFFRACTION;
CRYSTAL-STRUCTURE; REFINEMENT; SIMULATION; PHASE
AB Modeling the pair distribution function (PDF) of molecular compounds is a challenging task because intra- and intermolecular interactions lead to very different features in the PDF. This article discusses the different peak shapes in PDFs of molecular compounds in detail. Moreover, the common methods to calculate PDFs from structural models are summarized and evaluated with respect to molecular systems and an approach to calculate PDFs from molecular crystals more accurately is introduced. p-Terphenyl was chosen as a test compound. It adopts a crystal structure with disordered features and short-range order. The short-range order was previously investigated by analyzing single-crystal diffuse scattering and it was also extracted from experimental PDFs during this study.
C1 [Rademacher, Nadine] Univ Frankfurt Main, Inst Geowissensch, D-60438 Frankfurt, Germany.
[Rademacher, Nadine; Daemen, Luke L.; Proffen, Thomas] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA.
[Chronister, Eric L.] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA.
[Proffen, Thomas] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37931 USA.
RP Rademacher, N (reprint author), Univ Frankfurt Main, Inst Geowissensch, D-60438 Frankfurt, Germany.
EM rademacher@kristall.uni-frankfurt.de
RI Lujan Center, LANL/G-4896-2012; Schrodt, Nadine/D-4756-2015; Proffen,
Thomas/B-3585-2009
OI Schrodt, Nadine/0000-0001-6110-8320; Proffen, Thomas/0000-0002-1408-6031
FU DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396]
FX This work has benefited from the use of NPDF at the Lujan Center at Los
Alamos Neutron Science Center, funded by the DOE Office of Basic Energy
Sciences. Los Alamos National Laboratory is operated by Los Alamos
National Security LLC under DOE contract DE-AC52-06NA25396. NR
acknowledges Dr Christian Buchsbaum for helpful discussions on the
results of the Rietveld refinements and Professor Dr Bjorn Winkler for
valuable comments on this manuscript.
NR 28
TC 6
Z9 6
U1 1
U2 17
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0021-8898
J9 J APPL CRYSTALLOGR
JI J. Appl. Crystallogr.
PD JUN
PY 2012
VL 45
BP 482
EP 488
DI 10.1107/S0021889812016159
PN 3
PG 7
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA 947BV
UT WOS:000304402500013
ER
PT J
AU Echols, N
Grosse-Kunstleve, RW
Afonine, PV
Bunkoczi, G
Chen, VB
Headd, JJ
McCoy, AJ
Moriarty, NW
Read, RJ
Richardson, DC
Richardson, JS
Terwilliger, TC
Adams, PD
AF Echols, Nathaniel
Grosse-Kunstleve, Ralf W.
Afonine, Pavel V.
Bunkoczi, Gabor
Chen, Vincent B.
Headd, Jeffrey J.
McCoy, Airlie J.
Moriarty, Nigel W.
Read, Randy J.
Richardson, David C.
Richardson, Jane S.
Terwilliger, Thomas C.
Adams, Paul D.
TI Graphical tools for macromolecular crystallography in PHENIX
SO JOURNAL OF APPLIED CRYSTALLOGRAPHY
LA English
DT Software Review
ID PROTEIN DATA-BANK; STRUCTURE REFINEMENT; MOLECULAR-REPLACEMENT; MODEL;
VISUALIZATION; PROGRAM; DENSITY; OPTIMIZATION; VALIDATION; GENERATION
AB A new Python-based graphical user interface for the PHENIX suite of crystallography software is described. This interface unifies the command-line programs and their graphical displays, simplifying the development of new interfaces and avoiding duplication of function. With careful design, graphical interfaces can be displayed automatically, instead of being manually constructed. The resulting package is easily maintained and extended as new programs are added or modified.
C1 [Echols, Nathaniel; Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Headd, Jeffrey J.; Moriarty, Nigel W.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Bunkoczi, Gabor; McCoy, Airlie J.; Read, Randy J.] Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Cambridge CB2 0XY, England.
[Chen, Vincent B.; Richardson, David C.; Richardson, Jane S.] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA.
[Terwilliger, Thomas C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
RP Echols, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,Mailstop 64R0246, Berkeley, CA 94720 USA.
EM nechols@lbl.gov
RI Read, Randy/L-1418-2013; Terwilliger, Thomas/K-4109-2012; Adams,
Paul/A-1977-2013
OI Read, Randy/0000-0001-8273-0047; Terwilliger,
Thomas/0000-0001-6384-0320; Adams, Paul/0000-0001-9333-8219
FU NIGMS NIH HHS [P01 GM063210]; Wellcome Trust [082961]
NR 42
TC 34
Z9 34
U1 4
U2 13
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0021-8898
J9 J APPL CRYSTALLOGR
JI J. Appl. Crystallogr.
PD JUN
PY 2012
VL 45
BP 581
EP 586
DI 10.1107/S0021889812017293
PN 3
PG 6
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA 947BV
UT WOS:000304402500028
PM 22675231
ER
PT J
AU Liu, HG
Hexemer, A
Zwart, PH
AF Liu, Haiguang
Hexemer, Alexander
Zwart, Peter H.
TI The Small Angle Scattering ToolBox (SASTBX): an open-source software for
biomolecular small-angle scattering
SO JOURNAL OF APPLIED CRYSTALLOGRAPHY
LA English
DT Software Review
ID X-RAY-SCATTERING; RIBOSE-BINDING PROTEIN; BIOLOGICAL MACROMOLECULES;
OLIGOSACCHARIDE BINDING; SPHERICAL-HARMONICS; ADENYLATE KINASE; SURFACE
FORM; RESOLUTION; CRYSTALLOGRAPHY; COMPUTATION
AB Small-angle X-ray and neutron scattering experiments are broadly applied to study biomolecular structure and dynamics. This article presents the Small Angle Scattering ToolBox (SASTBX), which provides a wide-ranging functionality for the analysis of biological small-angle scattering data, from data reduction to model reconstruction and refinement. The SASTBX is an open-source package, which is freely available at http://sastbx.als.lbl.gov.
C1 [Liu, Haiguang; Zwart, Peter H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Zwart, PH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM phzwart@lbl.gov
NR 49
TC 26
Z9 26
U1 2
U2 10
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0021-8898
J9 J APPL CRYSTALLOGR
JI J. Appl. Crystallogr.
PD JUN
PY 2012
VL 45
BP 587
EP 593
DI 10.1107/S0021889812015786
PN 3
PG 7
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA 947BV
UT WOS:000304402500029
ER
PT J
AU Andreev, VP
Petyuk, VA
Brewer, HM
Karpievitch, YV
Xie, F
Clarke, J
Camp, D
Smith, RD
Lieberman, AP
Albin, RL
Nawaz, Z
El Hokayem, J
Myers, AJ
AF Andreev, Victor P.
Petyuk, Vladislav A.
Brewer, Heather M.
Karpievitch, Yuliya V.
Xie, Fang
Clarke, Jennifer
Camp, David
Smith, Richard D.
Lieberman, Andrew P.
Albin, Roger L.
Nawaz, Zafar
El Hokayem, Jimmy
Myers, Amanda J.
TI Label-Free Quantitative LC-MS Proteomics of Alzheimer's Disease and
Normally Aged Human Brains
SO JOURNAL OF PROTEOME RESEARCH
LA English
DT Article
DE Alzheimer's disease; brain; cortical samples; proteomics;
bioinformatics; normalization
ID CHROMATOGRAPHY-MASS SPECTROMETRY; MILD COGNITIVE IMPAIRMENT;
CEREBROSPINAL-FLUID BIOMARKERS; UBIQUITIN-PROTEASOME SYSTEM;
MESSENGER-RNA EXPRESSION; MULTILOCUS GENOTYPE DATA; GENOME-WIDE
ASSOCIATION; LIQUID-CHROMATOGRAPHY; ACCURATE MASS; IDENTIFIES VARIANTS
AB Quantitative proteomics analysis of cortical samples of 10 Alzheimer's disease (AD) brains versus 10 normally aged brains was performed by following the accurate mass and time tag (AMT) approach with the high resolution LTQ Orbitrap mass spectrometer. More than 1400 proteins were identified and quantitated. A conservative approach of selecting only the consensus results of four normalization methods was suggested and used. A total of 197 proteins were shown to be significantly differentially abundant (p-values <0.05, corrected for multiplicity of testing) in AD versus control brain samples. Thirty-seven of these proteins were reported as differentially abundant or modified in AD in previous proteomics and transcriptomics publications. The rest to the best of our knowledge are new. Mapping of the discovered proteins with bioinformatic tools revealed significant enrichment with differentially abundant proteins of pathways and processes known to be important in AD, including signal transduction, regulation of protein phosphorylation, immune response, cytoskeleton organization, lipid metabolism, energy production, and cell death.
C1 [Andreev, Victor P.; Myers, Amanda J.] Univ Miami, Miller Sch Med, Dept Psychiat & Behav Sci, Miami, FL 33136 USA.
[Andreev, Victor P.; Nawaz, Zafar; El Hokayem, Jimmy] Univ Miami, Miller Sch Med, Dept Biochem & Mol Biol, Miami, FL 33136 USA.
[Clarke, Jennifer] Univ Miami, Miller Sch Med, Dept Epidemiol & Publ Hlth, Miami, FL 33136 USA.
[Myers, Amanda J.] Univ Miami, Miller Sch Med, Div Neurosci, Miami, FL 33136 USA.
[Myers, Amanda J.] Univ Miami, Miller Sch Med, Dept Human Genet & Genom, Miami, FL 33136 USA.
[Andreev, Victor P.] Univ Miami, Ctr Computat Sci, Miami, FL USA.
[Petyuk, Vladislav A.; Brewer, Heather M.; Karpievitch, Yuliya V.; Xie, Fang; Camp, David; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Albin, Roger L.] Univ Michigan, Dept Neurol, Ann Arbor, MI USA.
[Lieberman, Andrew P.] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA.
[Albin, Roger L.] VAAAHS, Geriatr Res Educ & Clin Ctr, Ann Arbor, MI USA.
RP Andreev, VP (reprint author), Univ Miami, Miller Sch Med, Dept Psychiat & Behav Sci, Miami, FL 33136 USA.
EM vandreev@med.miami.edu
RI Myers, Amanda/B-1796-2010; Smith, Richard/J-3664-2012; Andreev,
Victor/D-1780-2013;
OI Myers, Amanda/0000-0002-3100-9396; Smith, Richard/0000-0002-2381-2349;
Petyuk, Vladislav/0000-0003-4076-151X; Clarke,
Jennifer/0000-0002-2723-7249
FU National Institute on Aging EUREKA [R01-AG-034504]; NIA [P50-AG08671];
NIH National Center for Research Resources [RR18522]; DOE
[DE-AC05-76RL01830]
FX We are grateful to the donors and their families. This work is supported
by National Institute on Aging EUREKA grant R01-AG-034504 to A.J.M. The
University of Michigan Alzheimer's Disease Research Center's brain bank
is supported by NIA grant P50-AG08671. Proteomic analyses were supported
by the NIH National Center for Research Resources (RR18522 to R.D.S.)
and were performed in the Environmental Molecular Sciences Laboratory, a
U.S. Department of Energy (DOE) national scientific user facility
located at the Pacific Northwest National Laboratory (PNNL) in Richland,
Washington. PNNL is a multiprogram national laboratory operated by
Battelle Memorial Institute for the DOE under Contract
DE-AC05-76RL01830.
NR 87
TC 31
Z9 31
U1 1
U2 32
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1535-3893
EI 1535-3907
J9 J PROTEOME RES
JI J. Proteome Res.
PD JUN
PY 2012
VL 11
IS 6
BP 3053
EP 3067
DI 10.1021/pr3001546
PG 15
WC Biochemical Research Methods
SC Biochemistry & Molecular Biology
GA 950WQ
UT WOS:000304682500001
PM 22559202
ER
PT J
AU Jungjohann, KL
Evans, JE
Aguiar, JA
Arslan, I
Browning, ND
AF Jungjohann, Katherine L.
Evans, James E.
Aguiar, Jeffery A.
Arslan, Ilke
Browning, Nigel D.
TI Atomic-Scale Imaging and Spectroscopy for In Situ Liquid Scanning
Transmission Electron Microscopy
SO MICROSCOPY AND MICROANALYSIS
LA English
DT Article
DE STEM; in situ; liquid cell; EELS; spectroscopy; atomic resolution
ID WATER; GROWTH; NANOPARTICLES; INTERFACE; SURFACES; EELS; STEM; TEM
AB Observation of growth, synthesis, dynamics, and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope. In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration-corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle and demonstrate that characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration-corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution-based catalysis.
C1 [Jungjohann, Katherine L.; Aguiar, Jeffery A.; Arslan, Ilke; Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
[Evans, James E.; Browning, Nigel D.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA.
[Aguiar, Jeffery A.] Lawrence Livermore Natl Lab, Dept Phys & Life Sci, Livermore, CA 94550 USA.
RP Jungjohann, KL (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA.
EM klweeks@ucdavis.edu
OI Browning, Nigel/0000-0003-0491-251X; Aguiar, Jeffery/0000-0001-6101-4762
FU NIH [5RC1GM091755]; U.S. Department of Energy by Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]
FX J.E.E. and N.D.B. acknowledge National Institutes of Health (NIH)
funding support from NIH Grant Number 5RC1GM091755. Aspects of this
research were performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 35
TC 46
Z9 46
U1 7
U2 104
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 1431-9276
J9 MICROSC MICROANAL
JI Microsc. microanal.
PD JUN
PY 2012
VL 18
IS 3
BP 621
EP 627
DI 10.1017/S1431927612000104
PG 7
WC Materials Science, Multidisciplinary; Microscopy
SC Materials Science; Microscopy
GA 949VJ
UT WOS:000304604000023
PM 22640968
ER
PT J
AU Comolli, LR
Duarte, R
Baum, D
Luef, B
Downing, KH
Larson, DM
Csencsits, R
Banfield, JF
AF Comolli, Luis R.
Duarte, Robert
Baum, Dennis
Luef, Birgit
Downing, Kenneth H.
Larson, David M.
Csencsits, Roseann
Banfield, Jillian F.
TI A portable cryo-plunger for on-site intact cryogenic microscopy sample
preparation in natural environments
SO MICROSCOPY RESEARCH AND TECHNIQUE
LA English
DT Article
DE cryo-electron microscopy; cryo-plunging; environmental microbial
communities; Archaea; extremophiles
ID ELECTRON-MICROSCOPY; RESOLUTION; VITRIFICATION; CHALLENGES; BACTERIA
AB We present a modern, light portable device specifically designed for environmental samples for cryogenic transmission-electron microscopy (cryo-TEM) by on-site cryo-plunging. The power of cryo-TEM comes from preparation of artifact-free samples. However, in many studies, the samples must be collected at remote field locations, and the time involved in transporting samples back to the laboratory for cryogenic preservation can lead to severe degradation artifacts. Thus, going back to the basics, we developed a simple mechanical device that is light and easy to transport on foot yet effective. With the system design presented here we are able to obtain cryo-samples of microbes and microbial communities not possible to culture, in their near-intact environmental conditions as well as in routine laboratory work, and in real time. This methodology thus enables us to bring the power of cryo-TEM to microbial ecology. Microsc. Res. Tech. 75:829836, 2012. (C) 2011 Wiley Periodicals, Inc.
C1 [Comolli, Luis R.; Luef, Birgit; Downing, Kenneth H.; Larson, David M.; Csencsits, Roseann] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Duarte, Robert; Baum, Dennis] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA.
[Luef, Birgit; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Banfield, Jillian F.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA.
RP Comolli, LR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
EM lrcomolli@lbl.gov
FU Office of Science, Office of Biological and Environmental Research, U.S.
Department of Energy [DEAC02-05CH11231]
FX Contract grant sponsor: Director, Office of Science, Office of
Biological and Environmental Research, U.S. Department of Energy;
Contract grant number: DEAC02-05CH11231
NR 20
TC 12
Z9 12
U1 0
U2 13
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1059-910X
J9 MICROSC RES TECHNIQ
JI Microsc. Res. Tech.
PD JUN
PY 2012
VL 75
IS 6
BP 829
EP 836
DI 10.1002/jemt.22001
PG 8
WC Anatomy & Morphology; Biology; Microscopy
SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics;
Microscopy
GA 945CP
UT WOS:000304250700018
PM 22213355
ER
PT J
AU Fu, W
Lai, D
AF Fu, Wen
Lai, Dong
TI Dynamics of the innermost accretion flows around compact objects:
magnetosphere-disc interface, global oscillations and instabilities
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE accretion; accretion discs; hydrodynamics; instabilities; MHD; waves;
X-rays: binaries
ID QUASI-PERIODIC OSCILLATIONS; X-RAY BINARIES; 3-DIMENSIONAL
MAGNETOHYDRODYNAMIC SIMULATIONS; KELVIN-HELMHOLTZ INSTABILITY;
INERTIAL-ACOUSTIC MODES; HIGH-FREQUENCY QPOS; MAGNETIC-FIELDS;
COROTATIONAL INSTABILITY; INTERCHANGE INSTABILITY; EJECTION INSTABILITY
AB We study global non-axisymmetric oscillation modes and instabilities in magnetospheredisc systems, as expected in neutron star X-ray binaries and possibly also in accreting black hole systems. Our 2D magnetospheredisc model consists of a Keplerian disc in contact with a uniformly rotating magnetosphere with low plasma density. Two types of global overstable modes exist in such systems: the interface modes and the disc inertialacoustic modes. We examine various physical effects and parameters that influence the properties of these oscillation modes, particularly their growth rates, including the magnetosphere field configuration, the velocity and density contrasts across the magnetospheredisc interface, the rotation profile (with Newtonian or pseudo general relativistic potential), the sound speed and magnetic field of the disc. The interface modes are driven unstable by RayleighTaylor and KelvinHelmholtz instabilities, but can be stabilized by the toroidal field (through magnetic tension) and disc differential rotation (through finite vorticity). General relativity increases their growth rates by modifying the disc vorticity outside the magnetosphere boundary. The interface modes may also be affected by wave absorption associated with corotation resonance in the disc. In the presence of a magnetosphere, the inertialacoustic modes are effectively trapped at the innermost region of the relativistic disc just outside the interface. They are driven unstable by wave absorption at the corotation resonance, but can be stabilized by modest disc magnetic fields. The overstable oscillation modes studied in this paper have characteristic properties that make them possible candidates for the quasi-periodic oscillations observed in X-ray binaries.
C1 [Fu, Wen; Lai, Dong] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.
[Fu, Wen] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Fu, W (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.
EM wenfu@astro.cornell.edu; dong@astro.cornell.edu
FU NSF [AST-1008245]; NASA [NASA NNX10AP19G]; LANL
FX We thank Professor Wlodek Kluzniak for his careful reading of our
manuscript and his valuable suggestions that helped improve our
presentation. This work has been supported in part by NSF Grant
AST-1008245 and NASA Grant NASA NNX10AP19G. WF also acknowledges the
support from a Laboratory Directed Research and Development Programme at
LANL.
NR 58
TC 8
Z9 8
U1 1
U2 1
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2012
VL 423
IS 1
BP 831
EP 843
DI 10.1111/j.1365-2966.2012.20921.x
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 949TP
UT WOS:000304599100062
ER
PT J
AU Liu, H
Radisky, DC
Yang, D
Xu, R
Radisky, ES
Bissell, MJ
Bishop, JM
AF Liu, Hong
Radisky, Derek C.
Yang, Dun
Xu, Ren
Radisky, Evette S.
Bissell, Mina J.
Bishop, J. Michael
TI MYC suppresses cancer metastasis by direct transcriptional silencing of
alpha(v) and beta(3) integrin subunits
SO NATURE CELL BIOLOGY
LA English
DT Article
ID C-MYC; BREAST-CANCER; TUMOR-CELLS; MAMMARY TUMORIGENESIS; TRANSGENIC
MICE; N-MYC; EXPRESSION; MIGRATION; ONCOGENE; GENES
AB Overexpression of MYC transforms cells in culture, elicits malignant tumours in experimental animals and is found in many human tumours. We now report the paradoxical finding that this powerful oncogene can also act as a suppressor of cell motility, invasiveness and metastasis. Overexpression of MYC stimulated proliferation of breast cancer cells both in culture and in vivo as expected, but inhibited motility and invasiveness in culture, and lung and liver metastases in xenografted tumours. We show further that MYC represses transcription of both subunits of alpha(v),beta(3) integrin, and that exogenous expression of beta(3) integrin in human breast cancer cells that do not express this integrin rescues invasiveness and migration when MYC is downregulated. These data uncover an unexpected function of MYC, provide an explanation for the hitherto puzzling literature on the relationship between MYC and metastasis, and reveal a variable that could influence the development of therapies that target MYC.
C1 [Liu, Hong; Yang, Dun; Bishop, J. Michael] Univ Calif San Francisco, George Williams Hooper Fdn, San Francisco, CA 94143 USA.
[Radisky, Derek C.; Radisky, Evette S.] Mayo Clin, Ctr Canc, Jacksonville, FL 32224 USA.
[Xu, Ren; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA.
RP Radisky, DC (reprint author), Univ Calif San Francisco, George Williams Hooper Fdn, San Francisco, CA 94143 USA.
EM radisky.derek@mayo.edu
RI Radisky, Evette/C-8526-2012
OI Radisky, Evette/0000-0003-3121-109X
FU George Williams Hooper Foundation; NIH [P50 CA091956]; DoD [PC094054,
W81XWH0810736]; NCI [CA122086]; Susan B. Komen foundation [FA50703855];
Mayo Clinic Breast Cancer SPORE [CA116201]; NIH/NCI [R37CA064786,
U01CA143233, U54CA143836, U54CA126552]; Department of Energy OBER
[DE-AC02-05CH1123]
FX We thank D. Cheresh, F. G. Giancotti, A. Goga and D. Sheppard for
providing DNA constructs and cell lines. We are grateful to C-Y. Chen,
L. Prentice and B. Edenfeld for help with histology and imaging. We
thank D. Khauv for work with the ChIP assay, E. Miller for work with the
orthotopic animal assay, M. Cichon for cloning constructs and M.
Stallings-Mann for work with analysis of experiments. We also thank
members of the Bishop, Bissell and Radisky laboratories for their
constructive discussion and help. This work was financially supported
initially by the George Williams Hooper Foundation (J.M.B.). The founder
had no role in study design, data collection and analysis, decision to
publish or preparation of the manuscript. Further support came from NIH
(P50 CA091956) and the DoD (PC094054) (to E.S.R.); NCI CA122086, Susan
B. Komen foundation grant FA50703855 and the Mayo Clinic Breast Cancer
SPORE grant CA116201 (to D.C.R.); the DoD (W81XWH0810736), NIH/NCI
(R37CA064786, U01CA143233, U54CA143836 and U54CA126552) and the
Department of Energy OBER Low Dose Radiation Program (contract no.
DE-AC02-05CH1123) (to M.J.B.).
NR 50
TC 68
Z9 70
U1 0
U2 20
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1465-7392
J9 NAT CELL BIOL
JI Nat. Cell Biol.
PD JUN
PY 2012
VL 14
IS 6
BP 567
EP +
DI 10.1038/ncb2491
PG 13
WC Cell Biology
SC Cell Biology
GA 949TW
UT WOS:000304599900006
PM 22581054
ER
PT J
AU Reiman, EM
Jagust, WJ
AF Reiman, Eric M.
Jagust, William J.
TI Brain imaging in the study of Alzheimer's disease
SO NEUROIMAGE
LA English
DT Review
DE Alzheimer's disease; Dementia; Mild cognitive impairment; MRI; PET;
Amyloid; Diagnosis; Prevention
ID MILD COGNITIVE IMPAIRMENT; POSITRON-EMISSION-TOMOGRAPHY; PITTSBURGH
COMPOUND-B; CEREBRAL GLUCOSE-METABOLISM; QUALITY STANDARDS SUBCOMMITTEE;
PRIMARY PROGRESSIVE APHASIA; BETA-PEPTIDE DEPOSITION; VOXEL-BASED
MORPHOMETRY; ACADEMY-OF-NEUROLOGY; DEFAULT-MODE NETWORK
AB Over the last 20 years, there has been extraordinary progress in brain imaging research and its application to the study of Alzheimer's disease (AD). Brain imaging researchers have contributed to the scientific understanding, early detection and tracking of AD. They have set the stage for imaging techniques to play growing roles in the clinical setting, the evaluation of disease-modifying treatments, and the identification of demonstrably effective prevention therapies. They have developed ground-breaking methods, including positron emission tomography (PET) ligands to measure fibrillar amyloid-beta (A beta) deposition, new magnetic resonance imaging (MRI) pulse sequences, and powerful image analysis techniques, to help in these endeavors. Additional work is needed to develop even more powerful imaging methods, to further clarify the relationship and time course of A beta and other disease processes in the predisposition to AD, to establish the role of brain imaging methods in the clinical setting, and to provide the scientific means and regulatory approval pathway needed to evaluate the range of promising disease-modifying and prevention therapies as quickly as possible. Twenty years from now, AD may not yet be a distant memory, but the best is yet to come. (C) 2011 Elsevier Inc. All rights reserved.
C1 [Reiman, Eric M.] Banner Alzheimers Inst, Phoenix, AZ 85006 USA.
[Reiman, Eric M.] Univ Arizona, Dept Psychiat, Tucson, AZ USA.
[Reiman, Eric M.] Translat Genom Res Inst TGen, Neurogen Div, Phoenix, AZ USA.
[Reiman, Eric M.] Arizona Alzheimers Consortium, Phoenix, AZ USA.
[Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA.
[Jagust, William J.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA.
[Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Reiman, EM (reprint author), Banner Alzheimers Inst, 901 E Willetta St, Phoenix, AZ 85006 USA.
EM eric.reiman@bannerhealth.com
FU National Institute on Aging [R01 AG031581, R01 AG034570, P30 AG19610,
U01 AG024904, RC AG036535]
FX The authors received relevant support from National Institute on Aging
grants R01 AG031581, R01 AG034570, P30 AG19610, U01 AG024904 and RC
AG036535. They thank Dr. Jessica Langbaum for her assistance in the
editing of this article.
NR 181
TC 42
Z9 44
U1 6
U2 49
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1053-8119
J9 NEUROIMAGE
JI Neuroimage
PD JUN
PY 2012
VL 61
IS 2
SI SI
BP 505
EP 516
DI 10.1016/j.neuroimage.2011.11.075
PG 12
WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical
Imaging
SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging
GA 950DN
UT WOS:000304629600017
PM 22173295
ER
PT J
AU Lavoie, B
Mayes, MA
McKay, LD
AF Lavoie, Beth
Mayes, Melanie A.
McKay, Larry D.
TI Transport of Explosive Residue Surrogates in Saturated Porous Media
SO WATER AIR AND SOIL POLLUTION
LA English
DT Article
DE Colloid transport; Dinitrotoluene; Munitions; Nitroaromatics; Sand
ID COMPOSITION-B; DISSOLUTION; TNT; PARTICLES; SOIL; RDX; SUBSURFACE;
COLLOIDS
AB Department of Defense operational ranges may become contaminated by particles of explosives residues (ER) as a result of low-order detonations of munitions. The goal of this study was to determine the extent to which particles of ER could migrate through columns of sandy sediment, representing model aquifer materials. Transport experiments were conducted in saturated columns (2 x 20 cm) packed with different grain sizes of clean sand or glass beads. Fine particles (approximately 2 to 50 mu m) of 2,6-dinitrotoluene (DNT) were used as a surrogate for ER. DNT particles were applied to the top 1 cm of sand or beads in the columns, and the columns were subsequently leached with artificial groundwater solutions. DNT migration occurred as both dissolved and particulate phases. Concentration differences between unfiltered and filtered samples indicate that particulate DNT accounted for up to 41% of the mass recovered in effluent samples. Proportionally, more particulate than dissolved DNT was recovered in effluent solutions from columns with larger grain sizes, while total concentrations of DNT in effluent were inversely related to grain size. Of the total DNT mass applied to the uppermost layer of the column, < 3% was recovered in the effluent with the bulk remaining in the top 2 cm of the column. Our results suggest there is some potential for subsurface migration of ER particles and that most of the particles will be retained over relatively short transport distances.
C1 [Lavoie, Beth; McKay, Larry D.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA.
[Mayes, Melanie A.] Oak Ridge Natl Lab, Subsurface Sci Grp, Div Environm Sci, Oak Ridge, TN 37831 USA.
RP Lavoie, B (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, 1412 Circle Dr, Knoxville, TN 37996 USA.
EM bethshebal@gmail.com
FU Strategic Environmental Research and Development Program (SERDP)
[ER-1690]; US DOE [DE-AC05-00OR22725]
FX The authors would like to express their appreciation to Drs. Steven
Minkin and John Biggerstaff, with the University of Tennessee, Center
for Environmental Biotechnology, for their assistance with this project.
We are also thankful to Drs. Guoping Tang and Prasesh Sharma, with Oak
Ridge National Laboratory, and Dr. Ed Perfect, with the University of
Tennessee, Department of Earth and Planetary Sciences, for their help
with the manuscript. The work is funded through Strategic Environmental
Research and Development Program (SERDP) Project Number ER-1690. The
work was completed at the University of Tennessee in association with
Oak Ridge National Laboratory (ORNL). ORNL is managed by the University
of Tennessee-Battelle, LLC, under contract DE-AC05-00OR22725 with the US
DOE.
NR 32
TC 1
Z9 1
U1 0
U2 10
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0049-6979
J9 WATER AIR SOIL POLL
JI Water Air Soil Pollut.
PD JUN
PY 2012
VL 223
IS 5
BP 1983
EP 1993
DI 10.1007/s11270-011-0999-y
PG 11
WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water
Resources
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences;
Water Resources
GA 947XF
UT WOS:000304467000006
PM 22707801
ER
PT J
AU Chen, XY
Murakami, H
Hahn, MS
Hammond, GE
Rockhold, ML
Zachara, JM
Rubin, Y
AF Chen, Xingyuan
Murakami, Haruko
Hahn, Melanie S.
Hammond, Glenn E.
Rockhold, Mark L.
Zachara, John M.
Rubin, Yoram
TI Three-dimensional Bayesian geostatistical aquifer characterization at
the Hanford 300 Area using tracer test data
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID SIMULATED TRANSMISSIVITY FIELDS; SEQUENTIAL DATA ASSIMILATION; PILOT
POINT METHODOLOGY; GROUNDWATER-FLOW; INVERSE PROBLEM; HYDRAULIC
CONDUCTIVITY; HETEROGENEOUS AQUIFERS; UNCERTAINTY ASSESSMENT; STOCHASTIC
SIMULATION; AUTOMATED CALIBRATION
AB Tracer tests performed under natural or forced gradient flow conditions can provide useful information for characterizing subsurface properties, through monitoring, modeling, and interpretation of the tracer plume migration in an aquifer. Nonreactive tracer experiments were conducted at the Hanford 300 Area, along with constant-rate injection tests and electromagnetic borehole flowmeter tests. A Bayesian data assimilation technique, the method of anchored distributions (MAD) (Rubin et al., 2010), was applied to assimilate the experimental tracer test data with the other types of data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of the Hanford formation. In this study, the Bayesian prior information on the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using constant-rate injection and borehole flowmeter test data. The posterior distribution of the conductivity field was obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. MAD was implemented with the massively parallel three-dimensional flow and transport code PFLOTRAN to cope with the highly transient flow boundary conditions at the site and to meet the computational demands of MAD. A synthetic study proved that the proposed method could effectively invert tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. Application of MAD to actual field tracer data at the Hanford 300 Area demonstrates that inverting for spatial heterogeneity of hydraulic conductivity under transient flow conditions is challenging and more work is needed.
C1 [Chen, Xingyuan; Hammond, Glenn E.; Rockhold, Mark L.; Zachara, John M.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Chen, Xingyuan; Hahn, Melanie S.; Rubin, Yoram] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA.
[Murakami, Haruko] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA.
RP Chen, XY (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM xingyuan.chen@pnnl.gov
RI Wainwright, Haruko/A-5670-2015
OI Wainwright, Haruko/0000-0002-2140-6072
FU U.S. Department of Energy [DE-AC05-76RL01830]; DOE Office of Science
[DE-AC02-05CH11231]
FX This work is supported by the U.S. Department of Energy under contract
DE-AC05-76RL01830. PFLOTRAN is developed under the DOE Scientific
Discovery through Advanced Computing (SciDAC-2) program. The
high-performance computation was performed on the Franklin Supercomputer
at NERSC, supported by the DOE Office of Science under contract
DE-AC02-05CH11231. The unconditional field generation code was provided
by Wolfgang Nowak.
NR 74
TC 12
Z9 12
U1 4
U2 32
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD JUN 1
PY 2012
VL 48
AR W06501
DI 10.1029/2011WR010675
PG 20
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA 952FQ
UT WOS:000304777000001
ER
PT J
AU Forlani, G
Petrollino, D
Fusetti, M
Romanini, L
Nocek, B
Joachimiak, A
Berlicki, L
Kafarski, P
AF Forlani, Giuseppe
Petrollino, Davide
Fusetti, Massimo
Romanini, Letizia
Nocek, Boguslaw
Joachimiak, Andrzej
Berlicki, Lukasz
Kafarski, Pawel
TI delta(1)-Pyrroline-5-carboxylate reductase as a new target for
therapeutics: inhibition of the enzyme from Streptococcus pyogenes and
effects in vivo
SO AMINO ACIDS
LA English
DT Article
DE Amino acid metabolism; Antibiotics; P5C reductase; Proline;
Streptococcus sp
ID PLANT P5C REDUCTASE; ANTIBIOTIC STRATEGY; BIOSYNTHESIS; METABOLISM;
RESISTANT; PATHOGENS; PROLINE; ACID; COLONIZATION; TOLERANCE
AB Compounds able to interfere with amino acid biosynthesis have the potential to inhibit cell growth. In both prokaryotic and eukaryotic microorganisms, unless an ornithine cyclodeaminase is present, the activity of delta(1)-pyrroline-5-carboxylate (P5C) reductase is mandatory to proline production, and the enzyme inhibition should result in amino acid starvation, blocking in turn protein synthesis. The ability of some substituted derivatives of aminomethylenebisphosphonic acid and its analogues to interfere with the activity of the enzyme from the human pathogen was investigated. Several compounds were able to suppress activity in the micromolar range of concentrations, with a mechanism of uncompetitive type with respect to the substrate P5C and non-competitive with respect to the electron donor NAD(P)H. The actual occurrence of enzyme inhibition in vivo was supported by the effects of the most active derivatives upon bacterial growth and free amino acid content.
C1 [Forlani, Giuseppe; Petrollino, Davide; Fusetti, Massimo; Romanini, Letizia] Univ Ferrara, Dept Biol & Evolut, I-44100 Ferrara, Italy.
[Nocek, Boguslaw; Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Midwest Ctr Struct Genom, Argonne, IL 60439 USA.
[Berlicki, Lukasz; Kafarski, Pawel] Wroclaw Univ Technol, Dept Bioorgan Chem, Fac Chem, PL-50370 Wroclaw, Poland.
RP Forlani, G (reprint author), Univ Ferrara, Dept Biol & Evolut, Via L Borsari 46, I-44100 Ferrara, Italy.
EM flg@unife.it
RI Forlani, Giuseppe/B-7869-2009
OI Forlani, Giuseppe/0000-0003-2598-5718
FU University of Ferrara [FAR2009-2010]; Spinner Consortium, Emilia Romagna
Region [626/09]
FX This work was supported in part by a grant from the University of
Ferrara within the frame of the projects FAR2009-2010 Approcci
biotecnologici per un incremento della sostenibilita della produzione
agro-zootecnica. Davide Petrollino gratefully acknowledges an applied
research fellowship from Spinner Consortium, Emilia Romagna Region
(prot. N. 626/09).
NR 37
TC 10
Z9 10
U1 2
U2 11
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0939-4451
J9 AMINO ACIDS
JI Amino Acids
PD JUN
PY 2012
VL 42
IS 6
BP 2283
EP 2291
DI 10.1007/s00726-011-0970-7
PG 9
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 943UH
UT WOS:000304150300026
PM 21744012
ER
PT J
AU Weber, CF
Balasch, MM
Gossage, Z
Porras-Alfaro, A
Kuske, CR
AF Weber, Carolyn F.
Balasch, Monica Moya
Gossage, Zachary
Porras-Alfaro, Andrea
Kuske, Cheryl R.
TI Soil Fungal Cellobiohydrolase I Gene (cbhI) Composition and Expression
in a Loblolly Pine Plantation under Conditions of Elevated Atmospheric
CO2 and Nitrogen Fertilization
SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID MICROBIAL COMMUNITIES; AGRICULTURAL SOIL; CARBON-DIOXIDE; BACTERIAL
COMMUNITIES; MYCORRHIZAL FUNGI; TREMBLING ASPEN; ENRICHMENT FACE; ROOT
EXUDATION; FOREST SOILS; DIVERSITY
AB The simultaneous increase of atmospheric CO2 and nitrogen (N) deposition to terrestrial ecosystems is predicted to alter plant productivity and, consequently, to change the amount and quality of above- and belowground carbon entering forest soils. It is not known how such changes will impact the composition and function of soil fungal communities that play a key role in degrading complex carbon. We sequenced the fungal cellobiohydrolase I gene (cbhI) from soil DNA and cDNA to compare the richness and composition of resident and expressed cbhI genes at a U.S. Department of Energy free air-carbon dioxide enrichment (FACE) site (NC), which had been exposed to elevated atmospheric CO2 and/or N fertilization treatment for several years. Our results provide evidence that the richness and composition of the cellulolytic fungi surveyed in this study were distinct in the DNA- and cDNA-based gene surveys and were dominated by Basidiomycota that have low or no representation in public databases. The surveys did not detect differences in richness or phylum-level composition of cbhI-containing, cellulolytic fungi that correlated with elevated CO2 or N fertilization at the time of sampling.
C1 [Weber, Carolyn F.; Balasch, Monica Moya; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA.
[Gossage, Zachary; Porras-Alfaro, Andrea] Western Illinois Univ, Dept Biol Sci, Macomb, IL 61455 USA.
RP Kuske, CR (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA.
EM kuske@lanl.gov
OI Porras-Alfaro, Andrea/0000-0002-9053-7973
FU United States Department of Energy; Los Alamos National Laboratory;
Western Illinois University
FX This study was funded by a United States Department of Energy-Science
Focus Area grant (C.R.K.), a Los Alamos National Laboratory Director's
Postdoctoral fellowship (C.F.W.), and a Western Illinois University
Undergraduate Research and Scholarly Activity grant (Z.G.).
NR 47
TC 5
Z9 5
U1 2
U2 36
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0099-2240
J9 APPL ENVIRON MICROB
JI Appl. Environ. Microbiol.
PD JUN
PY 2012
VL 78
IS 11
BP 3950
EP 3957
DI 10.1128/AEM.08018-11
PG 8
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA 944FT
UT WOS:000304185400021
PM 22467503
ER
PT J
AU Ganeshalingam, M
Li, WD
Filippenko, AV
Silverman, JM
Chornock, R
Foley, RJ
Matheson, T
Kirshner, RP
Milne, P
Calkins, M
Shen, KJ
AF Ganeshalingam, Mohan
Li, Weidong
Filippenko, Alexei V.
Silverman, Jeffrey M.
Chornock, Ryan
Foley, Ryan J.
Matheson, Thomas
Kirshner, Robert P.
Milne, Peter
Calkins, Mike
Shen, Ken J.
TI THE LOW-VELOCITY, RAPIDLY FADING TYPE Ia SUPERNOVA 2002es
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE supernovae: general; supernovae: individual (SN 2002es, SN 1999bh)
ID AUTOMATIC IMAGING TELESCOPE; PHOTOMETRIC STANDARD STARS; DARK-ENERGY
CONSTRAINTS; DIGITAL SKY SURVEY; LIGHT CURVES; HOST GALAXIES; IMPROVED
DISTANCES; CELESTIAL EQUATOR; LOW-LUMINOSITY; CORE-COLLAPSE
AB SN 2002es is a peculiar subluminous Type Ia supernova (SN Ia) with a combination of observed characteristics never before seen in an SN Ia. At maximum light, SN 2002es shares spectroscopic properties with the underluminous SN 1991bg subclass of SNe Ia, but with substantially lower expansion velocities(similar to 6000 km s(-1)) more typical of the peculiar SN 2002cx subclass. Photometrically, SN 2002es differs from both SN 1991bg-like and SN 2002cx-like supernovae. Although at maximum light it is subluminous (M-B = -17.78 mag), SN 2002es has a relatively broad light curve (Delta m(15)(B) = 1.28 +/- 0.04 mag), making it a significant outlier in the light-curve width versus luminosity relationship. We estimate a Ni-56 mass of 0.17 +/- 0.05 M-circle dot synthesized in the explosion, relatively low for an SN Ia. One month after maximum light, we find an unexpected plummet in the bolometric luminosity. The late-time decay of the light curves is inconsistent with our estimated Ni-56 mass, indicating that either the light curve was not completely powered by Ni-56 decay or the ejecta became optically thin to gamma-rays within a month after maximum light. The host galaxy is classified as an S0 galaxy with little to no star formation, indicating that the progenitor of SN 2002es is likely from an old stellar population. We also present a less extensive data set for SN 1999bh, an object which shares similar photometric and spectroscopic properties. Both objects were found as part of the Lick Observatory Supernova Search, allowing us to estimate that these objects should account for 2.5% of SNe Ia within a fixed volume. Current theoretical models are unable to explain the observed characteristics of SN 2002es.
C1 [Ganeshalingam, Mohan; Li, Weidong; Filippenko, Alexei V.; Silverman, Jeffrey M.; Shen, Ken J.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Chornock, Ryan; Foley, Ryan J.; Kirshner, Robert P.; Calkins, Mike] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Matheson, Thomas] Natl Opt Astron Observ, Tucson, AZ 85719 USA.
[Milne, Peter] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[Shen, Ken J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Ganeshalingam, M (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA.
EM mganesh@astro.berkeley.edu
FU U.S. National Science Foundation (NSF) [AST-0607485, AST-0908886];
TABASGO Foundation; U.S. Department of Energy SciDAC
[DE-FC02-06ER41453]; NSF [AST-0907903]; W. M. Keck Foundation; U.S.
Department of Energy [DE-FG02-08ER41563]; NASA
FX The research of A.V.F.'s supernova group at UC Berkeley has been
generously supported by the U.S. National Science Foundation (NSF; most
recently through grants AST-0607485 and AST-0908886), the TABASGO
Foundation, U.S. Department of Energy SciDAC grant DE-FC02-06ER41453,
and U.S. Department of Energy grant DE-FG02-08ER41563. KAIT and its
ongoing operation were made possible by donations from Sun Microsystems,
Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick
Observatory, the NSF, the University of California, the Sylvia & Jim
Katzman Foundation, the Richard and Rhoda Goldman Fund, and the TABASGO
Foundation. Supernova research at Harvard is supported in part by NSF
grant AST-0907903. Some of the data presented in this paper were
obtained at the W. M. Keck Observatory, which is operated as a
scientific partnership among the California Institute of Technology, the
University of California, and the National Aeronautics and Space
Administration (NASA); the observatory was made possible by the generous
financial support of the W. M. Keck Foundation. The authors wish to
recognize and acknowledge the very significant cultural role and
reverence that the summit of Mauna Kea has always had within the
indigenous Hawaiian community; we are most fortunate to have the
opportunity to conduct observations from this mountain. We made use of
the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet
Propulsion Laboratory, California Institute of Technology, under
contract with NASA.
NR 124
TC 20
Z9 20
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 1
PY 2012
VL 751
IS 2
AR 142
DI 10.1088/0004-637X/751/2/142
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 944LU
UT WOS:000304204600063
ER
PT J
AU Johnson, JL
Li, H
AF Johnson, Jarrett L.
Li, Hui
TI THE FIRST PLANETS: THE CRITICAL METALLICITY FOR PLANET FORMATION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmology: theory; planets and satellites: formation
ID GALACTIC HABITABLE ZONE; GAS GIANT PLANETS; LOW-MASS STARS;
PROTOPLANETARY DISKS; DUST FORMATION; PRIMORDIAL SUPERNOVAE; TERRESTRIAL
PLANETS; STELLAR ARCHAEOLOGY; AGE DISTRIBUTION; POPULATION III
AB A rapidly growing body of observational results suggests that planet formation takes place preferentially at high metallicity. In the core accretion model of planet formation this is expected because heavy elements are needed to form the dust grains which settle into the midplane of the protoplanetary disk and coagulate to form the planetesimals from which planetary cores are assembled. As well, there is observational evidence that the lifetimes of circumstellar disks are shorter at lower metallicities, likely due to greater susceptibility to photoevaporation. Here we estimate the minimum metallicity for planet formation, by comparing the timescale for dust grain growth and settling to that for disk photoevaporation. For a wide range of circumstellar disk models and dust grain properties, we find that the critical metallicity above which planets can form is a function of the distance r at which the planet orbits its host star. With the iron abundance relative to that of the Sun [Fe/H] as a proxy for the metallicity, we estimate a lower limit for the critical abundance for planet formation of [Fe/H](crit) similar or equal to -1.5 + log( r/1AU), where an astronomical unit ( AU) is the distance between the Earth and the Sun. This prediction is in agreement with the available observational data, and carries implications for the properties of the first planets and for the emergence of life in the early universe. In particular, it implies that the first Earth-like planets likely formed from circumstellar disks with metallicities Z greater than or similar to 0.1 Z(circle dot). If planets are found to orbit stars with metallicities below the critical metallicity, this may be a strong challenge to the core accretion model.
C1 [Johnson, Jarrett L.; Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Johnson, Jarrett L.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
RP Johnson, JL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM jlj@lanl.gov
FU U.S. Department of Energy through the LANL/LDRD; LDRD at Los Alamos
National Laboratory
FX We gratefully acknowledge the support of the U.S. Department of Energy
through the LANL/LDRD Program for this work. J.L.J. also gratefully
acknowledges the support of a LDRD Director's Postdoctoral Fellowship at
Los Alamos National Laboratory. We are thankful to Volker Bromm, Pawan
Kumar, Doug Lin, Alexia Schulz, and Tsing-Wai Wong for helpful
discussions and feedback, and to the anonymous reviewer for a thorough
and constructive report. J.L.J. also thanks Claudio Dalla Vecchia for
help with IDL color tables. This research has made use of the Exoplanet
Orbit Database and the Exoplanet Data Explorer at exoplanets.org.
NR 87
TC 21
Z9 21
U1 1
U2 12
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 1
PY 2012
VL 751
IS 2
AR 81
DI 10.1088/0004-637X/751/2/81
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 944LU
UT WOS:000304204600002
ER
PT J
AU Margutti, R
Soderberg, AM
Chomiuk, L
Chevalier, R
Hurley, K
Milisavljevic, D
Foley, RJ
Hughes, JP
Slane, P
Fransson, C
Moe, M
Barthelmy, S
Boynton, W
Briggs, M
Connaughton, V
Costa, E
Cummings, J
Del Monte, E
Enos, H
Fellows, C
Feroci, M
Fukazawa, Y
Gehrels, N
Goldsten, J
Golovin, D
Hanabata, Y
Harshman, K
Krimm, H
Litvak, ML
Makishima, K
Marisaldi, M
Mitrofanov, IG
Murakami, T
Ohno, M
Palmer, DM
Sanin, AB
Starr, R
Svinkin, D
Takahashi, T
Tashiro, M
Terada, Y
Yamaoka, K
AF Margutti, R.
Soderberg, A. M.
Chomiuk, L.
Chevalier, R.
Hurley, K.
Milisavljevic, D.
Foley, R. J.
Hughes, J. P.
Slane, P.
Fransson, C.
Moe, M.
Barthelmy, S.
Boynton, W.
Briggs, M.
Connaughton, V.
Costa, E.
Cummings, J.
Del Monte, E.
Enos, H.
Fellows, C.
Feroci, M.
Fukazawa, Y.
Gehrels, N.
Goldsten, J.
Golovin, D.
Hanabata, Y.
Harshman, K.
Krimm, H.
Litvak, M. L.
Makishima, K.
Marisaldi, M.
Mitrofanov, I. G.
Murakami, T.
Ohno, M.
Palmer, D. M.
Sanin, A. B.
Starr, R.
Svinkin, D.
Takahashi, T.
Tashiro, M.
Terada, Y.
Yamaoka, K.
TI INVERSE COMPTON X-RAY EMISSION FROM SUPERNOVAE WITH COMPACT PROGENITORS:
APPLICATION TO SN2011fe
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE radiation mechanisms: non-thermal; supernovae: individual (SN2011fe)
ID SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; SYMBIOTIC-STAR PROGENITOR;
WHITE-DWARF MODELS; IA SUPERNOVAE; RADIO-EMISSION; LIGHT CURVES; SN
2011FE; CIRCUMSTELLAR MATERIAL; SODIUM-ABSORPTION; BURST AFTERGLOWS
AB We present a generalized analytic formalism for the inverse Compton X-ray emission from hydrogen-poor supernovae and apply this framework to SN 2011fe using Swift X-Ray Telescope (XRT), UVOT, and Chandra observations. We characterize the optical properties of SN 2011fe in the Swift bands and find them to be broadly consistent with a "normal" SN Ia, however, no X-ray source is detected by either XRT or Chandra. We constrain the progenitor system mass-loss rate (M) over dot < 2 x 10(-9) M-circle dot yr(-1) (3 sigma c.l.) for wind velocity v(w) = 100 km s(-1). Our result rules out symbiotic binary progenitors for SN 2011fe and argues against Roche lobe overflowing subgiants and main-sequence secondary stars if greater than or similar to 1% of the transferred mass is lost at the Lagrangian points. Regardless of the density profile, the X-ray non-detections are suggestive of a clean environment (n(CSM) < 150 cm(-3)) for 2 x 10(15) less than or similar to R less than or similar to 5 x 10(16) cm around the progenitor site. This is either consistent with the bulk of material being confined within the binary system or with a significant delay between mass loss and supernova explosion. We furthermore combine X-ray and radio limits from Chomiuk et al. to constrain the post-shock energy density in magnetic fields. Finally, we searched for the shock breakout pulse using gamma-ray observations from the Interplanetary Network and find no compelling evidence for a supernova-associated burst. Based on the compact radius of the progenitor star we estimate that the shock breakout pulse was likely not detectable by current satellites.
C1 [Margutti, R.; Soderberg, A. M.; Chomiuk, L.; Milisavljevic, D.; Foley, R. J.; Slane, P.; Moe, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Chomiuk, L.] Natl Radio Astron Observ, Socorro, NM 87801 USA.
[Chevalier, R.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA.
[Hurley, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Hughes, J. P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Fransson, C.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden.
[Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H.; Starr, R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Boynton, W.; Enos, H.; Fellows, C.; Harshman, K.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA.
[Briggs, M.; Connaughton, V.] Univ Alabama, Dept Phys, Huntsville, AL 35809 USA.
[Costa, E.; Del Monte, E.; Feroci, M.] INAF IASF Roma, I-00133 Rome, Italy.
[Fukazawa, Y.; Hanabata, Y.; Ohno, M.; Takahashi, T.] Hiroshima Univ, Dept Phys, Hiroshima 7398526, Japan.
[Goldsten, J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Golovin, D.; Litvak, M. L.; Mitrofanov, I. G.; Murakami, T.; Sanin, A. B.] Moscow Space Res Inst, Moscow 117997, Russia.
[Makishima, K.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan.
[Marisaldi, M.] INAF IASF Bologna, I-40129 Bologna, Italy.
[Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Svinkin, D.] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia.
[Tashiro, M.; Terada, Y.] Saitama Univ, Dept Phys, Sakura Ku, Saitama 3388570, Japan.
[Yamaoka, K.] Aoyama Gakuin Univ, Dept Math & Phys, Sagamihara, Kanagawa 2298558, Japan.
RP Margutti, R (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
RI Tashiro, Makoto/J-4562-2012; Terada, Yukikatsu/A-5879-2013; Svinkin,
Dmitry/C-1934-2014;
OI Terada, Yukikatsu/0000-0002-2359-1857; Feroci,
Marco/0000-0002-7617-3421; Costa, Enrico/0000-0003-4925-8523; Marisaldi,
Martino/0000-0002-4000-3789
FU Clay Fellowship; NASA [NNX10AR12G, NNX12AD68G, NNX07AR71G, NNX10AU34G,
NAS8-03060]; Russian Space Agency; RFBR [11-02-12082-ofi_m]
FX We thank Harvey Tananbaum and Neil Gehrels for making Chandra and Swift
observations possible. We thank Re'em Sari, Bob Kirshner, Sayan
Chakraborti, Stephan Immler, Brosk Russell, and Rodolfo Barniol Duran
for helpful discussions. L. C. is a Jansky Fellow of the National Radio
Astronomy Observatory. R.J.F. is supported by a Clay Fellowship. K.H. is
grateful for IPN support under the following NASA grants: NNX10AR12G
(Suzaku), NNX12AD68G (Swift), NNX07AR71G (MESSENGER), and NNX10AU34G
(Fermi). The Konus-Wind experiment is supported by a Russian Space
Agency contract and RFBR Grant 11-02-12082-ofi_m. P.O.S. acknowledges
partial support from NASA Contract NAS8-03060.
NR 79
TC 49
Z9 49
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 1
PY 2012
VL 751
IS 2
AR 134
DI 10.1088/0004-637X/751/2/134
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 944LU
UT WOS:000304204600055
ER
PT J
AU Roming, PWA
Pritchard, TA
Prieto, JL
Kochanek, CS
Fryer, CL
Davidson, K
Humphreys, RM
Bayless, AJ
Beacom, JF
Brown, PJ
Holland, ST
Immler, S
Kuin, NPM
Oates, SR
Pogge, RW
Pojmanski, G
Stoll, R
Shappee, BJ
Stanek, KZ
Szczygiel, DM
AF Roming, P. W. A.
Pritchard, T. A.
Prieto, J. L.
Kochanek, C. S.
Fryer, C. L.
Davidson, K.
Humphreys, R. M.
Bayless, A. J.
Beacom, J. F.
Brown, P. J.
Holland, S. T.
Immler, S.
Kuin, N. P. M.
Oates, S. R.
Pogge, R. W.
Pojmanski, G.
Stoll, R.
Shappee, B. J.
Stanek, K. Z.
Szczygiel, D. M.
TI THE UNUSUAL TEMPORAL AND SPECTRAL EVOLUTION OF THE TYPE IIn SUPERNOVA
2011ht
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE supernovae: individual (SN 2011ht)
ID SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; ULTRA-VIOLET/OPTICAL TELESCOPE;
HOBBY-EBERLY TELESCOPE; ETA-CARINAE; SN 2008S; CIRCUMSTELLAR
INTERACTION; OPTICAL TRANSIENT; DUST FORMATION; IA SUPERNOVAE; LIGHT
CURVES
AB We present very early UV to optical photometric and spectroscopic observations of the peculiar Type IIn supernova (SN) 2011ht in UGC 5460. The UV observations of the rise to peak are only the second ever recorded for a Type IIn SN and are by far the most complete. The SN, first classified as an SN impostor, slowly rose to a peak of M-V similar to -17 in similar to 55 days. In contrast to the similar to 2 mag increase in the upsilon-band light curve from the first observation until peak, the UV flux increased by >7 mag. The optical spectra are dominated by strong, Balmer emission with narrow peaks (FWHM similar to 600 km s(-1)), very broad asymmetric wings (FWHM similar to 4200 km s(-1)), and blueshifted absorption (similar to 300 km s(-1)) superposed on a strong blue continuum. The UV spectra are dominated by Fe II, Mg II, Si II, and Si III absorption lines broadened by similar to 1500 km s(-1). Merged X-ray observations reveal a L0.2-10 = (1.0 +/- 0.2) x 10(39) erg s(-1). Some properties of SN 2011ht are similar to SN impostors, while others are comparable to Type IIn SNe. Early spectra showed features typical of luminous blue variables at maximum and during giant eruptions. However, the broad emission profiles coupled with the strong UV flux have not been observed in previous SN impostors. The absolute magnitude and energetics (similar to 2.5 x 10(49) erg in the first 112 days) are reminiscent of normal Type IIn SN, but the spectra are of a dense wind. We suggest that the mechanism for creating this unusual profile could be a shock interacting with a shell of material that was ejected a year before the discovery of the SN.
C1 [Roming, P. W. A.; Bayless, A. J.] SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78228 USA.
[Roming, P. W. A.; Pritchard, T. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Prieto, J. L.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Kochanek, C. S.; Beacom, J. F.; Pogge, R. W.; Stoll, R.; Shappee, B. J.; Stanek, K. Z.; Szczygiel, D. M.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Kochanek, C. S.; Beacom, J. F.; Pogge, R. W.; Stanek, K. Z.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA.
[Fryer, C. L.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Fryer, C. L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Fryer, C. L.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Davidson, K.; Humphreys, R. M.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA.
[Beacom, J. F.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Brown, P. J.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Holland, S. T.] Space Telescope Sci Ctr, Baltimore, MD 21218 USA.
[Immler, S.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Immler, S.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA.
[Immler, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Kuin, N. P. M.; Oates, S. R.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Pojmanski, G.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland.
RP Roming, PWA (reprint author), SW Res Inst, Space Sci & Engn Div, PO Drawer 28510, San Antonio, TX 78228 USA.
EM proming@swri.edu
OI Beacom, John/0000-0002-0005-2631
FU NASA [HF-51261.01-A, NAS 5-2655, NAS5-00136]; STScI; NSF [AST-0908816,
AST-1108687, PHY-1101216, AST-9987045]; Science and Technology
Facilities Council (STFC); UK Space Agency; NSF Telescope System
Instrumentation Program (TSIP); Ohio Board of Regents; The Ohio State
University Office of Research
FX J.L.P. acknowledges support from NASA through the Hubble Fellowship
Grant HF-51261.01-A awarded by STScI, which is operated by AURA, Inc.
for NASA, under the contract NAS 5-2655. C.S.K., B.J.S., D.M.S., and
K.Z.S. are supported by the NSF grant AST-0908816. K.Z.S. and R.S. are
also supported by the NSF grant AST-1108687. J.F.B. was supported by the
NSF grant PHY-1101216. We gratefully acknowledge the contributions from
members of the Swift UVOT team at the Pennsylvania State University
(PSU), University College London/Mullard Space Science Laboratory
(MSSL), and NASA/Goddard Space Flight Center. This work is sponsored at
PSU by the NASA contract NAS5-00136 and at MSSL by funding from the
Science and Technology Facilities Council (STFC) and the UK Space
Agency. The ASAS-SN commissioning observations were only possible due to
help and support of the Las Cumbres Observatory, especially W. Rosing,
E. Hawkins, R. Ross, M. Elphick, D. Mullins, and Z. Walker. We thank R.
McMillan and G. Bakos for obtaining a spectrum with the APO 3.5 m
telescope, and the APO director S. Hawley for granting DD time for this
observation. This paper used data taken with the LBT/MODS1 spectrographs
built with funding from the NSF grant AST-9987045 and the NSF Telescope
System Instrumentation Program (TSIP), with additional funds from the
Ohio Board of Regents and The Ohio State University Office of Research.
The Hobby Eberly Telescope (HET) is a joint project of the University of
Texas at Austin, PSU, Stanford University,
Ludwig-Maximilians-Universitat Munchen, and Georg-August-Universitat
Gottingen. The HET is named in honor of its principal benefactors,
William P. Hobby and Robert E. Eberly. The Marcario Low Resolution
Spectrograph (LRS) is named for Mike Marcario of High Lonesome Optics
who fabricated several optics for the instrument but died before its
completion. The LRS is a joint project of the HET partnership and the
Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico.
Based in part on observations made with the Large Binocular Telescope.
The LBT is an international collaboration among institutions in the
United States, Italy, and Germany. The LBT Corporation partners are the
University of Arizona on behalf of the Arizona university system; the
Istituto Nazionale di Astrofisica, Italy; the LBT
Beteiligungsgesellschaft, Germany, representing the Max Planck Society,
the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio
State University; and the Research Corporation, on behalf of the
University of Notre Dame, University of Minnesota and this research has
made use of the NASA/IPAC Extragalactic Database (NED) which is operated
by the Jet Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space Administration.
NR 99
TC 29
Z9 29
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 1
PY 2012
VL 751
IS 2
AR 92
DI 10.1088/0004-637X/751/2/92
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 944LU
UT WOS:000304204600013
ER
PT J
AU Zheng, W
Shen, RF
Sakamoto, T
Beardmore, AP
De Pasquale, M
Wu, XF
Gorosabel, J
Urata, Y
Sugita, S
Zhang, B
Pozanenko, A
Nissinen, M
Sahu, DK
Im, M
Ukwatta, TN
Andreev, M
Klunko, E
Volnova, A
Akerlof, CW
Anto, P
Barthelmy, SD
Breeveld, A
Carsenty, U
Castillo-Carrion, S
Castro-Tirado, AJ
Chester, MM
Chuang, CJ
Cunniffe, R
Postigo, AD
Duffard, R
Flewelling, H
Gehrels, N
Guver, T
Guziy, S
Hentunen, VP
Huang, KY
Jelinek, M
Koch, TS
Kubanek, P
Kuin, P
McKay, TA
Mottola, S
Oates, SR
O'Brien, P
Ohno, M
Page, MJ
Pandey, SB
del Pulgar, CP
Rujopakarn, W
Rykoff, E
Salmi, T
Sanchez-Ramirez, R
Schaefer, BE
Sergeev, A
Sonbas, E
Sota, A
Tello, JC
Yamaoka, K
Yost, SA
Yuan, F
AF Zheng, W.
Shen, R. F.
Sakamoto, T.
Beardmore, A. P.
De Pasquale, M.
Wu, X. F.
Gorosabel, J.
Urata, Y.
Sugita, S.
Zhang, B.
Pozanenko, A.
Nissinen, M.
Sahu, D. K.
Im, M.
Ukwatta, T. N.
Andreev, M.
Klunko, E.
Volnova, A.
Akerlof, C. W.
Anto, P.
Barthelmy, S. D.
Breeveld, A.
Carsenty, U.
Castillo-Carrion, S.
Castro-Tirado, A. J.
Chester, M. M.
Chuang, C. J.
Cunniffe, R.
Postigo, A. De Ugarte
Duffard, R.
Flewelling, H.
Gehrels, N.
Guever, T.
Guziy, S.
Hentunen, V. P.
Huang, K. Y.
Jelinek, M.
Koch, T. S.
Kubanek, P.
Kuin, P.
McKay, T. A.
Mottola, S.
Oates, S. R.
O'Brien, P.
Ohno, M.
Page, M. J.
Pandey, S. B.
Perez del Pulgar, C.
Rujopakarn, W.
Rykoff, E.
Salmi, T.
Sanchez-Ramirez, R.
Schaefer, B. E.
Sergeev, A.
Sonbas, E.
Sota, A.
Tello, J. C.
Yamaoka, K.
Yost, S. A.
Yuan, F.
TI PANCHROMATIC OBSERVATIONS OF THE TEXTBOOK GRB 110205A: CONSTRAINING
PHYSICAL MECHANISMS OF PROMPT EMISSION AND AFTERGLOW
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gamma-ray burst: individual (GRB 110205A)
ID GAMMA-RAY BURST; INITIAL LORENTZ FACTOR; INTERNAL-SHOCK MODEL; X-RAY;
LIGHT CURVES; OPTICAL-EMISSION; MAGNETIC-FIELDS; REVERSE SHOCK;
RELATIVISTIC SHOCK; DENSITY-JUMP
AB We present a comprehensive analysis of a bright, long-duration (T-90 similar to 257 s) GRB 110205A at redshift z = 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb, and BOOTES telescopes when the gamma-ray burst (GRB) was still radiating in the gamma-ray band, with optical light curve showing correlation with gamma-ray data. Nearly 200 s of observations were obtained simultaneously from optical, X-ray, to gamma-ray (1 eV to 5 MeV), which makes it one of the exceptional cases to study the broadband spectral energy distribution during the prompt emission phase. In particular, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard synchrotron emission model in the fast cooling regime. Shortly after prompt emission (similar to 1100 s), a bright (R = 14.0) optical emission hump with very steep rise (alpha similar to 5.5) was observed, which we interpret as the reverse shock (RS) emission. It is the first time that the rising phase of an RS component has been closely observed. The full optical and X-ray afterglow light curves can be interpreted within the standard reverse shock (RS) + forward shock (FS) model. In general, the high-quality prompt and afterglow data allow us to apply the standard fireball model to extract valuable information, including the radiation mechanism (synchrotron), radius of prompt emission (R-GRB similar to 3 x 10(13) cm), initial Lorentz factor of the outflow (Gamma(0) similar to 250), the composition of the ejecta (mildly magnetized), the collimation angle, and the total energy budget.
C1 [Zheng, W.; Akerlof, C. W.; McKay, T. A.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Shen, R. F.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada.
[Sakamoto, T.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA.
[Sakamoto, T.] Univ Maryland Baltimore Cty, Joint Ctr Astrophys, Baltimore, MD 21250 USA.
[Beardmore, A. P.; O'Brien, P.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[De Pasquale, M.; Breeveld, A.; Kuin, P.; Oates, S. R.; Page, M. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Wu, X. F.; Zhang, B.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA.
[Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China.
[Gorosabel, J.; Castro-Tirado, A. J.; Cunniffe, R.; Duffard, R.; Guziy, S.; Jelinek, M.; Kubanek, P.; Sanchez-Ramirez, R.; Sota, A.; Tello, J. C.] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain.
[Urata, Y.; Chuang, C. J.] Natl Cent Univ, Inst Astron, Chungli 32054, Taiwan.
[Sugita, S.] Nagoya Univ, EcoTopia Sci Inst, Chikusa Ku, Nagoya, Aichi 4648603, Japan.
[Pozanenko, A.] Space Res Inst IKI, Moscow 117997, Russia.
[Nissinen, M.; Hentunen, V. P.; Salmi, T.] Taurus Hill Observ, Kangaslampi 79480, Finland.
[Sahu, D. K.; Anto, P.] Indian Inst Astrophys, CREST, Bangalore 560034, Karnataka, India.
[Im, M.] Seoul Natl Univ, FPRD, Dept Phys & Astron, Ctr Explorat Origin Universe, Seoul, South Korea.
[Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Andreev, M.; Sergeev, A.] RAS, Inst Astron, Terskol Branch, Kabardino Balkaria Repub 361605, Russia.
[Andreev, M.; Sergeev, A.] NASU, Int Ctr Astron & Medicoecol Res, UA-03680 Kiev, Ukraine.
[Klunko, E.] Inst Solar Terr Phys, Irkutsk 664033, Russia.
[Volnova, A.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia.
[Carsenty, U.; Mottola, S.] DLR, Inst Planetary Res, D-12489 Berlin, Germany.
[Castillo-Carrion, S.; Perez del Pulgar, C.] Univ Malaga, Dept EVLT, E-29071 Malaga, Spain.
[Chester, M. M.; Koch, T. S.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Postigo, A. De Ugarte] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark.
[Flewelling, H.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Guever, T.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA.
[Huang, K. Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan.
[Ohno, M.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan.
[Pandey, S. B.] Aryabhatta Res Inst Observat Sci ARIES, Manora Peak 263129, Nainital, India.
[Rujopakarn, W.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[Rykoff, E.] EO Lawrence Berkeley Natl Laboratoy, Berkeley, CA 94720 USA.
[Schaefer, B. E.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
[Sonbas, E.] Adiyaman Univ, Dept Phys, TR-02040 Adiyaman, Turkey.
[Sonbas, E.] Univ Space Res Assoc, Columbia, MD 21044 USA.
[Yamaoka, K.] Aoyama Gakuin Univ, Dept Math & Phys, Chuo Ku, Sagamihara, Kanagawa 2525258, Japan.
[Yost, S. A.] Coll St Benedict, Dept Phys, Collegeville, MN 56321 USA.
[Yuan, F.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia.
RP Zheng, W (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
EM zwk@umich.edu; rfshen@astro.utoronto.ca; zhang@physics.unlv.edu
RI Rujopakarn, Wiphu/E-7849-2012; Im, Myungshin/B-3436-2013; Duffard,
Rene/A-2233-2009; McKay, Timothy/C-1501-2009; Guver, Tolga/B-1039-2014;
Kubanek, Petr/G-7209-2014; Jelinek, Martin/E-5290-2016; Wu,
Xuefeng/G-5316-2015;
OI Im, Myungshin/0000-0002-8537-6714; de Ugarte Postigo,
Antonio/0000-0001-7717-5085; McKay, Timothy/0000-0001-9036-6150; Guver,
Tolga/0000-0002-3531-9842; Jelinek, Martin/0000-0003-3922-7416; Wu,
Xuefeng/0000-0002-6299-1263; Castro-Tirado, A. J./0000-0003-2999-3563;
Rujopakarn, Wiphu/0000-0002-0303-499X; Flewelling,
Heather/0000-0002-1050-4056; Sanchez-Ramirez, Ruben/0000-0002-7158-5099
FU NASA [NNX08AV63G, NNX10AD48G]; NSF [PHY-0801007, AST-0908362]; NSERC; UK
Space Agency; CRI [2009-0063616]; MEST of the Korean government; Spanish
Junta de Andalucia [FQM-02192]; Spanish Ministry of Science and
Innovation [AYA 2009-14000-C03-01, AYA2008-03467/ESP]; UK STFC;
[CE11E0090]
FX We thank the anonymous referee for helpful comments and suggestions to
improve the manuscript. This research is supported by the NASA grant
NNX08AV63G and the NSF grant PHY-0801007. R.F.S. is supported by an
NSERC Discovery grant. A.P.B., A.A.B., N.P.K., M.J.P., and S.R.O.
acknowledge the support from the UK Space Agency. B.Z. acknowledges NASA
NNX10AD48G and NSF AST-0908362 for support. M.I. acknowledges support
from the CRI grant 2009-0063616, funded by MEST of the Korean
government. The Centre for All-sky Astrophysics is an Australian
Research Council Centre of Excellence, funded by grant CE11E0090. This
research made use of public data supplied by the High Energy
Astrophysics Science Archive Research Center (HEASARC) at the NASA
Goddard Space Flight Center. This work has been supported by Spanish
Junta de Andalucia through program FQM-02192 and from the Spanish
Ministry of Science and Innovation through Projects (including FEDER
funds) AYA 2009-14000-C03-01 and AYA2008-03467/ESP. We thank INTA and
EELM-CSIC for hosting the BOOTES observatories. The work is based partly
on data acquired at the Centro Astronomico Hispano Aleman (CAHA) de
Calar Alto and Observatorio de Sierra Nevada (OSN). This research was
also supported by the UK STFC.
NR 148
TC 18
Z9 18
U1 0
U2 18
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 1
PY 2012
VL 751
IS 2
AR 90
DI 10.1088/0004-637X/751/2/90
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 944LU
UT WOS:000304204600011
ER
PT J
AU Aluie, H
Li, ST
Li, H
AF Aluie, Hussein
Li, Shengtai
Li, Hui
TI CONSERVATIVE CASCADE OF KINETIC ENERGY IN COMPRESSIBLE TURBULENCE
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE hydrodynamics; methods: numerical; turbulence
ID MAGNETIC-FIELDS; FLOWS
AB The physical nature of compressible turbulence is of fundamental importance in a variety of astrophysical settings. We investigate the question: "At what scales does the mechanism of pressure-dilatation operate?" and present the first direct evidence that mean kinetic energy cascades conservatively beyond a transitional "conversion" scale range despite not being an invariant of the dynamics. We use high-resolution 1024(3) subsonic and transonic simulations. The key quantity we measure is the pressure-dilatation cospectrum, E-PD(k), where we show that it decays at a rate faster than k(-1) in wavenumber in at least the subsonic and transonic regimes. This is sufficient to imply that mean pressure-dilatation acts primarily at large scales and that kinetic and internal energy budgets statistically decouple beyond a transitional scale range. However, we observe that small-scale dynamics remains highly compressible locally in space and that the statistical decoupling in the energy budgets is unrelated to the existence of a subsonic scale range. Our results suggest that an extension of Kolmogorov's inertial-range theory to compressible turbulence is possible.
C1 [Aluie, Hussein] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Aluie, Hussein; Li, Shengtai] Los Alamos Natl Lab, Appl Math & Plasma Grp T5, Los Alamos, NM 87545 USA.
[Li, Hui] Los Alamos Natl Lab, Astrophys & Cosmol Grp T2, Los Alamos, NM 87545 USA.
RP Aluie, H (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87545 USA.
OI Li, Shengtai/0000-0002-4142-3080
FU NSF [PHY-0903872]; U.S. DOE at LANL [DE-AC52-06NA25396]; LANL/LDRD;
DOE/Office of Fusion Energy Science through NSF Center for Magnetic
Self-Organization
FX We thank J. Cho for providing us with his forcing subroutine. H. A.
thanks R. Ecke, G. Eyink, S. Girimaji, S. Kurien, and D. Livescu for
useful discussions. H. A. acknowledges partial support from NSF grant
PHY-0903872 during a visit to the Kavli Institute for Theoretical
Physics. This research was performed under the auspices of the U.S. DOE
at LANL under contract no. DE-AC52-06NA25396 and supported by the
LANL/LDRD program and by the DOE/Office of Fusion Energy Science through
NSF Center for Magnetic Self-Organization.
NR 27
TC 15
Z9 15
U1 0
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUN 1
PY 2012
VL 751
IS 2
AR L29
DI 10.1088/2041-8205/751/2/L29
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 944LY
UT WOS:000304205000007
ER
PT J
AU Cronauer, DC
Elam, JW
Kropf, AJ
Marshall, CL
Gao, P
Hopps, S
Jacobs, G
Davis, BH
AF Cronauer, Donald C.
Elam, Jeffrey W.
Kropf, A. Jeremy
Marshall, Christopher L.
Gao, Pei
Hopps, Shelley
Jacobs, Gary
Davis, Burtron H.
TI Fischer-Tropsch Synthesis: Preconditioning Effects Upon Co-Containing
Promoted and Unpromoted Catalysts
SO CATALYSIS LETTERS
LA English
DT Article
DE Fischer-Tropsch; Catalyst pretreatment; Promoters; Cobalt; Alumina;
Incipient wetness impregnation; Atomic layer deposition; TPR; EXAFS;
XANES
ID ATOMIC LAYER DEPOSITION; IN-SITU EXAFS; RAY-ABSORPTION SPECTROSCOPY;
THIN-FILM GROWTH; L-III EDGES; BIMETALLIC CATALYSTS; CO/AL2O3 CATALYSTS;
REDUCTION PROPERTY; COBALT CATALYSTS; TPR
AB In the preparation and evaluation of Fischer-Tropsch (FT) catalysts, active catalysts formed by both incipient wetness impregnation (IWI) and atomic layer deposition (ALD) of major components were demonstrated. ALD-deposited Co on a silica support was more effective than a similar catalyst deposited upon a support of ALD-deposited Al2O3 on silica. The addition of Co reduction promoters including Pt, Ir and Ru using either ALD or IWI has been shown to strongly affect the catalyst pre-conditioning step. CO conversion results were consistent with previously reported Temperature Programmed Reduction X-ray Absorption Near-edge Structure/Extended X-ray Absorption Fine Structure Spectroscopy (TPR-XANES/EXAFS) experiments observing the nature of chemical transformations occurring during the activation of cobalt-based FT catalysts in hydrogen. Specifically, there exists a 2-step reduction process involving Co3O4 to CoO and CoO to Co-0 transformations. The extent of catalyst preconditioning was strongly affected by the reduction temperature (with 400 A degrees C preferred) and the loading of the promoter. This was demonstrated using a continuous-flow catalytic-bed unit with a 2:1 molar blend of H-2:CO, at temperatures ranging from about 260 to 300 A degrees C, pressures averaging 1.3 MPa (190 psia), and gas space velocities about 24 NL/h-g.
C1 [Cronauer, Donald C.; Elam, Jeffrey W.; Kropf, A. Jeremy; Marshall, Christopher L.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Gao, Pei; Hopps, Shelley; Jacobs, Gary; Davis, Burtron H.] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA.
RP Cronauer, DC (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM dccronauer@anl.gov
RI BM, MRCAT/G-7576-2011; Marshall, Christopher/D-1493-2015; Jacobs,
Gary/M-5349-2015
OI Marshall, Christopher/0000-0002-1285-7648; Jacobs,
Gary/0000-0003-0691-6717
FU NASA [NNX07AB93A]; Commonwealth of Kentucky; U.S. Department of Energy
(DOE), Office of Fossil Energy, National Energy Technology Laboratory
(NETL) [AA-10-15, 49261-00-107]; U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department
of Energy; MRCAT; Institute for Atom-efficient Chemical Transformations
(IACT); UChicago Argonne, LLC [DE-AC02-06CH11357]
FX The work carried out at the CAER was supported in part by funding from a
grant from NASA (#NNX07AB93A), as well as the Commonwealth of Kentucky.
Argonne's research was supported in part by the U.S. Department of
Energy (DOE), Office of Fossil Energy, National Energy Technology
Laboratory (NETL) under Project AA-10-15; 49261-00-107. The use of the
Advanced Photon Source was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract
DE-AC02-06CH11357. MRCAT operations are supported by the Department of
Energy and the MRCAT member institutions. J.W. Elam was supported as
part of the Institute for Atom-efficient Chemical Transformations
(IACT), an Energy Frontier Research Center funded by the U.S. Department
of Energy (DOE), Office of Science, Office of Basic Energy Science. The
SEM scans were prepared by D.J. Schroeder and A. Hubaud using a FEI
Quanta 400F ESEM unit. The electron microscopy was accomplished at the
Electron Microscopy Center for Materials Research at Argonne National
Laboratory, a U.S. Department of Energy Office of Science Laboratory
operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC.
NR 37
TC 5
Z9 5
U1 4
U2 56
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1011-372X
J9 CATAL LETT
JI Catal. Lett.
PD JUN
PY 2012
VL 142
IS 6
BP 698
EP 713
DI 10.1007/s10562-012-0818-0
PG 16
WC Chemistry, Physical
SC Chemistry
GA 947BM
UT WOS:000304401600006
ER
PT J
AU Rangan, M
Yung, MM
Medlin, JW
AF Rangan, Meghana
Yung, Matthew M.
Medlin, J. Will
TI NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming:
Alternative Mechanisms for Sulfur Resistance
SO CATALYSIS LETTERS
LA English
DT Article
DE Electronic structure; Sulfur; Ethylene; NiRu; DFT
ID DENSITY-FUNCTIONAL THEORY; AB-INITIO; BIOMASS GASIFICATION;
MOLECULAR-DYNAMICS; PRODUCE HYDROGEN; METAL-SURFACES; FUEL-CELLS;
DEACTIVATION; ADSORPTION; NICKEL
AB Previous investigations of Ni-based catalysts for the steam reforming of hydrocarbons have indicated that the addition of a second metal can reduce the effects of sulfur poisoning. Two systems that have previously shown promise for such applications, NiW and NiRu, are considered here for the steam reforming of ethylene, a key component of biomass derived tars. Monometallic and bimetallic Al2O3-supported Ni and W catalysts were employed for ethylene steam reforming in the presence and absence of sulfur. The NiW catalysts were less active than Ni in the absence of sulfur, but were more active in the presence of 50 ppm H2S. The mechanism for the W-induced improvements in sulfur resistance appears to be different from that for Ru in NiRu. To probe reasons for the sulfur resistance of NiRu, the adsorption of S and C2H4 on several bimetallic NiRu alloy surfaces ranging from 11 to 33 % Ru was studied using density functional theory (DFT). The DFT studies reveal that sulfur adsorption is generally favored on hollow sites containing Ru. Ethylene preferentially adsorbs atop the Ru atom in all the NiRu (111) alloys investigated. By comparing trends across the various bimetallic models considered, sulfur adsorption was observed to be correlated with the density of occupied states near the Fermi level while C2H4 adsorption was correlated with the number of unoccupied states in the d-band. The diverging mechanisms for S and C2H4 adsorption allow for bimetallic surfaces such as NiRu that enhance ethylene binding without accompanying increases in sulfur binding energy. In contrast, bimetallics such as NiSn and NiW appear to decrease the affinity of the surface for both the reagent and the poison.
.
C1 [Rangan, Meghana; Medlin, J. Will] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA.
[Yung, Matthew M.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Medlin, JW (reprint author), Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA.
EM will.medlin@colorado.edu
FU National Renewable Energy Laboratory [KXEA-3-33606-26]; U.S. Department
of Energy [DE-AC36-99-GO-10337]
FX Research funding from the National Renewable Energy Laboratory through
subcontract KXEA-3-33606-26 and from the U.S. Department of Energy's
Biomass Program Contract DE-AC36-99-GO-10337 are gratefully
acknowledged. This research utilized the NCSA-Teragrid system and the
high-performance computing cluster carbon at Argonne National
Laboratory.
NR 55
TC 3
Z9 3
U1 5
U2 49
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1011-372X
J9 CATAL LETT
JI Catal. Lett.
PD JUN
PY 2012
VL 142
IS 6
BP 718
EP 727
DI 10.1007/s10562-012-0830-4
PG 10
WC Chemistry, Physical
SC Chemistry
GA 947BM
UT WOS:000304401600008
ER
PT J
AU Fulvio, PF
Mayes, RT
Bauer, JC
Wang, XQ
Mahurin, SM
Veith, GM
Dai, S
AF Fulvio, Pasquale F.
Mayes, Richard T.
Bauer, John C.
Wang, Xiqing
Mahurin, Shannon M.
Veith, Gabriel M.
Dai, Sheng
TI "One-pot" synthesis of phosphorylated mesoporous carbon heterogeneous
catalysts with tailored surface acidity
SO CATALYSIS TODAY
LA English
DT Article
DE Soft-templating; Mesoporous carbon; Phosphorylation; Ammonia-TPD;
Isopropanol dehydration
ID OXYGEN REDUCTION REACTION; NICKEL NANOPARTICLES; NITROGEN ADSORPTION;
THERMAL-STABILITY; BLOCK-COPOLYMERS; ACTIVATION; RESIN;
FUNCTIONALIZATION; DEHYDRATION; PERFORMANCE
AB Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a "one-pot" synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 degrees C showed that mesoporous carbons exhibit specific surface areas as high as 551 m(2)/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contents were strongly dependent on the ratios of H3PO4 in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH3-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 degrees C by transitioning from the least acidic to the most acidic catalysts surface. Published by Elsevier B.V.
C1 [Fulvio, Pasquale F.; Mayes, Richard T.; Bauer, John C.; Wang, Xiqing; Mahurin, Shannon M.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM dais@ornl.gov
RI Wang, Xiqing/E-3062-2010; Bauer, John/J-3150-2012; Fulvio,
Pasquale/B-2968-2014; Dai, Sheng/K-8411-2015; Mayes, Richard/G-1499-2016
OI Wang, Xiqing/0000-0002-1843-008X; Fulvio, Pasquale/0000-0001-7580-727X;
Dai, Sheng/0000-0002-8046-3931; Mayes, Richard/0000-0002-7457-3261
FU Fluid Interface Reactions, Structures and Transport (FIRST) Center, an
Energy Frontier Research Center; U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [ERKCC61]; U.S. Dept. of
Energy, Office of Energy Efficiency and Renewable Energy; Materials
Sciences & Engineering Division, Office of Basic Energy Sciences;
Division of Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences, U.S. Dept. of Energy [DE-AC05-OR22725]; Oak Ridge
National Laboratory
FX P.F.F. and S. M. M. were supported as part of the Fluid Interface
Reactions, Structures and Transport (FIRST) Center, an Energy Frontier
Research Center funded by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences under Award Number ERKCC61. R.
T. M. was supported by the U.S. Dept. of Energy, Office of Energy
Efficiency and Renewable Energy. G. M. V. was supported by Materials
Sciences & Engineering Division, Office of Basic Energy Sciences. X. Q.
W., J.C.B., and S. D. were supported by the Division of Chemical
Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences,
U.S. Dept. of Energy under contract DE-AC05-OR22725 with Oak Ridge
National Laboratory, managed and operated by UT-Battelle, LLC.
NR 47
TC 8
Z9 8
U1 3
U2 82
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5861
EI 1873-4308
J9 CATAL TODAY
JI Catal. Today
PD JUN 1
PY 2012
VL 186
IS 1
BP 12
EP 19
DI 10.1016/j.cattod.2011.08.004
PG 8
WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 945FZ
UT WOS:000304259800003
ER
PT J
AU Bailey, KL
Tilton, F
Jansik, DP
Ergas, SJ
Marshall, MJ
Miracle, AL
Wellman, DM
AF Bailey, Kathryn L.
Tilton, Fred
Jansik, Danielle P.
Ergas, Sarina J.
Marshall, Matthew J.
Miracle, Ann L.
Wellman, Dawn M.
TI Growth inhibition and stimulation of Shewanella oneidensis MR-1 by
surfactants and calcium polysulfide
SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
LA English
DT Article
DE Foam delivery; Amendment; Remediation; Microbial communities; Shewanella
oneidensis MR-1
ID METAL-REDUCING BACTERIA; CONTAMINATED GROUNDWATER; MICROBIAL REDUCTION;
REACTIVE BARRIER; HEAVY-METALS; TOXICITY; URANIUM; REMEDIATION; SOIL;
BIODEGRADATION
AB Foam delivery technology (FDT) uses surfactant based foam to immobilize subsurface contaminants in situ. Where traditional approaches are impractical, FDT has the potential to overcome many of the technical challenges facing the remediation of contaminated deep vadose zone environments. However, little is known about the effects these reactive chemicals may have on microorganisms inhabiting the contaminated subsurface. In addition, there are currently no standard assays to assess microbial responses to subsurface remedial treatments while these agents are under development. The objective of this study was to develop a rapid laboratory assay to assess the potential growth inhibition and/or stimulation of microorganisms following exposure to candidate FDT components. Calcium polysulfide (CPS) and several surfactants (i.e. sodium laureth sulfate (SLES), sodium dodecyl sulfate (SDS), cocamidopropyl betaine (CAPB) and NINOL40-CO) have diverse chemistries and are candidate components of FDT. Shewanella oneidensis MR-1 cultures were exposed to a range of concentrations of these chemicals to determine the minimum bactericidal concentration (MBC) and the growth and viability potential of these components. Concentrations of SDS higher than 700 mu M were toxic to S. oneidensis MR-1 growth over the course of four days of exposure. The relative acute toxicity order for these compounds was SDS >> CPS >> NINOL 40-CO > SLES >= CAPB. Dose dependent growth decreases (20-100 mM) were observed in the CAPB and SLES treated cultures and both CPS and NINOL 40-CO were toxic at all concentrations tested (1.45-7.25 mM CPS). Both SLES (20-100 mM) and SDS at lower concentrations (20-500 mu M) were stimulatory to S. oneidensis MR-1 indicating a capacity to be used as a carbon source. These studies also identified potentially key component characteristics, such as precipitate formation and oxygen availability, which may prove valuable in assessing the response of subsurface microorganisms. This benchtop system provides a capability to assess adverse microbial-remediation responses and contributes to the development of in situ remedial chemistries before they are deployed in the field. (C) 2012 Elsevier Inc. All rights reserved.
C1 [Bailey, Kathryn L.; Ergas, Sarina J.] Univ S Florida, Dept Civil & Environm Engn, Tampa, FL 33620 USA.
[Tilton, Fred; Jansik, Danielle P.; Marshall, Matthew J.; Miracle, Ann L.; Wellman, Dawn M.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Bailey, KL (reprint author), Univ S Florida, Dept Civil & Environm Engn, Tampa, FL 33620 USA.
EM klbaile3@mail.usf.edu
RI Ergas, Sarina/B-5489-2013
FU U.S. Department of Energy-Environmental Management, Office of
Groundwater and Soil Remediation; PNNL Laboratory [62132]; Alfred P.
Sloan Foundation; National Science Foundation S-STEM [0807023]; National
GEM Consortium; USF College of Engineering; U.S. Department of Energy
[DE-AC06-76RL01830]
FX Funding for this project was provided by the U.S. Department of
Energy-Environmental Management, Office of Groundwater and Soil
Remediation and PNNL Laboratory Directed Research and Development
Project #62132 awarded to F. Tilton. Kathryn Bailey is supported by the
Alfred P. Sloan Foundation Graduate Minority Program, the National
Science Foundation S-STEM award DUE #0807023, The National GEM
Consortium, and the USF College of Engineering. This work was conducted
at Pacific Northwest National Laboratory, operated by Battelle for the
U.S. Department of Energy under Contract DE-AC06-76RL01830.
NR 53
TC 3
Z9 4
U1 4
U2 51
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0147-6513
J9 ECOTOX ENVIRON SAFE
JI Ecotox. Environ. Safe.
PD JUN 1
PY 2012
VL 80
BP 195
EP 202
DI 10.1016/j.ecoenv.2012.02.027
PG 8
WC Environmental Sciences; Toxicology
SC Environmental Sciences & Ecology; Toxicology
GA 946FQ
UT WOS:000304337300028
PM 22444725
ER
PT J
AU Jessop, PG
Mercer, SM
Heldebrant, DJ
AF Jessop, Philip G.
Mercer, Sean M.
Heldebrant, David J.
TI CO2-triggered switchable solvents, surfactants, and other materials
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Review
ID REVERSIBLE IONIC LIQUIDS; RECYCLABLE VOLATILE SALTS; AQUEOUS 2-PHASE
SYSTEMS; AMMONIA-CARBON DIOXIDE; ROOM-TEMPERATURE; SUPRAMOLECULAR
CHEMISTRY; EMULSION POLYMERIZATION; FERROCENYL SURFACTANT; OSMOSIS
DESALINATION; LATENT GELATORS
AB Waste CO2 at atmospheric pressure can be used to trigger dramatic changes in the properties of certain switchable materials. Compared to other triggers such as light, acids and oxidants, CO2 has the advantages that it is inexpensive, nonhazardous, non-accumulating in the system, easily removed, and it does not require the material to be transparent. Known CO2-triggered switchable materials now include solvents, surfactants, solutes, catalysts, particles, polymers, and gels. These have also been described as "smart" materials or, for some of the switchable solvents, "reversible ionic liquids''. The added flexibility of switchable materials represents a new strategy for minimizing energy and material consumption in process and product design.
C1 [Jessop, Philip G.; Mercer, Sean M.] Queens Univ, Dept Chem, Kingston, ON K7L 3N6, Canada.
[Heldebrant, David J.] Pacific NW Natl Lab, Richland, WA 99356 USA.
RP Jessop, PG (reprint author), Queens Univ, Dept Chem, 90 Bader Lane, Kingston, ON K7L 3N6, Canada.
EM jessop@chem.queensu.ca; david.heldenbrant@pnl.gov
FU Walter C. Sumner Foundation; Natural Sciences and Engineering Research
Council of Canada; Pacific Northwest National Laboratory's Energy
Conversion Initiative
FX We gratefully acknowledge funding from the Walter C. Sumner Foundation
and the Natural Sciences and Engineering Research Council of Canada, and
PGJ thanks the Canada Research Chairs Program for salary support, the
Killam Trusts for teaching release, and GreenCentre Canada and all
coauthors on the "switchable chemistry" papers for their help and
advice. DJH thanks the Pacific Northwest National Laboratory's Energy
Conversion Initiative for financial support and Dr John Linehan for
fruitful discussions.
NR 106
TC 130
Z9 137
U1 33
U2 298
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
EI 1754-5706
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PD JUN
PY 2012
VL 5
IS 6
BP 7240
EP 7253
DI 10.1039/c2ee02912j
PG 14
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA 946MD
UT WOS:000304354900002
ER
PT J
AU Middleton, RS
Keating, GN
Stauffer, PH
Jordan, AB
Viswanathan, HS
Kang, QJJ
Carey, JW
Mulkey, ML
Sullivan, EJ
Chu, SPP
Esposito, R
Meckel, TA
AF Middleton, Richard S.
Keating, Gordon N.
Stauffer, Philip H.
Jordan, Amy B.
Viswanathan, Hari S.
Kang, Qinjun J.
Carey, J. William
Mulkey, Marc L.
Sullivan, Enid J.
Chu, Shaoping P.
Esposito, Richard
Meckel, Timothy A.
TI The cross-scale science of CO2 capture and storage: from pore scale to
regional scale
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
ID CARBON-DIOXIDE; POROUS-MEDIA; SEQUESTRATION SITE; IMMISCIBLE DROPLET;
SALINE AQUIFERS; SYSTEM MODEL; FRESH-WATER; DISPLACEMENT; DEPLOYMENT;
BOLTZMANN
AB We describe state-of-the-art science and technology related to modeling of CO2 capture and storage (CCS) at four different process scales: pore, reservoir, site, and region scale. We present novel research at each scale to demonstrate why each scale is important for a comprehensive understanding of CCS. Further, we illustrate research linking adjacent process scales, such that critical information is passed from one process scale to the next adjacent scale. We demonstrate this cross-scale approach using real world CO2 capture and storage data, including a scenario managing CO2 emissions from a large U.S. electric utility. At the pore scale, we present a new method for incorporating pore-scale surface tension effects into a relative permeability model of CO2-brine multiphase flow at the reservoir scale. We benchmark a reduced complexity model for site-scale analysis against a rigorous physics-based reservoir simulator, and include new system level considerations including local site-scale pipeline routing analysis (i.e., reservoir to site scale). We also include costs associated with brine production and treatment at the site scale, a significant issue often overlooked in CCS studies. All models that comprise our total system include parameter uncertainty which leads to results that have ranges of probability. Results suggest that research at one scale is able to inform models at adjacent process scales, and that these scale connections can inform policy makers and utility managers of overall system behavior including the impacts of uncertainty.
C1 [Middleton, Richard S.; Keating, Gordon N.; Stauffer, Philip H.; Jordan, Amy B.; Viswanathan, Hari S.; Kang, Qinjun J.; Carey, J. William; Chu, Shaoping P.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
[Mulkey, Marc L.] W Virginia Univ, Davis Coll Agr Forestry & Consumer Sci, Morgantown, WV 26506 USA.
[Sullivan, Enid J.] Los Alamos Natl Lab, Chem Div, Los Alamos, NM 87545 USA.
[Esposito, Richard] So Co Generat, Birmingham, AL 35291 USA.
[Meckel, Timothy A.] Univ Texas Austin, Bur Econ Geol, Austin, TX 78713 USA.
RP Middleton, RS (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
EM rsm@lanl.gov
RI Middleton, Richard/A-5470-2011; Kang, Qinjun/A-2585-2010;
OI Kang, Qinjun/0000-0002-4754-2240; Middleton,
Richard/0000-0002-8039-6601; Stauffer, Philip/0000-0002-6976-221X
FU U.S.-China Advanced Coal Technology Consortium (under management of West
Virginia University); DOE Office of Fossil Energy through the NETL;
Department of Energy's Fossil Energy Research Development [2003030];
U.S. Department of Energy through the LANL/LDRD [20100025DR]
FX This work was funded by the U.S.-China Advanced Coal Technology
Consortium (under management of West Virginia University), the DOE
Office of Fossil Energy through the NETL Carbon Program, the Department
of Energy's Fossil Energy Research & Development- American Recovery and
Reinvestment Act (2009) Geological Sequestration project 2003030 (under
management of the Texas Bureau of Economic Geology), and the U.S.
Department of Energy through the LANL/LDRD Program (#20100025DR). We
thank Mark Porter and Ethan Coon for their contributions in developing
Taxila LBM and for providing Fig. 3. Insightful comments from two
anonymous reviewers have significantly improved this paper.
NR 77
TC 41
Z9 41
U1 1
U2 30
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PD JUN
PY 2012
VL 5
IS 6
BP 7328
EP 7345
DI 10.1039/c2ee03227a
PG 18
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA 946MD
UT WOS:000304354900007
ER
PT J
AU Eisaman, MD
Parajuly, K
Tuganov, A
Eldershaw, C
Chang, NR
Littau, KA
AF Eisaman, Matthew D.
Parajuly, Keshav
Tuganov, Alexander
Eldershaw, Craig
Chang, Norine
Littau, Karl A.
TI CO2 extraction from seawater using bipolar membrane electrodialysis
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
ID HYDROGEN STORAGE; CARBON-DIOXIDE; SEPARATION
AB An efficient method for extracting the dissolved CO2 in the oceans would effectively enable the separation of CO2 from the atmosphere without the need to process large volumes of air, and could provide a key step in the synthesis of renewable, carbon-neutral liquid fuels. While the extraction of CO2 from seawater has been previously demonstrated, many challenges remain, including slow extraction rates and poor CO2 selectivity, among others. Here we describe a novel solution to these challenges-efficient CO2 extraction from seawater using bipolar membrane electrodialysis (BPMED). We characterize the performance of a custom designed and built CO2-from-seawater prototype, demonstrating the ability to extract 59% of the total dissolved inorganic carbon from seawater as CO2 gas with an electrochemical energy consumption of 242 kJ mol(-1)(CO2).
C1 [Eisaman, Matthew D.; Parajuly, Keshav; Tuganov, Alexander; Eldershaw, Craig; Chang, Norine; Littau, Karl A.] PARC, Palo Alto, CA 94304 USA.
RP Eisaman, MD (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA.
EM meisaman@bnl.gov
RI Eisaman, Matthew/E-8006-2011
OI Eisaman, Matthew/0000-0002-3814-6430
FU DARPA [HR001110-C-0147]
FX We thank F. Torres, D. Bar, and M. Steinberg for helpful discussions,
and three anonymous reviewers for useful suggestions. This work was
supported by DARPA contract HR001110-C-0147. The views, opinions, and/or
findings contained in this article are those of the authors and should
not be interpreted as representing the official views or policies,
either expressed or implied, of the Defense Advanced Research Projects
Agency or the Department of Defense. Approved for Public Release,
Distribution Unlimited.
NR 30
TC 17
Z9 17
U1 8
U2 54
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PD JUN
PY 2012
VL 5
IS 6
BP 7346
EP 7352
DI 10.1039/c2ee03393c
PG 7
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA 946MD
UT WOS:000304354900008
ER
PT J
AU Bhat, KS
Haran, M
Olson, R
Keller, K
AF Bhat, K. Sham
Haran, Murali
Olson, Roman
Keller, Klaus
TI Inferring likelihoods and climate system characteristics from climate
models and multiple tracers
SO ENVIRONMETRICS
LA English
DT Article
DE computer model calibration; Bayesian hierarchical modeling; Gaussian
process; computer experiments; multivariate spatial data; climate change
ID MERIDIONAL OVERTURNING CIRCULATION; LARGE SPATIAL DATASETS; CHAIN
MONTE-CARLO; COMPUTER-MODEL; DIAPYCNAL DIFFUSIVITY; OCEANS CLIMATE;
PREDICTION; OUTPUT; CHLOROFLUOROCARBONS; COREGIONALIZATION
AB Characterizing the risks of anthropogenic climate change poses considerable statistical challenges. A key problem is how to combine the information contained in large-scale observational data sets with simulations of Earth system models in a statistically sound and computationally tractable manner. Here, we describe a statistical approach for improving projections of the North Atlantic meridional overturning circulation (AMOC). The AMOC is part of the global ocean conveyor belt circulation and transfers heat between low and high latitudes in the Atlantic basin. The AMOC might collapse in a tipping point response to anthropogenic climate forcings. Assessing the risk of an AMOC collapse is of considerable interest because it may result in major impacts on natural and human systems. AMOC projections rely on simulations from complex climate models. One key source of uncertainty in AMOC projections is uncertainty about background ocean vertical diffusivity (Kv), an important model parameter. Kv cannot be directly observed but can be inferred by combining climate model output with observations on the oceans (so-called tracers). Here, we combine information from multiple tracers, each observed on a spatial grid. Our two-stage approach emulates the computationally expensive climate model using a flexible hierarchical model to connect the tracers. We then infer Kv using our emulator and the observations via a Bayesian approach, accounting for observation error and model discrepancy. We utilize kernel mixing and matrix identities in our Gaussian process model to considerably reduce the computational burdens imposed by the large data sets. We find that our approach is flexible, reduces identifiability issues, and enables inference about Kv based on large data sets. We use the resulting inference about Kv to improve probabilistic projections of the AMOC. Copyright (c) 2012 John Wiley & Sons, Ltd.
C1 [Bhat, K. Sham] Los Alamos Natl Lab, Stat Sci Div, Los Alamos, NM 87545 USA.
[Haran, Murali] Penn State Univ, Dept Stat, University Pk, PA 16802 USA.
[Olson, Roman; Keller, Klaus] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA.
[Keller, Klaus] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA.
RP Bhat, KS (reprint author), Los Alamos Natl Lab, Stat Sci Div, POB 1663, Los Alamos, NM 87545 USA.
EM bhat9999@lanl.gov
RI Keller, Klaus/A-6742-2013
FU National Science Foundation; US Geological Survey; Penn State Center for
Risk Management; Climate Science for a Sustainable Energy Future
FX This work was partially supported by the National Science Foundation,
the US Geological Survey, Penn State Center for Risk Management, and the
Climate Science for a Sustainable Energy Future. Any opinions, findings,
and conclusions expressed in this work are those of the authors alone
and do not necessarily reflect the views of the funding entities. The
authors thank Andreas Schmittner for providing the output of the
published runs. The authors also thank Nathan Urban, Rui Paulo, Andreas
Schmittner, Dave Higdon, Jim Gattiker, Mike Hamada, Matt Pratola, and
Kary Myers for helpful comments.
NR 79
TC 17
Z9 17
U1 0
U2 9
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1180-4009
EI 1099-095X
J9 ENVIRONMETRICS
JI Environmetrics
PD JUN
PY 2012
VL 23
IS 4
BP 345
EP 362
DI 10.1002/env.2149
PG 18
WC Environmental Sciences; Mathematics, Interdisciplinary Applications;
Statistics & Probability
SC Environmental Sciences & Ecology; Mathematics
GA 947OQ
UT WOS:000304439800007
ER
PT J
AU Gingerich, AJ
Bellgraph, BJ
Brown, RS
Tavan, NT
Deng, ZD
Brown, JR
AF Gingerich, Andrew J.
Bellgraph, Brian J.
Brown, Richard S.
Tavan, Noel T.
Deng, Z. Daniel
Brown, Joseph R.
TI Quantifying reception strength and omnidirectionality of underwater
radio telemetry antennas: Advances and applications for fisheries
research
SO FISHERIES RESEARCH
LA English
DT Article
DE Underwater; Radio biotelemetry; Antenna; Signal strength
ID RIVER; RADIOTELEMETRY; TRANSMITTERS
AB Radio telemetry is used in many freshwater fisheries applications as a tool to study fish behavior; however, the limited ability of radio signals to travel through the water (up to 15 m) limits the ability to detect fish located in deep-water habitats with conventional aerial antennas. Underwater radio antennas are seldom used in aquatic research relative to aerial applications, but are very useful in detecting organisms at depth. To add to this knowledge base, we report on the reception characteristics of two types of underwater radio antennas relatively new to the fisheries field, the turnstile and balanced loop-vee antennas, and compare these to an underwater dipole antenna, which has been more commonly used for fisheries research compared to the formerly mentioned antennas. Reception strength and omnidirectionality of the three antenna types were tested in the laboratory. Maximum detection range of antennas was also quantified in the field using a commonly employed radio telemetry system. Results indicate that the balanced loop-vee antenna had stronger overall reception strength (-36.84 dBm) than either the turnstile (-43.72 dBm) or dipole (-43.72 dBm) antennas; the balanced loop-vee was also the most omnidirectional (i.e., lowest variance, SD=0.42) of the three armored underwater antenna types. Further, the XY plane of the balanced loop-vee had stronger reception strength (-32.71 dBm) than all other plane/antenna combinations. Field testing results confirmed that the balanced loop-vee antenna had the strongest reception strength of all antenna types and detected radio transmitters as far as 15 m through water. The dipole and turnstile antennas were able to detect transmitters as far as 9 m and 12 m through water, respectively. The reception characteristics of the balanced loop-vee antenna demonstrate its usefulness as a tool for aquatic telemetry research. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Gingerich, Andrew J.; Bellgraph, Brian J.; Brown, Richard S.; Tavan, Noel T.; Deng, Z. Daniel] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Gingerich, AJ (reprint author), Publ Util 1 Douglas Cty, 1151 Valley Mall Pkwy, E Wenatchee, WA 98802 USA.
EM andrewg@dcpud.org
RI Deng, Daniel/A-9536-2011
OI Deng, Daniel/0000-0002-8300-8766
FU Idaho Power Company
FX We thank Scott Titzler, John Stephenson, Tylor Abel, Jayson Martinez,
David Geist and Brett Pflugrath of Pacific Northwest National Laboratory
for laboratory or field assistance. We are also grateful to Ken Lepla,
Phil Bates and James Chandler of Idaho Power Company whose funding of a
study in 2002 provided much of the impetus for the exploration of new
underwater radio antenna technologies. The Pacific Northwest National
Laboratory is owned by the U.S. Department of Energy and operated by
Battelle Memorial Institute under contract DEAC05-76RL01830.
NR 23
TC 2
Z9 2
U1 0
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0165-7836
EI 1872-6763
J9 FISH RES
JI Fish Res.
PD JUN
PY 2012
VL 121
BP 1
EP 8
DI 10.1016/j.fishres.2012.01.003
PG 8
WC Fisheries
SC Fisheries
GA 944RY
UT WOS:000304222700001
ER
PT J
AU Brown, RS
Pflugrath, BD
Colotelo, AH
Brauner, CJ
Carlson, TJ
Deng, ZD
Seaburg, AG
AF Brown, Richard S.
Pflugrath, Brett D.
Colotelo, Alison H.
Brauner, Colin J.
Carlson, Thomas J.
Deng, Z. Daniel
Seaburg, Adam G.
TI Pathways of barotrauma in juvenile salmonids exposed to simulated
hydroturbine passage: Boyle's law vs. Henry's law
SO FISHERIES RESEARCH
LA English
DT Article
DE Barotrauma; Mortality; Juvenile salmonids; Hydropower
ID COLUMBIA-RIVER; FISH; DECOMPRESSION; TRANSMITTERS
AB On their seaward migration, juvenile salmonids commonly pass hydroelectric dams. Fish passing by the turbine blade may experience rapid decompression, the severity of which can be highly variable and may result in a number of barotraumas. The mechanisms of these injuries can be due to expansion of existing bubbles or gases coming out of solution: governed by Boyle's law and Henry's law, respectively. This paper combines re-analysis of published data with new experiments to gain a better understanding of the mechanisms of injury and mortality for fish experiencing rapid decompression associated with hydroturbine passage. From these data it appears that the majority of decompression related injuries are due to the expansion of existing bubbles in the fish, particularly the expansion and rupture of the swim bladder. This information is particularly useful for fisheries managers and turbine manufacturers, demonstrating that reducing the rate of swim bladder ruptures by reducing the frequency of occurrence and severity of rapid decompression during hydroturbine passage could reduce the rates of injury and mortality for hydroturbine passed juvenile salmonids. Published by Elsevier B.V.
C1 [Brown, Richard S.; Pflugrath, Brett D.; Colotelo, Alison H.] Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA.
[Brauner, Colin J.] Univ British Columbia, Dept Zool, Vancouver, BC V6T 1Z4, Canada.
[Carlson, Thomas J.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA.
[Deng, Z. Daniel] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA.
[Seaburg, Adam G.] Univ Washington, Sch Aquat & Fishery Sci, Columbia Basin Res, Seattle, WA 98101 USA.
RP Brown, RS (reprint author), Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA.
EM Rich.Brown@pnnl.gov
RI Deng, Daniel/A-9536-2011
OI Deng, Daniel/0000-0002-8300-8766
FU U.S. Army Corps of Engineers (USACE), Portland District; Symbiotics
LLC.; U.S. Department of Energy [DE-AC05-76RL01830]
FX Funding for the research described in this report was provided by the
U.S. Army Corps of Engineers (USACE), Portland District and Symbiotics
LLC. The authors thank USACE staff including Robert Johnson, Martin
Ahmann, Dennis Schwartz, Mike Langeslay, Brad Eppard, and the USACE
Turbine Survival Technical Team for their commitment, assistance, and
oversight. We would also like to thank Symbiotics LLC staff Kai and Eric
Steimle. The authors acknowledge staff from Priest Rapids, Leavenworth
and Lyons Ferry fish hatcheries for providing fish for this study. This
research required the assistance of many. The authors thank Jill Janak,
Andy LeBarge, Tim Linley, Bob Mueller, Ricardo Walker of PNNL. We
appreciate the editing assistance of Andrea Currie, PNNL. Statistical
analysis and guidance were provided by John Skalski of the University of
Washington. The Pacific Northwest National Laboratory animal facilities
used in this research are AAALAC-certified; fish were handled in
accordance with federal guidelines for the care and use of laboratory
animals, and protocols for our study were approved by the Institutional
Animal Care and Use Committee at Battelle-Pacific Northwest Division.
The Pacific Northwest National Laboratory is operated by Battelle for
the U.S. Department of Energy under Contract DE-AC05-76RL01830.
NR 26
TC 21
Z9 22
U1 3
U2 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0165-7836
J9 FISH RES
JI Fish Res.
PD JUN
PY 2012
VL 121
BP 43
EP 50
DI 10.1016/j.fishres.2012.01.006
PG 8
WC Fisheries
SC Fisheries
GA 944RY
UT WOS:000304222700005
ER
PT J
AU Saumon, D
Starrett, CE
Kress, JD
Clerouin, J
AF Saumon, D.
Starrett, C. E.
Kress, J. D.
Clerouin, J.
TI The quantum hypernetted chain model of warm dense matter
SO HIGH ENERGY DENSITY PHYSICS
LA English
DT Article
DE Equation of state; Warm dense matter; Average atom models; Ionization
ID NUCLEUS-ELECTRON MODEL; FUNCTIONAL THEORY; LIQUID-METALS; PLASMAS;
APPROXIMATION; HYDROGEN; EQUATION; ION
AB Modeling warm dense matter, where a combination of partial ionization, partial electron degeneracy, and strong ion-ion and ion-electron coupling occur, is a frontier of equation of state research. We present the quantum hypernetted chain model which can be applied to studies of liquid metals, warm dense matter, and plasmas. This is an all-electron model that considers a mixture of a classical fluid of ions (with bound electrons) and a quantum electron fluid. The model describes self-consistently the structure of the ion fluid as well as the bound states of the ions and the non-linear response of the electron fluid. We present our initial results and compare them with experimental and ab initio results for liquid metals and low-temperature plasmas. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Saumon, D.; Starrett, C. E.; Kress, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Clerouin, J.] CEA, Ctr DAM, DIF, F-91297 Arpajon, France.
RP Saumon, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM dsaumon@lanl.gov
RI Clerouin, jean/D-8528-2015
OI Clerouin, jean/0000-0003-2144-2759
FU United States Department of Energy [DE-AC52-06NA25396]
FX We thank W. S. Daughton, J. A. Anta and G. Chabrier for their generous
sharing of various codes and L.A. Collins for illuminating discussions.
This work was performed under the auspices of the United States
Department of Energy under contract DE-AC52-06NA25396.
NR 29
TC 11
Z9 11
U1 0
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1574-1818
J9 HIGH ENERG DENS PHYS
JI High Energy Density Phys.
PD JUN
PY 2012
VL 8
IS 2
BP 150
EP 153
DI 10.1016/j.hedp.2011.11.002
PG 4
WC Physics, Fluids & Plasmas
SC Physics
GA 944XP
UT WOS:000304237400003
ER
PT J
AU Iglesias, CA
Sonnad, V
AF Iglesias, Carlos A.
Sonnad, Vijay
TI Partially resolved transition array model for atomic spectra
SO HIGH ENERGY DENSITY PHYSICS
LA English
DT Article
DE Plasma spectroscopy; Transition arrays; Opacity; Emissivity
ID ENERGY-LEVELS; DISTRIBUTIONS; VARIANCE; OPACITY; PLASMAS
AB The unresolved transition array (UTA) model of atomic spectra describes the lines in a configuration-to-configuration transition array with a single feature that conserves the total strength as well as the energy first and second strength-weighted moments. A new model is proposed that uses a relatively small detailed line-by-line calculation together with the extant variance formula to generate a series of Gaussians to describe the transition array. This partially resolved transition array (PRTA) model conserves the known array properties, yields improved higher moments, and systematically accounts for initial level populations. Numerical examples show that the PRTA model provides excellent fidelity to line-by-line methods using only a small fraction of the computational effort for the full calculations. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Iglesias, Carlos A.; Sonnad, Vijay] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Iglesias, CA (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA.
EM iglesias1@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX It is pleasure to thank Brian G. Wilson for reading the manuscript. Also
thanks are due to the referees for valuable comments and corrections.
This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 19
TC 10
Z9 10
U1 1
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1574-1818
J9 HIGH ENERG DENS PHYS
JI High Energy Density Phys.
PD JUN
PY 2012
VL 8
IS 2
BP 154
EP 160
DI 10.1016/j.hedp.2012.01.001
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA 944XP
UT WOS:000304237400004
ER
PT J
AU Sawada, H
Yabuuchi, T
Regan, SP
Anderson, K
Wei, MS
Betti, R
Hund, J
Key, MH
Mackinnon, AJ
McLean, HS
Paguio, RR
Patel, PK
Saito, KM
Stephens, RB
Wilks, SC
Beg, FN
AF Sawada, H.
Yabuuchi, T.
Regan, S. P.
Anderson, K.
Wei, M. S.
Betti, R.
Hund, J.
Key, M. H.
Mackinnon, A. J.
McLean, H. S.
Paguio, R. R.
Patel, P. K.
Saito, K. M.
Stephens, R. B.
Wilks, S. C.
Beg, F. N.
TI Diagnosing laser-driven, shock-heated foam target with Al absorption
spectroscopy on OMEGA EP
SO HIGH ENERGY DENSITY PHYSICS
LA English
DT Article
DE X-ray absorption spectroscopy; Laser-produced plasmas; Fast electron
transport; FAST ignition
AB Results on diagnoses of laser-driven, shock-heated foam plasma with time-resolved Al 1s-2p absorption spectroscopy are reported. Experiments were carried out to produce a platform for the study of relativistic electron transport. In cone-guided Fast Ignition (FI), relativistic electrons generated by a high-intensity, short-pulse igniter beam must be transported through a cone tip to an imploded core. Transport of the energetic electrons could be significantly affected by the temperature-dependent resistivity of background plasmas. The experiment was conducted using four UV beams of the OMEGA EP laser at the Laboratory For Laser Energetics. One UV beam (1.2 kJ, 3.5 ns square) was used to launch a shock wave into a foam package target, consisting of 200 mg/cm(3) CH foam with aluminum dopant and a solid plastic container surrounding the foam layer. The other three UV beams with the total energy of 3.2 kJ in 2.5 ns pulse duration were tightly focused onto a Sm dot target to produce a point X-ray source in the energy range of 1.4-1.6 key. The quasi-continuous X ray signal was transmitted through the shock-heated Al-doped, foam layer and recorded with an X-ray streak camera. The measured 1s-2p Al absorption features were analyzed using an atomic physics code FLYCHK. Electron temperature of 40 eV inferred from the spectral analysis is consistent with 2-D DRACO Radiation-hydrodynamic simulations. (C) 2012 Elsevier ay. All rights reserved.
C1 [Sawada, H.; Yabuuchi, T.; Beg, F. N.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA.
[Regan, S. P.; Anderson, K.; Betti, R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA.
[Wei, M. S.; Hund, J.; Paguio, R. R.; Saito, K. M.; Stephens, R. B.] Gen Atom Co, San Diego, CA 92186 USA.
[Key, M. H.; Mackinnon, A. J.; McLean, H. S.; Patel, P. K.; Wilks, S. C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Sawada, H (reprint author), Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA.
EM hsawada@ucsd.edu
RI MacKinnon, Andrew/P-7239-2014; Sawada, Hiroshi/Q-8434-2016;
OI MacKinnon, Andrew/0000-0002-4380-2906; Sawada,
Hiroshi/0000-0002-7972-9894; Stephens, Richard/0000-0002-7034-6141
FU NNSA/US DOE [DE-FG52-09NA29033, DE-FC02-04ER54789, DE-FG02-05ER54834]
FX The authors are grateful to B. Yaakobi and R.E. Bahr for diagnostic
expertise, as well as to the OMEGA EP crew for the operations of four EP
UV beams. The work was supported by NNSA/US DOE under Contracts
DE-FG52-09NA29033 (NLUF), DE-FC02-04ER54789 (FSC), and DE-FG02-05ER54834
(ACE).
NR 9
TC 4
Z9 4
U1 0
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1574-1818
J9 HIGH ENERG DENS PHYS
JI High Energy Density Phys.
PD JUN
PY 2012
VL 8
IS 2
BP 180
EP 183
DI 10.1016/j.hedp.2012.03.002
PG 4
WC Physics, Fluids & Plasmas
SC Physics
GA 944XP
UT WOS:000304237400008
ER
PT J
AU Weller, ME
Safronova, AS
Kantsyrev, VL
Esaulov, AA
Coverdale, CA
Chuvatin, AS
Ouart, ND
Williamson, KM
Shrestha, I
Osborne, GC
Shlyaptseva, VV
Keim, SF
Stafford, A
AF Weller, M. E.
Safronova, A. S.
Kantsyrev, V. L.
Esaulov, A. A.
Coverdale, C. A.
Chuvatin, A. S.
Ouart, N. D.
Williamson, K. M.
Shrestha, I.
Osborne, G. C.
Shlyaptseva, V. V.
Keim, S. F.
Stafford, A.
TI Radiative properties of mixed nested cylindrical wire arrays on Zebra at
UNR
SO HIGH ENERGY DENSITY PHYSICS
LA English
DT Article
DE Z-pinches; Plasma focus; Wire array; X-ray spectra; Radiative
properties; Nested cylindrical wire arrays; Inertial confinement fusion
ID Z-PINCHES; IMPLOSIONS; POWER
AB The dynamics of mixed nested cylindrical wire arrays were studied at the UNR Zebra generator with our existing theoretical and experimental tools to better understand the contributions of each array to the emitted radiation. In particular, experimental results of mixed brass (70% Cu, 30% Zn) and Al (5056, 5% Mg) nested cylindrical wire arrays are analyzed and compared. The loads used brass in the inner array and Al in the outer array, or alternately, Al in the inner array and brass in the outer array, with a mass ratio of 1:1 (outer to inner). Consequently, radiative properties of K-shell Al and Mg ions and L-shell Cu and Zn ions are compared as functions of the placements of the brass and Al wires on the inner and outer arrays. Results show that the placement of brass and Al, whether on the inner or outer array, dramatically affects the intensity of the X-ray emission. Specifically, the ratio of Cu L-shell to Al K-shell emissions changed from 4 when Al is in the outer array to 40 when brass is in the outer array, and the total radiated yield was highest when the brass was on the outer array (18 kJ, versus 15 kJ when brass is on the inner array). Each load was fielded twice to vary the timing of the time-gated imaging and spectral diagnostics. This provides a more complete understanding of the evolution of the plasma parameters over the X-ray pulse and highlights the importance of the time-gated diagnostics. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Weller, M. E.; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Williamson, K. M.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V. V.; Keim, S. F.; Stafford, A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA.
[Coverdale, C. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Chuvatin, A. S.] Ecole Polytech, F-91128 Palaiseau, France.
[Ouart, N. D.] USN, Res Lab, Washington, DC 20375 USA.
RP Weller, ME (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA.
EM mweller@unr.edu
FU DOE/NNSA [DE-FC52-06NA27588, DE-FC52-06NA27586, DE-FC52-06NA27616];
United States Department of Energy [DE-AC04-94AL85000]
FX Work was supported by DOE/NNSA under Cooperative Agreements
DE-FC52-06NA27588, DE-FC52-06NA27586, and in part by DE-FC52-06NA27616.
Sandia is a multi-program laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy
under Contract DE-AC04-94AL85000.
NR 22
TC 4
Z9 5
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1574-1818
J9 HIGH ENERG DENS PHYS
JI High Energy Density Phys.
PD JUN
PY 2012
VL 8
IS 2
BP 184
EP 189
DI 10.1016/j.hedp.2012.03.004
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA 944XP
UT WOS:000304237400009
ER
PT J
AU Cao, RW
Cheng, M
Mi, C
Hua, W
Wang, X
Zhao, WX
AF Cao, Ruiwu
Cheng, Ming
Mi, Chris
Hua, Wei
Wang, Xin
Zhao, Wenxiang
TI Modeling of a Complementary and Modular Linear Flux-Switching Permanent
Magnet Motor for Urban Rail Transit Applications
SO IEEE TRANSACTIONS ON ENERGY CONVERSION
LA English
DT Article
DE Flux-switching permanent magnet (FSPM) motor; linear motor; modeling
ID INDUCTION-MOTORS; DESIGN; MACHINE
AB In this paper, a complementary and modular linear flux-switching permanent magnet (MLFSPM) motor is investigated, in which both the magnets and armature windings are placed in the short mover, while the long stator consists of iron core only. The proposed MLFSPM motor incorporates the high power density of a linear permanent magnet synchronous motor and the simple structure of a linear induction motor. It is especially suitable for long stator applications such as urban rail transit. The objective of this paper is to build the mathematical model for the purpose of control of this motor. The simulation results by means of finite-element analysis (FEA) verified the theoretical analysis and the effectiveness of this model. Both the analytical model and the FEA results are validated by experiments based on a prototype motor.
C1 [Cao, Ruiwu; Cheng, Ming; Hua, Wei; Wang, Xin] Southeast Univ, Sch Elect Engn, Nanjing 210096, Jiangsu, Peoples R China.
[Cao, Ruiwu; Mi, Chris] Univ Michigan, Dept Elect & Comp Engn, Dearborn, MI 48128 USA.
[Mi, Chris] Univ Michigan, DOE GATE Ctr Elect Drive Transportat, Dearborn, MI 48128 USA.
[Zhao, Wenxiang] Jiangsu Univ, Sch Elect & Informat Engn, Zhenjiang 212013, Peoples R China.
RP Cao, RW (reprint author), Southeast Univ, Sch Elect Engn, Nanjing 210096, Jiangsu, Peoples R China.
EM ruiwucao@gmail.com; mcheng@seu.edu.cn; mi3032@gmail.com;
huawei1978@seu.edu.cn; 18724015102@163.com; zwx@ujs.edu.cn
RI Mi, Chunting/E-3769-2013;
OI Mi, Chunting/0000-0002-5471-8953; Zhao, Wenxiang/0000-0002-4444-6595
FU National Natural Science Foundation of China [50907031]; Specialized
Research Fund for the Doctoral Program of Higher Education of China
[20090092110034]; Program for Postgraduate Research Innovation in the
University of Jiangsu Province [X10B_066Z]
FX This work was supported by the National Natural Science Foundation of
China under Project 50907031, by the Specialized Research Fund for the
Doctoral Program of Higher Education of China under Project
20090092110034, and by the Program for Postgraduate Research Innovation
in the University of Jiangsu Province 2010 under Project X10B_066Z.
Paper no. TEC-00516-2011.
NR 23
TC 40
Z9 43
U1 2
U2 20
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8969
J9 IEEE T ENERGY CONVER
JI IEEE Trans. Energy Convers.
PD JUN
PY 2012
VL 27
IS 2
BP 489
EP 497
DI 10.1109/TEC.2012.2190985
PG 9
WC Energy & Fuels; Engineering, Electrical & Electronic
SC Energy & Fuels; Engineering
GA 945BG
UT WOS:000304247200028
ER
PT J
AU Kaplan, JB
Lo, C
Xie, G
Johnson, SL
Chain, PSG
Donnelly, R
Kachlany, SC
Balashova, NV
AF Kaplan, Jeffrey B.
Lo, Chienchi
Xie, Gary
Johnson, Shannon L.
Chain, Patrick S. G.
Donnelly, Robert
Kachlany, Scott C.
Balashova, Nataliya V.
TI Genome Sequence of Kingella kingae Septic Arthritis Isolate PYKK081
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
ID CHILDREN
AB Kingella kingae is a human oral bacterium that can cause infections of the skeletal system in children. The bacterium is also a cardiovascular pathogen causing infective endocarditis in children and adults. We report herein the draft genome sequence of septic arthritis K. kingae strain PYKK081.
C1 [Kaplan, Jeffrey B.; Donnelly, Robert; Kachlany, Scott C.; Balashova, Nataliya V.] Univ Med & Dent New Jersey, New Jersey Dent Sch, Dept Oral Biol, Newark, NJ 07103 USA.
[Lo, Chienchi; Xie, Gary; Johnson, Shannon L.; Chain, Patrick S. G.] Los Alamos Natl Lab, Genome Biol Grp, Oralgen Team, Los Alamos, NM USA.
RP Balashova, NV (reprint author), Univ Med & Dent New Jersey, New Jersey Dent Sch, Dept Oral Biol, Newark, NJ 07103 USA.
EM balashnv@umdnj.edu
RI chain, patrick/B-9777-2013;
OI Johnson, Shannon/0000-0002-3972-9208; Chain,
Patrick/0000-0003-3949-3634; xie, gary/0000-0002-9176-924X
FU NIH [AI080844, Y1-DE-6006-02]; American Heart Association [09SDG2310194]
FX This work was supported by NIH grant AI080844 and American Heart
Association grant 09SDG2310194 to N.V.B. G.X., CL., and P.S.G.C. were
partially supported by NIH contract Y1-DE-6006-02.
NR 6
TC 8
Z9 8
U1 0
U2 2
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD JUN
PY 2012
VL 194
IS 11
BP 3017
EP 3017
DI 10.1128/JB.00421-12
PG 1
WC Microbiology
SC Microbiology
GA 944TX
UT WOS:000304227800029
PM 22582375
ER
PT J
AU Martinez, RJ
Bruce, D
Detter, C
Goodwin, LA
Han, J
Han, CS
Held, B
Land, ML
Mikhailova, N
Nolan, M
Pennacchio, L
Pitluck, S
Tapia, R
Woyke, T
Sobeckya, PA
AF Martinez, Robert J.
Bruce, David
Detter, Chris
Goodwin, Lynne A.
Han, James
Han, Cliff S.
Held, Brittany
Land, Miriam L.
Mikhailova, Natalia
Nolan, Matt
Pennacchio, Len
Pitluck, Sam
Tapia, Roxanne
Woyke, Tanja
Sobeckya, Patricia A.
TI Complete Genome Sequence of Rahnella aquatilis CIP 78.65
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
ID ANAEROBIC CONDITIONS; RESISTANT BACTERIA; RHIZOSPHERE; PATIENT;
COMMUNITY; SOILS
AB Rahnella aquatilis CIP 78.65 is a gammaproteobacterium isolated from a drinking water source in Lille, France. Here we report the complete genome sequence of Rahnella aquatilis CIP 78.65, the type strain of R. aquatilis.
C1 [Martinez, Robert J.; Sobeckya, Patricia A.] Univ Alabama, Dept Biol Sci, Tuscaloosa, AL 35487 USA.
[Bruce, David; Detter, Chris; Goodwin, Lynne A.; Han, Cliff S.; Held, Brittany; Tapia, Roxanne] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA.
[Han, James; Mikhailova, Natalia; Nolan, Matt; Pennacchio, Len; Pitluck, Sam; Woyke, Tanja] US DOE, Joint Genome Inst, Walnut Creek, CA USA.
[Land, Miriam L.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.
RP Martinez, RJ (reprint author), Univ Alabama, Dept Biol Sci, Tuscaloosa, AL 35487 USA.
EM rmartinez@ua.edu
RI Land, Miriam/A-6200-2011;
OI Land, Miriam/0000-0001-7102-0031; Martinez, Robert/0000-0003-0836-4776
FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231];
U.S. Department of Energy [DE-FG02-04ER63906]
FX The work conducted by the U.S. Department of Energy Joint Genome
Institute is supported by the Office of Science of the U.S. Department
of Energy under contract no. DE-AC02-05CH11231 and U.S. Department of
Energy grant no. DE-FG02-04ER63906.
NR 28
TC 5
Z9 5
U1 2
U2 10
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD JUN
PY 2012
VL 194
IS 11
BP 3020
EP 3021
DI 10.1128/JB.00380-12
PG 2
WC Microbiology
SC Microbiology
GA 944TX
UT WOS:000304227800032
PM 22582378
ER
PT J
AU Medlin, DL
Yang, NYC
AF Medlin, D. L.
Yang, N. Y. C.
TI Interfacial Step Structure at a (0001) Basal Twin in Bi2Te3
SO JOURNAL OF ELECTRONIC MATERIALS
LA English
DT Article
DE Grain boundaries; twins; dislocations; electron microscopy; bismuth
telluride; thermoelectrics
ID CHANNEL ANGULAR EXTRUSION; GRAIN-BOUNDARY STRUCTURES; HEXAGONAL CLOSE
PACKING; N-TYPE; THERMOELECTRIC PROPERTIES; ANNEALING TWINS; ALLOYS;
FILMS; BI; TE
AB At present, little is known concerning the atomic-scale structure of grain boundaries in Bi2Te3 and related thermoelectric materials. As twins are perhaps the simplest possible type of grain boundary, they provide a good starting point for studies of interface structure in this class of materials. Here, we present an electron microscopic study of an interfacial step observed at a (0001) basal twin boundary in Bi2Te3. We discuss the crystallography of defects at twins in Bi2Te3 by considering the geometric implications for differently terminated step arrangements and comparing the defect configurations anticipated for deformation and annealing/growth twins. Finally, we consider the observed defect in this framework and discuss its relationship to analogous features in face-centered-cubic metals, namely the {112}-type interfaces that are commonly observed terminating {111} growth and annealing twins in these materials. This analysis provides insight concerning the relationships of dislocations to twin formation and morphology in Bi2Te3.
C1 [Medlin, D. L.; Yang, N. Y. C.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Medlin, DL (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA.
EM dlmedli@sandia.gov
FU US Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]; Sandia LDRD office
FX Sandia National Laboratories is a multiprogram laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the US Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000. Support for
this work was provided in part by the Sandia LDRD office. The authors
are grateful to Dr. Zhihui Zhang and Professor Enrique Lavernia,
University of California, Davis, for assistance with the spark plasma
sintering, and to Dr. John Bradley for allowing use of the
aberration-corrected Titan microscope at Lawrence Livermore National
Laboratory.
NR 44
TC 5
Z9 5
U1 2
U2 28
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0361-5235
J9 J ELECTRON MATER
JI J. Electron. Mater.
PD JUN
PY 2012
VL 41
IS 6
BP 1456
EP 1464
DI 10.1007/s11664-011-1859-7
PG 9
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Physics, Applied
SC Engineering; Materials Science; Physics
GA 944LZ
UT WOS:000304205100080
ER
PT J
AU Beekman, M
Cogburn, G
Heideman, C
Rouvimov, S
Zschack, P
Neumann, W
Johnson, DC
AF Beekman, M.
Cogburn, G.
Heideman, C.
Rouvimov, S.
Zschack, P.
Neumann, W.
Johnson, D. C.
TI New Layered Intergrowths in the Sn-Mo-Se System
SO JOURNAL OF ELECTRONIC MATERIALS
LA English
DT Article
DE Thermoelectric; intergrowth; semiconductor; synthesis; novel materials;
thin film; modulated elemental reactants
AB Several new metastable layered intergrowths based on tin monoselenide and molybdenum diselenide, [(SnSe)(1+) ] [MoSe2] , have been prepared by self-assembly from elemental nanolaminate precursors deposited by physical vapor deposition. The thin-film specimens were characterized by laboratory x-ray reflectivity and diffraction, synchrotron x-ray diffraction, electron probe microanalysis, and scanning transmission electron microscopy techniques, all of which indicate the formation of intergrowths with precise layering and well-defined composition. Analysis of in-plane diffraction originating from the individual components yields a structural misfit of = 0.06 and suggests turbostratic misorientation of the individual layers. In contrast to most known [(MX)(1+) ] [TX2] -type chalcogenide compounds, electrical transport data for the [(SnSe)(1+) ](1)[MoSe2](1) composition are consistent with semiconducting behavior.
C1 [Beekman, M.; Cogburn, G.; Heideman, C.; Neumann, W.; Johnson, D. C.] Univ Oregon, Dept Chem, Eugene, OR 97403 USA.
[Rouvimov, S.] Portland State Univ, Dept Phys, Portland, OR 97207 USA.
[Zschack, P.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Beekman, M.] Oregon Inst Technol, Dept Nat Sci, Klamath Falls, OR USA.
[Heideman, C.] Eastern Oregon Univ, Dept Chem & Biochem, La Grande, OR USA.
RP Beekman, M (reprint author), Univ Oregon, Dept Chem, Eugene, OR 97403 USA.
EM matt.beekman@oit.edu; davej@uoregon.edu
RI Beekman, Matt/I-4470-2014
OI Beekman, Matt/0000-0001-9694-2286
FU National Science Foundation [DMR 0103409, CHE-0847970]; ONR
[N00014-07-0358]; US Department of Energy, Office of Science, Office of
Basic Energy Sciences [W-31-109-ENG-38]
FX The authors thank Jenia Karapetrova for assistance in synchrotron XRD
data collection, John Donavon for assistance in EPMA data collection,
and Dr. Michael Anderson and Dr. Ian Anderson for preliminary TEM data
collection. This research was funded by the National Science Foundation
under Grants DMR 0103409 and CCI Grant Number CHE-0847970 and by ONR
Grant No. N00014-07-0358. Research at the Advanced Photon Source was
supported by the US Department of Energy, Office of Science, Office of
Basic Energy Sciences, under Contract No. W-31-109-ENG-38.
NR 12
TC 19
Z9 19
U1 4
U2 92
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0361-5235
J9 J ELECTRON MATER
JI J. Electron. Mater.
PD JUN
PY 2012
VL 41
IS 6
BP 1476
EP 1480
DI 10.1007/s11664-012-1971-3
PG 5
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Physics, Applied
SC Engineering; Materials Science; Physics
GA 944LZ
UT WOS:000304205100083
ER
PT J
AU Wu, CI
Todorov, I
Kanatzidis, MG
Timm, E
Case, ED
Schock, H
Hogan, TP
AF Wu, Chun-I
Todorov, Ilyia
Kanatzidis, Mercouri G.
Timm, Edward
Case, Eldon D.
Schock, Harold
Hogan, Timothy P.
TI Thermoelectric Properties of Pulsed Electric Current Sintered Samples of
AgPbmSbSe17 (m=16 or 17)
SO JOURNAL OF ELECTRONIC MATERIALS
LA English
DT Article
DE Thermoelectric materials; lead chalcogenide; pulsed electric current
sintering
ID TEMPERATURE; PERFORMANCE; DEVICES; DENSIFICATION; SRTIO3; GROWTH; MERIT;
PBTE
AB Lead chalcogenide materials have drawn attention in recent years because of their outstanding thermoelectric properties. Bulk -type materials of AgPb SbTe2+ have been reported to exhibit high figure of merit, , as high as 1.7 at 700 K. Recent reports have shown -type lead selenide-based compounds with comparable . The analogous material AgPb SbSe17 shares a similar cubic rock-salt structure with PbTe-based compounds; however, it exhibits a higher melting point, and selenium is more abundant than tellurium. Using solid solution chemistry, we have fabricated cast AgPb15SbSe17 samples that show a peak power factor of approximately 17 W/cm K-2 at 450 K. Increasing the strength of such materials is commonly achieved through powder processing, which also helps to homogenize the source materials. Pulsed electric current sintering (PECS) is a hot-pressing technique that utilizes electric current through the die and sample for direct Joule heating during pressing. The mechanisms present during PECS processing have captured significant research interest and have led to some notable improvements in sample properties compared with other densification techniques. We report the thermoelectric properties of PECS samples of AgPb SbSe17 along with sample fabrication and processing details.
C1 [Wu, Chun-I; Hogan, Timothy P.] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA.
[Todorov, Ilyia; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL USA.
[Timm, Edward; Schock, Harold] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA.
[Case, Eldon D.; Hogan, Timothy P.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA.
[Todorov, Ilyia; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Wu, CI (reprint author), Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA.
EM wuchuni@msu.edu; hogant@egr.msu.edu
FU Revolutionary Materials for Solid State Energy Conversion, an Energy
Frontier Research Center; US Department of Energy, Office of Basic
Energy Science [DE-SC001054]
FX This work is supported as part of the Revolutionary Materials for Solid
State Energy Conversion, an Energy Frontier Research Center funded by
the US Department of Energy, Office of Basic Energy Science under Award
Number DE-SC001054.
NR 22
TC 0
Z9 0
U1 3
U2 19
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0361-5235
J9 J ELECTRON MATER
JI J. Electron. Mater.
PD JUN
PY 2012
VL 41
IS 6
BP 1579
EP 1582
DI 10.1007/s11664-011-1845-0
PG 4
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Physics, Applied
SC Engineering; Materials Science; Physics
GA 944LZ
UT WOS:000304205100100
ER
PT J
AU Biswas, K
Subramanian, MA
Good, MS
Roberts, KC
Hendricks, TJ
AF Biswas, Krishnendu
Subramanian, M. A.
Good, Morris S.
Roberts, Kamandi C.
Hendricks, Terry J.
TI Thermal Cycling Effects on the Thermoelectric Properties of n-Type
In,Ce-Based Skutterudite Compounds
SO JOURNAL OF ELECTRONIC MATERIALS
LA English
DT Article
DE In,Ce-based skutterudites; thermoelectric; thermal cycling; structural
properties
ID PERFORMANCE; EFFICIENCY; MERIT
AB n-Type In-filled CoSb3 is a known skutterudite compound that has shown promising thermoelectric (TE) properties resulting in high dimensionless figure of merit values at elevated temperatures. Use in various waste heat recovery applications will require survival and operation after exposure to harsh thermal cycling environments. This research focused on uncovering the thermal cycling effects on TE properties of -type In0.2Co4Sb12 and In0.2Ce0.15Co4Sb12 skutterudite compositions as well as quantifying their temperature-dependent structural properties (elastic modulus, shear modulus, and Poisson's ratio). It was observed that the Seebeck coefficient and resistivity increased only slightly in the double-filled In,Ce skutterudite materials upon thermal cycling. In the In-filled skutterudites the Seebeck coefficient remained approximately the same on thermal cycling, while the electrical resistivity increased significantly after thermal cycling. Results also show that the thermal conductivity marginally decreases in the case of In-filled skutterudites, whereas the reduction is more pronounced in In,Ce-based skutterudite compounds. The possible reason for this kind of reduction can be attributed to grain pinning effects due to formation of nanoinclusions. High-temperature structural property measurements (i.e., Young's modulus and shear modulus) are also reported. The results show that these structural properties decrease slowly as temperature increases and that the compounds are structurally stable after numerous (up to 200) thermal cycles.
C1 [Biswas, Krishnendu; Subramanian, M. A.] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA.
[Good, Morris S.; Roberts, Kamandi C.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Hendricks, Terry J.] Pacific NW Natl Lab, MicroProd Breakthrough Inst, Corvallis, OR USA.
RP Biswas, K (reprint author), Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA.
EM terry.hendricks@pnl.gov
RI Biswas, Krishnendu/C-1076-2013
FU US Department of Energy (DOE) [DE-AC05-76RL01830]; Office of Vehicle
Technology (OVT); DOE-OVT
FX This manuscript has been authored by Battelle Memorial Institute under
Contract No. DE-AC05-76RL01830 with the U. S. Department of Energy. The
United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government
retains a nonexclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.; The authors
sincerely thank the US Department of Energy (DOE), Office of Vehicle
Technology (OVT), Jerry Gibbs, Propulsion Materials Technology Manager,
DOE-OVT, and John Fairbanks, Thermoelectric Technology Manager, DOE-OVT,
for their support of this research and development. The authors also
thank Don Higgins, Pacific Northwest National Laboratory, MicroProducts
Breakthrough Institute, Corvallis, OR for his invaluable support and
dedication in preparing test samples and performing thermal cycling runs
for this work. The authors also thank Bruce Watson, Pacific Northwest
National Laboratory, Richland, WA for his great efforts in fabricating
the high-temperature structural transducers and structural test chamber
used in this work.
NR 21
TC 3
Z9 3
U1 2
U2 12
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0361-5235
J9 J ELECTRON MATER
JI J. Electron. Mater.
PD JUN
PY 2012
VL 41
IS 6
BP 1615
EP 1621
DI 10.1007/s11664-012-1975-z
PG 7
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Physics, Applied
SC Engineering; Materials Science; Physics
GA 944LZ
UT WOS:000304205100106
ER
PT J
AU Krishnan, S
Karri, NK
Gogna, PK
Chase, JR
Fleurial, JP
Hendricks, TJ
AF Krishnan, Shankar
Karri, Naveen K.
Gogna, Pawan K.
Chase, Jordan R.
Fleurial, Jean-Pierre
Hendricks, Terry J.
TI Progress Towards an Optimization Methodology for Combustion-Driven
Portable Thermoelectric Power Generation Systems
SO JOURNAL OF ELECTRONIC MATERIALS
LA English
DT Article
DE Thermoelectric generator; heat transfer; system analysis
AB There is enormous military and commercial interest in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system