FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Frauenfelder, H
AF Frauenfelder, Hans
TI Giorgio Careri: A physicist in the life sciences
SO JOURNAL OF BIOLOGICAL PHYSICS
LA English
DT Editorial Material
C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, T-6, Los Alamos, NM 87545 USA.
EM frauenfelder@lanl.gov
NR 0
TC 0
Z9 0
U1 0
U2 3
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0092-0606
J9 J BIOL PHYS
JI J. Biol. Phys.
PD JAN
PY 2012
VL 38
IS 1
SI SI
BP 3
EP 3
DI 10.1007/s10867-011-9258-0
PG 1
WC Biophysics
SC Biophysics
GA 898WZ
UT WOS:000300774400002
PM 23277665
ER
PT J
AU Christensen, U
Scheller, HV
AF Christensen, Ulla
Scheller, Henrik Vibe
TI Regulation of (1,3;1,4)-beta-D-glucan synthesis in developing endosperm
of barley lys mutants
SO JOURNAL OF CEREAL SCIENCE
LA English
DT Article
DE Hordeum vulgare; Endosperm; (1,3;1,4)-beta-D-glucan; CSLF
ID HORDEUM-VULGARE; BETA-GLUCAN; GENE FAMILY; CELLULOSE; BIOSYNTHESIS;
ARABIDOPSIS; METHYLATION; EXPRESSION; GRAIN
AB The mechanism behind altered content of (1,3:1,4)-beta-D-glucan was investigated in developing endosperm of barley lys3 and lys5 mutants. Both types of mutants are primarily affected in starch biosynthesis, and hence effects on (1,3;1,4)-beta-D-glucan are likely to be pleiotropic.
The mutant alleles lys5f and lys5g exerted pronounced effects on the cell wall with increased level of (1,3;1,4)-beta-D-glucan content. The low-starch high-(1,3;1,4)-beta-D-glucan phenotype was most pronounced in lys5f. Among the Cellulose Synthase-Like (CSL) gene members belonging to the families CSLF and CSLH, which all encode (1,3;1,4)-beta-D-glucan synthase proteins, CSLF6 was by far the highest expressed in the wild type, whereas both lys5f and lys5g exhibited a decreased level of CSLF6 transcript. Thus, the lys5 mutants have increased (1,3:1,4)-beta-D-glucan level in spite of lower transcript levels. This suggests the presence of a sensing and signaling system in the cell wall, which in the case of the lys5 mutants caused a decreased transcript level in response to the increased (1,3;1,4)-beta-D-glucan levels.
In the lys3a mutant we found a 1000-fold repression of the CSLF6 transcript throughout the whole endosperm development. Thus CSLF6 is under the control of the Lys3 transcriptional regulatory mechanism that operates during barley grain development. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Scheller, Henrik Vibe] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA.
[Christensen, Ulla; Scheller, Henrik Vibe] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA 94608 USA.
[Christensen, Ulla] Univ Copenhagen, Fac Life Sci, Dept Plant Biol & Biotechnol, DK-1871 Copenhagen C, Denmark.
RP Scheller, HV (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, 1 Cyclotron Rd,MS978R4121, Berkeley, CA 94720 USA.
EM hscheller@lbl.gov
FU University of Copenhagen, Faculty of Life Sciences; Office of Science,
Office of Biological and Environmental Research, of the U. S. Department
of Energy [DE-AC02-05CH11231]
FX Charlotte Sorensen, Louise Nancke and Sten Malmmose are thanked for
excellent technical assistance and Drs. Jesper Harholt, Lars Munck and
Graeme Coles for many interesting and motivating conversations. This
work was supported by a fellowship from the University of Copenhagen,
Faculty of Life Sciences, and by the Office of Science, Office of
Biological and Environmental Research, of the U. S. Department of Energy
under Contract No. DE-AC02-05CH11231.
NR 32
TC 7
Z9 7
U1 2
U2 19
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0733-5210
J9 J CEREAL SCI
JI J. Cereal Sci.
PD JAN
PY 2012
VL 55
IS 1
BP 69
EP 76
DI 10.1016/j.jcs.2011.10.005
PG 8
WC Food Science & Technology
SC Food Science & Technology
GA 894ZW
UT WOS:000300467000010
ER
PT J
AU Font-Ribera, A
McDonald, P
Miralda-Escude, J
AF Font-Ribera, Andreu
McDonald, Patrick
Miralda-Escude, Jordi
TI Generating mock data sets for large-scale Lyman-alpha forest correlation
measurements
SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS
LA English
DT Article
DE Lyman alpha forest; redshift surveys; cosmological simulations;
intergalactic media
ID DIGITAL SKY SURVEY; POWER SPECTRUM; FLUCTUATIONS
AB Massive spectroscopic surveys of high-redshift quasars yield large numbers of correlated Ly alpha absorption spectra that can be used to measure large-scale structure. Simulations of these surveys are required to accurately interpret the measurements of correlations and correct for systematic errors. An efficient method to generate mock realizations of Ly alpha forest surveys is presented which generates a field over the lines of sight to the survey sources only, instead of having to generate it over the entire three-dimensional volume of the survey. The method can be calibrated to reproduce the power spectrum and one-point distribution function of the transmitted flux fraction, as well as the redshift evolution of these quantities, and is easily used for modeling any survey systematic effects. We present an example of how these mock surveys are applied to predict the measurement errors in a survey with similar parameters as the BOSS quasar survey in SDSS-III.
C1 [Font-Ribera, Andreu] Inst Ciencies Espai CSIC IEEC, Fac Ciencies, Bellaterra, Catalonia, Spain.
[McDonald, Patrick] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[McDonald, Patrick] Brookhaven Natl Lab, Upton, NY 11375 USA.
[Miralda-Escude, Jordi] Inst Catalana Recerca & Estudis Avancats, Barcelona, Catalonia, Spain.
[Miralda-Escude, Jordi] Inst Ciencies Cosmos UB IEEC, Barcelona, Catalonia, Spain.
RP Font-Ribera, A (reprint author), Inst Ciencies Espai CSIC IEEC, Fac Ciencies, Campus UAB,Torre C5 Parell 2, Bellaterra, Catalonia, Spain.
EM font@ieec.uab.es; pvmcdonald@lbl.gov; miralda@icc.ub.edu
OI Miralda-Escude, Jordi/0000-0002-2316-8370
FU Spanish grant [AYA2009-09745]; Canada Foundation for Innovation; Ontario
Innovation Trust; Ontario Research Fund
FX The simulations in this work were performed on CITA's Sunnyvale clusters
which are funded by the Canada Foundation for Innovation, the Ontario
Innovation Trust, and the Ontario Research Fund. The authors thank Anze
Slosar, Jean-Marc LeGoff and Nicolas Busca for very helpful discussions.
This work was supported in part by Spanish grant AYA2009-09745.
NR 21
TC 19
Z9 19
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1475-7516
J9 J COSMOL ASTROPART P
JI J. Cosmol. Astropart. Phys.
PD JAN
PY 2012
IS 1
AR 001
DI 10.1088/1475-7516/2012/01/001
PG 17
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 894BZ
UT WOS:000300403300001
ER
PT J
AU Lin, QL
Xu, Y
Fu, EG
Baber, S
Bao, ZB
Yu, L
Deng, SG
Kundu, J
Hollingsworth, J
Bauer, E
McCleskey, TM
Burrell, AK
Jia, QX
Luo, HM
AF Lin, Qianglu
Xu, Yun
Fu, Engang
Baber, Stacy
Bao, Zongbi
Yu, Liang
Deng, Shuguang
Kundu, Janardan
Hollingsworth, Jennifer
Bauer, Eve
McCleskey, T. Mark
Burrell, Anthony K.
Jia, Quanxi
Luo, Hongmei
TI Polymer-assisted chemical solution approach to YVO4:Eu nanoparticle
networks
SO JOURNAL OF MATERIALS CHEMISTRY
LA English
DT Article
ID LUMINESCENCE PROPERTIES; COLLOIDAL NANOPARTICLES; YVO4-EU PHOSPHORS;
FABRICATION; DEPOSITION; FILMS; NANOCRYSTALS
AB Phosphor YVO4:Eu nanoparticle networks were synthesized using water soluble ethylenediaminetetraacetic acid (EDTA) and polyethyleneimine (PEI) as binding ligands. The morphology, particle size, BET surface area, and photoluminescence of YVO4:Eu processed at different annealing temperatures (500, 600, 700, and 800 degrees C) and EDTA/PEI mass ratios (1 : 4, 1 : 2.5, 1 : 2, 1 : 1.5, 1 : 1, 2 : 1, and 4 : 1) were determined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, fluorescence spectrophotometer, and N-2 adsorption and desorption. The red emission was observed with increasing the annealing temperature. Importantly, the nanoparticles did not aggregate at high annealing temperatures up to 800 degrees C. The smallest size of the YVO4: Eu nanoparticles is about 18 nm and the surface area is 35 m(2) g(-1) with the EDTA/PEI mass ratios of 1 : 1-2.5.
C1 [Fu, Engang; Kundu, Janardan; Hollingsworth, Jennifer; Bauer, Eve; McCleskey, T. Mark; Burrell, Anthony K.; Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Lin, Qianglu; Xu, Yun; Baber, Stacy; Bao, Zongbi; Yu, Liang; Deng, Shuguang; Luo, Hongmei] New Mexico State Univ, Dept Chem Engn, Las Cruces, NM 88003 USA.
RP Jia, QX (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA.
EM qxjia@lanl.gov; hluo@nmsu.edu
RI Deng, Shuguang/G-5926-2011; Bao, Zongbi/E-9429-2011; McCleskey,
Thomas/J-4772-2012; Dennis, Allison/A-7654-2014; Jia, Q. X./C-5194-2008
OI Deng, Shuguang/0000-0003-2892-3504;
FU NSF/CMMI Nano-Manufacturing [1131290]; New Mexico Consortium; Los Alamos
National Laboratory; NMSU; U.S. Department of Energy, Office of Basic
Energy Sciences user facility at Los Alamos National Laboratory
[DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000]
FX We acknowledge the support from NSF/CMMI Nano-Manufacturing Program
under Grant No. 1131290, New Mexico Consortium, Los Alamos National
Laboratory, and the Interdisciplinary Research Grant (IRG) from NMSU.
This work was performed, in part, at the Center for Integrated
Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy
Sciences user facility at Los Alamos National Laboratory (Contract
DE-AC52-06NA25396) and Sandia National Laboratories (Contract
DE-AC04-94AL85000).
NR 28
TC 12
Z9 12
U1 1
U2 25
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0959-9428
J9 J MATER CHEM
JI J. Mater. Chem.
PY 2012
VL 22
IS 12
BP 5835
EP 5839
DI 10.1039/c2jm15628h
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 899TC
UT WOS:000300838100077
ER
PT J
AU Brown, RS
Pflugrath, BD
Carlson, TJ
Deng, ZD
AF Brown, Richard S.
Pflugrath, Brett D.
Carlson, Thomas J.
Deng, Z. Daniel
TI The effect of an externally attached neutrally buoyant transmitter on
mortal injury during simulated hydroturbine passage
SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY
LA English
DT Article; Proceedings Paper
CT Photovoltaic Technical Conference
CY 2011
CL Aix en Provence, FRANCE
DE acoustic devices; biological techniques; dams; hydraulic turbines;
hydroelectric power stations; transmitters; underwater acoustic
telemetry
ID JUVENILE CHINOOK SALMON; BAROTRAUMA
AB On their seaward migration, juvenile salmonids commonly pass hydroelectric dams. Fish passing through hydroturbines experience a rapid decrease in pressure as they pass by the turbine blade. The severity of this decompression can be highly variable but can result in injuries such as swim bladder rupture, exophthalmia, and emboli and hemorrhaging in the fins and tissues. Recent research indicates that the presence of a telemetry tag (acoustic, radio, inductive) implanted inside the coelom of a juvenile salmon increases the likelihood that the fish will be injured or die during turbine passage. Thus, previous turbine passage survival research conducted using telemetry tags implanted into the coelom of fish may have been inaccurate. Therefore, a new technique is needed to provide unbiased estimates of survival through turbines. This study evaluated the effectiveness of a neutrally buoyant externally attached acoustic transmitter on decompression-stressed juvenile Chinook salmon. Both nontagged fish and fish tagged with a neutrally buoyant external transmitter were exposed to a range of rapid decompressions simulating turbine passage. Juvenile Chinook salmon tagged with a neutrally buoyant externally attached acoustic transmitter did not experience a higher degree of barotrauma-induced injuries than their nontagged counterparts. We suggest that future research include field-based comparisons of survival and behavior among fish tagged with a neutrally buoyant external transmitter and those internally implanted with transmitters. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682062]
C1 [Brown, Richard S.; Pflugrath, Brett D.] Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA.
[Carlson, Thomas J.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA.
[Deng, Z. Daniel] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA.
RP Brown, RS (reprint author), Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA.
EM Rich.Brown@pnnl.gov
RI Deng, Daniel/A-9536-2011
OI Deng, Daniel/0000-0002-8300-8766
NR 18
TC 5
Z9 5
U1 6
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1941-7012
J9 J RENEW SUSTAIN ENER
JI J. Renew. Sustain. Energy
PD JAN 1
PY 2012
VL 4
IS 1
AR 013107
DI 10.1063/1.3682062
PG 7
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels
SC Science & Technology - Other Topics; Energy & Fuels
GA 901GJ
UT WOS:000300951000018
ER
PT J
AU Duan, YH
AF Duan, Yuhua
TI A first-principles density functional theory study of the electronic
structural and thermodynamic properties of M2ZrO3 and M2CO3 (M=Na, K)
and their capabilities for CO2 capture
SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY
LA English
DT Article; Proceedings Paper
CT Photovoltaic Technical Conference
CY 2011
CL Aix en Provence, FRANCE
DE density functional theory; desorption; electronic structure; lattice
dynamics; phonon dispersion relations; potassium compounds; sodium
compounds; thermodynamic properties
ID NEUTRON POWDER DIFFRACTION; CARBON-DIOXIDE SORPTION; LITHIUM ZIRCONATE;
CRYSTAL-STRUCTURE; SODIUM-CARBONATE; NA2ZRO3; ENERGY; CHEMISORPTION;
SEQUESTRATION; ABSORPTION
AB Alkali metal zirconates could be used as solid sorbents for CO2 capture. The structural, electronic, and phonon properties of Na2ZrO3, K2ZrO3, Na2CO3, and K2CO3 are investigated by combining the density functional theory with lattice phonon dynamics. The thermodynamics of CO2 absorption/desorption reactions of these two zirconates are analyzed. The calculated results show that their optimized structures are in a good agreement with experimental measurements. The calculated band gaps are 4.339 eV (indirect), 3.641 eV (direct), 3.935 eV (indirect), and 3.697 eV (direct) for Na2ZrO3, K2ZrO3, Na2CO3, and K2CO3, respectively. The calculated phonon dispersions and phonon density of states for M2ZrO3 and M2CO3 (M=K, Na, Li) revealed that from K to Na to Li, their frequency peaks are shifted to high frequencies due to the molecular weight decreased from K to Li. From the calculated reaction heats and relationships of free energy change versus temperatures and CO2 pressures of the M2ZrO3 (M K, Na, Li) reacting with CO2, we found that the performance of Na2ZrO3 capturing CO2 is similar to that of Li2ZrO3 and is better than that of K2ZrO3. Therefore, Na2ZrO3 and Li2ZrO3 are good candidates of high temperature CO2 sorbents and could be used for post-combustion CO2 capture technologies. [doi:10.1063/1.3683519]
C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
RP Duan, YH (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
EM yuhua.duan@netl.doe.gov
RI Duan, Yuhua/D-6072-2011
OI Duan, Yuhua/0000-0001-7447-0142
NR 50
TC 11
Z9 11
U1 1
U2 38
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1941-7012
J9 J RENEW SUSTAIN ENER
JI J. Renew. Sustain. Energy
PD JAN 1
PY 2012
VL 4
IS 1
AR 013109
DI 10.1063/1.3683519
PG 17
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels
SC Science & Technology - Other Topics; Energy & Fuels
GA 901GJ
UT WOS:000300951000020
ER
PT J
AU Miller, MB
Bing, W
Luebke, DR
Enick, RM
AF Miller, Matthew B.
Bing, Wei
Luebke, David R.
Enick, Robert M.
TI Solid CO2-philes as potential phase-change physical solvents for CO2
SO JOURNAL OF SUPERCRITICAL FLUIDS
LA English
DT Article
DE Binary phase equilibria; Ternary phase equilibria; Carbon dioxide;
Hydrogen; Sugar acetates; Tert-butylated aromatics; Carbon capture
ID SUPERCRITICAL CARBON-DIOXIDE; DISPERSION POLYMERIZATION; PDMS
MACROMONOMER; BETA-CYCLODEXTRIN; SUGAR ACETATES; BINARY-SYSTEM;
SOLUBILITY; BEHAVIOR; POLYMERS; SURFACTANTS
AB The binary phase behavior of mixtures of CO2 and highly CO2-philic solids has been determined at 298 K. The solids include sugar acetates (beta-D-galactose pentaacetate, beta-D-ribofuranose tetraacetate, alpha-D(+)-glucose pentaacetate, D-(+)-sucrose octaacetate), tert-butylated aromatics (2,4-di-tert-butylphenol, 2,6-di-tert-butyl-4-methylphenol, 3,5-di-tert-butylphenol, 1,2,4-triacetoxybenzene), and a highly oxygenated cyclic compound (1,3,5-trioxane). The results are presented in the form of phase behavior (Px) diagrams at 298 K that exhibit either one (vapor-liquid-solid, VLS) or two (vapor-liquid-liquid, VL1L2 and vapor-liquid-solid, VL2S) three-phase equilibrium lines.
Ternary phase behavior at 298 K has also been determined and presented in the form of a pseudo-binary Px diagram for mixtures of an equimolar gas blend of CO2 and H-2 and each of these CO2-philic solids and several other previously identified highly CO2-philic compounds. Only four compounds, sucrose octaacetate, 1,3,5-tri-tert-butylbenzene, 2,4-di-tert-butylbenzene, and 1,3,5-trioxane, melted at 298 K in the presence of the CO2/H-2 mixture at three-phase vapor-liquid-solid pressures ranging between 6 MPa and 10 MPa. These four compounds are candidates for the selective absorption of CO2 from a CO2/H-2 mixture using solid compounds that can melt and selectively absorb CO2. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Miller, Matthew B.; Luebke, David R.; Enick, Robert M.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Miller, Matthew B.; Bing, Wei; Enick, Robert M.] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA.
RP Miller, MB (reprint author), Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
EM mbm35@pitt.edu; weibing1984@gmail.com; david.luebke@NETL.DOE.GOV;
rme@pitt.edu
FU National Energy Technology Laboratory NETL-RUA under RES [DE-FE0004000]
FX This technical effort was performed in support of the National Energy
Technology Laboratory's ongoing research in carbon capture NETL-RUA
program under RES contract DE-FE0004000.
NR 46
TC 1
Z9 2
U1 2
U2 33
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0896-8446
J9 J SUPERCRIT FLUID
JI J. Supercrit. Fluids
PD JAN
PY 2012
VL 61
BP 212
EP 220
DI 10.1016/j.supflu.2011.09.003
PG 9
WC Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 902CC
UT WOS:000301015200027
ER
PT J
AU Tandon, R
Shahin, D
Swiler, TP
AF Tandon, Rajan
Shahin, David
Swiler, Thomas P.
TI Cracking up Fragmentation of an anti-reflective coating
SO MATERIALS TODAY
LA English
DT Editorial Material
C1 [Tandon, Rajan; Swiler, Thomas P.] Sandia Natl Labs, Livermore, CA 94550 USA.
[Shahin, David] Missouri Univ Sci & Technol, Rolla, MO 65409 USA.
RP Tandon, R (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA.
NR 5
TC 0
Z9 0
U1 0
U2 1
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1369-7021
J9 MATER TODAY
JI Mater. Today
PD JAN-FEB
PY 2012
VL 15
IS 1-2
BP 71
EP 71
PG 1
WC Materials Science, Multidisciplinary
SC Materials Science
GA 899SC
UT WOS:000300835400022
ER
PT J
AU Fernandez-Martinez, P
Palomo, FR
Diez, S
Hidalgo, S
Ullan, M
Flores, D
Sorge, R
AF Fernandez-Martinez, P.
Palomo, F. R.
Diez, S.
Hidalgo, S.
Ullan, M.
Flores, D.
Sorge, R.
TI Simulation methodology for dose effects in lateral DMOS transistors
SO MICROELECTRONICS JOURNAL
LA English
DT Article
DE Total ionising dose (TID); Power LDMOS transistors; TCAD simulation;
High energy physics (HEP) experiments; Radiation effects
ID X-RAY; MOS DEVICES; OXIDES; DAMAGE; CO-60; IRRADIATIONS; DISPLACEMENT
AB Due to the increasing interest on laterally diffused MOS (LDMOS) transistors as a part of power electronics in the high energy physics (HEP) experiments, the effect of total ionising dose (TID) on their electrical performances has been experimentally measured. The analysis of the experimental results requires the aid of physics-based simulations to study the impact of TID effects on the LDMOS drift oxide layer. In this work, a simulation methodology is developed in order to analyse the changes in the electric field distribution as a consequence of the TID induced trapped charge, and its relationship with the technological parameters and the bias conditions. The simulation results are compared with the experimental data. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Fernandez-Martinez, P.; Hidalgo, S.; Ullan, M.; Flores, D.] CSIC, CNM, IMB, Barcelona 08193, Spain.
[Palomo, F. R.] Univ Seville, Sch Engn, Dept Elect Engn, Seville 41092, Spain.
[Diez, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Sorge, R.] Innovat High Performance Microelect IHP, D-15236 Frankfurt, Oder, Germany.
RP Fernandez-Martinez, P (reprint author), CSIC, CNM, IMB, Campus UAB, Barcelona 08193, Spain.
EM pablo.fernandez@imb-cnm.csic.es; rogelio@gte.esi.us.es
RI Palomo Pinto, Francisco Rogelio/K-7400-2014; Fernandez-Martinez,
Pablo/I-1193-2015; Ullan, Miguel/P-7392-2015; Hidalgo,
Salvador/B-2649-2012
OI Palomo Pinto, Francisco Rogelio/0000-0002-1147-0812; Fernandez-Martinez,
Pablo/0000-0002-7818-6971; Hidalgo, Salvador/0000-0002-8070-3499
FU Ministerio de Ciencia e Innovacion, Spain [FPA2010-22163-C02-02
(DET4HEP), FPA2009-13234-C04-04]; FEDER
FX This work was partially supported by Ministerio de Ciencia e Innovacion,
Spain, under grants FPA2010-22163-C02-02 (DET4HEP) and
FPA2009-13234-C04-04, and co-financed with FEDER funds.
NR 27
TC 0
Z9 0
U1 0
U2 11
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0026-2692
J9 MICROELECTRON J
JI Microelectron. J.
PD JAN
PY 2012
VL 43
IS 1
BP 50
EP 56
DI 10.1016/j.mejo.2011.10.013
PG 7
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology
SC Engineering; Science & Technology - Other Topics
GA 895FR
UT WOS:000300482100007
ER
PT J
AU Budny, RV
AF Budny, R. V.
TI Alpha heating in ITER L-mode and H-mode plasmas
SO NUCLEAR FUSION
LA English
DT Article
ID TRANSPORT MODEL; DISCHARGES; ABSORPTION; STABILITY
AB Predictions of alpha heating in ITER L-mode and H-mode DT plasmas are generated using the PTRANSP code. The baseline toroidal field (5.3 T), plasma current ramped to 15MA and a flat electron density profile ramped to Greenwald fraction 0.85 are assumed. Various combinations of external heating by negative ion neutral beam injection, ion cyclotron resonance and electron cyclotron resonance are assumed to start half-way up the density ramp with the full power planned (P-ext = 73 MW). 50 s later the power is reduced to 50MW to increase Q(DT), and to prevent excessive heat flow to the divertor and walls as the alpha heating increases. The time evolution of plasma temperatures and bulk toroidal rotation v(phi) are predicted assuming GLF23 and boundary parameters. Conservatively low temperatures (similar or equal to 0.6 keV) and v(phi) similar or equal to 400 rad s(-1) at the boundary (r/a similar or equal to 0.85) are assumed.
Alternative options are used to predict v(phi) and the flow-shearing rates induced by the neutral beam torques in order to assess effects of uncertainties. Option 1 assumes the momentum transport coefficient X-phi is half the energy transport coefficient X-i predicted consistently with the GLF23-predicted temperatures. With this assumption flow shearing does not have large effects on the energy transport, plasma temperatures and alpha heating. Option 2 uses GLF23 to predict v(phi) directly. Higher flow-shearing rates and alpha heating powers are predicted for heating mixes with neutral beam heating. If the L -> H power threshold is twice the ITPA fit then the heating mixes with the highest neutral beam power (and the most alpha heating) transition to H-mode during the density ramp. Other heating mixes remain in L-mode.
Predictions of H-mode temperatures and alpha heating depend sensitively on the assumed pedestal pressures. A scan in pedestal pressures is presented using the more pessimistic option 1. A linear increase in alpha heating with pedestal temperature and pressure is predicted.
C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Budny, RV (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM budny@princeton.edu
FU US Department of Energy [DE-AC02-09CH11466]
FX This work is supported by the US Department of Energy contract
DE-AC02-09CH11466.
NR 34
TC 7
Z9 7
U1 1
U2 7
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JAN
PY 2012
VL 52
IS 1
AR 013001
DI 10.1088/0029-5515/52/1/013001
PG 13
WC Physics, Fluids & Plasmas
SC Physics
GA 897EC
UT WOS:000300625700003
ER
PT J
AU Goldston, RJ
AF Goldston, R. J.
TI Heuristic drift-based model of the power scrape-off width in
low-gas-puff H-mode tokamaks
SO NUCLEAR FUSION
LA English
DT Article
ID ALCATOR C-MOD; DIII-D; ASDEX UPGRADE; PLASMA-FLOW; DIVERTOR TOKAMAKS;
HEAT-FLUX; LAYER; TRANSPORT; EDGE; BOUNDARY
AB A heuristic model for the plasma scrape-off width in low-gas-puff tokamak H-mode plasmas is introduced. Grad B and curv B drifts into the scrape-off layer (SOL) are balanced against near-sonic parallel flows out of the SOL, to the divertor plates. The overall particle flow pattern posited is a modification for open field lines of Pfirsch-Schluter flows to include order-unity sinks to the divertors. These assumptions result in an estimated SOL width of similar to 2a rho(p)/R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, derived above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Harm parallel thermal conduction losses to the divertor. This results in a heuristic closed-form prediction for the power scrape-off width that is in reasonable quantitative agreement both in absolute magnitude and in scaling with recent experimental data. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.
C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Goldston, RJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM rgoldston@pppl.gov
FU US Department of Energy [DE-AC02-09CH11466]
FX The author thanks Thomas Eich, Wojtek Fundamenski, Sergei
Krasheninnikov, Brian LaBombard, Bruce Lipschultz, Vladimir Rozhansky,
Peter Stangeby, the TCV Group, Dennis Whyte and Michael Zarnstorff for
helpful discussions. This research is supported by the US Department of
Energy, under contract DE-AC02-09CH11466.
NR 48
TC 77
Z9 77
U1 3
U2 21
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JAN
PY 2012
VL 52
IS 1
AR 013009
DI 10.1088/0029-5515/52/1/013009
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA 897EC
UT WOS:000300625700011
ER
PT J
AU Hanson, JM
Reimerdes, H
Lanctot, MJ
In, Y
La Haye, RJ
Jackson, GL
Navratil, GA
Okabayashi, M
Sieck, PE
Strait, EJ
AF Hanson, J. M.
Reimerdes, H.
Lanctot, M. J.
In, Y.
La Haye, R. J.
Jackson, G. L.
Navratil, G. A.
Okabayashi, M.
Sieck, P. E.
Strait, E. J.
TI Feedback control of the proximity to marginal RWM stability using active
MHD spectroscopy
SO NUCLEAR FUSION
LA English
DT Article
ID DIII-D TOKAMAK; RESISTIVE WALL MODES; PLASMA ROTATION; STORED ENERGY;
BETA-LIMIT; STABILIZATION; SYSTEM; INSTABILITIES; DISCHARGES; DYNAMICS
AB DIII-D experiments yield the first proof-of-principle results in feedback control of the proximity to the resistive wall mode (RWM) stability boundary using an active MHD spectroscopic stability measurement and neutral beam injection heating. In contrast to calculations of the stability of reconstructed equilibria, the spectroscopic measurement is independent of the assumed RWM stability model. The real-time implementation enables the control system to react to unforeseen changes in plasma parameters and hence stability limits. In the experimentally accessed regime, near but below the ideal-MHD no-wall limit for the n = 1 external kink instability, the control dynamics are described by a linear model that depends on the plasma stored energy. This model is used to aid in optimizing feedback gain settings.
C1 [Hanson, J. M.; Reimerdes, H.; Lanctot, M. J.; Navratil, G. A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
[Hanson, J. M.] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA.
[In, Y.] FAR TECH Inc, San Diego, CA 92121 USA.
[La Haye, R. J.; Jackson, G. L.; Sieck, P. E.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA.
[Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Hanson, JM (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, 2960 Broadway, New York, NY 10027 USA.
EM jmh2130@columbia.edu
RI Lanctot, Matthew J/O-4979-2016
OI Lanctot, Matthew J/0000-0002-7396-3372
FU US Department of Energy (DOE) [DE-AC05-06OR23100, DE-FG02-04ER54761,
DE-AC52-07NA27344, DE-FG02-06ER84442, DE-FC02-04ER54698,
DE-AC02-09CH11466]
FX This research was performed under an appointment to the US Department of
Energy (DOE) Fusion Energy Postdoctoral Research Program administered by
the Oak Ridge Institute for Science and Education under
DE-AC05-06OR23100 between the US Department of Energy and Oak Ridge
Associated Universities, with additional support from the US Department
of Energy under DE-FG02-04ER54761, DE-AC52-07NA27344, DE-FG02-06ER84442,
DE-FC02-04ER54698 and DE-AC02-09CH11466.
NR 37
TC 6
Z9 6
U1 0
U2 7
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JAN
PY 2012
VL 52
IS 1
AR 013003
DI 10.1088/0029-5515/52/1/013003
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA 897EC
UT WOS:000300625700005
ER
PT J
AU James, AN
Austin, ME
Commaux, N
Eidietis, NW
Evans, TE
Hollmann, EM
Humphreys, DA
Hyatt, AW
Izzo, VA
Jernigan, TC
La Haye, RJ
Parks, PB
Strait, EJ
Tynan, GR
Wesley, JC
Yu, JH
AF James, A. N.
Austin, M. E.
Commaux, N.
Eidietis, N. W.
Evans, T. E.
Hollmann, E. M.
Humphreys, D. A.
Hyatt, A. W.
Izzo, V. A.
Jernigan, T. C.
La Haye, R. J.
Parks, P. B.
Strait, E. J.
Tynan, G. R.
Wesley, J. C.
Yu, J. H.
TI Measurements of hard x-ray emission from runaway electrons in DIII-D
SO NUCLEAR FUSION
LA English
DT Article
ID DISRUPTION MITIGATION; D TOKAMAK; ENERGY DISTRIBUTIONS; CURRENT
TERMINATION; CYCLOTRON EMISSION; PLASMA; BREMSSTRAHLUNG; GAS; SYSTEMS;
JT-60U
AB The spatial distribution of runaway electron (RE) strikes to the wall during argon pellet-initiated rapid shutdown of diverted and limited plasma shapes in DIII-D is studied using a new array of hard x-ray (HXR) scintillators. Two plasma configurations were investigated: an elongated diverted H-mode and a low-elongation limited L-mode. HXR emission from MeV level REs generated during the argon pellet injection is observed during the thermal quench (TQ) in diverted discharges from REs lost into the divertor. In limiter discharges, this prompt TQ loss is reduced, suggesting improved TQ confinement of REs in this configuration. During the plateau phase when the plasma current is carried by REs, toroidally symmetric HXR emission from remaining confined REs is seen. Transient HXR bursts during this RE current plateau suggest the presence of a small level of wall losses due to the presence of an unidentified instability. Eventually, an abrupt final loss of the remaining RE current occurs. This final loss HXR emission shows a strong toroidal peaking and a consistent spatiotemporal evolution that suggests the development of a kink instability.
C1 [James, A. N.; Hollmann, E. M.; Izzo, V. A.; Tynan, G. R.; Yu, J. H.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA.
[Austin, M. E.] Univ Texas Austin, Univ Stn 1, Austin, TX 78712 USA.
[Commaux, N.; Jernigan, T. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Eidietis, N. W.; Evans, T. E.; Humphreys, D. A.; Hyatt, A. W.; La Haye, R. J.; Parks, P. B.; Strait, E. J.; Wesley, J. C.] Gen Atom Co, San Diego, CA 92186 USA.
RP James, AN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM jamesan@fusion.gat.com
FU US Department of Energy [DE-FG02-07ER54917, DE-FG02-07ER54912,
DE-FG03-97ER54415, DE-AC05-00OR22725, DE-FC02-04ER54698]
FX This work was supported by the US Department of Energy under
DE-FG02-07ER54917, DE-FG02-07ER54912, DE-FG03-97ER54415,
DE-AC05-00OR22725 and DE-FC02-04ER54698. The authors would like to
acknowledge outstanding support and numerous contributions from the
DIII-D team which enabled these experiments, and especially
contributions of N. Antoniuk, R.A. Moyer, and J.A. Boedo for assistance
troubleshooting experimental hardware.
NR 67
TC 12
Z9 12
U1 1
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JAN
PY 2012
VL 52
IS 1
AR 013007
DI 10.1088/0029-5515/52/1/013007
PG 13
WC Physics, Fluids & Plasmas
SC Physics
GA 897EC
UT WOS:000300625700009
ER
PT J
AU Lundberg, DP
Kaita, R
Majeski, R
AF Lundberg, D. P.
Kaita, R.
Majeski, R.
TI Molecular hydrogen density measurements of short-pulse, high-density
fuelling from a molecular cluster injector
SO NUCLEAR FUSION
LA English
DT Article
ID FREE-JET; BEAM; GAS; TARGET; FLUORESCENCE; TOKAMAK
AB A molecular cluster injector (MCI) has been developed to provide short-pulse, high-density fuelling for the lithium tokamak experiment (LTX). Using an electron-beam fluorescence method, the molecular density profiles produced by the injector are measured with sub-cm spatial resolution. The system, which is cryogenically cooled to promote the formation of molecular clusters, demonstrates a significant increase in molecular density relative to room-temperature supersonic gas injectors. The transient characteristics of short pulses (3-5 ms) are measured with 250 mu s temporal resolution, and the jet shock structure is found to evolve significantly on that time scale. Supplemental measurements with a pressure transducer validate the electron-beam measurements. The measured density profiles are consistent with supersonic flows suitable for producing substantial populations of molecular clusters. The measured densities and flow rates are appropriate for high-density fuelling of LTX plasmas. The MCI will be used to investigate the physics of molecular cluster fuelling of LTX plasmas.
C1 [Lundberg, D. P.; Kaita, R.; Majeski, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Lundberg, DP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM dlundberg@pppl.gov
FU US Department of Energy [DE-AC02-09CH11466]
FX This work was supported by US Department of Energy Contract Number
DE-AC02-09CH11466.
NR 31
TC 2
Z9 2
U1 0
U2 22
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JAN
PY 2012
VL 52
IS 1
AR 013016
DI 10.1088/0029-5515/52/1/013016
PG 10
WC Physics, Fluids & Plasmas
SC Physics
GA 897EC
UT WOS:000300625700018
ER
PT J
AU Medley, SS
Kolesnichenko, YI
Yakovenko, YV
Bell, RE
Bortolon, A
Crocker, NA
Darrow, DS
Diallo, A
Domier, CW
Fonck, RJ
Fredrickson, ED
Gerhardt, SP
Gorelenkov, NN
Kramer, GJ
Kubota, S
LeBlanc, BP
Lee, KC
Mazzucato, E
McKee, GR
Podesta, M
Ren, Y
Roquemore, AL
Smith, DR
Stutman, D
Tritz, K
White, RB
AF Medley, S. S.
Kolesnichenko, Ya. I.
Yakovenko, Yu. V.
Bell, R. E.
Bortolon, A.
Crocker, N. A.
Darrow, D. S.
Diallo, A.
Domier, C. W.
Fonck, R. J.
Fredrickson, E. D.
Gerhardt, S. P.
Gorelenkov, N. N.
Kramer, G. J.
Kubota, S.
LeBlanc, B. P.
Lee, K. C.
Mazzucato, E.
McKee, G. R.
Podesta, M.
Ren, Y.
Roquemore, A. L.
Smith, D. R.
Stutman, D.
Tritz, K.
White, R. B.
TI Investigation of a transient energetic charge exchange flux enhancement
('spike-on-tail') observed in neutral-beam-heated H-mode discharges in
the National Spherical Torus Experiment
SO NUCLEAR FUSION
LA English
DT Article
ID FAST-ION LOSS; EXPERIMENT NSTX; DRIVEN INSTABILITIES; TOKAMAK
EXPERIMENT; PLASMAS; CONFINEMENT; TRANSPORT; PARTICLES; OPERATION;
REACTOR
AB In the National Spherical Torus Experiment (NSTX), a large increase in the charge exchange neutral flux localized around the neutral beam (NB) injection full energy is measured using a neutral particle analyser. Termed the high-energy feature (HEF), it appears on the NB-injected energetic-ion spectrum only in discharges where tearing or kink-type modes (f < 50 kHz) are absent, toroidal Alfven eigenmode activity (f similar to 50-150 kHz) is weak and global Alfven eigenmode (GAE) activity (f similar to 400-1000 kHz) is robust. Compressional Alfven eigenmode activity (f > 1000 kHz) is usually sporadic or absent during the HEF event. The HEF exhibits growth times of Delta t similar to 20-80 ms, durations spanning 100-600 ms and peak-to-base flux ratios up to H = F-max/ F-min similar to 10. In infrequent cases, a slowing-down distribution below the HEF energy can develop that continues to evolve over periods of order 100 ms, a time scale long compared with the typical fast-ion equilibration times. HEFs are observed only in H-mode (not L-mode) discharges with injected power P-b >= 4 MW and in the pitch range chi equivalent to upsilon(parallel to)/upsilon similar to 0.7-0.9; i.e. only for passing particles. Increases of order 10-30% in the measured neutron yield and total stored energy that are observed to coincide with the feature appear to be driven by concomitant broadening of measured T-e(r), T-i(r) and n(e)(r) profiles and not the HEF itself. While the HEF has minimal impact on plasma performance, it nevertheless poses a challenging wave-particle interaction phenomenon to understand. Candidate mechanisms for HEF formation are developed based on quasilinear (QL) theory of wave-particle interaction. The only mechanism found to lead to the large NPA flux ratios, H = F-max/ F-min, observed in NSTX is the QL evolution of the energetic-ion distribution, F-b(E,chi, r), in phase space. A concomitant loss of some particles is observed due to interaction through cyclotron resonance of the particles with destabilized modes having sufficiently high frequencies, f similar to 700-1000 kHz, in the plasma frame that are tentatively identified as GAEs.
C1 [Medley, S. S.; Bell, R. E.; Darrow, D. S.; Diallo, A.; Fredrickson, E. D.; Gerhardt, S. P.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Mazzucato, E.; Podesta, M.; Ren, Y.; Roquemore, A. L.; White, R. B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Kolesnichenko, Ya. I.; Yakovenko, Yu. V.] Inst Nucl Res, UA-03680 Kiev, Ukraine.
[Bortolon, A.] Univ Calif Irvine, Irvine, CA 90095 USA.
[Crocker, N. A.; Kubota, S.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Domier, C. W.; Lee, K. C.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA.
[Fonck, R. J.; McKee, G. R.; Smith, D. R.] Univ Wisconsin Madison, Dept Engn Phys, Madison, WI 53706 USA.
[Stutman, D.; Tritz, K.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
RP Medley, SS (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM medley@pppl.gov
RI White, Roscoe/D-1773-2013; Bortolon, Alessandro/H-5764-2015; Stutman,
Dan/P-4048-2015;
OI White, Roscoe/0000-0002-4239-2685; Bortolon,
Alessandro/0000-0002-0094-0209; Yakovenko, Yuriy/0000-0002-3499-5275
FU US Department of Energy [DE-AC02-09CH11466, DE-FG02-89ER53296,
DE-SC0001288, DE-FG02-06ER54867, DE-FG02-99ER54527, DE-FG02-99ER54518];
Science and Technology Center in Ukraine [4588]
FX This work was supported by the US Department of Energy under Contract No
DE-AC02-09CH11466. This work was partly supported by Project #4588 of
the Science and Technology Center in Ukraine, US DOE Grant Nos
DE-FG02-89ER53296 and DE-SC0001288 (U. Wisconsin-Madison), US DOE Grant
No DE-FG02-06ER54867 (UC Irvine), US DOE Grant No DE-FG02-99ER54527
(UCLA) and US DOE Grant No DE-FG02-99ER54518 (UC Davis).
NR 60
TC 3
Z9 3
U1 0
U2 11
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JAN
PY 2012
VL 52
IS 1
AR 013014
DI 10.1088/0029-5515/52/1/013014
PG 25
WC Physics, Fluids & Plasmas
SC Physics
GA 897EC
UT WOS:000300625700016
ER
PT J
AU Petty, CC
Jayakumar, RJ
Makowski, MA
Holcomb, CT
Humphreys, DA
La Haye, RJ
Luce, TC
Politzer, PA
Prater, R
Wade, MR
Welander, AS
AF Petty, C. C.
Jayakumar, R. J.
Makowski, M. A.
Holcomb, C. T.
Humphreys, D. A.
La Haye, R. J.
Luce, T. C.
Politzer, P. A.
Prater, R.
Wade, M. R.
Welander, A. S.
TI Spatiotemporal changes in the pressure-driven current densities on
DIII-D due to magnetic islands
SO NUCLEAR FUSION
LA English
DT Article
ID NEOCLASSICAL TEARING MODES; CYCLOTRON CURRENT DRIVE; ASDEX UPGRADE;
COMPLETE SUPPRESSION; NONLINEAR GROWTH; CURRENT PROFILES; D TOKAMAK;
PERFORMANCE; DISCHARGES; STABILIZATION
AB Using direct analysis of the motional Stark effect (MSE) signals, an explicit measurement of the `missing' bootstrap current density around the island location of a neoclassical tearing mode (NTM) is made for the first time. When the NTM is suppressed using co-electron cyclotron current drive, the measured changes in the current profile that restore the bootstrap current are also directly found from the MSE measurements. Additionally, direct analysis of helical perturbations in the MSE signals during slowly rotating `quasi-stationary' modes shows the first explicit measurement of the deficit in the toroidal current density in the island O-point.
C1 [Petty, C. C.; Humphreys, D. A.; La Haye, R. J.; Luce, T. C.; Politzer, P. A.; Prater, R.; Wade, M. R.; Welander, A. S.] Gen Atom Co, San Diego, CA 92186 USA.
[Jayakumar, R. J.; Makowski, M. A.; Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Petty, CC (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA.
FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344]
FX This work was supported by the US Department of Energy under
DE-FC02-04ER54698 and DE-AC52-07NA27344.
NR 41
TC 1
Z9 1
U1 0
U2 2
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JAN
PY 2012
VL 52
IS 1
AR 013011
DI 10.1088/0029-5515/52/1/013011
PG 10
WC Physics, Fluids & Plasmas
SC Physics
GA 897EC
UT WOS:000300625700013
ER
PT J
AU Ghaemi, P
Wilczek, F
AF Ghaemi, Pouyan
Wilczek, Frank
TI Near-zero modes in superconducting graphene
SO PHYSICA SCRIPTA
LA English
DT Article; Proceedings Paper
CT Nobel Symposium on Graphene and Quantum Matter
CY MAY 27-31, 2010
CL Saltsjobaden, SWEDEN
ID CONDENSED-MATTER; STATISTICS; GRAPHITE; VORTICES; PARITY; SYSTEM;
STATES; FIELD
AB Vortices in the simplest superconducting state of graphene contain very-low-energy excitations whose existence is connected to an index theorem that applies strictly to an approximate form of the relevant Bogoliubov-de Gennes equations. When Zeeman interactions are taken into account, the zero modes required by the index theorem are (slightly) displaced. Thus, the vortices acquire internal structure, which plausibly supports interesting dynamical phenomena.
C1 [Ghaemi, Pouyan] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Ghaemi, Pouyan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Wilczek, Frank] MIT, Ctr Theoret Phys, Dept Phys, Cambridge, MA 02139 USA.
RP Ghaemi, P (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM pouyan@berkeley.edu
NR 26
TC 18
Z9 18
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0031-8949
J9 PHYS SCRIPTA
JI Phys. Scr.
PD JAN
PY 2012
VL T146
AR 014019
DI 10.1088/0031-8949/2012/T146/014019
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 895OD
UT WOS:000300504800020
ER
PT J
AU Uchoa, B
Reed, JP
Gan, Y
Joe, YI
Fradkin, E
Abbamonte, P
Casa, D
AF Uchoa, Bruno
Reed, James P.
Gan, Yu
Joe, Young Il
Fradkin, Eduardo
Abbamonte, Peter
Casa, Diego
TI The electron many-body problem in graphene
SO PHYSICA SCRIPTA
LA English
DT Article; Proceedings Paper
CT Nobel Symposium on Graphene and Quantum Matter
CY MAY 27-31, 2010
CL Saltsjobaden, SWEDEN
ID SUSPENDED GRAPHENE; DYNAMICS
AB We give a brief summary of the current status of the electron many-body problem in graphene. We claim that graphene has intrinsic dielectric properties which should dress the interactions among the quasiparticles, and may explain why the observation of electron-electron renormalization effects has been so elusive in the recent experiments. We argue that the strength of Coulomb interactions in graphene may be characterized by an effective fine structure constant given by alpha(star) (k, omega) equivalent to 2.2/epsilon(k, omega), where epsilon(k, omega) is the dynamical dielectric function. At long wavelengths, alpha(star) (k, omega) appears to have its smallest value in the static regime, where alpha(star) (k -> 0, 0) approximate to 1/7 according to recent inelastic x-ray measurements, and the largest value in the optical limit, where alpha(star) (0, omega) approximate to 2.6. We conclude that the strength of Coulomb interactions in graphene is not universal, but is highly dependent on the scale of the phenomenon of interest. We propose a prescription in order to reconcile different experiments.
C1 [Uchoa, Bruno; Reed, James P.; Gan, Yu; Joe, Young Il; Fradkin, Eduardo; Abbamonte, Peter] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Uchoa, Bruno; Reed, James P.; Gan, Yu; Joe, Young Il; Fradkin, Eduardo; Abbamonte, Peter] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA.
[Casa, Diego] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Uchoa, B (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
RI Fradkin, Eduardo/B-5612-2013; Casa, Diego/F-9060-2016;
OI Fradkin, Eduardo/0000-0001-6837-463X
NR 29
TC 2
Z9 2
U1 0
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0031-8949
EI 1402-4896
J9 PHYS SCRIPTA
JI Phys. Scr.
PD JAN
PY 2012
VL T146
AR 014014
DI 10.1088/0031-8949/2012/T146/014014
PG 6
WC Physics, Multidisciplinary
SC Physics
GA 895OD
UT WOS:000300504800015
ER
PT J
AU Benisti, D
Yampolsky, NA
Fisch, NJ
AF Benisti, Didier
Yampolsky, Nikolai A.
Fisch, Nathaniel J.
TI Comparisons between nonlinear kinetic modelings of simulated Raman
scattering using envelope equations
SO PHYSICS OF PLASMAS
LA English
DT Article
ID PLASMA-WAVES; INSTABILITIES
AB In this paper, we compare two recent models [N. A. Yampolsky and N. J. Fisch, Phys. Plasmas 16, 072104 (2009); D. Benisti, D. J. Strozzi, L. Gremillet, and O. Morice, Phys. Rev. Lett. 103, 155002 (2009)] introduced to predict the nonlinear growth of stimulated Raman scattering in the kinetic regime, and providing moreover a nonlinear description of the collisionless, Landau-like, damping rate of the driven electron plasma wave. We first recall the general theoretical framework common to these two models, based on the derivation of the imaginary part of the electron susceptibility, vi, and then discuss in detail why the two approaches differ. By comparing the theoretical predictions for vi to those derived from test particle or Vlasov simulations, we moreover discuss the range of validity of the two models. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677264]
C1 [Benisti, Didier] CEA, DIF, DAM, F-91297 Arpajon, France.
[Yampolsky, Nikolai A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Fisch, Nathaniel J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
RP Benisti, D (reprint author), CEA, DIF, DAM, F-91297 Arpajon, France.
EM didier.benisti@cea.fr
RI Yampolsky, Nikolai/A-7521-2011
NR 21
TC 11
Z9 11
U1 0
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JAN
PY 2012
VL 19
IS 1
AR 013110
DI 10.1063/1.3677264
PG 9
WC Physics, Fluids & Plasmas
SC Physics
GA 901IF
UT WOS:000300957400066
ER
PT J
AU Burgos, JMM
Schmitz, O
Loch, SD
Ballance, CP
AF Burgos, J. M. Munoz
Schmitz, O.
Loch, S. D.
Ballance, C. P.
TI Hybrid time dependent/independent solution for the He I line ratio
temperature and density diagnostic for a thermal helium beam with
applications in the scrape-off layer-edge regions in tokamaks
SO PHYSICS OF PLASMAS
LA English
DT Article
ID RATE COEFFICIENTS; PLASMAS; RECOMBINATION; EMISSION; POPULATIONS;
EXCITATION; SCATTERING; STATE; IONS
AB Spectroscopic studies of line emission intensities and ratios offer an attractive option in the development of non-invasive plasma diagnostics. Evaluating ratios of selected He I line emission profiles from the singlet and triplet neutral helium spin systems allows for simultaneous measurement of electron density (n(e)) and temperature (T-e) profiles. Typically, this powerful diagnostic tool is limited by the relatively long relaxation times of the S-3 metastable term of helium that populates the triplet spin system, and on which electron temperature sensitive lines are based. By developing a time dependent analytical solution, we model the time evolution of the two spin systems. We present a hybrid time dependent/independent line ratio solution that improves the range of application of this diagnostic technique in the scrape-off layer (SOL) and edge plasma regions when comparing it against the current equilibrium line ratio helium model used at TEXTOR. (c) 2012 American Institute of Physics. [doi:10.1063/1.3672230]
C1 [Burgos, J. M. Munoz] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA.
[Schmitz, O.] Forschungszentrum Julich, Assoc EURATOM FZJ, Inst Energieforsch Plasmaphys, D-52425 Julich, Germany.
[Loch, S. D.; Ballance, C. P.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA.
RP Burgos, JMM (reprint author), Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA.
EM munozj@fusion.gat.com; o.schmitz@fz-juelich.de; loch@physics.auburn.edu;
ballance@physics.auburn.edu
FU US Department of Energy [DE-AC05-06OR23100, DE-FC02-04ER54698]; atomic
physics group at Auburn University; ADAS consortium
FX This work was supported in part by the US Department of Energy under
DE-AC05-06OR23100 and DE-FC02-04ER54698. The authors wish to acknowledge
the support of the atomic physics group at Auburn University, the ADAS
consortium, the support of Yuhong Xu for his work in the TEXTOR fast
probe data, Mikhael Kantor for the TEXTOR edge Thomson data
contribution, and Nicolas Commaux for his help preparing some of the
figures.
NR 27
TC 14
Z9 14
U1 0
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JAN
PY 2012
VL 19
IS 1
AR 012501
DI 10.1063/1.3672230
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA 901IF
UT WOS:000300957400040
ER
PT J
AU Ellison, CL
Raitses, Y
Fisch, NJ
AF Ellison, C. L.
Raitses, Y.
Fisch, N. J.
TI Cross-field electron transport induced by a rotating spoke in a
cylindrical Hall thruster
SO PHYSICS OF PLASMAS
LA English
DT Article
ID PLASMA-OSCILLATIONS; CLOSED DRIFT; ACCELERATION; DIFFUSION; DISCHARGE
AB Rotating spoke phenomena have been observed in a variety of Hall thruster and other E x B devices. It has been suggested that the spoke may be associated with the enhancement of the electron cross-field transport. In this paper, the current conducted across the magnetic field via a rotating spoke has been directly measured for the first time in the E x B discharge of a cylindrical Hall thruster. The spoke current was measured using a segmented anode. Synchronized measurements with a high speed camera and a four-segment anode allow observation of the current as a function of time and azimuthal position. Upwards of 50% of the total current is conducted through the spoke, which occupies a quarter of the Hall thruster channel area. To determine the transport mechanism, emissive and Langmuir probes were installed to measure fluctuating plasma potential, electron density, and temperature. A perturbed, azimuthal electric field and density are observed to oscillate in-phase with the rotating spoke. The resulting drift current is found to enhance electron transport with a magnitude equal to the spoke current to within margins of error. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3671920]
C1 [Ellison, C. L.; Raitses, Y.; Fisch, N. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Ellison, CL (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
FU DOE; U.S. Department of Energy [DE-AC02-09CH11466]; Air Force Office of
Scientific Research (AFOSR)
FX The authors would like to thank J. Parker, M. Griswold, J. C. Gayoso, J.
P. Sheehan, K. Matyash and R. Schneider for their assistance and helpful
discussions. This work was performed under the support of a DOE-Fusion
Energy Sciences Fellowship. This manuscript has been authored by
Princeton University and collaborators under Contract Number
DE-AC02-09CH11466 with the U.S. Department of Energy with additional
support from the Air Force Office of Scientific Research (AFOSR).
NR 35
TC 38
Z9 38
U1 5
U2 29
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JAN
PY 2012
VL 19
IS 1
AR 013503
DI 10.1063/1.3671920
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA 901IF
UT WOS:000300957400074
ER
PT J
AU Krasheninnikova, NS
Finnegan, SM
Schmitt, MJ
AF Krasheninnikova, Natalia S.
Finnegan, Sean M.
Schmitt, Mark J.
TI An initial assessment of three-dimensional polar direct drive capsule
asymmetries for implosions at the National Ignition Facility
SO PHYSICS OF PLASMAS
LA English
DT Article
ID INERTIAL CONFINEMENT FUSION; RAYLEIGH-TAYLOR GROWTH; LASER-DRIVEN;
SPECTRAL DISPERSION; TARGETS; OMEGA; INSTABILITY; UNIFORMITY; STABILITY;
LIGHT
AB The National Ignition Facility (NIF) provides a unique opportunity to study implosion physics with nuclear yield. The use of polar direct drive (PDD) [A. M. Cok, R. S. Craxton, and P. W. McKenty, Phys. Plasmas 15, 082705 (2008)] provides a simple platform for the experimental studies without expensive optics upgrades to NIF. To determine the optimum PDD laser pointing geometry on NIF and provide a baseline for validating inertial confinement fusion codes against experiments for symmetric and asymmetric implosions, computer simulations using the 3D radiation-hydrodynamics code HYDRA [M. M. Marinak, R. E. Tipton, O. L. Landen, T. J. Murphy, P. Amendt, S. W. Haan, S. P. Hatchett, C. J. Keane, R. McEachern, and R. Wallace, Phys. Plasmas 3, 2070 (1996)] were preformed. The upper hemisphere of a DT-filled CH capsule was imploded by 96 NIF beams in a PDD configuration. Asymmetries in both polar and equatorial directions around the capsule were observed, with the former dominating the latter. Analysis of the simulation results indicates that the lack of symmetry in the initial power density profile (during the first 200 ps of the implosion) is a primary cause of late-time asymmetry in the implosion as well as decreased yield. By adjusting the laser pointings, the symmetry and total neutron yield were improved. Simulations with dropped quads (four of the NIF laser system's 192 beamlines) without repointing worsen the overall symmetry by a factor of 10 (with respect to rms radial variation around the capsule) and reduce neutron yield by a factor of 2. Both of these degraded implosion characteristics are restored by azimuthal repointing of the remaining quads. [doi:10.1063/1.3671972]
C1 [Krasheninnikova, Natalia S.; Schmitt, Mark J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Finnegan, Sean M.] Off Fus Energy Sci, Germantown, MD 20874 USA.
RP Krasheninnikova, NS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RI Lujan Center, LANL/G-4896-2012;
OI Schmitt, Mark/0000-0002-0197-9180
FU US DOE/NNSA; LANS LLC [DE-AC52-06NA25396]
FX This research was supported by US DOE/NNSA, performed at LANL, operated
by LANS LLC under Contract No. DE-AC52-06NA25396. The authors are
extremely grateful to Marty Marinak and the rest of the HYDRA team for
making their code available to us to perform this work. We also would
like to express our gratitude to Larry Suter and Ines Heinz for
facilitating computational access to HYDRA.
NR 46
TC 10
Z9 11
U1 0
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JAN
PY 2012
VL 19
IS 1
AR 012702
DI 10.1063/1.3671972
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA 901IF
UT WOS:000300957400050
ER
PT J
AU Lemons, DS
AF Lemons, Don S.
TI Pitch angle scattering of relativistic electrons from stationary
magnetic waves: Continuous Markov process and quasilinear theory
SO PHYSICS OF PLASMAS
LA English
DT Article
ID GEOMAGNETIC STORMS; FIELD; MAGNETOSPHERE; DIFFUSION
AB We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density-a regime that may govern pitch angle scattering of high-energy electrons into the geomagnetic loss cone. (c) 2012 American Institute of Physics. [doi:10.1063/1.3676156]
C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Lemons, DS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
NR 24
TC 3
Z9 3
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JAN
PY 2012
VL 19
IS 1
AR 012306
DI 10.1063/1.3676156
PG 10
WC Physics, Fluids & Plasmas
SC Physics
GA 901IF
UT WOS:000300957400030
ER
PT J
AU Saito, S
Gary, SP
AF Saito, S.
Gary, S. Peter
TI Beta dependence of electron heating in decaying whistler turbulence:
Particle-in-cell simulations
SO PHYSICS OF PLASMAS
LA English
DT Article
ID SOLAR-WIND; MAGNETOHYDRODYNAMIC TURBULENCE; DISSIPATION RANGE; WAVE
TURBULENCE; MAGNETIC-FIELD; FLUCTUATIONS; ANISOTROPY; CASCADE; SCALES
AB Two-dimensional particle-in-cell simulations have been carried out to study electron beta dependence of decaying whistler turbulence and electron heating in a homogeneous, collisionless magnetized plasma. Initially, applied whistler fluctuations at relatively long wavelengths cascade their energy into shorter wavelengths. This cascade leads to whistler turbulence with anisotropic wavenumber spectra which are broader in directions perpendicular to the background magnetic field than in the parallel direction. Comparing the development of whistler turbulence at different electron beta values, it is found that both the wavenumber spectrum anisotropy and electron heating anisotropy decrease with increasing electron beta. This indicates that higher electron beta reduces the perpendicular energy cascade of whistler turbulence. Fluctuation energy dissipation by electron Landau damping responsible for the electron parallel heating becomes weaker at higher electron beta, which leads to more isotropic heating. It suggests that electron kinetic processes are important in determining the properties of whistler turbulence. This kinetic property is applied to discuss the generation of suprathermal strahl electron distributions in the solar wind. (c) 2012 American Institute of Physics. [doi:10.1063/1.3676155]
C1 [Saito, S.] Natl Inst Informat & Commun Technol, Koganei, Tokyo 1848795, Japan.
[Gary, S. Peter] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Saito, S (reprint author), Natl Inst Informat & Commun Technol, 4-2-1 Nukui Kitamachi, Koganei, Tokyo 1848795, Japan.
EM ssaito@nict.go.jp; pgary@lanl.gov
FU Japan Society for the Promotion of Science [21740353]; U.S. Department
of Energy (DOE); National Aeronautics and Space Administration
FX This work was supported by Grant-in-Aid for Young Scientists (B) Grant
No. 21740353 from Japan Society for the Promotion of Science. The Los
Alamos portion of this work was performed under the auspices of the U.S.
Department of Energy (DOE). It was supported by the Solar and
Heliospheric Physics SR&T and Heliophysics Guest Investigators Programs
of the National Aeronautics and Space Administration.
NR 25
TC 16
Z9 16
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JAN
PY 2012
VL 19
IS 1
AR 012312
DI 10.1063/1.3676155
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA 901IF
UT WOS:000300957400036
ER
PT J
AU Schroeder, CB
Benedetti, C
Esarey, E
Gruner, FJ
Leemans, WP
AF Schroeder, C. B.
Benedetti, C.
Esarey, E.
Gruener, F. J.
Leemans, W. P.
TI Particle beam self-modulation instability in tapered and inhomogeneous
plasma
SO PHYSICS OF PLASMAS
LA English
DT Article
ID ACCELERATION; ELECTRONS
AB The particle beam self-modulation instability in tapered and inhomogeneous plasmas is analyzed via an evolution equation for the beam radius. For a sufficiently fast taper, the instability is suppressed, and the condition for growth suppression is derived. The form of the taper to phase lock a trailing witness bunch in the plasma wave driven by a self-modulated beam is determined, which can increase the energy gain by several orders of magnitude. Growth of the instability places stringent constraints on the initial background plasma density fluctuations. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677358]
C1 [Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Gruener, F. J.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany.
RP Schroeder, CB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RI Gruner, Florian/M-1212-2016;
OI Gruner, Florian/0000-0001-8382-9225; Schroeder, Carl/0000-0002-9610-0166
FU Office of Science, Office of High Energy Physics, of the U.S. Department
of Energy [DE-AC02-05CH11231]
FX This work was supported by the Director, Office of Science, Office of
High Energy Physics, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 14
TC 15
Z9 15
U1 3
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JAN
PY 2012
VL 19
IS 1
AR 010703
DI 10.1063/1.3677358
PG 4
WC Physics, Fluids & Plasmas
SC Physics
GA 901IF
UT WOS:000300957400003
ER
PT J
AU Seguin, FH
Li, CK
Manuel, JE
Rinderknecht, HG
Sinenian, N
Frenje, JA
Rygg, JR
Hicks, DG
Petrasso, RD
Delettrez, J
Betti, R
Marshall, FJ
Smalyuk, VA
AF Seguin, F. H.
Li, C. K.
Manuel, J. -E.
Rinderknecht, H. G.
Sinenian, N.
Frenje, J. A.
Rygg, J. R.
Hicks, D. G.
Petrasso, R. D.
Delettrez, J.
Betti, R.
Marshall, F. J.
Smalyuk, V. A.
TI Time evolution of filamentation and self-generated fields in the coronae
of directly driven inertial-confinement fusion capsules
SO PHYSICS OF PLASMAS
LA English
DT Article
ID LASER-PLASMA INTERACTION; RHO-R; PROTON RADIOGRAPHY; OMEGA LASER;
IMPLOSIONS; NONUNIFORMITY; INSTABILITY; TRANSPORT; TARGETS
AB Time-gated radiography with monoenergetic 15-MeV protons, 3-MeV protons, and 4-MeV alpha particles has revealed a rich and complex evolution of electromagnetic field structures in and around imploding, directly driven inertial-confinement fusion (ICF) targets at the OMEGA laser facility. Plastic-shell capsules and solid plastic spheres were imaged during and after irradiation with ICF-relevant laser drive (up to 6 x 10(14) W/cm(2)). Radial filaments appeared while the laser was on; they filled, and were frozen into, the out-flowing corona, persisting until well after the end of the laser drive. Data from specially designed experiments indicate that the filaments were not generated by two-plasmon-decay instabilities or by Rayleigh-Taylor instabilities associated with shell acceleration. Before the onset of visible filamentation, quasi-spherical field structures appeared outside the capsule in the images in a form that suggests outgoing shells of net positive charge. We conjecture that these discrete shells are related to multiple peaks seen previously in the spectra of protons ablated from the targets. (c) 2012 American Institute of Physics. [doi:10.1063/1.3671908]
C1 [Seguin, F. H.; Li, C. K.; Manuel, J. -E.; Rinderknecht, H. G.; Sinenian, N.; Frenje, J. A.; Rygg, J. R.; Hicks, D. G.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
[Delettrez, J.; Betti, R.; Marshall, F. J.; Smalyuk, V. A.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA.
[Betti, R.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA.
[Betti, R.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA.
[Rygg, J. R.; Hicks, D. G.; Smalyuk, V. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Seguin, FH (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
RI Hicks, Damien/B-5042-2015; Manuel, Mario/L-3213-2015;
OI Hicks, Damien/0000-0001-8322-9983; Manuel, Mario/0000-0002-5834-1161;
/0000-0003-4969-5571
FU Laboratory for Laser Energetics (LLE) National Laser User's Facility
[DE-FG03-03SF22691]; Fusion Science Center at the University of
Rochester [412761-G]
FX This work was supported in part by the Laboratory for Laser Energetics
(LLE) National Laser User's Facility (DE-FG03-03SF22691) and the Fusion
Science Center at the University of Rochester (412761-G). We thank
General Atomics for the fabrication of targets; the operations staff and
Michelle Burke at LLE for their help with the experiments; and Jocelyn
Schaeffer at MIT for data processing. In addition, an anonymous referee
provided very useful suggestions.
NR 34
TC 16
Z9 16
U1 1
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JAN
PY 2012
VL 19
IS 1
AR 012701
DI 10.1063/1.3671908
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA 901IF
UT WOS:000300957400049
ER
PT J
AU Velikovich, AL
Giuliani, JL
Zalesak, ST
Thornhill, JW
Gardiner, TA
AF Velikovich, A. L.
Giuliani, J. L.
Zalesak, S. T.
Thornhill, J. W.
Gardiner, T. A.
TI Exact self-similar solutions for the magnetized Noh Z pinch problem
SO PHYSICS OF PLASMAS
LA English
DT Article
ID ARRAY Z-PINCHES; IDEAL MAGNETOHYDRODYNAMICS; 2-DIMENSIONAL SIMULATIONS;
RADIATION TRANSPORT; INSTABILITY; FLUX; FLOW; MHD; HYDRODYNAMICS;
IMPLOSIONS
AB A self-similar solution is derived for a radially imploding cylindrical plasma with an embedded, azimuthal magnetic field. The plasma stagnates through a strong, outward propagating shock wave of constant velocity. This analysis is an extension of the classic Noh gasdynamics problem to its ideal magnetohydrodynamics (MHD) counterpart. The present exact solution is especially suitable as a test for MHD codes designed to simulate linear Z pinches. To demonstrate the application of the new solution to code verification, simulation results from the cylindrical R-Z version of Mach2 and the 3D Cartesian code Athena are compared against the analytic solution. Alternative routines from the default ones in Athena lead to significant improvement of the results, thereby demonstrating the utility of the self-similar solution for verification. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3678213]
C1 [Velikovich, A. L.; Giuliani, J. L.; Thornhill, J. W.] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA.
[Zalesak, S. T.] Berkeley Res Associates Inc, Beltsville, MD 20705 USA.
[Gardiner, T. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Velikovich, AL (reprint author), USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA.
FU National Nuclear Security Administration of DOE; U.S. Department of
Energy's National Nuclear Security Administration [DE-AC04-94AL85000]
FX The authors are grateful to M. Frese of NumerEx for several discussions
on running the Mach2 code and presentation of the resulting solutions
and to E. P. Yu of Sandia National Laboratories for fruitful discussions
of the analytical self-similar solutions. The authors would also like to
thank J. H. Cooley of Los Alamos National Laboratory for initiating our
interest in the problem of an MHD verification tool. The work was
supported by the National Nuclear Security Administration of DOE. Sandia
National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under Contract No. DE-AC04-94AL85000.
NR 47
TC 7
Z9 7
U1 2
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JAN
PY 2012
VL 19
IS 1
AR 012707
DI 10.1063/1.3678213
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA 901IF
UT WOS:000300957400055
ER
PT J
AU Abernathy, DL
Stone, MB
Loguillo, MJ
Lucas, MS
Delaire, O
Tang, X
Lin, JYY
Fultz, B
AF Abernathy, D. L.
Stone, M. B.
Loguillo, M. J.
Lucas, M. S.
Delaire, O.
Tang, X.
Lin, J. Y. Y.
Fultz, B.
TI Design and operation of the wide angular-range chopper spectrometer ARCS
at the Spallation Neutron Source
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID STATE
AB The wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source (SNS) is optimized to provide a high neutron flux at the sample position with a large solid angle of detector coverage. The instrument incorporates modern neutron instrumentation, such as an elliptically focused neutron guide, high speed magnetic bearing choppers, and a massive array of He-3 linear position sensitive detectors. Novel features of the spectrometer include the use of a large gate valve between the sample and detector vacuum chambers and the placement of the detectors within the vacuum, both of which provide a window-free final flight path to minimize background scattering while allowing rapid changing of the sample and sample environment equipment. ARCS views the SNS decoupled ambient temperature water moderator, using neutrons with incident energy typically in the range from 15 to 1500 meV. This range, coupled with the large detector coverage, allows a wide variety of studies of excitations in condensed matter, such as lattice dynamics and magnetism, in both powder and single-crystal samples. Comparisons of early results to both analytical and Monte Carlo simulation of the instrument performance demonstrate that the instrument is operating as expected and its neutronic performance is understood. ARCS is currently in the SNS user program and continues to improve its scientific productivity by incorporating new instrumentation to increase the range of science covered and improve its effectiveness in data collection. CD 2012 American Institute of Physics. [doi:10.1063/1.3680104]
C1 [Abernathy, D. L.; Stone, M. B.; Loguillo, M. J.; Lucas, M. S.; Delaire, O.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Tang, X.; Lin, J. Y. Y.; Fultz, B.] CALTECH, Pasadena, CA 91125 USA.
RP Abernathy, DL (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM abernathydl@ornl.gov
RI Stone, Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012; Lin,
Jiao/A-2529-2016; BL18, ARCS/A-3000-2012
OI Stone, Matthew/0000-0001-7884-9715; Abernathy,
Douglas/0000-0002-3533-003X; Lin, Jiao/0000-0001-9233-0100;
FU DOE [DE-FG02-01ER45950, DE-AC05-000R22725]; Scientific User Facilities
Division, Office of Basic Energy Sciences, DOE
FX The ARCS project was only made possible by the support of numerous
colleagues at the SNS, Caltech and the IDT members. In particular,
expert design work was provided by K. Shaw and S. Howard, outstanding
support for neutronic calculations by E. Iverson, and excellent project
management by P. Albertson and B. Thibadeau. Many essential discussions
were held with J. Ankner, J. Carpenter, G. Ehlers, G. Granroth, M.
Hagen, and K. Herwig. We acknowledge T. Kelley for his work on creating
the early version of the reduction software, and M. Aivazis for his
guidance on software architecture and design. We thank D. Mikkelson, R.
Mikkelson, and A. Schultz for developing the ISAW handling of ARCS data.
A. Kolesnikov graciously provided the idea and sample for the
C4H2I2S measurement. Data for the
liquid 4He measurement were provided by S. Diallo, R. Azuah
and H. Glyde. Data for the FeSi single crystal measurements were
provided by O. Delaire. ARCS was supported by the DOE under Grant No.
DE-FG02-01ER45950. ORNL/SNS is managed by UT-Battelle, LLC, for the DOE
under Contract No. DE-AC05-000R22725. Research at the SNS was sponsored
by the Scientific User Facilities Division, Office of Basic Energy
Sciences, DOE.
NR 48
TC 77
Z9 77
U1 1
U2 24
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD JAN
PY 2012
VL 83
IS 1
AR 015114
DI 10.1063/1.3680104
PG 11
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 896TS
UT WOS:000300594900072
PM 22299993
ER
PT J
AU Islam, Z
Ruff, JPC
Ross, KA
Nojiri, H
Gaulin, BD
AF Islam, Zahirul
Ruff, Jacob P. C.
Ross, Kate A.
Nojiri, Hiroyuki
Gaulin, Bruce D.
TI Time-resolved one-dimensional detection of x-ray scattering in pulsed
magnetic fields
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID SYNCHROTRON-RADIATION; LOW-TEMPERATURE; DIFFRACTION
AB We have developed an application of a one-dimensional micro-strip detector for capturing x-ray diffraction data in pulsed magnetic fields. This detector consists of a large array of 50 mu m-wide Si strips with a full-frame read out at 20 kHz. Its use substantially improves data-collection efficiency and quality as compared to point detectors, because diffraction signals are recorded along an arc in reciprocal space in a time-resolved manner. By synchronizing with pulsed fields, the entire field dependence of a two-dimensional swath of reciprocal space may be determined using a small number of field pulses. (C) 2012 American Institute of Physics. [doi:10.1063/1.3675478]
C1 [Islam, Zahirul; Ruff, Jacob P. C.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
[Ross, Kate A.; Gaulin, Bruce D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada.
[Nojiri, Hiroyuki] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 980, Japan.
[Gaulin, Bruce D.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4C6, Canada.
[Gaulin, Bruce D.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada.
RP Islam, Z (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Nojiri, Hiroyuki/B-3688-2011
FU U. S. Department of Energy (DOE), Office of Science [DE-AC02-06CH11357];
International Collaboration Center at the Institute for Materials
Research (ICC-IMR) at Tohoku University; MEXT [23224009]; Natural
Sciences and Engineering Research Council (NSERC) of Canada
FX We appreciate R. Goldsbrough (Quantum Detectors) and A. Micelli (APS)
for technical assistance with the strip detector and its control
software. Use of the APS is supported by the U. S. Department of Energy
(DOE), Office of Science (Contract No. DE-AC02-06CH11357). A part of the
is supported by International Collaboration Center at the Institute for
Materials Research (ICC-IMR) at Tohoku University. H.N. acknowledges
KAKENHI No. 23224009 from MEXT. J.P.C.R., B.D.G., and K.R. acknowledge
the support of Natural Sciences and Engineering Research Council (NSERC)
of Canada.
NR 28
TC 3
Z9 3
U1 0
U2 11
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD JAN
PY 2012
VL 83
IS 1
AR 013113
DI 10.1063/1.3675478
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 896TS
UT WOS:000300594900014
PM 22299935
ER
PT J
AU Moon, GH
Kim, HI
Shin, Y
Choi, W
AF Moon, Gun-hee
Kim, Hyoung-il
Shin, Yongsoon
Choi, Wonyong
TI Chemical-free growth of metal nanoparticles on graphene oxide sheets
under visible light irradiation
SO RSC ADVANCES
LA English
DT Article
ID CARBON NANOTUBES; NANOCOMPOSITES; REDUCTION; NANOSHEETS; SURFACES; WATER
AB In the presence of silver or gold ions, visible light irradiation (> 420 nm) induces the formation of metal nanoparticles on graphene (GO) sheets without the need of any chemical reducing reagents. GO sheets serve as not only a good substrate for dispersion of metal nanoparticles but also a self-reactive material itself for the photo-induced reduction of metal ions.
C1 [Moon, Gun-hee; Choi, Wonyong] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 790784, South Korea.
[Kim, Hyoung-il; Choi, Wonyong] Pohang Univ Sci & Technol POSTECH, Sch Environm Sci & Engn, Pohang 790784, South Korea.
[Shin, Yongsoon] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA.
RP Choi, W (reprint author), Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 790784, South Korea.
EM wchoi@postech.edu
RI Choi, Wonyong/F-8206-2010; Kim, Hyoung-il/D-1053-2014; Moon,
Gun-hee/A-3279-2017
OI Choi, Wonyong/0000-0003-1801-9386; Kim, Hyoung-il/0000-0003-4358-1442;
FU Korea government (MEST through NRF) [R0A-2008-000-20068-0, 2011-0031571,
NRF-2011-C1AAA001-2011-0030278]
FX This work was supported by the Korea government (MEST through NRF)
projects: KOSEF NRL program (No. R0A-2008-000-20068-0); the Global
Frontier R&D Program on Center for Multiscale Energy System
(2011-0031571); the Korea Center for Artificial Photosynthesis (KCAP:
Sogang Univ.) (NRF-2011-C1AAA001-2011-0030278).
NR 31
TC 14
Z9 14
U1 0
U2 15
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2046-2069
J9 RSC ADV
JI RSC Adv.
PY 2012
VL 2
IS 6
BP 2205
EP 2207
DI 10.1039/c2ra00875k
PG 3
WC Chemistry, Multidisciplinary
SC Chemistry
GA 899PN
UT WOS:000300828400004
ER
PT J
AU Dawedeit, C
Kim, SH
Braun, T
Worsley, MA
Letts, SA
Wu, KJ
Walton, CC
Chernov, AA
Satcher, JH
Hamza, AV
Biener, J
AF Dawedeit, Christoph
Kim, Sung Ho
Braun, Tom
Worsley, Marcus A.
Letts, Stephan A.
Wu, Kuang Jen
Walton, Christopher C.
Chernov, Alexander A.
Satcher, Joe H., Jr.
Hamza, Alex V.
Biener, Juergen
TI Tuning the rheological properties of sols for low-density aerogel
coating applications
SO SOFT MATTER
LA English
DT Article
ID POLYMERIZATION; DICYCLOPENTADIENE; FABRICATION; UNIFORMITY; FIREX
AB Coating of cylindrical and spherical surfaces with thin and homogeneous low-density aerogel films requires precise control over viscosity and gel time. If the viscosity is too low, shear forces can damage the growing gel network and prevent the formation of uniform coatings. Using the example of dicyclopentadiene-based polymer gels, we demonstrate that the gelation behaviour can be manipulated by reducing the amount of cross-linking through co-polymerization with a monomer that can only form linear chains. Even small additions of a linear co-polymer (1-10 wt. %) increase the viscosity at the sol-gel transition by several orders of magnitude, and drastically improve the uniformity of gel films formed under the influence of shear. These results are discussed in the context of the classical gel theory.
C1 [Dawedeit, Christoph; Kim, Sung Ho; Braun, Tom; Worsley, Marcus A.; Letts, Stephan A.; Wu, Kuang Jen; Walton, Christopher C.; Chernov, Alexander A.; Satcher, Joe H., Jr.; Hamza, Alex V.; Biener, Juergen] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA.
[Dawedeit, Christoph] Tech Univ Munich, D-85748 Garching, Germany.
RP Dawedeit, C (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA.
RI Worsley, Marcus/G-2382-2014
OI Worsley, Marcus/0000-0002-8012-7727
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; TUM Faculty Graduate Center Mechanical Engineering
at the Technische Universitat Munchen
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. The author gratefully acknowledges the support of the
TUM Faculty Graduate Center Mechanical Engineering at the Technische
Universitat Munchen.
NR 23
TC 11
Z9 11
U1 0
U2 25
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1744-683X
EI 1744-6848
J9 SOFT MATTER
JI Soft Matter
PY 2012
VL 8
IS 13
BP 3518
EP 3521
DI 10.1039/c2sm07396j
PG 4
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Multidisciplinary; Polymer Science
SC Chemistry; Materials Science; Physics; Polymer Science
GA 904LN
UT WOS:000301198100003
ER
PT J
AU Haxton, TK
Whitelam, S
AF Haxton, Thomas K.
Whitelam, Stephen
TI Design rules for the self-assembly of a protein crystal
SO SOFT MATTER
LA English
DT Article
ID PHASE-SEPARATION; CRYSTALLIZATION; NUCLEATION; KINETICS; GROWTH;
SUSPENSIONS; TRANSITION; BEHAVIOR; DIAGRAM; LAYERS
AB Theories of protein crystallization based on spheres that form close-packed crystals predict optimal assembly within a 'slot' of second virial coefficients and enhanced assembly near the metastable liquid-vapor critical point. However, most protein crystals are open structures stabilized by anisotropic interactions. Here, we use theory and simulation to show that assembly of one such structure is not predicted by the second virial coefficient or enhanced by the critical point. Instead, good assembly requires that the thermodynamic driving force be on the order of the thermal energy and that interactions be made as nonspecific as possible without promoting liquid-vapor phase separation.
C1 [Haxton, Thomas K.; Whitelam, Stephen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Whitelam, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
EM swhitelam@lbl.gov
FU Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy [DE-AC02-05CH11231]
FX We thank Caroline Ajo-Franklin, Robert Jack, Behzad Rad, and Jeremy
Schmit for discussions. This work was performed at the Molecular
Foundry, Lawrence Berkeley National Laboratory, used resources of the
National Energy Research Scientific Computing Center, and was supported
by the Director, Office of Science, Office of Basic Energy Sciences, of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 50
TC 25
Z9 25
U1 1
U2 42
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1744-683X
J9 SOFT MATTER
JI Soft Matter
PY 2012
VL 8
IS 13
BP 3558
EP 3562
DI 10.1039/c2sm07436b
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Multidisciplinary; Polymer Science
SC Chemistry; Materials Science; Physics; Polymer Science
GA 904LN
UT WOS:000301198100008
ER
PT J
AU Rosales, AM
Murnen, HK
Kline, SR
Zuckermann, RN
Segalman, RA
AF Rosales, Adrianne M.
Murnen, Hannah K.
Kline, Steven R.
Zuckermann, Ronald N.
Segalman, Rachel A.
TI Determination of the persistence length of helical and non-helical
polypeptoids in solution
SO SOFT MATTER
LA English
DT Article
ID SEQUENCE-SPECIFIC POLYPEPTOIDS; AROMATIC SIDE-CHAINS; SECONDARY
STRUCTURE; PEPTOID OLIGOMERS; LIGHT-SCATTERING; PROTEINS; CIS;
CONFORMATIONS; ISOMERIZATION; POLYMERS
AB Control over the shape of a polymer chain is desirable from a materials perspective because polymer stiffness is directly related to chain characteristics such as liquid crystallinity and entanglement, which in turn are related to mechanical properties. However, the relationship between main chain helicity in novel biologically derived and inspired polymers and chain stiffness (persistence length) is relatively poorly understood. Polypeptoids, or poly(N-substituted glycines), constitute a modular, biomimetic system that enables precise tuning of chain sequence and are therefore a good model system for understanding the interrelationship between monomer structure, helicity, and persistence length. The incorporation of bulky chiral monomers is known to cause main chain helicity in polypeptoids. Here, we show that helical polypeptoid chains have a flexibility nearly identical to an analogous random coil polypeptoid as observed via small angle neutron scattering (SANS). Additionally, our findings show that polypeptoids with aromatic phenyl side chains are inherently flexible with persistence lengths ranging from 0.5 to 1 nm.
C1 [Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Rosales, Adrianne M.; Murnen, Hannah K.; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Kline, Steven R.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
RP Zuckermann, RN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
EM rnzuckermann@lbl.gov; segalman@berkeley.edu
RI Zuckermann, Ronald/A-7606-2014;
OI Zuckermann, Ronald/0000-0002-3055-8860; Segalman,
Rachel/0000-0002-4292-5103
FU Office of Naval Research; National Science Foundation; Department of
Defense; Office of Science, Office of Basic Energy Sciences, U.S.
Department of Energy [DE-AC02-05CH11231]; National Science Foundation
[DMR-0454672]; Office of Biological and Environmental Research; DOE
[DE-AC05-00OR22725]
FX We gratefully acknowledge funding from the Office of Naval Research via
a Presidential Early Career Award in Science and Engineering. A.M.R. and
H.K.M also gratefully acknowledge the National Science Foundation and
the Department of Defense for graduate fellowships (respectively).
Polypeptoid synthesis and associated chemical characterization were
performed at the Molecular Foundry, a Lawrence Berkeley National
Laboratory user facility supported by the Office of Science, Office of
Basic Energy Sciences, U.S. Department of Energy, under Contract
DE-AC02-05CH11231. The neutron scattering in this work is based on
activities at the NIST Center for Neutron Research, which is supported
in part by the National Science Foundation under Agreement No.
DMR-0454672. Certain trade names and company products are identified to
adequately specify the experimental procedure. In no case does such
identification imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the
products are necessarily best for the purpose. A portion of this
research was also performed at Oak Ridge National Laboratory. The
authors thank Dr Volker S. Urban at Oak Ridge National Laboratory for
assistance on SANS data collection. The SANS studies at Oak Ridge
National Laboratory's Center for Structural Molecular Biology were
supported by the Office of Biological and Environmental Research, using
facilities supported by the DOE, managed by UT-Battelle, LLC, under
Contract No. DE-AC05-00OR22725.
NR 38
TC 23
Z9 23
U1 3
U2 49
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1744-683X
J9 SOFT MATTER
JI Soft Matter
PY 2012
VL 8
IS 13
BP 3673
EP 3680
DI 10.1039/c2sm07092h
PG 8
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Multidisciplinary; Polymer Science
SC Chemistry; Materials Science; Physics; Polymer Science
GA 904LN
UT WOS:000301198100022
ER
PT J
AU Gaire, C
Rao, S
Riley, M
Chen, L
Goyal, A
Lee, S
Bhat, I
Lu, TM
Wang, GC
AF Gaire, C.
Rao, S.
Riley, M.
Chen, L.
Goyal, A.
Lee, S.
Bhat, I.
Lu, T. -M.
Wang, G. -C.
TI Epitaxial growth of CdTe thin film on cube-textured Ni by metal-organic
chemical vapor deposition
SO THIN SOLID FILMS
LA English
DT Article
DE Epitaxy; Cadmium telluride; Cube-textured nickel; Metal organic chemical
vapor deposition; X-ray pole figures; Electron backscattered
diffraction; Oriented domains
ID SOLAR-CELLS; SURFACE; SPECTROSCOPY; REDUCTION; INTERFACE; HYDROGEN
AB Single crystal-like CdTe thin film has been grown by metalorganic chemical vapor deposition on cube-textured Ni(100) substrate. Using X-ray pole figure measurements we observed the epitaxial relationship of {111}(CdTe)//{001}(Ni) with [1 (1) over bar0](CdTe)//[010](Ni) and [11 (2) over bar](CdTe)//[100](Ni). The 12 diffraction peaks in the (111) pole figure of CdTe film and their relative positions with respect to the four peak positions in the (111) pole figure of Ni substrate are consistent with four equivalent orientational domains of CdTe with three to four superlattice match of about 1.6% in the [1 (1) over bar0] direction of CdTe and the [010] direction of Ni. The electron backscattered diffraction images show that the CdTe domains are 30 degrees oriented from each other. These high structural quality films may find applications in low cost optoelectronic devices. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Gaire, C.; Chen, L.; Lu, T. -M.; Wang, G. -C.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA.
[Rao, S.; Bhat, I.] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA.
[Riley, M.] Rensselaer Polytech Inst, Dept Chem & Biol Engn, Troy, NY 12180 USA.
[Goyal, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Lee, S.] USA, ARDEC Benet Labs, Watervliet, NY 12189 USA.
RP Wang, GC (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA.
EM wangg@rpi.edu
RI chen, liang/L-9868-2013
OI chen, liang/0000-0002-1680-2628
FU NSF [0506738, 0333314, 0828401]
FX This work was supported by NSF 0506738, NSF 0333314, and NSF 0828401. We
thank Tom Parker for help in experiments.
NR 21
TC 11
Z9 11
U1 0
U2 13
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD JAN 1
PY 2012
VL 520
IS 6
BP 1862
EP 1865
DI 10.1016/j.tsf.2011.09.019
PG 4
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 894WW
UT WOS:000300459200034
ER
PT J
AU Smith, RS
Petrik, NG
Kimmel, GA
Kay, BD
AF Smith, R. Scott
Petrik, Nikolay G.
Kimmel, Greg A.
Kay, Bruce D.
TI Thermal and Nonthermal Physiochemical Processes in Nanoscale Films of
Amorphous Solid Water
SO ACCOUNTS OF CHEMICAL RESEARCH
LA English
DT Review
ID ELECTRON-STIMULATED PRODUCTION; LIQUID WATER; 150 K; CRYSTALLIZATION
KINETICS; MOLECULAR-HYDROGEN; SELF-DIFFUSIVITY; ICE; ENERGY; PT(111);
DESORPTION
AB Amorphous solid water (ASW) is a disordered version of ice created by vapor deposition onto a cold substrate (typically less than 130 K). It has a higher free energy than the crystalline phase of ice, and when heated above its glass transition temperature, it transforms into a metastable supercooled liquid.
This unusual form of water exists on earth only in laboratories, after preparation with highly specialized equipment. It is thus fair to ask why there is any interest in studying such an esoteric material. Much of the scientific interest results from the ability to use ASW as a model system for exploring the physical and reactive properties of liquid water and aqueous solutions. ASW is also thought to be the predominant form of water in the extremely cold temperatures of many interstellar and planetary environments. In addition, ASW is a convenient model system for studying the stability of amorphous and glassy materials as well as the properties of highly porous materials. A fundamental understanding of such properties is invaluable in a diverse range of applications, including cryobiology, food science, pharmaceuticals, astrophysics, and nuclear waste storage, among others.
Over the past 15 years, we have used molecular beams and surface science techniques to probe the thermal and nonthermal properties of nanoscale films of ASW. In this Account, we present a survey of our research on the properties of ASW using this approach. We use molecular beams to precisely control the deposition conditions (flux, incident energy, and incident angle) and create compositionally tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity and diffusivity), we heat the amorphous films above their glass transition temperature, T-g, at which they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near T-g, the viscosity is approximately 15 orders of magnitude larger than that of a normal liquid. As a result, the crystallization kinetics are dramatically slowed, increasing the time available for experiments. For example, near T-g, a water molecule moves less than the distance of a single molecule on a typical laboratory time scale (similar to 1000 s). For this reason, nanoscale films help to probe the behavior and reactions of supercooled liquids at these low temperatures. ASW films can also be used for investigating the nonthermal reactions relevant to radiolysis.
C1 [Smith, R. Scott; Petrik, Nikolay G.; Kimmel, Greg A.; Kay, Bruce D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
RP Smith, RS (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999,Mail Stop K8-88, Richland, WA 99352 USA.
EM Scott.Smith@pnl.gov; Nikolai.Petrik@pnl.gov; Greg.Kimmel@pnl.gov;
Bruce.Kay@pnl.gov
RI Smith, Scott/G-2310-2015; Petrik, Nikolay/G-3267-2015;
OI Smith, Scott/0000-0002-7145-1963; Petrik, Nikolay/0000-0001-7129-0752;
Kimmel, Greg/0000-0003-4447-2440
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences; DOE'S
Office of Biological and Environmental Research [DE-AC05-76RL01830]
FX This work was supported by the U.S. Department of Energy (DOE), Office
of Basic Energy Sciences, Division of Chemical Sciences, Geosciences,
and Biosciences. The research was performed using EMSL, a national
scientific user facility sponsored by DOE'S Office of Biological and
Environmental Research and located at Pacific Northwest National
Laboratory, which is operated by Battelle for the U.S. DOE under
Contract DE-AC05-76RL01830.
NR 51
TC 28
Z9 28
U1 6
U2 53
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0001-4842
J9 ACCOUNTS CHEM RES
JI Accounts Chem. Res.
PD JAN
PY 2012
VL 45
IS 1
SI SI
BP 33
EP 42
DI 10.1021/ar200070w
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA 902ZT
UT WOS:000301083400005
PM 21627126
ER
PT J
AU Asmis, KR
Neumark, DM
AF Asmis, Knut R.
Neumark, Daniel M.
TI Vibrational Spectroscopy of Microhydrated Conjugate Base Anions
SO ACCOUNTS OF CHEMICAL RESEARCH
LA English
DT Review
ID DOUBLY-CHARGED ANION; PHOTOELECTRON-SPECTROSCOPY; DICARBOXYLATE
DIANIONS; INFRARED-SPECTROSCOPY; GAS-PHASE; IONS; WATER; HYDRATION;
CLUSTERS; SPECIATION
AB Conjugate-base anions are ubiquitous in aqueous solution. Understanding the hydration of these anions at the molecular level represents a long-standing goal in chemistry. A molecular-level perspective on ion hydration is also important for understanding the surface spedation and reactivity of aerosols, which are a central component of atmospheric and oceanic chemical cycles. In this Account, as a means of studying conjugate-base anions in water, we describe infrared multiple-photon dissociation spectroscopy on clusters in which the sulfate, nitrate, bicarbonate, and suberate anions are hydrated by a known number of water molecules.
This spectral technique, used over the range of 550-1800 cm(-1), serves as a structural probe of these clusters. The experiments follow how the solvent network around the conjugate-base anion evolves, one water molecule at a time. We make structural assignments by comparing the experimental infrared spectra to those obtained from electronic structure calculations. Our results show how changes in anion structure, symmetry, and charge state have a profound effect on the structure of the solvent network. Conversely, they indicate how hydration can markedly affect the structure of the anion core in a microhydrated cluster.
Some key results include the following. The first few water molecules bind to the anion terminal oxo groups in a bridging fashion, forming two anion-water hydrogen bonds. Each oxo group can form up to three hydrogen bonds; one structural result, for example, is the highly symmetric, fully coordinated SO42-(H2O)(6) cluster, which only contains bridging water molecules. Adding more water molecules results in the formation of a solvent network comprising water-water hydrogen bonding in addition to hydrogen bonding to the anion. For the nitrate, bicarbonate, and suberate anions, fewer bridging sites are available, namely, three, two, and one (per carboxylate group), respectively. As a result, an earlier onset of water-water hydrogen bonding is observed.
When there are more than three hydrating water molecules (n>3), the formation of a particularly stable four-membered water ring is observed for hydrated nitrate and bicarbonate clusters. This ring binds in either a side-on (bicarbonate) or top-on (nitrate) fashion. In the case of bicarbonate, additional water molecules then add to this water ring rather than directly to the anion, indicating a preference for surface hydration. In contrast, doubly charged sulfate dianions are internally hydrated and characterized by the dosing of the first hydration shell at n = 12. The situation is different for the -O2C(CH2)(6)CO2- (suberate) dianion, which adapts to the hydration network by changing from a linear to a folded structure at n>15. This change is driven by the formation of additional solute-solvent hydrogen bonds.
C1 [Asmis, Knut R.] Fritz Haber Inst Max Planck Gesell, D-14195 Berlin, Germany.
[Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Asmis, KR (reprint author), Fritz Haber Inst Max Planck Gesell, Faradayweg 4-6, D-14195 Berlin, Germany.
EM asmis@fhi-berlin.mpg.de; dneumark@berkeley.edu
RI Asmis, Knut/N-5408-2014
OI Asmis, Knut/0000-0001-6297-5856
FU European Community; Air Force Office of Scientific Research
[F49620-03-1-0085]
FX We thank the Stichting voor Fundamenteel Onderzoek der Matere (FOM) for
beam time and the staff for support and assistance. This research is
funded by the European Community's Seventh Framework Programme
(FP7/2007-2013) Grant No. 226716, and by the Air Force Office of
Scientific Research under Grant No. F49620-03-1-0085.
NR 48
TC 49
Z9 49
U1 3
U2 59
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0001-4842
J9 ACCOUNTS CHEM RES
JI Accounts Chem. Res.
PD JAN
PY 2012
VL 45
IS 1
SI SI
BP 43
EP 52
DI 10.1021/ar2000748
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA 902ZT
UT WOS:000301083400006
PM 21675714
ER
PT J
AU Faubel, M
Siefermann, KR
Liu, Y
Abel, B
AF Faubel, M.
Siefermann, K. R.
Liu, Y.
Abel, B.
TI Ultrafast Soft X-ray Photoelectron Spectroscopy at Liquid Water
Microjets
SO ACCOUNTS OF CHEMICAL RESEARCH
LA English
DT Review
ID HYDRATED ELECTRON; DYNAMICS; CLUSTERS; PHASE; BOND; PHOTOEMISSION;
EVAPORATION; IONIZATION; MOLECULES; BEAM
AB Since the pioneering work of Kai Siegbahn, electron spectroscopy for chemical analysis (ESCA) has been developed into an indispensable analytical technique for surface science. The value of this powerful method of photoelectron spectroscopy (PES, also termed photoemission spectroscopy) and Siegbahn's contributions were recognized in the 1981 Nobel Prize in Physics.
The need for high vacuum, however, originally prohibited PES of , volatile liquids, and only allowed for investigation of low-vapor-pressure molecules attached to a surface (or dose to a surface) or liquid films of low volatility. Only with the invention of liquid beams of volatile liquids compatible with high-vacuum conditions was PES from liquid surfaces under vacuum made feasible. Because of the ubiquity of water interfaces in nature, the liquid water vacuum interface became a most attractive research topic, particularly over the past 10 years. PES studies of these important aqueous interfaces remained significantly challenging because of the need to develop high-pressure PES methods.
For decades, ESCA or PES (termed XPS, for X-ray photoelectron spectroscopy, in the case of soft X-ray photons) was restricted to conventional laboratory X-ray sources or beamlines in synchrotron facilities. This approach enabled frequency domain measurements, but with poor time resolution. Indirect access to time-resolved processes in the condensed phase was only achieved if line-widths could be analyzed or if processes could be related to a fast clock, that is, reference processes that are fast enough and are also well understood in the condensed phase. Just recently, the emergence of high harmonic light sources, providing short-wavelength radiation in ultrashort light pulses, added the dimension of time to the classical ESCA or XPS technique and opened the door to (soft) X-ray photoelectron spectroscopy with ultrahigh time resolution.
The combination of high harmonic light sources (providing radiation with laserlike beam qualities) and liquid microjet technology recently enabled the first liquid interface PES experiments in the IR/UV-pump and extreme ultraviolet-probe (EUV-probe) configuration. In this Account, we highlight features of the technology and a number of recent applications, including extreme states of matter and the discovery and detection of short-lived transients of the solvated electron in water. Properties of the EUV radiation, such as its controllable polarization and features of the liquid microjet, will enable unique experiments in the near future. PES measures electron binding energies and angular distributions of photoelectrons, which comprise unique information about electron orbitals and their involvement in chemical bonding. One of the future goals is to use this information to trace molecular orbitals, over time, in chemical reactions or biological transformations.
C1 [Liu, Y.; Abel, B.] Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, D-04103 Leipzig, Germany.
[Faubel, M.] Univ Gottingen, Max Planck Inst Dynamik & Selbstorg, D-37073 Gottingen, Germany.
[Siefermann, K. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Abel, B (reprint author), Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, Linnestr 2, D-04103 Leipzig, Germany.
EM bernd.abel@uni-leipzig.de
FU Graduate School 782 of the DFG; [SPP1134]; [SFB 755]
FX Financial support from the SPP1134, the SFB 755, and the Graduate School
782 of the DFG is gratefully achnowledged.
NR 48
TC 36
Z9 36
U1 9
U2 118
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0001-4842
J9 ACCOUNTS CHEM RES
JI Accounts Chem. Res.
PD JAN
PY 2012
VL 45
IS 1
SI SI
BP 120
EP 130
DI 10.1021/ar200154w
PG 11
WC Chemistry, Multidisciplinary
SC Chemistry
GA 902ZT
UT WOS:000301083400014
PM 22075058
ER
PT J
AU Oakes, M
Weber, RJ
Lai, B
Russell, A
Ingall, ED
AF Oakes, M.
Weber, R. J.
Lai, B.
Russell, A.
Ingall, E. D.
TI Characterization of iron speciation in urban and rural single particles
using XANES spectroscopy and micro X-ray fluorescence measurements:
investigating the relationship between speciation and fractional iron
solubility
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID MINERAL DUST; PARTICULATE MATTER; CHEMICAL-COMPOSITION; ATMOSPHERIC
AEROSOL; TRANSITION-METALS; OXIDATIVE STRESS; EPITHELIAL-CELLS;
IN-VITRO; NANOPARTICLES; OCEAN
AB Soluble iron in fine atmospheric particles has been identified as a public health concern by participating in reactions that generate reactive oxygen species (ROS). The mineralogy and oxidation state (speciation) of iron have been shown to influence fractional iron solubility (soluble iron/total iron). In this study, iron speciation was determined in single particles at urban and rural sites in Georgia USA using synchrotron-based techniques, such as X-ray Absorption Near-Edge Structure (XANES) spectroscopy and microscopic X-ray fluorescence measurements. Soluble and total iron content (soluble + insoluble iron) of these samples was measured using spectrophotometry and synchrotron-based techniques, respectively. These bulk measurements were combined with synchrotron-based measurements to investigate the relationship between iron speciation and fractional iron solubility in ambient aerosols. XANES measurements indicate that iron in the single particles was present as a mixture of Fe(II) and Fe(III), with Fe(II) content generally between 5 and 35% (mean: similar to 25 %). XANES and elemental analyses (e. g. elemental molar ratios of single particles based on microscopic X-ray fluorescence measurements) indicate that a majority (74 %) of iron-containing particles are best characterized as Al-substituted Fe-oxides, with a Fe/Al molar ratio of 4.9. The next most abundant group of particles (12 %) was Fe-aluminosilicates, with Si/Al molar ratio of 1.4. No correlation was found between fractional iron solubility (soluble iron/total iron) and the abundance of Al-substituted Fe-oxides and Fe-aluminosilicates present in single particles at any of the sites during different seasons, suggesting solubility largely depended on factors other than differences in major iron phases.
C1 [Oakes, M.; Weber, R. J.; Ingall, E. D.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Lai, B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Russell, A.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA.
RP Oakes, M (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
EM michelle.oakes@eas.gatech.edu
RI Ingall, Ellery/A-5447-2008
OI Ingall, Ellery/0000-0003-1954-0317
FU U.S. National Science Foundation [ATM-0802237]; Environmental Protection
Agency [RD-83283501]
FX Financial support was provided by from the U.S. National Science
Foundation through grant ATM-0802237 and the Environmental Protection
Agency STAR Research Grant RD-83283501. The views expressed in this
manuscript are solely those of the authors and EPA does not endorse any
of the products or commercial services mentioned in the publication.
NR 43
TC 35
Z9 35
U1 5
U2 59
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2012
VL 12
IS 2
BP 745
EP 756
DI 10.5194/acp-12-745-2012
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 892YL
UT WOS:000300321500009
ER
PT J
AU Matsui, N
Long, CN
Augustine, J
Halliwell, D
Uttal, T
Longenecker, D
Niebergall, O
Wendell, J
Albee, R
AF Matsui, N.
Long, C. N.
Augustine, J.
Halliwell, D.
Uttal, T.
Longenecker, D.
Niebergall, O.
Wendell, J.
Albee, R.
TI Evaluation of Arctic broadband surface radiation measurements
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID ENERGY BUDGET; EARTHS; INSTRUMENTATION; CLOUDS; ICE
AB The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.
C1 [Matsui, N.; Longenecker, D.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Matsui, N.; Augustine, J.; Uttal, T.; Longenecker, D.; Wendell, J.; Albee, R.] Natl Ocean & Atmospher Adm, Boulder, CO USA.
[Halliwell, D.; Niebergall, O.] Environm Canada, Regina, SK, Canada.
[Long, C. N.] Pacific NW Lab, Richland, WA USA.
[Albee, R.] Sci Technol Corp, Boulder, CO USA.
RP Matsui, N (reprint author), Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
EM nobuki.matsui@colorado.edu
FU NOAA/GMD; NOAA SEARCH; Office of Biological and Environmental Research
(OBER) of the US Department of Energy (DOE)
FX The authors thank Dutton, E., and Michalsky, J. (NOAA/GMD) and McArthur,
L. J. B. for their expertise, support and encouragement. We salute all
the hard work by CANDAC and Environment Canada operators in Eureka. This
work was supported by the NOAA SEARCH program and the Office of
Biological and Environmental Research (OBER) of the US Department of
Energy (DOE) as part of the Atmospheric System Research (ASR) Program.
NR 34
TC 4
Z9 4
U1 1
U2 5
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2012
VL 5
IS 2
BP 429
EP 438
DI 10.5194/amt-5-429-2012
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 900HD
UT WOS:000300876700012
ER
PT J
AU Schneider, J
Jia, HF
Muckerman, JT
Fujita, E
AF Schneider, Jacob
Jia, Hongfei
Muckerman, James T.
Fujita, Etsuko
TI Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal
centre of CO2 reduction catalysts
SO CHEMICAL SOCIETY REVIEWS
LA English
DT Review
ID CARBON-DIOXIDE ACTIVATION; SOLVATION FREE-ENERGIES; INITIO MO/SD-CI;
AQUEOUS-SOLUTION; ELECTROCATALYTIC REDUCTION; ELECTROCHEMICAL REDUCTION;
COBALT(I) MACROCYCLE; NICKEL(II) COMPLEXES; CRYSTAL-STRUCTURES;
ELECTRON-TRANSFER
AB In our developing world, carbon dioxide has become one of the most abundant greenhouse gases in the atmosphere. It is a stable, inert, small molecule that continues to present significant challenges toward its chemical activation as a useful carbon end product. This tutorial review describes one approach to the reduction of carbon dioxide to carbon fuels, using cobalt and nickel molecular catalysts, with particular focus on studying the thermodynamics and kinetics of CO2 binding to metal catalytic sites.
C1 [Schneider, Jacob; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Jia, Hongfei] Toyota Motor Engn & Mfg N Amer Inc, Toyota Res Inst N Amer, Mat Res Dept, Ann Arbor, MI 48105 USA.
RP Schneider, J (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
EM jschneider@bnl.gov; fujita@bnl.gov
RI Muckerman, James/D-8752-2013; Fujita, Etsuko/D-8814-2013
FU U.S. Department of Energy [DE-AC02-98CH10886]; Division of Chemical
Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences
under its Solar Energy Utilization initiative; Toyota Motor Engineering
& Manufacturing of North America, Inc.
FX We thank Dr Carol Creutz in the Chemistry Department at Brookhaven
National Laboratory (BNL) for her careful reading of the manuscript and
suggestions. We thank Dr David J. Szalda at Baruch College, CUNY, for
making the ORTEP diagram in Fig. 8. The work at BNL is funded under
contract DE-AC02-98CH10886 with the U.S. Department of Energy and
supported by its Division of Chemical Sciences, Geosciences, &
Biosciences, Office of Basic Energy Sciences under its Solar Energy
Utilization initiative. We also thank Toyota Motor Engineering &
Manufacturing of North America, Inc., for funding for the CO2
utilization research via a Cooperative Research and Development
Agreement (CRADA).
NR 62
TC 140
Z9 142
U1 46
U2 336
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0306-0012
J9 CHEM SOC REV
JI Chem. Soc. Rev.
PY 2012
VL 41
IS 6
BP 2036
EP 2051
DI 10.1039/c1cs15278e
PG 16
WC Chemistry, Multidisciplinary
SC Chemistry
GA 899EI
UT WOS:000300797700003
PM 22167246
ER
PT J
AU Liu, J
Thallapally, PK
McGrail, BP
Brown, DR
Liu, J
AF Liu, Jian
Thallapally, Praveen K.
McGrail, B. Peter
Brown, Daryl R.
Liu, Jun
TI Progress in adsorption-based CO2 capture by metal-organic frameworks
SO CHEMICAL SOCIETY REVIEWS
LA English
DT Review
ID CARBON-DIOXIDE CAPTURE; ZEOLITIC IMIDAZOLATE FRAMEWORKS; HENRYS LAW
REGION; GAS-ADSORPTION; MOLECULAR SIMULATION; CU-BTC; HYDROGEN STORAGE;
COORDINATION POLYMERS; SWING ADSORPTION; ACTIVATED CARBON
AB Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, large surface areas, and potential applications as novel adsorbents. The recent progress in adsorption-based CO2 capture by MOFs is reviewed and summarized in this critical review. CO2 adsorption in MOFs has been divided into two sections, adsorption at high pressures and selective adsorption at approximate atmospheric pressures. Keys to CO2 adsorption in MOFs at high pressures and low pressures are summarized to be pore volumes of MOFs, and heats of adsorption, respectively. Many MOFs have high CO2 selectivities over N-2 and CH4. Water effects on CO2 adsorption in MOFs are presented and compared with benchmark zeolites. In addition, strategies appeared in the literature to enhance CO2 adsorption capacities and/or selectivities in MOFs have been summarized into three main categories, catenation and interpenetration, chemical bonding enhancement, and electrostatic force involvement. Besides the advantages, two main challenges of using MOFs in CO2 capture, the cost of synthesis and the stability toward water vapor, have been analyzed and possible solutions and path forward have been proposed to address the two challenges as well (150 references).
C1 [Liu, Jian; Thallapally, Praveen K.; McGrail, B. Peter; Brown, Daryl R.; Liu, Jun] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA.
RP Thallapally, PK (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA.
EM Praveen.Thallapally@pnnl.gov
RI Liu, Jian/D-3393-2009; thallapally, praveen/I-5026-2014; Liu,
Jian/C-4707-2011
OI Liu, Jian/0000-0001-5329-7408; thallapally, praveen/0000-0001-7814-4467;
Liu, Jian/0000-0001-5329-7408
FU Laboratory Direct Research; U.S. Department of Energy, Office of Fossil
Energy; U.S. Department of Energy, Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering [KC020105-FWP12152]; U.S.
Department of Energy [DE-AC05-76RL01830]
FX Jian Liu would like to thank Prof. M. Douglas LeVan at Vanderbilt
University for introducing him into gas adsorption in MOFs research. We
would like to thank Laboratory Direct Research and U.S. Department of
Energy, Office of Fossil Energy for financial support. In addition we
would like to thank U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering under Award
KC020105-FWP12152. The Pacific Northwest National Laboratory is operated
by Battelle for the U.S. Department of Energy under Contract
DE-AC05-76RL01830.
NR 146
TC 559
Z9 567
U1 79
U2 739
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0306-0012
EI 1460-4744
J9 CHEM SOC REV
JI Chem. Soc. Rev.
PY 2012
VL 41
IS 6
BP 2308
EP 2322
DI 10.1039/c1cs15221a
PG 15
WC Chemistry, Multidisciplinary
SC Chemistry
GA 899EI
UT WOS:000300797700017
PM 22143077
ER
PT J
AU Nancharaiah, YV
Venugopalan, VP
Francis, AJ
AF Nancharaiah, Y. Venkata
Venugopalan, V. P.
Francis, A. J.
TI Removal and biotransformation of U(VI) and Cr(VI) by aerobically grown
mixed microbial granules
SO DESALINATION AND WATER TREATMENT
LA English
DT Article
DE Aerobic microbial granules; Aerobic granular sludge; Aerobic granules;
Biosorption; Biotransformation; Bioremediation; Cr(VI) reduction;
Uranium (VI)
ID SEQUENCING BATCH REACTOR; SLUDGE; REDUCTION; IMMOBILIZATION; BIOFILMS;
CHROMATE; URANIUM
AB We assessed the potential of aerobic granular sludge consisting of mixed species of bacteria to remove and immobilize uranium (VI) and chromium (VI). Microbial granules were cultivated in a laboratory sequencing batch reactor (SBR) by feeding with acetate-containing synthetic media. Microbial granules formed in the SBR exhibited excellent settling characteristics and predominantly consisted of rod/cocci shaped bacteria. The microbial granules immobilized 218 +/- 2 mg of U(VI) g(-1) dry granular biomass. X-ray photoelectron spectroscopy (XPS) showed the association of U(VI) with the microbial granules and transformation of U(VI) to U(IV). Microbial granules reduced Cr(VI) and immobilized to Cr(III) at 0.17 mmoles/d/g under anaerobic conditions. X-ray absorption near edge spectroscopy (XANES) of chromium associated with microbial granules revealed complete conversion of Cr(VI) to Cr(III). Extended X-ray absorption fi ne structure (EXAFS) analysis of the Cr-laden microbial granules showed similarity to Cr(III)-phosphate. This study demonstrates the biotransformation and immobilization of U(VI) and Cr(VI) by mixed species microbial granules.
C1 [Nancharaiah, Y. Venkata; Venugopalan, V. P.] Bhabha Atom Res Ctr, Water & Steam Chem Div, Chem Grp, Biofouling & Biofilm Proc Sect, Kalpakkam 603102, Tamil Nadu, India.
[Francis, A. J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA.
[Francis, A. J.] POSTECH, Div Adv Nucl Engn, Pohang, South Korea.
RP Nancharaiah, YV (reprint author), Bhabha Atom Res Ctr, Water & Steam Chem Div, Chem Grp, Biofouling & Biofilm Proc Sect, Kalpakkam 603102, Tamil Nadu, India.
EM venkatany@gmail.com
FU American Society for Microbiology (ASM); WCU (World Class University)
through the National Research Foundation of Korea; Ministry of
Education, Science and Technology [R31 - 30005]
FX Authors thank S. Bera, Bhabha Atomic Research Centre, Kalpakkam for XPS
analysis and C.J. Dodge, Brookhaven National Laboratory, Upton for
XANES/EXAFS analysis. YVN acknowledges American Society for Microbiology
(ASM) for Indo-US Visiting Research Professorship Award. This research
was in part supported by WCU (World Class University) program through
the National Research Foundation of Korea funded by the Ministry of
Education, Science and Technology (R31 - 30005).
NR 17
TC 5
Z9 7
U1 3
U2 19
PU DESALINATION PUBL
PI HOPKINTON
PA 36 WALCOTT VALLEY DRIVE,, HOPKINTON, MA 01748 USA
SN 1944-3994
J9 DESALIN WATER TREAT
JI Desalin. Water Treat.
PD JAN
PY 2012
VL 38
IS 1-3
BP 90
EP 95
DI 10.5004/dwt.2012.2315
PG 6
WC Engineering, Chemical; Water Resources
SC Engineering; Water Resources
GA 900TA
UT WOS:000300911400013
ER
PT J
AU Aad, G
Abbott, B
Abdallah, J
Abdelalim, AA
Abdesselam, A
Abdinov, O
Abi, B
Abolins, M
Abramowicz, H
Abreu, H
Acerbi, E
Acharya, BS
Adams, DL
Addy, TN
Adelman, J
Aderholz, M
Adomeit, S
Adragna, P
Adye, T
Aefsky, S
Aguilar-Saavedra, JA
Aharrouche, M
Ahlen, SP
Ahles, F
Ahmad, A
Ahsan, M
Aielli, G
Akdogan, T
Akesson, TPA
Akimoto, G
Akimov, AV
Akiyama, A
Alam, MS
Alam, MA
Albert, J
Albrand, S
Aleksa, M
Aleksandrov, IN
Alessandria, F
Alexa, C
Alexander, G
Alexandre, G
Alexopoulos, T
Alhroob, M
Aliev, M
Alimonti, G
Alison, J
Aliyev, M
Allport, PP
Allwood-Spiers, SE
Almond, J
Aloisio, A
Alon, R
Alonso, A
Alviggi, MG
Amako, K
Amaral, P
Amelung, C
Ammosov, VV
Amorim, A
Amoros, G
Amram, N
Anastopoulos, C
Ancu, LS
Andari, N
Andeen, T
Anders, CF
Anders, G
Anderson, KJ
Andreazza, A
Andrei, V
Andrieux, ML
Anduaga, XS
Angerami, A
Anghinolfi, F
Anjos, N
Annovi, A
Antonaki, A
Antonelli, M
Antonov, A
Antos, J
Anulli, F
Aoun, S
Bella, LA
Apolle, R
Arabidze, G
Aracena, I
Arai, Y
Arce, ATH
Archambault, JP
Arfaoui, S
Arguin, JF
Arik, E
Arik, M
Armbruster, AJ
Arnaez, O
Arnault, C
Artamonov, A
Artoni, G
Arutinov, D
Asai, S
Asfandiyarov, R
Ask, S
Asman, B
Asquith, L
Assamagan, K
Astbury, A
Astvatsatourov, A
Atoian, G
Aubert, B
Auerbach, B
Auge, E
Augsten, K
Aurousseau, M
Austin, N
Avolio, G
Avramidou, R
Axen, D
Ay, C
Azuelos, G
Azuma, Y
Baak, MA
Baccaglioni, G
Bacci, C
Bach, AM
Bachacou, H
Bachas, K
Bachy, G
Backes, M
Backhaus, M
Badescu, E
Bagnaia, P
Bahinipati, S
Bai, Y
Bailey, DC
Bain, T
Baines, JT
Baker, OK
Baker, MD
Baker, S
Banas, E
Banerjee, P
Banerjee, S
Banfi, D
Bangert, A
Bansal, V
Bansil, HS
Barak, L
Baranov, SP
Barashkou, A
Galtieri, AB
Barber, T
Barberio, EL
Barberis, D
Barbero, M
Bardin, DY
Barillari, T
Barisonzi, M
Barklow, T
Barlow, N
Barnett, BM
Barnett, RM
Baron-Celli, A
Barone, G
Barr, AJ
Barreiro, F
da Costa, JBG
Barrillon, P
Bartoldus, R
Barton, AE
Bartsch, D
Bartsch, V
Bates, RL
Batkova, L
Batley, JR
Battaglia, A
Battistin, M
Battistoni, G
Bauer, F
Bawa, HS
Beare, B
Beau, T
Beauchemin, PH
Beccherle, R
Bechtle, P
Beck, HP
Beckingham, M
Becks, KH
Beddall, AJ
Beddall, A
Bedikian, S
Bednyakov, VA
Bee, CP
Begel, M
Harpaz, SB
Behera, PK
Beimforde, M
Belanger-Champagne, C
Bell, PJ
Bell, WH
Bella, G
Bellagamba, L
Bellina, F
Bellomo, M
Belloni, A
Beloborodova, O
Belotskiy, K
Beltramello, O
Ben Ami, S
Benary, O
Benchekroun, D
Benchouk, C
Bendel, M
Benekos, N
Benhammou, Y
Benjamin, DP
Benoit, M
Bensinger, JR
Benslama, K
Bentvelsen, S
Berge, D
Kuutmann, EB
Berger, N
Berghaus, F
Berglund, E
Beringer, J
Bernardet, K
Bernat, P
Bernhard, R
Bernius, C
Berry, T
Bertin, A
Bertinelli, F
Bertolucci, F
Besana, MI
Besson, N
Bethke, S
Bhimji, W
Bianchi, RM
Bianco, M
Biebel, O
Bieniek, SP
Bierwagen, K
Biesiada, J
Biglietti, M
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Biscarat, C
Bitenc, U
Black, KM
Blair, RE
Blanchard, JB
Blanchot, G
Blazek, T
Blocker, C
Blocki, J
Blondel, A
Blum, W
Blumenschein, U
Bobbink, GJ
Bobrovnikov, VB
Bocchetta, SS
Bocci, A
Boddy, CR
Boehler, M
Boek, J
Boelaert, N
Boser, S
Bogaerts, JA
Bogdanchikov, A
Bogouch, A
Bohm, C
Boisvert, V
Bold, T
Boldea, V
Bolnet, NM
Bona, M
Bondarenko, VG
Boonekamp, M
Boorman, G
Booth, CN
Bordoni, S
Borer, C
Borisov, A
Borissov, G
Borjanovic, I
Borroni, S
Bos, K
Boscherini, D
Bosman, M
Boterenbrood, H
Botterill, D
Bouchami, J
Boudreau, J
Bouhova-Thacker, EV
Bourdarios, C
Bousson, N
Boveia, A
Boyd, J
Boyko, IR
Bozhko, NI
Bozovic-Jelisavcic, I
Bracinik, J
Braem, A
Branchini, P
Brandenburg, GW
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Brelier, B
Bremer, J
Brenner, R
Bressler, S
Breton, D
Britton, D
Brochu, FM
Brock, I
Brock, R
Brodbeck, TJ
Brodet, E
Broggi, F
Bromberg, C
Brooijmans, G
Brooks, WK
Brown, G
Brown, H
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Brunet, S
Bruni, A
Bruni, G
Bruschi, M
Buanes, T
Bucci, F
Buchanan, J
Buchanan, NJ
Buchholz, P
Buckingham, RM
Buckley, AG
Buda, SI
Budagov, IA
Budick, B
Buscher, V
Bugge, L
Buira-Clark, D
Bulekov, O
Bunse, M
Buran, T
Burckhart, H
Burdin, S
Burgess, T
Burke, S
Busato, E
Bussey, P
Buszello, CP
Butin, F
Butler, B
Butler, JM
Buttar, CM
Butterworth, JM
Buttinger, W
Byatt, T
Urban, SC
Caforio, D
Cakir, O
Calafiura, P
Calderini, G
Calfayan, P
Calkins, R
Caloba, LP
Caloi, R
Calvet, D
Calvet, S
Toro, RC
Camarri, P
Cambiaghi, M
Cameron, D
Campana, S
Campanelli, M
Canale, V
Canelli, F
Canepa, A
Cantero, J
Capasso, L
Garrido, MDMC
Caprini, I
Caprini, M
Capriotti, D
Capua, M
Caputo, R
Caramarcu, C
Cardarelli, R
Carli, T
Carlino, G
Carminati, L
Caron, B
Caron, S
Montoya, GDC
Carter, AA
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Cascella, M
Caso, C
Hernandez, AMC
Castaneda-Miranda, E
Gimenez, VC
Castro, NF
Cataldi, G
Cataneo, F
Catinaccio, A
Catmore, JR
Cattai, A
Cattani, G
Caughron, S
Cauz, D
Cavalleri, P
Cavalli, D
Cavalli-Sforza, M
Cavasinnia, V
Ceradini, F
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cetin, SA
Ceveninia, F
Chafaq, A
Chakraborty, D
Chan, K
Chapleau, B
Chapman, JD
Chapman, JW
Chareyre, E
Charlton, DG
Chavda, V
Barajas, CAC
Cheatham, S
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, S
Chen, T
Chen, X
Cheng, S
Cheplakov, A
Chepurnov, VF
El Moursli, RC
Chernyatin, V
Cheu, E
Cheung, SL
Chevalier, L
Chiefari, G
Chikovani, L
Childers, JT
Chilingarov, A
Chiodini, G
Chizhov, MV
Choudalakis, G
Chouridou, S
Christidi, IA
Christov, A
Chromek-Burckhart, D
Chu, ML
Chudoba, J
Ciapetti, G
Ciba, K
Ciftci, AK
Ciftci, R
Cinca, D
Cindro, V
Ciobotaru, MD
Cioccaa, C
Ciocio, A
Cirilli, M
Ciubancan, M
Clark, A
Clark, PJ
Cleland, W
Clemens, JC
Clement, B
Clement, C
Clifft, RW
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coe, P
Cogan, JG
Coggeshall, J
Cogneras, E
Cojocaru, CD
Colas, J
Colijn, AP
Collard, C
Collins, NJ
Collins-Tooth, C
Collot, J
Colon, G
Muino, PC
Coniavitis, E
Conidi, MC
Consonni, M
Consorti, V
Constantinescu, S
Conta, C
Conventi, F
Cook, J
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Cooper-Smith, NJ
Copic, K
Cornelissen, T
Corradi, M
Corriveau, F
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Costin, T
Cote, D
Torres, RC
Courneyea, L
Cowan, G
Cowden, C
Cox, BE
Cranmer, K
Crescioli, F
Cristinziani, M
Crosetti, G
Crupi, R
Crepe-Renaudin, S
Cuciuc, CM
Almenar, CC
Donszelmann, TC
Curatolo, M
Curtis, CJ
Cwetanski, P
Czirr, H
Czyczula, Z
D'Auria, S
D'Onofrio, M
D'Orazio, A
Da Silva, PVM
Da Via, C
Dabrowski, W
Dai, T
Dallapiccola, C
Dam, M
Dameri, M
Damiani, DS
Danielsson, HO
Dannheim, D
Dao, V
Darbo, G
Darlea, GL
Daum, C
Dauvergne, JP
Davey, W
Davidek, T
Davidson, N
Davidson, R
Davies, E
Davies, M
Davison, AR
Davygora, Y
Dawe, E
Dawson, I
Dawson, JW
Daya, RK
De, K
de Asmundis, R
De Castro, S
Salgado, PEDF
De Cecco, S
De Graat, J
De Groot, N
de Jong, P
De La Taille, C
De la Torre, H
De Lotto, B
De Mora, L
De Nooij, L
Branco, MD
De Pedis, D
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBDV
Dean, S
Dedovich, DV
Degenhardt, J
Dehchar, M
Del Papa, C
Del Peso, J
Del Prete, T
Deliyergiyev, M
Dell'Acqua, A
Dell'Asta, L
Della Pietra, M
della Volpe, D
Delmastro, M
Delpierre, P
Delruelle, N
Delsart, PA
Deluca, C
Demers, S
Demichev, M
Demirkoz, B
Deng, J
Denisov, SP
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Devetak, E
Deviveiros, PO
Dewhurst, A
DeWilde, B
Dhaliwal, S
Dhullipudi, R
Di Ciaccio, A
Di Ciaccio, L
Di Girolamo, A
Di Girolamo, B
Di Luisea, S
Di Mattia, A
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Diaz, MA
Diblen, F
Diehl, EB
Dietrich, J
Dietzsch, TA
Diglio, S
Yagci, KD
Dingfelder, J
Dionisi, C
Dita, P
Dita, S
Dittus, F
Djama, F
Djobava, T
do Vale, MAB
Wemans, AD
Doan, TKO
Dobbs, M
Dobinson, R
Dobos, D
Dobson, E
Dobson, M
Dodd, J
Doglioni, C
Doherty, T
Doi, Y
Dolejsi, J
Dolenc, I
Dolezal, Z
Dolgoshein, BA
Dohmae, T
Donadelli, M
Donega, M
Donini, J
Dopke, J
Doria, A
DosAnjos, A
Dosil, M
Dotti, A
Dova, MT
Dowell, JD
Doxiadis, AD
Doyle, AT
Drasal, Z
Drees, J
Dressnandt, N
Drevermann, H
Driouichi, C
Dris, M
Dubbert, J
Dubbs, T
Dube, S
Duchovni, E
Duckeck, G
Dudarev, A
Dudziak, F
Duhrssen, M
Duerdoth, IP
Duflot, L
Dufour, MA
Dunford, M
Yildiz, HD
Duxfield, R
Dwuznik, M
Dydak, F
Dzahini, D
Duren, M
Ebenstein, WL
Ebke, J
Eckert, S
Eckweiler, S
Edmonds, K
Edwards, CA
Edwards, NC
Ehrenfeld, W
Ehrich, T
Eifert, T
Eigen, G
Einsweiler, K
Eisenhandler, E
Ekelof, T
El Kacimi, M
Ellert, M
Elles, S
Ellinghaus, F
Ellis, K
Ellis, N
Elmsheuser, J
Elsing, M
Emeliyanov, D
Engelmann, R
Engl, A
Epp, B
Eppig, A
Erdmann, J
Ereditato, A
Eriksson, D
Ernst, J
Ernst, M
Ernwein, J
Errede, D
Errede, S
Ertel, E
Escalier, M
Escobar, C
Curull, XE
Esposito, B
Etienne, F
Etienvre, AI
Etzion, E
Evangelakou, D
Evans, H
Fabbri, L
Fabre, C
Fakhrutdinov, RM
Falciano, S
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farley, J
Farooque, T
Farrington, SM
Farthouat, P
Fassnacht, P
Fassouliotis, D
Fatholahzadeh, B
Favareto, A
Fayard, L
Fazio, S
Febbraro, R
Federic, P
Fedin, OL
Fedorko, W
Fehling-Kaschek, M
Feligioni, L
Fellmann, D
Felzmann, CU
Feng, C
Feng, EJ
Fenyuk, AB
Ferencei, J
Ferland, J
Fernando, W
Ferrag, S
Ferrando, J
Ferrara, V
Ferrari, A
Ferrari, P
Ferrari, R
Ferrer, A
Ferrer, ML
Ferrere, D
Ferretti, C
Parodi, AF
Fiascaris, M
Fiedler, F
Filipcic, A
Filippas, A
Filthaut, F
Fincke-Keeler, M
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, G
Fischer, P
Fisher, MJ
Fisher, SM
Flechl, M
Fleck, I
Fleckner, J
Fleischmann, P
Fleischmann, S
Flick, T
Castillo, LRF
Flowerdew, MJ
Fokitis, M
Martin, TF
Forbush, DA
Formica, A
Forti, A
Fortin, D
Foster, JM
Fournier, D
Foussat, A
Fowler, AJ
Fowler, K
Fox, H
Francavilla, P
Franchino, S
Francis, D
Frank, T
Franklin, M
Franz, S
Fraternali, M
Fratina, S
French, ST
Friedrich, F
Froeschl, R
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fuster, J
Gabaldon, C
Gabizon, O
Gadfort, T
Gadomski, S
Gagliardi, G
Gagnon, P
Galea, C
Gallas, EJ
Gallas, MV
Gallo, V
Gallop, BJ
Gallus, P
Galyaev, E
Gan, KK
Gao, YS
Gapienko, VA
Gaponenko, A
Garberson, F
Garcia-Sciveres, M
Garcia, C
Navarro, JEG
Gardner, RW
Garelli, N
Garitaonandia, H
Garonne, V
Garvey, J
Gatti, C
Gaudio, G
Gaumer, O
Gaur, B
Gauthier, L
Gavrilenko, IL
Gay, C
Gaycken, G
Gayde, JC
Gazis, EN
Ge, P
Gee, CNP
Geerts, DAA
Geich-Gimbel, C
Gellerstedt, K
Gemme, C
Gemmell, A
Genest, MH
Gentile, S
George, M
George, S
Gerlach, P
Gershon, A
Geweniger, C
Ghazlane, H
Ghez, P
Ghodbane, N
Giacobbe, B
Giagu, S
Giakoumopoulou, V
Giangiobbe, V
Gianotti, F
Gibbard, B
Gibson, A
Gibson, SM
Gilbert, LM
Gilchriese, M
Gilewsky, V
Gillberg, D
Gillman, AR
Gingrich, DM
Ginzburg, J
Giokaris, N
Giordano, R
Giorgi, FM
Giovannini, P
Giraud, PF
Giugni, D
Giunta, M
Giusti, P
Gjelsten, BK
Gladilin, LK
Glasman, C
Glatzer, J
Glazov, A
Glitza, KW
Glonti, GL
Godfrey, J
Godlewski, J
Goebel, M
Gopfert, T
Goeringer, C
Gossling, C
Gottfert, T
Goldfarb, S
Goldin, D
Golling, T
Golovnia, SN
Gomes, A
Fajardo, LSG
Goncalo, R
Da Costa, JGPF
Gonella, L
Gonidec, A
Gonzalez, S
de la Hoz, SG
Silva, MLG
Gonzalez-Sevilla, S
Goodson, JJ
Goossens, L
Gorbounov, A
Gordon, HA
Gorelov, I
Gorfine, G
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Gorokhov, SA
Goryachev, VN
Gosdzik, B
Gosselink, M
Gostkin, MI
Eschrich, IG
Gouighri, M
Goujdami, D
Goulette, MP
Goussiou, AG
Goy, C
Grabowska-Bold, I
Grabski, V
Grafstrom, P
Grah, C
Grahn, KJ
Grancagnolo, F
Grancagnolo, S
Grassi, V
Gratchev, V
Grau, N
Gray, HM
Gray, JA
Graziani, E
Grebenyuk, OG
Greenfield, D
Greenshaw, T
Greenwood, ZD
Gregersen, K
Gregor, IM
Grenier, P
Griffiths, J
Grigalashvili, N
Grillo, AA
Grinstein, S
Grishkevich, YV
Grivaz, JF
Grognuz, J
Groh, M
Gross, E
Grosse-Knetter, J
Groth-Jensen, J
Grybel, K
Guarino, VJ
Guest, D
Guicheney, C
Guida, A
Guillemin, T
Guindon, S
Guler, H
Gunther, J
Guo, B
Guo, J
Gupta, A
Gusakov, Y
Gushchin, VN
Gutierrez, A
Gutierrez, P
Guttman, N
Gutzwiller, O
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haas, S
Haber, C
Hackenburg, R
Hadavand, HK
Hadley, DR
Haefner, P
Hahn, F
Haider, S
Hajduk, Z
Hakobyan, H
Haller, J
Hamacher, K
Hamal, P
Hamilton, A
Hamilton, S
Han, H
Han, L
Hanagaki, K
Hance, M
Handel, C
Hanke, P
Hansen, JR
Hansen, JB
Hansen, JD
Hansen, PH
Hansson, P
Hara, K
Hare, GA
Harenberg, T
Harkusha, S
Harper, D
Harrington, RD
Harris, OM
Harrison, K
Hartert, J
Hartjes, F
Haruyama, T
Harvey, A
Hasegawa, S
Hasegawa, Y
Hassani, S
Hatch, M
Hauff, D
Haug, S
Hauschild, M
Hauser, R
Havranek, M
Hawes, BM
Hawkes, CM
Hawkings, RJ
Hawkins, D
Hayakawa, T
Hayden, D
Hayward, HS
Haywood, SJ
Hazen, E
He, M
Head, SJ
Hedberg, V
Heelan, L
Heim, S
Heinemann, B
Heisterkamp, S
Helary, L
Heller, M
Hellman, S
Hellmich, D
Helsens, C
Henderson, RCW
Henke, M
Henrichs, A
Correia, AMH
Henrot-Versille, S
Henry-Couannier, F
Hensel, C
Hen, T
Hernandez, CM
Jimenez, YH
Herrberg, R
Hershenhorn, AD
Herten, G
Hertenberger, R
Hervas, L
Hessey, NP
Hidvegi, A
Higon-Rodriguez, E
Hill, D
Hill, JC
Hill, N
Hiller, KH
Hillert, S
Hillier, SJ
Hinchliffe, I
Hines, E
Hirose, M
Hirsch, F
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoffman, J
Hoffmann, D
Hohlfeld, M
Holder, M
Holmgren, SO
Holy, T
Holzbauer, JL
Homma, Y
Hong, TM
van Huysduynen, LH
Horazdovsky, T
Horn, C
Horner, S
Horton, K
Hostachy, JY
Hou, S
Houlden, MA
Hoummada, A
Howarth, J
Howell, DF
Hristova, I
Hrivnac, J
Hruska, I
Hryn'ova, T
Hsu, PJ
Hsu, SC
Huang, GS
Hubacek, Z
Hubaut, F
Huegging, F
Huffman, TB
Hughes, EW
Hughes, G
Hughes-Jones, RE
Huhtinen, M
Hurst, P
Hurwitz, M
Husemann, U
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibbotson, M
Ibragimov, I
Ichimiya, R
Iconomidou-Fayard, L
Idarraga, J
Idzik, M
Iengo, P
Igonkina, O
Ikegami, Y
Ikeno, M
Ilchenko, Y
Iliadis, D
Ilic, N
Imbault, D
Imhaeuser, M
Imori, M
Ince, T
Inigo-Golfin, J
Ioannou, P
Iodice, M
Ionescu, G
Quiles, AI
Ishii, K
Ishikawa, A
Ishino, M
Ishmukhametov, R
Issever, C
Istin, S
Ivashin, AV
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jackson, B
Jackson, JN
Jackson, P
Jaekel, MR
Jain, V
Jakobs, K
Jakobsen, S
Jakubek, J
Jana, DK
Jankowski, E
Jansen, E
Jantsch, A
Janus, M
Jarlskog, G
Jeanty, L
Jelen, K
Plante, IJL
Jenni, P
Jeremie, A
Jez, P
Jezequel, S
Jha, MK
Ji, H
Ji, W
Jia, J
Jiang, Y
Belenguer, MJ
Jin, G
Jin, S
Jinnouchi, O
Joergensen, MD
Joffe, D
Johansen, LG
Johansen, M
Johansson, KE
Johansson, P
Johnert, S
Johns, KA
Jon-And, K
Jones, G
Jones, RWL
Jones, TW
Jones, TJ
Jonsson, O
Joram, C
Jorge, PM
Joseph, J
Jovin, T
Ju, X
Juranek, V
Jussel, P
Rozas, AJ
Kabachenko, VV
Kabana, S
Kaci, M
Kaczmarska, A
Kadlecik, P
Kado, M
Kagan, H
Kagan, M
Kaiser, S
Kajomovitz, E
Kalinin, S
Kalinovskaya, LV
Kama, S
Kanaya, N
Kaneda, M
Kanno, T
Kantserov, VA
Kanzaki, J
Kaplan, B
Kapliy, A
Kaplon, J
Kar, D
Karagoz, M
Karnevskiy, M
Karr, K
Kartvelishvili, V
Karyukhin, AN
Kashif, L
Kasmi, A
Kass, RD
Kastanas, A
Kataoka, M
Kataoka, Y
Katsoufis, E
Katzy, J
Kaushik, V
Kawagoe, K
Kawamoto, T
Kawamura, G
Kayl, MS
Kazanin, VA
Kazarinov, MY
Keates, JR
Keeler, R
Kehoe, R
Keil, M
Kekelidze, GD
Kelly, M
Kennedy, J
Kenney, CJ
Kenyon, M
Kepka, O
Kerschen, N
Kersevan, BP
Kersten, S
Kessoku, K
Ketterer, C
Keung, J
Khakzad, M
Khalil-zada, F
Khandanyan, H
Khanov, A
Kharchenko, D
Khodinov, A
Kholodenko, AG
Khomich, A
Khoo, TJ
Khoriauli, G
Khoroshilov, A
Khovanskiy, N
Khovanskiy, V
Khramov, E
Khubua, J
Kim, H
Kim, MS
Kim, PC
Kim, SH
Kimura, N
Kind, O
King, BT
King, M
King, RSB
Kirk, J
Kirsch, GP
Kirsch, LE
Kiryunin, AE
Kishimoto, T
Kisielewska, D
Kittelmann, T
Kiver, AM
Kiyamura, H
Kladiva, E
Klaiber-Lodewigs, J
Klein, M
Klein, U
Kleinknecht, K
Klemetti, M
Klier, A
Klimentov, A
Klingenberg, R
Klinkby, EB
Klioutchnikova, T
Klok, PF
Klous, S
Kluge, EE
Kluge, T
Kluit, P
Kluth, S
Knecht, NS
Kneringer, E
Knobloch, J
Knoops, EBFG
Knue, A
Ko, BR
Kobayashi, T
Kobel, M
Kocian, M
Kocnar, A
Kodys, P
Koneke, K
Konig, AC
Koenig, S
Kopke, L
Koetsveld, F
Koevesarki, P
Koffas, T
Koffeman, E
Kohn, F
Kohout, Z
Kohriki, T
Koi, T
Kokott, T
Kolachev, GM
Kolanoski, H
Kolesnikov, V
Koletsou, I
Koll, J
Kollar, D
Kollefrath, M
Kolya, SD
Komar, AA
Komaragiri, JR
Komori, Y
Kondo, T
Kono, T
Kononov, AI
Konoplich, R
Konstantinidis, N
Kootz, A
Koperny, S
Kopikov, SV
Korcyl, K
Kordas, K
Koreshev, V
Korn, A
Korol, A
Korolkov, I
Korolkova, EV
Korotkov, VA
Kortner, O
Kortner, S
Kostyukhin, VV
Kotamaki, MJ
Kotov, S
Kotov, VM
Kotwal, A
Kourkoumelis, C
Kouskoura, V
Koutsman, A
Kowalewski, R
Kowalski, TZ
Kozanecki, W
Kozhin, AS
Kral, V
Kramarenko, VA
Kramberger, G
Krasny, MW
Krasznahorkay, A
Kraus, J
Kreisel, A
Krejci, F
Kretzschmar, J
Krieger, N
Krieger, P
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Kruger, H
Kruker, T
Krumshteyn, ZV
Kruth, A
Kubota, T
Kuehn, S
Kugel, A
Kuhl, T
Kuhn, D
Kukhtin, V
Kulchitsky, Y
Kuleshov, S
Kummer, C
Kuna, M
Kundu, N
Kunkle, J
Kupco, A
Kurashige, H
Kurata, M
Kurochkin, YA
Kus, V
Kuykendall, W
Kuze, M
Kuzhir, P
Kvita, J
Kwee, R
La Rosa, A
La Rotonda, L
Labarga, L
Labbe, J
Lablak, S
Lacasta, C
Lacava, F
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Laisne, E
Lamanna, M
Lampen, CL
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Landsman, H
Lane, JL
Lange, C
Lankford, AJ
Lanni, F
Lantzsch, K
Laplace, S
Lapoire, C
Laporte, JF
Lari, T
Larionov, AV
Larner, A
Lasseur, C
Lassnig, M
Laurelli, P
Lavorato, A
Lavrijsen, W
Laycock, P
Lazarev, AB
Le Dortz, O
Le Guirriec, E
Le Maner, C
Le Menedeu, E
Lebel, C
LeCompte, T
Ledroit-Guillon, F
Lee, H
Lee, JSH
Lee, SC
Lee, L
Lefebvre, M
Legendre, M
Leger, A
LeGeyt, BC
Legger, F
Leggett, C
Lehmacher, M
Miotto, GL
Lei, X
Leite, MAL
Leitner, R
Lellouch, D
Leltchouk, M
Lemmer, B
Lendermann, V
Leney, KJC
Lenz, T
Lenzen, G
Lenzi, B
Leonhardt, K
Leontsinis, S
Leroy, C
Lessard, JR
Lesser, J
Lester, CG
Cheong, ALF
Leveque, J
Levin, D
Levinson, LJ
Levitski, MS
Lewandowska, M
Lewis, A
Lewis, GH
Leyko, AM
Leyton, M
Li, B
Li, H
Li, S
Li, X
Liang, Z
Liang, Z
Liberti, B
Lichard, P
Lichtnecker, M
Lie, K
Liebig, W
Lifshitz, R
Lilley, JN
Limbach, C
Limosani, A
Limper, M
Lin, SC
Linde, F
Linnemann, JT
Lipeles, E
Lipinsky, L
Lipniacka, A
Liss, TM
Lissauer, D
Lister, A
Litke, AM
Liu, C
Liu, D
Liu, H
Liu, JB
Liu, M
Liu, S
Liu, Y
Livan, M
Livermore, SSA
Lleres, A
Merino, JL
Lloyd, SL
Lobodzinska, E
Loch, P
Lockman, WS
Lockwitz, S
Loddenkoetter, T
Loebinger, FK
Loginov, A
Loh, CW
Lohse, T
Lohwasser, K
Lokajicek, M
Loken, J
Lombardo, VP
Long, RE
Lopes, L
Mateos, DL
Losada, M
Loscutoff, P
Lo Sterzo, F
Losty, MJ
Lou, X
Lounis, A
Loureiro, KF
Love, J
Love, PA
Lowe, AJ
Lu, F
Lubatti, HJ
Luci, C
Lucotte, A
Ludwig, A
Ludwig, D
Ludwig, I
Ludwig, J
Luehring, F
Luijckx, G
Lumb, D
Luminari, L
Lund, E
Lund-Jensen, B
Lundberg, B
Lundberg, J
Lundquist, J
Lungwitz, M
Lupi, A
Lutz, G
Lynn, D
Lys, J
Lytken, E
Ma, H
Ma, LL
Goia, JAM
Maccarrone, G
Macchiolo, A
Macek, B
Miguens, JM
Mackeprang, R
Madaras, RJ
Mader, WF
Maenner, R
Maeno, T
Mattig, P
Mattig, S
Martins, PJM
Magnoni, L
Magradze, E
Mahalalel, Y
Mahboubi, K
Mahout, G
Maiani, C
Maidantchik, C
Maio, A
Majewski, S
Makida, Y
Makovec, N
Mal, P
Malecki, P
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Maltezos, S
Malyshev, V
Malyukov, S
Mameghani, R
Mamuzic, J
Manabe, A
Mandelli, L
Mandic, I
Mandrysch, R
Maneira, J
Mangeard, PS
Manjavidze, ID
Mann, A
Manning, PM
Manousakis-Katsikakis, A
Mansoulie, B
Manz, A
Mapelli, A
Mapelli, L
March, L
Marchand, JF
Marchese, F
Marchiori, G
Marcisovsky, M
Marin, A
Marino, CP
Marroquim, F
Marshall, R
Marshall, Z
Martens, FK
Marti-Garcia, S
Martin, AJ
Martin, B
Martin, B
Martin, FF
Martin, JP
Martin, P
Martin, TA
Latour, BMD
Martin-Haugh, S
Martinez, M
Outschoorn, VM
Martyniuk, AC
Marx, M
Marzano, F
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Massa, I
Massaro, G
Massol, N
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Mathes, M
Matricon, P
Matsumoto, H
Matsunaga, H
Matsushita, T
Mattravers, C
Maugain, JM
Maxfield, SJ
Maximov, DA
May, EN
Mayne, A
Mazini, R
Mazur, M
Mazzanti, M
Mazzoni, E
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
Mc-Cubbin, NA
McFarlane, KW
Mcfayden, JA
McGlone, H
Mchedlidze, G
McLaren, RA
Mclaughlan, T
McMahon, SJ
McPherson, RA
Meade, A
Mechnich, J
Mechtel, M
Medinnis, M
Meera-Lebbai, R
Meguro, T
Mehdiyev, R
Mehlhase, S
Mehta, A
Meier, K
Meinhardt, J
Meirose, B
Melachrinos, C
Garcia, BRM
Navas, LM
Meng, Z
Mengarelli, A
Menke, S
Menot, C
Meoni, E
Mercurio, KM
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Messina, A
Metcalfe, J
Mete, AS
Meuser, S
Meyer, C
Meyer, JP
Meyer, J
Meyer, J
Meyer, TC
Meyer, WT
Miao, J
Michal, S
Micu, L
Middleton, RP
Miele, P
Migas, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Miller, DW
Miller, RJ
Mills, WJ
Mills, C
Milov, A
Milstead, DA
Milstein, D
Minaenko, AA
Minano, M
Minashvili, IA
Mincer, AI
Mindur, B
Mineev, M
Ming, Y
Mir, LM
Mirabelli, G
Verge, LM
Misiejuk, A
Mitrevski, J
Mitrofanov, GY
Mitsou, VA
Mitsui, S
Miyagawa, PS
Miyazaki, K
Mjornmark, JU
Moa, T
Mockett, P
Moed, S
Moeller, V
Moenig, K
Moser, N
Mohapatra, S
Mohr, W
Mohrdieck-Mock, S
Moisseev, AM
Moles-Valls, R
Molina-Perez, J
Monk, J
Monnier, E
Montesano, S
Monticelli, F
Monzani, S
Moore, RW
Moorhead, GF
Herrera, CM
Moraes, A
Morange, N
Morel, J
Morello, G
Moreno, D
Llacer, MM
Morettini, P
Morii, M
Morin, J
Morita, Y
Morley, AK
Mornacchi, G
Morozov, SV
Morris, JD
Morvaj, L
Moser, HG
Mosidze, M
Moss, J
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Mudrinic, M
Mueller, F
Mueller, J
Mueller, K
Muller, TA
Muenstermann, D
Muir, A
Munwes, Y
Murray, WJ
Mussche, I
Musto, E
Myagkov, AG
Myska, M
Nadal, J
Nagai, K
Nagano, K
Nagasaka, Y
Nairz, AM
Nakahama, Y
Nakamura, K
Nakano, I
Nanava, G
Napier, A
Nash, M
Nation, NR
Nattermann, T
Naumann, T
Navarro, G
Neal, HA
Nebot, E
Nechaeva, PY
Negri, A
Negri, G
Nektarijevic, S
Nelson, S
Nelson, TK
Nemecek, S
Nemethy, P
Nepomuceno, AA
Nessi, M
Nesterov, SY
Neubauer, MS
Neusiedl, A
Neves, RM
Nevski, P
Newman, PR
Hong, VNT
Nickerson, RB
Nicolaidou, R
Nicolas, L
Nicquevert, B
Niedercorn, F
Nielsen, J
Niinikoski, T
Nikiforou, N
Nikiforov, A
Nikolaenko, V
Nikolaev, K
Nikolic-Audit, I
Nikolics, K
Nikolopoulos, K
Nilsen, H
Nilsson, P
Ninomiya, Y
Nisati, A
Nishiyama, T
Nisius, R
Nodulman, L
Nomachi, M
Nomidis, I
Nordberg, M
Nordkvist, B
Norton, PR
Novakova, J
Nozaki, M
Nozicka, M
Nozka, L
Nugent, IM
Nuncio-Quiroz, AE
Hanninger, GN
Nunnemann, T
Nurse, E
Nyman, T
O'Brien, BJ
O'Neale, SW
O'Neil, DC
O'Shea, V
Oakham, FG
Oberlack, H
Ocariz, J
Ochi, A
Oda, S
Odaka, S
Odier, J
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohshima, T
Ohshita, H
Ohska, TK
Ohsugi, T
Okada, S
Okawa, H
Okumura, Y
Okuyama, T
Olcese, M
Olchevski, AG
Oliveira, M
Damazio, DO
Garcia, EO
Olivito, D
Olszewski, A
Olszowska, J
Omachi, C
Onofre, A
Onyisi, PUE
Oram, CJ
Oreglia, MJ
Oren, Y
Orestano, D
Orlov, I
Barrera, CO
Orr, RS
Osculati, B
Ospanov, R
Osuna, C
Garzon, GOY
Ottersbach, JP
Ouchrif, M
Ould-Saada, F
Ouraou, A
Ouyang, Q
Owen, M
Owen, S
Ozcan, VE
Ozturk, N
Pages, AP
Aranda, CP
Griso, SP
Paganis, E
Paige, F
Pajchel, K
Palacino, G
Paleari, CP
Palestini, S
Pallin, D
Palma, A
Palmer, JD
Pan, YB
Panagiotopoulou, E
Panes, B
Panikashvili, N
Panitkin, S
Pantea, D
Panuskova, M
Paolone, V
Papadelis, A
Papadopoulou, TD
Paramonov, A
Park, W
Parker, MA
Parodi, F
Parsons, JA
Parzefall, U
Pasqualucci, E
Passeri, A
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Patel, N
Pater, JR
Patricelli, S
Pauly, T
Pecsy, M
Morales, MIP
Peleganchuk, SV
Peng, H
Pengo, R
Penson, A
Penwell, J
Perantoni, M
Perez, K
Cavalcanti, TP
Codina, EP
Garcia-Estan, MTP
Reale, VP
Perini, L
Pernegger, H
Perrino, R
Perrodo, P
Persembe, S
Peshekhonov, VD
Petersen, BA
Petersen, J
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petrolo, E
Petrucci, F
Petschull, D
Petteni, M
Pezoa, R
Phan, A
Phillips, AW
Phillips, PW
Piacquadio, G
Piccaro, E
Piccinini, M
Pickford, A
Piec, SM
Piegaia, R
Pilcher, JE
Pilkington, AD
Pina, J
Pinamonti, M
Pinder, A
Pinfold, JL
Ping, J
Pinto, B
Pirotte, O
Pizio, C
Placakyte, R
Plamondon, M
Plano, WG
Pleier, MA
Pleskach, AV
Poblaguev, A
Poddar, S
Podlyski, F
Poggioli, L
Poghosyan, T
Pohl, M
Polci, F
Polesello, G
Policicchio, A
Polini, A
Poll, J
Polychronakos, V
Pomarede, DM
Pomeroy, D
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovic, DS
Poppleton, A
Bueso, XP
Porter, R
Posch, C
Pospelov, GE
Pospisil, S
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Prabhu, R
Pralavorio, P
Prasad, S
Pravahan, R
Prell, S
Pretzl, K
Pribyl, L
Price, D
Price, LE
Price, MJ
Prichard, PM
Prieur, D
Primavera, M
Prokofiev, K
Prokoshin, F
Protopopescu, S
Proudfoot, J
Prudent, X
Przysiezniak, H
Psoroulas, S
Ptacek, E
Pueschel, E
Purdham, J
Purohit, M
Puzo, P
Pylypchenko, Y
Qian, J
Qian, Z
Qin, Z
Quadt, A
Quarrie, DR
Quayle, WB
Quinonez, F
Raas, M
Radescu, V
Radics, B
Rador, T
Ragusa, F
Rahal, G
Rahimi, AM
Rahm, D
Rajagopalan, S
Rammensee, M
Rammes, M
Ramstedt, M
Randle-Conde, AS
Randrianarivony, K
Ratoff, PN
Rauscher, F
Rauter, E
Raymond, M
Read, AL
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Reichold, A
Reinherz-Aronis, E
Reinsch, A
Reisinger, I
Reljic, D
Rembser, C
Ren, ZL
Renaud, A
Renkel, P
Rescigno, M
Resconi, S
Resende, B
Reznicek, P
Rezvani, R
Richards, A
Richter, R
Richter-Was, E
Ridel, M
Rieke, S
Rijpstra, M
Rijssenbeek, M
Rimoldi, A
Rinaldi, L
Rios, RR
Riu, I
Rivoltella, G
Rizatdinova, F
Rizvi, E
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
Robinson, JEM
Robinson, M
Robson, A
de Lima, JGR
Roda, C
Dos Santos, DR
Rodier, S
Rodriguez, D
Roe, A
Roe, S
Rohne, O
Rojo, V
Rolli, S
Romaniouk, A
Romanov, VM
Romeo, G
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, A
Rose, M
Rosenbaum, GA
Rosenberg, EI
Rosendahl, PL
Rosenthal, O
Rosselet, L
Rossetti, V
Rossi, E
Rossi, LP
Rossi, L
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubinskiy, I
Ruckert, B
Ruckstuhl, N
Rud, VI
Rudolph, C
Rudolph, G
Ruhr, F
Ruggieri, F
Ruiz-Martinez, A
Rulikowska-Zarebska, E
Rumiantsev, V
Rumyantsev, L
Runge, K
Runolfsson, O
Rurikova, Z
Rusakovich, NA
Rust, DR
Rutherfoord, JP
Ruwiedel, C
Ruzicka, P
Ryabov, YF
Ryadovikov, V
Ryan, P
Rybar, M
Rybkin, G
Ryder, NC
Rzaeva, S
Saavedra, AF
Sadeh, I
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Sakamoto, H
Salamanna, G
Salamon, A
Saleem, M
Salihagic, D
Salnikov, A
Salt, J
Ferrando, BMS
Salvatore, D
Salvatore, F
Salvucci, A
Salzburger, A
Sampsonidis, D
Samset, BH
Sanchez, A
Sandaker, H
Sander, HG
Sanders, MP
Sandhoff, M
Sandoval, T
Sandoval, C
Sandstroem, R
Sandvoss, S
Sankey, DPC
Sansoni, A
Rios, CS
Santoni, C
Santonico, R
Santos, H
Saraiva, JG
Sarangi, T
Sarkisyan-Grinbaum, E
Sarri, F
Sartisohn, G
Sasaki, O
Sasaki, T
Sasao, N
Satsounkevitch, I
Sauvage, G
Sauvan, E
Sauvan, JB
Savard, P
Savinov, V
Savu, DO
Savva, P
Sawyer, L
Saxon, DH
Says, LP
Sbarra, C
Sbrizzi, A
Scallon, O
Scannicchio, DA
Schaarschmidt, J
Schacht, P
Schafer, U
Schaepe, S
Schaetzel, S
Schaffer, AC
Schaile, D
Schamberger, RD
Schamov, AG
Scharf, V
Schegelsky, VA
Scheirich, D
Schernau, M
Scherzer, MI
Schiavi, C
Schieck, J
Schioppa, M
Schlenker, S
Schlereth, JL
Schmidt, E
Schmieden, K
Schmitt, C
Schmitt, S
Schmitz, M
Schoning, A
Schott, M
Schouten, D
Schovancova, J
Schram, M
Schroeder, C
Schroer, N
Schuh, S
Schuler, G
Schultes, J
Schultz-Coulon, HC
Schulz, H
Schumacher, JW
Schumacher, M
Schumm, BA
Schune, P
Schwanenberger, C
Schwartzman, A
Schwemling, P
Schwienhorst, R
Schwierz, R
Schwindling, J
Schwindt, T
Scott, WG
Searcy, J
Sedykh, E
Segura, E
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidze, G
Seliverstov, DM
Sellden, B
Sellers, G
Seman, M
Semprini-Cesari, N
Serfon, C
Serin, L
Seuster, R
Severini, H
Sevior, ME
Sfyrla, A
Shabalina, E
Shamim, M
Shan, LY
Shank, JT
Shao, QT
Shapiro, M
Shatalov, PB
Shaver, L
Shaw, K
Sherman, D
Sherwood, P
Shibata, A
Shichi, H
Shimizu, S
Shimojima, M
Shin, T
Shmeleva, A
Shochet, MJ
Short, D
Shupe, MA
Sicho, P
Sidoti, A
Siebel, A
Siegert, F
Siegrist, J
Sijacki, D
Silbert, O
Silva, J
Silver, Y
Silverstein, D
Silverstein, SB
Simak, V
Simard, O
Simic, L
Simion, S
Simmons, B
Simoniello, R
Simonyan, M
Sinervo, P
Sinev, NB
Sipica, V
Siragusa, G
Sircar, A
Sisakyan, AN
Sivoklokov, SY
Sjolin, J
Sjursen, TB
Skinnari, LA
Skovpen, K
Skubic, P
Skvorodnev, N
Slater, M
Slavicek, T
Sliwa, K
Sloan, TJ
Sloper, J
Smakhtin, V
Smirnov, SY
Smirnova, LN
Smirnova, O
Smith, BC
Smith, D
Smith, KM
Smizanska, M
Smolek, K
Snesarev, AA
Snow, SW
Snow, J
Snuverink, J
Snyder, S
Soares, M
Sobie, R
Sodomka, J
Soffer, A
Solans, CA
Solar, M
Solc, J
Soldatov, E
Soldevila, U
Camillocci, ES
Solodkov, AA
Solovyanov, OV
Sondericker, J
Soni, N
Sopko, V
Sopko, B
Sorbi, M
Sosebee, M
Soukharev, A
Spagnolo, S
Spano, F
Spighi, R
Spigo, G
Spila, F
Spiriti, E
Spiwoks, R
Spousta, M
Spreitzer, T
Spurlock, B
Denis, RDS
Stahl, T
Stahlman, J
Stamen, R
Stanecka, E
Stanek, RW
Stanescu, C
Stapnes, S
Starchenko, EA
Stark, J
Staroba, P
Starovoitov, P
Staude, A
Stavina, P
Stavropoulos, G
Steele, G
Steinbach, P
Steinberg, P
Stekl, I
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stevenson, K
Stewart, GA
Stillings, JA
Stockmanns, T
Stockton, MC
Stoerig, K
Stoicea, G
Stonjek, S
Strachota, P
Stradling, AR
Straessner, A
Strandberg, J
Strandberg, S
Strandlie, A
Strang, M
Strauss, E
Strauss, M
Strizenec, P
Strohmer, R
Strom, DM
Strong, JA
Stroynowski, R
Strube, J
Stugu, B
Stumer, I
Stupak, J
Sturm, P
Soh, DA
Su, D
Subramania, HS
Succurro, A
Sugaya, Y
Sugimoto, T
Suhr, C
Suita, K
Suk, M
Sulin, VV
Sultansoy, S
Sumida, T
Sun, X
Sundermann, JE
Suruliz, K
Sushkov, S
Susinno, G
Sutton, MR
Suzuki, Y
Suzuki, Y
Svatos, M
Sviridov, YM
Swedish, S
Sykora, I
Sykora, T
Szeless, B
Sanchez, J
Ta, D
Tackmann, K
Taffard, A
Tafirout, R
Taga, A
Taiblum, N
Takahashi, Y
Takai, H
Takashima, R
Takeda, H
Takeshita, T
Talby, M
Talyshev, A
Tamsett, MC
Tanaka, J
Tanaka, R
Tanaka, S
Tanaka, S
Tanaka, Y
Tani, K
Tannoury, N
Tappern, GP
Tapprogge, S
Tardif, D
Tarem, S
Tarrade, F
Tartarelli, GF
Tas, P
Tasevsky, M
Tassi, E
Tatarkhanov, M
Taylor, C
Taylor, FE
Taylor, GN
Taylor, W
Teinturier, M
Castanheira, MTD
Teixeira-Dias, P
Temming, KK
Ten Kate, H
Teng, PK
Terada, S
Terashi, K
Terron, J
Terwort, M
Testa, M
Teuscher, RJ
Thadome, J
Therhaag, J
Theveneaux-Pelzer, T
Thioye, M
Thoma, S
Thomas, JP
Thompson, EN
Thompson, PD
Thompson, PD
Thompson, AS
Thomson, E
Thomson, M
Thun, RP
Tian, F
Tic, T
Tikhomirov, VO
Tikhonov, YA
Timmermans, CJWP
Tipton, P
Viegas, FJTA
Tisserant, S
Tobias, J
Toczek, B
Todorov, T
Todorova-Nova, S
Toggerson, B
Tojo, J
Tokar, S
Tokunaga, K
Tokushuku, K
Tollefson, K
Tomoto, M
Tompkins, L
Toms, K
Tong, G
Tonoyan, A
Topfel, C
Topilin, ND
Torchiani, I
Torrence, E
Torres, H
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Traynor, D
Trefzger, T
Tremblet, L
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Trinh, TN
Tripiana, MF
Trischuk, W
Trivedi, A
Trocme, B
Troncon, C
Trottier-McDonald, M
Trzupek, A
Tsarouchas, C
Tseng, JCL
Tsiakiris, M
Tsiareshka, PV
Tsionou, D
Tsipolitis, G
Tsiskaridze, V
Tskhadadze, EG
Tsukerman, II
Tsulaia, V
Tsung, JW
Tsuno, S
Tsybychev, D
Tua, A
Tuggle, JM
Turala, M
Turecek, D
Cakir, IT
Turlay, E
Turra, R
Tuts, PM
Tykhonov, A
Tylmad, M
Tyndel, M
Tyrvainen, H
Tzanakos, G
Uchida, K
Ueda, I
Ueno, R
Ugland, M
Uhlenbrock, M
Uhrmacher, M
Ukegawa, F
Unal, G
Underwood, DG
Undrus, A
Unel, G
Unno, Y
Urbaniec, D
Urkovsky, E
Urrejola, P
Usai, G
Uslenghi, M
Vacavant, L
Vacek, V
Vachon, B
Vahsen, S
Valenta, J
Valente, P
Valentinetti, S
Valkar, S
Gallego, EV
Vallecorsa, S
Ferrer, JAV
van der Graaf, H
van der Kraaij, E
Van Der Leeuw, R
van der Poel, E
van der Ster, D
Van Eijk, B
van Eldik, N
van Gemmeren, P
van Kesteren, Z
van Vulpen, I
Vandelli, W
Vandoni, G
Vaniachine, A
Vankov, P
Vannucci, F
Rodriguez, FV
Vari, R
Varnes, EW
Varouchas, D
Vartapetian, A
Varvell, KE
Vassilakopoulos, VI
Vazeille, F
Vegni, G
Veillet, JJ
Vellidis, C
Veloso, F
Veness, R
Veneziano, S
Ventura, A
Ventura, D
Venturi, M
Venturi, N
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Vichou, I
Vickey, T
Viehhauser, GHA
Viel, S
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinek, E
Vinogradov, VB
Virchaux, M
Virzi, J
Vitells, O
Viti, M
Vivarelli, I
Vaque, FV
Vlachos, S
Vlasak, M
Vlasov, N
Vogel, A
Vokac, P
Volpi, G
Volpi, M
Volpini, G
Von der Schmitt, H
Von Loeben, J
Von Radziewski, H
Von Toerne, E
Vorobel, V
Vorobiev, AP
Vorwerk, V
Vos, M
Voss, R
Voss, TT
Vossebeld, JH
Vranjes, N
Milosavljevic, MV
Vrba, V
Vreeswijk, M
Anh, TV
Vuillermet, R
Vukotic, I
Wagner, W
Wagner, P
Wahlen, H
Wakabayashi, J
Walbersloh, J
Walch, S
Walder, J
Walker, R
Walkowiak, W
Wall, R
Waller, P
Wang, C
Wang, H
Wang, H
Wang, J
Wang, J
Wang, JC
Wang, R
Wang, SM
Warburton, A
Ward, CP
Warsinsky, M
Watkins, PM
Watson, AT
Watson, MF
Watts, G
Watts, S
Waugh, AT
Waugh, BM
Weber, J
Weber, M
Weber, MS
Weber, P
Weidberg, AR
Weigell, P
Weingarten, J
Weiser, C
Wellenstein, H
Wells, PS
Wen, M
Wenaus, T
Wendler, S
Weng, Z
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, P
Werth, M
Wessels, M
Weydert, C
Whalen, K
Wheeler-Ellis, SJ
Whitaker, SP
White, A
White, MJ
Whitehead, SR
Whiteson, D
Whittington, D
Wicek, F
Wicke, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik, LAM
Wijeratne, PA
Wildauer, A
Wildt, MA
Wilhelm, I
Wilkens, HG
Will, JZ
Williams, E
Williams, HH
Willis, W
Willocq, S
Wilson, JA
Wilson, MG
Wilson, A
Wingerter-Seez, I
Winkelmann, S
Winklmeier, F
Wittgen, M
Wolter, MW
Wolters, H
Wong, WC
Wooden, G
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wraight, K
Wright, C
Wrona, B
Wu, SL
Wu, X
Wu, Y
Wulf, E
Wunstorf, R
Wynne, BM
Xaplanteris, L
Xella, S
Xie, S
Xie, Y
Xu, C
Xu, D
Xu, G
Yabsley, B
Yacoob, S
Yamada, M
Yamaguchi, H
Yamamoto, A
Yamamoto, K
Yamamoto, S
Yamamura, T
Yamanaka, T
Yamaoka, J
Yamazaki, T
Yamazaki, Y
Yan, Z
Yang, H
Yang, UK
Yang, Y
Yang, Y
Yang, Z
Yanush, S
Yao, WM
Yao, Y
Yasu, Y
Smit, GVY
Ye, J
Ye, S
Yilmaz, M
Yoosoofmiya, R
Yorita, K
Yoshida, R
Young, C
Youssef, S
Yu, D
Yu, J
Yu, J
Yuan, L
Yurkewicz, A
Zaets, VG
Zaidan, R
Zaitsev, AM
Zajacova, Z
Zalite, YK
Zanello, L
Zarzhitsky, P
Zaytsev, A
Zeitnitz, C
Zeller, M
Zeman, M
Zemla, A
Zendler, C
Zenin, O
Zenis, T
Zenonos, Z
Zenz, S
Zerwas, D
della Porta, GZ
Zhan, Z
Zhang, D
Zhang, H
Zhang, J
Zhang, X
Zhang, Z
Zhao, L
Zhao, T
Zhao, Z
Zhemchugov, A
Zheng, S
Zhong, J
Zhou, B
Zhou, N
Zhou, Y
Zhu, CG
Zhu, H
Zhu, J
Zhu, Y
Zhuang, X
Zhuravlov, V
Zieminska, D
Zimmermann, R
Zimmermann, S
Zimmermann, S
Ziolkowski, M
Zitoun, R
Zivkovic, L
Zmouchko, VV
Zobernig, G
Zoccoli, A
Zolnierowski, Y
Zsenei, A
Nedden, MZ
Zutshi, V
Zwalinski, L
AF Aad, G.
Abbott, B.
Abdallah, J.
Abdelalim, A. A.
Abdesselam, A.
Abdinov, O.
Abi, B.
Abolins, M.
Abramowicz, H.
Abreu, H.
Acerbi, E.
Acharya, B. S.
Adams, D. L.
Addy, T. N.
Adelman, J.
Aderholz, M.
Adomeit, S.
Adragna, P.
Adye, T.
Aefsky, S.
Aguilar-Saavedra, J. A.
Aharrouche, M.
Ahlen, S. P.
Ahles, F.
Ahmad, A.
Ahsan, M.
Aielli, G.
Akdogan, T.
Akesson, T. P. A.
Akimoto, G.
Akimov, A. V.
Akiyama, A.
Alam, M. S.
Alam, M. A.
Albert, J.
Albrand, S.
Aleksa, M.
Aleksandrov, I. N.
Alessandria, F.
Alexa, C.
Alexander, G.
Alexandre, G.
Alexopoulos, T.
Alhroob, M.
Aliev, M.
Alimonti, G.
Alison, J.
Aliyev, M.
Allport, P. P.
Allwood-Spiers, S. E.
Almond, J.
Aloisio, A.
Alon, R.
Alonso, A.
Alviggi, M. G.
Amako, K.
Amaral, P.
Amelung, C.
Ammosov, V. V.
Amorim, A.
Amoros, G.
Amram, N.
Anastopoulos, C.
Ancu, L. S.
Andari, N.
Andeen, T.
Anders, C. F.
Anders, G.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Andrieux, M-L.
Anduaga, X. S.
Angerami, A.
Anghinolfi, F.
Anjos, N.
Annovi, A.
Antonaki, A.
Antonelli, M.
Antonov, A.
Antos, J.
Anulli, F.
Aoun, S.
Bella, L. Aperio
Apolle, R.
Arabidze, G.
Aracena, I.
Arai, Y.
Arce, A. T. H.
Archambault, J. P.
Arfaoui, S.
Arguin, J-F.
Arik, E.
Arik, M.
Armbruster, A. J.
Arnaez, O.
Arnault, C.
Artamonov, A.
Artoni, G.
Arutinov, D.
Asai, S.
Asfandiyarov, R.
Ask, S.
Asman, B.
Asquith, L.
Assamagan, K.
Astbury, A.
Astvatsatourov, A.
Atoian, G.
Aubert, B.
Auerbach, B.
Auge, E.
Augsten, K.
Aurousseau, M.
Austin, N.
Avolio, G.
Avramidou, R.
Axen, D.
Ay, C.
Azuelos, G.
Azuma, Y.
Baak, M. A.
Baccaglioni, G.
Bacci, C.
Bach, A. M.
Bachacou, H.
Bachas, K.
Bachy, G.
Backes, M.
Backhaus, M.
Badescu, E.
Bagnaia, P.
Bahinipati, S.
Bai, Y.
Bailey, D. C.
Bain, T.
Baines, J. T.
Baker, O. K.
Baker, M. D.
Baker, S.
Banas, E.
Banerjee, P.
Banerjee, Sw.
Banfi, D.
Bangert, A.
Bansal, V.
Bansil, H. S.
Barak, L.
Baranov, S. P.
Barashkou, A.
Galtieri, A. Barbaro
Barber, T.
Barberio, E. L.
Barberis, D.
Barbero, M.
Bardin, D. Y.
Barillari, T.
Barisonzi, M.
Barklow, T.
Barlow, N.
Barnett, B. M.
Barnett, R. M.
Baron-Celli, A.
Barone, G.
Barr, A. J.
Barreiro, F.
da Costa, J. Barreiro Guimaraes
Barrillon, P.
Bartoldus, R.
Barton, A. E.
Bartsch, D.
Bartsch, V.
Bates, R. L.
Batkova, L.
Batley, J. R.
Battaglia, A.
Battistin, M.
Battistoni, G.
Bauer, F.
Bawa, H. S.
Beare, B.
Beau, T.
Beauchemin, P. H.
Beccherle, R.
Bechtle, P.
Beck, H. P.
Beckingham, M.
Becks, K. H.
Beddall, A. J.
Beddall, A.
Bedikian, S.
Bednyakov, V. A.
Bee, C. P.
Begel, M.
Harpaz, S. Behar
Behera, P. K.
Beimforde, M.
Belanger-Champagne, C.
Bell, P. J.
Bell, W. H.
Bella, G.
Bellagamba, L.
Bellina, F.
Bellomo, M.
Belloni, A.
Beloborodova, O.
Belotskiy, K.
Beltramello, O.
Ben Ami, S.
Benary, O.
Benchekroun, D.
Benchouk, C.
Bendel, M.
Benekos, N.
Benhammou, Y.
Benjamin, D. P.
Benoit, M.
Bensinger, J. R.
Benslama, K.
Bentvelsen, S.
Berge, D.
Kuutmann, E. Bergeaas
Berger, N.
Berghaus, F.
Berglund, E.
Beringer, J.
Bernardet, K.
Bernat, P.
Bernhard, R.
Bernius, C.
Berry, T.
Bertin, A.
Bertinelli, F.
Bertolucci, F.
Besana, M. I.
Besson, N.
Bethke, S.
Bhimji, W.
Bianchi, R. M.
Bianco, M.
Biebel, O.
Bieniek, S. P.
Bierwagen, K.
Biesiada, J.
Biglietti, M.
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Biscarat, C.
Bitenc, U.
Black, K. M.
Blair, R. E.
Blanchard, J. -B.
Blanchot, G.
Blazek, T.
Blocker, C.
Blocki, J.
Blondel, A.
Blum, W.
Blumenschein, U.
Bobbink, G. J.
Bobrovnikov, V. B.
Bocchetta, S. S.
Bocci, A.
Boddy, C. R.
Boehler, M.
Boek, J.
Boelaert, N.
Boeser, S.
Bogaerts, J. A.
Bogdanchikov, A.
Bogouch, A.
Bohm, C.
Boisvert, V.
Bold, T.
Boldea, V.
Bolnet, N. M.
Bona, M.
Bondarenko, V. G.
Boonekamp, M.
Boorman, G.
Booth, C. N.
Bordoni, S.
Borer, C.
Borisov, A.
Borissov, G.
Borjanovic, I.
Borroni, S.
Bos, K.
Boscherini, D.
Bosman, M.
Boterenbrood, H.
Botterill, D.
Bouchami, J.
Boudreau, J.
Bouhova-Thacker, E. V.
Bourdarios, C.
Bousson, N.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bozhko, N. I.
Bozovic-Jelisavcic, I.
Bracinik, J.
Braem, A.
Branchini, P.
Brandenburg, G. W.
Brandt, A.
Brandt, G.
Brandt, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Brelier, B.
Bremer, J.
Brenner, R.
Bressler, S.
Breton, D.
Britton, D.
Brochu, F. M.
Brock, I.
Brock, R.
Brodbeck, T. J.
Brodet, E.
Broggi, F.
Bromberg, C.
Brooijmans, G.
Brooks, W. K.
Brown, G.
Brown, H.
de Renstrom, P. A. Bruckman
Bruncko, D.
Bruneliere, R.
Brunet, S.
Bruni, A.
Bruni, G.
Bruschi, M.
Buanes, T.
Bucci, F.
Buchanan, J.
Buchanan, N. J.
Buchholz, P.
Buckingham, R. M.
Buckley, A. G.
Buda, S. I.
Budagov, I. A.
Budick, B.
Buescher, V.
Bugge, L.
Buira-Clark, D.
Bulekov, O.
Bunse, M.
Buran, T.
Burckhart, H.
Burdin, S.
Burgess, T.
Burke, S.
Busato, E.
Bussey, P.
Buszello, C. P.
Butin, F.
Butler, B.
Butler, J. M.
Buttar, C. M.
Butterworth, J. M.
Buttinger, W.
Byatt, T.
Urban, S. Cabrera
Caforio, D.
Cakir, O.
Calafiura, P.
Calderini, G.
Calfayan, P.
Calkins, R.
Caloba, L. P.
Caloi, R.
Calvet, D.
Calvet, S.
Toro, R. Camacho
Camarri, P.
Cambiaghi, M.
Cameron, D.
Campana, S.
Campanelli, M.
Canale, V.
Canelli, F.
Canepa, A.
Cantero, J.
Capasso, L.
Garrido, M. D. M. Capeans
Caprini, I.
Caprini, M.
Capriotti, D.
Capua, M.
Caputo, R.
Caramarcu, C.
Cardarelli, R.
Carli, T.
Carlino, G.
Carminati, L.
Caron, B.
Caron, S.
Montoya, G. D. Carrillo
Carter, A. A.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Cascella, M.
Caso, C.
Hernandez, A. M. Castaneda
Castaneda-Miranda, E.
Gimenez, V. Castillo
Castro, N. F.
Cataldi, G.
Cataneo, F.
Catinaccio, A.
Catmore, J. R.
Cattai, A.
Cattani, G.
Caughron, S.
Cauz, D.
Cavalleri, P.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinnia, V.
Ceradini, F.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cetin, S. A.
Ceveninia, F.
Chafaq, A.
Chakraborty, D.
Chan, K.
Chapleau, B.
Chapman, J. D.
Chapman, J. W.
Chareyre, E.
Charlton, D. G.
Chavda, V.
Barajas, C. A. Chavez
Cheatham, S.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Chen, S.
Chen, T.
Chen, X.
Cheng, S.
Cheplakov, A.
Chepurnov, V. F.
El Moursli, R. Cherkaoui
Chernyatin, V.
Cheu, E.
Cheung, S. L.
Chevalier, L.
Chiefari, G.
Chikovani, L.
Childers, J. T.
Chilingarov, A.
Chiodini, G.
Chizhov, M. V.
Choudalakis, G.
Chouridou, S.
Christidi, I. A.
Christov, A.
Chromek-Burckhart, D.
Chu, M. L.
Chudoba, J.
Ciapetti, G.
Ciba, K.
Ciftci, A. K.
Ciftci, R.
Cinca, D.
Cindro, V.
Ciobotaru, M. D.
Cioccaa, C.
Ciocio, A.
Cirilli, M.
Ciubancan, M.
Clark, A.
Clark, P. J.
Cleland, W.
Clemens, J. C.
Clement, B.
Clement, C.
Clifft, R. W.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Coe, P.
Cogan, J. G.
Coggeshall, J.
Cogneras, E.
Cojocaru, C. D.
Colas, J.
Colijn, A. P.
Collard, C.
Collins, N. J.
Collins-Tooth, C.
Collot, J.
Colon, G.
Muino, P. Conde
Coniavitis, E.
Conidi, M. C.
Consonni, M.
Consorti, V.
Constantinescu, S.
Conta, C.
Conventi, F.
Cook, J.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Cooper-Smith, N. J.
Copic, K.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Cortes-Gonzalez, A.
Cortiana, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Costin, T.
Cote, D.
Torres, R. Coura
Courneyea, L.
Cowan, G.
Cowden, C.
Cox, B. E.
Cranmer, K.
Crescioli, F.
Cristinziani, M.
Crosetti, G.
Crupi, R.
Crepe-Renaudin, S.
Cuciuc, C. -M.
Almenar, C. Cuenca
Donszelmann, T. Cuhadar
Curatolo, M.
Curtis, C. J.
Cwetanski, P.
Czirr, H.
Czyczula, Z.
D'Auria, S.
D'Onofrio, M.
D'Orazio, A.
Da Silva, P. V. M.
Da Via, C.
Dabrowski, W.
Dai, T.
Dallapiccola, C.
Dam, M.
Dameri, M.
Damiani, D. S.
Danielsson, H. O.
Dannheim, D.
Dao, V.
Darbo, G.
Darlea, G. L.
Daum, C.
Dauvergne, J. P.
Davey, W.
Davidek, T.
Davidson, N.
Davidson, R.
Davies, E.
Davies, M.
Davison, A. R.
Davygora, Y.
Dawe, E.
Dawson, I.
Dawson, J. W.
Daya, R. K.
De, K.
de Asmundis, R.
De Castro, S.
Salgado, P. E. De Castro Faria
De Cecco, S.
De Graat, J.
De Groot, N.
de Jong, P.
De La Taille, C.
De la Torre, H.
De Lotto, B.
De Mora, L.
De Nooij, L.
Branco, M. De Oliveira
De Pedis, D.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Regie, J. B. De Vivie
Dean, S.
Dedovich, D. V.
Degenhardt, J.
Dehchar, M.
Del Papa, C.
Del Peso, J.
Del Prete, T.
Deliyergiyev, M.
Dell'Acqua, A.
Dell'Asta, L.
Della Pietra, M.
della Volpe, D.
Delmastro, M.
Delpierre, P.
Delruelle, N.
Delsart, P. A.
Deluca, C.
Demers, S.
Demichev, M.
Demirkoz, B.
Deng, J.
Denisov, S. P.
Derendarz, D.
Derkaoui, J. E.
Derue, F.
Dervan, P.
Desch, K.
Devetak, E.
Deviveiros, P. O.
Dewhurst, A.
DeWilde, B.
Dhaliwal, S.
Dhullipudi, R.
Di Ciaccio, A.
Di Ciaccio, L.
Di Girolamo, A.
Di Girolamo, B.
Di Luisea, S.
Di Mattia, A.
Di Micco, B.
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Diaz, M. A.
Diblen, F.
Diehl, E. B.
Dietrich, J.
Dietzsch, T. A.
Diglio, S.
Yagci, K. Dindar
Dingfelder, J.
Dionisi, C.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djobava, T.
do Vale, M. A. B.
Wemans, A. Do Valle
Doan, T. K. O.
Dobbs, M.
Dobinson, R.
Dobos, D.
Dobson, E.
Dobson, M.
Dodd, J.
Doglioni, C.
Doherty, T.
Doi, Y.
Dolejsi, J.
Dolenc, I.
Dolezal, Z.
Dolgoshein, B. A.
Dohmae, T.
Donadelli, M.
Donega, M.
Donini, J.
Dopke, J.
Doria, A.
DosAnjos, A.
Dosil, M.
Dotti, A.
Dova, M. T.
Dowell, J. D.
Doxiadis, A. D.
Doyle, A. T.
Drasal, Z.
Drees, J.
Dressnandt, N.
Drevermann, H.
Driouichi, C.
Dris, M.
Dubbert, J.
Dubbs, T.
Dube, S.
Duchovni, E.
Duckeck, G.
Dudarev, A.
Dudziak, F.
Duehrssen, M.
Duerdoth, I. P.
Duflot, L.
Dufour, M-A.
Dunford, M.
Yildiz, H. Duran
Duxfield, R.
Dwuznik, M.
Dydak, F.
Dzahini, D.
Dueren, M.
Ebenstein, W. L.
Ebke, J.
Eckert, S.
Eckweiler, S.
Edmonds, K.
Edwards, C. A.
Edwards, N. C.
Ehrenfeld, W.
Ehrich, T.
Eifert, T.
Eigen, G.
Einsweiler, K.
Eisenhandler, E.
Ekelof, T.
El Kacimi, M.
Ellert, M.
Elles, S.
Ellinghaus, F.
Ellis, K.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Emeliyanov, D.
Engelmann, R.
Engl, A.
Epp, B.
Eppig, A.
Erdmann, J.
Ereditato, A.
Eriksson, D.
Ernst, J.
Ernst, M.
Ernwein, J.
Errede, D.
Errede, S.
Ertel, E.
Escalier, M.
Escobar, C.
Espinal Curull, X.
Esposito, B.
Etienne, F.
Etienvre, A. I.
Etzion, E.
Evangelakou, D.
Evans, H.
Fabbri, L.
Fabre, C.
Fakhrutdinov, R. M.
Falciano, S.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farley, J.
Farooque, T.
Farrington, S. M.
Farthouat, P.
Fassnacht, P.
Fassouliotis, D.
Fatholahzadeh, B.
Favareto, A.
Fayard, L.
Fazio, S.
Febbraro, R.
Federic, P.
Fedin, O. L.
Fedorko, W.
Fehling-Kaschek, M.
Feligioni, L.
Fellmann, D.
Felzmann, C. U.
Feng, C.
Feng, E. J.
Fenyuk, A. B.
Ferencei, J.
Ferland, J.
Fernando, W.
Ferrag, S.
Ferrando, J.
Ferrara, V.
Ferrari, A.
Ferrari, P.
Ferrari, R.
Ferrer, A.
Ferrer, M. L.
Ferrere, D.
Ferretti, C.
Parodi, A. Ferretto
Fiascaris, M.
Fiedler, F.
Filipcic, A.
Filippas, A.
Filthaut, F.
Fincke-Keeler, M.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, G.
Fischer, P.
Fisher, M. J.
Fisher, S. M.
Flechl, M.
Fleck, I.
Fleckner, J.
Fleischmann, P.
Fleischmann, S.
Flick, T.
Castillo, L. R. Flores
Flowerdew, M. J.
Fokitis, M.
Martin, T. Fonseca
Forbush, D. A.
Formica, A.
Forti, A.
Fortin, D.
Foster, J. M.
Fournier, D.
Foussat, A.
Fowler, A. J.
Fowler, K.
Fox, H.
Francavilla, P.
Franchino, S.
Francis, D.
Frank, T.
Franklin, M.
Franz, S.
Fraternali, M.
Fratina, S.
French, S. T.
Friedrich, F.
Froeschl, R.
Froidevaux, D.
Frost, J. A.
Fukunaga, C.
Torregrosa, E. Fullana
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gadfort, T.
Gadomski, S.
Gagliardi, G.
Gagnon, P.
Galea, C.
Gallas, E. J.
Gallas, M. V.
Gallo, V.
Gallop, B. J.
Gallus, P.
Galyaev, E.
Gan, K. K.
Gao, Y. S.
Gapienko, V. A.
Gaponenko, A.
Garberson, F.
Garcia-Sciveres, M.
Garcia, C.
Garcia Navarro, J. E.
Gardner, R. W.
Garelli, N.
Garitaonandia, H.
Garonne, V.
Garvey, J.
Gatti, C.
Gaudio, G.
Gaumer, O.
Gaur, B.
Gauthier, L.
Gavrilenko, I. L.
Gay, C.
Gaycken, G.
Gayde, J. -C.
Gazis, E. N.
Ge, P.
Gee, C. N. P.
Geerts, D. A. A.
Geich-Gimbel, Ch.
Gellerstedt, K.
Gemme, C.
Gemmell, A.
Genest, M. H.
Gentile, S.
George, M.
George, S.
Gerlach, P.
Gershon, A.
Geweniger, C.
Ghazlane, H.
Ghez, P.
Ghodbane, N.
Giacobbe, B.
Giagu, S.
Giakoumopoulou, V.
Giangiobbe, V.
Gianotti, F.
Gibbard, B.
Gibson, A.
Gibson, S. M.
Gilbert, L. M.
Gilchriese, M.
Gilewsky, V.
Gillberg, D.
Gillman, A. R.
Gingrich, D. M.
Ginzburg, J.
Giokaris, N.
Giordano, R.
Giorgi, F. M.
Giovannini, P.
Giraud, P. F.
Giugni, D.
Giunta, M.
Giusti, P.
Gjelsten, B. K.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glazov, A.
Glitza, K. W.
Glonti, G. L.
Godfrey, J.
Godlewski, J.
Goebel, M.
Goepfert, T.
Goeringer, C.
Goessling, C.
Goettfert, T.
Goldfarb, S.
Goldin, D.
Golling, T.
Golovnia, S. N.
Gomes, A.
Fajardo, L. S. Gomez
Goncalo, R.
Da Costa, J. Goncalves Pinto Firmino
Gonella, L.
Gonidec, A.
Gonzalez, S.
Gonzalez de la Hoz, S.
Gonzalez Silva, M. L.
Gonzalez-Sevilla, S.
Goodson, J. J.
Goossens, L.
Gorbounov, A.
Gordon, H. A.
Gorelov, I.
Gorfine, G.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Gorokhov, S. A.
Goryachev, V. N.
Gosdzik, B.
Gosselink, M.
Gostkin, M. I.
Eschrich, I. Gough
Gouighri, M.
Goujdami, D.
Goulette, M. P.
Goussiou, A. G.
Goy, C.
Grabowska-Bold, I.
Grabski, V.
Grafstroem, P.
Grah, C.
Grahn, K. -J.
Grancagnolo, F.
Grancagnolo, S.
Grassi, V.
Gratchev, V.
Grau, N.
Gray, H. M.
Gray, J. A.
Graziani, E.
Grebenyuk, O. G.
Greenfield, D.
Greenshaw, T.
Greenwood, Z. D.
Gregersen, K.
Gregor, I. M.
Grenier, P.
Griffiths, J.
Grigalashvili, N.
Grillo, A. A.
Grinstein, S.
Grishkevich, Y. V.
Grivaz, J. -F.
Grognuz, J.
Groh, M.
Gross, E.
Grosse-Knetter, J.
Groth-Jensen, J.
Grybel, K.
Guarino, V. J.
Guest, D.
Guicheney, C.
Guida, A.
Guillemin, T.
Guindon, S.
Guler, H.
Gunther, J.
Guo, B.
Guo, J.
Gupta, A.
Gusakov, Y.
Gushchin, V. N.
Gutierrez, A.
Gutierrez, P.
Guttman, N.
Gutzwiller, O.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haas, S.
Haber, C.
Hackenburg, R.
Hadavand, H. K.
Hadley, D. R.
Haefner, P.
Hahn, F.
Haider, S.
Hajduk, Z.
Hakobyan, H.
Haller, J.
Hamacher, K.
Hamal, P.
Hamilton, A.
Hamilton, S.
Han, H.
Han, L.
Hanagaki, K.
Hance, M.
Handel, C.
Hanke, P.
Hansen, J. R.
Hansen, J. B.
Hansen, J. D.
Hansen, P. H.
Hansson, P.
Hara, K.
Hare, G. A.
Harenberg, T.
Harkusha, S.
Harper, D.
Harrington, R. D.
Harris, O. M.
Harrison, K.
Hartert, J.
Hartjes, F.
Haruyama, T.
Harvey, A.
Hasegawa, S.
Hasegawa, Y.
Hassani, S.
Hatch, M.
Hauff, D.
Haug, S.
Hauschild, M.
Hauser, R.
Havranek, M.
Hawes, B. M.
Hawkes, C. M.
Hawkings, R. J.
Hawkins, D.
Hayakawa, T.
Hayden, D.
Hayward, H. S.
Haywood, S. J.
Hazen, E.
He, M.
Head, S. J.
Hedberg, V.
Heelan, L.
Heim, S.
Heinemann, B.
Heisterkamp, S.
Helary, L.
Heller, M.
Hellman, S.
Hellmich, D.
Helsens, C.
Henderson, R. C. W.
Henke, M.
Henrichs, A.
Correia, A. M. Henriques
Henrot-Versille, S.
Henry-Couannier, F.
Hensel, C.
Hen, T.
Hernandez, C. M.
Hernandez Jimenez, Y.
Herrberg, R.
Hershenhorn, A. D.
Herten, G.
Hertenberger, R.
Hervas, L.
Hessey, N. P.
Hidvegi, A.
Higon-Rodriguez, E.
Hill, D.
Hill, J. C.
Hill, N.
Hiller, K. H.
Hillert, S.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hirose, M.
Hirsch, F.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoffman, J.
Hoffmann, D.
Hohlfeld, M.
Holder, M.
Holmgren, S. O.
Holy, T.
Holzbauer, J. L.
Homma, Y.
Hong, T. M.
van Huysduynen, L. Hooft
Horazdovsky, T.
Horn, C.
Horner, S.
Horton, K.
Hostachy, J. -Y.
Hou, S.
Houlden, M. A.
Hoummada, A.
Howarth, J.
Howell, D. F.
Hristova, I.
Hrivnac, J.
Hruska, I.
Hryn'ova, T.
Hsu, P. J.
Hsu, S. -C.
Huang, G. S.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Hughes-Jones, R. E.
Huhtinen, M.
Hurst, P.
Hurwitz, M.
Husemann, U.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibbotson, M.
Ibragimov, I.
Ichimiya, R.
Iconomidou-Fayard, L.
Idarraga, J.
Idzik, M.
Iengo, P.
Igonkina, O.
Ikegami, Y.
Ikeno, M.
Ilchenko, Y.
Iliadis, D.
Ilic, N.
Imbault, D.
Imhaeuser, M.
Imori, M.
Ince, T.
Inigo-Golfin, J.
Ioannou, P.
Iodice, M.
Ionescu, G.
Irles Quiles, A.
Ishii, K.
Ishikawa, A.
Ishino, M.
Ishmukhametov, R.
Issever, C.
Istin, S.
Ivashin, A. V.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jackson, B.
Jackson, J. N.
Jackson, P.
Jaekel, M. R.
Jain, V.
Jakobs, K.
Jakobsen, S.
Jakubek, J.
Jana, D. K.
Jankowski, E.
Jansen, E.
Jantsch, A.
Janus, M.
Jarlskog, G.
Jeanty, L.
Jelen, K.
Plante, I. Jen-La
Jenni, P.
Jeremie, A.
Jez, P.
Jezequel, S.
Jha, M. K.
Ji, H.
Ji, W.
Jia, J.
Jiang, Y.
Belenguer, M. Jimenez
Jin, G.
Jin, S.
Jinnouchi, O.
Joergensen, M. D.
Joffe, D.
Johansen, L. G.
Johansen, M.
Johansson, K. E.
Johansson, P.
Johnert, S.
Johns, K. A.
Jon-And, K.
Jones, G.
Jones, R. W. L.
Jones, T. W.
Jones, T. J.
Jonsson, O.
Joram, C.
Jorge, P. M.
Joseph, J.
Jovin, T.
Ju, X.
Juranek, V.
Jussel, P.
Rozas, A. Juste
Kabachenko, V. V.
Kabana, S.
Kaci, M.
Kaczmarska, A.
Kadlecik, P.
Kado, M.
Kagan, H.
Kagan, M.
Kaiser, S.
Kajomovitz, E.
Kalinin, S.
Kalinovskaya, L. V.
Kama, S.
Kanaya, N.
Kaneda, M.
Kanno, T.
Kantserov, V. A.
Kanzaki, J.
Kaplan, B.
Kapliy, A.
Kaplon, J.
Kar, D.
Karagoz, M.
Karnevskiy, M.
Karr, K.
Kartvelishvili, V.
Karyukhin, A. N.
Kashif, L.
Kasmi, A.
Kass, R. D.
Kastanas, A.
Kataoka, M.
Kataoka, Y.
Katsoufis, E.
Katzy, J.
Kaushik, V.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kayl, M. S.
Kazanin, V. A.
Kazarinov, M. Y.
Keates, J. R.
Keeler, R.
Kehoe, R.
Keil, M.
Kekelidze, G. D.
Kelly, M.
Kennedy, J.
Kenney, C. J.
Kenyon, M.
Kepka, O.
Kerschen, N.
Kersevan, B. P.
Kersten, S.
Kessoku, K.
Ketterer, C.
Keung, J.
Khakzad, M.
Khalil-zada, F.
Khandanyan, H.
Khanov, A.
Kharchenko, D.
Khodinov, A.
Kholodenko, A. G.
Khomich, A.
Khoo, T. J.
Khoriauli, G.
Khoroshilov, A.
Khovanskiy, N.
Khovanskiy, V.
Khramov, E.
Khubua, J.
Kim, H.
Kim, M. S.
Kim, P. C.
Kim, S. H.
Kimura, N.
Kind, O.
King, B. T.
King, M.
King, R. S. B.
Kirk, J.
Kirsch, G. P.
Kirsch, L. E.
Kiryunin, A. E.
Kishimoto, T.
Kisielewska, D.
Kittelmann, T.
Kiver, A. M.
Kiyamura, H.
Kladiva, E.
Klaiber-Lodewigs, J.
Klein, M.
Klein, U.
Kleinknecht, K.
Klemetti, M.
Klier, A.
Klimentov, A.
Klingenberg, R.
Klinkby, E. B.
Klioutchnikova, T.
Klok, P. F.
Klous, S.
Kluge, E. -E.
Kluge, T.
Kluit, P.
Kluth, S.
Knecht, N. S.
Kneringer, E.
Knobloch, J.
Knoops, E. B. F. G.
Knue, A.
Ko, B. R.
Kobayashi, T.
Kobel, M.
Kocian, M.
Kocnar, A.
Kodys, P.
Koeneke, K.
Konig, A. C.
Koenig, S.
Koepke, L.
Koetsveld, F.
Koevesarki, P.
Koffas, T.
Koffeman, E.
Kohn, F.
Kohout, Z.
Kohriki, T.
Koi, T.
Kokott, T.
Kolachev, G. M.
Kolanoski, H.
Kolesnikov, V.
Koletsou, I.
Koll, J.
Kollar, D.
Kollefrath, M.
Kolya, S. D.
Komar, A. A.
Komaragiri, J. R.
Komori, Y.
Kondo, T.
Kono, T.
Kononov, A. I.
Konoplich, R.
Konstantinidis, N.
Kootz, A.
Koperny, S.
Kopikov, S. V.
Korcyl, K.
Kordas, K.
Koreshev, V.
Korn, A.
Korol, A.
Korolkov, I.
Korolkova, E. V.
Korotkov, V. A.
Kortner, O.
Kortner, S.
Kostyukhin, V. V.
Kotamaeki, M. J.
Kotov, S.
Kotov, V. M.
Kotwal, A.
Kourkoumelis, C.
Kouskoura, V.
Koutsman, A.
Kowalewski, R.
Kowalski, T. Z.
Kozanecki, W.
Kozhin, A. S.
Kral, V.
Kramarenko, V. A.
Kramberger, G.
Krasny, M. W.
Krasznahorkay, A.
Kraus, J.
Kreisel, A.
Krejci, F.
Kretzschmar, J.
Krieger, N.
Krieger, P.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Krueger, H.
Kruker, T.
Krumshteyn, Z. V.
Kruth, A.
Kubota, T.
Kuehn, S.
Kugel, A.
Kuhl, T.
Kuhn, D.
Kukhtin, V.
Kulchitsky, Y.
Kuleshov, S.
Kummer, C.
Kuna, M.
Kundu, N.
Kunkle, J.
Kupco, A.
Kurashige, H.
Kurata, M.
Kurochkin, Y. A.
Kus, V.
Kuykendall, W.
Kuze, M.
Kuzhir, P.
Kvita, J.
Kwee, R.
La Rosa, A.
La Rotonda, L.
Labarga, L.
Labbe, J.
Lablak, S.
Lacasta, C.
Lacava, F.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Laisne, E.
Lamanna, M.
Lampen, C. L.
Lampl, W.
Lancon, E.
Landgraf, U.
Landon, M. P. J.
Landsman, H.
Lane, J. L.
Lange, C.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
Laplace, S.
Lapoire, C.
Laporte, J. F.
Lari, T.
Larionov, A. V.
Larner, A.
Lasseur, C.
Lassnig, M.
Laurelli, P.
Lavorato, A.
Lavrijsen, W.
Laycock, P.
Lazarev, A. B.
Le Dortz, O.
Le Guirriec, E.
Le Maner, C.
Le Menedeu, E.
Lebel, C.
LeCompte, T.
Ledroit-Guillon, F.
Lee, H.
Lee, J. S. H.
Lee, S. C.
Lee, L.
Lefebvre, M.
Legendre, M.
Leger, A.
LeGeyt, B. C.
Legger, F.
Leggett, C.
Lehmacher, M.
Miotto, G. Lehmann
Lei, X.
Leite, M. A. L.
Leitner, R.
Lellouch, D.
Leltchouk, M.
Lemmer, B.
Lendermann, V.
Leney, K. J. C.
Lenz, T.
Lenzen, G.
Lenzi, B.
Leonhardt, K.
Leontsinis, S.
Leroy, C.
Lessard, J. -R.
Lesser, J.
Lester, C. G.
Cheong, A. Leung Fook
Leveque, J.
Levin, D.
Levinson, L. J.
Levitski, M. S.
Lewandowska, M.
Lewis, A.
Lewis, G. H.
Leyko, A. M.
Leyton, M.
Li, B.
Li, H.
Li, S.
Li, X.
Liang, Z.
Liang, Z.
Liberti, B.
Lichard, P.
Lichtnecker, M.
Lie, K.
Liebig, W.
Lifshitz, R.
Lilley, J. N.
Limbach, C.
Limosani, A.
Limper, M.
Lin, S. C.
Linde, F.
Linnemann, J. T.
Lipeles, E.
Lipinsky, L.
Lipniacka, A.
Liss, T. M.
Lissauer, D.
Lister, A.
Litke, A. M.
Liu, C.
Liu, D.
Liu, H.
Liu, J. B.
Liu, M.
Liu, S.
Liu, Y.
Livan, M.
Livermore, S. S. A.
Lleres, A.
Merino, J. Llorente
Lloyd, S. L.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Lockwitz, S.
Loddenkoetter, T.
Loebinger, F. K.
Loginov, A.
Loh, C. W.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Loken, J.
Lombardo, V. P.
Long, R. E.
Lopes, L.
Mateos, D. Lopez
Losada, M.
Loscutoff, P.
Lo Sterzo, F.
Losty, M. J.
Lou, X.
Lounis, A.
Loureiro, K. F.
Love, J.
Love, P. A.
Lowe, A. J.
Lu, F.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Ludwig, A.
Ludwig, D.
Ludwig, I.
Ludwig, J.
Luehring, F.
Luijckx, G.
Lumb, D.
Luminari, L.
Lund, E.
Lund-Jensen, B.
Lundberg, B.
Lundberg, J.
Lundquist, J.
Lungwitz, M.
Lupi, A.
Lutz, G.
Lynn, D.
Lys, J.
Lytken, E.
Ma, H.
Ma, L. L.
Goia, J. A. Macana
Maccarrone, G.
Macchiolo, A.
Macek, B.
Miguens, J. Machado
Mackeprang, R.
Madaras, R. J.
Mader, W. F.
Maenner, R.
Maeno, T.
Maettig, P.
Maettig, S.
Martins, P. J. Magalhaes
Magnoni, L.
Magradze, E.
Mahalalel, Y.
Mahboubi, K.
Mahout, G.
Maiani, C.
Maidantchik, C.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Mal, P.
Malecki, Pa.
Malecki, P.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Maltezos, S.
Malyshev, V.
Malyukov, S.
Mameghani, R.
Mamuzic, J.
Manabe, A.
Mandelli, L.
Mandic, I.
Mandrysch, R.
Maneira, J.
Mangeard, P. S.
Manjavidze, I. D.
Mann, A.
Manning, P. M.
Manousakis-Katsikakis, A.
Mansoulie, B.
Manz, A.
Mapelli, A.
Mapelli, L.
March, L.
Marchand, J. F.
Marchese, F.
Marchiori, G.
Marcisovsky, M.
Marin, A.
Marino, C. P.
Marroquim, F.
Marshall, R.
Marshall, Z.
Martens, F. K.
Marti-Garcia, S.
Martin, A. J.
Martin, B.
Martin, B.
Martin, F. F.
Martin, J. P.
Martin, Ph.
Martin, T. A.
Latour, B. Martin Dit
Martin-Haugh, S.
Martinez, M.
Outschoorn, V. Martinez
Martyniuk, A. C.
Marx, M.
Marzano, F.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Massa, I.
Massaro, G.
Massol, N.
Mastrandrea, P.
Mastroberardino, A.
Masubuchi, T.
Mathes, M.
Matricon, P.
Matsumoto, H.
Matsunaga, H.
Matsushita, T.
Mattravers, C.
Maugain, J. M.
Maxfield, S. J.
Maximov, D. A.
May, E. N.
Mayne, A.
Mazini, R.
Mazur, M.
Mazzanti, M.
Mazzoni, E.
Mc Kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
Mc-Cubbin, N. A.
McFarlane, K. W.
Mcfayden, J. A.
McGlone, H.
Mchedlidze, G.
McLaren, R. A.
Mclaughlan, T.
McMahon, S. J.
McPherson, R. A.
Meade, A.
Mechnich, J.
Mechtel, M.
Medinnis, M.
Meera-Lebbai, R.
Meguro, T.
Mehdiyev, R.
Mehlhase, S.
Mehta, A.
Meier, K.
Meinhardt, J.
Meirose, B.
Melachrinos, C.
Garcia, B. R. Mellado
Navas, L. Mendoza
Meng, Z.
Mengarelli, A.
Menke, S.
Menot, C.
Meoni, E.
Mercurio, K. M.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meuser, S.
Meyer, C.
Meyer, J-P.
Meyer, J.
Meyer, J.
Meyer, T. C.
Meyer, W. T.
Miao, J.
Michal, S.
Micu, L.
Middleton, R. P.
Miele, P.
Migas, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikuz, M.
Miller, D. W.
Miller, R. J.
Mills, W. J.
Mills, C.
Milov, A.
Milstead, D. A.
Milstein, D.
Minaenko, A. A.
Minano, M.
Minashvili, I. A.
Mincer, A. I.
Mindur, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mirabelli, G.
Verge, L. Miralles
Misiejuk, A.
Mitrevski, J.
Mitrofanov, G. Y.
Mitsou, V. A.
Mitsui, S.
Miyagawa, P. S.
Miyazaki, K.
Mjoernmark, J. U.
Moa, T.
Mockett, P.
Moed, S.
Moeller, V.
Moenig, K.
Moeser, N.
Mohapatra, S.
Mohr, W.
Mohrdieck-Moeck, S.
Moisseev, A. M.
Moles-Valls, R.
Molina-Perez, J.
Monk, J.
Monnier, E.
Montesano, S.
Monticelli, F.
Monzani, S.
Moore, R. W.
Moorhead, G. F.
Herrera, C. Mora
Moraes, A.
Morange, N.
Morel, J.
Morello, G.
Moreno, D.
Llacer, M. Moreno
Morettini, P.
Morii, M.
Morin, J.
Morita, Y.
Morley, A. K.
Mornacchi, G.
Morozov, S. V.
Morris, J. D.
Morvaj, L.
Moser, H. G.
Mosidze, M.
Moss, J.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Mudrinic, M.
Mueller, F.
Mueller, J.
Mueller, K.
Mueller, T. A.
Muenstermann, D.
Muir, A.
Munwes, Y.
Murray, W. J.
Mussche, I.
Musto, E.
Myagkov, A. G.
Myska, M.
Nadal, J.
Nagai, K.
Nagano, K.
Nagasaka, Y.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakano, I.
Nanava, G.
Napier, A.
Nash, M.
Nation, N. R.
Nattermann, T.
Naumann, T.
Navarro, G.
Neal, H. A.
Nebot, E.
Nechaeva, P. Yu.
Negri, A.
Negri, G.
Nektarijevic, S.
Nelson, S.
Nelson, T. K.
Nemecek, S.
Nemethy, P.
Nepomuceno, A. A.
Nessi, M.
Nesterov, S. Y.
Neubauer, M. S.
Neusiedl, A.
Neves, R. M.
Nevski, P.
Newman, P. R.
Hong, V. Nguyen Thi
Nickerson, R. B.
Nicolaidou, R.
Nicolas, L.
Nicquevert, B.
Niedercorn, F.
Nielsen, J.
Niinikoski, T.
Nikiforou, N.
Nikiforov, A.
Nikolaenko, V.
Nikolaev, K.
Nikolic-Audit, I.
Nikolics, K.
Nikolopoulos, K.
Nilsen, H.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nishiyama, T.
Nisius, R.
Nodulman, L.
Nomachi, M.
Nomidis, I.
Nordberg, M.
Nordkvist, B.
Norton, P. R.
Novakova, J.
Nozaki, M.
Nozicka, M.
Nozka, L.
Nugent, I. M.
Nuncio-Quiroz, A. -E.
Hanninger, G. Nunes
Nunnemann, T.
Nurse, E.
Nyman, T.
O'Brien, B. J.
O'Neale, S. W.
O'Neil, D. C.
O'Shea, V.
Oakham, F. G.
Oberlack, H.
Ocariz, J.
Ochi, A.
Oda, S.
Odaka, S.
Odier, J.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohshima, T.
Ohshita, H.
Ohska, T. K.
Ohsugi, T.
Okada, S.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olcese, M.
Olchevski, A. G.
Oliveira, M.
Damazio, D. Oliveira
Oliver Garcia, E.
Olivito, D.
Olszewski, A.
Olszowska, J.
Omachi, C.
Onofre, A.
Onyisi, P. U. E.
Oram, C. J.
Oreglia, M. J.
Oren, Y.
Orestano, D.
Orlov, I.
Barrera, C. Oropeza
Orr, R. S.
Osculati, B.
Ospanov, R.
Osuna, C.
Otero y Garzon, G.
Ottersbach, J. P.
Ouchrif, M.
Ould-Saada, F.
Ouraou, A.
Ouyang, Q.
Owen, M.
Owen, S.
Ozcan, V. E.
Ozturk, N.
Pacheco Pages, A.
Padilla Aranda, C.
Griso, S. Pagan
Paganis, E.
Paige, F.
Pajchel, K.
Palacino, G.
Paleari, C. P.
Palestini, S.
Pallin, D.
Palma, A.
Palmer, J. D.
Pan, Y. B.
Panagiotopoulou, E.
Panes, B.
Panikashvili, N.
Panitkin, S.
Pantea, D.
Panuskova, M.
Paolone, V.
Papadelis, A.
Papadopoulou, Th. D.
Paramonov, A.
Park, W.
Parker, M. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pasqualucci, E.
Passeri, A.
Pastore, F.
Pastore, Fr.
Pasztor, G.
Pataraia, S.
Patel, N.
Pater, J. R.
Patricelli, S.
Pauly, T.
Pecsy, M.
Morales, M. I. Pedraza
Peleganchuk, S. V.
Peng, H.
Pengo, R.
Penson, A.
Penwell, J.
Perantoni, M.
Perez, K.
Perez Cavalcanti, T.
Codina, E. Perez
Perez Garcia-Estan, M. T.
Perez Reale, V.
Perini, L.
Pernegger, H.
Perrino, R.
Perrodo, P.
Persembe, S.
Peshekhonov, V. D.
Petersen, B. A.
Petersen, J.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petrolo, E.
Petrucci, F.
Petschull, D.
Petteni, M.
Pezoa, R.
Phan, A.
Phillips, A. W.
Phillips, P. W.
Piacquadio, G.
Piccaro, E.
Piccinini, M.
Pickford, A.
Piec, S. M.
Piegaia, R.
Pilcher, J. E.
Pilkington, A. D.
Pina, J.
Pinamonti, M.
Pinder, A.
Pinfold, J. L.
Ping, J.
Pinto, B.
Pirotte, O.
Pizio, C.
Placakyte, R.
Plamondon, M.
Plano, W. G.
Pleier, M. -A.
Pleskach, A. V.
Poblaguev, A.
Poddar, S.
Podlyski, F.
Poggioli, L.
Poghosyan, T.
Pohl, M.
Polci, F.
Polesello, G.
Policicchio, A.
Polini, A.
Poll, J.
Polychronakos, V.
Pomarede, D. M.
Pomeroy, D.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciu, G. A.
Popovic, D. S.
Poppleton, A.
Bueso, X. Portell
Porter, R.
Posch, C.
Pospelov, G. E.
Pospisil, S.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Prabhu, R.
Pralavorio, P.
Prasad, S.
Pravahan, R.
Prell, S.
Pretzl, K.
Pribyl, L.
Price, D.
Price, L. E.
Price, M. J.
Prichard, P. M.
Prieur, D.
Primavera, M.
Prokofiev, K.
Prokoshin, F.
Protopopescu, S.
Proudfoot, J.
Prudent, X.
Przysiezniak, H.
Psoroulas, S.
Ptacek, E.
Pueschel, E.
Purdham, J.
Purohit, M.
Puzo, P.
Pylypchenko, Y.
Qian, J.
Qian, Z.
Qin, Z.
Quadt, A.
Quarrie, D. R.
Quayle, W. B.
Quinonez, F.
Raas, M.
Radescu, V.
Radics, B.
Rador, T.
Ragusa, F.
Rahal, G.
Rahimi, A. M.
Rahm, D.
Rajagopalan, S.
Rammensee, M.
Rammes, M.
Ramstedt, M.
Randle-Conde, A. S.
Randrianarivony, K.
Ratoff, P. N.
Rauscher, F.
Rauter, E.
Raymond, M.
Read, A. L.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Reichold, A.
Reinherz-Aronis, E.
Reinsch, A.
Reisinger, I.
Reljic, D.
Rembser, C.
Ren, Z. L.
Renaud, A.
Renkel, P.
Rescigno, M.
Resconi, S.
Resende, B.
Reznicek, P.
Rezvani, R.
Richards, A.
Richter, R.
Richter-Was, E.
Ridel, M.
Rieke, S.
Rijpstra, M.
Rijssenbeek, M.
Rimoldi, A.
Rinaldi, L.
Rios, R. R.
Riu, I.
Rivoltella, G.
Rizatdinova, F.
Rizvi, E.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
Robinson, J. E. M.
Robinson, M.
Robson, A.
de Lima, J. G. Rocha
Roda, C.
Dos Santos, D. Roda
Rodier, S.
Rodriguez, D.
Roe, A.
Roe, S.
Rohne, O.
Rojo, V.
Rolli, S.
Romaniouk, A.
Romanov, V. M.
Romeo, G.
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, A.
Rose, M.
Rosenbaum, G. A.
Rosenberg, E. I.
Rosendahl, P. L.
Rosenthal, O.
Rosselet, L.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rossi, L.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubinskiy, I.
Ruckert, B.
Ruckstuhl, N.
Rud, V. I.
Rudolph, C.
Rudolph, G.
Ruehr, F.
Ruggieri, F.
Ruiz-Martinez, A.
Rulikowska-Zarebska, E.
Rumiantsev, V.
Rumyantsev, L.
Runge, K.
Runolfsson, O.
Rurikova, Z.
Rusakovich, N. A.
Rust, D. R.
Rutherfoord, J. P.
Ruwiedel, C.
Ruzicka, P.
Ryabov, Y. F.
Ryadovikov, V.
Ryan, P.
Rybar, M.
Rybkin, G.
Ryder, N. C.
Rzaeva, S.
Saavedra, A. F.
Sadeh, I.
Sadrozinski, H. F-W.
Sadykov, R.
Tehrani, F. Safai
Sakamoto, H.
Salamanna, G.
Salamon, A.
Saleem, M.
Salihagic, D.
Salnikov, A.
Salt, J.
Ferrando, B. M. Salvachua
Salvatore, D.
Salvatore, F.
Salvucci, A.
Salzburger, A.
Sampsonidis, D.
Samset, B. H.
Sanchez, A.
Sandaker, H.
Sander, H. G.
Sanders, M. P.
Sandhoff, M.
Sandoval, T.
Sandoval, C.
Sandstroem, R.
Sandvoss, S.
Sankey, D. P. C.
Sansoni, A.
Rios, C. Santamarina
Santoni, C.
Santonico, R.
Santos, H.
Saraiva, J. G.
Sarangi, T.
Sarkisyan-Grinbaum, E.
Sarri, F.
Sartisohn, G.
Sasaki, O.
Sasaki, T.
Sasao, N.
Satsounkevitch, I.
Sauvage, G.
Sauvan, E.
Sauvan, J. B.
Savard, P.
Savinov, V.
Savu, D. O.
Savva, P.
Sawyer, L.
Saxon, D. H.
Says, L. P.
Sbarra, C.
Sbrizzi, A.
Scallon, O.
Scannicchio, D. A.
Schaarschmidt, J.
Schacht, P.
Schaefer, U.
Schaepe, S.
Schaetzel, S.
Schaffer, A. C.
Schaile, D.
Schamberger, R. D.
Schamov, A. G.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Schernau, M.
Scherzer, M. I.
Schiavi, C.
Schieck, J.
Schioppa, M.
Schlenker, S.
Schlereth, J. L.
Schmidt, E.
Schmieden, K.
Schmitt, C.
Schmitt, S.
Schmitz, M.
Schoening, A.
Schott, M.
Schouten, D.
Schovancova, J.
Schram, M.
Schroeder, C.
Schroer, N.
Schuh, S.
Schuler, G.
Schultes, J.
Schultz-Coulon, H. -C.
Schulz, H.
Schumacher, J. W.
Schumacher, M.
Schumm, B. A.
Schune, Ph.
Schwanenberger, C.
Schwartzman, A.
Schwemling, Ph.
Schwienhorst, R.
Schwierz, R.
Schwindling, J.
Schwindt, T.
Scott, W. G.
Searcy, J.
Sedykh, E.
Segura, E.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidze, G.
Seliverstov, D. M.
Sellden, B.
Sellers, G.
Seman, M.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Seuster, R.
Severini, H.
Sevior, M. E.
Sfyrla, A.
Shabalina, E.
Shamim, M.
Shan, L. Y.
Shank, J. T.
Shao, Q. T.
Shapiro, M.
Shatalov, P. B.
Shaver, L.
Shaw, K.
Sherman, D.
Sherwood, P.
Shibata, A.
Shichi, H.
Shimizu, S.
Shimojima, M.
Shin, T.
Shmeleva, A.
Shochet, M. J.
Short, D.
Shupe, M. A.
Sicho, P.
Sidoti, A.
Siebel, A.
Siegert, F.
Siegrist, J.
Sijacki, Dj.
Silbert, O.
Silva, J.
Silver, Y.
Silverstein, D.
Silverstein, S. B.
Simak, V.
Simard, O.
Simic, Lj.
Simion, S.
Simmons, B.
Simoniello, R.
Simonyan, M.
Sinervo, P.
Sinev, N. B.
Sipica, V.
Siragusa, G.
Sircar, A.
Sisakyan, A. N.
Sivoklokov, S. Yu.
Sjoelin, J.
Sjursen, T. B.
Skinnari, L. A.
Skovpen, K.
Skubic, P.
Skvorodnev, N.
Slater, M.
Slavicek, T.
Sliwa, K.
Sloan, T. J.
Sloper, J.
Smakhtin, V.
Smirnov, S. Yu.
Smirnova, L. N.
Smirnova, O.
Smith, B. C.
Smith, D.
Smith, K. M.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snow, S. W.
Snow, J.
Snuverink, J.
Snyder, S.
Soares, M.
Sobie, R.
Sodomka, J.
Soffer, A.
Solans, C. A.
Solar, M.
Solc, J.
Soldatov, E.
Soldevila, U.
Camillocci, E. Solfaroli
Solodkov, A. A.
Solovyanov, O. V.
Sondericker, J.
Soni, N.
Sopko, V.
Sopko, B.
Sorbi, M.
Sosebee, M.
Soukharev, A.
Spagnolo, S.
Spano, F.
Spighi, R.
Spigo, G.
Spila, F.
Spiriti, E.
Spiwoks, R.
Spousta, M.
Spreitzer, T.
Spurlock, B.
Denis, R. D. St.
Stahl, T.
Stahlman, J.
Stamen, R.
Stanecka, E.
Stanek, R. W.
Stanescu, C.
Stapnes, S.
Starchenko, E. A.
Stark, J.
Staroba, P.
Starovoitov, P.
Staude, A.
Stavina, P.
Stavropoulos, G.
Steele, G.
Steinbach, P.
Steinberg, P.
Stekl, I.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stevenson, K.
Stewart, G. A.
Stillings, J. A.
Stockmanns, T.
Stockton, M. C.
Stoerig, K.
Stoicea, G.
Stonjek, S.
Strachota, P.
Stradling, A. R.
Straessner, A.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strang, M.
Strauss, E.
Strauss, M.
Strizenec, P.
Stroehmer, R.
Strom, D. M.
Strong, J. A.
Stroynowski, R.
Strube, J.
Stugu, B.
Stumer, I.
Stupak, J.
Sturm, P.
Soh, D. A.
Su, D.
Subramania, H. S.
Succurro, A.
Sugaya, Y.
Sugimoto, T.
Suhr, C.
Suita, K.
Suk, M.
Sulin, V. V.
Sultansoy, S.
Sumida, T.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Sushkov, S.
Susinno, G.
Sutton, M. R.
Suzuki, Y.
Suzuki, Y.
Svatos, M.
Sviridov, Yu. M.
Swedish, S.
Sykora, I.
Sykora, T.
Szeless, B.
Sanchez, J.
Ta, D.
Tackmann, K.
Taffard, A.
Tafirout, R.
Taga, A.
Taiblum, N.
Takahashi, Y.
Takai, H.
Takashima, R.
Takeda, H.
Takeshita, T.
Talby, M.
Talyshev, A.
Tamsett, M. C.
Tanaka, J.
Tanaka, R.
Tanaka, S.
Tanaka, S.
Tanaka, Y.
Tani, K.
Tannoury, N.
Tappern, G. P.
Tapprogge, S.
Tardif, D.
Tarem, S.
Tarrade, F.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tassi, E.
Tatarkhanov, M.
Taylor, C.
Taylor, F. E.
Taylor, G. N.
Taylor, W.
Teinturier, M.
Castanheira, M. Teixeira Dias
Teixeira-Dias, P.
Temming, K. K.
Ten Kate, H.
Teng, P. K.
Terada, S.
Terashi, K.
Terron, J.
Terwort, M.
Testa, M.
Teuscher, R. J.
Thadome, J.
Therhaag, J.
Theveneaux-Pelzer, T.
Thioye, M.
Thoma, S.
Thomas, J. P.
Thompson, E. N.
Thompson, P. D.
Thompson, P. D.
Thompson, A. S.
Thomson, E.
Thomson, M.
Thun, R. P.
Tian, F.
Tic, T.
Tikhomirov, V. O.
Tikhonov, Y. A.
Timmermans, C. J. W. P.
Tipton, P.
Viegas, F. J. Tique Aires
Tisserant, S.
Tobias, J.
Toczek, B.
Todorov, T.
Todorova-Nova, S.
Toggerson, B.
Tojo, J.
Tokar, S.
Tokunaga, K.
Tokushuku, K.
Tollefson, K.
Tomoto, M.
Tompkins, L.
Toms, K.
Tong, G.
Tonoyan, A.
Topfel, C.
Topilin, N. D.
Torchiani, I.
Torrence, E.
Torres, H.
Torro Pastor, E.
Toth, J.
Touchard, F.
Tovey, D. R.
Traynor, D.
Trefzger, T.
Tremblet, L.
Tricoli, A.
Trigger, I. M.
Trincaz-Duvoid, S.
Trinh, T. N.
Tripiana, M. F.
Trischuk, W.
Trivedi, A.
Trocme, B.
Troncon, C.
Trottier-McDonald, M.
Trzupek, A.
Tsarouchas, C.
Tseng, J. C. -L.
Tsiakiris, M.
Tsiareshka, P. V.
Tsionou, D.
Tsipolitis, G.
Tsiskaridze, V.
Tskhadadze, E. G.
Tsukerman, I. I.
Tsulaia, V.
Tsung, J. -W.
Tsuno, S.
Tsybychev, D.
Tua, A.
Tuggle, J. M.
Turala, M.
Turecek, D.
Cakir, I. Turk
Turlay, E.
Turra, R.
Tuts, P. M.
Tykhonov, A.
Tylmad, M.
Tyndel, M.
Tyrvainen, H.
Tzanakos, G.
Uchida, K.
Ueda, I.
Ueno, R.
Ugland, M.
Uhlenbrock, M.
Uhrmacher, M.
Ukegawa, F.
Unal, G.
Underwood, D. G.
Undrus, A.
Unel, G.
Unno, Y.
Urbaniec, D.
Urkovsky, E.
Urrejola, P.
Usai, G.
Uslenghi, M.
Vacavant, L.
Vacek, V.
Vachon, B.
Vahsen, S.
Valenta, J.
Valente, P.
Valentinetti, S.
Valkar, S.
Valladolid Gallego, E.
Vallecorsa, S.
Valls Ferrer, J. A.
van der Graaf, H.
van der Kraaij, E.
Van Der Leeuw, R.
van der Poel, E.
van der Ster, D.
Van Eijk, B.
van Eldik, N.
van Gemmeren, P.
van Kesteren, Z.
van Vulpen, I.
Vandelli, W.
Vandoni, G.
Vaniachine, A.
Vankov, P.
Vannucci, F.
Rodriguez, F. Varela
Vari, R.
Varnes, E. W.
Varouchas, D.
Vartapetian, A.
Varvell, K. E.
Vassilakopoulos, V. I.
Vazeille, F.
Vegni, G.
Veillet, J. J.
Vellidis, C.
Veloso, F.
Veness, R.
Veneziano, S.
Ventura, A.
Ventura, D.
Venturi, M.
Venturi, N.
Vercesi, V.
Verducci, M.
Verkerke, W.
Vermeulen, J. C.
Vest, A.
Vetterli, M. C.
Vichou, I.
Vickey, T.
Viehhauser, G. H. A.
Viel, S.
Villa, M.
Villaplana Perez, M.
Vilucchi, E.
Vincter, M. G.
Vinek, E.
Vinogradov, V. B.
Virchaux, M.
Virzi, J.
Vitells, O.
Viti, M.
Vivarelli, I.
Vaque, F. Vives
Vlachos, S.
Vlasak, M.
Vlasov, N.
Vogel, A.
Vokac, P.
Volpi, G.
Volpi, M.
Volpini, G.
Von der Schmitt, H.
Von Loeben, J.
Von Radziewski, H.
Von Toerne, E.
Vorobel, V.
Vorobiev, A. P.
Vorwerk, V.
Vos, M.
Voss, R.
Voss, T. T.
Vossebeld, J. H.
Vranjes, N.
Milosavljevic, M. Vranjes
Vrba, V.
Vreeswijk, M.
Anh, T. Vu
Vuillermet, R.
Vukotic, I.
Wagner, W.
Wagner, P.
Wahlen, H.
Wakabayashi, J.
Walbersloh, J.
Walch, S.
Walder, J.
Walker, R.
Walkowiak, W.
Wall, R.
Waller, P.
Wang, C.
Wang, H.
Wang, H.
Wang, J.
Wang, J.
Wang, J. C.
Wang, R.
Wang, S. M.
Warburton, A.
Ward, C. P.
Warsinsky, M.
Watkins, P. M.
Watson, A. T.
Watson, M. F.
Watts, G.
Watts, S.
Waugh, A. T.
Waugh, B. M.
Weber, J.
Weber, M.
Weber, M. S.
Weber, P.
Weidberg, A. R.
Weigell, P.
Weingarten, J.
Weiser, C.
Wellenstein, H.
Wells, P. S.
Wen, M.
Wenaus, T.
Wendler, S.
Weng, Z.
Wengler, T.
Wenig, S.
Wermes, N.
Werner, M.
Werner, P.
Werth, M.
Wessels, M.
Weydert, C.
Whalen, K.
Wheeler-Ellis, S. J.
Whitaker, S. P.
White, A.
White, M. J.
Whitehead, S. R.
Whiteson, D.
Whittington, D.
Wicek, F.
Wicke, D.
Wickens, F. J.
Wiedenmann, W.
Wielers, M.
Wienemann, P.
Wiglesworth, C.
Wiik, L. A. M.
Wijeratne, P. A.
Wildauer, A.
Wildt, M. A.
Wilhelm, I.
Wilkens, H. G.
Will, J. Z.
Williams, E.
Williams, H. H.
Willis, W.
Willocq, S.
Wilson, J. A.
Wilson, M. G.
Wilson, A.
Wingerter-Seez, I.
Winkelmann, S.
Winklmeier, F.
Wittgen, M.
Wolter, M. W.
Wolters, H.
Wong, W. C.
Wooden, G.
Wosiek, B. K.
Wotschack, J.
Woudstra, M. J.
Wraight, K.
Wright, C.
Wrona, B.
Wu, S. L.
Wu, X.
Wu, Y.
Wulf, E.
Wunstorf, R.
Wynne, B. M.
Xaplanteris, L.
Xella, S.
Xie, S.
Xie, Y.
Xu, C.
Xu, D.
Xu, G.
Yabsley, B.
Yacoob, S.
Yamada, M.
Yamaguchi, H.
Yamamoto, A.
Yamamoto, K.
Yamamoto, S.
Yamamura, T.
Yamanaka, T.
Yamaoka, J.
Yamazaki, T.
Yamazaki, Y.
Yan, Z.
Yang, H.
Yang, U. K.
Yang, Y.
Yang, Y.
Yang, Z.
Yanush, S.
Yao, W-M.
Yao, Y.
Yasu, Y.
Smit, G. V. Ybeles
Ye, J.
Ye, S.
Yilmaz, M.
Yoosoofmiya, R.
Yorita, K.
Yoshida, R.
Young, C.
Youssef, S.
Yu, D.
Yu, J.
Yu, J.
Yuan, L.
Yurkewicz, A.
Zaets, V. G.
Zaidan, R.
Zaitsev, A. M.
Zajacova, Z.
Zalite, Yo. K.
Zanello, L.
Zarzhitsky, P.
Zaytsev, A.
Zeitnitz, C.
Zeller, M.
Zeman, M.
Zemla, A.
Zendler, C.
Zenin, O.
Zenis, T.
Zenonos, Z.
Zenz, S.
Zerwas, D.
della Porta, G. Zevi
Zhan, Z.
Zhang, D.
Zhang, H.
Zhang, J.
Zhang, X.
Zhang, Z.
Zhao, L.
Zhao, T.
Zhao, Z.
Zhemchugov, A.
Zheng, S.
Zhong, J.
Zhou, B.
Zhou, N.
Zhou, Y.
Zhu, C. G.
Zhu, H.
Zhu, J.
Zhu, Y.
Zhuang, X.
Zhuravlov, V.
Zieminska, D.
Zimmermann, R.
Zimmermann, S.
Zimmermann, S.
Ziolkowski, M.
Zitoun, R.
Zivkovic, L.
Zmouchko, V. V.
Zobernig, G.
Zoccoli, A.
Zolnierowski, Y.
Zsenei, A.
Nedden, M. Zur
Zutshi, V.
Zwalinski, L.
CA Atlas Collaboration
TI Performance of missing transverse momentum reconstruction in
proton-proton collisions at root s=7 TeV with ATLAS
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
AB The measurement of missing transverse momentum in the ATLAS detector, described in this paper, makes use of the full event reconstruction and a calibration based on reconstructed physics objects. The performance of the missing transverse momentum reconstruction is evaluated using data collected in pp collisions at a centre-of-mass energy of 7 TeV in 2010. Minimum bias events and events with jets of hadrons are used from data samples corresponding to an integrated luminosity of about 0.3 nb(-1) and 600 nb(-1) respectively, together with events containing a Z boson decaying to two leptons (electrons or muons) or a W boson decaying to a lepton (electron or muon) and a neutrino, from a data sample corresponding to an integrated luminosity of about 36 pb(-1). An estimate of the systematic uncertainty on the missing transverse momentum scale is presented.
C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; Von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany.
[Alam, M. S.; Dhullipudi, R.; Ernst, J.; Greenwood, Z. D.; Rojo, V.; Sawyer, L.] SUNY Albany, Albany, NY 12222 USA.
[Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey.
[Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey.
[Apolle, R.; Davies, E.; Mattravers, C.; Nash, M.] Gazi Univ, Dept Phys, Ankara, Turkey.
[Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey.
[Cakir, I. Turk; Yilmaz, M.] Turkish Atom Energy Commiss, Ankara, Turkey.
[Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France.
[Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France.
[Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece.
[Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece.
[Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan.
[Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vaque, F. Vives; Vorwerk, V.] Inst Fis Altes Energies, Barcelona, Spain.
[Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vaque, F. Vives; Vorwerk, V.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain.
[Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vaque, F. Vives; Vorwerk, V.] ICREA, Barcelona, Spain.
[Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.] Univ Belgrade, Inst Phys, Belgrade, Serbia.
[Bozovic-Jelisavcic, I.; Jovin, T.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia.
[Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Hackenburg, R.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Griso, S. Pagan; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Nedden, M. Zur] Humboldt Univ, Dept Phys, Berlin, Germany.
[Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland.
[Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Haefner, P.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey.
[Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey.
Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey.
[Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Cioccaa, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy.
[Bertin, A.; Bindi, M.; Caforio, D.; Cioccaa, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy.
[Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; Von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany.
[Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA.
[Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil.
Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil.
Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil.
[Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
[Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hadavand, H. K.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania.
W Univ Timisoara, Timisoara, Romania.
[Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina.
[Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J. -C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Gray, H. M.; Grognuz, J.; Haber, C.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stewart, G. A.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland.
[Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Diaz, M. A.; Panes, B.; Quinonez, F.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile.
[Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile.
[Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China.
[Chen, S.; Chen, T.; Ping, J.; Yu, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Feng, C.; Ge, P.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China.
[Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Aubiere, France.
[Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France.
[Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] CNRS, IN2P3, Aubiere, France.
[Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Perez Reale, V.; Tian, F.; Tuts, P. M.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Boelaert, N.; Dam, M.; Driouichi, C.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
[Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, INFN Grp Coll Cosenza, Arcavacata Di Rende, Italy.
[Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy.
[Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadley, D. R.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Randle-Conde, A. S.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA.
[Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA.
[Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K. -J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany.
[Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K. -J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany.
[Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany.
[Friedrich, F.; Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland.
Fachhsch Wiener Neustadt, A-2700 Wiener Neustadt, Austria.
[Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Garcia Navarro, J. E.; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Iacobucci, G.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Barberis, D.; Beccherle, R.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy.
[Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia.
[Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380060 Tbilisi, Rep of Georgia.
[Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia.
[Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany.
[Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland.
[Ay, C.; Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Albrand, S.; Andrieux, M-L.; Annovi, A.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France.
[Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, CNRS, IN2P3, F-38031 Grenoble, France.
[Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA.
[Anders, G.; Andrei, V.; Childers, J. T.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-6900 Heidelberg, Germany.
[Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany.
[Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany.
[Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan.
[Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan.
[Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria.
[Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA.
[Chen, C.; Cochran, J.; Dudziak, F.; Mete, A. S.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA.
[Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia.
[Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan.
[Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kishimoto, T.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Suzuki, Y.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan.
[Ishino, M.; Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan.
[Takashima, R.] Kyoto Univ, Kyoto 612, Japan.
[Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina.
[Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina.
[Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England.
[Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy.
[Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy.
[Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Haas, A.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England.
[Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia.
[Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia.
[Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Queen Mary Univ London, Dept Phys, London, England.
[Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England.
[Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England.
[Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France.
[Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France.
[Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden.
[Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain.
[Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England.
[Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France.
[Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France.
[Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pueschel, E.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada.
[Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Simoniello, R.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Univ Milan, Ist Nazl Fis Nucl, Sez Milano, Milan, Italy.
[Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Simoniello, R.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus.
[Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia.
[Artamonov, A.; Gorbounov, A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia.
[Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Adomeit, S.; Biebel, O.; Calfayan, P.; De Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany.
[Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Hahn, F.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stonjek, S.; Von der Schmitt, H.; Von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany.
[Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan.
[Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Ceveninia, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Univ Naples Federico II, Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Ceveninia, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fisiche, Naples, Italy.
[Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands.
[Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands.
[Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands.
[Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA.
[Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA.
[Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan.
[Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic.
[Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA.
[Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France.
[Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France.
[Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway.
[Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lavorato, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England.
[Cambiaghi, M.; Conta, C.; Ferrari, R.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Univ Pavia, Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy.
[Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Bertolucci, F.; Cascella, M.; Cavasinnia, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Bertolucci, F.; Cascella, M.; Cavasinnia, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy.
[Boudreau, J.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Aguilar-Saavedra, J. A.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal.
[Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain.
[Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain.
[Abdesselam, A.; Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia.
[Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; Mc-Cubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Benslama, K.; Ju, X.; Ming, Y.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada.
[Tanaka, S.] Ritsumeikan Univ, Shiga, Japan.
[Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy.
[Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Bacci, C.; Baron-Celli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luisea, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Univ Roma Tre, Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy.
[Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luisea, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy.
[Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco.
[Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco.
[El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Phys, Marrakech 40000, Morocco.
[El Moursli, R. Cherkaoui] Univ Mohammed, Fac Sci, Rabat, Morocco.
[Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Xu, C.; Yu, J.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondamentales Univers, F-91191 Gif Sur Yvette, France.
[Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan.
[Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany.
[Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, S.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA.
[Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia.
[Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa.
[Leney, K. J. C.; Vickey, T.; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa.
[Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden.
[Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden.
[Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden.
[Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England.
[Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
[Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan.
[Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Jankowski, E.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada.
[Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan.
[Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA.
[Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Avolio, G.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Ist Nazl Fis Nucl, Grp Coll Udine, Trieste, Italy.
[Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy.
[Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy.
[Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain.
[Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain.
[Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain.
[Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain.
[Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada.
[Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada.
[Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan.
[Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
[Asfandiyarov, R.; Banerjee, Sw.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; DosAnjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany.
[Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Hen, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany.
[Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA.
[Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Villeurbanne, France.
[Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal.
[Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal.
[Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
[Carvalho, J.; Fiolhais, M. C. N.; Martins, P. J. Magalhaes; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal.
[Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy.
[Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey.
[Greenwood, Z. D.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Guler, H.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany.
[Konoplich, R.] Manhattan Coll, New York, NY USA.
[Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China.
[Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan.
[Bold, T.; Grabowska-Bold, I.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China.
[Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary.
[Perez, K.] CALTECH, Pasadena, CA 91125 USA.
[Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland.
[Vickey, T.] Univ Oxford, Dept Phys, Oxford, England.
RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany.
RI Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016;
la rotonda, laura/B-4028-2016; Idzik, Marek/A-2487-2017; Mashinistov,
Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev,
Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Grancagnolo,
Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin,
Andrey/J-3904-2014; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013;
Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016;
Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016;
SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora
Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011;
KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Hansen,
John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo,
stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri,
Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Chekulaev,
Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho,
Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov,
Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Ventura,
Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan,
Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen,
Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Mir,
Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Garcia, Jose
/H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer,
Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Lokajicek,
Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco,
Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev,
Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba,
Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios,
Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei,
Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Solfaroli Camillocci,
Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Wolters,
Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De,
Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea,
Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014;
Robson, Aidan/G-1087-2011; Villa, Mauro/C-9883-2009; Nozka,
Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Amorim,
Antonio/C-8460-2013; Vanyashin, Aleksandr/H-7796-2013; La Rosa,
Alessandro/I-1856-2013; Casadei, Diego/I-1785-2013; Ishikawa,
Akimasa/G-6916-2012; Moraes, Arthur/F-6478-2010; Conde Muino,
Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov,
Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili,
Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Di Nardo,
Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza,
Attilio/E-5642-2011; Rotaru, Marina/A-3097-2011; Wolter,
Marcin/A-7412-2012; Bergeaas Kuutmann, Elin/A-5204-2013; messina,
andrea/C-2753-2013; Orlov, Ilya/E-6611-2012; Annovi,
Alberto/G-6028-2012; Stoicea, Gabriel/B-6717-2011; Brooks,
William/C-8636-2013; Pina, Joao /C-4391-2012; Kramarenko,
Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Gutierrez,
Phillip/C-1161-2011; Moorhead, Gareth/B-6634-2009; Petrucci,
Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri,
Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir,
Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Weigell,
Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco,
Biagio/J-1755-2012; Giordano, Raffaele/J-3695-2012; Gladilin,
Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; valente,
paolo/A-6640-2010; Ferrando, James/A-9192-2012; Buttar,
Craig/D-3706-2011; Takai, Helio/C-3301-2012; Britton, David/F-2602-2010;
Li, Xuefei/C-3861-2012; Doyle, Anthony/C-5889-2009; Fazio, Salvatore
/G-5156-2010; Smirnova, Lidia/D-8089-2012; Sivoklokov,
Sergey/D-8150-2012; Smirnov, Sergei/F-1014-2011
OI Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291;
Coccaro, Andrea/0000-0003-2368-4559; Anjos, Nuno/0000-0002-0018-0633;
Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua,
Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592;
Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria,
Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244;
Gomes, Agostinho/0000-0002-5940-9893; la rotonda,
laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X;
Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov,
Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368;
Monzani, Simone/0000-0002-0479-2207; De Lotto,
Barbara/0000-0003-3624-4480; Grancagnolo, Francesco/0000-0002-9367-3380;
Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009;
Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin,
Andrey/0000-0001-9087-4315; Guo, Jun/0000-0001-8125-9433; Smirnova,
Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan
Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones,
Roger/0000-0002-6427-3513; Vranjes Milosavljevic,
Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495;
Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria
Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738;
KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo,
Ricardo/0000-0002-3826-3442; Hansen, John/0000-0002-8422-5543;
Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo,
stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645;
Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821;
Booth, Christopher/0000-0002-6051-2847; Tikhomirov,
Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz,
Santiago/0000-0001-5304-5390; Ventura, Andrea/0000-0002-3368-3413;
Villaplana Perez, Miguel/0000-0002-0048-4602; Livan,
Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886;
Joergensen, Morten/0000-0002-6790-9361; Martins,
Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu,
Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X;
Prokoshin, Fedor/0000-0001-6389-5399; Mikestikova,
Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383;
Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios,
Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei,
Xiaowen/0000-0002-2564-8351; Solfaroli Camillocci,
Elena/0000-0002-5347-7764; Wolters, Helmut/0000-0002-9588-1773;
Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489;
O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519;
Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048;
Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa,
Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686;
Conde Muino, Patricia/0000-0002-9187-7478; Boyko,
Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Della
Pietra, Massimo/0000-0003-4446-3368; Andreazza,
Attilio/0000-0001-5161-5759; Rotaru, Marina/0000-0003-3303-5683; Orlov,
Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Stoicea,
Gabriel/0000-0002-7511-4614; Brooks, William/0000-0001-6161-3570; Pina,
Joao /0000-0001-8959-5044; Moorhead, Gareth/0000-0002-9299-9549;
Petrucci, Fabrizio/0000-0002-5278-2206; Wemans,
Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir,
Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805;
Veneziano, Stefano/0000-0002-2598-2659; Gladilin,
Leonid/0000-0001-9422-8636; Barreiro, Fernando/0000-0002-3021-0258;
valente, paolo/0000-0002-5413-0068; Ferrando, James/0000-0002-1007-7816;
Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342;
Doyle, Anthony/0000-0001-6322-6195; Smirnov, Sergei/0000-0002-6778-073X
FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS,
Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada;
NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China;
NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR,
Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark;
Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS,
France; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG,
Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT,
Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo
Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM,
Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES,
Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM,
Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia;
MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden;
Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland;
Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey;
STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United
States of America
FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC,
Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and
FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS,
MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR,
Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS,
European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF,
DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA,
GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan;
CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland;
GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and
ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS
and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and
Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva,
Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and
Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.
NR 27
TC 21
Z9 21
U1 4
U2 47
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD JAN
PY 2012
VL 72
IS 1
AR 1844
DI 10.1140/epjc/s10052-011-1844-6
PG 35
WC Physics, Particles & Fields
SC Physics
GA 897FM
UT WOS:000300631800020
ER
PT J
AU Aad, G
Abbott, B
Abdallah, J
Abdelalim, AA
Abdesselam, A
Abdinov, O
Abi, B
Abolins, M
Abramowicz, H
Abreu, H
Acerbi, E
Acharya, BS
Adams, DL
Addy, TN
Adelman, J
Aderholz, M
Adomeit, S
Adragna, P
Adye, T
Aefsky, S
Aguilar-Saavedra, JA
Aharrouche, M
Ahlen, SP
Ahles, F
Ahmad, A
Ahsan, M
Aielli, G
Akdogan, T
Akesson, TPA
Akimoto, G
Akimov, AV
Akiyama, A
Alam, MS
Alam, MA
Albrand, S
Aleksa, M
Aleksandrov, IN
Alessan-Driaa, F
Alexa, C
Alexander, G
Alexandre, G
Alexopoulos, T
Alhroob, M
Aliev, M
Alimonti, G
Alison, J
Aliyev, M
Allport, PP
Allwood-Spiers, SE
Almond, J
Aloisio, A
Alon, R
Alonso, A
Alviggi, MG
Amako, K
Amaral, P
Amelung, C
Ammosov, VV
Amorim, A
Amoros, G
Amram, N
Anastopoulos, C
Andari, N
Andeen, T
Anders, CF
Anderson, KJ
Andreazza, A
Andrei, V
Andrieux, ML
Anduaga, XS
Angerami, A
Anghinolfi, F
Anjos, N
Annovi, A
Antonaki, A
Antonelli, M
Antonelli, S
Antonov, A
Antos, J
Anulli, F
Aoun, S
Bella, LA
Apolle, R
Arabidze, G
Aracena, I
Arai, Y
Arce, ATH
Archambault, JP
Arfaoui, S
Arguin, JF
Arik, E
Arik, M
Armbruster, AJ
Arnaez, O
Arnault, C
Artamonov, A
Artoni, G
Arutinov, D
Asai, S
Asfandiyarov, R
Ask, S
Asman, B
Asquith, L
Assamagan, K
Astbury, A
Astvatsatourov, A
Atoian, G
Aubert, B
Auerbach, B
Auge, E
Augsten, K
Aurousseau, M
Austin, N
Avolio, G
Avramidou, R
Axen, D
Ay, C
Azuelos, G
Azuma, Y
Baak, MA
Baccaglioni, G
Bacci, C
Bach, AM
Bachacou, H
Bachas, K
Bachy, G
Backes, M
Backhaus, M
Badescu, E
Bagnaia, P
Bahinipati, S
Bai, Y
Bailey, DC
Bain, T
Baines, JT
Baker, OK
Baker, MD
Baker, S
Pedrosa, FBD
Banas, E
Banerjee, P
Banerjee, S
Banfi, D
Bangert, A
Bansal, V
Bansil, HS
Barak, L
Baranov, SP
Barashkou, A
Galtieri, AB
Barber, T
Barberio, EL
Barberis, D
Barbero, M
Bardin, DY
Barillari, T
Barisonzi, M
Barklow, T
Barlow, N
Barnett, BM
Barnett, RM
Baroncelli, A
Barone, G
Barr, AJ
Barreiro, F
da Costa, JBG
Barrillon, P
Bartoldus, R
Barton, AE
Bartsch, D
Bartsch, V
Bates, RL
Batkova, L
Batley, JR
Battaglia, A
Battistin, M
Battistoni, G
Bauer, F
Bawa, HS
Beare, B
Beau, T
Beauchemin, PH
Beccherle, R
Bechtle, P
Beck, HP
Beckingham, M
Becks, KH
Beddall, AJ
Beddall, A
Bedikian, S
Bednyakov, VA
Bee, CP
Begel, M
Harpaz, SB
Behera, PK
Beimforde, M
Belanger-Champagne, C
Bell, PJ
Bell, WH
Bella, G
Bellagamba, L
Bellina, F
Bellomo, M
Belloni, A
Beloborodova, O
Belotskiy, K
Beltramello, O
Ben Ami, S
Benary, O
Benchekroun, D
Benchouk, C
Bendel, M
Benedict, BH
Benekos, N
Benhammou, Y
Benjamin, DP
Benoit, M
Bensinger, JR
Benslama, K
Bentvelsen, S
Berge, D
Kuutmann, EB
Berger, N
Berghaus, F
Berglund, E
Beringer, J
Bernardet, K
Bernat, P
Bernhard, R
Bernius, C
Berry, T
Bertin, A
Bertinelli, F
Bertolucci, F
Besana, MI
Besson, N
Bethke, S
Bhimji, W
Bianchi, RM
Bianco, M
Biebel, O
Bieniek, SP
Biesiada, J
Biglietti, M
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Biscarat, C
Bitenc, U
Black, KM
Blair, RE
Blanchard, JB
Blanchot, G
Blazek, T
Blocker, C
Blocki, J
Blondel, A
Blum, W
Blumenschein, U
Bobbink, GJ
Bobrovnikov, VB
Bocchetta, SS
Bocci, A
Boddy, CR
Boehler, M
Boek, J
Boelaert, N
Boser, S
Bogaerts, JA
Bogdanchikov, A
Bogouch, A
Bohm, C
Boisvert, V
Bold, T
Boldea, V
Bolnet, NM
Bona, M
Bondarenko, VG
Boonekamp, M
Boorman, G
Booth, CN
Bordoni, S
Borer, C
Borisov, A
Borissov, G
Borjanovic, I
Borroni, S
Bos, K
Boscherini, D
Bosman, M
Boterenbrood, H
Botterill, D
Bouchami, J
Boudreau, J
Bouhova-Thacker, EV
Boulahouache, C
Bourdarios, C
Bousson, N
Boveia, A
Boyd, J
Boyko, IR
Bozhko, NI
Bozovic-Jelisavcic, I
Bracinik, J
Braem, A
Branchini, P
Brandenburg, GW
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Brelier, B
Bremer, J
Brenner, R
Bressler, S
Breton, D
Britton, D
Brochu, FM
Brock, I
Brock, R
Brodbeck, TJ
Brodet, E
Broggi, F
Bromberg, C
Brooijmans, G
Brooks, WK
Brown, G
Brown, H
Brubaker, E
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Brunet, S
Bruni, A
Bruni, G
Bruschi, M
Buanes, T
Bucci, F
Buchanan, J
Buchanan, NJ
Buchholz, P
Buckingham, RM
Buckley, AG
Buda, SI
Budagov, IA
Budick, B
Buscher, V
Bugge, L
Buira-Clark, D
Bulekov, O
Bunse, M
Buran, T
Burckhart, H
Burdin, S
Burgess, T
Burke, S
Busato, E
Bussey, P
Buszello, CP
Butin, F
Butler, B
Butler, JM
Buttar, CM
Butterworth, JM
Buttinger, W
Byatt, T
Urban, SC
Caforio, D
Cakir, O
Calafiura, P
Calderini, G
Calfayan, P
Calkins, R
Caloba, LP
Caloi, R
Calvet, D
Calvet, S
Toro, RC
Camard, A
Camarri, P
Cambiaghi, M
Cameron, D
Cammin, J
Campana, S
Campanelli, M
Canale, V
Canelli, F
Canepa, A
Cantero, J
Capasso, L
Garrido, MDMC
Caprini, I
Caprini, M
Capriotti, D
Capua, M
Caputo, R
Caramarcu, C
Cardarelli, R
Carli, T
Carlino, G
Carminati, L
Caron, B
Caron, S
Montoya, GDC
Carter, AA
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Cascella, M
Caso, C
Hernandez, AMC
Castaneda-Miranda, E
Gimenez, VC
Castro, NF
Cataldi, G
Cataneo, F
Catinaccio, A
Catmore, JR
Cattai, A
Cattani, G
Caughron, S
Cauz, D
Cavalleri, P
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Cazzato, A
Ceradini, F
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cetin, SA
Cevenini, F
Chafaq, A
Chakraborty, D
Chan, K
Chapleau, B
Chapman, JD
Chapman, JW
Chareyre, E
Charlton, DG
Chavda, V
Cheatham, S
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, L
Chen, S
Chen, T
Chen, X
Cheng, S
Cheplakov, A
Chepurnov, VF
El Moursli, RC
Chernyatin, V
Cheu, E
Cheung, SL
Chevalier, L
Chiefari, G
Chikovani, L
Childers, JT
Chilingarov, A
Chiodini, G
Chislett, RT
Chizhov, MV
Choudalakis, G
Chouridou, S
Christidi, IA
Christov, A
Chromek-Burckhart, D
Chu, ML
Chudoba, J
Ciapetti, G
Ciba, K
Ciftci, AK
Ciftci, R
Cinca, D
Cindro, V
Ciobotaru, MD
Ciocca, C
Ciocio, A
Cirilli, M
Ciubancan, M
Clark, A
Clark, PJ
Cleland, W
Clemens, JC
Clement, B
Clement, C
Clifft, RW
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coe, P
Cogan, JG
Coggeshall, J
Cogneras, E
Cojocaru, CD
Colas, J
Colijn, AP
Collard, C
Collins, NJ
Collins-Tooth, C
Collot, J
Colon, G
Muino, PC
Coniavitis, E
Conidi, MC
Consonni, M
Consorti, V
Constantinescu, S
Conta, C
Conventi, F
Cook, J
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Cooper-Smith, NJ
Copic, K
Cornelissen, T
Corradi, M
Corriveau, F
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Costin, T
Cote, D
Torres, RC
Courneyea, L
Cowan, G
Cowden, C
Cox, BE
Cranmer, K
Crescioli, F
Cristinziani, M
Crosetti, G
Crupi, R
Crepe-Renaudin, S
Cuciuc, CM
Almenar, CC
Donszelmann, TC
Cuneo, S
Curatolo, M
Curtis, CJ
Cwetanski, P
Czirr, H
Czyczula, Z
D'Auria, S
D'Onofrio, M
D'Orazio, A
Mello, ADG
Da Silva, PVM
Da Via, C
Dabrowski, W
Dahlhoff, A
Dai, T
Dallapiccola, C
Dam, M
Dameri, M
Damiani, DS
Danielsson, HO
Dannheim, D
Dao, V
Darbo, G
Darlea, GL
Daum, C
Dauvergne, JP
Davey, W
Davidek, T
Davidson, N
Davidson, R
Davies, E
Davies, M
Davison, AR
Davygora, Y
Dawe, E
Dawson, I
Dawson, JW
Daya, RK
De, K
de Asmundis, R
De Castro, S
Salgado, PEDF
De Cecco, S
de Graat, J
De Groot, N
de Jong, P
De la Taille, C
De la Torre, H
De Lotto, B
De Mora, L
De Nooij, L
Branco, MDO
De Pedis, D
de Saintignon, P
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBDV
Dean, S
Dedovich, DV
Degenhardt, J
Dehchar, M
Deile, M
Del Papa, C
Del Peso, J
Del Prete, T
Dell'Acqua, A
Dell'Asta, L
Della Pietra, M
Della Volpe, D
Delmastro, M
Delpierre, P
Delruelle, N
Delsart, PA
Deluca, C
Demers, S
Demichev, M
Demirkoz, B
Deng, J
Denisov, SP
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Devetak, E
Deviveiros, PO
Dewhurst, A
DeWilde, B
Dhaliwal, S
Dhullipudi, R
Di Ciaccio, A
Di Ciaccio, L
Di Girolamo, A
Di Girolamo, B
Di Luisea, S
Di Mattia, A
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Diaz, MA
Diblen, F
Diehl, EB
Dieli, MV
Dietl, H
Dietrich, J
Dietzsch, TA
Diglio, S
Yagci, KD
Dingfelder, J
Dionisi, C
Dita, P
Dita, S
Dittus, F
Djama, F
Djilkibaev, R
Djobava, T
do Vale, MAB
Wemans, ADV
Doan, TKO
Dobbs, M
Dobinson, R
Dobos, D
Dobson, E
Dobson, M
Dodd, J
Dogan, OB
Doglioni, C
Doherty, T
Doi, Y
Dolejsi, J
Dolenc, I
Dolezal, Z
Dolgoshein, BA
Dohmae, T
Donadelli, M
Donega, M
Donini, J
Dopke, J
Doria, A
Dos Anjos, A
Dosil, M
Dotti, A
Dova, MT
Dowell, JD
Doxiadis, AD
Doyle, AT
Drasal, Z
Drees, J
Dressnandt, N
Drevermann, H
Driouichi, C
Dris, M
Dubbert, J
Dubbs, T
Dube, S
Duchovni, E
Duckeck, G
Dudarev, A
Dudziak, F
Duhrssen, M
Duerdoth, IP
Duflot, L
Dufour, MA
Dunford, M
Yildiz, HD
Duxfield, R
Dwuznik, M
Dydak, F
Dzahini, D
Duren, M
Ebenstein, WL
Ebke, J
Eckert, S
Eckweiler, S
Edmonds, K
Edwards, CA
Edwards, NC
Ehrenfeld, W
Ehrich, T
Eifert, T
Eigen, G
Einsweiler, K
Eisenhandler, E
Ekelof, T
El Kacimi, M
Ellert, M
Elles, S
Ellinghaus, F
Ellis, K
Ellis, N
Elmsheuser, J
Elsing, M
Ely, R
Emeliyanov, D
Engelmann, R
Engl, A
Epp, B
Eppig, A
Erdmann, J
Ereditato, A
Eriksson, D
Ernst, J
Ernst, M
Ernwein, J
Errede, D
Errede, S
Ertel, E
Escalier, M
Escobar, C
Curull, XE
Esposito, B
Etienne, F
Etienvre, AI
Etzion, E
Evangelakou, D
Evans, H
Fabbri, L
Fabre, C
Fakhrutdinov, RM
Falciano, S
Falou, AC
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farley, J
Farooque, T
Farrington, SM
Farthouat, P
Fassnacht, P
Fassouliotis, D
Fatholahzadeh, B
Favareto, A
Fayard, L
Fazio, S
Febbraro, R
Federic, P
Fedin, OL
Fedorko, I
Fedorko, W
Fehling-Kaschek, M
Feligioni, L
Fellmann, D
Felzmann, CU
Feng, C
Feng, EJ
Fenyuk, AB
Ferencei, J
Ferland, J
Fernando, W
Ferrag, S
Ferrando, J
Ferrara, V
Ferrari, A
Ferrari, P
Ferrari, R
Ferrer, A
Ferrer, ML
Ferrere, D
Ferretti, C
Parodi, AF
Fiascaris, M
Fiedler, F
Filipcic, A
Filippas, A
Filthaut, F
Fincke-Keeler, M
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, G
Fischer, P
Fisher, MJ
Fisher, SM
Flechl, M
Fleck, I
Fleckner, J
Fleischmann, P
Fleischmann, S
Flick, T
Castillo, LRF
Flowerdew, MJ
Fohlischa, F
Fokitis, M
Martin, TF
Forbush, DA
Formica, A
Forti, A
Fortin, D
Foster, JM
Fournier, D
Foussat, A
Fowler, AJ
Fowler, K
Fox, H
Francavilla, P
Franchino, S
Francis, D
Frank, T
Franklin, M
Franz, S
Fraternali, M
Fratina, S
French, ST
Froeschl, R
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fuster, J
Gabaldon, C
Gabizon, O
Gadfort, T
Gadomski, S
Gagliardi, G
Gagnon, P
Galea, C
Gallas, EJ
Gallas, MV
Gallo, V
Gallop, BJ
Gallus, P
Galyaev, E
Gan, KK
Gao, YS
Gapienko, VA
Gaponenko, A
Garberson, F
Garcia-Sciveres, M
Garcia, C
Navarro, JEG
Gardner, RW
Garelli, N
Garitaonandia, H
Garonne, V
Garvey, J
Gatti, C
Gaudio, G
Gaumer, O
Gaur, B
Gauthier, L
Gavrilenko, IL
Gay, C
Gaycken, G
Gayde, JC
Gazis, EN
Ge, P
Gee, CNP
Geerts, DAA
Geich-Gimbel, C
Gellerstedt, K
Gemme, C
Gemmell, A
Genest, MH
Gentile, S
George, M
George, S
Gerlach, P
Gershon, A
Geweniger, C
Ghazlane, H
Ghez, P
Ghodbane, N
Giacobbe, B
Giagu, S
Giakoumopoulou, V
Giangiobbe, V
Gianotti, F
Gibbard, B
Gibson, A
Gibson, SM
Gilbert, LM
Gilchriese, M
Gilewsky, V
Gillberg, D
Gillman, AR
Gingrich, DM
Ginzburg, J
Giokaris, N
Giordano, R
Giorgi, FM
Giovannini, P
Giraud, PF
Giugni, D
Giunta, M
Giusti, P
Gjelsten, BK
Gladilin, LK
Glasman, C
Glatzer, J
Glazov, A
Glitza, KW
Glonti, GL
Godfrey, J
Godlewski, J
Goebel, M
Gopfert, T
Goeringer, C
Gossling, C
Gottfert, T
Goldfarb, S
Goldin, D
Golling, T
Golovnia, SN
Gomes, A
Fajardo, LSG
Goncalo, R
Da Costa, JGPF
Gonella, L
Gonidec, A
Gonzalez, S
de la Hoz, SG
Silva, MLG
Gonzalez-Sevilla, S
Goodson, JJ
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorfine, G
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Gorokhov, SA
Goryachev, VN
Gosdzik, B
Gosselink, M
Gostkin, MI
Gouanere, M
Eschrich, IG
Gouighri, M
Goujdami, D
Goulette, MP
Goussiou, AG
Goy, C
Grabowska-Bold, I
Grabski, V
Grafstrom, P
Grah, C
Grahn, KJ
Grancagnolo, F
Grancagnolo, S
Grassi, V
Gratchev, V
Grau, N
Gray, HM
Gray, JA
Graziani, E
Grebenyuk, OG
Greenfield, D
Greenshaw, T
Greenwood, ZD
Gregor, IM
Grenier, P
Griesmayer, E
Griffiths, J
Grigalashvili, N
Grillo, AA
Grinstein, S
Grishkevich, YV
Grivaz, JF
Grognuz, J
Groh, M
Gross, E
Grosse-Knetter, J
Groth-Jensen, J
Grybel, K
Guarino, VJ
Guest, D
Guicheney, C
Guida, A
Guillemin, T
Guindon, S
Guler, H
Gunther, J
Guo, B
Guo, J
Gupta, A
Gusakov, Y
Gushchin, VN
Gutierrez, A
Gutierrez, P
Guttman, N
Gutzwiller, O
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haas, S
Haber, C
Hackenburg, R
Hadavand, HK
Hadley, DR
Haefner, P
Hahn, F
Haider, S
Hajduk, Z
Hakobyan, H
Haller, J
Hamacher, K
Hamal, P
Hamilton, A
Hamilton, S
Han, H
Han, L
Hanagaki, K
Hance, M
Handel, C
Hanke, P
Hansen, JR
Hansen, JB
Hansen, JD
Hansen, PH
Hansson, P
Hara, K
Hare, GA
Harenberg, T
Harkusha, S
Harper, D
Harrington, RD
Harris, OM
Harrison, K
Hartert, J
Hartjes, F
Haruyama, T
Harvey, A
Hasegawa, S
Hasegawa, Y
Hassani, S
Hatch, M
Hauff, D
Haug, S
Hauschild, M
Hauser, R
Havranek, M
Hawes, BM
Hawkes, CM
Hawkings, RJ
Hawkins, D
Hayakawa, T
Hayden, D
Hayward, HS
Haywood, SJ
Hazen, E
He, M
Head, SJ
Hedberg, V
Heelan, L
Heim, S
Heine, K
Heinemann, B
Heisterkamp, S
Helary, L
Heldmann, M
Heller, M
Hellman, S
Helsens, C
Henderson, RCW
Henke, M
Henrichs, A
Correia, AMH
Henrot-Versille, S
Henry-Couannier, F
Hensel, C
Henss, T
Hernandez, CM
Jimenez, YH
Herrberg, R
Hershenhorn, AD
Herten, G
Hertenberger, R
Hervas, L
Hessey, NP
Hidvegi, A
Higon-Rodriguez, E
Hill, D
Hill, JC
Hill, N
Hiller, KH
Hillert, S
Hillier, SJ
Hinchliffe, I
Hines, E
Hirose, M
Hirsch, F
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoffman, J
Hoffmann, D
Hohlfeld, M
Holder, M
Holmes, A
Holmgren, SO
Holy, T
Holzbauer, JL
Homma, Y
Hong, TM
van Huysduynen, LH
Horazdovsky, T
Horn, C
Horner, S
Horton, K
Hostachy, JY
Hou, S
Houlden, MA
Hoummada, A
Howarth, J
Howell, DF
Hristova, I
Hrivnac, J
Hruska, I
Hryn'ova, T
Hsu, PJ
Hsu, SC
Huang, GS
Hubacek, Z
Hubaut, F
Huegging, F
Huffman, TB
Hughes, EW
Hughes, G
Hughes-Jones, RE
Huhtinen, M
Hurst, P
Hurwitz, M
Husemann, U
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibbotson, M
Ibragimov, I
Ichimiya, R
Iconomidou-Fayard, L
Idarraga, J
Idzik, M
Iengo, P
Igonkina, O
Ikegami, Y
Ikeno, M
Ilchenko, Y
Iliadis, D
Imbault, D
Imhaeuser, M
Imori, M
Ince, T
Inigo-Golfin, J
Ioannou, P
Iodice, M
Ionescu, G
Quiles, AI
Ishii, K
Ishikawa, A
Ishino, M
Ishmukhametov, R
Issever, C
Istin, S
Itoh, Y
Ivashin, AV
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jackson, B
Jackson, JN
Jackson, P
Jaekel, MR
Jain, V
Jakobs, K
Jakobsen, S
Jakubek, J
Jana, DK
Jankowski, E
Jansen, E
Jantsch, A
Janus, M
Jarlskog, G
Jeanty, L
Jelen, K
Jen-La Plante, I
Jenni, P
Jeremie, A
Jez, P
Jezequel, S
Jha, MK
Ji, H
Ji, W
Jia, J
Jiang, Y
Belenguer, MJ
Jin, G
Jin, S
Jinnouchi, O
Joergensen, MD
Joffe, D
Johansen, LG
Johansen, M
Johansson, KE
Johansson, P
Johnert, S
Johns, KA
Jonanda, K
Jones, G
Jones, RWL
Jones, TW
Jones, TJ
Jonsson, O
Joram, C
Jorge, PM
Joseph, J
Ju, X
Juranek, V
Jussel, P
Kabachenko, VV
Kabana, S
Kaci, M
Kaczmarska, A
Kadlecik, P
Kado, M
Kagan, H
Kagan, M
Kaiser, S
Kajomovitz, E
Kalinin, S
Kalinovskaya, LV
Kama, S
Kanaya, N
Kaneda, M
Kanno, T
Kantserov, VA
Kanzaki, J
Kaplan, B
Kapliy, A
Kaplon, J
Kar, D
Karagoz, M
Karnevskiy, M
Karr, K
Kartvelishvili, V
Karyukhin, AN
Kashif, L
Kasmi, A
Kass, RD
Kastanas, A
Kataoka, M
Kataoka, Y
Katsoufis, E
Katzy, J
Kaushik, V
Kawagoe, K
Kawamoto, T
Kawamura, G
Kayl, MS
Kazanin, VA
Kazarinov, MY
Keates, JR
Keeler, R
Kehoe, R
Keil, M
Kekelidze, GD
Kelly, M
Kennedy, J
Kenney, CJ
Kenyon, M
Kepka, O
Kerschen, N
Kersevan, BP
Kersten, S
Kessoku, K
Ketterer, C
Keung, J
Khakzad, M
Khalil-zada, F
Khandanyan, H
Khanov, A
Kharchenko, D
Khodinov, A
Kholodenko, AG
Khomich, A
Khoo, TJ
Khoriauli, G
Khoroshilov, A
Khovanskiy, N
Khovanskiy, V
Khramov, E
Khubua, J
Kim, H
Kim, MS
Kim, PC
Kim, SH
Kimura, N
Kind, O
King, BT
King, M
King, RSB
Kirk, J
Kirsch, GP
Kirsch, LE
Kiryunin, AE
Kisielewska, D
Kittelmann, T
Kiver, AM
Kiyamura, H
Kladiva, E
Klaiber-Lodewigs, J
Klein, M
Klein, U
Kleinknecht, K
Klemetti, M
Klier, A
Klimentov, A
Klingenberg, R
Klinkby, EB
Klioutchnikova, T
Klok, PF
Klous, S
Kluge, EE
Kluge, T
Kluit, P
Kluth, S
Kneringer, E
Knobloch, J
Knoops, EBFG
Knue, A
Ko, BR
Kobayashi, T
Kobel, M
Kocian, M
Kocnar, A
Kodys, P
Koneke, K
Konig, AC
Koenig, S
Kopke, L
Koetsveld, F
Koevesarki, P
Koffas, T
Koffeman, E
Kohn, F
Kohout, Z
Kohriki, T
Koi, T
Kokott, T
Kolachev, GM
Kolanoski, H
Kolesnikov, V
Koletsou, I
Koll, J
Kollar, D
Kollefrath, M
Kolya, SD
Komar, AA
Komaragiri, JR
Komori, Y
Kondo, T
Kono, T
Kononov, AI
Konoplich, R
Konstantinidis, N
Kootz, A
Koperny, S
Kopikov, SV
Korcyl, K
Kordas, K
Koreshev, V
Korn, A
Korol, A
Korolkov, I
Korolkova, EV
Korotkov, VA
Kortner, O
Kortner, S
Kostyukhin, VV
Kotamaki, MJ
Kotov, S
Kotov, VM
Kotwal, A
Kourkoumelis, C
Kouskoura, V
Koutsman, A
Kowalewski, R
Kowalski, TZ
Kozanecki, W
Kozhin, AS
Kral, V
Kramarenko, VA
Kramberger, G
Krasel, O
Krasny, MW
Krasznahorkay, A
Kraus, J
Kreisel, A
Krejci, F
Kretzschmar, J
Krieger, N
Krieger, P
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Kruger, H
Kruker, T
Krumshteyn, ZV
Kruth, A
Kubota, T
Kuehn, S
Kugel, A
Kuhl, T
Kuhn, D
Kukhtin, V
Kulchitsky, Y
Kuleshov, S
Kummer, C
Kuna, M
Kundu, N
Kunkle, J
Kupco, A
Kurashige, H
Kurata, M
Kurochkin, YA
Kus, V
Kuykendall, W
Kuze, M
Kuzhir, P
Kvasnicka, O
Kvita, J
Kwee, R
La Rosa, A
La Rotonda, L
Labarga, L
Labbe, J
Lablak, S
Lacasta, C
Lacava, F
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Laisne, E
Lamanna, M
Lampen, CL
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Landsman, H
Lane, JL
Lange, C
Lankford, AJ
Lanni, F
Lantzsch, K
Lapin, VV
Laplace, S
Lapoire, C
Laporte, JF
Laria, T
Larionov, AV
Larner, A
Lasseur, C
Lassnig, M
Lau, W
Laurelli, P
Lavorato, A
Lavrijsen, W
Laycock, P
Lazarev, AB
Lazzaro, A
Le Dortz, O
Le Guirriec, E
Le Maner, C
Le Menedeu, E
Lebedev, A
Lebel, C
LeCompte, T
Ledroit-Guillon, F
Lee, H
Lee, JSH
Lee, SC
Lee, L
Lefebvre, M
Legendre, M
Leger, A
LeGeyt, BC
Legger, F
Leggett, C
Lehmacher, M
Miotto, GL
Lei, X
Leite, MAL
Leitner, R
Lellouch, D
Leltchouk, M
Lendermann, V
Leney, KJC
Lenz, T
Lenzen, G
Lenzi, B
Leonhardt, K
Leontsinis, S
Leroy, C
Lessard, JR
Lesser, J
Lester, CG
Cheong, ALF
Leveque, J
Levin, D
Levinson, LJ
Levitski, MS
Lewandowska, M
Lewis, A
Lewis, GH
Leyko, AM
Leyton, M
Li, B
Li, H
Li, S
Li, X
Liang, Z
Liang, Z
Liberti, B
Lichard, P
Lichtnecker, M
Lie, K
Liebig, W
Lifshitz, R
Lilley, JN
Limbach, C
Limosani, A
Limper, M
Lin, SC
Linde, F
Linnemann, JT
Lipeles, E
Lipinsky, L
Lipniacka, A
Liss, TM
Lissauer, D
Lister, A
Litke, AM
Liu, C
Liu, D
Liu, H
Liu, JB
Liu, M
Liu, S
Liu, Y
Livan, M
Livermore, SSA
Lleres, A
Merino, JL
Lloyd, SL
Lobodzinska, E
Loch, P
Lockman, WS
Lockwitz, S
Loddenkoetter, T
Loebinger, FK
Loginov, A
Loh, CW
Lohse, T
Lohwasser, K
Lokajicek, M
Loken, J
Lombardo, VP
Long, RE
Lopes, L
Mateos, DL
Losada, M
Loscutoff, P
Lo Sterzo, F
Losty, MJ
Lou, X
Lounis, A
Loureiro, KF
Love, J
Love, PA
Lowe, AJ
Lu, F
Lu, L
Lubatti, HJ
Luci, C
Lucotte, A
Ludwig, A
Ludwig, D
Ludwig, I
Ludwig, J
Luehring, F
Luijckx, G
Lumb, D
Luminari, L
Lund, E
Lund-Jensen, B
Lundberg, B
Lundberg, J
Lundquist, J
Lungwitz, M
Lupi, A
Lutz, G
Lynn, D
Lys, J
Lytken, E
Ma, H
Ma, LL
Goia, JAM
Maccarrone, G
Macchiolo, A
Macek, B
Miguens, JM
Mackeprang, R
Madaras, RJ
Mader, WF
Maenner, R
Maeno, T
Mattig, P
Mattig, S
Martins, PJM
Magnoni, L
Magradze, E
Mahalalel, Y
Mahboubi, K
Mahout, G
Maiani, C
Maidantchik, C
Maio, A
Majewski, S
Makida, Y
Makovec, N
Mal, P
Malecki, P
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Maltezos, S
Malyshev, V
Malyukov, S
Mameghani, R
Mamuzic, J
Manabe, A
Mandelli, L
Mandic, I
Mandrysch, R
Maneira, J
Mangeard, PS
Manjavidze, ID
Mann, A
Manning, PM
Manousakis-Katsikakis, A
Mansoulie, B
Manz, A
Mapelli, A
Mapelli, L
March, L
Marchand, JF
Marchese, F
Marchiori, G
Marcisovsky, M
Marin, A
Marino, CP
Marroquima, F
Marshall, R
Marshall, Z
Martens, FK
Marti-Garcia, S
Martin, AJ
Martin, B
Martin, B
Martin, FF
Martin, JP
Martin, P
Martin, TA
Latour, BMD
Martinez, M
Outschoorn, VM
Martyniuk, AC
Marx, M
Marzano, F
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Mass, M
Massa, I
Massaro, G
Massol, N
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Mathes, M
Matricon, P
Matsumoto, H
Matsunaga, H
Matsushita, T
Mattravers, C
Maugain, JM
Maxfield, SJ
Maximov, DA
May, EN
Mayne, A
Mazini, R
Mazur, M
Mazzanti, M
Mazzonia, E
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
McCubbin, NA
McFarlane, KW
Mcfayden, JA
McGlone, H
Mchedlidze, G
McLaren, RA
Mclaughlan, T
McMahon, SJ
McPherson, RA
Meade, A
Mechnich, J
Mechtel, M
Medinnis, M
Meera-Lebbai, R
Meguro, T
Mehdiyev, R
Mehlhase, S
Mehta, A
Meier, K
Meinhardt, J
Meirose, B
Melachrinos, C
Garcia, BRM
Navas, LM
Meng, Z
Mengarellia, A
Menke, S
Menot, C
Meoni, E
Mercurio, KM
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Messina, A
Metcalfe, J
Mete, AS
Meuser, S
Meyer, C
Meyer, JP
Meyer, J
Meyer, J
Meyer, TC
Meyer, WT
Miao, J
Michal, S
Micu, L
Middleton, RP
Miele, P
Migas, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Miller, DW
Miller, RJ
Mills, WJ
Mills, C
Milov, A
Milstead, DA
Milstein, D
Minaenko, AA
Minano, M
Minashvili, IA
Mincer, AI
Mindur, B
Mineev, M
Ming, Y
Mir, LM
Mirabelli, G
Verge, LM
Misiejuk, A
Mitrevski, J
Mitrofanov, GY
Mitsou, VA
Mitsui, S
Miyagawa, PS
Miyazaki, K
Mjornmark, JU
Moa, T
Mockett, P
Moed, S
Moeller, V
Monig, K
Moser, N
Mohapatra, S
Mohn, B
Mohr, W
Mohrdieck-Mock, S
Moisseev, AM
Moles-Valls, R
Molina-Perez, J
Monk, J
Monnier, E
Montesano, S
Monticelli, F
Monzani, S
Moore, RW
Moorhead, GF
Herrera, CM
Moraes, A
Morais, A
Morange, N
Morel, J
Morello, G
Moreno, D
Llacer, MM
Morettini, P
Morii, M
Morin, J
Morita, Y
Morley, AK
Mornacchi, G
Morone, MC
Morozov, SV
Morris, JD
Morvaj, L
Moser, HG
Mosidze, M
Moss, J
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Mudrinic, M
Mueller, F
Mueller, J
Mueller, K
Muller, TA
Muenstermann, D
Muijs, A
Muir, A
Munwes, Y
Murakami, K
Murray, WJ
Mussche, I
Musto, E
Myagkov, AG
Myska, M
Nadal, J
Nagai, K
Nagano, K
Nagasaka, Y
Nairz, AM
Nakahama, Y
Nakamura, K
Nakano, I
Nanava, G
Napier, A
Nash, M
Nation, NR
Nattermann, T
Naumann, T
Navarro, G
Neal, HA
Nebot, E
Nechaeva, PY
Negri, A
Negri, G
Nektarijevic, S
Nelson, A
Nelson, S
Nelson, TK
Nemecek, S
Nemethy, P
Nepomuceno, AA
Nessi, M
Nesterov, SY
Neubauer, MS
Neusiedl, A
Neves, RM
Nevski, P
Newman, PR
Hong, VNT
Nickerson, RB
Nicolaidou, R
Nicolas, L
Nicquevert, B
Niedercorn, F
Nielsen, J
Niinikoski, T
Nikiforov, A
Nikolaenko, V
Nikolaev, K
Nikolic-Audit, I
Nikolopoulos, K
Nilsen, H
Nilsson, P
Ninomiya, Y
Nisati, A
Nishiyama, T
Nisius, R
Nodulman, L
Nomachi, M
Nomidis, I
Nomoto, H
Nordberg, M
Nordkvist, B
Norton, PR
Novakova, J
Nozaki, M
Nozicka, M
Nozka, L
Nugent, IM
Nuncio-Quiroz, AE
Hanninger, GN
Nunnemann, T
Nurse, E
Nyman, T
O'Brien, BJ
O'Neale, SW
O'Neil, DC
O'Shea, V
Oakham, FG
Oberlack, H
Ocariz, J
Ochi, A
Oda, S
Odaka, S
Odier, J
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohshima, T
Ohshita, H
Ohska, TK
Ohsugi, T
Okada, S
Okawa, H
Okumura, Y
Okuyama, T
Olcese, M
Olchevski, AG
Oliveira, M
Damazio, DO
Garcia, EO
Olivito, D
Olszewski, A
Olszowska, J
Omachi, C
Onofre, A
Onyisi, PUE
Oram, CJ
Oreglia, MJ
Oren, Y
Orestano, D
Orlov, I
Barrera, CO
Orr, RS
Ortega, EO
Osculati, B
Ospanov, R
Osuna, C
Garzon, GOY
Ottersbach, JP
Ouchrif, M
Ould-Saada, F
Ouraou, A
Ouyang, Q
Owen, M
Owen, S
Oye, OK
Ozcan, VE
Ozturk, N
Pages, AP
Aranda, CP
Paganis, E
Paige, F
Pajchel, K
Palestini, S
Pallin, D
Palma, A
Palmer, JD
Pan, YB
Panagiotopoulou, E
Panes, B
Panikashvili, N
Panitkin, S
Pantea, D
Panuskova, M
Paolone, V
Papadelis, A
Papadopoulou, TD
Paramonov, A
Park, W
Parker, MA
Parodi, F
Parsons, JA
Parzefall, U
Pasqualucci, E
Passeri, A
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Patel, N
Pater, JR
Patricelli, S
Pauly, T
Pecsy, M
Morales, MIP
Peleganchuk, SV
Peng, H
Pengo, R
Penson, A
Penwell, J
Perantoni, M
Perez, K
Cavalcanti, TP
Codina, EP
Garcia-Estan, MTP
Reale, VP
Peric, I
Perini, L
Pernegger, H
Perrino, R
Perrodo, P
Persembe, S
Peshekhonov, VD
Peters, O
Petersen, BA
Petersen, J
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petrolo, E
Petrucci, F
Petschull, D
Petteni, M
Pezoa, R
Phan, A
Phillips, AW
Phillips, PW
Piacquadio, G
Piccaro, E
Piccinini, M
Pickford, A
Piec, SM
Piegaia, R
Pilcher, JE
Pilkington, AD
Pina, J
Pinamonti, M
Pinder, A
Pinfold, JL
Ping, J
Pinto, B
Pirotte, O
Pizio, C
Placakyte, R
Plamondon, M
Plano, WG
Pleier, MA
Pleskach, AV
Poblaguev, A
Poddar, S
Podlyski, F
Poggioli, L
Poghosyan, T
Pohl, M
Polci, F
Polesello, G
Policicchio, A
Polini, A
Poll, J
Polychronakos, V
Pomarede, DM
Pomeroy, D
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovic, DS
Poppleton, A
Bueso, XP
Porter, R
Posch, C
Pospelov, GE
Pospisil, S
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Prabhu, R
Pralavorio, P
Prasad, S
Pravahan, R
Prell, S
Pretzl, K
Pribyl, L
Price, D
Price, LE
Price, MJ
Prichard, M
Prieur, D
Primavera, M
Prokofiev, K
Prokoshin, F
Protopopescu, S
Proudfoot, J
Prudent, X
Przysiezniak, H
Psoroulas, S
Ptacek, E
Purdham, J
Purohit, M
Puzo, P
Pylypchenko, Y
Qian, J
Qian, Z
Qin, Z
Quadt, A
Quarrie, DR
Quayle, WB
Quinonez, F
Raas, M
Radescu, V
Radics, B
Radora, T
Ragus, F
Rahal, G
Rahimi, AM
Rahm, D
Rajagopalan, S
Rammensee, M
Rammes, M
Ramstedt, M
Randrianarivony, K
Ratoff, PN
Rauscher, F
Rauter, E
Raymond, M
Read, AL
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Reichold, A
Reinherz-Aronis, E
Reinsch, A
Reisinger, I
Reljic, D
Rembser, C
Ren, ZL
Renaud, A
Renkel, P
Rensch, B
Rescigno, M
Resconi, S
Resende, B
Reznicek, P
Rezvani, R
Richards, A
Richter, R
Richter-Was, E
Ridel, M
Rieke, S
Rijpstra, M
Rijssenbeek, M
Rimoldi, A
Rinaldi, L
Rios, RR
Riu, I
Rivoltella, G
Rizatdinova, F
Rizvi, E
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
Robinson, JEM
Robinson, M
Robson, A
de Lima, JGR
Roda, C
Dos Santos, DR
Rodier, S
Rodriguez, D
Garcia, YR
Roe, A
Roe, S
Rohne, O
Rojo, V
Rolli, S
Romaniouk, A
Romanov, VM
Romeo, G
Maltranaa, DR
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, M
Rosenbaum, GA
Rosenberg, EI
Rosendahl, PL
Rosselet, L
Rossetti, V
Rossi, E
Rossi, LP
Rossi, L
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubinskiy, I
Ruckert, B
Ruckstuhl, N
Rud, VI
Rudolph, G
Ruhr, F
Ruggieri, F
Ruiz-Martinez, A
Rulikowska-Zarebska, E
Rumiantsev, V
Rumyantsev, L
Runge, K
Runolfsson, O
Rurikova, Z
Rusakovich, NA
Rust, DR
Rutherfoord, JP
Ruwiedel, C
Ruzicka, P
Ryabov, YF
Ryadovikov, V
Ryan, P
Rybar, M
Rybkin, G
Ryder, NC
Rzaeva, S
Saavedra, AF
Sadeh, I
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Sakamoto, H
Salamanna, G
Salamon, A
Saleem, M
Salihagic, D
Salnikov, A
Salt, J
Ferrando, BMS
Salvatore, D
Salvatore, F
Salvucci, A
Salzburger, A
Sampsonidis, D
Samset, BH
Sandaker, H
Sander, HG
Sanders, MP
Sandhoff, M
Sandoval, T
Sandstroem, R
Sandvoss, S
Sankey, DPC
Sansoni, A
Rios, CS
Santoni, C
Santonico, R
Santosa, H
Saraiva, JG
Sarangi, T
Sarkisyan-Grinbaum, E
Sarri, F
Sartisohn, G
Sasaki, O
Sasaki, T
Sasao, N
Satsounkevitch, I
Sauvage, G
Sauvan, JB
Savard, P
Savinov, V
Savu, DO
Savva, P
Sawyer, L
Saxon, DH
Says, LP
Sbarra, C
Sbrizzi, A
Scallon, O
Scannicchio, DA
Scarcella, M
Schaarschmidt, J
Schacht, P
Schafer, U
Schaepe, S
Schaetzel, S
Schaffer, AC
Schaile, D
Schamberger, RD
Schamov, AG
Scharf, V
Schegelsky, VA
Scheirich, D
Schernau, M
Scherzer, MI
Schiavi, C
Schieck, J
Schioppa, M
Schlenker, S
Schlereth, JL
Schmidt, E
Schmidt, MP
Schmieden, K
Schmitt, C
Schmitt, S
Schmitz, M
Schoning, A
Schott, M
Schouten, D
Schovancova, J
Schram, M
Schroeder, C
Schroer, N
Schuh, S
Schuler, G
Schultes, J
Schultz-Coulon, HC
Schulz, H
Schumacher, JW
Schumacher, M
Schumm, BA
Schune, P
Schwanenberger, C
Schwartzman, A
Schwemling, P
Schwienhorst, R
Schwierz, R
Schwindling, J
Scott, WG
Searcy, J
Sedykh, E
Segura, E
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidze, G
Seliverstov, DM
Selldena, B
Sellers, G
Seman, M
Semprini-Cesari, N
Serfon, C
Serin, L
Seuster, R
Severini, H
Sevior, ME
Sfyrla, A
Shabalina, E
Shamim, M
Shan, LY
Shank, JT
Shao, QT
Shapiro, M
Shatalov, PB
Shaver, L
Shaw, C
Shaw, K
Sherman, D
Sherwood, P
Shibata, A
Shichi, H
Shimizu, S
Shimojima, M
Shin, T
Shmeleva, A
Shochet, MJ
Short, D
Shupe, MA
Sicho, P
Sidoti, A
Siebel, A
Siegert, F
Siegrist, J
Sijacki, D
Silbert, O
Silva, J
Silver, Y
Silverstein, D
Silverstein, SB
Simak, V
Simard, O
Simic, L
Simion, S
Simmons, B
Simonyan, M
Sinervo, P
Sinev, NB
Sipica, V
Siragusa, G
Sisakyan, AN
Sivoklokov, SY
Sjolina, J
Sjursen, TB
Skinnari, LA
Skovpen, K
Skubic, P
Skvorodnev, N
Slater, M
Slavicek, T
Sliwa, K
Sloan, TJ
Sloper, J
Smakhtin, V
Smirnov, SY
Smirnova, LN
Smirnova, O
Smith, BC
Smith, D
Smith, KM
Smizanska, M
Smolek, K
Snesarev, AA
Snow, SW
Snow, J
Snuverink, J
Snyder, S
Soares, M
Sobie, R
Sodomka, J
Soffer, A
Solans, CA
Solar, M
Solc, J
Soldatov, E
Soldevila, U
Camillocci, ES
Solodkov, AA
Solovyanov, OV
Sondericker, J
Soni, N
Sopko, V
Sopko, B
Sorbi, M
Sosebee, M
Soukharev, A
Spagnolo, S
Spano, F
Spighia, R
Spigo, G
Spila, F
Spiriti, E
Spiwoks, R
Spousta, M
Spreitzer, T
Spurlock, B
Denis, RDS
Stahl, T
Stahlman, J
Stamen, R
Stanecka, E
Stanek, RW
Stanescu, C
Stapnes, S
Starchenko, EA
Stark, J
Staroba, P
Starovoitov, P
Staude, A
Stavina, P
Stavropoulos, G
Steele, G
Steinbach, P
Steinberg, P
Stekl, I
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stevenson, K
Stewart, GA
Stillings, JA
Stockmanns, T
Stockton, MC
Stoerig, K
Stoicea, G
Stonjek, S
Strachota, P
Stradling, AR
Straessner, A
Strandberg, J
Strandberg, S
Strandlie, A
Strang, M
Strauss, E
Strauss, M
Strizenec, P
Strohmer, R
Strom, DM
Strong, JA
Stroynowski, R
Strube, J
Stugu, B
Stumer, I
Stupak, J
Sturm, P
Soh, DA
Su, D
Subramania, H
Succurro, A
Sugaya, Y
Sugimoto, T
Suhr, C
Suita, K
Suk, M
Sulin, VV
Sultansoy, S
Sumida, T
Sun, X
Sundermann, JE
Suruliz, K
Sushkov, S
Susinno, G
Sutton, MR
Suzuki, Y
Svatos, M
Sviridov, YM
Swedish, S
Sykora, I
Sykora, T
Szeless, B
Sanchez, J
Ta, D
Tackmann, K
Taffard, A
Tafirout, R
Taga, A
Taiblum, N
Takahashi, Y
Takai, H
Takashima, R
Takeda, H
Takeshita, T
Talby, M
Talyshev, A
Tamsett, MC
Tanaka, J
Tanaka, R
Tanaka, S
Tanaka, S
Tanaka, Y
Tani, K
Tannoury, N
Tappern, GP
Tapprogge, S
Tardif, D
Tarem, S
Tarrade, F
Tartarelli, GF
Tas, P
Tasevsky, M
Tassi, E
Tatarkhanov, M
Tayalati, Y
Taylor, C
Taylor, FE
Taylor, GN
Taylor, W
Castanheira, MTD
Teixeira-Dias, P
Temming, KK
Ten Kate, H
Teng, PK
Terada, S
Terashi, K
Terron, J
Terwort, M
Testa, M
Teuscher, RJ
Thadome, J
Therhaag, J
Theveneaux-Pelzer, T
Thioye, M
Thoma, S
Thomas, JP
Thompson, EN
Thompson, PD
Thompson, PD
Thompson, AS
Thomson, E
Thomson, M
Thun, RP
Tic, T
Tikhomirov, VO
Tikhonov, YA
Timmermans, CJWP
Tipton, P
Viegas, FJTA
Tisserant, S
Tobias, J
Toczek, B
Todorov, T
Todorova-Nova, S
Toggerson, B
Tojo, J
Tokar, S
Tokunaga, K
Tokushuku, K
Tollefson, K
Tomoto, M
Tompkins, L
Toms, K
Tong, G
Tonoyan, A
Topfel, C
Topilin, ND
Torchiani, I
Torrence, E
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Traynor, D
Trefzger, T
Treis, J
Tremblet, L
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Trinh, TN
Tripiana, MF
Trischuk, W
Trivedi, A
Trocme, B
Troncon, C
Trottier-McDonald, M
Trzupek, A
Tsarouchas, C
Tseng, JCL
Tsiakiris, M
Tsiareshka, PV
Tsionou, D
Tsipolitis, G
Tsiskaridze, V
Tskhadadze, EG
Tsukerman, II
Tsulaia, V
Tsung, JW
Tsuno, S
Tsybychev, D
Tua, A
Tuggle, JM
Turala, M
Turecek, D
Cakir, IT
Turlay, E
Turra, R
Tuts, PM
Tykhonov, A
Tylmad, M
Tyndel, M
Tyrvainen, H
Tzanakos, G
Uchida, K
Ueda, I
Ueno, R
Ugland, M
Uhlenbrock, M
Uhrmacher, M
Ukegawa, F
Unal, G
Underwood, DG
Undrus, A
Unel, G
Unno, Y
Urbaniec, D
Urkovsky, E
Urrejola, P
Usai, G
Uslenghi, M
Vacavant, L
Vacek, V
Vachon, B
Vahsen, S
Valenta, J
Valente, P
Valentinetti, S
Valkar, S
Gallego, EV
Vallecorsa, S
Ferrer, JAV
van der Graaf, H
van der Kraaij, E
Van Der Leeuw, R
van der Poel, E
van der Ster, D
Van Eijk, B
van Eldik, N
van Gemmeren, P
van Kesteren, Z
van Vulpen, I
Vandelli, W
Vandoni, G
Vaniachine, A
Vankov, P
Vannucci, F
Rodriguez, FV
Vari, R
Varnes, EW
Varouchas, D
Vartapetian, A
Varvell, KE
Vassilakopoulos, VI
Vazeille, F
Vegni, G
Veillet, JJ
Vellidis, C
Veloso, F
Veness, R
Veneziano, S
Ventura, A
Ventura, D
Venturi, M
Venturi, N
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Vichou, I
Vickey, T
Viehhauser, GHA
Viel, S
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinek, E
Vinogradov, VB
Virchaux, M
Viret, S
Virzi, J
Vitale, A
Vitells, O
Viti, M
Vivarelli, I
Vaque, FV
Vlachos, S
Vlasak, M
Vlasov, N
Vogel, A
Vokac, P
Volpi, G
Volpi, M
Volpini, G
von der Schmitt, H
von Loeben, J
von Radziewski, H
von Toerne, E
Vorobel, V
Vorobiev, AP
Vorwerk, V
Vos, M
Voss, R
Voss, TT
Vossebeld, JH
Vranjes, N
Milosavljevic, MV
Vrba, V
Vreeswijk, M
Anh, TV
Vuillermet, R
Vukotic, I
Wagner, W
Wagner, P
Wahlen, H
Wakabayashi, J
Walbersloh, J
Walch, S
Walder, J
Walker, R
Walkowiak, W
Wall, R
Waller, P
Wang, C
Wang, H
Wang, H
Wang, J
Wang, J
Wang, JC
Wang, R
Wang, SM
Warburton, A
Ward, CP
Warsinsky, M
Watkins, PM
Watson, AT
Watson, MF
Watts, G
Watts, S
Waugh, AT
Waugh, BM
Weber, J
Weber, M
Weber, MS
Weber, P
Weidberg, AR
Weigell, P
Weingarten, J
Weiser, C
Wellenstein, H
Wells, PS
Wen, M
Wenaus, T
Wendler, S
Weng, Z
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, P
Werth, M
Wessels, M
Weydert, C
Whalen, K
Wheeler-Ellis, SJ
Whitaker, SP
White, A
White, MJ
White, S
Whitehead, SR
Whiteson, D
Whittington, D
Wicek, F
Wicke, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik, LAM
Wijeratne, PA
Wildauer, A
Wildt, MA
Wilhelm, I
Wilkens, HG
Will, JZ
Williams, E
Williams, HH
Willis, W
Willocq, S
Wilson, JA
Wilson, MG
Wilson, A
Wingerter-Seez, I
Winkelmann, S
Winklmeier, F
Wittgen, M
Wolter, MW
Wolters, H
Wooden, G
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wraight, K
Wright, C
Wrona, B
Wu, SL
Wu, X
Wu, Y
Wulf, E
Wunstorf, R
Wynne, BM
Xaplanteris, L
Xella, S
Xie, S
Xie, Y
Xu, C
Xu, D
Xu, G
Yabsley, B
Yamada, M
Yamamoto, A
Yamamoto, K
Yamamoto, S
Yamamura, T
Yamaoka, J
Yamazaki, T
Yamazaki, Y
Yan, Z
Yang, H
Yang, UK
Yang, Y
Yang, Y
Yang, Z
Yanush, S
Yao, WM
Yao, Y
Yasu, Y
Smit, GVY
Ye, J
Ye, S
Yilmaz, M
Yoosoofmiya, R
Yorita, K
Yoshida, R
Young, C
Youssef, S
Yu, D
Yu, J
Yu, J
Yuan, L
Yurkewicz, A
Zaets, VG
Zaidan, R
Zaitsev, AM
Zajacova, Z
Zalite, YK
Zanello, L
Zarzhitsky, P
Zaytsev, A
Zeitnitz, C
Zeller, M
Zemla, A
Zendler, C
Zenin, AV
Zenin, O
Zenis, T
Zenonos, Z
Zenz, S
Zerwas, D
della Porta, GZ
Zhan, Z
Zhang, D
Zhang, H
Zhang, J
Zhang, X
Zhang, Z
Zhao, L
Zhao, T
Zhao, Z
Zhemchugov, A
Zheng, S
Zhong, J
Zhou, B
Zhou, N
Zhou, Y
Zhu, CG
Zhu, H
Zhu, Y
Zhuang, X
Zhuravlov, V
Zieminska, D
Zimmermann, R
Zimmermann, S
Zimmermann, S
Ziolkowski, M
Zitoun, R
Zivkovic, L
Zmouchko, VV
Zobernig, G
Zoccoli, A
Zolnierowski, Y
Zsenei, A
zur Nedden, M
Zutshi, V
Zwalinski, L
AF Aad, G.
Abbott, B.
Abdallah, J.
Abdelalim, A. A.
Abdesselam, A.
Abdinov, O.
Abi, B.
Abolins, M.
Abramowicz, H.
Abreu, H.
Acerbi, E.
Acharya, B. S.
Adams, D. L.
Addy, T. N.
Adelman, J.
Aderholz, M.
Adomeit, S.
Adragna, P.
Adye, T.
Aefsky, S.
Aguilar-Saavedra, J. A.
Aharrouche, M.
Ahlen, S. P.
Ahles, F.
Ahmad, A.
Ahsan, M.
Aielli, G.
Akdogan, T.
Akesson, T. P. A.
Akimoto, G.
Akimov, A. V.
Akiyama, A.
Alam, M. S.
Alam, M. A.
Albrand, S.
Aleksa, M.
Aleksandrov, I. N.
Alessan-Driaa, F.
Alexa, C.
Alexander, G.
Alexandre, G.
Alexopoulos, T.
Alhroob, M.
Aliev, M.
Alimonti, G.
Alison, J.
Aliyev, M.
Allport, P. P.
Allwood-Spiers, S. E.
Almond, J.
Aloisio, A.
Alon, R.
Alonso, A.
Alviggi, M. G.
Amako, K.
Amaral, P.
Amelung, C.
Ammosov, V. V.
Amorim, A.
Amoros, G.
Amram, N.
Anastopoulos, C.
Andari, N.
Andeen, T.
Anders, C. F.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Andrieux, M-L.
Anduaga, X. S.
Angerami, A.
Anghinolfi, F.
Anjos, N.
Annovi, A.
Antonaki, A.
Antonelli, M.
Antonelli, S.
Antonov, A.
Antos, J.
Anulli, F.
Aoun, S.
Bella, L. Aperio
Apolle, R.
Arabidze, G.
Aracena, I.
Arai, Y.
Arce, A. T. H.
Archambault, J. P.
Arfaoui, S.
Arguin, J-F.
Arik, E.
Arik, M.
Armbruster, A. J.
Arnaez, O.
Arnault, C.
Artamonov, A.
Artoni, G.
Arutinov, D.
Asai, S.
Asfandiyarov, R.
Ask, S.
Asman, B.
Asquith, L.
Assamagan, K.
Astbury, A.
Astvatsatourov, A.
Atoian, G.
Aubert, B.
Auerbach, B.
Auge, E.
Augsten, K.
Aurousseau, M.
Austin, N.
Avolio, G.
Avramidou, R.
Axen, D.
Ay, C.
Azuelos, G.
Azuma, Y.
Baak, M. A.
Baccaglioni, G.
Bacci, C.
Bach, A. M.
Bachacou, H.
Bachas, K.
Bachy, G.
Backes, M.
Backhaus, M.
Badescu, E.
Bagnaia, P.
Bahinipati, S.
Bai, Y.
Bailey, D. C.
Bain, T.
Baines, J. T.
Baker, O. K.
Baker, M. D.
Baker, S.
Pedrosa, F. Baltasar Dos Santos
Banas, E.
Banerjee, P.
Banerjee, Sw.
Banfi, D.
Bangert, A.
Bansal, V.
Bansil, H. S.
Barak, L.
Baranov, S. P.
Barashkou, A.
Galtieri, A. Barbaro
Barber, T.
Barberio, E. L.
Barberis, D.
Barbero, M.
Bardin, D. Y.
Barillari, T.
Barisonzi, M.
Barklow, T.
Barlow, N.
Barnett, B. M.
Barnett, R. M.
Baroncelli, A.
Barone, G.
Barr, A. J.
Barreiro, F.
da Costa, J. Barreiro Guimaraes
Barrillon, P.
Bartoldus, R.
Barton, A. E.
Bartsch, D.
Bartsch, V.
Bates, R. L.
Batkova, L.
Batley, J. R.
Battaglia, A.
Battistin, M.
Battistoni, G.
Bauer, F.
Bawa, H. S.
Beare, B.
Beau, T.
Beauchemin, P. H.
Beccherle, R.
Bechtle, P.
Beck, H. P.
Beckingham, M.
Becks, K. H.
Beddall, A. J.
Beddall, A.
Bedikian, S.
Bednyakov, V. A.
Bee, C. P.
Begel, M.
Harpaz, S. Behar
Behera, P. K.
Beimforde, M.
Belanger-Champagne, C.
Bell, P. J.
Bell, W. H.
Bella, G.
Bellagamba, L.
Bellina, F.
Bellomo, M.
Belloni, A.
Beloborodova, O.
Belotskiy, K.
Beltramello, O.
Ben Ami, S.
Benary, O.
Benchekroun, D.
Benchouk, C.
Bendel, M.
Benedict, B. H.
Benekos, N.
Benhammou, Y.
Benjamin, D. P.
Benoit, M.
Bensinger, J. R.
Benslama, K.
Bentvelsen, S.
Berge, D.
Kuutmann, E. Bergeaas
Berger, N.
Berghaus, F.
Berglund, E.
Beringer, J.
Bernardet, K.
Bernat, P.
Bernhard, R.
Bernius, C.
Berry, T.
Bertin, A.
Bertinelli, F.
Bertolucci, F.
Besana, M. I.
Besson, N.
Bethke, S.
Bhimji, W.
Bianchi, R. M.
Bianco, M.
Biebel, O.
Bieniek, S. P.
Biesiada, J.
Biglietti, M.
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Biscarat, C.
Bitenc, U.
Black, K. M.
Blair, R. E.
Blanchard, J. -B.
Blanchot, G.
Blazek, T.
Blocker, C.
Blocki, J.
Blondel, A.
Blum, W.
Blumenschein, U.
Bobbink, G. J.
Bobrovnikov, V. B.
Bocchetta, S. S.
Bocci, A.
Boddy, C. R.
Boehler, M.
Boek, J.
Boelaert, N.
Boeser, S.
Bogaerts, J. A.
Bogdanchikov, A.
Bogouch, A.
Bohm, C.
Boisvert, V.
Bold, T.
Boldea, V.
Bolnet, N. M.
Bona, M.
Bondarenko, V. G.
Boonekamp, M.
Boorman, G.
Booth, C. N.
Bordoni, S.
Borer, C.
Borisov, A.
Borissov, G.
Borjanovic, I.
Borroni, S.
Bos, K.
Boscherini, D.
Bosman, M.
Boterenbrood, H.
Botterill, D.
Bouchami, J.
Boudreau, J.
Bouhova-Thacker, E. V.
Boulahouache, C.
Bourdarios, C.
Bousson, N.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bozhko, N. I.
Bozovic-Jelisavcic, I.
Bracinik, J.
Braem, A.
Branchini, P.
Brandenburg, G. W.
Brandt, A.
Brandt, G.
Brandt, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Brelier, B.
Bremer, J.
Brenner, R.
Bressler, S.
Breton, D.
Britton, D.
Brochu, F. M.
Brock, I.
Brock, R.
Brodbeck, T. J.
Brodet, E.
Broggi, F.
Bromberg, C.
Brooijmans, G.
Brooks, W. K.
Brown, G.
Brown, H.
Brubaker, E.
de Renstrom, P. A. Bruckman
Bruncko, D.
Bruneliere, R.
Brunet, S.
Bruni, A.
Bruni, G.
Bruschi, M.
Buanes, T.
Bucci, F.
Buchanan, J.
Buchanan, N. J.
Buchholz, P.
Buckingham, R. M.
Buckley, A. G.
Buda, S. I.
Budagov, I. A.
Budick, B.
Buescher, V.
Bugge, L.
Buira-Clark, D.
Bulekov, O.
Bunse, M.
Buran, T.
Burckhart, H.
Burdin, S.
Burgess, T.
Burke, S.
Busato, E.
Bussey, P.
Buszello, C. P.
Butin, F.
Butler, B.
Butler, J. M.
Buttar, C. M.
Butterworth, J. M.
Buttinger, W.
Byatt, T.
Cabrera Urban, S.
Caforio, D.
Cakir, O.
Calafiura, P.
Calderini, G.
Calfayan, P.
Calkins, R.
Caloba, L. P.
Caloi, R.
Calvet, D.
Calvet, S.
Toro, R. Camacho
Camard, A.
Camarri, P.
Cambiaghi, M.
Cameron, D.
Cammin, J.
Campana, S.
Campanelli, M.
Canale, V.
Canelli, F.
Canepa, A.
Cantero, J.
Capasso, L.
Garrido, M. D. M. Capeans
Caprini, I.
Caprini, M.
Capriotti, D.
Capua, M.
Caputo, R.
Caramarcu, C.
Cardarelli, R.
Carli, T.
Carlino, G.
Carminati, L.
Caron, B.
Caron, S.
Montoya, G. D. Carrillo
Carter, A. A.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Cascella, M.
Caso, C.
Hernandez, A. M. Castaneda
Castaneda-Miranda, E.
Castillo Gimenez, V.
Castro, N. F.
Cataldi, G.
Cataneo, F.
Catinaccio, A.
Catmore, J. R.
Cattai, A.
Cattani, G.
Caughron, S.
Cauz, D.
Cavalleri, P.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinni, V.
Cazzato, A.
Ceradini, F.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cetin, S. A.
Cevenini, F.
Chafaq, A.
Chakraborty, D.
Chan, K.
Chapleau, B.
Chapman, J. D.
Chapman, J. W.
Chareyre, E.
Charlton, D. G.
Chavda, V.
Cheatham, S.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Chen, L.
Chen, S.
Chen, T.
Chen, X.
Cheng, S.
Cheplakov, A.
Chepurnov, V. F.
El Moursli, R. Cherkaoui
Chernyatin, V.
Cheu, E.
Cheung, S. L.
Chevalier, L.
Chiefari, G.
Chikovani, L.
Childers, J. T.
Chilingarov, A.
Chiodini, G.
Chislett, R. T.
Chizhov, M. V.
Choudalakis, G.
Chouridou, S.
Christidi, I. A.
Christov, A.
Chromek-Burckhart, D.
Chu, M. L.
Chudoba, J.
Ciapetti, G.
Ciba, K.
Ciftci, A. K.
Ciftci, R.
Cinca, D.
Cindro, V.
Ciobotaru, M. D.
Ciocca, C.
Ciocio, A.
Cirilli, M.
Ciubancan, M.
Clark, A.
Clark, P. J.
Cleland, W.
Clemens, J. C.
Clement, B.
Clement, C.
Clifft, R. W.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Coe, P.
Cogan, J. G.
Coggeshall, J.
Cogneras, E.
Cojocaru, C. D.
Colas, J.
Colijn, A. P.
Collard, C.
Collins, N. J.
Collins-Tooth, C.
Collot, J.
Colon, G.
Conde Muino, P.
Coniavitis, E.
Conidi, M. C.
Consonni, M.
Consorti, V.
Constantinescu, S.
Conta, C.
Conventi, F.
Cook, J.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Cooper-Smith, N. J.
Copic, K.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Cortes-Gonzalez, A.
Cortiana, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Costin, T.
Cote, D.
Torres, R. Coura
Courneyea, L.
Cowan, G.
Cowden, C.
Cox, B. E.
Cranmer, K.
Crescioli, F.
Cristinziani, M.
Crosetti, G.
Crupi, R.
Crepe-Renaudin, S.
Cuciuc, C. -M.
Almenar, C. Cuenca
Donszelmann, T. Cuhadar
Cuneo, S.
Curatolo, M.
Curtis, C. J.
Cwetanski, P.
Czirr, H.
Czyczula, Z.
D'Auria, S.
D'Onofrio, M.
D'Orazio, A.
Mello, A. Da Rocha Gesualdi
Da Silva, P. V. M.
Da Via, C.
Dabrowski, W.
Dahlhoff, A.
Dai, T.
Dallapiccola, C.
Dam, M.
Dameri, M.
Damiani, D. S.
Danielsson, H. O.
Dannheim, D.
Dao, V.
Darbo, G.
Darlea, G. L.
Daum, C.
Dauvergne, J. P.
Davey, W.
Davidek, T.
Davidson, N.
Davidson, R.
Davies, E.
Davies, M.
Davison, A. R.
Davygora, Y.
Dawe, E.
Dawson, I.
Dawson, J. W.
Daya, R. K.
De, K.
de Asmundis, R.
De Castro, S.
Salgado, P. E. De Castro Faria
De Cecco, S.
de Graat, J.
De Groot, N.
de Jong, P.
De la Taille, C.
De la Torre, H.
De Lotto, B.
De Mora, L.
De Nooij, L.
Branco, M. De Oliveira
De Pedis, D.
de Saintignon, P.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Regie, J. B. De Vivie
Dean, S.
Dedovich, D. V.
Degenhardt, J.
Dehchar, M.
Deile, M.
Del Papa, C.
Del Peso, J.
Del Prete, T.
Dell'Acqua, A.
Dell'Asta, L.
Della Pietra, M.
Della Volpe, D.
Delmastro, M.
Delpierre, P.
Delruelle, N.
Delsart, P. A.
Deluca, C.
Demers, S.
Demichev, M.
Demirkoz, B.
Deng, J.
Denisov, S. P.
Derendarz, D.
Derkaoui, J. E.
Derue, F.
Dervan, P.
Desch, K.
Devetak, E.
Deviveiros, P. O.
Dewhurst, A.
DeWilde, B.
Dhaliwal, S.
Dhullipudi, R.
Di Ciaccio, A.
Di Ciaccio, L.
Di Girolamo, A.
Di Girolamo, B.
Di Luisea, S.
Di Mattia, A.
Di Micco, B.
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Diaz, M. A.
Diblen, F.
Diehl, E. B.
Dieli, M. V.
Dietl, H.
Dietrich, J.
Dietzsch, T. A.
Diglio, S.
Yagci, K. Dindar
Dingfelder, J.
Dionisi, C.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djilkibaev, R.
Djobava, T.
do Vale, M. A. B.
Wemans, A. Do Valle
Doan, T. K. O.
Dobbs, M.
Dobinson, R.
Dobos, D.
Dobson, E.
Dobson, M.
Dodd, J.
Dogan, O. B.
Doglioni, C.
Doherty, T.
Doi, Y.
Dolejsi, J.
Dolenc, I.
Dolezal, Z.
Dolgoshein, B. A.
Dohmae, T.
Donadelli, M.
Donega, M.
Donini, J.
Dopke, J.
Doria, A.
Dos Anjos, A.
Dosil, M.
Dotti, A.
Dova, M. T.
Dowell, J. D.
Doxiadis, A. D.
Doyle, A. T.
Drasal, Z.
Drees, J.
Dressnandt, N.
Drevermann, H.
Driouichi, C.
Dris, M.
Dubbert, J.
Dubbs, T.
Dube, S.
Duchovni, E.
Duckeck, G.
Dudarev, A.
Dudziak, F.
Duehrssen, M.
Duerdoth, I. P.
Duflot, L.
Dufour, M-A.
Dunford, M.
Yildiz, H. Duran
Duxfield, R.
Dwuznik, M.
Dydak, F.
Dzahini, D.
Dueren, M.
Ebenstein, W. L.
Ebke, J.
Eckert, S.
Eckweiler, S.
Edmonds, K.
Edwards, C. A.
Edwards, N. C.
Ehrenfeld, W.
Ehrich, T.
Eifert, T.
Eigen, G.
Einsweiler, K.
Eisenhandler, E.
Ekelof, T.
El Kacimi, M.
Ellert, M.
Elles, S.
Ellinghaus, F.
Ellis, K.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Ely, R.
Emeliyanov, D.
Engelmann, R.
Engl, A.
Epp, B.
Eppig, A.
Erdmann, J.
Ereditato, A.
Eriksson, D.
Ernst, J.
Ernst, M.
Ernwein, J.
Errede, D.
Errede, S.
Ertel, E.
Escalier, M.
Escobar, C.
Curull, X. Espinal
Esposito, B.
Etienne, F.
Etienvre, A. I.
Etzion, E.
Evangelakou, D.
Evans, H.
Fabbri, L.
Fabre, C.
Fakhrutdinov, R. M.
Falciano, S.
Falou, A. C.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farley, J.
Farooque, T.
Farrington, S. M.
Farthouat, P.
Fassnacht, P.
Fassouliotis, D.
Fatholahzadeh, B.
Favareto, A.
Fayard, L.
Fazio, S.
Febbraro, R.
Federic, P.
Fedin, O. L.
Fedorko, I.
Fedorko, W.
Fehling-Kaschek, M.
Feligioni, L.
Fellmann, D.
Felzmann, C. U.
Feng, C.
Feng, E. J.
Fenyuk, A. B.
Ferencei, J.
Ferland, J.
Fernando, W.
Ferrag, S.
Ferrando, J.
Ferrara, V.
Ferrari, A.
Ferrari, P.
Ferrari, R.
Ferrer, A.
Ferrer, M. L.
Ferrere, D.
Ferretti, C.
Parodi, A. Ferretto
Fiascaris, M.
Fiedler, F.
Filipcic, A.
Filippas, A.
Filthaut, F.
Fincke-Keeler, M.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, G.
Fischer, P.
Fisher, M. J.
Fisher, S. M.
Flechl, M.
Fleck, I.
Fleckner, J.
Fleischmann, P.
Fleischmann, S.
Flick, T.
Castillo, L. R. Flores
Flowerdew, M. J.
Foehlischa, F.
Fokitis, M.
Martin, T. Fonseca
Forbush, D. A.
Formica, A.
Forti, A.
Fortin, D.
Foster, J. M.
Fournier, D.
Foussat, A.
Fowler, A. J.
Fowler, K.
Fox, H.
Francavilla, P.
Franchino, S.
Francis, D.
Frank, T.
Franklin, M.
Franz, S.
Fraternali, M.
Fratina, S.
French, S. T.
Froeschl, R.
Froidevaux, D.
Frost, J. A.
Fukunaga, C.
Torregrosa, E. Fullana
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gadfort, T.
Gadomski, S.
Gagliardi, G.
Gagnon, P.
Galea, C.
Gallas, E. J.
Gallas, M. V.
Gallo, V.
Gallop, B. J.
Gallus, P.
Galyaev, E.
Gan, K. K.
Gao, Y. S.
Gapienko, V. A.
Gaponenko, A.
Garberson, F.
Garcia-Sciveres, M.
Garcia, C.
Navarro, J. E. Garcia
Gardner, R. W.
Garelli, N.
Garitaonandia, H.
Garonne, V.
Garvey, J.
Gatti, C.
Gaudio, G.
Gaumer, O.
Gaur, B.
Gauthier, L.
Gavrilenko, I. L.
Gay, C.
Gaycken, G.
Gayde, J-C.
Gazis, E. N.
Ge, P.
Gee, C. N. P.
Geerts, D. A. A.
Geich-Gimbel, Ch.
Gellerstedt, K.
Gemme, C.
Gemmell, A.
Genest, M. H.
Gentile, S.
George, M.
George, S.
Gerlach, P.
Gershon, A.
Geweniger, C.
Ghazlane, H.
Ghez, P.
Ghodbane, N.
Giacobbe, B.
Giagu, S.
Giakoumopoulou, V.
Giangiobbe, V.
Gianotti, F.
Gibbard, B.
Gibson, A.
Gibson, S. M.
Gilbert, L. M.
Gilchriese, M.
Gilewsky, V.
Gillberg, D.
Gillman, A. R.
Gingrich, D. M.
Ginzburg, J.
Giokaris, N.
Giordano, R.
Giorgi, F. M.
Giovannini, P.
Giraud, P. F.
Giugni, D.
Giunta, M.
Giusti, P.
Gjelsten, B. K.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glazov, A.
Glitza, K. W.
Glonti, G. L.
Godfrey, J.
Godlewski, J.
Goebel, M.
Goepfert, T.
Goeringer, C.
Goessling, C.
Goettfert, T.
Goldfarb, S.
Goldin, D.
Golling, T.
Golovnia, S. N.
Gomes, A.
Fajardo, L. S. Gomez
Goncalo, R.
Da Costa, J. Goncalves Pinto Firmino
Gonella, L.
Gonidec, A.
Gonzalez, S.
Gonzalez de la Hoz, S.
Silva, M. L. Gonzalez
Gonzalez-Sevilla, S.
Goodson, J. J.
Goossens, L.
Gorbounov, P. A.
Gordon, H. A.
Gorelov, I.
Gorfine, G.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Gorokhov, S. A.
Goryachev, V. N.
Gosdzik, B.
Gosselink, M.
Gostkin, M. I.
Gouanere, M.
Eschrich, I. Gough
Gouighri, M.
Goujdami, D.
Goulette, M. P.
Goussiou, A. G.
Goy, C.
Grabowska-Bold, I.
Grabski, V.
Grafstroem, P.
Grah, C.
Grahn, K-J.
Grancagnolo, F.
Grancagnolo, S.
Grassi, V.
Gratchev, V.
Grau, N.
Gray, H. M.
Gray, J. A.
Graziani, E.
Grebenyuk, O. G.
Greenfield, D.
Greenshaw, T.
Greenwood, Z. D.
Gregor, I. M.
Grenier, P.
Griesmayer, E.
Griffiths, J.
Grigalashvili, N.
Grillo, A. A.
Grinstein, S.
Grishkevich, Y. V.
Grivaz, J. -F.
Grognuz, J.
Groh, M.
Gross, E.
Grosse-Knetter, J.
Groth-Jensen, J.
Grybel, K.
Guarino, V. J.
Guest, D.
Guicheney, C.
Guida, A.
Guillemin, T.
Guindon, S.
Guler, H.
Gunther, J.
Guo, B.
Guo, J.
Gupta, A.
Gusakov, Y.
Gushchin, V. N.
Gutierrez, A.
Gutierrez, P.
Guttman, N.
Gutzwiller, O.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haas, S.
Haber, C.
Hackenburg, R.
Hadavand, H. K.
Hadley, D. R.
Haefner, P.
Hahn, F.
Haider, S.
Hajduk, Z.
Hakobyan, H.
Haller, J.
Hamacher, K.
Hamal, P.
Hamilton, A.
Hamilton, S.
Han, H.
Han, L.
Hanagaki, K.
Hance, M.
Handel, C.
Hanke, P.
Hansen, J. R.
Hansen, J. B.
Hansen, J. D.
Hansen, P. H.
Hansson, P.
Hara, K.
Hare, G. A.
Harenberg, T.
Harkusha, S.
Harper, D.
Harrington, R. D.
Harris, O. M.
Harrison, K.
Hartert, J.
Hartjes, F.
Haruyama, T.
Harvey, A.
Hasegawa, S.
Hasegawa, Y.
Hassani, S.
Hatch, M.
Hauff, D.
Haug, S.
Hauschild, M.
Hauser, R.
Havranek, M.
Hawes, B. M.
Hawkes, C. M.
Hawkings, R. J.
Hawkins, D.
Hayakawa, T.
Hayden, D.
Hayward, H. S.
Haywood, S. J.
Hazen, E.
He, M.
Head, S. J.
Hedberg, V.
Heelan, L.
Heim, S.
Heine, K.
Heinemann, B.
Heisterkamp, S.
Helary, L.
Heldmann, M.
Heller, M.
Hellman, S.
Helsens, C.
Henderson, R. C. W.
Henke, M.
Henrichs, A.
Correia, A. M. Henriques
Henrot-Versille, S.
Henry-Couannier, F.
Hensel, C.
Henss, T.
Hernandez, C. M.
Hernandez Jimenez, Y.
Herrberg, R.
Hershenhorn, A. D.
Herten, G.
Hertenberger, R.
Hervas, L.
Hessey, N. P.
Hidvegi, A.
Higon-Rodriguez, E.
Hill, D.
Hill, J. C.
Hill, N.
Hiller, K. H.
Hillert, S.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hirose, M.
Hirsch, F.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoffman, J.
Hoffmann, D.
Hohlfeld, M.
Holder, M.
Holmes, A.
Holmgren, S. O.
Holy, T.
Holzbauer, J. L.
Homma, Y.
Hong, T. M.
van Huysduynen, L. Hooft
Horazdovsky, T.
Horn, C.
Horner, S.
Horton, K.
Hostachy, J-Y.
Hou, S.
Houlden, M. A.
Hoummada, A.
Howarth, J.
Howell, D. F.
Hristova, I.
Hrivnac, J.
Hruska, I.
Hryn'ova, T.
Hsu, P. J.
Hsu, S. -C.
Huang, G. S.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Hughes-Jones, R. E.
Huhtinen, M.
Hurst, P.
Hurwitz, M.
Husemann, U.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibbotson, M.
Ibragimov, I.
Ichimiya, R.
Iconomidou-Fayard, L.
Idarraga, J.
Idzik, M.
Iengo, P.
Igonkina, O.
Ikegami, Y.
Ikeno, M.
Ilchenko, Y.
Iliadis, D.
Imbault, D.
Imhaeuser, M.
Imori, M.
Ince, T.
Inigo-Golfin, J.
Ioannou, P.
Iodice, M.
Ionescu, G.
Irles Quiles, A.
Ishii, K.
Ishikawa, A.
Ishino, M.
Ishmukhametov, R.
Issever, C.
Istin, S.
Itoh, Y.
Ivashin, A. V.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jackson, B.
Jackson, J. N.
Jackson, P.
Jaekel, M. R.
Jain, V.
Jakobs, K.
Jakobsen, S.
Jakubek, J.
Jana, D. K.
Jankowski, E.
Jansen, E.
Jantsch, A.
Janus, M.
Jarlskog, G.
Jeanty, L.
Jelen, K.
Jen-La Plante, I.
Jenni, P.
Jeremie, A.
Jez, P.
Jezequel, S.
Jha, M. K.
Ji, H.
Ji, W.
Jia, J.
Jiang, Y.
Belenguer, M. Jimenez
Jin, G.
Jin, S.
Jinnouchi, O.
Joergensen, M. D.
Joffe, D.
Johansen, L. G.
Johansen, M.
Johansson, K. E.
Johansson, P.
Johnert, S.
Johns, K. A.
Jonanda, K.
Jones, G.
Jones, R. W. L.
Jones, T. W.
Jones, T. J.
Jonsson, O.
Joram, C.
Jorge, P. M.
Joseph, J.
Ju, X.
Juranek, V.
Jussel, P.
Kabachenko, V. V.
Kabana, S.
Kaci, M.
Kaczmarska, A.
Kadlecik, P.
Kado, M.
Kagan, H.
Kagan, M.
Kaiser, S.
Kajomovitz, E.
Kalinin, S.
Kalinovskaya, L. V.
Kama, S.
Kanaya, N.
Kaneda, M.
Kanno, T.
Kantserov, V. A.
Kanzaki, J.
Kaplan, B.
Kapliy, A.
Kaplon, J.
Kar, D.
Karagoz, M.
Karnevskiy, M.
Karr, K.
Kartvelishvili, V.
Karyukhin, A. N.
Kashif, L.
Kasmi, A.
Kass, R. D.
Kastanas, A.
Kataoka, M.
Kataoka, Y.
Katsoufis, E.
Katzy, J.
Kaushik, V.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kayl, M. S.
Kazanin, V. A.
Kazarinov, M. Y.
Keates, J. R.
Keeler, R.
Kehoe, R.
Keil, M.
Kekelidze, G. D.
Kelly, M.
Kennedy, J.
Kenney, C. J.
Kenyon, M.
Kepka, O.
Kerschen, N.
Kersevan, B. P.
Kersten, S.
Kessoku, K.
Ketterer, C.
Keung, J.
Khakzad, M.
Khalil-zada, F.
Khandanyan, H.
Khanov, A.
Kharchenko, D.
Khodinov, A.
Kholodenko, A. G.
Khomich, A.
Khoo, T. J.
Khoriauli, G.
Khoroshilov, A.
Khovanskiy, N.
Khovanskiy, V.
Khramov, E.
Khubua, J.
Kim, H.
Kim, M. S.
Kim, P. C.
Kim, S. H.
Kimura, N.
Kind, O.
King, B. T.
King, M.
King, R. S. B.
Kirk, J.
Kirsch, G. P.
Kirsch, L. E.
Kiryunin, A. E.
Kisielewska, D.
Kittelmann, T.
Kiver, A. M.
Kiyamura, H.
Kladiva, E.
Klaiber-Lodewigs, J.
Klein, M.
Klein, U.
Kleinknecht, K.
Klemetti, M.
Klier, A.
Klimentov, A.
Klingenberg, R.
Klinkby, E. B.
Klioutchnikova, T.
Klok, P. F.
Klous, S.
Kluge, E. -E.
Kluge, T.
Kluit, P.
Kluth, S.
Kneringer, E.
Knobloch, J.
Knoops, E. B. F. G.
Knue, A.
Ko, B. R.
Kobayashi, T.
Kobel, M.
Kocian, M.
Kocnar, A.
Kodys, P.
Koeneke, K.
Koenig, A. C.
Koenig, S.
Koepke, L.
Koetsveld, F.
Koevesarki, P.
Koffas, T.
Koffeman, E.
Kohn, F.
Kohout, Z.
Kohriki, T.
Koi, T.
Kokott, T.
Kolachev, G. M.
Kolanoski, H.
Kolesnikov, V.
Koletsou, I.
Koll, J.
Kollar, D.
Kollefrath, M.
Kolya, S. D.
Komar, A. A.
Komaragiri, J. R.
Komori, Y.
Kondo, T.
Kono, T.
Kononov, A. I.
Konoplich, R.
Konstantinidis, N.
Kootz, A.
Koperny, S.
Kopikov, S. V.
Korcyl, K.
Kordas, K.
Koreshev, V.
Korn, A.
Korol, A.
Korolkov, I.
Korolkova, E. V.
Korotkov, V. A.
Kortner, O.
Kortner, S.
Kostyukhin, V. V.
Kotamaeki, M. J.
Kotov, S.
Kotov, V. M.
Kotwal, A.
Kourkoumelis, C.
Kouskoura, V.
Koutsman, A.
Kowalewski, R.
Kowalski, T. Z.
Kozanecki, W.
Kozhin, A. S.
Kral, V.
Kramarenko, V. A.
Kramberger, G.
Krasel, O.
Krasny, M. W.
Krasznahorkay, A.
Kraus, J.
Kreisel, A.
Krejci, F.
Kretzschmar, J.
Krieger, N.
Krieger, P.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Krueger, H.
Kruker, T.
Krumshteyn, Z. V.
Kruth, A.
Kubota, T.
Kuehn, S.
Kugel, A.
Kuhl, T.
Kuhn, D.
Kukhtin, V.
Kulchitsky, Y.
Kuleshov, S.
Kummer, C.
Kuna, M.
Kundu, N.
Kunkle, J.
Kupco, A.
Kurashige, H.
Kurata, M.
Kurochkin, Y. A.
Kus, V.
Kuykendall, W.
Kuze, M.
Kuzhir, P.
Kvasnicka, O.
Kvita, J.
Kwee, R.
La Rosa, A.
La Rotonda, L.
Labarga, L.
Labbe, J.
Lablak, S.
Lacasta, C.
Lacava, F.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Laisne, E.
Lamanna, M.
Lampen, C. L.
Lampl, W.
Lancon, E.
Landgraf, U.
Landon, M. P. J.
Landsman, H.
Lane, J. L.
Lange, C.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
Lapin, V. V.
Laplace, S.
Lapoire, C.
Laporte, J. F.
Laria, T.
Larionov, A. V.
Larner, A.
Lasseur, C.
Lassnig, M.
Lau, W.
Laurelli, P.
Lavorato, A.
Lavrijsen, W.
Laycock, P.
Lazarev, A. B.
Lazzaro, A.
Le Dortz, O.
Le Guirriec, E.
Le Maner, C.
Le Menedeu, E.
Lebedev, A.
Lebel, C.
LeCompte, T.
Ledroit-Guillon, F.
Lee, H.
Lee, J. S. H.
Lee, S. C.
Lee, L.
Lefebvre, M.
Legendre, M.
Leger, A.
LeGeyt, B. C.
Legger, F.
Leggett, C.
Lehmacher, M.
Miotto, G. Lehmann
Lei, X.
Leite, M. A. L.
Leitner, R.
Lellouch, D.
Leltchouk, M.
Lendermann, V.
Leney, K. J. C.
Lenz, T.
Lenzen, G.
Lenzi, B.
Leonhardt, K.
Leontsinis, S.
Leroy, C.
Lessard, J-R.
Lesser, J.
Lester, C. G.
Cheong, A. Leung Fook
Leveque, J.
Levin, D.
Levinson, L. J.
Levitski, M. S.
Lewandowska, M.
Lewis, A.
Lewis, G. H.
Leyko, A. M.
Leyton, M.
Li, B.
Li, H.
Li, S.
Li, X.
Liang, Z.
Liang, Z.
Liberti, B.
Lichard, P.
Lichtnecker, M.
Lie, K.
Liebig, W.
Lifshitz, R.
Lilley, J. N.
Limbach, C.
Limosani, A.
Limper, M.
Lin, S. C.
Linde, F.
Linnemann, J. T.
Lipeles, E.
Lipinsky, L.
Lipniacka, A.
Liss, T. M.
Lissauer, D.
Lister, A.
Litke, A. M.
Liu, C.
Liu, D.
Liu, H.
Liu, J. B.
Liu, M.
Liu, S.
Liu, Y.
Livan, M.
Livermore, S. S. A.
Lleres, A.
Llorente Merino, J.
Lloyd, S. L.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Lockwitz, S.
Loddenkoetter, T.
Loebinger, F. K.
Loginov, A.
Loh, C. W.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Loken, J.
Lombardo, V. P.
Long, R. E.
Lopes, L.
Mateos, D. Lopez
Losada, M.
Loscutoff, P.
Lo Sterzo, F.
Losty, M. J.
Lou, X.
Lounis, A.
Loureiro, K. F.
Love, J.
Love, P. A.
Lowe, A. J.
Lu, F.
Lu, L.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Ludwig, A.
Ludwig, D.
Ludwig, I.
Ludwig, J.
Luehring, F.
Luijckx, G.
Lumb, D.
Luminari, L.
Lund, E.
Lund-Jensen, B.
Lundberg, B.
Lundberg, J.
Lundquist, J.
Lungwitz, M.
Lupi, A.
Lutz, G.
Lynn, D.
Lys, J.
Lytken, E.
Ma, H.
Ma, L. L.
Goia, J. A. Macana
Maccarrone, G.
Macchiolo, A.
Macek, B.
Machado Miguens, J.
Mackeprang, R.
Madaras, R. J.
Mader, W. F.
Maenner, R.
Maeno, T.
Maettig, P.
Maettig, S.
Magalhaes Martins, P. J.
Magnoni, L.
Magradze, E.
Mahalalel, Y.
Mahboubi, K.
Mahout, G.
Maiani, C.
Maidantchik, C.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Mal, P.
Malecki, Pa.
Malecki, P.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Maltezos, S.
Malyshev, V.
Malyukov, S.
Mameghani, R.
Mamuzic, J.
Manabe, A.
Mandelli, L.
Mandic, I.
Mandrysch, R.
Maneira, J.
Mangeard, P. S.
Manjavidze, I. D.
Mann, A.
Manning, P. M.
Manousakis-Katsikakis, A.
Mansoulie, B.
Manz, A.
Mapelli, A.
Mapelli, L.
March, L.
Marchand, J. F.
Marchese, F.
Marchiori, G.
Marcisovsky, M.
Marin, A.
Marino, C. P.
Marroquima, F.
Marshall, R.
Marshall, Z.
Martens, F. K.
Marti-Garcia, S.
Martin, A. J.
Martin, B.
Martin, B.
Martin, F. F.
Martin, J. P.
Martin, Ph.
Martin, T. A.
Latour, B. Martin Dit
Martinez, M.
Outschoorn, V. Martinez
Martyniuk, A. C.
Marx, M.
Marzano, F.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Mass, M.
Massa, I.
Massaro, G.
Massol, N.
Mastrandrea, P.
Mastroberardino, A.
Masubuchi, T.
Mathes, M.
Matricon, P.
Matsumoto, H.
Matsunaga, H.
Matsushita, T.
Mattravers, C.
Maugain, J. M.
Maxfield, S. J.
Maximov, D. A.
May, E. N.
Mayne, A.
Mazini, R.
Mazur, M.
Mazzanti, M.
Mazzonia, E.
Mc Kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
McCubbin, N. A.
McFarlane, K. W.
Mcfayden, J. A.
McGlone, H.
Mchedlidze, G.
McLaren, R. A.
Mclaughlan, T.
McMahon, S. J.
McPherson, R. A.
Meade, A.
Mechnich, J.
Mechtel, M.
Medinnis, M.
Meera-Lebbai, R.
Meguro, T.
Mehdiyev, R.
Mehlhase, S.
Mehta, A.
Meier, K.
Meinhardt, J.
Meirose, B.
Melachrinos, C.
Garcia, B. R. Mellado
Navas, L. Mendoza
Meng, Z.
Mengarellia, A.
Menke, S.
Menot, C.
Meoni, E.
Mercurio, K. M.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meuser, S.
Meyer, C.
Meyer, J-P.
Meyer, J.
Meyer, J.
Meyer, T. C.
Meyer, W. T.
Miao, J.
Michal, S.
Micu, L.
Middleton, R. P.
Miele, P.
Migas, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikuz, M.
Miller, D. W.
Miller, R. J.
Mills, W. J.
Mills, C.
Milov, A.
Milstead, D. A.
Milstein, D.
Minaenko, A. A.
Minano, M.
Minashvili, I. A.
Mincer, A. I.
Mindur, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mirabelli, G.
Miralles Verge, L.
Misiejuk, A.
Mitrevski, J.
Mitrofanov, G. Y.
Mitsou, V. A.
Mitsui, S.
Miyagawa, P. S.
Miyazaki, K.
Mjornmark, J. U.
Moa, T.
Mockett, P.
Moed, S.
Moeller, V.
Moenig, K.
Moeser, N.
Mohapatra, S.
Mohn, B.
Mohr, W.
Mohrdieck-Moeck, S.
Moisseev, A. M.
Moles-Valls, R.
Molina-Perez, J.
Monk, J.
Monnier, E.
Montesano, S.
Monticelli, F.
Monzani, S.
Moore, R. W.
Moorhead, G. F.
Herrera, C. Mora
Moraes, A.
Morais, A.
Morange, N.
Morel, J.
Morello, G.
Moreno, D.
Moreno Llacer, M.
Morettini, P.
Morii, M.
Morin, J.
Morita, Y.
Morley, A. K.
Mornacchi, G.
Morone, M-C.
Morozov, S. V.
Morris, J. D.
Morvaj, L.
Moser, H. G.
Mosidze, M.
Moss, J.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Mudrinic, M.
Mueller, F.
Mueller, J.
Mueller, K.
Mueller, T. A.
Muenstermann, D.
Muijs, A.
Muir, A.
Munwes, Y.
Murakami, K.
Murray, W. J.
Mussche, I.
Musto, E.
Myagkov, A. G.
Myska, M.
Nadal, J.
Nagai, K.
Nagano, K.
Nagasaka, Y.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakano, I.
Nanava, G.
Napier, A.
Nash, M.
Nation, N. R.
Nattermann, T.
Naumann, T.
Navarro, G.
Neal, H. A.
Nebot, E.
Nechaeva, P. Yu.
Negri, A.
Negri, G.
Nektarijevic, S.
Nelson, A.
Nelson, S.
Nelson, T. K.
Nemecek, S.
Nemethy, P.
Nepomuceno, A. A.
Nessi, M.
Nesterov, S. Y.
Neubauer, M. S.
Neusiedl, A.
Neves, R. M.
Nevski, P.
Newman, P. R.
Hong, V. Nguyen Thi
Nickerson, R. B.
Nicolaidou, R.
Nicolas, L.
Nicquevert, B.
Niedercorn, F.
Nielsen, J.
Niinikoski, T.
Nikiforov, A.
Nikolaenko, V.
Nikolaev, K.
Nikolic-Audit, I.
Nikolopoulos, K.
Nilsen, H.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nishiyama, T.
Nisius, R.
Nodulman, L.
Nomachi, M.
Nomidis, I.
Nomoto, H.
Nordberg, M.
Nordkvist, B.
Norton, P. R.
Novakova, J.
Nozaki, M.
Nozicka, M.
Nozka, L.
Nugent, I. M.
Nuncio-Quiroz, A. -E.
Hanninger, G. Nunes
Nunnemann, T.
Nurse, E.
Nyman, T.
O'Brien, B. J.
O'Neale, S. W.
O'Neil, D. C.
O'Shea, V.
Oakham, F. G.
Oberlack, H.
Ocariz, J.
Ochi, A.
Oda, S.
Odaka, S.
Odier, J.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohshima, T.
Ohshita, H.
Ohska, T. K.
Ohsugi, T.
Okada, S.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olcese, M.
Olchevski, A. G.
Oliveira, M.
Damazio, D. Oliveira
Oliver Garcia, E.
Olivito, D.
Olszewski, A.
Olszowska, J.
Omachi, C.
Onofre, A.
Onyisi, P. U. E.
Oram, C. J.
Oreglia, M. J.
Oren, Y.
Orestano, D.
Orlov, I.
Barrera, C. Oropeza
Orr, R. S.
Ortega, E. O.
Osculati, B.
Ospanov, R.
Osuna, C.
Otero y Garzon, G.
Ottersbach, J. P.
Ouchrif, M.
Ould-Saada, F.
Ouraou, A.
Ouyang, Q.
Owen, M.
Owen, S.
Oye, O. K.
Ozcan, V. E.
Ozturk, N.
Pacheco Pages, A.
Padilla Aranda, C.
Paganis, E.
Paige, F.
Pajchel, K.
Palestini, S.
Pallin, D.
Palma, A.
Palmer, J. D.
Pan, Y. B.
Panagiotopoulou, E.
Panes, B.
Panikashvili, N.
Panitkin, S.
Pantea, D.
Panuskova, M.
Paolone, V.
Papadelis, A.
Papadopoulou, Th. D.
Paramonov, A.
Park, W.
Parker, M. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pasqualucci, E.
Passeri, A.
Pastore, F.
Pastore, Fr.
Pasztor, G.
Pataraia, S.
Patel, N.
Pater, J. R.
Patricelli, S.
Pauly, T.
Pecsy, M.
Morales, M. I. Pedraza
Peleganchuk, S. V.
Peng, H.
Pengo, R.
Penson, A.
Penwell, J.
Perantoni, M.
Perez, K.
Cavalcanti, T. Perez
Perez Codina, E.
Perez Garcia-Estan, M. T.
Reale, V. Perez
Peric, I.
Perini, L.
Pernegger, H.
Perrino, R.
Perrodo, P.
Persembe, S.
Peshekhonov, V. D.
Peters, O.
Petersen, B. A.
Petersen, J.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petrolo, E.
Petrucci, F.
Petschull, D.
Petteni, M.
Pezoa, R.
Phan, A.
Phillips, A. W.
Phillips, P. W.
Piacquadio, G.
Piccaro, E.
Piccinini, M.
Pickford, A.
Piec, S. M.
Piegaia, R.
Pilcher, J. E.
Pilkington, A. D.
Pina, J.
Pinamonti, M.
Pinder, A.
Pinfold, J. L.
Ping, J.
Pinto, B.
Pirotte, O.
Pizio, C.
Placakyte, R.
Plamondon, M.
Plano, W. G.
Pleier, M. -A.
Pleskach, A. V.
Poblaguev, A.
Poddar, S.
Podlyski, F.
Poggioli, L.
Poghosyan, T.
Pohl, M.
Polci, F.
Polesello, G.
Policicchio, A.
Polini, A.
Poll, J.
Polychronakos, V.
Pomarede, D. M.
Pomeroy, D.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciu, G. A.
Popovic, D. S.
Poppleton, A.
Bueso, X. Portell
Porter, R.
Posch, C.
Pospelov, G. E.
Pospisil, S.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Prabhu, R.
Pralavorio, P.
Prasad, S.
Pravahan, R.
Prell, S.
Pretzl, K.
Pribyl, L.
Price, D.
Price, L. E.
Price, M. J.
Prichard, M.
Prieur, D.
Primavera, M.
Prokofiev, K.
Prokoshin, F.
Protopopescu, S.
Proudfoot, J.
Prudent, X.
Przysiezniak, H.
Psoroulas, S.
Ptacek, E.
Purdham, J.
Purohit, M.
Puzo, P.
Pylypchenko, Y.
Qian, J.
Qian, Z.
Qin, Z.
Quadt, A.
Quarrie, D. R.
Quayle, W. B.
Quinonez, F.
Raas, M.
Radescu, V.
Radics, B.
Radora, T.
Ragus, F.
Rahal, G.
Rahimi, A. M.
Rahm, D.
Rajagopalan, S.
Rammensee, M.
Rammes, M.
Ramstedt, M.
Randrianarivony, K.
Ratoff, P. N.
Rauscher, F.
Rauter, E.
Raymond, M.
Read, A. L.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Reichold, A.
Reinherz-Aronis, E.
Reinsch, A.
Reisinger, I.
Reljic, D.
Rembser, C.
Ren, Z. L.
Renaud, A.
Renkel, P.
Rensch, B.
Rescigno, M.
Resconi, S.
Resende, B.
Reznicek, P.
Rezvani, R.
Richards, A.
Richter, R.
Richter-Was, E.
Ridel, M.
Rieke, S.
Rijpstra, M.
Rijssenbeek, M.
Rimoldi, A.
Rinaldi, L.
Rios, R. R.
Riu, I.
Rivoltella, G.
Rizatdinova, F.
Rizvi, E.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
Robinson, J. E. M.
Robinson, M.
Robson, A.
de Lima, J. G. Rocha
Roda, C.
Dos Santos, D. Roda
Rodier, S.
Rodriguez, D.
Garcia, Y. Rodriguez
Roe, A.
Roe, S.
Rohne, O.
Rojo, V.
Rolli, S.
Romaniouk, A.
Romanov, V. M.
Romeo, G.
Maltranaa, D. Romero
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, M.
Rosenbaum, G. A.
Rosenberg, E. I.
Rosendahl, P. L.
Rosselet, L.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rossi, L.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubinskiy, I.
Ruckert, B.
Ruckstuhl, N.
Rud, V. I.
Rudolph, G.
Ruehr, F.
Ruggieri, F.
Ruiz-Martinez, A.
Rulikowska-Zarebska, E.
Rumiantsev, V.
Rumyantsev, L.
Runge, K.
Runolfsson, O.
Rurikova, Z.
Rusakovich, N. A.
Rust, D. R.
Rutherfoord, J. P.
Ruwiedel, C.
Ruzicka, P.
Ryabov, Y. F.
Ryadovikov, V.
Ryan, P.
Rybar, M.
Rybkin, G.
Ryder, N. C.
Rzaeva, S.
Saavedra, A. F.
Sadeh, I.
Sadrozinski, H. F-W.
Sadykov, R.
Tehrani, F. Safai
Sakamoto, H.
Salamanna, G.
Salamon, A.
Saleem, M.
Salihagic, D.
Salnikov, A.
Salt, J.
Ferrando, B. M. Salvachua
Salvatore, D.
Salvatore, F.
Salvucci, A.
Salzburger, A.
Sampsonidis, D.
Samset, B. H.
Sandaker, H.
Sander, H. G.
Sanders, M. P.
Sandhoff, M.
Sandoval, T.
Sandstroem, R.
Sandvoss, S.
Sankey, D. P. C.
Sansoni, A.
Rios, C. Santamarina
Santoni, C.
Santonico, R.
Santosa, H.
Saraiva, J. G.
Sarangi, T.
Sarkisyan-Grinbaum, E.
Sarri, F.
Sartisohn, G.
Sasaki, O.
Sasaki, T.
Sasao, N.
Satsounkevitch, I.
Sauvage, G.
Sauvan, J. B.
Savard, P.
Savinov, V.
Savu, D. O.
Savva, P.
Sawyer, L.
Saxon, D. H.
Says, L. P.
Sbarra, C.
Sbrizzi, A.
Scallon, O.
Scannicchio, D. A.
Scarcella, M.
Schaarschmidt, J.
Schacht, P.
Schaefer, U.
Schaepe, S.
Schaetzel, S.
Schaffer, A. C.
Schaile, D.
Schamberger, R. D.
Schamov, A. G.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Schernau, M.
Scherzer, M. I.
Schiavi, C.
Schieck, J.
Schioppa, M.
Schlenker, S.
Schlereth, J. L.
Schmidt, E.
Schmidt, M. P.
Schmieden, K.
Schmitt, C.
Schmitt, S.
Schmitz, M.
Schoening, A.
Schott, M.
Schouten, D.
Schovancova, J.
Schram, M.
Schroeder, C.
Schroer, N.
Schuh, S.
Schuler, G.
Schultes, J.
Schultz-Coulon, H. -C.
Schulz, H.
Schumacher, J. W.
Schumacher, M.
Schumm, B. A.
Schune, Ph.
Schwanenberger, C.
Schwartzman, A.
Schwemling, Ph.
Schwienhorst, R.
Schwierz, R.
Schwindling, J.
Scott, W. G.
Searcy, J.
Sedykh, E.
Segura, E.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidze, G.
Seliverstov, D. M.
Selldena, B.
Sellers, G.
Seman, M.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Seuster, R.
Severini, H.
Sevior, M. E.
Sfyrla, A.
Shabalina, E.
Shamim, M.
Shan, L. Y.
Shank, J. T.
Shao, Q. T.
Shapiro, M.
Shatalov, P. B.
Shaver, L.
Shaw, C.
Shaw, K.
Sherman, D.
Sherwood, P.
Shibata, A.
Shichi, H.
Shimizu, S.
Shimojima, M.
Shin, T.
Shmeleva, A.
Shochet, M. J.
Short, D.
Shupe, M. A.
Sicho, P.
Sidoti, A.
Siebel, A.
Siegert, F.
Siegrist, J.
Sijacki, Dj.
Silbert, O.
Silva, J.
Silver, Y.
Silverstein, D.
Silverstein, S. B.
Simak, V.
Simard, O.
Simic, Lj.
Simion, S.
Simmons, B.
Simonyan, M.
Sinervo, P.
Sinev, N. B.
Sipica, V.
Siragusa, G.
Sisakyan, A. N.
Sivoklokov, S. Yu.
Sjoelina, J.
Sjursen, T. B.
Skinnari, L. A.
Skovpen, K.
Skubic, P.
Skvorodnev, N.
Slater, M.
Slavicek, T.
Sliwa, K.
Sloan, T. J.
Sloper, J.
Smakhtin, V.
Smirnov, S. Yu.
Smirnova, L. N.
Smirnova, O.
Smith, B. C.
Smith, D.
Smith, K. M.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snow, S. W.
Snow, J.
Snuverink, J.
Snyder, S.
Soares, M.
Sobie, R.
Sodomka, J.
Soffer, A.
Solans, C. A.
Solar, M.
Solc, J.
Soldatov, E.
Soldevila, U.
Camillocci, E. Solfaroli
Solodkov, A. A.
Solovyanov, O. V.
Sondericker, J.
Soni, N.
Sopko, V.
Sopko, B.
Sorbi, M.
Sosebee, M.
Soukharev, A.
Spagnolo, S.
Spano, F.
Spighia, R.
Spigo, G.
Spila, F.
Spiriti, E.
Spiwoks, R.
Spousta, M.
Spreitzer, T.
Spurlock, B.
Denis, R. D. St.
Stahl, T.
Stahlman, J.
Stamen, R.
Stanecka, E.
Stanek, R. W.
Stanescu, C.
Stapnes, S.
Starchenko, E. A.
Stark, J.
Staroba, P.
Starovoitov, P.
Staude, A.
Stavina, P.
Stavropoulos, G.
Steele, G.
Steinbach, P.
Steinberg, P.
Stekl, I.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stevenson, K.
Stewart, G. A.
Stillings, J. A.
Stockmanns, T.
Stockton, M. C.
Stoerig, K.
Stoicea, G.
Stonjek, S.
Strachota, P.
Stradling, A. R.
Straessner, A.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strang, M.
Strauss, E.
Strauss, M.
Strizenec, P.
Stroehmer, R.
Strom, D. M.
Strong, J. A.
Stroynowski, R.
Strube, J.
Stugu, B.
Stumer, I.
Stupak, J.
Sturm, P.
Soh, D. A.
Su, D.
Subramania, Hs.
Succurro, A.
Sugaya, Y.
Sugimoto, T.
Suhr, C.
Suita, K.
Suk, M.
Sulin, V. V.
Sultansoy, S.
Sumida, T.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Sushkov, S.
Susinno, G.
Sutton, M. R.
Suzuki, Y.
Svatos, M.
Sviridov, Yu. M.
Swedish, S.
Sykora, I.
Sykora, T.
Szeless, B.
Sanchez, J.
Ta, D.
Tackmann, K.
Taffard, A.
Tafirout, R.
Taga, A.
Taiblum, N.
Takahashi, Y.
Takai, H.
Takashima, R.
Takeda, H.
Takeshita, T.
Talby, M.
Talyshev, A.
Tamsett, M. C.
Tanaka, J.
Tanaka, R.
Tanaka, S.
Tanaka, S.
Tanaka, Y.
Tani, K.
Tannoury, N.
Tappern, G. P.
Tapprogge, S.
Tardif, D.
Tarem, S.
Tarrade, F.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tassi, E.
Tatarkhanov, M.
Tayalati, Y.
Taylor, C.
Taylor, F. E.
Taylor, G. N.
Taylor, W.
Castanheira, M. Teixeira Dias
Teixeira-Dias, P.
Temming, K. K.
Ten Kate, H.
Teng, P. K.
Terada, S.
Terashi, K.
Terron, J.
Terwort, M.
Testa, M.
Teuscher, R. J.
Thadome, J.
Therhaag, J.
Theveneaux-Pelzer, T.
Thioye, M.
Thoma, S.
Thomas, J. P.
Thompson, E. N.
Thompson, P. D.
Thompson, P. D.
Thompson, A. S.
Thomson, E.
Thomson, M.
Thun, R. P.
Tic, T.
Tikhomirov, V. O.
Tikhonov, Y. A.
Timmermans, C. J. W. P.
Tipton, P.
Viegas, F. J. Tique Aires
Tisserant, S.
Tobias, J.
Toczek, B.
Todorov, T.
Todorova-Nova, S.
Toggerson, B.
Tojo, J.
Tokar, S.
Tokunaga, K.
Tokushuku, K.
Tollefson, K.
Tomoto, M.
Tompkins, L.
Toms, K.
Tong, G.
Tonoyan, A.
Topfel, C.
Topilin, N. D.
Torchiani, I.
Torrence, E.
Torro Pastor, E.
Toth, J.
Touchard, F.
Tovey, D. R.
Traynor, D.
Trefzger, T.
Treis, J.
Tremblet, L.
Tricoli, A.
Trigger, I. M.
Trincaz-Duvoid, S.
Trinh, T. N.
Tripiana, M. F.
Trischuk, W.
Trivedi, A.
Trocme, B.
Troncon, C.
Trottier-McDonald, M.
Trzupek, A.
Tsarouchas, C.
Tseng, J. C-L.
Tsiakiris, M.
Tsiareshka, P. V.
Tsionou, D.
Tsipolitis, G.
Tsiskaridze, V.
Tskhadadze, E. G.
Tsukerman, I. I.
Tsulaia, V.
Tsung, J. -W.
Tsuno, S.
Tsybychev, D.
Tua, A.
Tuggle, J. M.
Turala, M.
Turecek, D.
Cakir, I. Turk
Turlay, E.
Turra, R.
Tuts, P. M.
Tykhonov, A.
Tylmad, M.
Tyndel, M.
Tyrvainen, H.
Tzanakos, G.
Uchida, K.
Ueda, I.
Ueno, R.
Ugland, M.
Uhlenbrock, M.
Uhrmacher, M.
Ukegawa, F.
Unal, G.
Underwood, D. G.
Undrus, A.
Unel, G.
Unno, Y.
Urbaniec, D.
Urkovsky, E.
Urrejola, P.
Usai, G.
Uslenghi, M.
Vacavant, L.
Vacek, V.
Vachon, B.
Vahsen, S.
Valenta, J.
Valente, P.
Valentinetti, S.
Valkar, S.
Valladolid Gallego, E.
Vallecorsa, S.
Valls Ferrer, J. A.
van der Graaf, H.
van der Kraaij, E.
Van Der Leeuw, R.
van der Poel, E.
van der Ster, D.
Van Eijk, B.
van Eldik, N.
van Gemmeren, P.
van Kesteren, Z.
van Vulpen, I.
Vandelli, W.
Vandoni, G.
Vaniachine, A.
Vankov, P.
Vannucci, F.
Rodriguez, F. Varela
Vari, R.
Varnes, E. W.
Varouchas, D.
Vartapetian, A.
Varvell, K. E.
Vassilakopoulos, V. I.
Vazeille, F.
Vegni, G.
Veillet, J. J.
Vellidis, C.
Veloso, F.
Veness, R.
Veneziano, S.
Ventura, A.
Ventura, D.
Venturi, M.
Venturi, N.
Vercesi, V.
Verducci, M.
Verkerke, W.
Vermeulen, J. C.
Vest, A.
Vetterli, M. C.
Vichou, I.
Vickey, T.
Viehhauser, G. H. A.
Viel, S.
Villa, M.
Villaplana Perez, M.
Vilucchi, E.
Vincter, M. G.
Vinek, E.
Vinogradov, V. B.
Virchaux, M.
Viret, S.
Virzi, J.
Vitale, A.
Vitells, O.
Viti, M.
Vivarelli, I.
Vives Vaque, F.
Vlachos, S.
Vlasak, M.
Vlasov, N.
Vogel, A.
Vokac, P.
Volpi, G.
Volpi, M.
Volpini, G.
von der Schmitt, H.
von Loeben, J.
von Radziewski, H.
von Toerne, E.
Vorobel, V.
Vorobiev, A. P.
Vorwerk, V.
Vos, M.
Voss, R.
Voss, T. T.
Vossebeld, J. H.
Vranjes, N.
Milosavljevic, M. Vranjes
Vrba, V.
Vreeswijk, M.
Anh, T. Vu
Vuillermet, R.
Vukotic, I.
Wagner, W.
Wagner, P.
Wahlen, H.
Wakabayashi, J.
Walbersloh, J.
Walch, S.
Walder, J.
Walker, R.
Walkowiak, W.
Wall, R.
Waller, P.
Wang, C.
Wang, H.
Wang, H.
Wang, J.
Wang, J.
Wang, J. C.
Wang, R.
Wang, S. M.
Warburton, A.
Ward, C. P.
Warsinsky, M.
Watkins, P. M.
Watson, A. T.
Watson, M. F.
Watts, G.
Watts, S.
Waugh, A. T.
Waugh, B. M.
Weber, J.
Weber, M.
Weber, M. S.
Weber, P.
Weidberg, A. R.
Weigell, P.
Weingarten, J.
Weiser, C.
Wellenstein, H.
Wells, P. S.
Wen, M.
Wenaus, T.
Wendler, S.
Weng, Z.
Wengler, T.
Wenig, S.
Wermes, N.
Werner, M.
Werner, P.
Werth, M.
Wessels, M.
Weydert, C.
Whalen, K.
Wheeler-Ellis, S. J.
Whitaker, S. P.
White, A.
White, M. J.
White, S.
Whitehead, S. R.
Whiteson, D.
Whittington, D.
Wicek, F.
Wicke, D.
Wickens, F. J.
Wiedenmann, W.
Wielers, M.
Wienemann, P.
Wiglesworth, C.
Wiik, L. A. M.
Wijeratne, P. A.
Wildauer, A.
Wildt, M. A.
Wilhelm, I.
Wilkens, H. G.
Will, J. Z.
Williams, E.
Williams, H. H.
Willis, W.
Willocq, S.
Wilson, J. A.
Wilson, M. G.
Wilson, A.
Wingerter-Seez, I.
Winkelmann, S.
Winklmeier, F.
Wittgen, M.
Wolter, M. W.
Wolters, H.
Wooden, G.
Wosiek, B. K.
Wotschack, J.
Woudstra, M. J.
Wraight, K.
Wright, C.
Wrona, B.
Wu, S. L.
Wu, X.
Wu, Y.
Wulf, E.
Wunstorf, R.
Wynne, B. M.
Xaplanteris, L.
Xella, S.
Xie, S.
Xie, Y.
Xu, C.
Xu, D.
Xu, G.
Yabsley, B.
Yamada, M.
Yamamoto, A.
Yamamoto, K.
Yamamoto, S.
Yamamura, T.
Yamaoka, J.
Yamazaki, T.
Yamazaki, Y.
Yan, Z.
Yang, H.
Yang, U. K.
Yang, Y.
Yang, Y.
Yang, Z.
Yanush, S.
Yao, W-M.
Yao, Y.
Yasu, Y.
Smit, G. V. Ybeles
Ye, J.
Ye, S.
Yilmaz, M.
Yoosoofmiya, R.
Yorita, K.
Yoshida, R.
Young, C.
Youssef, S.
Yu, D.
Yu, J.
Yu, J.
Yuan, L.
Yurkewicz, A.
Zaets, V. G.
Zaidan, R.
Zaitsev, A. M.
Zajacova, Z.
Zalite, Yo. K.
Zanello, L.
Zarzhitsky, P.
Zaytsev, A.
Zeitnitz, C.
Zeller, M.
Zemla, A.
Zendler, C.
Zenin, A. V.
Zenin, O.
Zenis, T.
Zenonos, Z.
Zenz, S.
Zerwas, D.
della Porta, G. Zevi
Zhan, Z.
Zhang, D.
Zhang, H.
Zhang, J.
Zhang, X.
Zhang, Z.
Zhao, L.
Zhao, T.
Zhao, Z.
Zhemchugov, A.
Zheng, S.
Zhong, J.
Zhou, B.
Zhou, N.
Zhou, Y.
Zhu, C. G.
Zhu, H.
Zhu, Y.
Zhuang, X.
Zhuravlov, V.
Zieminska, D.
Zimmermann, R.
Zimmermann, S.
Zimmermann, S.
Ziolkowski, M.
Zitoun, R.
Zivkovic, L.
Zmouchko, V. V.
Zobernig, G.
Zoccoli, A.
Zolnierowski, Y.
Zsenei, A.
zur Nedden, M.
Zutshi, V.
Zwalinski, L.
CA ATLAS Collaboration
TI Performance of the ATLAS Trigger System in 2010
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID COLLISIONS; SEARCH; LHC
AB Proton-proton collisions at root s = 7 TeV and heavy ion collisions at root(NN)-N-s = 2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. A brief outline of plans for the trigger system in 2011 is presented.
C1 [Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Dahlhoff, A.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany.
[Alam, M. S.; Dhullipudi, R.; Ernst, J.; Greenwood, Z. D.; Rojo, V.; Sawyer, L.] SUNY Albany, Albany, NY 12222 USA.
[Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Pinfold, J. L.; Soni, N.; Subramania, Hs.] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey.
[Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey.
[Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey.
[Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey.
[Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey.
[Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France.
[Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France.
[Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Brandt, A.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece.
[Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece.
[Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain.
[Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] ICREA, Barcelona, Spain.
[Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia.
[Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia.
[Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Grybel, K.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany.
[Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland.
[Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Istin, S.; Ozcan, V. E.; Radora, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey.
[Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey.
Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey.
[Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarellia, A.; Monzani, S.; Piccinini, M.; Polini, A.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighia, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Milan, Italy.
[Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarellia, A.; Monzani, S.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy.
[Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany.
[Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA.
[Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Mello, A. Da Rocha Gesualdi; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquima, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, RJ, Brazil.
Fed Univ Juiz de Fora UFJF, Juiz De Fora, MG, Brazil.
Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, MG, Brazil.
[Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
[Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania.
W Univ Timisoara, Timisoara, Romania.
[Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina.
[Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Banfi, D.; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Grognuz, J.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stewart, G. A.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland.
[Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Jen-La Plante, I.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Diaz, M. A.; Panes, B.; Quinonez, F.; Maltranaa, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile.
[Brooks, W. K.; Kuleshov, S.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile.
[Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China.
[Chen, S.; Chen, T.; Ping, J.; Yu, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Feng, C.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China.
[Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Aubiere, France.
[Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Aubiere, France.
[Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] CNRS, IN2P3, Aubiere, France.
[Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Boelaert, N.; Dam, M.; Driouichi, C.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
[Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Milan, Italy.
[Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy.
[Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA.
[Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA.
[Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Heine, K.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany.
[Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Heine, K.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany.
[Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany.
[Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland.
[Griesmayer, E.] Fachhochschule Wiener Neustadt, A-2700 Wiener Neustadt, Austria.
[Abdesselam, A.; Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Iacobucci, G.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Morone, M-C.; Nektarijevic, S.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Milan, Italy.
[Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia.
[Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380077 Tbilisi, Rep of Georgia.
[Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia.
[Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany.
[Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland.
[Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France.
[Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS IN2P3, Grenoble, France.
[Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France.
[Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA.
[Andrei, V.; Childers, J. T.; Davygora, Y.; Dieli, M. V.; Dietzsch, T. A.; Foehlischa, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany.
[Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany.
[Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan.
[Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan.
[Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria.
[Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA.
[Chen, C.; Cochran, J.; Dudziak, F.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA.
[Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res, JINR Dubna, Dubna, Russia.
[Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] Natl Lab High Energy Phys, KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan.
[Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan.
[Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan.
[Takashima, R.] Kyoto Univ, Kyoto 612, Japan.
[Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina.
[Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina.
[Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England.
[Bianco, M.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy.
[Bianco, M.; Cazzato, A.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy.
[Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England.
[Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Prudent, X.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia.
[Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Prudent, X.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia.
[Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Sherman, D.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Queen Mary Univ London, Dept Phys, London, England.
[Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England.
[Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England.
[Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France.
[Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France.
[Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden.
[Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Llorente Merino, J.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain.
[Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England.
[Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France.
[Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France.
[Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Linnemann, J. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada.
[Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wu, Y.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Acerbi, E.; Alessan-Driaa, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Laria, T.; Lazzaro, A.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragus, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragus, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus.
[Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Guler, H.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia.
[Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia.
[Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.] Univ Munich, Fak Phys, Munich, Germany.
[Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany.
[Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan.
[Hasegawa, S.; Itoh, Y.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; Della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy.
[Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands.
[Bentvelsen, S.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands.
[Bentvelsen, S.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands.
[Abdesselam, A.; Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA.
[Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan.
[Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Abi, B.; Crescioli, F.; Dotti, A.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic.
[Abi, B.; Crescioli, F.; Dotti, A.; Khanov, A.; Reinsch, A.; Rizatdinova, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA.
[Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sakamoto, H.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France.
[Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sakamoto, H.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France.
[Buszello, C. P.; Ekelof, T.; Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway.
[Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England.
[Abdesselam, A.; Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy.
[Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzonia, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzonia, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy.
Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santosa, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal.
[Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain.
[Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain.
[Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr, Inst High Energy Phys, Protvino, Russia.
[Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada.
[Tanaka, S.] Ritsumeikan Univ, Shiga, Japan.
[Anulli, F.; Artoni, G.; Bacci, C.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy.
[Artoni, G.; Bacci, C.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Baroncelli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luisea, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy.
[Biglietti, M.; Ceradini, F.; Di Luisea, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy.
[Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco.
[Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco.
[El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci, Semlalia Dept Phys, Marrakech 40000, Morocco.
[El Moursli, R. Cherkaoui] Univ Mohammed 5, Fac Sci, Rabat, Morocco.
[Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Xu, C.; Yu, J.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France.
[Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan.
[Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany.
[Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Aracena, I.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Lowe, A. J.; Miller, D. W.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA.
[Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Antos, J.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia.
[Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa.
[Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa.
[Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jonanda, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Selldena, B.; Silverstein, S. B.; Sjoelina, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden.
[Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jonanda, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelina, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden.
[Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden.
[Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Bartsch, V.; De Santo, A.; Potter, C. J.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England.
[Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, H.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, D.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
[Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Bobbink, G. J.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan.
[Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Keung, J.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada.
[Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan.
[Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA.
[Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Avolio, G.; Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy.
[Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy.
[Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy.
[Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Belanger-Champagne, C.; Brenner, R.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain.
[Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingenier Elect, Valencia, Spain.
[Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain.
[Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain.
[Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada.
[Astbury, A.; Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada.
[Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan.
[Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
[Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Fleischmann, P.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany.
[Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany.
[Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hamacher, K.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA.
[Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, Ctr Calcul, IN2P3, Domaine Sci Doua, Villeurbanne, France.
[Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal.
[Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, CFNUL, Lisbon, Portugal.
[Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
[Carvalho, J.; Fiolhais, M. C. N.; Magalhaes Martins, P. J.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal.
[Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy.
[Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey.
Louisiana Tech Univ, Ruston, LA 71270 USA.
[Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany.
[Konoplich, R.] Manhattan Coll, New York, NY USA.
[Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China.
[Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan.
[Liu, D.; Meng, Z.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China.
[Mateos, D. Lopez; Perez, K.] CALTECH, Pasadena, CA 91125 USA.
[Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal.
[Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary.
[Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland.
RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany.
RI Pina, Joao /C-4391-2012; Amorim, Antonio/C-8460-2013; Vanyashin,
Aleksandr/H-7796-2013; La Rosa, Alessandro/I-1856-2013; Casadei,
Diego/I-1785-2013; Ishikawa, Akimasa/G-6916-2012; Moraes,
Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko,
Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013;
Kartvelishvili, Vakhtang/K-2312-2013; Di Nardo, Roberto/J-4993-2012;
Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011;
Rotaru, Marina/A-3097-2011; Wolter, Marcin/A-7412-2012; Bergeaas
Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina,
andrea/C-2753-2013; Orlov, Ilya/E-6611-2012; Annovi,
Alberto/G-6028-2012; Stoicea, Gabriel/B-6717-2011; Brooks,
William/C-8636-2013; Kramarenko, Victor/E-1781-2012; Alexa,
Calin/F-6345-2010; Gutierrez, Phillip/C-1161-2011; Moorhead,
Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans,
Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige,
Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro,
Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano,
Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Giordano,
Raffaele/J-3695-2012; Dawson, Ian/K-6090-2013; Solfaroli Camillocci,
Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Castro,
Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton,
Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev,
Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014;
Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Villa,
Mauro/C-9883-2009; Fazio, Salvatore /G-5156-2010; Smirnova,
Lidia/D-8089-2012; Sivoklokov, Sergey/D-8150-2012; Smirnov,
Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; valente,
paolo/A-6640-2010; Ferrando, James/A-9192-2012; Buttar,
Craig/D-3706-2011; Takai, Helio/C-3301-2012; Britton, David/F-2602-2010;
Barreiro, Fernando/D-9808-2012; Li, Xuefei/C-3861-2012; Doyle,
Anthony/C-5889-2009; Nozka, Libor/G-5550-2014; Nemecek,
Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Staroba,
Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova,
Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos,
Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk,
Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman,
Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz,
Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez,
Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou,
Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Martins,
Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014;
Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015;
Ferrer, Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Hansen,
John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo,
stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri,
Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Chekulaev,
Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho,
Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov,
Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo,
Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan
Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones,
Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN,
VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora Herrera,
Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; KHODINOV,
ALEKSANDR/D-6269-2015; Morone, Maria Cristina/P-4407-2016; Goncalo,
Ricardo/M-3153-2016; Idzik, Marek/A-2487-2017; Mashinistov,
Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev,
Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Fullana Torregrosa,
Esteban/A-7305-2016; Grancagnolo, Francesco/K-2857-2015; Korol,
Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Capua,
Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; McKee,
Shawn/B-6435-2012; Grinstein, Sebastian/N-3988-2014; la rotonda,
laura/B-4028-2016;
OI Pina, Joao /0000-0001-8959-5044; Vanyashin,
Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142;
Moraes, Arthur/0000-0002-5157-5686; Conde Muino,
Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov,
Sergey/0000-0002-3065-326X; Della Pietra, Massimo/0000-0003-4446-3368;
Andreazza, Attilio/0000-0001-5161-5759; Rotaru,
Marina/0000-0003-3303-5683; Cascella, Michele/0000-0003-2091-2501;
Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398;
Stoicea, Gabriel/0000-0002-7511-4614; Brooks,
William/0000-0001-6161-3570; Moorhead, Gareth/0000-0002-9299-9549;
Petrucci, Fabrizio/0000-0002-5278-2206; Wemans,
Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir,
Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805;
Veneziano, Stefano/0000-0002-2598-2659; Solfaroli Camillocci,
Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Wolters,
Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De,
Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee,
Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa,
Mauro/0000-0002-9181-8048; Smirnov, Sergei/0000-0002-6778-073X;
Gladilin, Leonid/0000-0001-9422-8636; valente,
paolo/0000-0002-5413-0068; Ferrando, James/0000-0002-1007-7816; Takai,
Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Barreiro,
Fernando/0000-0002-3021-0258; Doyle, Anthony/0000-0001-6322-6195;
Mikestikova, Marcela/0000-0003-1277-2596; Svatos,
Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592;
Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman,
Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Ventura,
Andrea/0000-0002-3368-3413; Villaplana Perez,
Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou,
Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361;
Martins, Paulo/0000-0003-3753-3751; Mir,
Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer,
Antonio/0000-0003-0532-711X; Prokoshin, Fedor/0000-0001-6389-5399;
Hansen, John/0000-0002-8422-5543; Grancagnolo,
Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348;
Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133;
Carvalho, Joao/0000-0002-3015-7821; Booth,
Christopher/0000-0002-6051-2847; Tikhomirov,
Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz,
Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova,
Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan
Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones,
Roger/0000-0002-6427-3513; Vranjes Milosavljevic,
Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495;
Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria
Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738;
KHODINOV, ALEKSANDR/0000-0003-3551-5808; Morone, Maria
Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442;
Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov,
Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368;
Monzani, Simone/0000-0002-0479-2207; Troncon, Clara/0000-0002-7997-8524;
Bailey, David C/0000-0002-7970-7839; Cataldi,
Gabriella/0000-0001-8066-7718; Evans, Harold/0000-0003-2183-3127;
Fullana Torregrosa, Esteban/0000-0003-3082-621X; Nielsen,
Jason/0000-0002-9175-4419; Adye, Tim/0000-0003-0627-5059; Grancagnolo,
Francesco/0000-0002-9367-3380; Dell'Asta, Lidia/0000-0002-9601-4225;
Chen, Hucheng/0000-0002-9936-0115; Sawyer, Lee/0000-0001-8295-0605;
Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009;
Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin,
Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Begel,
Michael/0000-0002-1634-4399; Abdelalim, Ahmed Ali/0000-0002-2056-7894;
Capua, Marcella/0000-0002-2443-6525; Vari, Riccardo/0000-0002-2814-1337;
Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe
Francesco/0000-0002-4244-502X; McKee, Shawn/0000-0002-4551-4502; Nisati,
Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Doria,
Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244;
Gomes, Agostinho/0000-0002-5940-9893; Mincer, Allen/0000-0002-6307-1418;
Grinstein, Sebastian/0000-0002-6460-8694; la rotonda,
laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X;
Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291;
Coccaro, Andrea/0000-0003-2368-4559; De Lotto,
Barbara/0000-0003-3624-4480; Cristinziani, Markus/0000-0003-3893-9171;
Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian,
Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Casadei,
Diego/0000-0002-3343-3529; Vivarelli, Iacopo/0000-0003-0097-123X;
MARTINEZ, MARIO/0000-0002-3135-945X; Della Volpe,
Domenico/0000-0001-8530-7447; Salvatore, Fabrizio/0000-0002-3709-1554;
Cranmer, Kyle/0000-0002-5769-7094; Romero-Maltrana,
Diego/0000-0003-2550-5243; Klinkby, Esben Bryndt/0000-0002-1908-5644;
Pomarede, Daniel/0000-0003-2038-0488; Orellana,
Frederik/0000-0001-7614-3882; Vos, Marcel/0000-0001-8474-5357; Mendes
Saraiva, Joao Gentil/0000-0002-7006-0864; Farrington,
Sinead/0000-0001-5350-9271; Turra, Ruggero/0000-0001-8740-796X; Robson,
Aidan/0000-0002-1659-8284; Canelli, Florencia/0000-0001-6361-2117;
Weber, Michele/0000-0002-2770-9031; Strube, Jan/0000-0001-7470-9301;
Beck, Hans Peter/0000-0001-7212-1096; Salamanna,
Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401;
Lacasta, Carlos/0000-0002-2623-6252; Chen, Chunhui /0000-0003-1589-9955;
Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247;
abi, babak/0000-0001-7036-9645; Quinonez Granados, Fernando
Andres/0000-0002-0153-6160; Belanger-Champagne,
Camille/0000-0003-2368-2617
FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS,
Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada;
NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China;
NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR,
Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark;
Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS;
CEA-DSM/I RFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF,
Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF,
Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center,
Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM,
Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES,
Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM,
Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia;
MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden;
Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland;
Cantons of Bern, Switzerland; Geneva, Switzerland; NSC, Taiwan; TAEK,
Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF,
United States of America
FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC,
Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and
FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS,
MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR,
Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS,
European Union; IN2P3-CNRS, CEA-DSM/I RFU, France; GNAS, Georgia; BMBF,
DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA,
GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan;
CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland;
GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and
ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS
and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and
Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva,
Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and
Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.
NR 42
TC 8
Z9 8
U1 7
U2 67
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD JAN
PY 2012
VL 72
IS 1
AR 1849
DI 10.1140/epjc/s10052-011-1849-1
PG 61
WC Physics, Particles & Fields
SC Physics
GA 897FM
UT WOS:000300631800017
ER
PT J
AU Abramowicz, H
Abt, I
Adamczyk, L
Adamus, M
Aggarwal, R
Antonelli, S
Antonioli, P
Antonov, A
Arneodo, M
Ashery, D
Aushev, V
Aushev, Y
Bachynska, O
Bamberger, A
Barakbaev, AN
Barbagli, G
Bari, G
Barreiro, F
Bartosik, N
Bartsch, D
Basile, M
Behnke, O
Behr, J
Behrens, U
Bellagamba, L
Bertolin, A
Bhadra, S
Bindi, M
Blohm, C
Bokhonov, V
Bold, T
Bondarenko, K
Boos, EG
Borras, K
Boscherini, D
Bot, D
Brock, I
Brownson, E
Brugnera, R
Brummer, N
Bruni, A
Bruni, G
Brzozowska, B
Bussey, PJ
Bylsma, B
Caldwell, A
Capua, M
Carlin, R
Catterall, CD
Chekanov, S
Chwastowski, J
Ciborowski, J
Ciesielski, R
Cifarelli, L
Cindolo, F
Contin, A
Cooper-Sarkar, AM
Coppola, N
Corradi, M
Corriveau, F
Costa, M
D'Agostini, G
Dal Corso, F
del Peso, J
Dementiev, RK
De Pasquale, S
Derrick, M
Devenish, RCE
Dobur, D
Dolgoshein, BA
Dolinska, G
Doyle, AT
Drugakov, V
Durkin, LS
Dusini, S
Eisenberg, Y
Ermolov, PF
Eskreys, S
Fang, S
Fazio, S
Ferrando, J
Ferrero, MI
Figiel, J
Forrest, M
Foster, B
Gach, G
Galas, A
Gallo, E
Garfagnini, A
Geiser, A
Gialas, I
Gladilin, LK
Gladkov, D
Glasman, C
Gogota, O
Golubkov, YA
Gottlicher, P
Grabowska-Bold, I
Grebenyuk, J
Gregor, I
Grigorescu, G
Grzelak, G
Gueta, O
Gurvich, E
Guzik, M
Gwenlan, C
Haas, T
Hain, W
Hamatsu, R
Hart, JC
Hartmann, H
Hartner, G
Hilger, E
Hochman, D
Hori, R
Horton, K
Huttmann, A
Ibrahim, ZA
Iga, Y
Ingbir, R
Ishitsuka, M
Jakob, HP
Januschek, F
Jones, TW
Jungst, M
Kadenko, I
Kahle, B
Kananov, S
Kanno, T
Karshon, U
Karstens, F
Katkov, II
Kaur, M
Kaur, P
Keramidas, A
Khein, LA
Kim, JY
Kisielewska, D
Kitamura, S
Klanner, R
Klein, U
Koffeman, E
Kooijman, P
Korol, I
Korzhavina, IA
Kotanski, A
Kotz, U
Kowalski, H
Kuprash, O
Kuze, M
Lee, A
Levchenko, BB
Levy, A
Libov, V
Limentani, S
Ling, TY
Lisovyi, M
Lobodzinska, E
Lohmann, W
Lohr, B
Lohrmann, E
Long, KR
Longhin, A
Lontkovskyi, D
Lukina, OY
Maeda, J
Magill, S
Makarenko, I
Malka, J
Mankel, R
Margotti, A
Marini, G
Martin, JF
Mastroberardino, A
Mattingly, MCK
Melzer-Pellmann, IA
Mergelmeyer, S
Miglioranzi, S
Idris, FM
Monaco, V
Montanari, A
Morris, JD
Mujkic, K
Musgrave, B
Nagano, K
Namsoo, T
Nania, R
Nigro, A
Ning, Y
Nobe, T
Noor, U
Notz, D
Nowak, RJ
Nuncio-Quiroz, AE
Oh, BY
Okazaki, N
Oliver, K
Olkiewicz, K
Onishchuk, Y
Papageorgiu, K
Parenti, A
Paul, E
Pawlak, JM
Pawlik, B
Pelfer, PG
Pellegrino, A
Perlanski, W
Perrey, H
Piotrzkowski, K
Plucinski, P
Pokrovskiy, NS
Polini, A
Proskuryakov, AS
Przybycien, M
Raval, A
Reeder, DD
Reisert, B
Ren, Z
Repond, J
Ri, YD
Robertson, A
Roloff, P
Rubinsky, I
Ruspa, M
Sacchi, R
Salii, A
Samson, U
Sartorelli, G
Savin, AA
Saxon, DH
Schioppa, M
Schlenstedt, S
Schleper, P
Schmidke, WB
Schneekloth, U
Schonberg, V
Schorner-Sadenius, T
Schwartz, J
Sciulli, F
Shcheglova, LM
Shehzadi, R
Shimizu, S
Singh, I
Skillicorn, IO
Slominski, W
Smith, WH
Sola, V
Solano, A
Son, D
Sosnovtsev, V
Spiridonov, A
Stadie, H
Stanco, L
Stern, A
Stewart, TP
Stifutkin, A
Stopa, P
Suchkov, S
Susinno, G
Suszycki, L
Sztuk-Dambietz, J
Szuba, D
Szuba, J
Tapper, AD
Tassi, E
Terron, J
Theedt, T
Tiecke, H
Tokushuku, K
Tomalak, O
Tomaszewska, J
Tsurugai, T
Turcato, M
Tymieniecka, T
Vazquez, M
Verbytskyi, A
Viazlo, O
Vlasov, NN
Volynets, O
Walczak, R
Abdullah, WATW
Whitmore, JJ
Wiggers, L
Wing, M
Wlasenko, M
Wolf, G
Wolfe, H
Wrona, K
Yagues-Molina, AG
Yamada, S
Yamazaki, Y
Yoshida, R
Youngman, C
Zarnecki, AF
Zawiejski, L
Zenaiev, O
Zeuner, W
Zhautykov, BO
Zhmak, N
Zhou, C
Zichichi, A
Zolkapli, Z
Zolko, M
Zotkin, DS
AF Abramowicz, H.
Abt, I.
Adamczyk, L.
Adamus, M.
Aggarwal, R.
Antonelli, S.
Antonioli, P.
Antonov, A.
Arneodo, M.
Ashery, D.
Aushev, V.
Aushev, Y.
Bachynska, O.
Bamberger, A.
Barakbaev, A. N.
Barbagli, G.
Bari, G.
Barreiro, F.
Bartosik, N.
Bartsch, D.
Basile, M.
Behnke, O.
Behr, J.
Behrens, U.
Bellagamba, L.
Bertolin, A.
Bhadra, S.
Bindi, M.
Blohm, C.
Bokhonov, V.
Bold, T.
Bondarenko, K.
Boos, E. G.
Borras, K.
Boscherini, D.
Bot, D.
Brock, I.
Brownson, E.
Brugnera, R.
Bruemmer, N.
Bruni, A.
Bruni, G.
Brzozowska, B.
Bussey, P. J.
Bylsma, B.
Caldwell, A.
Capua, M.
Carlin, R.
Catterall, C. D.
Chekanov, S.
Chwastowski, J.
Ciborowski, J.
Ciesielski, R.
Cifarelli, L.
Cindolo, F.
Contin, A.
Cooper-Sarkar, A. M.
Coppola, N.
Corradi, M.
Corriveau, F.
Costa, M.
D'Agostini, G.
Dal Corso, F.
del Peso, J.
Dementiev, R. K.
De Pasquale, S.
Derrick, M.
Devenish, R. C. E.
Dobur, D.
Dolgoshein, B. A.
Dolinska, G.
Doyle, A. T.
Drugakov, V.
Durkin, L. S.
Dusini, S.
Eisenberg, Y.
Ermolov, P. F.
Eskreys, S.
Fang, S.
Fazio, S.
Ferrando, J.
Ferrero, M. I.
Figiel, J.
Forrest, M.
Foster, B.
Gach, G.
Galas, A.
Gallo, E.
Garfagnini, A.
Geiser, A.
Gialas, I.
Gladilin, L. K.
Gladkov, D.
Glasman, C.
Gogota, O.
Golubkov, Yu. A.
Goettlicher, P.
Grabowska-Bold, I.
Grebenyuk, J.
Gregor, I.
Grigorescu, G.
Grzelak, G.
Gueta, O.
Gurvich, E.
Guzik, M.
Gwenlan, C.
Haas, T.
Hain, W.
Hamatsu, R.
Hart, J. C.
Hartmann, H.
Hartner, G.
Hilger, E.
Hochman, D.
Hori, R.
Horton, K.
Huettmann, A.
Ibrahim, Z. A.
Iga, Y.
Ingbir, R.
Ishitsuka, M.
Jakob, H. -P.
Januschek, F.
Jones, T. W.
Juengst, M.
Kadenko, I.
Kahle, B.
Kananov, S.
Kanno, T.
Karshon, U.
Karstens, F.
Katkov, I. I.
Kaur, M.
Kaur, P.
Keramidas, A.
Khein, L. A.
Kim, J. Y.
Kisielewska, D.
Kitamura, S.
Klanner, R.
Klein, U.
Koffeman, E.
Kooijman, P.
Korol, Ie.
Korzhavina, I. A.
Kotanski, A.
Kotz, U.
Kowalski, H.
Kuprash, O.
Kuze, M.
Lee, A.
Levchenko, B. B.
Levy, A.
Libov, V.
Limentani, S.
Ling, T. Y.
Lisovyi, M.
Lobodzinska, E.
Lohmann, W.
Loehr, B.
Lohrmann, E.
Long, K. R.
Longhin, A.
Lontkovskyi, D.
Lukina, O. Yu.
Maeda, J.
Magill, S.
Makarenko, I.
Malka, J.
Mankel, R.
Margotti, A.
Marini, G.
Martin, J. F.
Mastroberardino, A.
Mattingly, M. C. K.
Melzer-Pellmann, I. -A.
Mergelmeyer, S.
Miglioranzi, S.
Idris, F. Mohamad
Monaco, V.
Montanari, A.
Morris, J. D.
Mujkic, K.
Musgrave, B.
Nagano, K.
Namsoo, T.
Nania, R.
Nigro, A.
Ning, Y.
Nobe, T.
Noor, U.
Notz, D.
Nowak, R. J.
Nuncio-Quiroz, A. E.
Oh, B. Y.
Okazaki, N.
Oliver, K.
Olkiewicz, K.
Onishchuk, Yu.
Papageorgiu, K.
Parenti, A.
Paul, E.
Pawlak, J. M.
Pawlik, B.
Pelfer, P. G.
Pellegrino, A.
Perlanski, W.
Perrey, H.
Piotrzkowski, K.
Plucinski, P.
Pokrovskiy, N. S.
Polini, A.
Proskuryakov, A. S.
Przybycien, M.
Raval, A.
Reeder, D. D.
Reisert, B.
Ren, Z.
Repond, J.
Ri, Y. D.
Robertson, A.
Roloff, P.
Rubinsky, I.
Ruspa, M.
Sacchi, R.
Salii, A.
Samson, U.
Sartorelli, G.
Savin, A. A.
Saxon, D. H.
Schioppa, M.
Schlenstedt, S.
Schleper, P.
Schmidke, W. B.
Schneekloth, U.
Schoenberg, V.
Schoerner-Sadenius, T.
Schwartz, J.
Sciulli, F.
Shcheglova, L. M.
Shehzadi, R.
Shimizu, S.
Singh, I.
Skillicorn, I. O.
Slominski, W.
Smith, W. H.
Sola, V.
Solano, A.
Son, D.
Sosnovtsev, V.
Spiridonov, A.
Stadie, H.
Stanco, L.
Stern, A.
Stewart, T. P.
Stifutkin, A.
Stopa, P.
Suchkov, S.
Susinno, G.
Suszycki, L.
Sztuk-Dambietz, J.
Szuba, D.
Szuba, J.
Tapper, A. D.
Tassi, E.
Terron, J.
Theedt, T.
Tiecke, H.
Tokushuku, K.
Tomalak, O.
Tomaszewska, J.
Tsurugai, T.
Turcato, M.
Tymieniecka, T.
Vazquez, M.
Verbytskyi, A.
Viazlo, O.
Vlasov, N. N.
Volynets, O.
Walczak, R.
Abdullah, W. A. T. Wan
Whitmore, J. J.
Wiggers, L.
Wing, M.
Wlasenko, M.
Wolf, G.
Wolfe, H.
Wrona, K.
Yaguees-Molina, A. G.
Yamada, S.
Yamazaki, Y.
Yoshida, R.
Youngman, C.
Zarnecki, A. F.
Zawiejski, L.
Zenaiev, O.
Zeuner, W.
Zhautykov, B. O.
Zhmak, N.
Zhou, C.
Zichichi, A.
Zolkapli, Z.
Zolko, M.
Zotkin, D. S.
CA Zeus Collaboration
TI Exclusive electroproduction of two pions at HERA
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID CENTRAL TRACKING DETECTOR; VECTOR-MESON PRODUCTION; RHO-MESON;
FORM-FACTOR; DIFFRACTIVE ELECTROPRODUCTION; J/PSI MESONS; TAU-DECAYS;
PHOTOPRODUCTION; CALORIMETER; SCATTERING
AB The exclusive electroproduction of two pions in the mass range 0.4 < M-pi pi < 2.5 GeV has been studied with the ZEUS detector at HERA using an integrated luminosity of 82 pb(-1). The analysis was carried out in the kine-matic range of 2 < Q(2) < 80 GeV2, 32 < W < 180 GeV and vertical bar t vertical bar < 0.6 GeV2, where Q(2) is the photon virtuality, W is the photon-proton centre-of-mass energy and t is the squared four-momentum transfer at the proton vertex. The two-pion invariant-mass distribution is interpreted in terms of the pion electromagnetic form factor, vertical bar F(M-pi pi)vertical bar, assuming that the studied mass range includes the contributions of the rho, rho' and rho '' vector-meson states. The masses and widths of the resonances were obtained and the Q(2) dependence of the cross-section ratios sigma(rho ' -> pi pi)/sigma(rho) and sigma (rho '' -> pi pi)/sigma(rho) was extracted. The pion form factor obtained in the present analysis is compared to that obtained in e(+) e(-) -> pi(+) pi(-).
C1 [Abramowicz, H.; Ashery, D.; Gueta, O.; Gurvich, E.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel.
[Chekanov, S.; Derrick, M.; Katkov, I. I.; Magill, S.; Musgrave, B.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA.
[Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Margotti, A.; Nania, R.; Polini, A.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy.
[Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ & INFN Bologna, Bologna, Italy.
[Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Mergelmeyer, S.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, Bonn, Germany.
[Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
[Aggarwal, R.; Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India.
[Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy.
[Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy.
[Kim, J. Y.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea.
[Ibrahim, Z. A.; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Zolkapli, Z.] Univ Malaya, Jabatan Fiz, Kuala Lumpur 50603, Malaysia.
[Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA.
[Chwastowski, J.; Eskreys, S.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Adamczyk, L.; Bold, T.; Gach, G.; Grabowska-Bold, I.; Guzik, M.; Kisielewska, D.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Kotanski, A.; Slominski, W.] Jagellonian Univ, Dept Phys, Krakow, Poland.
[Bachynska, O.; Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Kotz, U.; Kowalski, H.; Kuprash, O.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Lontkovskyi, D.; Makarenko, I.; Malka, J.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Mujkic, K.; Namsoo, T.; Notz, D.; Parenti, A.; Perrey, H.; Raval, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Schoerner-Sadenius, T.; Spiridonov, A.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Verbytskyi, A.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zenaiev, O.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany.
[Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany.
[Barbagli, G.; Gallo, E.] Ist Nazl Fis Nucl, I-50125 Florence, Italy.
[Pelfer, P. G.] Univ & INFN Florence, Florence, Italy.
[Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, Freiburg, Germany.
[Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland.
[Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Chios, Greece.
[Klanner, R.; Lohrmann, E.; Schleper, P.; Stadie, H.; Sztuk-Dambietz, J.; Szuba, D.; Turcato, M.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany.
[Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England.
[Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] Natl Lab High Energy Phys, KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 305, Japan.
[Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan.
[Aushev, V.; Bokhonov, V.; Dolinska, G.; Gogota, O.; Korol, Ie.; Viazlo, O.; Zhmak, N.] Natl Acad Sci, Inst Nucl Res, Kiev, Ukraine.
[Aushev, V.; Aushev, Y.; Bartosik, N.; Bondarenko, K.; Dolinska, G.; Gogota, O.; Kadenko, I.; Korol, Ie.; Onishchuk, Yu.; Salii, A.; Tomalak, O.; Viazlo, O.; Volynets, O.; Zolko, M.] Natl Taras Shevchenko Univ Kyiv, Dept Nucl Phys, Kiev, Ukraine.
[Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea.
[Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium.
[Barreiro, F.; del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain.
[Corriveau, F.; Schwartz, J.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan.
[Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia.
[Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia.
[Abt, I.; Caldwell, A.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands.
[Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands.
[Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England.
[Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Stanco, L.] Ist Nazl Fis Nucl, Padua, Italy.
[Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Dipartimento Fis Univ, Padua, Italy.
[Oh, B. Y.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan.
[D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy.
[Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Ishitsuka, M.; Kanno, T.; Kuze, M.; Maeda, J.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[Hori, R.; Okazaki, N.; Shimizu, S.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Hamatsu, R.; Kitamura, S.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan.
[Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy.
[Arneodo, M.; Costa, M.; Ferrero, M. I.; Monaco, V.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.] Ist Nazl Fis Nucl, I-10125 Turin, Italy.
[Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy.
[Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Jones, T. W.; Wing, M.] UCL, Phys & Astron Dept, London, England.
[Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.] Univ Warsaw, Fac Phys, Warsaw, Poland.
[Adamus, M.; Plucinski, P.; Tymieniecka, T.] Natl Ctr Nucl Res, Warsaw, Poland.
[Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, Rehovot, Israel.
[Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Bhadra, S.; Catterall, C. D.; Hartner, G.; Noor, U.] York Univ, Dept Phys, Toronto, ON M3J 1P3, Canada.
[Singh, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Tassi, E.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany.
[Chwastowski, J.] Cracow Univ Technol, Fac Phys Math & Appl Comp Sci, Krakow, Poland.
[Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Szuba, J.] AGH Univ Sci & Technol, FPACS, Krakow, Poland.
[Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland.
RP Abramowicz, H (reprint author), Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel.
EM levy@alzt.tau.ac.il
RI Wiggers, Leo/B-5218-2015; Suchkov, Sergey/M-6671-2015; De Pasquale,
Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua,
Marcella/A-8549-2015; Levchenko, B./D-9752-2012; Proskuryakov,
Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Korzhavina,
Irina/D-6848-2012; Ferrando, James/A-9192-2012; Doyle,
Anthony/C-5889-2009; Fazio, Salvatore /G-5156-2010; Lukina,
Olga/D-8875-2012; Gladilin, Leonid/B-5226-2011; Barreiro,
Fernando/D-9808-2012; Shcheglova, Lydia/E-2221-2012; Katkov,
Igor/E-2627-2012
OI Wiggers, Leo/0000-0003-1060-0520; De Pasquale,
Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664;
Capua, Marcella/0000-0002-2443-6525; Arneodo,
Michele/0000-0002-7790-7132; Chwastowski, Janusz/0000-0002-6190-8376;
Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337;
Ferrando, James/0000-0002-1007-7816; Doyle, Anthony/0000-0001-6322-6195;
Gladilin, Leonid/0000-0001-9422-8636; Barreiro,
Fernando/0000-0002-3021-0258; Katkov, Igor/0000-0003-3064-0466
FU US Department of Energy; Italian National Institute for Nuclear Physics
(INFN); German Federal Ministry for Education and Research (BMBF) [05
H09PDF, 05h09GUF]; Science and Technology Facilities Council, UK; FRGS
from the Malaysian government; US National Science Foundation; Polish
Ministry of Science and Higher Education [DPN/N188/DESY/2009]; Deutsche
Forschungsgemeinschaft (DFG) [SFB 676]; Japanese Ministry of Education,
Culture, Sports, Science and Technology (MEXT); Korean Ministry of
Education; Korea Science and Engineering Foundation; FNRS; Belgian
Federal Science Policy Office; Spanish Ministry of Education and Science
through CICYT; Natural Sciences and Engineering Research Council of
Canada (NSERC); RF [N 4142.2010.2]; Russian Ministry of Education and
Science [02.740.11.0244]; Netherlands Foundation for Research on Matter
(FOM); Israel Science Foundation; Max Planck Institute for Physics,
Munich, Germany; Warsaw University, Poland; DESY, Germany; Russian
Foundation for Basic Research [11-02-91345-DFG_a]; National Science
Foundation; [1 P03B 04529]
FX Supported by the US Department of Energy; Supported by the Italian
National Institute for Nuclear Physics (INFN); Supported by the German
Federal Ministry for Education and Research (BMBF), under contract No.
05 H09PDF; Supported by the Science and Technology Facilities Council,
UK; Supported by an FRGS grant from the Malaysian government; Supported
by the US National Science Foundation. Any opinion, findings and
conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National
Science Foundation; Supported by the Polish Ministry of Science and
Higher Education as a scientific project No. DPN/N188/DESY/2009;
Supported by the German Federal Ministry for Education and Research
(BMBF), under contract No. 05h09GUF, and the SFB 676 of the Deutsche
Forschungsgemeinschaft (DFG); Supported by the Japanese Ministry of
Education, Culture, Sports, Science and Technology (MEXT) and its grants
for Scientific Research; Supported by the Korean Ministry of Education
and Korea Science and Engineering Foundation; Supported by FNRS and its
associated funds (IISN and FRIA) and by an Inter-University Attraction
Poles Programme subsidised by the Belgian Federal Science Policy Office;
Supported by the Spanish Ministry of Education and Science through funds
provided by CICYT; Supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC); Supported by RF Presidential grant N
4142.2010.2 for Leading Scientific Schools, by the Russian Ministry of
Education and Science through its grant for Scientific Research on High
Energy Physics and under contract No. 02.740.11.0244; Supported by the
Netherlands Foundation for Research on Matter (FOM); Supported by the
Israel Science Foundation; Also funded by Max Planck Institute for
Physics, Munich, Germany; Supported by the research grant No. 1 P03B
04529 (2005-2008); Partially supported by Warsaw University, Poland;
Supported by DESY, Germany; Partly supported by the Russian Foundation
for Basic Research, grant 11-02-91345-DFG_a; This material was based on
work supported by the National Science Foundation, while working at the
Foundation
NR 63
TC 7
Z9 7
U1 0
U2 12
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD JAN
PY 2012
VL 72
IS 1
AR 1869
DI 10.1140/epjc/s10052-012-1869-5
PG 12
WC Physics, Particles & Fields
SC Physics
GA 897FM
UT WOS:000300631800002
ER
PT J
AU Arbey, A
Battaglia, M
Mahmoudi, F
AF Arbey, A.
Battaglia, M.
Mahmoudi, F.
TI Implications of LHC searches on SUSY particle spectra
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID EVEN HIGGS BOSONS; LARGE TAN-BETA; DARK-MATTER; QCD CORRECTIONS; RELIC
DENSITY; FORTRAN CODE; MSSM; SUPERSYMMETRY; PROGRAM; MASSES
AB We study the implications of LHC searches on SUSY particle spectra using flat scans of the 19-parameter pMSSM phase space. We apply constraints from flavour physics, g(mu) - 2, dark matter and earlier LEP and Tevatron searches. The sensitivity of the LHC SUSY searches with jets, leptons and missing energy is assessed by reproducing with fast simulation the recent CMS analyses after validation on benchmark points. We present results in terms of the fraction of pMSSM points compatible with all the constraints which are excluded by the LHC searches with 1 fb(-1) and 15 fb(-1) as a function of the mass of strongly and weakly interacting SUSY particles. We also discuss the suppression of Higgs production cross sections for the MSSM points not excluded and contrast the region of parameter space tested by the LHC data with the constraints from dark matter direct detection experiments.
C1 [Arbey, A.] Univ Lyon 1, CNRS, IN2P3, IPNL UMR5822, F-69622 Villeurbanne, France.
[Arbey, A.; Battaglia, M.; Mahmoudi, F.] CERN, CH-1211 Geneva 23, Switzerland.
[Arbey, A.] Observ Lyon, Ecole Normale Super Lyon, CNRS, CRAL UMR5574, F-69561 St Genis Laval, France.
[Battaglia, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Battaglia, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Mahmoudi, F.] Univ Blaise Pascal, Univ Clermont Ferrand 2, IN2P3, CNRS,LPC, F-63000 Clermont Ferrand, France.
RP Arbey, A (reprint author), Univ Lyon 1, CNRS, IN2P3, IPNL UMR5822, F-69622 Villeurbanne, France.
EM mahmoudi@in2p3.fr
NR 80
TC 57
Z9 57
U1 0
U2 3
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD JAN
PY 2012
VL 72
IS 1
AR 1847
DI 10.1140/epjc/s10052-011-1847-3
PG 14
WC Physics, Particles & Fields
SC Physics
GA 897FM
UT WOS:000300631800019
ER
PT J
AU Chatrchyan, S
Khachatryan, V
Sirunyan, AM
Tumasyan, A
Adam, W
Bergauer, T
Dragicevic, M
Ero, J
Fabjan, C
Friedl, M
Fruhwirth, R
Ghete, VM
Hammer, J
Hansel, S
Hoch, M
Hormann, N
Hrubec, J
Jeitler, M
Kiesenhofer, W
Krammer, M
Liko, D
Mikulec, I
Pernicka, M
Rahbaran, B
Rohringer, H
Schofbeck, R
Strauss, J
Taurok, A
Teischinger, F
Trauner, C
Wagner, P
Waltenberger, W
Walzel, G
Widl, E
Wulz, CE
Mossolov, V
Shumeiko, N
Gonzalez, JS
Bansal, S
Benucci, L
De Wolf, EA
Janssen, X
Maes, T
Mucibello, L
Ochesanu, S
Roland, B
Rougny, R
Selvaggi, M
Van Haevermaet, H
Van Mechelen, P
Van Remortel, N
Blekman, F
Blyweert, S
D'Hondt, J
Devroede, O
Suarez, RG
Kalogeropoulos, A
Maes, M
Van Doninck, W
Van Mulders, P
Van Onsem, GP
Villella, I
Charaf, O
Clerbaux, B
De Lentdecker, G
Dero, V
Gay, APR
Hammad, GH
Hreus, T
Marage, PE
Raval, A
Thomas, L
Vander Marcken, G
Vander Velde, C
Vanlaer, P
Adler, V
Cimmino, A
Costantini, S
Grunewald, M
Klein, B
Lellouch, J
Marinov, A
Mccartin, J
Ryckbosch, D
Thyssen, F
Tytgat, M
Vanelderen, L
Verwilligen, P
Walsh, S
Zaganidis, N
Basegmez, S
Bruno, G
Caudron, J
Ceard, L
Gil, EC
De Jeneret, JD
Delaere, C
Favart, D
Giammanco, A
Gregoire, G
Hollar, J
Lemaitre, V
Liao, J
Militaru, O
Nuttens, C
Ovyn, S
Pagano, D
Pin, A
Piotrzkowski, K
Schul, N
Beliy, N
Caebergs, T
Daubie, E
Alves, GA
Brito, L
Damiao, DD
Pol, ME
Souza, MHG
Alda, WL
Carvalho, W
Da Costa, EM
Martins, CD
De Souza, SF
Figueiredo, DM
Mundim, L
Nogima, H
Oguri, V
Da Silva, WLP
Santoro, A
Do Amaral, SMS
Sznajder, A
Anjos, TS
Bernardes, CA
Dias, FA
Tomei, TRFP
Gregores, EM
Lagana, C
Marinho, F
Mercadante, PG
Novaes, SF
Padula, SS
Darmenov, N
Genchev, V
Iaydjiev, P
Piperov, S
Rodozov, M
Stoykova, S
Sultanov, G
Tcholakov, V
Trayanov, R
Dimitrov, A
Hadjiiska, R
Karadzhinova, A
Kozhuharov, V
Litov, L
Mateev, M
Pavlov, B
Petkov, P
Bian, JG
Chen, GM
Chen, HS
Jiang, CH
Liang, D
Liang, S
Meng, X
Tao, J
Wang, J
Wang, J
Wang, X
Wang, Z
Xiao, H
Xu, M
Zang, J
Zhang, Z
Ban, Y
Guo, S
Guo, Y
Li, W
Mao, Y
Qian, SJ
Teng, H
Zhu, B
Zou, W
Cabrera, A
Moreno, BG
Rios, AAO
Oliveros, AFO
Sanabria, JC
Godinovic, N
Lelas, D
Lelas, K
Plestina, R
Polic, D
Puljak, I
Antunovic, Z
Dzelalija, M
Brigljevic, V
Duric, S
Kadija, K
Luetic, J
Morovic, S
Attikis, A
Galanti, M
Mousa, J
Nicolaou, C
Ptochos, F
Razis, PA
Finger, M
Finger, M
Assran, Y
Kamel, AE
Khalil, S
Mahmoud, MA
Radi, A
Hektor, A
Kadastik, M
Muntel, M
Raidal, M
Rebane, L
Tiko, A
Azzolini, V
Eerola, P
Fedi, G
Czellar, S
Harkonen, J
Heikkinen, A
Karimaki, V
Kinnunen, R
Kortelainen, MJ
Lampen, T
Lassila-Perini, K
Lehti, S
Linden, T
Luukka, P
Maenpaa, T
Tuominen, E
Tuominiemi, J
Tuovinen, E
Ungaro, D
Wendland, L
Banzuzi, K
Karjalainen, A
Korpela, A
Tuuva, T
Sillou, D
Besancon, M
Choudhury, S
Dejardin, M
Denegri, D
Fabbro, B
Faure, JL
Ferri, F
Ganjour, S
Gentit, FX
Givernaud, A
Gras, P
de Monchenault, GH
Jarry, P
Locci, E
Malcles, J
Marionneau, M
Millischer, L
Rander, J
Rosowsky, A
Shreyber, I
Titov, M
Verrecchia, P
Baffioni, S
Beaudette, F
Benhabib, L
Bianchini, L
Bluj, M
Broutin, C
Busson, P
Charlot, C
Dahms, T
Dobrzynski, L
Elgammal, S
de Cassagnac, RG
Haguenauer, M
Mine, P
Mironov, C
Ochando, C
Paganini, P
Sabes, D
Salerno, R
Sirois, Y
Thiebaux, C
Wyslouch, B
Zabi, A
Agram, JL
Andrea, J
Bloch, D
Bodin, D
Brom, JM
Cardaci, M
Chabert, EC
Collard, C
Conte, E
Drouhin, F
Ferro, C
Fontaine, JC
Gele, D
Goerlach, U
Greder, S
Juillot, P
Karim, M
Le Bihan, AC
Mikami, Y
Van Hove, P
Fassi, F
Mercier, D
Baty, C
Beauceron, S
Beaupere, N
Bedjidian, M
Bondu, O
Boudoul, G
Boumediene, D
Brun, H
Chasserat, J
Chierici, R
Contardo, D
Depasse, P
El Mamouni, H
Fay, J
Gascon, S
Ille, B
Kurca, T
Le Grand, T
Lethuillier, M
Mirabito, L
Perries, S
Sordini, V
Tosi, S
Tschudi, Y
Verdier, P
Lomidze, D
Anagnostou, G
Beranek, S
Edelhoff, M
Feld, L
Heracleous, N
Hindrichs, O
Jussen, R
Klein, K
Merz, J
Mohr, N
Ostapchuk, A
Perieanu, A
Raupach, F
Sammet, J
Schael, S
Sprenger, D
Weber, H
Weber, M
Wittmer, B
Ata, M
Dietz-Laursonn, E
Erdmann, M
Hebbeker, T
Heidemann, C
Hinzmann, A
Hoepfner, K
Klimkovich, T
Klingebiel, D
Kreuzer, P
Lanske, D
Lingemann, J
Magass, C
Merschmeyer, M
Meyer, A
Papacz, P
Pieta, H
Reithler, H
Schmitz, SA
Sonnenschein, L
Steggemann, J
Teyssier, D
Bontenackels, M
Davids, M
Duda, M
Flugge, G
Geenen, H
Giffels, M
Ahmad, WH
Heydhausen, D
Hoehle, F
Kargoll, B
Kress, T
Kuessel, Y
Linn, A
Nowack, A
Perchalla, L
Pooth, O
Rennefeld, J
Sauerland, P
Stahl, A
Tornier, D
Zoeller, MH
Martin, MA
Behrenhoff, W
Behrens, U
Bergholz, M
Bethani, A
Borras, K
Cakir, A
Campbell, A
Castro, E
Dammann, D
Eckerlin, G
Eckstein, D
Flossdorf, A
Flucke, G
Geiser, A
Hauk, J
Jung, H
Kasemann, M
Katsas, P
Kleinwort, C
Kluge, H
Knutsson, A
Kramer, M
Krucker, D
Kuznetsova, E
Lange, W
Lohmann, W
Mankel, R
Marienfeld, M
Melzer-Pellmann, IA
Meyer, AB
Mnich, J
Mussgiller, A
Olzem, J
Petrukhin, A
Pitzl, D
Raspereza, A
Rosin, M
Schmidt, R
Schoerner-Sadenius, T
Sen, N
Spiridonov, A
Stein, M
Tomaszewska, J
Walsh, R
Wissing, C
Autermann, C
Blobel, V
Bobrovskyi, S
Draeger, J
Enderle, H
Gebbert, U
Gorner, M
Hermanns, T
Kaschube, K
Kaussen, G
Kirschenmann, H
Klanner, R
Lange, J
Mura, B
Naumann-Emme, S
Nowak, F
Pietsch, N
Sander, C
Schettler, H
Schleper, P
Schlieckau, E
Schroder, M
Schum, T
Stadie, H
Steinbruck, G
Thomsen, J
Barth, C
Bauer, J
Berger, J
Buege, V
Chwalek, T
De Boer, W
Dierlamm, A
Dirkes, G
Feindt, M
Gruschke, J
Hackstein, C
Hartmann, F
Heinrich, M
Held, H
Hoffmann, KH
Honc, S
Katkov, I
Komaragiri, JR
Kuhr, T
Martschei, D
Mueller, S
Muller, T
Niegel, M
Oberst, O
Oehler, A
Ott, J
Peiffer, T
Quast, G
Rabbertz, K
Ratnikov, F
Ratnikova, N
Renz, M
Saout, C
Scheurer, A
Schieferdecker, P
Schilling, FP
Schott, G
Simonis, HJ
Stober, FM
Troendle, D
Wagner-Kuhr, J
Weiler, T
Zeise, M
Zhukov, V
Ziebarth, EB
Daskalakis, G
Geralis, T
Kesisoglou, S
Kyriakis, A
Loukas, D
Manolakos, I
Markou, A
Markou, C
Mavrommatis, C
Ntomari, E
Petrakou, E
Gouskos, L
Mertzimekis, TJ
Panagiotou, A
Saoulidou, N
Stiliaris, E
Evangelou, I
Foudas, C
Kokkas, P
Manthos, N
Papadopoulos, I
Patras, V
Triantis, FA
Aranyi, A
Bencze, G
Boldizsar, L
Hajdu, C
Hidas, P
Horvath, D
Kapusi, A
Krajczar, K
Sikler, F
Veres, GI
Vesztergombi, G
Beni, N
Molnar, J
Palinkas, J
Szillasi, Z
Veszpremi, V
Raics, P
Trocsanyi, ZL
Ujvari, B
Beri, SB
Bhatnagar, V
Dhingra, N
Gupta, R
Jindal, M
Kaur, M
Kohli, JM
Mehta, MZ
Nishu, N
Saini, LK
Sharma, A
Singh, AP
Singh, J
Singh, SP
Ahuja, S
Choudhary, BC
Gupta, P
Kumar, A
Kumar, A
Malhotra, S
Naimuddin, M
Ranjan, K
Shivpuri, RK
Banerjee, S
Bhattacharya, S
Dutta, S
Gomber, B
Jain, S
Jain, S
Khurana, R
Sarkar, S
Choudhury, RK
Dutta, D
Kailas, S
Kumar, V
Mehta, P
Mohanty, AK
Pant, LM
Shukla, P
Aziz, T
Guchait, M
Gurtu, A
Maity, M
Majumder, D
Majumder, G
Mazumdar, K
Mohanty, GB
Saha, A
Sudhakar, K
Wickramage, N
Banerjee, S
Dugad, S
Mondal, NK
Arfaei, H
Bakhshiansohi, H
Etesami, SM
Fahim, A
Hashemi, M
Hesari, H
Jafari, A
Khakzad, M
Mohammadi, A
Najafabadi, MM
Mehdiabadi, SP
Safarzadeh, B
Zeinali, M
Abbrescia, M
Barbone, L
Calabria, C
Colaleo, A
Creanza, D
De Filippis, N
De Palma, M
Fiore, L
Iaselli, G
Lusito, L
Maggi, G
Maggi, M
Manna, N
Marangelli, B
My, S
Nuzzo, S
Pacifico, N
Pierro, GA
Pompili, A
Pugliese, G
Romano, F
Roselli, G
Selvaggi, G
Silvestris, L
Trentadue, R
Tupputi, S
Zito, G
Abbiendi, G
Benvenuti, AC
Bonacorsi, D
Braibant-Giacomelli, S
Brigliadori, L
Capiluppi, P
Castro, A
Cavallo, FR
Cuffiani, M
Dallavalle, GM
Fabbri, F
Fanfani, A
Fasanella, D
Giacomelli, P
Giunta, M
Grandi, C
Marcellini, S
Masetti, G
Meneghelli, M
Montanari, A
Navarria, FL
Odorici, F
Perrotta, A
Primavera, F
Rossi, AM
Rovelli, T
Siroli, G
Travaglini, R
Albergo, S
Cappello, G
Chiorboli, M
Costa, S
Potenza, R
Tricomi, A
Tuve, C
Barbagli, G
Ciulli, V
Civinini, C
D'Alessandro, R
Focardi, E
Frosali, S
Gallo, E
Gonzi, S
Lenzi, P
Meschini, M
Paoletti, S
Sguazzoni, G
Tropiano, A
Benussi, L
Bianco, S
Colafranceschi, S
Fabbri, F
Piccolo, D
Fabbricatore, P
Musenich, R
Benaglia, A
De Guio, F
Di Matteo, L
Gennai, S
Ghezzi, A
Malvezzi, S
Martelli, A
Massironi, A
Menasce, D
Moroni, L
Paganoni, M
Pedrini, D
Ragazzi, S
Redaelli, N
Sala, S
de Fatis, TT
Buontempo, S
Montoya, CAC
Cavallo, N
De Cosa, A
Fabozzi, F
Iorio, AOM
Lista, L
Merola, M
Paolucci, P
Azzi, P
Bacchetta, N
Bellan, P
Bisello, D
Branca, A
Carlin, R
Checchia, P
Dorigo, T
Dosselli, U
Fanzago, F
Gasparini, F
Gasparini, U
Gozzelino, A
Lacaprara, S
Lazzizzera, I
Margoni, M
Mazzucato, M
Meneguzzo, AT
Nespolo, M
Perrozzi, L
Pozzobon, N
Ronchese, P
Simonetto, F
Torassa, E
Tosi, M
Vanini, S
Zotto, P
Zumerle, G
Baesso, P
Berzano, U
Ratti, SP
Riccardi, C
Torre, P
Vitulo, P
Viviani, C
Biasini, M
Bilei, GM
Caponeria, B
Fano, L
Lariccia, P
Lucaroni, A
Mantovani, G
Menichelli, M
Nappi, A
Romeo, F
Santocchia, A
Taroni, S
Valdata, M
Azzurri, P
Bagliesi, G
Bernardini, J
Boccali, T
Broccolo, G
Castaldi, R
D'Agnolo, RT
Dell'Orso, R
Fiori, F
Foa, L
Giassi, A
Kraan, A
Ligabue, F
Lomtadze, T
Martini, L
Messineo, A
Palla, F
Palmonari, F
Segneri, G
Serban, AT
Spagnolo, P
Tenchini, R
Tonelli, G
Venturi, A
Verdini, PG
Barone, L
Cavallari, F
Del Re, D
Di Marco, E
Diemoz, M
Franci, D
Grassi, M
Longo, E
Meridiani, P
Nourbakhsh, S
Organtini, G
Pandolfi, F
Paramatti, R
Rahatlou, S
Rovelli, C
Sigamani, M
Amapane, N
Arcidiacono, R
Argiro, S
Arneodo, M
Biino, C
Botta, C
Cartiglia, N
Castello, R
Costa, M
Demaria, N
Graziano, A
Mariotti, C
Marone, M
Maselli, S
Migliore, E
Mila, G
Monaco, V
Musich, M
Obertino, MM
Pastrone, N
Pelliccioni, M
Potenza, A
Romero, A
Ruspa, M
Sacchi, R
Sola, V
Solano, A
Staiano, A
Pereira, AV
Belforte, S
Cossutti, F
Della Ricca, G
Gobbo, B
Montanino, D
Penzo, A
Heo, SG
Nam, SK
Chang, S
Chung, J
Kim, DH
Kim, GN
Kim, JE
Kong, DJ
Park, H
Ro, SR
Son, DC
Son, T
Kim, JY
Kim, ZJ
Song, S
Choi, S
Hong, B
Jo, M
Kim, H
Kim, JH
Kim, TJ
Lee, KS
Moon, DH
Park, SK
Sim, KS
Choi, M
Kang, S
Kim, H
Park, C
Park, IC
Park, S
Ryu, G
Choi, Y
Choi, YK
Goh, J
Kim, MS
Lee, B
Lee, J
Lee, S
Seo, H
Yu, I
Bilinskas, MJ
Grigelionis, I
Janulis, M
Martisiute, D
Petrov, P
Polujanskas, M
Sabonis, T
Castilla-Valdez, H
De La Cruz-Burelo, E
Heredia-De La Cruz, I
Lopez-Fernandez, R
Villalba, RM
Sanchez-Hernandez, A
Villasenor-Cendejas, LM
Moreno, SC
Valencia, FV
Ibarguen, HAS
Linares, EC
Pineda, AM
Reyes-Santos, MA
Krofcheck, D
Tam, J
Butler, PH
Doesburg, R
Silverwood, H
Ahmad, M
Ahmed, I
Ansari, MH
Asghar, MI
Hoorani, HR
Khalid, S
Khan, WA
Khurshid, T
Qazi, S
Shah, MA
Shoaib, M
Brona, G
Cwiok, M
Dominik, W
Doroba, K
Kalinowski, A
Konecki, M
Krolikowski, J
Frueboes, T
Gokieli, R
Gorski, M
Kazana, M
Nawrocki, K
Romanowska-Rybinska, K
Szleper, M
Wrochna, G
Zalewski, P
Almeida, N
Bargassa, P
David, A
Faccioli, P
Parracho, PGF
Gallinaro, M
Musella, P
Nayak, A
Pela, J
Ribeiro, PQ
Seixas, J
Varela, J
Afanasiev, S
Belotelov, I
Bunin, P
Golutvin, I
Kamenev, A
Karjavin, V
Kozlov, G
Lanev, A
Moisenz, P
Palichik, V
Perelygin, V
Shmatov, S
Smirnov, V
Volodko, A
Zarubin, A
Golovtsov, V
Ivanov, Y
Kim, V
Levchenko, P
Murzin, V
Oreshkin, V
Smirnov, I
Sulimov, V
Uvarov, L
Vavilov, S
Vorobyev, A
Vorobyev, A
Andreev, Y
Dermenev, A
Gninenko, S
Golubev, N
Kirsanov, M
Krasnikov, N
Matveev, V
Pashenkov, A
Toropin, A
Troitsky, S
Epshteyn, V
Gavrilov, V
Kaftanov, V
Kossov, M
Krokhotin, A
Lychkovskaya, N
Popov, V
Safronov, G
Semenov, S
Stolin, V
Vlasov, E
Zhokin, A
Belyaev, A
Boos, E
Dubinin, M
Dudko, L
Ershov, A
Gribushin, A
Kodolova, O
Lokhtin, I
Markina, A
Obraztsov, S
Perfilov, M
Petrushanko, S
Sarycheva, L
Savrin, V
Snigirev, A
Andreev, V
Azarkin, M
Dremin, I
Kirakosyan, M
Leonidov, A
Mesyats, G
Rusakov, SV
Vinogradov, A
Azhgirey, I
Bayshev, I
Bitioukov, S
Grishin, V
Kachanov, V
Konstantinov, D
Korablev, A
Krychkine, V
Petrov, V
Ryutin, R
Sobol, A
Tourtchanovitch, L
Troshin, S
Tyurin, N
Uzunian, A
Volkov, A
Adzic, P
Djordjevic, M
Krpic, D
Milosevic, J
Aguilar-Benitez, M
Maestre, JA
Arce, P
Battilana, C
Calvo, E
Cepeda, M
Cerrada, M
Llatas, MC
Colino, N
De la Cruz, B
Peris, AD
Pardos, CD
Vazquez, DD
Bedoya, CF
Ramos, JPF
Ferrando, A
Flix, J
Fouz, MC
Garcia-Abia, P
Lopez, OG
Lopez, SG
Hernandez, JM
Josa, MI
Merino, G
Pelayo, JP
Redondo, I
Romero, L
Santaolalla, J
Soares, MS
Willmott, C
Albajar, C
Codispoti, G
de Troconiz, JF
Cuevas, J
Menendez, JF
Folgueras, S
Caballero, IG
Iglesias, LL
Garcia, JMV
Cifuentes, JAB
Cabrillo, IJ
Calderon, A
Chuang, SH
Campderros, JD
Felcini, M
Fernandez, M
Gomez, G
Sanchez, JG
Jorda, C
Pardo, PL
Virto, AL
Marco, J
Marco, R
Rivero, CM
Matorras, F
Sanchez, FJM
Gomez, JP
Rodrigo, T
Rodriguez-Marrero, AY
Ruiz-Jimeno, A
Scodellaro, L
Sanudo, MS
Vila, I
Cortabitarte, RV
Abbaneo, D
Auffray, E
Auzinger, G
Baillon, P
Ball, AH
Barney, D
Bell, AJ
Benedetti, D
Bernet, C
Bialas, W
Bloch, P
Bocci, A
Bolognesi, S
Bona, M
Breuker, H
Bunkowski, K
Camporesi, T
Cerminara, G
Christiansen, T
Perez, JAC
Cure, B
D'Enterria, D
De Roeck, A
Di Guida, S
Dupont-Sagorin, N
Elliott-Peisert, A
Frisch, B
Funk, W
Gaddi, A
Georgiou, G
Gerwig, H
Gigi, D
Gill, K
Giordano, D
Glege, F
Garrido, RGR
Gouzevitch, M
Govoni, P
Gowdy, S
Guiducci, L
Hansen, M
Hartl, C
Harvey, J
Hegeman, J
Hegner, B
Hoffmann, HF
Honma, A
Innocente, V
Janot, P
Kaadze, K
Karavakis, E
Lecoq, P
Lourenco, C
Maki, T
Malberti, M
Malgeri, L
Mannelli, M
Masetti, L
Maurisset, A
Meijers, F
Mersi, S
Meschi, E
Moser, R
Mozer, MU
Mulders, M
Nesvold, E
Nguyen, M
Orimoto, T
Orsini, L
Cortezon, EP
Perez, E
Petrilli, A
Pfeiffer, A
Pierini, M
Pimia, M
Piparo, D
Polese, G
Quertenmont, L
Racz, A
Reece, W
Antunes, JR
Rolandi, G
Rommerskirchen, T
Rovere, M
Sakulin, H
Schafer, C
Schwick, C
Segoni, I
Sharma, A
Siegrist, P
Silva, P
Simon, M
Sphicas, P
Spiropulu, M
Stoye, M
Tropea, P
Tsirou, A
Vichoudis, P
Voutilainen, M
Zeuner, WD
Bertl, W
Deiters, K
Erdmann, W
Gabathuler, K
Horisberger, R
Ingram, Q
Kaestli, HC
Konig, S
Kotlinski, D
Langenegger, U
Meier, F
Renker, D
Rohe, T
Sibille, J
Bani, L
Bortignon, P
Caminada, L
Casal, B
Chanon, N
Chen, Z
Cittolin, S
Dissertori, G
Dittmar, M
Eugster, J
Freudenreich, K
Grab, C
Hintz, W
Lecomte, P
Lustermann, W
Marchica, C
del Arbol, PMR
Milenovic, P
Moortgat, F
Nageli, C
Nef, P
Nessi-Tedaldi, F
Pape, L
Pauss, F
Punz, T
Rizzi, A
Ronga, FJ
Rossini, M
Sala, L
Sanchez, AK
Sawley, MC
Starodumov, A
Stieger, B
Takahashi, M
Tauscher, L
Thea, A
Theofilatos, K
Treille, D
Urscheler, C
Wallny, R
Weber, M
Wehrli, L
Weng, J
Aguilo, E
Amsler, C
Chiochia, V
De Visscher, S
Favaro, C
Rikova, MI
Mejias, BM
Otiougova, P
Robmann, P
Schmidt, A
Snoek, H
Chang, YH
Chen, KH
Kuo, CM
Li, SW
Lin, W
Liu, ZK
Lu, YJ
Mekterovic, D
Volpe, R
Wu, JH
Yu, SS
Bartalini, P
Chang, P
Chang, YH
Chang, YW
Chao, Y
Chen, KF
Hou, WS
Hsiung, Y
Kao, KY
Lei, YJ
Lu, RS
Shiu, JG
Tzeng, YM
Wan, X
Wang, M
Adiguzel, A
Bakirci, MN
Cerci, S
Dozen, C
Dumanoglu, I
Eskut, E
Girgis, S
Gokbulut, G
Hos, I
Kangal, EE
Topaksu, AK
Onengut, G
Ozdemir, K
Ozturk, S
Polatoz, A
Sogut, K
Cerci, DS
Tali, B
Topakli, H
Uzun, D
Vergili, LN
Vergili, M
Akin, IV
Aliev, T
Bilin, B
Bilmis, S
Deniz, M
Gamsizkan, H
Guler, AM
Ocalan, K
Ozpineci, A
Serin, M
Sever, R
Surat, UE
Yalvac, M
Yildirim, E
Zeyrek, M
Deliomeroglu, M
Demir, D
Gulmez, E
Isildak, B
Kaya, M
Kaya, O
Ozbek, M
Ozkorucuklu, S
Sonmez, N
Levchuk, L
Bostock, F
Brooke, JJ
Cheng, TL
Clement, E
Cussans, D
Frazier, R
Goldstein, J
Grimes, M
Hartley, D
Heath, GP
Heath, HF
Kreczko, L
Metson, S
Newbold, DM
Nirunpong, K
Poll, A
Senkin, S
Smith, VJ
Basso, L
Bell, KW
Belyaev, A
Brew, C
Brown, RM
Camanzi, B
Cockerill, DJA
Coughlan, JA
Harder, K
Harper, S
Jackson, J
Kennedy, BW
Olaiya, E
Petyt, D
Radburn-Smith, BC
Shepherd-Themistocleous, CH
Tomalin, IR
Womersley, WJ
Worm, SD
Bainbridge, R
Ball, G
Ballin, J
Beuselinck, R
Buchmuller, O
Colling, D
Cripps, N
Cutajar, M
Davies, G
Della Negra, M
Ferguson, W
Fulcher, J
Futyan, D
Gilbert, A
Bryer, AG
Hall, G
Hatherell, Z
Hays, J
Iles, G
Jarvis, M
Karapostoli, G
Lyons, L
MacEvoy, BC
Magnan, AM
Marrouche, J
Mathias, B
Nandi, R
Nash, J
Nikitenko, A
Papageorgiou, A
Pesaresi, M
Petridis, K
Pioppi, M
Raymond, DM
Rogerson, S
Rompotis, N
Rose, A
Ryan, MJ
Seez, C
Sharp, P
Sparrow, A
Tapper, A
Tourneur, S
Acosta, MV
Virdee, T
Wakefield, S
Wardle, N
Wardrope, D
Whyntie, T
Barrett, M
Chadwick, M
Cole, JE
Hobson, PR
Khan, A
Kyberd, P
Leslie, D
Martin, W
Reid, ID
Teodorescu, L
Hatakeyama, K
Liu, H
Henderson, C
Bose, T
Jarrin, EC
Fantasia, C
Heister, A
John, JS
Lawson, P
Lazic, D
Rohlf, J
Sperka, D
Sulak, L
Avetisyan, A
Bhattacharya, S
Chou, JP
Cutts, D
Ferapontov, A
Heintz, U
Jabeen, S
Kukartsev, G
Landsberg, G
Luk, M
Narain, M
Nguyen, D
Segala, M
Sinthuprasith, T
Speer, T
Tsang, KV
Breedon, R
Breto, G
Sanchez, MCD
Chauhan, S
Chertok, M
Conway, J
Cox, PT
Dolen, J
Erbacher, R
Friis, E
Ko, W
Kopecky, A
Lander, R
Liu, H
Maruyama, S
Miceli, T
Nikolic, M
Pellett, D
Robles, J
Rutherford, B
Salur, S
Schwarz, T
Searle, M
Smith, J
Squires, M
Tripathi, M
Sierra, RV
Veelken, C
Andreev, V
Arisaka, K
Cline, D
Cousins, R
Deisher, A
Duris, J
Erhan, S
Farrell, C
Hauser, J
Ignatenko, M
Jarvis, C
Plager, C
Rakness, G
Schlein, P
Tucker, J
Valuev, V
Babb, J
Chandra, A
Clare, R
Ellison, J
Gary, JW
Giordano, F
Hanson, G
Jeng, GY
Kao, SC
Liu, F
Liu, H
Long, OR
Luthra, A
Nguyen, H
Paramesvaran, S
Shen, BC
Stringer, R
Sturdy, J
Sumowidagdo, S
Wilken, R
Wimpenny, S
Andrews, W
Branson, JG
Cerati, GB
Evans, D
Golf, F
Holzner, A
Kelley, R
Lebourgeois, M
Letts, J
Mangano, B
Padhi, S
Palmer, C
Petrucciani, G
Pi, H
Pieri, M
Ranieri, R
Sani, M
Sharma, V
Simon, S
Sudano, E
Tadel, M
Tu, Y
Vartak, A
Wasserbaech, S
Wurthwein, F
Yagil, A
Yoo, J
Barge, D
Bellan, R
Campagnari, C
D'Alfonso, M
Danielson, T
Flowers, K
Geffert, P
Incandela, J
Justus, C
Kalavase, P
Koay, SA
Kovalskyi, D
Krutelyov, V
Lowette, S
Mccoll, N
Pavlunin, V
Rebassoo, F
Ribnik, J
Richman, J
Rossin, R
Stuart, D
To, W
Vlimant, JR
West, C
Apresyan, A
Bornheim, A
Bunn, J
Chen, Y
Gataullin, M
Ma, Y
Mott, A
Newman, HB
Rogan, C
Shin, K
Timciuc, V
Traczyk, P
Veverka, J
Wilkinson, R
Yang, Y
Zhu, RY
Akgun, B
Carroll, R
Ferguson, T
Iiyama, Y
Jang, DW
Jun, SY
Liu, YF
Paulini, M
Russ, J
Vogel, H
Vorobiev, I
Cumalat, JP
Dinardo, ME
Drell, BR
Edelmaier, CJ
Ford, WT
Gaz, A
Heyburn, B
Lopez, EL
Nauenberg, U
Smith, JG
Stenson, K
Ulmer, KA
Wagner, SR
Zang, SL
Agostino, L
Alexander, J
Chatterjee, A
Eggert, N
Gibbons, LK
Heltsley, B
Henriksson, K
Hopkins, W
Khukhunaishvili, A
Kreis, B
Liu, Y
Kaufman, GN
Patterson, JR
Puigh, D
Ryd, A
Saelim, M
Salvati, E
Shi, X
Sun, W
Teo, WD
Thom, J
Thompson, J
Vaughan, J
Weng, Y
Winstrom, L
Wittich, P
Biselli, A
Cirino, G
Winn, D
Abdullin, S
Albrow, M
Anderson, J
Apollinari, G
Atac, M
Bakken, JA
Bauerdick, LAT
Beretvas, A
Berryhill, J
Bhat, PC
Bloch, I
Burkett, K
Butler, JN
Chetluru, V
Cheung, HWK
Chlebana, F
Cihangir, S
Cooper, W
Eartly, DP
Elvira, VD
Esen, S
Fisk, I
Freeman, J
Gao, Y
Gottschalk, E
Green, D
Gutsche, O
Hanlon, J
Harris, RM
Hirschauer, J
Hooberman, B
Jensen, H
Johnson, M
Joshi, U
Klima, B
Kousouris, K
Kunori, S
Kwan, S
Leonidopoulos, C
Limon, P
Lincoln, D
Lipton, R
Lykken, J
Maeshima, K
Marraffino, JM
Mason, D
McBride, P
Miao, T
Mishra, K
Mrenna, S
Musienko, Y
Newman-Holmes, C
O'Dell, V
Pivarski, J
Pordes, R
Prokofyev, O
Sexton-Kennedy, E
Sharma, S
Spalding, WJ
Spiegel, L
Tan, P
Taylor, L
Tkaczyk, S
Uplegger, L
Vaandering, EW
Vidal, R
Whitmore, J
Wu, W
Yang, F
Yumiceva, F
Yun, JC
Acosta, D
Avery, P
Bourilkov, D
Chen, M
Das, S
De Gruttola, M
Di Giovanni, GP
Dobur, D
Drozdetskiy, A
Field, RD
Fisher, M
Fu, Y
Furic, IK
Gartner, J
Goldberg, S
Hugon, J
Kim, B
Konigsberg, J
Korytov, A
Kropivnitskaya, A
Kypreos, T
Low, JF
Matchev, K
Mitselmakher, G
Muniz, L
Prescott, C
Remington, R
Rinkevicius, A
Schmitt, M
Scurlock, B
Sellers, P
Skhirtladze, N
Snowball, M
Wang, D
Yelton, J
Zakaria, M
Gaultney, V
Lebolo, LM
Linn, S
Markowitz, P
Martinez, G
Rodriguez, JL
Adams, T
Askew, A
Bochenek, J
Chen, J
Diamond, B
Gleyzer, SV
Haas, J
Hagopian, S
Hagopian, V
Jenkins, M
Johnson, KF
Prosper, H
Sekmen, S
Veeraraghavan, V
Baarmand, MM
Dorney, B
Guragain, S
Hohlmann, M
Kalakhety, H
Vodopiyanov, I
Adams, MR
Anghel, IM
Apanasevich, L
Bai, Y
Bazterra, VE
Betts, RR
Callner, J
Cavanaugh, R
Dragoiu, C
Gauthier, L
Gerber, CE
Hofman, DJ
Khalatyan, S
Kunde, GJ
Lacroix, F
Malek, M
O'Brien, C
Silkworth, C
Silvestre, C
Smoron, A
Strom, D
Varelas, N
Akgun, U
Albayrak, EA
Bilki, B
Clarida, W
Duru, F
Lae, CK
McCliment, E
Merlo, JP
Mermerkaya, H
Mestvirishvili, A
Moeller, A
Nachtman, J
Newsom, CR
Norbeck, E
Olson, J
Onel, Y
Ozok, F
Sen, S
Wetzel, J
Yetkin, T
Yi, K
Barnett, BA
Blumenfeld, B
Bonato, A
Eskew, C
Fehling, D
Giurgiu, G
Gritsan, AV
Guo, ZJ
Hu, G
Maksimovic, P
Rappoccio, S
Swartz, M
Tran, NV
Whitbeck, A
Baringer, P
Bean, A
Benelli, G
Grachov, O
Kenny, RP
Murray, M
Noonan, D
Sanders, S
Wood, JS
Zhukova, V
Barfuss, AF
Bolton, T
Chakaberia, I
Ivanov, A
Khalil, S
Makouski, M
Maravin, Y
Shrestha, S
Svintradze, I
Wan, Z
Gronberg, J
Lange, D
Wright, D
Baden, A
Boutemeur, M
Eno, SC
Ferencek, D
Gomez, JA
Hadley, NJ
Kellogg, RG
Kirn, M
Lu, Y
Mignerey, AC
Rossato, K
Rumerio, P
Santanastasio, F
Skuja, A
Temple, J
Tonjes, MB
Tonwar, SC
Twedt, E
Alver, B
Bauer, G
Bendavid, J
Busza, W
Butz, E
Cali, IA
Chan, M
Dutta, V
Everaerts, P
Ceballos, GG
Goncharov, M
Hahn, KA
Harris, P
Kim, Y
Klute, M
Lee, YJ
Li, W
Loizides, C
Luckey, PD
Ma, T
Nahn, S
Paus, C
Ralph, D
Roland, C
Roland, G
Rudolph, M
Stephans, GSF
Stockli, F
Sumorok, K
Sung, K
Velicanu, D
Wenger, EA
Wolf, R
Xie, S
Yang, M
Yilmaz, Y
Yoon, AS
Zanetti, M
Cooper, SI
Cushman, P
Dahmes, B
De Benedetti, A
Franzoni, G
Gude, A
Haupt, J
Klapoetke, K
Kubota, Y
Mans, J
Pastika, N
Rekovic, V
Rusack, R
Sasseville, M
Singovsky, A
Tambe, N
Cremaldi, LM
Godang, R
Kroeger, R
Perera, L
Rahmat, R
Sanders, DA
Summers, D
Bloom, K
Bose, S
Butt, J
Claes, DR
Dominguez, A
Eads, M
Jindal, P
Keller, J
Kelly, T
Kravchenko, I
Lazo-Flores, J
Malbouisson, H
Malik, S
Snow, GR
Baur, U
Godshalk, A
Iashvili, I
Jain, S
Kharchilava, A
Kumar, A
Shipkowski, SP
Smith, K
Alverson, G
Barberis, E
Baumgartel, D
Boeriu, O
Chasco, M
Reucroft, S
Swain, J
Trocino, D
Wood, D
Zhang, J
Anastassov, A
Kubik, A
Odell, N
Ofierzynski, RA
Pollack, B
Pozdnyakov, A
Schmitt, M
Stoynev, S
Velasco, M
Won, S
Antonelli, L
Berry, D
Brinkerhoff, A
Hildreth, M
Jessop, C
Karmgard, DJ
Kolb, J
Kolberg, T
Lannon, K
Luo, W
Lynch, S
Marinelli, N
Morse, DM
Pearson, T
Ruchti, R
Slaunwhite, J
Valls, N
Wayne, M
Ziegler, J
Bylsma, B
Durkin, LS
Gu, J
Hill, C
Killewald, P
Kotov, K
Ling, TY
Rodenburg, M
Vuosalo, C
Williams, G
Adam, N
Berry, E
Elmer, P
Gerbaudo, D
Halyo, V
Hebda, P
Hunt, A
Laird, E
Pegna, DL
Marlow, D
Medvedeva, T
Mooney, M
Olsen, J
Piroue, P
Quan, X
Safdi, B
Saka, H
Stickland, D
Tully, C
Werner, JS
Zuranski, A
Acosta, JG
Huang, XT
Lopez, A
Mendez, H
Oliveros, S
Vargas, JER
Zatserklyaniy, A
Alagoz, E
Barnes, VE
Bolla, G
Borrello, L
Bortoletto, D
De Mattia, M
Everett, A
Garfinkel, AF
Gutay, L
Hu, Z
Jones, M
Koybasi, O
Kress, M
Laasanen, AT
Leonardo, N
Liu, C
Maroussov, V
Merkel, P
Miller, DH
Neumeister, N
Shipsey, I
Silvers, D
Svyatkovskiy, A
Yoo, HD
Zablocki, J
Zheng, Y
Parashar, N
Adair, A
Boulahouache, C
Ecklund, KM
Geurts, FJM
Padley, BP
Redjimi, R
Roberts, J
Zabel, J
Betchart, B
Bodek, A
Chung, YS
Covarelli, R
De Barbaro, P
Demina, R
Eshaq, Y
Flacher, H
Garcia-Bellido, A
Goldenzweig, P
Gotra, Y
Han, J
Harel, A
Miner, DC
Orbaker, D
Petrillo, G
Sakumoto, W
Vishnevskiy, D
Zielinski, M
Bhatti, A
Ciesielski, R
Demortier, L
Goulianos, K
Lungu, G
Malik, S
Mesropian, C
Arora, S
Atramentov, O
Barker, A
Contreras-Campana, C
Contreras-Campana, E
Duggan, D
Gershtein, Y
Gray, R
Halkiadakis, E
Hidas, D
Hits, D
Lath, A
Panwalkar, S
Patel, R
Richards, A
Rose, K
Schnetzer, S
Somalwar, S
Stone, R
Thomas, S
Cerizza, G
Hollingsworth, M
Spanier, S
Yang, ZC
York, A
Eusebi, R
Flanagan, W
Gilmore, J
Gurrola, A
Kamon, T
Khotilovich, V
Montalvo, R
Osipenkov, I
Pakhotin, Y
Safonov, A
Sengupta, S
Suarez, I
Tatarinov, A
Toback, D
Weinberger, M
Akchurin, N
Bardak, C
Damgov, J
Dudero, PR
Jeong, C
Kovitanggoon, K
Lee, SW
Libeiro, T
Mane, P
Roh, Y
Sill, A
Volobouev, I
Wigmans, R
Yazgan, E
Appelt, E
Brownson, E
Engh, D
Florez, C
Gabella, W
Issah, M
Johns, W
Johnston, C
Kurt, P
Maguire, C
Melo, A
Sheldon, P
Snook, B
Tuo, S
Velkovska, J
Arenton, MW
Balazs, M
Boutle, S
Cox, B
Francis, B
Goadhouse, S
Goodell, J
Hirosky, R
Ledovskoy, A
Lin, C
Neu, C
Wood, J
Yohay, R
Gollapinni, S
Harr, R
Karchin, PE
Don, CKK
Lamichhane, P
Mattson, M
Milstene, C
Sakharov, A
Anderson, M
Bachtis, M
Belknap, D
Bellinger, JN
Carlsmith, D
Dasu, S
Efron, J
Gray, L
Grogg, KS
Grothe, M
Hall-Wilton, R
Herndon, M
Herve, A
Klabbers, P
Klukas, J
Lanaro, A
Lazaridis, C
Leonard, J
Loveless, R
Mohapatra, A
Ojalvo, I
Parker, W
Reeder, D
Ross, I
Savin, A
Smith, WH
Swanson, J
Weinberg, M
AF Chatrchyan, S.
Khachatryan, V.
Sirunyan, A. M.
Tumasyan, A.
Adam, W.
Bergauer, T.
Dragicevic, M.
Eroe, J.
Fabjan, C.
Friedl, M.
Fruehwirth, R.
Ghete, V. M.
Hammer, J.
Haensel, S.
Hoch, M.
Hoermann, N.
Hrubec, J.
Jeitler, M.
Kiesenhofer, W.
Krammer, M.
Liko, D.
Mikulec, I.
Pernicka, M.
Rahbaran, B.
Rohringer, H.
Schoefbeck, R.
Strauss, J.
Taurok, A.
Teischinger, F.
Trauner, C.
Wagner, P.
Waltenberger, W.
Walzel, G.
Widl, E.
Wulz, C. -E.
Mossolov, V.
Shumeiko, N.
Gonzalez, J. Suarez
Bansal, S.
Benucci, L.
De Wolf, E. A.
Janssen, X.
Maes, T.
Mucibello, L.
Ochesanu, S.
Roland, B.
Rougny, R.
Selvaggi, M.
Van Haevermaet, H.
Van Mechelen, P.
Van Remortel, N.
Blekman, F.
Blyweert, S.
D'Hondt, J.
Devroede, O.
Suarez, R. Gonzalez
Kalogeropoulos, A.
Maes, M.
Van Doninck, W.
Van Mulders, P.
Van Onsem, G. P.
Villella, I.
Charaf, O.
Clerbaux, B.
De Lentdecker, G.
Dero, V.
Gay, A. P. R.
Hammad, G. H.
Hreus, T.
Marage, P. E.
Raval, A.
Thomas, L.
Vander Marcken, G.
Vander Velde, C.
Vanlaer, P.
Adler, V.
Cimmino, A.
Costantini, S.
Grunewald, M.
Klein, B.
Lellouch, J.
Marinov, A.
Mccartin, J.
Ryckbosch, D.
Thyssen, F.
Tytgat, M.
Vanelderen, L.
Verwilligen, P.
Walsh, S.
Zaganidis, N.
Basegmez, S.
Bruno, G.
Caudron, J.
Ceard, L.
Gil, E. Cortina
De Jeneret, J. De Favereau
Delaere, C.
Favart, D.
Giammanco, A.
Gregoire, G.
Hollar, J.
Lemaitre, V.
Liao, J.
Militaru, O.
Nuttens, C.
Ovyn, S.
Pagano, D.
Pin, A.
Piotrzkowski, K.
Schul, N.
Beliy, N.
Caebergs, T.
Daubie, E.
Alves, G. A.
Brito, L.
De Jesus Damiao, D.
Pol, M. E.
Souza, M. H. G.
Alda Junior, W. L.
Carvalho, W.
Da Costa, E. M.
De Oliveira Martins, C.
Fonseca De Souza, S.
Matos Figueiredo, D.
Mundim, L.
Nogima, H.
Oguri, V.
Prado Da Silva, W. L.
Santoro, A.
Silva Do Amaral, S. M.
Sznajder, A.
Anjos, T. S.
Bernardes, C. A.
Dias, F. A.
Fernandez Perez Tomei, T. R.
Gregores, E. M.
Lagana, C.
Marinho, F.
Mercadante, P. G.
Novaes, S. F.
Padula, S. S.
Darmenov, N.
Genchev, V.
Iaydjiev, P.
Piperov, S.
Rodozov, M.
Stoykova, S.
Sultanov, G.
Tcholakov, V.
Trayanov, R.
Dimitrov, A.
Hadjiiska, R.
Karadzhinova, A.
Kozhuharov, V.
Litov, L.
Mateev, M.
Pavlov, B.
Petkov, P.
Bian, J. G.
Chen, G. M.
Chen, H. S.
Jiang, C. H.
Liang, D.
Liang, S.
Meng, X.
Tao, J.
Wang, J.
Wang, J.
Wang, X.
Wang, Z.
Xiao, H.
Xu, M.
Zang, J.
Zhang, Z.
Ban, Y.
Guo, S.
Guo, Y.
Li, W.
Mao, Y.
Qian, S. J.
Teng, H.
Zhu, B.
Zou, W.
Cabrera, A.
Gomez Moreno, B.
Ocampo Rios, A. A.
Osorio Oliveros, A. F.
Sanabria, J. C.
Godinovic, N.
Lelas, D.
Lelas, K.
Plestina, R.
Polic, D.
Puljak, I.
Antunovic, Z.
Dzelalija, M.
Brigljevic, V.
Duric, S.
Kadija, K.
Luetic, J.
Morovic, S.
Attikis, A.
Galanti, M.
Mousa, J.
Nicolaou, C.
Ptochos, F.
Razis, P. A.
Finger, M.
Finger, M., Jr.
Assran, Y.
Kamel, A. Ellithi
Khalil, S.
Mahmoud, M. A.
Radi, A.
Hektor, A.
Kadastik, M.
Muentel, M.
Raidal, M.
Rebane, L.
Tiko, A.
Azzolini, V.
Eerola, P.
Fedi, G.
Czellar, S.
Harkonen, J.
Heikkinen, A.
Karimaki, V.
Kinnunen, R.
Kortelainen, M. J.
Lampen, T.
Lassila-Perini, K.
Lehti, S.
Linden, T.
Luukka, P.
Maenpaa, T.
Tuominen, E.
Tuominiemi, J.
Tuovinen, E.
Ungaro, D.
Wendland, L.
Banzuzi, K.
Karjalainen, A.
Korpela, A.
Tuuva, T.
Sillou, D.
Besancon, M.
Choudhury, S.
Dejardin, M.
Denegri, D.
Fabbro, B.
Faure, J. L.
Ferri, F.
Ganjour, S.
Gentit, F. X.
Givernaud, A.
Gras, P.
de Monchenault, G. Hamel
Jarry, P.
Locci, E.
Malcles, J.
Marionneau, M.
Millischer, L.
Rander, J.
Rosowsky, A.
Shreyber, I.
Titov, M.
Verrecchia, P.
Baffioni, S.
Beaudette, F.
Benhabib, L.
Bianchini, L.
Bluj, M.
Broutin, C.
Busson, P.
Charlot, C.
Dahms, T.
Dobrzynski, L.
Elgammal, S.
de Cassagnac, R. Granier
Haguenauer, M.
Mine, P.
Mironov, C.
Ochando, C.
Paganini, P.
Sabes, D.
Salerno, R.
Sirois, Y.
Thiebaux, C.
Wyslouch, B.
Zabi, A.
Agram, J. -L.
Andrea, J.
Bloch, D.
Bodin, D.
Brom, J. -M.
Cardaci, M.
Chabert, E. C.
Collard, C.
Conte, E.
Drouhin, F.
Ferro, C.
Fontaine, J. -C.
Gele, D.
Goerlach, U.
Greder, S.
Juillot, P.
Karim, M.
Le Bihan, A. -C.
Mikami, Y.
Van Hove, P.
Fassi, F.
Mercier, D.
Baty, C.
Beauceron, S.
Beaupere, N.
Bedjidian, M.
Bondu, O.
Boudoul, G.
Boumediene, D.
Brun, H.
Chasserat, J.
Chierici, R.
Contardo, D.
Depasse, P.
El Mamouni, H.
Fay, J.
Gascon, S.
Ille, B.
Kurca, T.
Le Grand, T.
Lethuillier, M.
Mirabito, L.
Perries, S.
Sordini, V.
Tosi, S.
Tschudi, Y.
Verdier, P.
Lomidze, D.
Anagnostou, G.
Beranek, S.
Edelhoff, M.
Feld, L.
Heracleous, N.
Hindrichs, O.
Jussen, R.
Klein, K.
Merz, J.
Mohr, N.
Ostapchuk, A.
Perieanu, A.
Raupach, F.
Sammet, J.
Schael, S.
Sprenger, D.
Weber, H.
Weber, M.
Wittmer, B.
Ata, M.
Dietz-Laursonn, E.
Erdmann, M.
Hebbeker, T.
Heidemann, C.
Hinzmann, A.
Hoepfner, K.
Klimkovich, T.
Klingebiel, D.
Kreuzer, P.
Lanske, D.
Lingemann, J.
Magass, C.
Merschmeyer, M.
Meyer, A.
Papacz, P.
Pieta, H.
Reithler, H.
Schmitz, S. A.
Sonnenschein, L.
Steggemann, J.
Teyssier, D.
Bontenackels, M.
Davids, M.
Duda, M.
Fluegge, G.
Geenen, H.
Giffels, M.
Ahmad, W. Haj
Heydhausen, D.
Hoehle, F.
Kargoll, B.
Kress, T.
Kuessel, Y.
Linn, A.
Nowack, A.
Perchalla, L.
Pooth, O.
Rennefeld, J.
Sauerland, P.
Stahl, A.
Tornier, D.
Zoeller, M. H.
Martin, M. Aldaya
Behrenhoff, W.
Behrens, U.
Bergholz, M.
Bethani, A.
Borras, K.
Cakir, A.
Campbell, A.
Castro, E.
Dammann, D.
Eckerlin, G.
Eckstein, D.
Flossdorf, A.
Flucke, G.
Geiser, A.
Hauk, J.
Jung, H.
Kasemann, M.
Katsas, P.
Kleinwort, C.
Kluge, H.
Knutsson, A.
Kraemer, M.
Kruecker, D.
Kuznetsova, E.
Lange, W.
Lohmann, W.
Mankel, R.
Marienfeld, M.
Melzer-Pellmann, I. -A.
Meyer, A. B.
Mnich, J.
Mussgiller, A.
Olzem, J.
Petrukhin, A.
Pitzl, D.
Raspereza, A.
Rosin, M.
Schmidt, R.
Schoerner-Sadenius, T.
Sen, N.
Spiridonov, A.
Stein, M.
Tomaszewska, J.
Walsh, R.
Wissing, C.
Autermann, C.
Blobel, V.
Bobrovskyi, S.
Draeger, J.
Enderle, H.
Gebbert, U.
Goerner, M.
Hermanns, T.
Kaschube, K.
Kaussen, G.
Kirschenmann, H.
Klanner, R.
Lange, J.
Mura, B.
Naumann-Emme, S.
Nowak, F.
Pietsch, N.
Sander, C.
Schettler, H.
Schleper, P.
Schlieckau, E.
Schroeder, M.
Schum, T.
Stadie, H.
Steinbrueck, G.
Thomsen, J.
Barth, C.
Bauer, J.
Berger, J.
Buege, V.
Chwalek, T.
De Boer, W.
Dierlamm, A.
Dirkes, G.
Feindt, M.
Gruschke, J.
Hackstein, C.
Hartmann, F.
Heinrich, M.
Held, H.
Hoffmann, K. H.
Honc, S.
Katkov, I.
Komaragiri, J. R.
Kuhr, T.
Martschei, D.
Mueller, S.
Mueller, Th.
Niegel, M.
Oberst, O.
Oehler, A.
Ott, J.
Peiffer, T.
Quast, G.
Rabbertz, K.
Ratnikov, F.
Ratnikova, N.
Renz, M.
Saout, C.
Scheurer, A.
Schieferdecker, P.
Schilling, F. -P.
Schott, G.
Simonis, H. J.
Stober, F. M.
Troendle, D.
Wagner-Kuhr, J.
Weiler, T.
Zeise, M.
Zhukov, V.
Ziebarth, E. B.
Daskalakis, G.
Geralis, T.
Kesisoglou, S.
Kyriakis, A.
Loukas, D.
Manolakos, I.
Markou, A.
Markou, C.
Mavrommatis, C.
Ntomari, E.
Petrakou, E.
Gouskos, L.
Mertzimekis, T. J.
Panagiotou, A.
Saoulidou, N.
Stiliaris, E.
Evangelou, I.
Foudas, C.
Kokkas, P.
Manthos, N.
Papadopoulos, I.
Patras, V.
Triantis, F. A.
Aranyi, A.
Bencze, G.
Boldizsar, L.
Hajdu, C.
Hidas, P.
Horvath, D.
Kapusi, A.
Krajczar, K.
Sikler, F.
Veres, G. I.
Vesztergombi, G.
Beni, N.
Molnar, J.
Palinkas, J.
Szillasi, Z.
Veszpremi, V.
Raics, P.
Trocsanyi, Z. L.
Ujvari, B.
Beri, S. B.
Bhatnagar, V.
Dhingra, N.
Gupta, R.
Jindal, M.
Kaur, M.
Kohli, J. M.
Mehta, M. Z.
Nishu, N.
Saini, L. K.
Sharma, A.
Singh, A. P.
Singh, J.
Singh, S. P.
Ahuja, S.
Choudhary, B. C.
Gupta, P.
Kumar, A.
Kumar, A.
Malhotra, S.
Naimuddin, M.
Ranjan, K.
Shivpuri, R. K.
Banerjee, S.
Bhattacharya, S.
Dutta, S.
Gomber, B.
Jain, S.
Jain, S.
Khurana, R.
Sarkar, S.
Choudhury, R. K.
Dutta, D.
Kailas, S.
Kumar, V.
Mehta, P.
Mohanty, A. K.
Pant, L. M.
Shukla, P.
Aziz, T.
Guchait, M.
Gurtu, A.
Maity, M.
Majumder, D.
Majumder, G.
Mazumdar, K.
Mohanty, G. B.
Saha, A.
Sudhakar, K.
Wickramage, N.
Banerjee, S.
Dugad, S.
Mondal, N. K.
Arfaei, H.
Bakhshiansohi, H.
Etesami, S. M.
Fahim, A.
Hashemi, M.
Hesari, H.
Jafari, A.
Khakzad, M.
Mohammadi, A.
Najafabadi, M. Mohammadi
Mehdiabadi, S. Paktinat
Safarzadeh, B.
Zeinali, M.
Abbrescia, M.
Barbone, L.
Calabria, C.
Colaleo, A.
Creanza, D.
De Filippis, N.
De Palma, M.
Fiore, L.
Iaselli, G.
Lusito, L.
Maggi, G.
Maggi, M.
Manna, N.
Marangelli, B.
My, S.
Nuzzo, S.
Pacifico, N.
Pierro, G. A.
Pompili, A.
Pugliese, G.
Romano, F.
Roselli, G.
Selvaggi, G.
Silvestris, L.
Trentadue, R.
Tupputi, S.
Zito, G.
Abbiendi, G.
Benvenuti, A. C.
Bonacorsi, D.
Braibant-Giacomelli, S.
Brigliadori, L.
Capiluppi, P.
Castro, A.
Cavallo, F. R.
Cuffiani, M.
Dallavalle, G. M.
Fabbri, F.
Fanfani, A.
Fasanella, D.
Giacomelli, P.
Giunta, M.
Grandi, C.
Marcellini, S.
Masetti, G.
Meneghelli, M.
Montanari, A.
Navarria, F. L.
Odorici, F.
Perrotta, A.
Primavera, F.
Rossi, A. M.
Rovelli, T.
Siroli, G.
Travaglini, R.
Albergo, S.
Cappello, G.
Chiorboli, M.
Costa, S.
Potenza, R.
Tricomi, A.
Tuve, C.
Barbagli, G.
Ciulli, V.
Civinini, C.
D'Alessandro, R.
Focardi, E.
Frosali, S.
Gallo, E.
Gonzi, S.
Lenzi, P.
Meschini, M.
Paoletti, S.
Sguazzoni, G.
Tropiano, A.
Benussi, L.
Bianco, S.
Colafranceschi, S.
Fabbri, F.
Piccolo, D.
Fabbricatore, P.
Musenich, R.
Benaglia, A.
De Guio, F.
Di Matteo, L.
Gennai, S.
Ghezzi, A.
Malvezzi, S.
Martelli, A.
Massironi, A.
Menasce, D.
Moroni, L.
Paganoni, M.
Pedrini, D.
Ragazzi, S.
Redaelli, N.
Sala, S.
de Fatis, T. Tabarelli
Buontempo, S.
Montoya, C. A. Carrillo
Cavallo, N.
De Cosa, A.
Fabozzi, F.
Iorio, A. O. M.
Lista, L.
Merola, M.
Paolucci, P.
Azzi, P.
Bacchetta, N.
Bellan, P.
Bisello, D.
Branca, A.
Carlin, R.
Checchia, P.
Dorigo, T.
Dosselli, U.
Fanzago, F.
Gasparini, F.
Gasparini, U.
Gozzelino, A.
Lacaprara, S.
Lazzizzera, I.
Margoni, M.
Mazzucato, M.
Meneguzzo, A. T.
Nespolo, M.
Perrozzi, L.
Pozzobon, N.
Ronchese, P.
Simonetto, F.
Torassa, E.
Tosi, M.
Vanini, S.
Zotto, P.
Zumerle, G.
Baesso, P.
Berzano, U.
Ratti, S. P.
Riccardi, C.
Torre, P.
Vitulo, P.
Viviani, C.
Biasini, M.
Bilei, G. M.
Caponeria, B.
Fano, L.
Lariccia, P.
Lucaroni, A.
Mantovani, G.
Menichelli, M.
Nappi, A.
Romeo, F.
Santocchia, A.
Taroni, S.
Valdata, M.
Azzurri, P.
Bagliesi, G.
Bernardini, J.
Boccali, T.
Broccolo, G.
Castaldi, R.
D'Agnolo, R. T.
Dell'Orso, R.
Fiori, F.
Foa, L.
Giassi, A.
Kraan, A.
Ligabue, F.
Lomtadze, T.
Martini, L.
Messineo, A.
Palla, F.
Palmonari, F.
Segneri, G.
Serban, A. T.
Spagnolo, P.
Tenchini, R.
Tonelli, G.
Venturi, A.
Verdini, P. G.
Barone, L.
Cavallari, F.
Del Re, D.
Di Marco, E.
Diemoz, M.
Franci, D.
Grassi, M.
Longo, E.
Meridiani, P.
Nourbakhsh, S.
Organtini, G.
Pandolfi, F.
Paramatti, R.
Rahatlou, S.
Rovelli, C.
Sigamani, M.
Amapane, N.
Arcidiacono, R.
Argiro, S.
Arneodo, M.
Biino, C.
Botta, C.
Cartiglia, N.
Castello, R.
Costa, M.
Demaria, N.
Graziano, A.
Mariotti, C.
Marone, M.
Maselli, S.
Migliore, E.
Mila, G.
Monaco, V.
Musich, M.
Obertino, M. M.
Pastrone, N.
Pelliccioni, M.
Potenza, A.
Romero, A.
Ruspa, M.
Sacchi, R.
Sola, V.
Solano, A.
Staiano, A.
Pereira, A. Vilela
Belforte, S.
Cossutti, F.
Della Ricca, G.
Gobbo, B.
Montanino, D.
Penzo, A.
Heo, S. G.
Nam, S. K.
Chang, S.
Chung, J.
Kim, D. H.
Kim, G. N.
Kim, J. E.
Kong, D. J.
Park, H.
Ro, S. R.
Son, D. C.
Son, T.
Kim, J. Y.
Kim, Z. J.
Song, S.
Choi, S.
Hong, B.
Jo, M.
Kim, H.
Kim, J. H.
Kim, T. J.
Lee, K. S.
Moon, D. H.
Park, S. K.
Sim, K. S.
Choi, M.
Kang, S.
Kim, H.
Park, C.
Park, I. C.
Park, S.
Ryu, G.
Choi, Y.
Choi, Y. K.
Goh, J.
Kim, M. S.
Lee, B.
Lee, J.
Lee, S.
Seo, H.
Yu, I.
Bilinskas, M. J.
Grigelionis, I.
Janulis, M.
Martisiute, D.
Petrov, P.
Polujanskas, M.
Sabonis, T.
Castilla-Valdez, H.
De La Cruz-Burelo, E.
Heredia-de La Cruz, I.
Lopez-Fernandez, R.
Villalba, R. Magana
Sanchez-Hernandez, A.
Villasenor-Cendejas, L. M.
Carrillo Moreno, S.
Vazquez Valencia, F.
Salazar Ibarguen, H. A.
Casimiro Linares, E.
Morelos Pineda, A.
Reyes-Santos, M. A.
Krofcheck, D.
Tam, J.
Butler, P. H.
Doesburg, R.
Silverwood, H.
Ahmad, M.
Ahmed, I.
Ansari, M. H.
Asghar, M. I.
Hoorani, H. R.
Khalid, S.
Khan, W. A.
Khurshid, T.
Qazi, S.
Shah, M. A.
Shoaib, M.
Brona, G.
Cwiok, M.
Dominik, W.
Doroba, K.
Kalinowski, A.
Konecki, M.
Krolikowski, J.
Frueboes, T.
Gokieli, R.
Gorski, M.
Kazana, M.
Nawrocki, K.
Romanowska-Rybinska, K.
Szleper, M.
Wrochna, G.
Zalewski, P.
Almeida, N.
Bargassa, P.
David, A.
Faccioli, P.
Ferreira Parracho, P. G.
Gallinaro, M.
Musella, P.
Nayak, A.
Pela, J.
Ribeiro, P. Q.
Seixas, J.
Varela, J.
Afanasiev, S.
Belotelov, I.
Bunin, P.
Golutvin, I.
Kamenev, A.
Karjavin, V.
Kozlov, G.
Lanev, A.
Moisenz, P.
Palichik, V.
Perelygin, V.
Shmatov, S.
Smirnov, V.
Volodko, A.
Zarubin, A.
Golovtsov, V.
Ivanov, Y.
Kim, V.
Levchenko, P.
Murzin, V.
Oreshkin, V.
Smirnov, I.
Sulimov, V.
Uvarov, L.
Vavilov, S.
Vorobyev, A.
Vorobyev, An.
Andreev, Yu.
Dermenev, A.
Gninenko, S.
Golubev, N.
Kirsanov, M.
Krasnikov, N.
Matveev, V.
Pashenkov, A.
Toropin, A.
Troitsky, S.
Epshteyn, V.
Gavrilov, V.
Kaftanov, V.
Kossov, M.
Krokhotin, A.
Lychkovskaya, N.
Popov, V.
Safronov, G.
Semenov, S.
Stolin, V.
Vlasov, E.
Zhokin, A.
Belyaev, A.
Boos, E.
Dubinin, M.
Dudko, L.
Ershov, A.
Gribushin, A.
Kodolova, O.
Lokhtin, I.
Markina, A.
Obraztsov, S.
Perfilov, M.
Petrushanko, S.
Sarycheva, L.
Savrin, V.
Snigirev, A.
Andreev, V.
Azarkin, M.
Dremin, I.
Kirakosyan, M.
Leonidov, A.
Mesyats, G.
Rusakov, S. V.
Vinogradov, A.
Azhgirey, I.
Bayshev, I.
Bitioukov, S.
Grishin, V.
Kachanov, V.
Konstantinov, D.
Korablev, A.
Krychkine, V.
Petrov, V.
Ryutin, R.
Sobol, A.
Tourtchanovitch, L.
Troshin, S.
Tyurin, N.
Uzunian, A.
Volkov, A.
Adzic, P.
Djordjevic, M.
Krpic, D.
Milosevic, J.
Aguilar-Benitez, M.
Alcaraz Maestre, J.
Arce, P.
Battilana, C.
Calvo, E.
Cepeda, M.
Cerrada, M.
Chamizo Llatas, M.
Colino, N.
De la Cruz, B.
Delgado Peris, A.
Diez Pardos, C.
Dominguez Vazquez, D.
Fernandez Bedoya, C.
Fernandez Ramos, J. P.
Ferrando, A.
Flix, J.
Fouz, M. C.
Garcia-Abia, P.
Gonzalez Lopez, O.
Goy Lopez, S.
Hernandez, J. M.
Josa, M. I.
Merino, G.
Puerta Pelayo, J.
Redondo, I.
Romero, L.
Santaolalla, J.
Soares, M. S.
Willmott, C.
Albajar, C.
Codispoti, G.
de Troconiz, J. F.
Cuevas, J.
Fernandez Menendez, J.
Folgueras, S.
Gonzalez Caballero, I.
Lloret Iglesias, L.
Vizan Garcia, J. M.
Brochero Cifuentes, J. A.
Cabrillo, I. J.
Calderon, A.
Chuang, S. H.
Duarte Campderros, J.
Felcini, M.
Fernandez, M.
Gomez, G.
Gonzalez Sanchez, J.
Jorda, C.
Lobelle Pardo, P.
Lopez Virto, A.
Marco, J.
Marco, R.
Martinez Rivero, C.
Matorras, F.
Munoz Sanchez, F. J.
Piedra Gomez, J.
Rodrigo, T.
Rodriguez-Marrero, A. Y.
Ruiz-Jimeno, A.
Scodellaro, L.
Sobron Sanudo, M.
Vila, I.
Vilar Cortabitarte, R.
Abbaneo, D.
Auffray, E.
Auzinger, G.
Baillon, P.
Ball, A. H.
Barney, D.
Bell, A. J.
Benedetti, D.
Bernet, C.
Bialas, W.
Bloch, P.
Bocci, A.
Bolognesi, S.
Bona, M.
Breuker, H.
Bunkowski, K.
Camporesi, T.
Cerminara, G.
Christiansen, T.
Perez, J. A. Coarasa
Cure, B.
D'Enterria, D.
De Roeck, A.
Di Guida, S.
Dupont-Sagorin, N.
Elliott-Peisert, A.
Frisch, B.
Funk, W.
Gaddi, A.
Georgiou, G.
Gerwig, H.
Gigi, D.
Gill, K.
Giordano, D.
Glege, F.
Garrido, R. Gomez-Reino
Gouzevitch, M.
Govoni, P.
Gowdy, S.
Guiducci, L.
Hansen, M.
Hartl, C.
Harvey, J.
Hegeman, J.
Hegner, B.
Hoffmann, H. F.
Honma, A.
Innocente, V.
Janot, P.
Kaadze, K.
Karavakis, E.
Lecoq, P.
Lourenco, C.
Maeki, T.
Malberti, M.
Malgeri, L.
Mannelli, M.
Masetti, L.
Maurisset, A.
Meijers, F.
Mersi, S.
Meschi, E.
Moser, R.
Mozer, M. U.
Mulders, M.
Nesvold, E.
Nguyen, M.
Orimoto, T.
Orsini, L.
Cortezon, E. Palencia
Perez, E.
Petrilli, A.
Pfeiffer, A.
Pierini, M.
Pimiae, M.
Piparo, D.
Polese, G.
Quertenmont, L.
Racz, A.
Reece, W.
Antunes, J. Rodrigues
Rolandi, G.
Rommerskirchen, T.
Rovere, M.
Sakulin, H.
Schaefer, C.
Schwick, C.
Segoni, I.
Sharma, A.
Siegrist, P.
Silva, P.
Simon, M.
Sphicas, P.
Spiropulu, M.
Stoye, M.
Tropea, P.
Tsirou, A.
Vichoudis, P.
Voutilainen, M.
Zeuner, W. D.
Bertl, W.
Deiters, K.
Erdmann, W.
Gabathuler, K.
Horisberger, R.
Ingram, Q.
Kaestli, H. C.
Koenig, S.
Kotlinski, D.
Langenegger, U.
Meier, F.
Renker, D.
Rohe, T.
Sibille, J.
Baeni, L.
Bortignon, P.
Caminada, L.
Casal, B.
Chanon, N.
Chen, Z.
Cittolin, S.
Dissertori, G.
Dittmar, M.
Eugster, J.
Freudenreich, K.
Grab, C.
Hintz, W.
Lecomte, P.
Lustermann, W.
Marchica, C.
del Arbol, P. Martinez Ruiz
Milenovic, P.
Moortgat, F.
Naegeli, C.
Nef, P.
Nessi-Tedaldi, F.
Pape, L.
Pauss, F.
Punz, T.
Rizzi, A.
Ronga, F. J.
Rossini, M.
Sala, L.
Sanchez, A. K.
Sawley, M. -C.
Starodumov, A.
Stieger, B.
Takahashi, M.
Tauscher, L.
Thea, A.
Theofilatos, K.
Treille, D.
Urscheler, C.
Wallny, R.
Weber, M.
Wehrli, L.
Weng, J.
Aguilo, E.
Amsler, C.
Chiochia, V.
De Visscher, S.
Favaro, C.
Rikova, M. Ivova
Mejias, B. Millan
Otiougova, P.
Robmann, P.
Schmidt, A.
Snoek, H.
Chang, Y. H.
Chen, K. H.
Kuo, C. M.
Li, S. W.
Lin, W.
Liu, Z. K.
Lu, Y. J.
Mekterovic, D.
Volpe, R.
Wu, J. H.
Yu, S. S.
Bartalini, P.
Chang, P.
Chang, Y. H.
Chang, Y. W.
Chao, Y.
Chen, K. F.
Hou, W. -S.
Hsiung, Y.
Kao, K. Y.
Lei, Y. J.
Lu, R. -S.
Shiu, J. G.
Tzeng, Y. M.
Wan, X.
Wang, M.
Adiguzel, A.
Bakirci, M. N.
Cerci, S.
Dozen, C.
Dumanoglu, I.
Eskut, E.
Girgis, S.
Gokbulut, G.
Hos, I.
Kangal, E. E.
Topaksu, A. Kayis
Onengut, G.
Ozdemir, K.
Ozturk, S.
Polatoz, A.
Sogut, K.
Cerci, D. Sunar
Tali, B.
Topakli, H.
Uzun, D.
Vergili, L. N.
Vergili, M.
Akin, I. V.
Aliev, T.
Bilin, B.
Bilmis, S.
Deniz, M.
Gamsizkan, H.
Guler, A. M.
Ocalan, K.
Ozpineci, A.
Serin, M.
Sever, R.
Surat, U. E.
Yalvac, M.
Yildirim, E.
Zeyrek, M.
Deliomeroglu, M.
Demir, D.
Gulmez, E.
Isildak, B.
Kaya, M.
Kaya, O.
Ozbek, M.
Ozkorucuklu, S.
Sonmez, N.
Levchuk, L.
Bostock, F.
Brooke, J. J.
Cheng, T. L.
Clement, E.
Cussans, D.
Frazier, R.
Goldstein, J.
Grimes, M.
Hartley, D.
Heath, G. P.
Heath, H. F.
Kreczko, L.
Metson, S.
Newbold, D. M.
Nirunpong, K.
Poll, A.
Senkin, S.
Smith, V. J.
Basso, L.
Bell, K. W.
Belyaev, A.
Brew, C.
Brown, R. M.
Camanzi, B.
Cockerill, D. J. A.
Coughlan, J. A.
Harder, K.
Harper, S.
Jackson, J.
Kennedy, B. W.
Olaiya, E.
Petyt, D.
Radburn-Smith, B. C.
Shepherd-Themistocleous, C. H.
Tomalin, I. R.
Womersley, W. J.
Worm, S. D.
Bainbridge, R.
Ball, G.
Ballin, J.
Beuselinck, R.
Buchmuller, O.
Colling, D.
Cripps, N.
Cutajar, M.
Davies, G.
Della Negra, M.
Ferguson, W.
Fulcher, J.
Futyan, D.
Gilbert, A.
Bryer, A. Guneratne
Hall, G.
Hatherell, Z.
Hays, J.
Iles, G.
Jarvis, M.
Karapostoli, G.
Lyons, L.
MacEvoy, B. C.
Magnan, A. -M.
Marrouche, J.
Mathias, B.
Nandi, R.
Nash, J.
Nikitenko, A.
Papageorgiou, A.
Pesaresi, M.
Petridis, K.
Pioppi, M.
Raymond, D. M.
Rogerson, S.
Rompotis, N.
Rose, A.
Ryan, M. J.
Seez, C.
Sharp, P.
Sparrow, A.
Tapper, A.
Tourneur, S.
Acosta, M. Vazquez
Virdee, T.
Wakefield, S.
Wardle, N.
Wardrope, D.
Whyntie, T.
Barrett, M.
Chadwick, M.
Cole, J. E.
Hobson, P. R.
Khan, A.
Kyberd, P.
Leslie, D.
Martin, W.
Reid, I. D.
Teodorescu, L.
Hatakeyama, K.
Liu, H.
Henderson, C.
Bose, T.
Jarrin, E. Carrera
Fantasia, C.
Heister, A.
John, J. St.
Lawson, P.
Lazic, D.
Rohlf, J.
Sperka, D.
Sulak, L.
Avetisyan, A.
Bhattacharya, S.
Chou, J. P.
Cutts, D.
Ferapontov, A.
Heintz, U.
Jabeen, S.
Kukartsev, G.
Landsberg, G.
Luk, M.
Narain, M.
Nguyen, D.
Segala, M.
Sinthuprasith, T.
Speer, T.
Tsang, K. V.
Breedon, R.
Breto, G.
Sanchez, M. Calderon De La Barca
Chauhan, S.
Chertok, M.
Conway, J.
Cox, P. T.
Dolen, J.
Erbacher, R.
Friis, E.
Ko, W.
Kopecky, A.
Lander, R.
Liu, H.
Maruyama, S.
Miceli, T.
Nikolic, M.
Pellett, D.
Robles, J.
Rutherford, B.
Salur, S.
Schwarz, T.
Searle, M.
Smith, J.
Squires, M.
Tripathi, M.
Sierra, R. Vasquez
Veelken, C.
Andreev, V.
Arisaka, K.
Cline, D.
Cousins, R.
Deisher, A.
Duris, J.
Erhan, S.
Farrell, C.
Hauser, J.
Ignatenko, M.
Jarvis, C.
Plager, C.
Rakness, G.
Schlein, P.
Tucker, J.
Valuev, V.
Babb, J.
Chandra, A.
Clare, R.
Ellison, J.
Gary, J. W.
Giordano, F.
Hanson, G.
Jeng, G. Y.
Kao, S. C.
Liu, F.
Liu, H.
Long, O. R.
Luthra, A.
Nguyen, H.
Paramesvaran, S.
Shen, B. C.
Stringer, R.
Sturdy, J.
Sumowidagdo, S.
Wilken, R.
Wimpenny, S.
Andrews, W.
Branson, J. G.
Cerati, G. B.
Evans, D.
Golf, F.
Holzner, A.
Kelley, R.
Lebourgeois, M.
Letts, J.
Mangano, B.
Padhi, S.
Palmer, C.
Petrucciani, G.
Pi, H.
Pieri, M.
Ranieri, R.
Sani, M.
Sharma, V.
Simon, S.
Sudano, E.
Tadel, M.
Tu, Y.
Vartak, A.
Wasserbaech, S.
Wuerthwein, F.
Yagil, A.
Yoo, J.
Barge, D.
Bellan, R.
Campagnari, C.
D'Alfonso, M.
Danielson, T.
Flowers, K.
Geffert, P.
Incandela, J.
Justus, C.
Kalavase, P.
Koay, S. A.
Kovalskyi, D.
Krutelyov, V.
Lowette, S.
Mccoll, N.
Pavlunin, V.
Rebassoo, F.
Ribnik, J.
Richman, J.
Rossin, R.
Stuart, D.
To, W.
Vlimant, J. R.
West, C.
Apresyan, A.
Bornheim, A.
Bunn, J.
Chen, Y.
Gataullin, M.
Ma, Y.
Mott, A.
Newman, H. B.
Rogan, C.
Shin, K.
Timciuc, V.
Traczyk, P.
Veverka, J.
Wilkinson, R.
Yang, Y.
Zhu, R. Y.
Akgun, B.
Carroll, R.
Ferguson, T.
Iiyama, Y.
Jang, D. W.
Jun, S. Y.
Liu, Y. F.
Paulini, M.
Russ, J.
Vogel, H.
Vorobiev, I.
Cumalat, J. P.
Dinardo, M. E.
Drell, B. R.
Edelmaier, C. J.
Ford, W. T.
Gaz, A.
Heyburn, B.
Lopez, E. Luiggi
Nauenberg, U.
Smith, J. G.
Stenson, K.
Ulmer, K. A.
Wagner, S. R.
Zang, S. L.
Agostino, L.
Alexander, J.
Chatterjee, A.
Eggert, N.
Gibbons, L. K.
Heltsley, B.
Henriksson, K.
Hopkins, W.
Khukhunaishvili, A.
Kreis, B.
Liu, Y.
Kaufman, G. Nicolas
Patterson, J. R.
Puigh, D.
Ryd, A.
Saelim, M.
Salvati, E.
Shi, X.
Sun, W.
Teo, W. D.
Thom, J.
Thompson, J.
Vaughan, J.
Weng, Y.
Winstrom, L.
Wittich, P.
Biselli, A.
Cirino, G.
Winn, D.
Abdullin, S.
Albrow, M.
Anderson, J.
Apollinari, G.
Atac, M.
Bakken, J. A.
Bauerdick, L. A. T.
Beretvas, A.
Berryhill, J.
Bhat, P. C.
Bloch, I.
Burkett, K.
Butler, J. N.
Chetluru, V.
Cheung, H. W. K.
Chlebana, F.
Cihangir, S.
Cooper, W.
Eartly, D. P.
Elvira, V. D.
Esen, S.
Fisk, I.
Freeman, J.
Gao, Y.
Gottschalk, E.
Green, D.
Gutsche, O.
Hanlon, J.
Harris, R. M.
Hirschauer, J.
Hooberman, B.
Jensen, H.
Johnson, M.
Joshi, U.
Klima, B.
Kousouris, K.
Kunori, S.
Kwan, S.
Leonidopoulos, C.
Limon, P.
Lincoln, D.
Lipton, R.
Lykken, J.
Maeshima, K.
Marraffino, J. M.
Mason, D.
McBride, P.
Miao, T.
Mishra, K.
Mrenna, S.
Musienko, Y.
Newman-Holmes, C.
O'Dell, V.
Pivarski, J.
Pordes, R.
Prokofyev, O.
Sexton-Kennedy, E.
Sharma, S.
Spalding, W. J.
Spiegel, L.
Tan, P.
Taylor, L.
Tkaczyk, S.
Uplegger, L.
Vaandering, E. W.
Vidal, R.
Whitmore, J.
Wu, W.
Yang, F.
Yumiceva, F.
Yun, J. C.
Acosta, D.
Avery, P.
Bourilkov, D.
Chen, M.
Das, S.
De Gruttola, M.
Di Giovanni, G. P.
Dobur, D.
Drozdetskiy, A.
Field, R. D.
Fisher, M.
Fu, Y.
Furic, I. K.
Gartner, J.
Goldberg, S.
Hugon, J.
Kim, B.
Konigsberg, J.
Korytov, A.
Kropivnitskaya, A.
Kypreos, T.
Low, J. F.
Matchev, K.
Mitselmakher, G.
Muniz, L.
Prescott, C.
Remington, R.
Rinkevicius, A.
Schmitt, M.
Scurlock, B.
Sellers, P.
Skhirtladze, N.
Snowball, M.
Wang, D.
Yelton, J.
Zakaria, M.
Gaultney, V.
Lebolo, L. M.
Linn, S.
Markowitz, P.
Martinez, G.
Rodriguez, J. L.
Adams, T.
Askew, A.
Bochenek, J.
Chen, J.
Diamond, B.
Gleyzer, S. V.
Haas, J.
Hagopian, S.
Hagopian, V.
Jenkins, M.
Johnson, K. F.
Prosper, H.
Sekmen, S.
Veeraraghavan, V.
Baarmand, M. M.
Dorney, B.
Guragain, S.
Hohlmann, M.
Kalakhety, H.
Vodopiyanov, I.
Adams, M. R.
Anghel, I. M.
Apanasevich, L.
Bai, Y.
Bazterra, V. E.
Betts, R. R.
Callner, J.
Cavanaugh, R.
Dragoiu, C.
Gauthier, L.
Gerber, C. E.
Hofman, D. J.
Khalatyan, S.
Kunde, G. J.
Lacroix, F.
Malek, M.
O'Brien, C.
Silkworth, C.
Silvestre, C.
Smoron, A.
Strom, D.
Varelas, N.
Akgun, U.
Albayrak, E. A.
Bilki, B.
Clarida, W.
Duru, F.
Lae, C. K.
McCliment, E.
Merlo, J. -P.
Mermerkaya, H.
Mestvirishvili, A.
Moeller, A.
Nachtman, J.
Newsom, C. R.
Norbeck, E.
Olson, J.
Onel, Y.
Ozok, F.
Sen, S.
Wetzel, J.
Yetkin, T.
Yi, K.
Barnett, B. A.
Blumenfeld, B.
Bonato, A.
Eskew, C.
Fehling, D.
Giurgiu, G.
Gritsan, A. V.
Guo, Z. J.
Hu, G.
Maksimovic, P.
Rappoccio, S.
Swartz, M.
Tran, N. V.
Whitbeck, A.
Baringer, P.
Bean, A.
Benelli, G.
Grachov, O.
Kenny, R. P., III
Murray, M.
Noonan, D.
Sanders, S.
Wood, J. S.
Zhukova, V.
Barfuss, A. F.
Bolton, T.
Chakaberia, I.
Ivanov, A.
Khalil, S.
Makouski, M.
Maravin, Y.
Shrestha, S.
Svintradze, I.
Wan, Z.
Gronberg, J.
Lange, D.
Wright, D.
Baden, A.
Boutemeur, M.
Eno, S. C.
Ferencek, D.
Gomez, J. A.
Hadley, N. J.
Kellogg, R. G.
Kirn, M.
Lu, Y.
Mignerey, A. C.
Rossato, K.
Rumerio, P.
Santanastasio, F.
Skuja, A.
Temple, J.
Tonjes, M. B.
Tonwar, S. C.
Twedt, E.
Alver, B.
Bauer, G.
Bendavid, J.
Busza, W.
Butz, E.
Cali, I. A.
Chan, M.
Dutta, V.
Everaerts, P.
Ceballos, G. Gomez
Goncharov, M.
Hahn, K. A.
Harris, P.
Kim, Y.
Klute, M.
Lee, Y. -J.
Li, W.
Loizides, C.
Luckey, P. D.
Ma, T.
Nahn, S.
Paus, C.
Ralph, D.
Roland, C.
Roland, G.
Rudolph, M.
Stephans, G. S. F.
Stoeckli, F.
Sumorok, K.
Sung, K.
Velicanu, D.
Wenger, E. A.
Wolf, R.
Xie, S.
Yang, M.
Yilmaz, Y.
Yoon, A. S.
Zanetti, M.
Cooper, S. I.
Cushman, P.
Dahmes, B.
De Benedetti, A.
Franzoni, G.
Gude, A.
Haupt, J.
Klapoetke, K.
Kubota, Y.
Mans, J.
Pastika, N.
Rekovic, V.
Rusack, R.
Sasseville, M.
Singovsky, A.
Tambe, N.
Cremaldi, L. M.
Godang, R.
Kroeger, R.
Perera, L.
Rahmat, R.
Sanders, D. A.
Summers, D.
Bloom, K.
Bose, S.
Butt, J.
Claes, D. R.
Dominguez, A.
Eads, M.
Jindal, P.
Keller, J.
Kelly, T.
Kravchenko, I.
Lazo-Flores, J.
Malbouisson, H.
Malik, S.
Snow, G. R.
Baur, U.
Godshalk, A.
Iashvili, I.
Jain, S.
Kharchilava, A.
Kumar, A.
Shipkowski, S. P.
Smith, K.
Alverson, G.
Barberis, E.
Baumgartel, D.
Boeriu, O.
Chasco, M.
Reucroft, S.
Swain, J.
Trocino, D.
Wood, D.
Zhang, J.
Anastassov, A.
Kubik, A.
Odell, N.
Ofierzynski, R. A.
Pollack, B.
Pozdnyakov, A.
Schmitt, M.
Stoynev, S.
Velasco, M.
Won, S.
Antonelli, L.
Berry, D.
Brinkerhoff, A.
Hildreth, M.
Jessop, C.
Karmgard, D. J.
Kolb, J.
Kolberg, T.
Lannon, K.
Luo, W.
Lynch, S.
Marinelli, N.
Morse, D. M.
Pearson, T.
Ruchti, R.
Slaunwhite, J.
Valls, N.
Wayne, M.
Ziegler, J.
Bylsma, B.
Durkin, L. S.
Gu, J.
Hill, C.
Killewald, P.
Kotov, K.
Ling, T. Y.
Rodenburg, M.
Vuosalo, C.
Williams, G.
Adam, N.
Berry, E.
Elmer, P.
Gerbaudo, D.
Halyo, V.
Hebda, P.
Hunt, A.
Laird, E.
Pegna, D. Lopes
Marlow, D.
Medvedeva, T.
Mooney, M.
Olsen, J.
Piroue, P.
Quan, X.
Safdi, B.
Saka, H.
Stickland, D.
Tully, C.
Werner, J. S.
Zuranski, A.
Acosta, J. G.
Huang, X. T.
Lopez, A.
Mendez, H.
Oliveros, S.
Vargas, J. E. Ramirez
Zatserklyaniy, A.
Alagoz, E.
Barnes, V. E.
Bolla, G.
Borrello, L.
Bortoletto, D.
De Mattia, M.
Everett, A.
Garfinkel, A. F.
Gutay, L.
Hu, Z.
Jones, M.
Koybasi, O.
Kress, M.
Laasanen, A. T.
Leonardo, N.
Liu, C.
Maroussov, V.
Merkel, P.
Miller, D. H.
Neumeister, N.
Shipsey, I.
Silvers, D.
Svyatkovskiy, A.
Yoo, H. D.
Zablocki, J.
Zheng, Y.
Parashar, N.
Adair, A.
Boulahouache, C.
Ecklund, K. M.
Geurts, F. J. M.
Padley, B. P.
Redjimi, R.
Roberts, J.
Zabel, J.
Betchart, B.
Bodek, A.
Chung, Y. S.
Covarelli, R.
De Barbaro, P.
Demina, R.
Eshaq, Y.
Flacher, H.
Garcia-Bellido, A.
Goldenzweig, P.
Gotra, Y.
Han, J.
Harel, A.
Miner, D. C.
Orbaker, D.
Petrillo, G.
Sakumoto, W.
Vishnevskiy, D.
Zielinski, M.
Bhatti, A.
Ciesielski, R.
Demortier, L.
Goulianos, K.
Lungu, G.
Malik, S.
Mesropian, C.
Arora, S.
Atramentov, O.
Barker, A.
Contreras-Campana, C.
Contreras-Campana, E.
Duggan, D.
Gershtein, Y.
Gray, R.
Halkiadakis, E.
Hidas, D.
Hits, D.
Lath, A.
Panwalkar, S.
Patel, R.
Richards, A.
Rose, K.
Schnetzer, S.
Somalwar, S.
Stone, R.
Thomas, S.
Cerizza, G.
Hollingsworth, M.
Spanier, S.
Yang, Z. C.
York, A.
Eusebi, R.
Flanagan, W.
Gilmore, J.
Gurrola, A.
Kamon, T.
Khotilovich, V.
Montalvo, R.
Osipenkov, I.
Pakhotin, Y.
Safonov, A.
Sengupta, S.
Suarez, I.
Tatarinov, A.
Toback, D.
Weinberger, M.
Akchurin, N.
Bardak, C.
Damgov, J.
Dudero, P. R.
Jeong, C.
Kovitanggoon, K.
Lee, S. W.
Libeiro, T.
Mane, P.
Roh, Y.
Sill, A.
Volobouev, I.
Wigmans, R.
Yazgan, E.
Appelt, E.
Brownson, E.
Engh, D.
Florez, C.
Gabella, W.
Issah, M.
Johns, W.
Johnston, C.
Kurt, P.
Maguire, C.
Melo, A.
Sheldon, P.
Snook, B.
Tuo, S.
Velkovska, J.
Arenton, M. W.
Balazs, M.
Boutle, S.
Cox, B.
Francis, B.
Goadhouse, S.
Goodell, J.
Hirosky, R.
Ledovskoy, A.
Lin, C.
Neu, C.
Wood, J.
Yohay, R.
Gollapinni, S.
Harr, R.
Karchin, P. E.
Don, C. Kottachchi Kankanamge
Lamichhane, P.
Mattson, M.
Milstene, C.
Sakharov, A.
Anderson, M.
Bachtis, M.
Belknap, D.
Bellinger, J. N.
Carlsmith, D.
Dasu, S.
Efron, J.
Gray, L.
Grogg, K. S.
Grothe, M.
Hall-Wilton, R.
Herndon, M.
Herve, A.
Klabbers, P.
Klukas, J.
Lanaro, A.
Lazaridis, C.
Leonard, J.
Loveless, R.
Mohapatra, A.
Ojalvo, I.
Parker, W.
Reeder, D.
Ross, I.
Savin, A.
Smith, W. H.
Swanson, J.
Weinberg, M.
CA CMS Collaboration
TI Forward energy flow, central charged-particle multiplicities, and
pseudorapidity gaps in W and Z boson events from pp collisions at root
s=7 TeV
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID DIFFRACTIVE W; RAPIDITY GAPS; QCD ANALYSIS; SCATTERING; POMERON
AB A study of forward energy flow and central charged-particle multiplicity in events with W and Z bosons decaying into leptons is presented. The analysis uses a sample of 7 TeV pp collisions, corresponding to an integrated luminosity of 36 pb(-1), recorded by the CMS experiment at the LHC. The observed forward energy depositions, their correlations, and the central charged-particle multiplicities are not well described by the available non-diffractive soft-hadron production models. A study of about 300 events with no significant energy deposited in one of the forward calorimeters, corresponding to a pseudorapidity gap of at least 1.9 units, is also presented. An indication for a diffractive component in these events comes from the observation that the majority of the charged leptons from the W(Z) decays are found in the hemisphere opposite to the gap. When fitting the signed lepton pseudorapidity distribution of these events with predicted distributions from an admixture of diffractive (POMPYT) and non-diffractive (PYTHIA) Monte Carlo simulations, the diffractive component is determined to be (50.0 +/- 9.3 (stat.) +/- 5.2 (syst.))%.
C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Trauner, C.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria.
[Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Bansal, S.; Benucci, L.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, Antwerp, Belgium.
[Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium.
[Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Raval, A.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.] Univ Libre Bruxelles, Brussels, Belgium.
[Adler, V.; Cimmino, A.; Costantini, S.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium.
[Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; Gil, E. Cortina; De Jeneret, J. De Favereau; Delaere, C.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium.
[Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium.
[Alves, G. A.; Brito, L.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, RJ, Brazil.
[Alda Junior, W. L.; Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, RJ, Brazil.
[Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, S. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Darmenov, N.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria.
[Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria.
[Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China.
[Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China.
[Cabrera, A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia.
[Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia.
[Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia.
[Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia.
[Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus.
[Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic.
[Assran, Y.; Kamel, A. Ellithi; Khalil, S.; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt.
[Hektor, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia.
[Azzolini, V.; Eerola, P.; Fedi, G.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland.
[Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland.
[Sillou, D.] CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, Annecy Le Vieux, France.
[Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France.
[Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS, IN2P3,Inst Pluridisciplinaire Hubert Curien, Strasbourg, France.
[Fassi, F.; Mercier, D.] Ctr Calcul, Inst Natl Phys Nucl & Phys Particules IN2P3, Villeurbanne, France.
[Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.] Univ Lyon 1, CNRS, Inst Phys Nucl Lyon, IN2P3, F-69622 Villeurbanne, France.
[Lomidze, D.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia.
[Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany.
[Ata, M.; Dietz-Laursonn, E.; Erdmann, M.; Hebbeker, T.; Heidemann, C.; Hinzmann, A.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany.
[Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Inst Phys B 3, Aachen, Germany.
[Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Rosin, M.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany.
[Wissing, C.; Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Goerner, M.; Hermanns, T.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schroeder, M.; Schum, T.; Stadie, H.; Steinbrueck, G.; Thomsen, J.] Univ Hamburg, Hamburg, Germany.
[Barth, C.; Bauer, J.; Berger, J.; Buege, V.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany.
[Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece.
[Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece.
[Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece.
[Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Veres, G. I.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary.
[Horvath, D.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary.
[Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary.
[Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India.
[Ahuja, S.; Choudhary, B. C.; Gupta, P.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, S.; Jain, S.; Khurana, R.; Sarkar, S.] Saha Inst Nucl Phys, Kolkata, India.
[Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India.
[Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India.
[Guchait, M.; Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India.
[Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res & Fundamental Sci IPM, Tehran, Iran.
[Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Abbrescia, M.; Barbone, L.; Calabria, C.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy.
[Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy.
[Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy.
[Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Masetti, G.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy.
[Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy.
[Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy.
[Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy.
[Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Lenzi, P.] Univ Florence, Florence, Italy.
[Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Benaglia, A.; De Guio, F.; Di Matteo, L.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy.
[Benaglia, A.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy.
[Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy.
[De Cosa, A.; Merola, M.] Univ Naples Federico II, Naples, Italy.
[Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy.
[Bellan, P.; Bisello, D.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy.
[Lazzizzera, I.] Univ Trento Trento, Padua, Italy.
[Baesso, P.; Berzano, U.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Baesso, P.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy.
[Biasini, M.; Bilei, G. M.; Caponeria, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Biasini, M.; Caponeria, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy.
[Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Azzurri, P.; Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy.
[Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy.
[Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Meridiani, P.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Sigamani, M.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
[Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Rome, Italy.
[Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Pelliccioni, M.; Potenza, A.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy.
[Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy.
[Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nuc, Sez Trieste, Trieste, Italy.
[Della Ricca, G.; Montanino, D.] Univ Trieste, Trieste, Italy.
[Heo, S. G.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea.
[Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.] Kyungpook Natl Univ, Taegu, South Korea.
[Kim, J. Y.; Kim, Z. J.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea.
[Choi, S.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Sim, K. S.] Korea Univ, Seoul, South Korea.
[Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea.
[Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea.
[Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Polujanskas, M.; Sabonis, T.] Vilnius State Univ, Vilnius, Lithuania.
[Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Villalba, R. Magana; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzado, Mexico City 07738, DF, Mexico.
[Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico.
[Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico.
[Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico.
[Krofcheck, D.; Tam, J.] Univ Auckland, Auckland 1, New Zealand.
[Butler, P. H.; Doesburg, R.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand.
[Ahmad, M.; Ahmed, I.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan.
[Brona, G.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland.
[Bluj, M.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland.
[Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Musella, P.; Nayak, A.; Pela, J.; Ribeiro, P. Q.; Seixas, J.; Varela, J.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal.
[Afanasiev, S.; Belotelov, I.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia.
[Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia.
[Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia.
[Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia.
[Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia.
[Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia.
[Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Diez Pardos, C.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain.
[Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain.
[Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain.
[Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain.
[Hammer, J.; Darmenov, N.; Genchev, V.; Iaydjiev, P.; Jung, H.; Hajdu, C.; Sikler, F.; Mohanty, A. K.; Chiorboli, M.; Tropiano, A.; De Guio, F.; Gennai, S.; Montoya, C. A. Carrillo; Iorio, A. O. M.; Nespolo, M.; Perrozzi, L.; Lucaroni, A.; Taroni, S.; Tonelli, G.; Grassi, M.; Paramatti, R.; Rovelli, C.; Botta, C.; Graziano, A.; Gallinaro, M.; Pela, J.; Kossov, M.; Grishin, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Bona, M.; Breuker, H.; Bunkowski, K.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Cure, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegeman, J.; Hegner, B.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Lecoq, P.; Lourenco, C.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Maurisset, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiropulu, M.; Stoye, M.; Tropea, P.; Tsirou, A.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland.
[Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Caminada, L.; Marchica, C.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland.
[Baeni, L.; Bortignon, P.; Caminada, L.; Casal, B.; Chanon, N.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; del Arbol, P. Martinez Ruiz; Milenovic, P.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland.
[Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Schmidt, A.; Snoek, H.] Univ Zurich, Zurich, Switzerland.
[Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan.
[Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan.
[Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey.
[Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey.
[Deliomeroglu, M.; Demir, D.; Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozbek, M.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey.
[Levchuk, L.] Natl Sci Ctr, Kharkov Inst Phys & Technol, Kharkov, Ukraine.
[Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.] Univ Bristol, Bristol, Avon, England.
[Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; MacEvoy, B. C.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Hatakeyama, K.; Liu, H.] Baylor Univ, Waco, TX 76798 USA.
[Henderson, C.] Univ Alabama, Tuscaloosa, AL USA.
[Bose, T.; Jarrin, E. Carrera; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA.
[Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA.
[Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Rutherford, B.; Salur, S.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA.
[Felcini, M.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA.
[Babb, J.; Chandra, A.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Andrews, W.; Branson, J. G.; Cerati, G. B.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Dias, F. A.; Dubinin, M.; Spiropulu, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA.
[Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA.
[Agostino, L.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Henriksson, K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Liu, Y.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Ryd, A.; Saelim, M.; Salvati, E.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA.
[Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA.
[Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Johnson, M.; Joshi, U.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Limon, P.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pivarski, J.; Pordes, R.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Piedra Gomez, J.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Prescott, C.; Remington, R.; Rinkevicius, A.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA.
[Gaultney, V.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA.
[Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA.
[Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA.
[Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois Chicago UIC, Chicago, IL USA.
[Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA.
[Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA.
[Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA.
[Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA.
[Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA.
[Wyslouch, B.; Kaya, O.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA.
[Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.] Univ Minnesota, Minneapolis, MN USA.
[Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Jindal, P.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA.
[Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Reucroft, S.; Swain, J.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA.
[Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA.
[Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Vuosalo, C.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA.
[Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA.
[Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA.
[Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; De Mattia, M.; Everett, A.; Garfinkel, A. F.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, LA USA.
[Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA.
[Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; De Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Sakumoto, W.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA.
[Arora, S.; Atramentov, O.; Barker, A.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA.
[Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA.
[Eusebi, R.; Flanagan, W.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Safonov, A.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX USA.
[Akchurin, N.; Bardak, C.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA.
[Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Issah, M.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA.
[Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goadhouse, S.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.] Univ Virginia, Charlottesville, VA USA.
[Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA.
[Anderson, M.; Bachtis, M.; Belknap, D.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Parker, W.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA.
[Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil.
[Assran, Y.] Suez Canal Univ, Suez, Egypt.
[Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt.
[Khalil, S.] British Univ, Cairo, Egypt.
[Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt.
[Radi, A.] Ain Shams Univ, Cairo, Egypt.
[Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Karim, M.] Univ Haute Alsace, Mulhouse, France.
[Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany.
[Krajczar, K.; Veres, G. I.; Vesztergombi, G.] Eotvos Lorand Univ, Budapest, Hungary.
[Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India.
[Bakhshiansohi, H.; Fahim, A.; Jafari, A.] Sharif Univ Technol, Tehran, Iran.
[Etesami, S. M.; Zeinali, M.] Isfahan Univ Technol, Esfahan, Iran.
[Mohammadi, A.] Shiraz Univ, Shiraz, Iran.
[Colafranceschi, S.] Univ Roma, Fac Ingn, Rome, Italy.
[Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy.
[Lacaprara, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
[Martini, L.] Univ Siena, I-53100 Siena, Italy.
[Bell, A. J.] Univ Geneva, Geneva, Switzerland.
[Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy.
[Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy.
[Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey.
[Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey.
[Sogut, K.] Mersin Univ, Mersin, Turkey.
[Demir, D.] Izmir Inst Technol, Izmir, Turkey.
[Kaya, M.] Kafkas Univ, Kars, Turkey.
[Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey.
[Sonmez, N.] Ege Univ, Izmir, Turkey.
[Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England.
[Wasserbaech, S.] Utah Valley Univ, Orem, UT USA.
[Kunde, G. J.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey.
RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia.
RI Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Calderon,
Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro,
Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo,
Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel,
Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Benussi,
Luigi/O-9684-2014; Russ, James/P-3092-2014; Dahms, Torsten/A-8453-2015;
Hektor, Andi/G-1804-2011; Cavallo, Nicola/F-8913-2012; Ivanov,
Andrew/A-7982-2013; Markina, Anastasia/E-3390-2012; Troitsky,
Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri,
Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Bartalini,
Paolo/E-2512-2014; Codispoti, Giuseppe/F-6574-2014; Liu,
Chang/B-7249-2009; Gribushin, Andrei/J-4225-2012; Cerrada,
Marcos/J-6934-2014; Montanari, Alessandro/J-2420-2012; Amapane,
Nicola/J-3683-2012; tosi, mia/J-5777-2012; Petrushanko,
Sergey/D-6880-2012; Stahl, Achim/E-8846-2011; Mercadante,
Pedro/K-1918-2012; Kadastik, Mario/B-7559-2008; Mundim,
Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Alves,
Gilvan/C-4007-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski,
Piotr/H-7335-2013; Novaes, Sergio/D-3532-2012; Padula, Sandra
/G-3560-2012; Lujan Center, LANL/G-4896-2012; Tinoco Mendes, Andre
David/D-4314-2011; Fruhwirth, Rudolf/H-2529-2012; Chen, Jie/H-6210-2011;
Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli,
Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Wulz,
Claudia-Elisabeth/H-5657-2011; Venturi, Andrea/J-1877-2012; de Jesus
Damiao, Dilson/G-6218-2012; Azarkin, Maxim/N-2578-2015; Paganoni,
Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez,
Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira,
Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad,
Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh,
Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen,
Eija/A-5288-2017; My, Salvatore/I-5160-2015; Matorras,
Francisco/I-4983-2015; Ragazzi, Stefano/D-2463-2009; Dremin,
Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov,
Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir,
Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae
Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012;
Della Ricca, Giuseppe/B-6826-2013; Krammer, Manfred/A-6508-2010; Savrin,
Victor/D-6213-2012; Raidal, Martti/F-4436-2012; Lokhtin,
Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Dudko, Lev/D-7127-2012;
Perfilov, Maxim/E-1064-2012; Belyaev, Andrey/E-1540-2012; Katkov,
Igor/E-2627-2012; Boos, Eduard/D-9748-2012; Snigirev,
Alexander/D-8912-2012; Tomei, Thiago/E-7091-2012; Focardi,
Ettore/E-7376-2012; Fassi, Farida/F-3571-2016; Varela, Joao/K-4829-2016;
Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016;
Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Grandi,
Claudio/B-5654-2015; Leonidov, Andrey/P-3197-2014; Bernardes, Cesar
Augusto/D-2408-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera,
Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; vilar, rocio/P-8480-2014;
D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015;
Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez
Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014
OI Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878;
Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X;
Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di
Matteo, Leonardo/0000-0001-6698-1735; Baarmand,
Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299;
Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo,
Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787;
Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731;
Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155;
Dahms, Torsten/0000-0003-4274-5476; Hektor, Andi/0000-0001-7873-8118;
Ivanov, Andrew/0000-0002-9270-5643; Troitsky,
Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021;
Cerrada, Marcos/0000-0003-0112-1691; Montanari,
Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509;
Stahl, Achim/0000-0002-8369-7506; Mundim, Luiz/0000-0001-9964-7805;
Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Novaes,
Sergio/0000-0003-0471-8549; Tinoco Mendes, Andre
David/0000-0001-5854-7699; Azzi, Patrizia/0000-0002-3129-828X; Wulz,
Claudia-Elisabeth/0000-0001-9226-5812; de Jesus Damiao,
Dilson/0000-0002-3769-1680; Paganoni, Marco/0000-0003-2461-275X; Gulmez,
Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela
Pereira, Antonio/0000-0003-3177-4626; Sznajder,
Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie,
Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh,
Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301;
Tuominen, Eija/0000-0002-7073-7767; My, Salvatore/0000-0002-9938-2680;
Matorras, Francisco/0000-0003-4295-5668; Ragazzi,
Stefano/0000-0001-8219-2074; TUVE', Cristina/0000-0003-0739-3153; KIM,
Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix,
Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982;
Krammer, Manfred/0000-0003-2257-7751; Dudko, Lev/0000-0002-4462-3192;
Katkov, Igor/0000-0003-3064-0466; Tomei, Thiago/0000-0002-1809-5226;
Focardi, Ettore/0000-0002-3763-5267; Fassi, Farida/0000-0002-6423-7213;
Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi,
Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124;
Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea
Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235;
Ciulli, Vitaliano/0000-0003-1947-3396; Martelli,
Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X;
Levchenko, Petr/0000-0003-4913-0538; Varela, Joao/0000-0003-2613-3146;
Menasce, Dario Livio/0000-0002-9918-1686; Bargassa,
Pedrame/0000-0001-8612-3332; Attia Mahmoud,
Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Safdi,
Benjamin R./0000-0001-9531-1319; Lloret Iglesias,
Lara/0000-0002-0157-4765; Carrera, Edgar/0000-0002-0857-8507; Sguazzoni,
Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107;
Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia
Rita/0000-0002-5071-5501; Grandi, Claudio/0000-0001-5998-3070;
Lazzizzera, Ignazio/0000-0001-5092-7531; Sen,
Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306;
Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi,
Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841;
Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya,
Cristina/0000-0001-8057-9152
FU FMSR (Austria); FNRS (Belgium); FWO (Belgium); CNPq, (Brazil); CAPES,
(Brazil); FAPERJ, (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS,
(China); MoST, (China); NSFC (China); COLCIENCIAS (Colombia); MSES
(Croatia); RPF (Cyprus); Academy of Sciences (Estonia); NICPB (Estonia);
Academy of Finland (Finland); ME (Finland); HIP (Finland); CEA (France);
CNRS/IN2P3 (France); BMBF, (Germany); DFG, (Germany); HGF (Germany);
GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India);
IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); WCU (Korea); LAS
(Lithuania); CINVESTAV, (Mexico); CONACYT, (Mexico); SEP, (Mexico);
UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR
(Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST (Russia); MAE
(Russia); MSTDS (Serbia); MICINN (Spain); CPAN (Spain); Swiss Funding
Agencies (Switzerland); NSC (Taipei); TUBITAK (Turkey); TAEK (Turkey);
STFC (United Kingdom); DOE (USA); NSF (USA); European Union; Leventis
Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation;
Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte
(Italy)
FX We wish to congratulate our colleagues in the CERN accelerator
departments for the excellent performance of the LHC machine. We would
like to thank P. Skands for many explanations and discussions concerning
the different underlying event tunes. We would also like to thank the
technical and administrative staff at CERN and other CMS institutes, and
acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq,
CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and
NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus);
Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP
(Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany);
GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran);
SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania);
CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR
(Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine,
Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN
(Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and
TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals
have received support from the Marie-Curie IEF program (European Union);
the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von
Humboldt Foundation; and the Associazione per lo Sviluppo Scientifico e
Tecnologico del Piemonte (Italy).
NR 30
TC 6
Z9 6
U1 0
U2 55
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD JAN
PY 2012
VL 72
IS 1
AR 1839
DI 10.1140/epjc/s10052-011-1839-3
PG 28
WC Physics, Particles & Fields
SC Physics
GA 897FM
UT WOS:000300631800021
ER
PT J
AU Sobczyk, JT
AF Sobczyk, Jan T.
TI Transverse enhancement model and MiniBooNE charge current quasi-elastic
neutrino scattering data
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID MESON-EXCHANGE CURRENTS
AB Recently proposed Transverse Enhancement Model of nuclear effects in Charge Current Quasi-Elastic neutrino scattering (A. Bodek, H. S. Budd, M. E. Christy, Eur. Phys. J. C 71:1726, 2011) is confronted with the MiniBooNE high statistics experimental data.
C1 [Sobczyk, Jan T.] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland.
[Sobczyk, Jan T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Sobczyk, JT (reprint author), Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland.
EM jsobczyk@ift.uni.wroc.pl
RI Sobczyk, Jan/C-9761-2016
FU [N N202 368439]; [DWM/57/T2K/2007]
FX The author was supported by the grants: N N202 368439 and
DWM/57/T2K/2007.
NR 20
TC 8
Z9 8
U1 0
U2 0
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD JAN
PY 2012
VL 72
IS 1
AR 1850
DI 10.1140/epjc/s10052-011-1850-8
PG 4
WC Physics, Particles & Fields
SC Physics
GA 897FM
UT WOS:000300631800016
ER
PT J
AU Venturini, G
Marian, J
Knap, J
Campbell, G
Ortiz, M
AF Venturini, G.
Marian, J.
Knap, J.
Campbell, G.
Ortiz, M.
TI THERMAL EXPANSION BEHAVIOR OF AL AND TA USING A FINITE-TEMPERATURE
EXTENSION OF THE QUASICONTINUUM METHOD
SO INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING
LA English
DT Article
DE multiscale modeling; finite temperature; thermal expansion; Langevin
equation
AB Numerical methods that bridge the atomistic and continuum scales concurrently have been applied successfully to a number of materials science problems involving both nonlinear and long-range deformation fields. However, extension of these methods to finite temperature, nonequilibrium dynamics is difficult due to the intrinsic incoherency between molecular dynamics and continuum thermodynamics, which possess different crystal vibrational spectra and therefore result in unphysical wave reflections across domain boundaries. Here we review our recent finite temperature extension of the three-dimensional, non-local quasicontinuum (QC) method based on Langevin dynamics and carry out an analysis of the systematic errors associated with the entropic depletion that results from the QC reduction. We apply the method to Al and Ta structured meshes ranging from atomistic resolution to minimum-node representations using the thermal expansion coefficient as the standard metric. We find that, while Al errors scale linearly with the number of mesh nodes, Ta displays a very erratic behavior that degrades rapidly with mesh coarsening.
C1 [Venturini, G.; Ortiz, M.] CALTECH, Pasadena, CA 91125 USA.
[Marian, J.; Campbell, G.] Lawrence Livermore Natl Lab, Livermore, CA USA.
RP Venturini, G (reprint author), CALTECH, Pasadena, CA 91125 USA.
EM venturin@caltech.edu
FU LDRD [06-SI-005]; U.S. Department of Energy by Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]
FX This work performed under the LDRD Project No. 06-SI-005, under the
auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory, under Contract No. DE-AC52-07NA27344. G.V. and M.O.
gratefully acknowledge the support of the Department of Energy through
Caltech's PSAAP Center for the Predictive Simulation of the Dynamic
Response of Materials.
NR 16
TC 2
Z9 2
U1 0
U2 9
PU BEGELL HOUSE INC
PI REDDING
PA 50 CROSS HIGHWAY, REDDING, CT 06896 USA
SN 1543-1649
J9 INT J MULTISCALE COM
JI Int. J. Multiscale Comput. Eng.
PY 2012
VL 10
IS 1
BP 1
EP 11
PG 11
WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary
Applications
SC Engineering; Mathematics
GA 903AL
UT WOS:000301085200002
ER
PT J
AU Pask, JE
Sukumar, N
Mousavi, SE
AF Pask, J. E.
Sukumar, N.
Mousavi, S. E.
TI LINEAR SCALING SOLUTION OF THE ALL-ELECTRON COULOMB PROBLEM IN SOLIDS
SO INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING
LA English
DT Article
DE density functional theory; all-electron; real-space formulation; Poisson
equation; enriched finite elements
ID DENSITY-FUNCTIONAL THEORY; FINITE-ELEMENT-METHOD; PERIODIC
BOUNDARY-CONDITIONS; FAST MULTIPOLE METHOD; GAUSSIAN-ORBITALS;
POISSONS-EQUATION; WAVE METHOD; COMPUTATIONS; PARTITION; ALGORITHM
AB We present a linear scaling formulation for the solution of the all-electron Coulomb problem in crystalline solids. The resulting method is systematically improvable and well suited to large-scale quantum mechanical calculations in which the Coulomb potential and energy of a continuous electronic density and singular nuclear density are required. Linear scaling is achieved by introducing smooth, strictly local neutralizing densities to render nuclear interactions strictly local, and solving the remaining neutral Poisson problem for the electrons in real space. Although the formulation includes singular nuclear potentials without smearing approximations, the required Poisson solution is in Sobolev space H-1, as required for convergence in the energy norm. We employ enriched finite elements, with enrichments from isolated atom solutions, for an efficient solution of the resulting Poisson problem in the interacting solid. We demonstrate the accuracy and convergence of the approach by direct comparison to standard Ewald sums for a lattice of point charges and demonstrate the accuracy in all-electron quantum mechanical calculations with an application to crystalline diamond.
C1 [Pask, J. E.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA.
[Sukumar, N.; Mousavi, S. E.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA.
RP Pask, JE (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA.
EM pask1@llnl.gov
RI Mousavi, Seyed Ebrahim/B-4353-2010; Sukumar, N/B-1660-2008
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; Laboratory Directed Research and Development
Program; National Science Foundation [DMS-0811025]; UC Lab
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344. We gratefully acknowledge support from the Laboratory
Directed Research and Development Program; the National Science
Foundation through contract Grant No. DMS-0811025 to the University of
California at Davis; and additional financial support from the UC Lab
Fees Research Program.
NR 54
TC 9
Z9 9
U1 1
U2 13
PU BEGELL HOUSE INC
PI DANBURY
PA 50 NORTH ST, DANBURY, CT 06810 USA
SN 1543-1649
EI 1940-4352
J9 INT J MULTISCALE COM
JI Int. J. Multiscale Comput. Eng.
PY 2012
VL 10
IS 1
BP 83
EP 99
PG 17
WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary
Applications
SC Engineering; Mathematics
GA 903AL
UT WOS:000301085200007
ER
PT J
AU Yoon, S
Liao, C
Sun, XG
Bridges, CA
Unocic, RR
Nanda, J
Dai, S
Paranthaman, MP
AF Yoon, Sukeun
Liao, Chen
Sun, Xiao-Guang
Bridges, Craig A.
Unocic, Raymond R.
Nanda, Jagjit
Dai, Sheng
Paranthaman, M. Parans
TI Conductive surface modification of LiFePO4 with nitrogen-doped carbon
layers for lithium-ion batteries
SO JOURNAL OF MATERIALS CHEMISTRY
LA English
DT Article
ID ELECTROCHEMICAL PROPERTIES; CATHODE MATERIALS; LIMPO4 M=MN; PERFORMANCE;
LIQUIDS; OXIDE; PRECURSORS; ELECTRODES; FE; CO
AB The surface of rod-like LiFePO4 modified with a conductive nitrogen-doped carbon layer has been prepared using hydrothermal processing followed by post-annealing in the presence of an ionic liquid. The conductive surface modified rod-like LiFePO4 exhibits good capacity retention and high rate capability as the nitrogen-doped carbon layer improves conductivity and prevents aggregation of the rods during cycling.
C1 [Yoon, Sukeun; Liao, Chen; Sun, Xiao-Guang; Bridges, Craig A.; Dai, Sheng; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Unocic, Raymond R.; Nanda, Jagjit] Oak Ridge Natl Lab, Mat Sci Technol Div, Oak Ridge, TN 37831 USA.
RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA.
EM dais@ornl.gov; paranthamanm@ornl.gov
RI liao, chen/E-3755-2012; Paranthaman, Mariappan/N-3866-2015; Dai,
Sheng/K-8411-2015;
OI liao, chen/0000-0001-5168-6493; Paranthaman,
Mariappan/0000-0003-3009-8531; Dai, Sheng/0000-0002-8046-3931; Unocic,
Raymond/0000-0002-1777-8228
FU Materials Science and Engineering Division, Office of Basic Energy
Sciences, U.S. Department of Energy; Office of Basic Energy Sciences,
U.S. Department of Energy; Office of the Assistant Secretary for Energy
Efficiency and Renewable Energy; Office of Vehicle Technologies of the
U.S. Department of Energy; ORISE
FX This work was sponsored by the Materials Science and Engineering
Division, Office of Basic Energy Sciences, U.S. Department of Energy.
Microscopy and XPS work were conducted at the ORNL SHaRE user facility,
which is sponsored by the Office of Basic Energy Sciences, U.S.
Department of Energy. J. N. acknowledges funding support from the Office
of the Assistant Secretary for Energy Efficiency and Renewable Energy,
Office of Vehicle Technologies of the U.S. Department of Energy. We
acknowledge Harry Meyer III for assistance with XPS data analysis. S.
Yoon acknowledges the support of the ORISE postdoctoral fellowship.
NR 33
TC 41
Z9 41
U1 3
U2 80
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0959-9428
J9 J MATER CHEM
JI J. Mater. Chem.
PY 2012
VL 22
IS 11
BP 4611
EP 4614
DI 10.1039/c2jm15325d
PG 4
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 896MP
UT WOS:000300571400008
ER
PT J
AU Park, CY
Lee, TH
Dorris, SE
Balachandran, U
AF Park, C. Y.
Lee, T. H.
Dorris, S. E.
Balachandran, U. (Balu)
TI Palladium based film-type cermet membranes for hydrogen separation
SO JOURNAL OF MATERIALS CHEMISTRY
LA English
DT Article
ID CHEMICAL-STABILITY; PERMEATION; PERMEABILITY; RESISTANCES; TRANSPORT
AB Thin-film type cermet (i.e., ceramic-metal composite) membranes were made by a paste painting method, and their hydrogen transport properties were evaluated. The hydrogen permeability of a 30 mu m thick Pd/YSZ (palladium/yttrium-stabilized zirconia) film was compared with that of Pd foil (thickness of 0.1 mm). To test the reproducibility of the results and stability of the Pd/YSZ film, the film's permeability was measured over a period of similar to 300 h as a function of temperature, gas flow rate, and hydrogen partial pressure. In addition, the influence of a porous alumina substrate was investigated by measuring the hydrogen flux of the Pd foil with and without an Al2O3 substrate in front of the foil. The differences between the hydrogen permeability of the cermet film and that of the Pd foil are discussed. As additional practical information about the cermet film, its thermal expansion behavior was studied in air and in nitrogen, and changes in its microstructure were examined during stability tests. Taken together, the results indicate that thin-film Pd/YSZ cermet membranes can meet the requirements of hydrogen transport membranes.
C1 [Park, C. Y.; Lee, T. H.; Dorris, S. E.; Balachandran, U. (Balu)] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
RP Park, CY (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM cpark@anl.gov
FU U.S. Department of Energy (DOE), Office of Fossil Energy, National
Energy Technology Laboratory [DE-AC02-06CH11357]
FX Work supported by the U.S. Department of Energy (DOE), Office of Fossil
Energy, National Energy Technology Laboratory's Advanced Fuels
Technology Program, under Contract DE-AC02-06CH11357.
NR 22
TC 4
Z9 4
U1 0
U2 20
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0959-9428
EI 1364-5501
J9 J MATER CHEM
JI J. Mater. Chem.
PY 2012
VL 22
IS 11
BP 4904
EP 4909
DI 10.1039/c2jm14741f
PG 6
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 896MP
UT WOS:000300571400051
ER
PT J
AU Yang, YQ
Tu, HY
Zhang, AD
Du, D
Lin, YH
AF Yang, Yuqi
Tu, Haiyang
Zhang, Aidong
Du, Dan
Lin, Yuehe
TI Preparation and characterization of Au-ZrO2-SiO2 nanocomposite spheres
and their application in enrichment and detection of organophosphorus
agents
SO JOURNAL OF MATERIALS CHEMISTRY
LA English
DT Article
ID MASS-SPECTROMETRIC ANALYSIS; SOLID-PHASE EXTRACTION; NERVE AGENTS;
PHOSPHORYLATED ACETYLCHOLINESTERASE; ZIRCONIA NANOPARTICLES; SELECTIVE
ENRICHMENT; CARBON NANOTUBES; PESTICIDES; EXPOSURE; PEPTIDES
AB Au-ZrO2-SiO2 nanocomposite spheres were synthesized and used as selective sorbents for the solid-phase extraction (SPE) of organophosphorous agents. A non-enzymatic electrochemical sensor based on a Au-ZrO2-SiO2 modified electrode was developed for the selective detection of organophosphorous pesticides (OPs). The Au-ZrO2-SiO2 nanocomposite spheres were synthesized by the hydrolysis and condensation of zirconium n-butoxide (TBOZ) on the surface of SiO2 spheres and then the introduction of gold nanoparticles on the surface. Transmission electron microscopy and X-ray photoelectron spectroscopy were performed to characterize the formation of the nanocomposite spheres. Fast extraction of OP was achieved by the Au-ZrO2-SiO2 modified electrode within 5 min via the specific affinity between zirconia and the phosphoric group. The assay yields a broad concentration range of paraoxon-ethyl from 1.0 to 500 ng mL(-1) with a detection limit of 0.5 ng mL(-1). This selective and sensitive method holds great promise for the enrichment and detection of OPs.
C1 [Yang, Yuqi; Tu, Haiyang; Zhang, Aidong; Du, Dan] Cent China Normal Univ, Coll Chem, Key Lab Pesticide & Chem Biol, Minist Educ, Wuhan 430079, Peoples R China.
[Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Du, D (reprint author), Cent China Normal Univ, Coll Chem, Key Lab Pesticide & Chem Biol, Minist Educ, Wuhan 430079, Peoples R China.
EM dudan@mail.ccnu.edu.cn; yuehe.lin@pnl.gov
RI Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012
OI Lin, Yuehe/0000-0003-3791-7587;
FU National Natural Science Foundation of China [21075047, 21172088];
Special Fund for Basic Scientific Research of Central Colleges
[CCNU11C01002, CCNU10A02005]; NIH from the National Institute of
Environmental Health Sciences (NIEHS) [U54 ES16015]; US-DOE
[DE-AC05-76RL01830]
FX This work was supported by the National Natural Science Foundation of
China (21075047, 21172088) and the Special Fund for Basic Scientific
Research of Central Colleges (CCNU11C01002, CCNU10A02005). Y. Lin
acknowledges the financial support by a NIH grant (U54 ES16015) from the
National Institute of Environmental Health Sciences (NIEHS). The
contents of this publication are solely the responsibility of the
authors and do not necessarily represent the official views of the NIH.
Pacific Northwest National Laboratory is operated by Battelle for US-DOE
under Contract DE-AC05-76RL01830.
NR 32
TC 17
Z9 17
U1 5
U2 63
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0959-9428
J9 J MATER CHEM
JI J. Mater. Chem.
PY 2012
VL 22
IS 11
BP 4977
EP 4981
DI 10.1039/c2jm15129d
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 896MP
UT WOS:000300571400062
ER
PT J
AU Nagaraja, AR
Perry, NH
Mason, TO
Tang, Y
Grayson, M
Paudel, TR
Lany, S
Zunger, A
AF Nagaraja, Arpun R.
Perry, Nicola H.
Mason, Thomas O.
Tang, Yang
Grayson, Matthew
Paudel, Tula R.
Lany, Stephan
Zunger, Alex
TI Band or Polaron: The Hole Conduction Mechanism in the p-Type Spinel
Rh2ZnO4
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
ID AMORPHOUS OXIDE SEMICONDUCTOR; ELECTRICAL-PROPERTIES; VALENCE-BAND;
TRANSPORT; CRYSTALS; ENERGY
AB Given the emerging role of oxide spinels as hole conductors, we discuss in this article the traditional vs. new methodologies of determining the type of conduction mechanism at playlocalized polaronic vs. band-like transport. Applying (i) traditional small polaron analysis to our in-situ high temperature four-point conductivity and thermopower measurements, we previously found an activated mobility, which is indicative of the small polaron mechanism. However, (ii) employing the recent developments in correcting density functional methodologies for hole localization, we predict that the self-trapped hole is unstable and that Rh2ZnO4 is instead a band conductor with a large effective mass. The hole mobility measured by high-field room temperature Hall effect also suggests band rather than polaron conduction. The apparent contradiction between the conclusion of the traditional procedure (i) and first-principles theory (ii) is resolved by taking into account in the previous transport analysis the temperature dependence of the effective density of states, which leads to the result that the mobility is actually temperature-independent in Rh2ZnO4. Our case study on Rh2ZnO4 illustrates the range of experimental and theoretical approaches at hand to determine whether the transport mechanism of a semiconductor is band or small polaron conduction.
C1 [Nagaraja, Arpun R.; Perry, Nicola H.; Mason, Thomas O.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Tang, Yang; Grayson, Matthew] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA.
[Paudel, Tula R.; Lany, Stephan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Mason, TO (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
EM t-mason@northwestern.edu
RI Grayson, Matthew/B-7159-2009; Mason, Thomas/B-7528-2009; Zunger,
Alex/A-6733-2013;
OI Lany, Stephan/0000-0002-8127-8885
FU Basic Energy Science Division, U.S. Department of Energy
[DE-AC36-08GO28308]; National Science Foundation's MRSEC [DMR-0520513]
FX This work was supported by the Basic Energy Science Division, U.S.
Department of Energy, under Grant No. DE-AC36-08GO28308 to NREL. The
"Center for Inverse Design" is a DOE Energy Frontier Research Center.
The high magnetic field work and use of the J. B. Cohen X-Ray
Diffraction Facility were supported by the National Science Foundation's
MRSEC Program (DMR-0520513) at the Materials Research Center of
Northwestern University.
NR 38
TC 24
Z9 24
U1 3
U2 45
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0002-7820
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD JAN
PY 2012
VL 95
IS 1
BP 269
EP 274
DI 10.1111/j.1551-2916.2011.04771.x
PG 6
WC Materials Science, Ceramics
SC Materials Science
GA 871JX
UT WOS:000298735300046
ER
PT J
AU Bale, H
Blacklock, M
Begley, MR
Marshall, DB
Cox, BN
Ritchie, RO
AF Bale, Hrishikesh
Blacklock, Matthew
Begley, Matthew R.
Marshall, David B.
Cox, Brian N.
Ritchie, Robert O.
TI Characterizing Three-Dimensional Textile Ceramic Composites Using
Synchrotron X-Ray Micro-Computed-Tomography
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
ID 3D WOVEN COMPOSITES; INFILTRATED SIC/SIC COMPOSITES; FIBER ARCHITECTURE;
COMPRESSION; FAILURE; DEFORMATION; MECHANISMS; BEHAVIOR; GEOMETRY;
CRACKING
AB Three-dimensional (3-D) images of two ceramic-matrix textile composites were captured by X-ray micron-resolution computed tomography (mu CT) on a synchrotron beamline. Compared to optical images of sections, CT data reveal comprehensive geometrical information about the fiber tows; information at smaller scales, on matrix voids, individual fibers, and fiber coatings, can also be extracted but image artifacts can compromise interpretation. A statistical analysis of the shape and positioning of the fiber tows in the 3-D woven architecture is performed, based on a decomposition of the spatial variations of any geometrical characteristic of the tows into non-stochastic periodic trends and non-periodic stochastic deviations. The periodic trends are compiled by exploiting the nominal translational invariance of the textile, a process that maximizes the information content of the relatively small specimens that can be imaged at high resolution. The stochastic deviations (or geometrical defects in the textile) are summarized in terms of the standard deviation of any characteristic at a single point along the axis of a tow and correlations between the values of deviations at two different points on the same or different tows. The tow characteristics analyzed consist of the coordinates of the centroids of a tow, together with the area, aspect ratio, and orientation of its cross-section. The tabulated statistics are sufficient to calibrate a probabilistic generator (detailed elsewhere) that can create virtual specimens of any size that are individually distinct but share the statistical characteristics of the small specimens analyzed by X-ray mu CT. The data analysis presented herein forms the first step in formulating a virtual test of textile composites, by providing the statistical information required for realistic description of the textile reinforcement.
C1 [Bale, Hrishikesh; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Bale, Hrishikesh; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Blacklock, Matthew; Begley, Matthew R.] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA.
[Marshall, David B.; Cox, Brian N.] Teledyne Sci Co, Thousand Oaks, CA 91360 USA.
RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM roritchie@lbl.gov
RI Ritchie, Robert/A-8066-2008;
OI Ritchie, Robert/0000-0002-0501-6998; Blacklock,
Matthew/0000-0001-5399-9231
FU Air Force Office of Scientific Research; NASA under the National
Hypersonics Science Center for Materials and Structures (AFOSR)
[FA9550-09-1-0477]; Office of Science of the U.S. Department of Energy
[DE AC02 05CH11231]
FX This work was supported by the Air Force Office of Scientific Research
(Dr. Ali Sayir) and NASA (Dr. Anthony Calomino) under the National
Hypersonics Science Center for Materials and Structures (AFOSR Contract
No. FA9550-09-1-0477). We acknowledge the use of the X-ray synchrotron
micro-tomography beam line (8.3.2) at the Advanced Light Source (ALS) at
the Lawrence Berkeley National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under contract No. DE
AC02 05CH11231.
NR 28
TC 39
Z9 39
U1 4
U2 44
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0002-7820
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD JAN
PY 2012
VL 95
IS 1
BP 392
EP 402
DI 10.1111/j.1551-2916.2011.04802.x
PG 11
WC Materials Science, Ceramics
SC Materials Science
GA 871JX
UT WOS:000298735300064
ER
PT S
AU Wang, GT
Li, QM
Wierer, J
Figiel, J
Wright, JB
Luk, TS
Brener, I
AF Wang, George T.
Li, Qiming
Wierer, Jonathan
Figiel, Jeffrey
Wright, Jeremy B.
Luk, Ting S.
Brener, Igal
BE Streubel, KP
Jeon, H
Tu, LW
Linder, N
TI Top-down fabrication of GaN-based nanorod LEDs and lasers
SO LIGHT-EMITTING DIODES: MATERIALS, DEVICES, AND APPLICATIONS FOR SOLID
STATE LIGHTING XVI
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Light-Emitting Diodes - Materials, Devices, and
Applications for Solid State Lighting XVI
CY JAN 24-26, 2012
CL San Francisco, CA
SP SPIE, OSRAM GmbH
DE GaN; nanowire; nanorod; LED; laser; solid-state lighting; top-down;
chemical vapor deposition
ID EMITTING DIODE-ARRAYS; NANOWIRES
AB Although planar heterostructures dominate current optoelectronic architectures, 1D nanowires and nanorods have distinct and advantageous properties that may enable higher efficiency, longer wavelength, and cheaper devices. We have developed a top-down approach for fabricating ordered arrays of high quality GaN-based nanorods with controllable height, pitch and diameter. This approach avoids many of the limitations of bottom-up synthesis methods. In addition to GaN nanorods, the fabrication and characterization of both axial and radial-type GaN/InGaN nanorod LEDs have been achieved. The precise control over nanorod geometry achiveable by this technique also enables single-mode single nanowire lasing with linewidths of less than 0.1 nm and low lasing thresholds of similar to 250kW/cm(2).
C1 [Wang, George T.; Li, Qiming; Wierer, Jonathan; Figiel, Jeffrey; Wright, Jeremy B.; Luk, Ting S.; Brener, Igal] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Wang, GT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM gtwang@sandia.gov
RI Wang, George/C-9401-2009; Wright, Jeremy/G-7149-2011; Wierer,
Jonathan/G-1594-2013
OI Wang, George/0000-0001-9007-0173; Wright, Jeremy/0000-0001-6861-930X;
Wierer, Jonathan/0000-0001-6971-4835
NR 13
TC 1
Z9 1
U1 1
U2 17
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-0-81948-921-0
J9 PROC SPIE
PY 2012
VL 8278
AR 827816
DI 10.1117/12.909377
PG 6
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BZB68
UT WOS:000301055700017
ER
PT J
AU Wheatley, PV
Peckham, H
Newsome, SD
Koch, PL
AF Wheatley, Patrick V.
Peckham, Hoyt
Newsome, Seth D.
Koch, Paul L.
TI Estimating marine resource use by the American crocodile Crocodylus
acutus in southern Florida, USA
SO MARINE ECOLOGY PROGRESS SERIES
LA English
DT Article
DE Osmoregulation; Saltwater tolerance; Isotope; Reptile; Alligator; Marine
iguana; Sea turtle
ID CARBON-ISOTOPE DISCRIMINATION; ORGANIC-MATTER; STABLE ISOTOPES;
AMBLYRHYNCHUS-CRISTATUS; ESTUARINE CROCODILES; STRONTIUM ISOTOPES;
CONTINENTAL-SHELF; FORAGING ECOLOGY; CARETTA-CARETTA; FOOD WEBS
AB Alligators and crocodiles differ in their physiological capacity to live in saline waters. Crocodiles can tolerate high-salinity water, at least for limited timeframes, whereas alligators and their close relatives cannot. Experiments have placed different crocodylians in various water salinities to document physiological responses, but no study has estimated the extent to which natural populations of crocodylids can live independent of fresh water. Here we estimated marine food and perhaps seawater contributions to a population of American crocodile Crocodylus acutus in southernmost Florida, USA. We evaluated the use of carbon, oxygen, and strontium isotopes as tracers of marine versus terrestrial sources. We compared C. acutus isotopic values to those of marine reptiles (marine iguanas and Pacific loggerhead turtles) and to American alligators, which require fresh water. We found that freshwater reptiles can be discriminated from those that drink seawater (or survive on metabolic and prey-included water in saline habitats) based on the magnitude of population-level oxygen isotope variation in bioapatite, whereas mean carbon isotope values discriminate between marine versus terrestrial food consumption. We used a 2 end-member (seawater and fresh water) mixing model to calculate percentage of marine resources used by C. acutus. Results indicate that adult C. acutus in southern Florida use marine food about 65% of the time and seawater or water gleaned from marine food about 80% of the time. This suggests that behavioral osmoregulatory techniques (i.e. seeking fresh water specifically for drinking, as suggested by other researchers) may not be necessary and that C. acutus is capable of being largely ecologically independent of fresh water.
C1 [Wheatley, Patrick V.; Koch, Paul L.] Univ Calif Santa Cruz, Earth & Planetary Sci Dept, Santa Cruz, CA 95064 USA.
[Peckham, Hoyt] Grp Tortuguero Calif, La Paz 23060, Baja California, Mexico.
[Peckham, Hoyt] Stanford Univ, Ctr Ocean Solut, Monterey, CA 93940 USA.
[Newsome, Seth D.] Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA.
RP Wheatley, PV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Isotope Geochem, Berkeley, CA 94720 USA.
EM pvwheatley@lbl.gov
FU CDELSI; NSF [EAR-0819943]
FX H. Schwartz, J. Zachos, and 4 anonymous reviewers made suggestions to
better this manuscript, and it is much improved thanks to their efforts.
We thank R, Elsey at Rockefeller Wildlife Refuge (RWR) in Louisiana for
supplying samples from RWR. We thank the University of Florida (UF)
curators, M. Nickerson, K. Krysko, and especially F. W. King, for access
and permission to sample the UF crocodylian collection. J. Vendum at the
California Academy of Sciences provided access and samples of marine
iguanas. Although sampling logistics never worked out, M. Slaughter at
J. D. Murphree WMA in Port Author, Texas, was very helpful in trying to
supply samples for this study. Support for this research was supplied by
CDELSI and by NSF Grant EAR-0819943 to P.L.K.
NR 105
TC 11
Z9 12
U1 4
U2 43
PU INTER-RESEARCH
PI OLDENDORF LUHE
PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY
SN 0171-8630
EI 1616-1599
J9 MAR ECOL PROG SER
JI Mar. Ecol.-Prog. Ser.
PY 2012
VL 447
BP 211
EP 229
DI 10.3354/meps09503
PG 19
WC Ecology; Marine & Freshwater Biology; Oceanography
SC Environmental Sciences & Ecology; Marine & Freshwater Biology;
Oceanography
GA 897OG
UT WOS:000300660600015
ER
PT J
AU Cho, KT
Mench, MM
AF Cho, Kyu Taek
Mench, Matthew M.
TI Investigation of the role of the micro-porous layer in polymer
electrolyte fuel cells with hydrogen deuterium contrast neutron
radiography
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID PLANE WATER DISTRIBUTION; COMPOSITE CARBON-BLACK; MICROPOROUS LAYER;
DIFFUSION LAYER; MEMBRANE; TRANSPORT; EXCHANGE; PEMFCS; MEDIA; PEFCS
AB In this study, the high resolution hydrogen-deuterium contrast radiography method was applied to elucidate the impact of the micro-porous layer (MPL) on water distribution in the porous fuel cell media. At the steady state, deuterium replaced hydrogen in the anode stream, and the large difference in neutron attenuation of the D2O produced at the cathode was used to track the produced water. It was found that the water content peaked in the cathode-side diffusion media (DM) for the cell without MPL, but with an MPL on the anode and cathode DM, the peak water amount was pushed toward the anode, resulting in a relatively flattened water profile through components and demonstrating a liquid barrier effect. Additionally, the dynamic water behavior in diffusion media was analyzed to understand the effect of a MPL and operating conditions. The water content in the DM changed with applied current, although there is a significant amount of residual liquid content that does not appear to be part of capillary channels. The effect of the MPL on irreducible saturation in DM and cell performance was also investigated.
C1 [Mench, Matthew M.] Univ Tennessee, Electrochem Energy Storage & Convers Lab, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA.
[Mench, Matthew M.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA.
RP Mench, MM (reprint author), Univ Tennessee, Electrochem Energy Storage & Convers Lab, Dept Mech Aerosp & Biomed Engn, 1512 Middle Dr,414 Dougherty Engn Bldg, Knoxville, TN 37996 USA.
EM mmench@utk.edu
FU NSF [CBET-0644811]
FX The authors wish to thank Drs D. Hussey and D. Jacobson for valuable
discussions at the NIST imaging facility. A portion of this study was
funded by NSF award #CBET-0644811.
NR 43
TC 16
Z9 16
U1 0
U2 24
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2012
VL 14
IS 12
BP 4296
EP 4302
DI 10.1039/c2cp23686a
PG 7
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 901FA
UT WOS:000300946600031
PM 22337210
ER
PT J
AU Du, JC
Tian, ZX
Sui, Y
Zhao, MX
Song, QJ
Cannon, SB
Cregan, P
Ma, JX
AF Du, Jianchang
Tian, Zhixi
Sui, Yi
Zhao, Meixia
Song, Qijian
Cannon, Steven B.
Cregan, Perry
Ma, Jianxin
TI Pericentromeric Effects Shape the Patterns of Divergence, Retention, and
Expression of Duplicated Genes in the Paleopolyploid Soybean
SO PLANT CELL
LA English
DT Article
ID MUTATION-RATE VARIATION; ARABIDOPSIS-THALIANA; GENOME DUPLICATION;
GLYCINE-MAX; DROSOPHILA-MELANOGASTER; TRANSPOSABLE ELEMENTS;
RECOMBINATION RATES; DNA METHYLATION; EVOLUTION; SEQUENCE
AB The evolutionary forces that govern the divergence and retention of duplicated genes in polyploids are poorly understood. In this study, we first investigated the rates of nonsynonymous substitution (Ka) and the rates of synonymous substitution (Ks) for a nearly complete set of genes in the paleopolyploid soybean (Glycine max) by comparing the orthologs between soybean and its progenitor species Glycine soja and then compared the patterns of gene divergence and expression between pericentromeric regions and chromosomal arms in different gene categories. Our results reveal strong associations between duplication status and Ka and gene expression levels and overall low Ks and low levels of gene expression in pericentromeric regions. It is theorized that deleterious mutations can easily accumulate in recombination-suppressed regions, because of Hill-Robertson effects. Intriguingly, the genes in pericentromeric regions-the cold spots for meiotic recombination in soybean-showed significantly lower Ka and higher levels of expression than their homoeologs in chromosomal arms. This asymmetric evolution of two members of individual whole genome duplication (WGD)-derived gene pairs, echoing the biased accumulation of singletons in pericentromeric regions, suggests that distinct genomic features between the two distinct chromatin types are important determinants shaping the patterns of divergence and retention of WGD-derived genes.
C1 [Du, Jianchang; Tian, Zhixi; Sui, Yi; Zhao, Meixia; Ma, Jianxin] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA.
[Du, Jianchang] Jiangsu Acad Agr Sci, Inst Ind Crops, Nanjing 210014, Jiangsu, Peoples R China.
[Zhao, Meixia] Chinese Acad Agr Sci, Inst Oil Crops, Wuhan 430062, Peoples R China.
[Song, Qijian; Cregan, Perry] ARS, US DOE, Soybean Genom & Improvement Lab, Beltsville Agr Res Ctr W, Beltsville, MD 20705 USA.
[Cannon, Steven B.] ARS, US DOE, Corn Insect & Crop Genet Res Unit, Ames, IA 50011 USA.
RP Ma, JX (reprint author), Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA.
EM maj@purdue.edu
RI ZHAO, MEIXIA/N-3124-2015
OI ZHAO, MEIXIA/0000-0001-8812-8217
FU Indiana Soybean Alliance; National Science Foundation Plant Genome
Research [IOS-0822258]; Purdue Agricultural Research Award; Jiangsu
Academy of Agricultural Sciences
FX We thank Hon-Ming Lam and Xin Liu for providing the soybean genome
resequencing data, and Brandon Gaut and Michael Purugganan for their
help interpreting some observations reported in this study. This work
was partially supported by Indiana Soybean Alliance (J.M.), National
Science Foundation Plant Genome Research Program (IOS-0822258) (J.M.,
P.C.), Purdue Agricultural Research Award (J.M.), and Jiangsu Academy of
Agricultural Sciences Startup Funds (J.D.).
NR 80
TC 34
Z9 37
U1 0
U2 13
PU AMER SOC PLANT BIOLOGISTS
PI ROCKVILLE
PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA
SN 1040-4651
J9 PLANT CELL
JI Plant Cell
PD JAN
PY 2012
VL 24
IS 1
BP 21
EP 32
DI 10.1105/tpc.111.092759
PG 12
WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology
SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology
GA 900JA
UT WOS:000300881800006
PM 22227891
ER
PT J
AU Gou, JY
Miller, LM
Hou, GC
Yu, XH
Chen, XY
Liu, CJ
AF Gou, Jin-Ying
Miller, Lisa M.
Hou, Guichuan
Yu, Xiao-Hong
Chen, Xiao-Ya
Liu, Chang-Jun
TI Acetylesterase-Mediated Deacetylation of Pectin Impairs Cell Elongation,
Pollen Germination, and Plant Reproduction
SO PLANT CELL
LA English
DT Article
ID ERWINIA-CHRYSANTHEMI 3937; SUGAR-BEET; GENE-EXPRESSION; TUBE GROWTH;
CAPILLARY-ELECTROPHORESIS; ACETYL-ESTERIFICATION; 2-AMINOBENZOIC ACID;
SEQUENCE ALIGNMENT; WALL-ACETYLATION; O-ACETYLATION
AB Pectin is a major component of the primary cell wall of higher plants. Some galacturonyl residues in the backbone of pectinaceous polysaccharides are often O-acetylated at the C-2 or C-3 position, and the resulting acetylesters change dynamically during the growth and development of plants. The processes involve both enzymatic acetylation and deacetylation. Through genomic sequence analysis, we identified a pectin acetylesterase (PAE1) from black cotton-wood (Populus trichocarpa). Recombinant Pt PAE1 exhibited preferential activity in releasing the acetate moiety from sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectin in vitro. Overexpressing Pt PAE1 in tobacco (Nicotiana tabacum) decreased the level of acetyl esters of pectin but not of xylan. Deacetylation engendered differential changes in the composition and/or structure of cell wall polysaccharides that subsequently impaired the cellular elongation of floral styles and filaments, the germination of pollen grains, and the growth of pollen tubes. Consequently, plants overexpressing PAE1 exhibited severe male sterility. Furthermore, in contrast to the conventional view, PAE1-mediated deacetylation substantially lowered the digestibility of pectin. Our data suggest that pectin acetylesterase functions as an important structural regulator in planta by modulating the precise status of pectin acetylation to affect the remodeling and physiochemical properties of the cell wall's polysaccharides, thereby affecting cell extensibility.
C1 [Gou, Jin-Ying; Yu, Xiao-Hong; Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Hou, Guichuan] Appalachian State Univ, Boone, NC 28608 USA.
[Chen, Xiao-Ya] Shanghai Inst Biol Sci, Natl Key Lab Plant Mol Genet, Inst Plant Physiol & Ecol, Shanghai 200032, Peoples R China.
RP Liu, CJ (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
EM cliu@bnl.gov
RI Gou, Jin-Ying/G-7628-2012;
OI Chen, Xiaoya/0000-0002-2909-8414
FU U.S. Department of Energy [DEAC0298CH10886]; National Science Foundation
[MCB-1051675]; Chinese Academy of Sciences/State Administration of
Foreign Experts Affairs International Partnership for Creative Research
Teams in Plant Metabolisms; National Science Foundation of China
[31028003]; Office of Basic Energy Sciences, U.S. Department of Energy
[DEAC02-98CH10886]
FX We thank Simon Park, William Willis, and Randy Smith at the National
Synchrotron Light Source for their help with FTIR microspectroscopy.
Sugar beet pectin was kindly provided by CP Kelco U.S. This work was
supported by the Division of Chemical Sciences, Geosciences, and
Biosciences, Office of Basic Energy Sciences of the U.S. Department of
Energy through Grant DEAC0298CH10886 and by the National Science
Foundation through Grant MCB-1051675 (to C.-J.L.), the Chinese Academy
of Sciences/State Administration of Foreign Experts Affairs
International Partnership Program for Creative Research Teams in Plant
Metabolisms (to X.-Y.C), and the scholarship for distinguished overseas
researcher from the National Science Foundation of China (31028003; to
C.-J.L.). Use of the National Synchrotron light and confocal microscope
at the Center of Functional Nanomaterials was supported by the Office of
Basic Energy Sciences, U.S. Department of Energy, under Contract
DEAC02-98CH10886.
NR 77
TC 36
Z9 37
U1 2
U2 47
PU AMER SOC PLANT BIOLOGISTS
PI ROCKVILLE
PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA
SN 1040-4651
EI 1532-298X
J9 PLANT CELL
JI Plant Cell
PD JAN
PY 2012
VL 24
IS 1
BP 50
EP 65
DI 10.1105/tpc.111.092411
PG 16
WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology
SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology
GA 900JA
UT WOS:000300881800008
PM 22247250
ER
PT J
AU Du, Q
Kamm, JR
Lehoucq, RB
Parks, ML
AF Du, Qiang
Kamm, James R.
Lehoucq, R. B.
Parks, Michael L.
TI A NEW APPROACH FOR A NONLOCAL, NONLINEAR CONSERVATION LAW
SO SIAM JOURNAL ON APPLIED MATHEMATICS
LA English
DT Article
DE conservation laws; advection; nonlocal operator; integral operator;
Burgers equation; peridynamics
ID DIFFUSION EQUATION; BURGERS-EQUATION; SOLID MECHANICS; WAVES; MODEL;
POSEDNESS; EXISTENCE; FLUX
AB We describe an approach to nonlocal, nonlinear advection in one dimension that extends the usual pointwise concepts to account for nonlocal contributions to the flux. The spatially nonlocal operators we consider do not involve derivatives. Instead, the spatial operator involves an integral that, in a distributional sense, reduces to a conventional nonlinear advective operator. In particular, we examine a nonlocal inviscid Burgers equation, which gives a basic form with which to characterize properties associated with well-posedness, and to examine numerical results for specific cases. We describe the connection to a nonlocal viscous regularization, which mimics the viscous Burgers equation in an appropriate limit. We present numerical results that compare the behavior of the nonlocal Burgers formulation to the standard local case. The developments presented in this paper form the preliminary building blocks upon which to build a theory of nonlocal advection phenomena consistent within the peridynamic theory of continuum mechanics.
C1 [Du, Qiang] Penn State Univ, Dept Math, University Pk, PA 16802 USA.
[Kamm, James R.; Lehoucq, R. B.; Parks, Michael L.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Du, Q (reprint author), Penn State Univ, Dept Math, University Pk, PA 16802 USA.
EM qdu@math.psu.edu; jrkamm@sandia.gov; rblehou@sandia.gov;
mlparks@sandia.gov
RI Du, Qiang/B-1021-2008
OI Du, Qiang/0000-0002-1067-8937
FU U.S. Department of Energy [DE-SC0005346, DE-AC04-94-AL85000]; NSF
[DMS-1016073]; Sandia National Laboratories
FX This author was supported in part by U.S. Department of Energy grant
DE-SC0005346 and NSF grant DMS-1016073.; The work of these authors was
supported by the Laboratory Directed Research and Development program at
Sandia National Laboratories. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the U.S.
Department of Energy under contract DE-AC04-94-AL85000.
NR 38
TC 19
Z9 20
U1 1
U2 18
PU SIAM PUBLICATIONS
PI PHILADELPHIA
PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA
SN 0036-1399
J9 SIAM J APPL MATH
JI SIAM J. Appl. Math.
PY 2012
VL 72
IS 1
BP 464
EP 487
DI 10.1137/110833233
PG 24
WC Mathematics, Applied
SC Mathematics
GA 900LV
UT WOS:000300889500024
ER
PT J
AU Draganescu, A
Petra, C
AF Draganescu, Andrei
Petra, Cosmin
TI MULTIGRID PRECONDITIONING OF LINEAR SYSTEMS FOR INTERIOR POINT METHODS
APPLIED TO A CLASS OF BOX-CONSTRAINED OPTIMAL CONTROL PROBLEMS
SO SIAM JOURNAL ON NUMERICAL ANALYSIS
LA English
DT Article
DE multigrid; interior point methods; PDE-constrained optimization
ID ILL-POSED PROBLEMS; SEMISMOOTH NEWTON METHODS; MULTILEVEL ALGORITHMS;
OPTIMIZATION; CONVERGENCE; SCHEME
AB In this article we construct and analyze multigrid preconditioners for discretizations of operators of the form D-lambda+ kappa*kappa, where D-lambda is the multiplication with a relatively smooth function lambda > 0 and kappa is a compact linear operator. These systems arise when applying interior point methods to the minimization problem min(u) 1/2 (parallel to kappa u-f parallel to(2) + beta parallel to u parallel to(2)) with box-constraints (u) under bar <= u <= (u) over bar on the controls. The presented preconditioning technique is closely related to the one developed by Draganescu and Dupont [Math. Comp., 77 (2008), pp. 2001-2038] for the associated unconstrained problem and is intended for large-scale problems. As in that work, the quality of the resulting preconditioners is shown to increase as h down arrow 0, but it decreases as the smoothness of lambda declines. We test this algorithm on a Tikhonov-regularized backward parabolic equation with box-constraints on the control and on a standard elliptic-constrained optimization problem. In both cases it is shown that the number of linear iterations per optimization step, as well as the total number of finest-scale matrix-vector multiplications, is decreasing with increasing resolution, thus showing the method to be potentially very efficient for truly large-scale problems.
C1 [Draganescu, Andrei] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA.
[Petra, Cosmin] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
RP Draganescu, A (reprint author), Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA.
EM draga@umbc.edu; petra@mcs.anl.gov
FU Department of Energy [DE-SC0005455]; National Science Foundation
[DMS-1016177, DMS-0821311, CCF-0728878]
FX The work of this author was supported in part by the Department of
Energy under contract DE-SC0005455 and by the National Science
Foundation under awards DMS-1016177 and DMS-0821311.; The work of this
author was supported in part by the National Science Foundation under
award CCF-0728878.
NR 28
TC 2
Z9 2
U1 0
U2 1
PU SIAM PUBLICATIONS
PI PHILADELPHIA
PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA
SN 0036-1429
J9 SIAM J NUMER ANAL
JI SIAM J. Numer. Anal.
PY 2012
VL 50
IS 1
BP 328
EP 353
DI 10.1137/100786502
PG 26
WC Mathematics, Applied
SC Mathematics
GA 900MK
UT WOS:000300891000016
ER
PT J
AU Anitescu, M
Chen, J
Wang, L
AF Anitescu, Mihai
Chen, Jie
Wang, Lei
TI A MATRIX-FREE APPROACH FOR SOLVING THE PARAMETRIC GAUSSIAN PROCESS
MAXIMUM LIKELIHOOD PROBLEM
SO SIAM JOURNAL ON SCIENTIFIC COMPUTING
LA English
DT Article
DE Gaussian process; maximum likelihood estimation; sample average
approximation; preconditioned conjugate gradient; Toeplitz system;
circulant preconditioner; fast multipole method
ID INTERPOLATION; CALIBRATION; ALGORITHM; TREECODE; SYSTEMS
AB Gaussian processes are the cornerstone of statistical analysis in many application areas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for computing the solution of the maximum likelihood problem involving Gaussian processes. The approach is based on a stochastic programming reformulation followed by sample average approximation applied to either the maximization problem or its optimality conditions. We provide statistical estimates of the approximate solution. The method is illustrated on several examples where the data is provided on a regular or irregular grid. In the latter case, the action of a covariance matrix on a vector is computed by means of fast multipole methods. For each of the examples presented, we demonstrate that the approach scales linearly with an increase in the number of sites.
C1 [Anitescu, Mihai; Chen, Jie; Wang, Lei] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
RP Anitescu, M (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM anitescu@mcs.anl.gov; jiechen@mcs.anl.gov; lwang@mcs.anl.gov
FU U.S. Department of Energy [DE-AC02-06CH11357]
FX This work was supported by the U.S. Department of Energy under contract
DE-AC02-06CH11357. The submitted manuscript has been created by the
University of Chicago as Operator of Argonne National Laboratory
("Argonne") under Contract No. DE-AC02-06CH11357 with the U. S.
Department of Energy. The U. S. Government retains for itself, and
others acting on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.
NR 34
TC 17
Z9 17
U1 0
U2 5
PU SIAM PUBLICATIONS
PI PHILADELPHIA
PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA
SN 1064-8275
EI 1095-7197
J9 SIAM J SCI COMPUT
JI SIAM J. Sci. Comput.
PY 2012
VL 34
IS 1
BP A240
EP A262
DI 10.1137/110831143
PG 23
WC Mathematics, Applied
SC Mathematics
GA 901BU
UT WOS:000300937500010
ER
PT J
AU Demmel, J
Grigori, L
Hoemmen, M
Langou, J
AF Demmel, James
Grigori, Laura
Hoemmen, Mark
Langou, Julien
TI COMMUNICATION-OPTIMAL PARALLEL AND SEQUENTIAL QR AND LU FACTORIZATIONS
SO SIAM JOURNAL ON SCIENTIFIC COMPUTING
LA English
DT Article
DE linear algebra; QR factorization; LU factorization
ID MATRIX; DECOMPOSITION; PERFORMANCE; ALGORITHMS; COMPLEXITY; SYSTEMS;
SERIAL
AB We present parallel and sequential dense QR factorization algorithms that are both optimal (up to polylogarithmic factors) in the amount of communication they perform and just as stable as Householder QR. We prove optimality by deriving new lower bounds for the number of multiplications done by "non-Strassen-like" QR, and using these in known communication lower bounds that are proportional to the number of multiplications. We not only show that our QR algorithms attain these lower bounds (up to polylogarithmic factors), but that existing LAPACK and ScaLAPACK algorithms perform asymptotically more communication. We derive analogous communication lower bounds for LU factorization and point out recent LU algorithms in the literature that attain at least some of these lower bounds. The sequential and parallel QR algorithms for tall and skinny matrices lead to significant speedups in practice over some of the existing algorithms, including LAPACK and ScaLAPACK, for example, up to 6.7 times over ScaLAPACK. A performance model for the parallel algorithm for general rectangular matrices predicts significant speedups over ScaLAPACK.
C1 [Demmel, James] Univ Calif Berkeley, EECS, Berkeley, CA 94720 USA.
[Grigori, Laura] Univ Paris 11, INRIA Saclay Ile France, Lab Rech Informat, F-91405 Orsay, France.
[Hoemmen, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Langou, Julien] Univ Colorado Denver, Dept Math Sci, Denver, CO 80202 USA.
[Langou, Julien] Hlth Sci Ctr, Denver, CO 80202 USA.
RP Demmel, J (reprint author), Univ Calif Berkeley, EECS, 831 Evans Hall, Berkeley, CA 94720 USA.
EM demmel@eecs.berkeley.edu; Laura.Grigori@inria.fr; mhoemme@sandia.gov;
julien.langou@ucdenver.edu
RI Langou, Julien/G-5788-2013
NR 48
TC 44
Z9 44
U1 0
U2 3
PU SIAM PUBLICATIONS
PI PHILADELPHIA
PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA
SN 1064-8275
J9 SIAM J SCI COMPUT
JI SIAM J. Sci. Comput.
PY 2012
VL 34
IS 1
BP A206
EP A239
DI 10.1137/080731992
PG 34
WC Mathematics, Applied
SC Mathematics
GA 901BU
UT WOS:000300937500009
ER
PT J
AU Sargsyan, K
Safta, C
Debusschere, B
Najm, H
AF Sargsyan, Khachik
Safta, Cosmin
Debusschere, Bert
Najm, Habib
TI UNCERTAINTY QUANTIFICATION GIVEN DISCONTINUOUS MODEL RESPONSE AND A
LIMITED NUMBER OF MODEL RUNS
SO SIAM JOURNAL ON SCIENTIFIC COMPUTING
LA English
DT Article
DE uncertainty quantification; polynomial chaos; Bayesian inference;
discontinuity detection; Rosenblatt transformation
ID FINITE-ELEMENT-METHOD; EDGE-DETECTION; PROPAGATION; SYSTEMS
AB We outline a methodology for forward uncertainty quantification in systems with uncertain parameters, discontinuous model response, and a limited number of model runs. Our approach involves two stages. First we detect the discontinuity with Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve for arbitrarily distributed input parameters. Then, employing the Rosenblatt transform, we construct spectral representations of the uncertain model output, using polynomial chaos (PC) expansions on either side of the discontinuity curve, leading to an averaged PC representation of the forward model response that allows efficient uncertainty quantification. We obtain PC modes by either orthogonal projection or Bayesian inference, and argue for a hybrid approach that targets a balance between the accuracy provided by the orthogonal projection and the flexibility provided by the Bayesian inference. The uncertain model output is then computed by taking an ensemble average over PC expansions corresponding to sampled realizations of the discontinuity curve. The methodology is demonstrated on synthetic examples of discontinuous model response with adjustable sharpness and structure.
C1 [Sargsyan, Khachik; Safta, Cosmin; Debusschere, Bert; Najm, Habib] Sandia Natl Labs, Livermore, CA 94550 USA.
RP Sargsyan, K (reprint author), Sandia Natl Labs, 7011 East Ave,MS 9051, Livermore, CA 94550 USA.
EM ksargsy@sandia.gov; csafta@sandia.gov; bjdebus@sandia.gov;
hnnajm@sandia.gov
FU Sandia National Laboratories Seniors' Council LDRD; U.S. Department of
Energy's National Nuclear Security Administration [DE-AC04-94AL85000]
FX This work was supported by Sandia National Laboratories Seniors' Council
LDRD (Laboratory Directed Research and Development) program. Sandia
National Laboratories is a multiprogram laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Company, for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000. The U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so, for U.S.
Government purposes. Copyright is owned by SIAM to the extent not
limited by these rights.
NR 31
TC 9
Z9 9
U1 0
U2 5
PU SIAM PUBLICATIONS
PI PHILADELPHIA
PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA
SN 1064-8275
EI 1095-7197
J9 SIAM J SCI COMPUT
JI SIAM J. Sci. Comput.
PY 2012
VL 34
IS 1
BP B44
EP B64
DI 10.1137/100817899
PG 21
WC Mathematics, Applied
SC Mathematics
GA 901BU
UT WOS:000300937500024
ER
PT J
AU Breshears, DD
Kirchner, TB
Whicker, JJ
Field, JP
Allen, CD
AF Breshears, David D.
Kirchner, Thomas B.
Whicker, Jeffrey J.
Field, Jason P.
Allen, Craig D.
TI Modeling aeolian transport in response to succession, disturbance and
future climate: Dynamic long-term risk assessment for contaminant
redistribution
SO AEOLIAN RESEARCH
LA English
DT Article; Proceedings Paper
CT 7th International Conference on Aeolian Research (ICAR)
CY JUL 05-09, 2010
CL Santa Rosa, ARGENTINA
DE Aeolian; Contaminant transport; Wind erosion; Dust emission; Risk
assessment; Sediment production
ID GRASSLAND-FOREST CONTINUUM; CHANGE-TYPE DROUGHT; WIND EROSION; SEDIMENT
TRANSPORT; SEMIARID SHRUBLAND; UNITED-STATES; NEW-MEXICO; DIE-OFF;
VEGETATION; PLANT
AB Aeolian sediment transport is a fundamental process redistributing sediment, nutrients, and contaminants in dryland ecosystems. Over time frames of centuries or longer, horizontal sediment fluxes and associated rates of contaminant transport are likely to be influenced by succession, disturbances, and changes in climate, yet models of horizontal sediment transport that account for these fundamental factors are lacking, precluding in large part accurate assessment of human health risks associated with persistent soil-bound contaminants. We present a simple model based on empirical measurements of horizontal sediment transport (predominantly saltation) to predict potential contaminant transport rates for recently disturbed sites such as a landfill cover. Omnidirectional transport is estimated within vegetation that changes using a simple Markov model that simulates successional trajectory and considers three types of short-term disturbances (surface fire, crown fire, and drought-induced plant mortality) under current and projected climates. The model results highlight that movement of contaminated soil is sensitive to vegetation dynamics and increases substantially (e.g., > fivefold) when disturbance and/or future climate are considered. The time-dependent responses in horizontal sediment fluxes and associated contaminant fluxes were sensitive to variability in the timing of disturbance, with longer intervals between disturbance allowing woody plants to become dominant and crown fire and drought abruptly reducing woody plant cover. Our results, which have direct implications for contaminant transport and landfill management in the specific context of our assessment, also have general relevance because they highlight the need to more fully account for vegetation dynamics, disturbance, and changing climate in aeolian process studies. (C) 2011 Published by Elsevier B.V.
C1 [Breshears, David D.; Field, Jason P.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85737 USA.
[Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85737 USA.
[Kirchner, Thomas B.] Carlsbad Environm Monitoring & Res Ctr, Carlsbad, NM 88220 USA.
[Whicker, Jeffrey J.] Los Alamos Natl Lab, Environm Programs, Los Alamos, NM 87545 USA.
[Allen, Craig D.] US Geol Survey, Ft Collins Sci Ctr, Jemez Mt Field Stn, Los Alamos, NM 87544 USA.
RP Breshears, DD (reprint author), Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85737 USA.
EM daveb@email.arizona.edu
NR 77
TC 9
Z9 9
U1 2
U2 23
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1875-9637
J9 AEOLIAN RES
JI Aeolian Res.
PD JAN
PY 2012
VL 3
IS 4
SI SI
BP 445
EP 457
DI 10.1016/j.aeolia.2011.03.012
PG 13
WC Geography, Physical
SC Physical Geography
GA 896AM
UT WOS:000300537800009
ER
PT J
AU Chen, F
Freedman, DL
Falta, RW
Murdoch, LC
AF Chen, Fei
Freedman, David L.
Falta, Ronald W.
Murdoch, Lawrence C.
TI Henry's law constants of chlorinated solvents at elevated temperatures
SO CHEMOSPHERE
LA English
DT Article
DE Henry's law constant; Chlorinated volatile organic compound (CVOC);
Thermal remediation; Vapor pressure; Solubility
ID DILUTE AQUEOUS-SOLUTIONS; WATER; COEFFICIENTS; TRICHLOROETHYLENE;
REMEDIATION; PREDICTION; DEPENDENCE; CHEMICALS
AB Henry's law constants for 12 chlorinated volatile organic compounds (CVOCs) were measured as a function of temperature ranging from 8 to 93 degrees C, using the modified equilibrium partitioning in closed system (EPICS) method. The chlorinated compounds include tetrachloroethylene, trichloroethylene, cis-1,2-dichloroethylene, vinyl chloride, 1,1,1-trichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, chloroethane, carbon tetrachloride, chloroform, dichloromethane, and chloromethane. The variation in Henry's constants for these compounds as a function of temperature ranged from around 3-fold (chloroethane) to 30-fold (1.2-dichloroethane). Aqueous solubilities of the pure compounds were measured over the temperature range of 8-75 degrees C. The temperature dependence of Henry's constant was predicted using the ratio of pure vapor pressure to aqueous solubility, both of which are functions of temperature. The calculated Henry's constants are in a reasonable agreement with the measured results. With the improved data on Henry's law constants at high temperatures measured in this study, it will be possible to more accurately model subsurface remediation processes that operate near the boiling point of water. Published by Elsevier Ltd.
C1 [Chen, Fei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Chen, Fei; Freedman, David L.; Falta, Ronald W.; Murdoch, Lawrence C.] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA.
RP Chen, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM feic@clemson.edu
RI Chen, Fei/G-5444-2014
FU Strategic Environmental Research and Development Program [ER-1553]
FX This research was supported in part by Grant ER-1553 from the Strategic
Environmental Research and Development Program.
NR 23
TC 15
Z9 15
U1 3
U2 54
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0045-6535
J9 CHEMOSPHERE
JI Chemosphere
PD JAN
PY 2012
VL 86
IS 2
BP 156
EP 165
DI 10.1016/j.chemosphere.2011.10.004
PG 10
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA 896UC
UT WOS:000300595900008
PM 22071373
ER
PT J
AU Dukowicz, JK
AF Dukowicz, J. K.
TI Reformulating the full-Stokes ice sheet model for a more efficient
computational solution
SO CRYOSPHERE
LA English
DT Article
ID SUBGLACIAL LAKES; HIGHER-ORDER; DYNAMICS
AB The first-order or Blatter-Pattyn ice sheet model, in spite of its approximate nature, is an attractive alternative to the full Stokes model in many applications because of its reduced computational demands. In contrast, the unapproximated Stokes ice sheet model is more difficult to solve and computationally more expensive. This is primarily due to the fact that the Stokes model is indefinite and involves all three velocity components, as well as the pressure, while the Blatter-Pattyn discrete model is positive-definite and involves just the horizontal velocity components. The Stokes model is indefinite because it arises from a constrained minimization principle where the pressure acts as a Lagrange multiplier to enforce incompressibility. To alleviate these problems we reformulate the full Stokes problem into an unconstrained, positive-definite minimization problem, similar to the Blatter-Pattyn model but without any of the approximations. This is accomplished by introducing a divergence-free velocity field that satisfies appropriate boundary conditions as a trial function in the variational formulation, thus dispensing with the need for a pressure. Such a velocity field is obtained by vertically integrating the continuity equation to give the vertical velocity as a function of the horizontal velocity components, as is in fact done in the Blatter-Pattyn model. This leads to a reduced system for just the horizontal velocity components, again just as in the Blatter-Pattyn model, but now without approximation. In the process we obtain a new, reformulated Stokes action principle as well as a novel set of Euler-Lagrange partial differential equations and boundary conditions. The model is also generalized from the common case of an ice sheet in contact with and sliding along the bed to other situations, such as to a floating ice shelf. These results are illustrated and validated using a simple but nontrivial Stokes flow problem involving a sliding ice sheet.
C1 Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling COSIM Project, Grp T 3, Los Alamos, NM 87545 USA.
RP Dukowicz, JK (reprint author), Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling COSIM Project, Grp T 3, MS B216, Los Alamos, NM 87545 USA.
EM duk@lanl.gov
FU US Department of Energy's Office of Science (Biological and
Environmental Research); National Nuclear Security Administration of the
US Department of Energy [DE-AC52-06NA25396]
FX Funding for this work was provided by the Climate Modeling program in
the US Department of Energy's Office of Science (Biological and
Environmental Research). Los Alamos National Laboratory is operated
under the auspices of the National Nuclear Security Administration of
the US Department of Energy under Contract No. DE-AC52-06NA25396.
NR 19
TC 3
Z9 3
U1 0
U2 2
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1994-0416
EI 1994-0424
J9 CRYOSPHERE
JI Cryosphere
PY 2012
VL 6
IS 1
BP 21
EP 34
DI 10.5194/tc-6-21-2012
PG 14
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA 891OO
UT WOS:000300226700002
ER
PT J
AU Lux, SF
Lucas, IT
Pollak, E
Passerini, S
Winter, M
Kostecki, R
AF Lux, S. F.
Lucas, I. T.
Pollak, E.
Passerini, S.
Winter, M.
Kostecki, R.
TI The mechanism of HF formation in LiPF6 based organic carbonate
electrolytes
SO ELECTROCHEMISTRY COMMUNICATIONS
LA English
DT Article
DE Lithium ion batteries; Hydrofluoric acid; Spectroscopic ellipsometry;
LiPF6 degradation
ID ION BATTERY ELECTROLYTES; RECHARGEABLE BATTERIES; STABILITY;
TEMPERATURE; SALT; CONDUCTIVITY; ELECTRODES; PF5
AB Spectroscopic ellipsometry was used to study the time-dependent formation of HF upon the thermal degradation of LiPF6 at 50 degrees C in a lithium ion battery electrolyte containing ethylene carbonate and diethyl carbonate. The generated HF was monitored by following the etching rate of a 300 nm thick SiO2 layer, grown on both sides of a silicon wafer substrate, as a function of the immersion time in the electrolyte at 50 C degrees. It was found that the formation of HF starts after 70 h of exposure time and occurs following several different phases. The amount of generated HF was calculated using an empirical formula correlating the etching rate to the temperature. Combining the results of the HF formation with literature data, a simplified mechanism for the formation of the HF involving LiPF6 degradation, and a simplified catalytical reaction pathway of the formed HF and silicon dioxide are proposed to describe the kinetics of HF formation. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Lux, S. F.; Passerini, S.; Winter, M.] Univ Munster, Inst Phys Chem, MEET Labs, D-48149 Munster, Germany.
[Lux, S. F.; Lucas, I. T.; Pollak, E.; Kostecki, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Lux, SF (reprint author), Univ Munster, Inst Phys Chem, MEET Labs, Corrensstr 46, D-48149 Munster, Germany.
EM simon.lux@uni-muenster.de
RI LUCAS, Ivan /S-5742-2016;
OI LUCAS, Ivan /0000-0001-8930-0437; Passerini, Stefano/0000-0002-6606-5304
FU German Ministry of Education and Research (BMBF) within the research
alliance [03X4601A, LIB2015]; Office of Vehicle Technologies of the U.S.
Department of Energy [DE-AC02-05CH11231]
FX The work was carried out under the joint sponsorship of the German
Ministry of Education and Research (BMBF) in the project "LiVe"
(03X4601A) within the "LIB2015" research alliance and by the Assistant
Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle
Technologies of the U.S. Department of Energy, under contract no.
DE-AC02-05CH11231.
NR 21
TC 125
Z9 127
U1 13
U2 115
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1388-2481
J9 ELECTROCHEM COMMUN
JI Electrochem. Commun.
PD JAN
PY 2012
VL 14
IS 1
BP 47
EP 50
DI 10.1016/j.elecom.2011.10.026
PG 4
WC Electrochemistry
SC Electrochemistry
GA 891EL
UT WOS:000300199900013
ER
PT J
AU Marsh, GE
AF Marsh, Gerald E.
TI CLIMATE CHANGE: SOURCES OF WARMING IN THE LATE 20TH CENTURY
SO ENERGY & ENVIRONMENT
LA English
DT Editorial Material
ID NORTH-ATLANTIC OSCILLATION; TEMPERATURE
AB The role of the North Atlantic Oscillation, the Pacific Decadal Oscillation, volcanic and other aerosols, as well as the extraordinary solar activity of the late 20th century are discussed in the context of the warming since the mid-1970s. Much of that warming is found to be due to natural causes.
C1 [Marsh, Gerald E.] Argonne Natl Lab, Chicago, IL 60615 USA.
EM gemarsh@uchicago.edu
NR 15
TC 0
Z9 0
U1 0
U2 3
PU MULTI-SCIENCE PUBL CO LTD
PI BRENTWOOD
PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND
SN 0958-305X
J9 ENERG ENVIRON-UK
JI Energy Environ.
PY 2012
VL 23
IS 1
BP 95
EP 104
PG 10
WC Environmental Studies
SC Environmental Sciences & Ecology
GA 898RH
UT WOS:000300759000009
ER
PT B
AU Vishnivetskaya, TA
Raman, B
Phelps, TJ
Podar, M
Elkins, JG
AF Vishnivetskaya, Tatiana A.
Raman, Babu
Phelps, Tommy J.
Podar, Mircea
Elkins, James G.
BE Anitori, RP
TI Cellulolytic Microorganisms from Thermal Environments
SO EXTREMOPHILES: MICROBIOLOGY AND BIOTECHNOLOGY
LA English
DT Article; Book Chapter
ID YELLOWSTONE-NATIONAL-PARK; THERMOPHILE CALDOCELLUM-SACCHAROLYTICUM;
CLOSTRIDIUM-THERMOCELLUM JW20; PAPER SLUDGE HYDROLYSATE; ICELANDIC
HOT-SPRINGS; SP-NOV; CALDICELLULOSIRUPTOR-SACCHAROLYTICUS;
HYDROGEN-PRODUCTION; GEN-NOV; ANAEROCELLUM-THERMOPHILUM
AB Conversion of lignocellulosic biomass to liquid fuels using biological processes offers a potential solution to partially offset the world's dependence on fossil fuels for energy In nature, decomposition of organic plant biomass is brought about by the combined action of several interacting microorganisms existing in complex communities. Bioprospecting in natural environments with high cellulolytic activity (for example, thermal springs) may yield novel cellulolytic microorganisms and enzymes with elevated rates of biomass hydrolysis for use in industrial biofuel production. In this chapter, various cellulose-degrading microorganisms (in particular, thermophilic anaerobic bacteria), their hydrolytic enzymes, and recent developments in the application of biomass fermentations for production of sustainable bioenergy are reviewed. In this context, results from ongoing research at the Oak Ridge National Laboratory in the isolation and subsequent phylogenetic and metabolic characterization of thermophilic, anaerobic, cellulolytic bacteria from the hot springs of Yellowstone National Park are presented.
C1 [Vishnivetskaya, Tatiana A.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA.
[Phelps, Tommy J.; Podar, Mircea; Elkins, James G.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN USA.
[Phelps, Tommy J.; Podar, Mircea; Elkins, James G.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.
[Raman, Babu] Dow AgroSci, Bioproc R&D, Indianapolis, IN USA.
RP Vishnivetskaya, TA (reprint author), Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA.
EM tvishniv@utk.edu; braman@dow.com; phelpstj@ornl.gov; podarm@ornl.gov;
elkinsjg@ornl.gov
RI Elkins, James/A-6199-2011
OI Elkins, James/0000-0002-8052-5688
NR 124
TC 1
Z9 1
U1 1
U2 9
PU CAISTER ACADEMIC PRESS
PI WYMONDHAM
PA 32 HEWITTS LANE, WYMONDHAM NR 18 0JA, ENGLAND
BN 978-1-904455-98-1
PY 2012
BP 131
EP 158
PG 28
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA BYN37
UT WOS:000299435800008
ER
PT J
AU Houf, WG
Evans, GH
Merilo, E
Groethe, M
James, SC
AF Houf, William G.
Evans, Greg H.
Merilo, Erik
Groethe, Mark
James, Scott C.
TI Releases from hydrogen fuel-cell vehicles in tunnels
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE Hydrogen fuel-cell vehicle; Tunnel; Dispersion; Deflagration; Modeling;
Experiments
ID DEFLAGRATIONS
AB An important issue concerning the safe use of hydrogen-powered fuel-cell vehicles is the possibility of accidents inside tunnels resulting in the release of hydrogen. To investigate the potential consequences, a combined experimental and modeling study has been performed to characterize releases from a hydrogen fuel-cell vehicle inside a tunnel. In the scenario studied, all three of the fuel-cell vehicle's onboard hydrogen tanks were simultaneously released through three thermal pressure relief devices (TPRDs) toward the road surface. Computation fluid dynamics (CFD) simulations were used to model the release of hydrogen from the fuel-cell vehicle and to study the behavior of the ignitable hydrogen cloud inside the tunnel. Deflagration overpressure simulations of the hydrogen cloud within the tunnel were also performed for different ignition delay times and ignition locations. To provide model validation data for these simulations, experiments were performed in a scaled tunnel test facility at the SRI Corral Hollow Experiment Site (CHES). The scaled tunnel tests were designed to resemble the full-scale tunnel simulations using Froude scaling. The scale factor, based on the square route of the ratio of the SRI tunnel area to the full-scale tunnel area was 1/2.53. The same computational models used in the full-scale tunnel simulations were applied to these scaled tunnel tests to validate the modeling approach. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
C1 [Houf, William G.; Evans, Greg H.; James, Scott C.] Sandia Natl Labs, Livermore, CA 94551 USA.
[Merilo, Erik; Groethe, Mark] SRI Int, Menlo Pk, CA 94025 USA.
RP Houf, WG (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA.
EM will@sandia.gov
OI James, Scott/0000-0001-7955-0491
FU U.S. Department of Energy, Office of Energy Efficiency and Renewable
Energy
FX The authors wish to acknowledge Jeff LaChance for his helpful
discussions regarding the risk analysis considerations in the paper.
This work was supported by the U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program
under the Safety, Codes, and Standards subprogram element managed by
Antonio Ruiz.
NR 16
TC 6
Z9 6
U1 0
U2 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD JAN
PY 2012
VL 37
IS 1
BP 715
EP 719
DI 10.1016/j.ijhydene.2011.09.110
PG 5
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 895BA
UT WOS:000300470000069
ER
PT J
AU Zhou, YY
Weng, QH
Gurney, KR
Shuai, YM
Hu, XF
AF Zhou, Yuyu
Weng, Qihao
Gurney, Kevin R.
Shuai, Yanmin
Hu, Xuefei
TI Estimation of the relationship between remotely sensed anthropogenic
heat discharge and building energy use
SO ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING
LA English
DT Article
DE Anthropogenic heat discharge; Building energy use; Multi-scale; Urban
heat island; Urban remote sensing
ID LANDSAT SURFACE REFLECTANCE; BALANCE ALGORITHM; URBAN CLIMATES; TEB
SCHEME; ASTER; ALBEDO; EMISSIVITY; SIMULATION; SEPARATION; EMISSIONS
AB This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered. (C) 2011 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
C1 [Zhou, Yuyu] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
[Weng, Qihao] Indiana State Univ, Dept Earth & Environm Syst, Ctr Urban & Environm Change, Terre Haute, IN 47809 USA.
[Gurney, Kevin R.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA.
[Shuai, Yanmin] Earth Resources Technol Inc, Laurel, MD 20707 USA.
[Shuai, Yanmin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Hu, Xuefei] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA.
RP Zhou, YY (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA.
EM zhouyuyu@gmail.com
RI Shuai, Yanmin/G-1329-2012;
OI Weng, Qihao/0000-0002-2498-0934
NR 39
TC 17
Z9 20
U1 4
U2 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0924-2716
EI 1872-8235
J9 ISPRS J PHOTOGRAMM
JI ISPRS-J. Photogramm. Remote Sens.
PD JAN
PY 2012
VL 67
BP 65
EP 72
DI 10.1016/j.isprsjprs.2011.10.007
PG 8
WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing;
Imaging Science & Photographic Technology
SC Physical Geography; Geology; Remote Sensing; Imaging Science &
Photographic Technology
GA 898NU
UT WOS:000300749900007
ER
PT J
AU Carpenter, JS
Vogel, SC
AF Carpenter, John S.
Vogel, Sven C.
TI Perspective on Neutron Diffraction as a Tool for Characterizing
Minerals, Metals, and Materials
SO JOM
LA English
DT Editorial Material
C1 [Carpenter, John S.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
[Vogel, Sven C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA.
[Carpenter, John S.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
RP Carpenter, JS (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
EM carpenter@lanl.gov
RI Lujan Center, LANL/G-4896-2012;
OI Vogel, Sven C./0000-0003-2049-0361; Carpenter, John/0000-0001-8821-043X
NR 0
TC 0
Z9 0
U1 0
U2 4
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
J9 JOM-US
JI JOM
PD JAN
PY 2012
VL 64
IS 1
BP 102
EP 103
DI 10.1007/s11837-011-0227-7
PG 2
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA 898WL
UT WOS:000300773000016
ER
PT J
AU Vogel, SC
Carpenter, JS
AF Vogel, Sven C.
Carpenter, John S.
TI Brief Introduction to Neutron Scattering and Global Neutron User
Facilities
SO JOM
LA English
DT Article
ID DIFFRACTOMETER
AB Neutrons play a vital role as a powerful tool in basic science and applied research. In this article, the basic properties of neutrons, their generation and detection, as well as some fundamental aspects of neutron instrumentation are introduced. Neutron user facilities, at which the user may obtain more specific information and apply for beam time, are also discussed.
C1 [Vogel, Sven C.; Carpenter, John S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Vogel, SC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM sven@lanl.gov
RI Lujan Center, LANL/G-4896-2012;
OI Vogel, Sven C./0000-0003-2049-0361; Carpenter, John/0000-0001-8821-043X
NR 17
TC 4
Z9 4
U1 0
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
J9 JOM-US
JI JOM
PD JAN
PY 2012
VL 64
IS 1
BP 104
EP 111
DI 10.1007/s11837-011-0220-1
PG 8
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA 898WL
UT WOS:000300773000017
ER
PT J
AU Proffen, T
AF Proffen, Th.
TI Neutron Total Scattering Analysis of Nanoparticles
SO JOM
LA English
DT Article
AB Nanoparticles are entering many aspects of our lives as they often possess properties their bulk counterparts lack. The arsenal of structural characterization techniques for bulk materials is well established. In the case of nanomaterials these tools are just starting to emerge. In this paper the total scattering approach applied to nanomaterials and the promises it holds are discussed.
C1 Oak Ridge Natl Lab, Div Neutron Sci, Oak Ridge, TN 37831 USA.
RP Proffen, T (reprint author), Oak Ridge Natl Lab, Div Neutron Sci, Oak Ridge, TN 37831 USA.
EM tproffen@ornl.gov
RI Proffen, Thomas/B-3585-2009
OI Proffen, Thomas/0000-0002-1408-6031
NR 8
TC 3
Z9 3
U1 0
U2 17
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
J9 JOM-US
JI JOM
PD JAN
PY 2012
VL 64
IS 1
BP 112
EP 116
DI 10.1007/s11837-011-0216-x
PG 5
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA 898WL
UT WOS:000300773000018
ER
PT J
AU Clausen, B
Brown, DW
Noyan, IC
AF Clausen, Bjorn
Brown, Donald W.
Noyan, I. C.
TI Engineering Applications of Time-of-Flight Neutron Diffraction
SO JOM
LA English
DT Article
ID RESIDUAL-STRESS MEASUREMENTS; ZIRCALOY-4 WELD; REFINEMENT
AB Time-of-flight neutron diffraction is widely used in characterizing the microstructure and mechanical response of heterogeneous systems. Microstructural characterization techniques include spatial or temporal mapping of the phases and determination of grain size, dislocation structure, and grain orientations (texture) within these phases. Mechanical response analysis utilizes the crystallographic selectivity of the diffraction process to measure the partitioning of strain within the system. The microstructural and mechanical response information is then used to develop more realistic constitutive models. In this article we review some examples of such measurements, based on our experiences at the Lujan Center of Los Alamos National Laboratory.
C1 [Clausen, Bjorn] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA.
[Noyan, I. C.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA.
RP Clausen, B (reprint author), Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA.
EM icn2@columbia.edu
RI Lujan Center, LANL/G-4896-2012; Clausen, Bjorn/B-3618-2015
OI Clausen, Bjorn/0000-0003-3906-846X
FU Department of Energy's Office of Basic Energy Sciences; DOE
[DE-AC52-06NA25396]
FX This work has benefited from the use of the Lujan Neutron Scattering
Center at LANSCE, which is funded by the Department of Energy's Office
of Basic Energy Sciences. Los Alamos National Laboratory is operated by
Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396.
We thank all our collaborators over the past decade whose contributions
are summarized here. Special thanks are due to Prof. D.G. Carr for
permission to use Figs. 9 and 10.
NR 13
TC 3
Z9 4
U1 0
U2 17
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
J9 JOM-US
JI JOM
PD JAN
PY 2012
VL 64
IS 1
BP 117
EP 126
DI 10.1007/s11837-011-0119-x
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA 898WL
UT WOS:000300773000019
ER
PT J
AU Ren, Y
AF Ren, Yang
TI High-Energy Synchrotron X-Ray Diffraction and Its Application to In Situ
Structural Phase-Transition Studies in Complex Sample Environments
SO JOM
LA English
DT Article
ID MANGANITES; MAGNETORESISTANCE; SCIENCE
AB A solid may undergo a phase transition due to internal interaction competition or external stimuli. It is increasingly recognized that the lattice degrees of freedom often play a crucial role, especially in the vicinity of competing phases, where many intriguing properties exist. A crystal structure transition is usually accompanied by a drastic change in the mechanical, electrical, magnetic, and other properties. In situ study of the microscopic structural information of materials during phase transformation is of ultimate importance not only in understanding fundamental mechanisms but also in developing and processing advanced materials for broad technological applications. The availability of synchrotron-generated high-flux and high-energy x-rays has significantly advanced the field of materials research because of the deep penetration and low absorption of high-energy x-rays. Synchrotron high-energy x-ray diffraction facilities provide great research opportunities, especially for probing structural phase transformations of bulk materials in real time and in realistic conditions. In this overview we present technical details and capabilities of a synchrotron high-energy x-ray facility and its applications to in situ structural investigations of phase transitions in advanced materials in research areas ranging from condensed-matter and materials science and engineering to energy science.
C1 Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
RP Ren, Y (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
EM yren@anl.gov
FU US Department of Energy, Office of Science, Office of Basic Energy
Science [DE-AC02-06CH11357]
FX We would like to thank all our colleagues, collaborators, and users, who
contributed to the development and upgrade of the beamline and helped
the experimental activities and worked on the scientific research
projects at the beamline. Use of the Advanced Photon Source was
supported by the US Department of Energy, Office of Science, Office of
Basic Energy Science, under Contract No. DE-AC02-06CH11357.
NR 28
TC 6
Z9 6
U1 0
U2 7
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
J9 JOM-US
JI JOM
PD JAN
PY 2012
VL 64
IS 1
BP 140
EP 149
DI 10.1007/s11837-011-0218-8
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA 898WL
UT WOS:000300773000022
ER
PT J
AU Wang, YD
Nie, ZH
Ren, Y
Liaw, PK
AF Wang, Y. D.
Nie, Z. H.
Ren, Y.
Liaw, P. K.
TI High-Energy Synchrotron X-Ray Diffraction for In Situ Study of Phase
Transformation in Shape-Memory Alloys
SO JOM
LA English
DT Article
ID NI2MNGA; CRYSTALS; STRESS; TRANSITIONS
AB This overview highlights very recent progress on the application of high-energy x-ray diffraction for in situ study of the phase transformation of shape-memory alloys. The advantages of the synchrotron-based high-energy x-ray diffraction method and the experimental setup for exploring the phase-transition behavior of single crystals or textured polycrystalline materials under multiple external fields are described. Experimental investigations on the influence of external stress, magnetic, and thermal fields on the phase-transformation behaviors of thermal and ferromagnetic shape-memory alloys, and nanowire-reinforced shape-memory composites are also summarized. Special attention is given to recent scientific issues related to the microscopic "memory" of martensite variants, transition kinetics, magnetic field-induced selection of variants, magnetic field-driven phase transition, and superelasticity.
C1 [Wang, Y. D.; Nie, Z. H.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.
[Ren, Y.] Argonne Natl Lab, XRay Sci Div, Argonne, IL 60439 USA.
[Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Wang, YD (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.
EM ydwang@bit.edu.cn
RI Nie, Zhihua/G-9459-2013; ran, shi/G-9380-2013; wang, yandong/G-9404-2013
OI Nie, Zhihua/0000-0002-2533-933X;
FU National Natural Science Foundation of China [50725102, 50971031,
51001015]; National Basic Research Program of China (973 Program)
[2012CB619405]; US Department of Energy, Office of Science, Office of
Basic Energy Science [DE-AC02-06CH11357]; National Science Foundation
[DMR-0231320, DMR-0909037, CMMI-0900271, CMMI-1100080]
FX This work is supported by the National Natural Science Foundation of
China (Grant Nos. 50725102, 50971031, and 51001015) and National Basic
Research Program of China (973 Program) under Contract No. 2012CB619405.
The use of the Advanced Photon Source was supported by the US Department
of Energy, Office of Science, Office of Basic Energy Science, under
Contract No. DE-AC02-06CH11357. P.K.L. greatly appreciates the support
of the National Science Foundation (DMR-0231320, DMR-0909037,
CMMI-0900271, and CMMI-1100080) with Drs. C. Huber, A. Ardell, and C.V.
Cooper as Program Directors.
NR 34
TC 2
Z9 2
U1 1
U2 33
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
J9 JOM-US
JI JOM
PD JAN
PY 2012
VL 64
IS 1
BP 150
EP 160
DI 10.1007/s11837-011-0221-0
PG 11
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA 898WL
UT WOS:000300773000023
ER
PT J
AU Cheng, TL
Ma, FDD
Zhou, JE
Jennings, G
Ren, Y
Jin, YMM
Wang, YU
AF Cheng, Tian-Le
Ma, Fengde D.
Zhou, Jie E.
Jennings, Guy
Ren, Yang
Jin, Yongmei M.
Wang, Yu U.
TI In Situ Three-Dimensional Reciprocal-Space Mapping of Diffuse Scattering
Intensity Distribution and Data Analysis for Precursor Phenomenon in
Shape-Memory Alloy
SO JOM
LA English
DT Article
ID NI2MNGA
AB Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy.
C1 [Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jin, Yongmei M.; Wang, Yu U.] Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA.
[Jennings, Guy; Ren, Yang] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Cheng, TL (reprint author), Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA.
EM wangyu@mtu.edu
FU NSF [DMR-1002521]; Materials Sciences and Engineering Division, Office
of Basic Energy Sciences (DOE) [DE-FG02-09ER46674]; DOE
[DE-AC02-06CH11357]
FX This work was supported by NSF under Award No. DMR-1002521 and by
Materials Sciences and Engineering Division, Office of Basic Energy
Sciences (DOE) under Award No. DE-FG02-09ER46674. Use of the Advanced
Photon Source, an Office of Science User Facility operated for US DOE
Office of Science by Argonne National Laboratory, was supported by DOE
under Contract No. DE-AC02-06CH11357.
NR 9
TC 5
Z9 5
U1 3
U2 11
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
J9 JOM-US
JI JOM
PD JAN
PY 2012
VL 64
IS 1
BP 167
EP 173
DI 10.1007/s11837-011-0228-6
PG 7
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA 898WL
UT WOS:000300773000025
ER
PT J
AU Boutchko, R
Rayz, VL
Vandehey, NT
O'Neil, JP
Budinger, TF
Nico, PS
Druhan, JL
Saloner, DA
Gullberg, GT
Moses, WW
AF Boutchko, Rostyslav
Rayz, Vitaliy L.
Vandehey, Nicholas T.
O'Neil, James P.
Budinger, Thomas F.
Nico, Peter S.
Druhan, Jennifer L.
Saloner, David A.
Gullberg, Grant T.
Moses, William W.
TI Imaging and modeling of flow in porous media using clinical nuclear
emission tomography systems and computational fluid dynamics
SO JOURNAL OF APPLIED GEOPHYSICS
LA English
DT Article
DE Nuclear emission tomography; PET; SPECT; Column flow; Imaging
ID BIOREMEDIATION; VISUALIZATION; POROSITY; URANIUM; ROCK
AB This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using F-18-FDG PET are used to trace flow through a 5 cm diameter x 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image Tc-99m-DTPA tracer propagation in a through-flowing column (10 cm diameter x 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems. Published by Elsevier B.V.
C1 [Boutchko, Rostyslav; Vandehey, Nicholas T.; O'Neil, James P.; Budinger, Thomas F.; Gullberg, Grant T.; Moses, William W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Radiotracer Dev & Imaging Technol, Berkeley, CA 94720 USA.
[Rayz, Vitaliy L.; Saloner, David A.] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA.
[Nico, Peter S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Geochem, Berkeley, CA 94720 USA.
[Druhan, Jennifer L.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94710 USA.
RP Boutchko, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Radiotracer Dev & Imaging Technol, 1 Cyclotron Rd,MS55R0121, Berkeley, CA 94720 USA.
EM rbuchko@lbl.gov
RI Druhan, Jennifer/G-2584-2011; Nico, Peter/F-6997-2010;
OI Nico, Peter/0000-0002-4180-9397; Vandehey, Nicholas/0000-0003-0286-7532
FU Office of Science, Office of Biological and Environmental Research,
Biological Systems Science; Climate and Environmental Science Divisions
of the U.S. Department of Energy [DE-AC02-05CH11231]; National
Institutes of Health [K25NS059891]
FX This work was supported by the Director, Office of Science, Office of
Biological and Environmental Research, Biological Systems Science and
Climate and Environmental Science Divisions of the U.S. Department of
Energy under contract no. DE-AC02-05CH11231, "Radiotracer Imaging
Technologies for Plant, Microbial, and Environmental Systems" and
"Subsurface Science Sustainable Systems" Scientific Focus areas, and by
National Institutes of Health grant no. K25NS059891.
NR 20
TC 13
Z9 13
U1 0
U2 32
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0926-9851
J9 J APPL GEOPHYS
JI J. Appl. Geophys.
PD JAN
PY 2012
VL 76
BP 74
EP 81
DI 10.1016/j.jappgeo.2011.10.003
PG 8
WC Geosciences, Multidisciplinary; Mining & Mineral Processing
SC Geology; Mining & Mineral Processing
GA 896EA
UT WOS:000300547000009
PM 24917693
ER
PT J
AU Singh, G
Thomas, R
Kumar, A
Katiyar, RS
Manivannan, A
AF Singh, Gurpreet
Thomas, R.
Kumar, Arun
Katiyar, R. S.
Manivannan, A.
TI Electrochemical and Structural Investigations on ZnO Treated 0.5
Li2MnO3-0.5LiMn(0.5)Ni(0.5)O(2) Layered Composite Cathode Material for
Lithium Ion Battery
SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY
LA English
DT Article
ID RECHARGEABLE BATTERIES; IRREVERSIBLE CAPACITY; HIGH-VOLTAGE; ELECTRODES;
MN; NI; CO; INTERCALATION; IMPROVEMENT; GRAPHITE
AB 0.5Li(2)MnO(3)-0.5LiMn(0.5)Ni(0.5)O(2) composite cathode material with and without ZnO treatment has been synthesized using carbonate based co-precipitation method for rechargeable lithium ion battery. The X-ray diffraction study confirms that the material has layered LiNi0.5Mn0.5O2 structure along with the formation of the superlattice ordering of Li2MnO3; without any major change in the crystal structure with ZnO treatment. Raman spectroscopy has revealed two different types of ionic arrangements corresponding to space groups of C2/m and R (3) over barm for Li2MnO3 and LiNi0.5Mn0.5O2 respectively. Morphological studies revealed primary particles are of similar to 1 micron size and have sharp, elongated edges. The particles are present as spherical agglomerates (similar to 10 micron). Elemental mapping and X-ray photoelectron spectroscopy confirmed the presence of Zn in the ZnO treated samples. Charge/discharge capacity of the composite cathode materials (with andwithout ZnO coating) increases with number of cycles due to more andmore activation of the Li2MnO3. However, ZnO treated 0.5Li(2)MnO(3)-0.5LiMn(0.5)Ni(0.5)O(2) composite material showed higher charge/discharge capacites attaining saturation in less number of cycles. Lower resistance to charge transfer in the case of ZnO treated sample is responsible for its better performance. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.100204jes] All rights reserved.
C1 [Singh, Gurpreet; Thomas, R.; Kumar, Arun; Katiyar, R. S.] Univ Puerto Rico, Dept Phys, San Juan, PR 00936 USA.
[Singh, Gurpreet; Thomas, R.; Kumar, Arun; Katiyar, R. S.] Univ Puerto Rico, Inst Funct Nanomat, San Juan, PR 00936 USA.
[Manivannan, A.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26508 USA.
RP Singh, G (reprint author), Univ Puerto Rico, Dept Phys, San Juan, PR 00936 USA.
EM gurpreetsingh268@gmail.com; rkatiyar@uprrp.edu
RI Thomas, Reji/B-2669-2010; Singh, Gurpreet/B-5293-2012
OI Thomas, Reji/0000-0003-3588-2317; Singh, Gurpreet/0000-0001-5496-6992
NR 42
TC 59
Z9 61
U1 5
U2 74
PU ELECTROCHEMICAL SOC INC
PI PENNINGTON
PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
SN 0013-4651
EI 1945-7111
J9 J ELECTROCHEM SOC
JI J. Electrochem. Soc.
PY 2012
VL 159
IS 4
BP A470
EP A478
DI 10.1149/2.100204jes
PG 9
WC Electrochemistry; Materials Science, Coatings & Films
SC Electrochemistry; Materials Science
GA 895HZ
UT WOS:000300488300022
ER
PT J
AU Wu, SL
Zhang, W
Song, X
Shukla, AK
Liu, G
Battaglia, V
Srinivasan, V
AF Wu, Shao-Ling
Zhang, Wei
Song, Xiangyun
Shukla, Alpesh K.
Liu, Gao
Battaglia, Vincent
Srinivasan, Venkat
TI High Rate Capability of Li(Ni1/3Mn1/3Co1/3)O-2 Electrode for Li-Ion
Batteries
SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY
LA English
DT Article
ID LITHIUM INSERTION MATERIAL; SOLID-STATE CHEMISTRY; CATHODE MATERIALS;
KINETIC-PARAMETERS; NICKEL-HYDROXIDE; PROTON DIFFUSION;
LICO1/3NI1/3MN1/3O2; LINI1/3CO1/3MN1/3O2; DISCHARGE;
LI(NI1/3CO1/3MN1/3)O-2
AB The rate capability of Li(Ni1/3Mn1/3Co1/3)O-2 (NMC) electrode is studied in this paper at the particle scale. Experimental results obtained on thin electrodes show that NMC is an extremely high-rate material capable of charge and discharge at rates exceeding 100C. The high capacity retention has not been previously reported in the literature. Even higher rate capability was seen on charge. The transport properties of the material were explored by combining experiments on thin electrodes with a continuum model of a single spherical particle. The use of thin electrodes minimized porous electrode effects and allowed the assumption of a uniform current distribution in the electrode. A qualitative estimate of the lithium diffusion coefficient in the NMC particle was obtained by comparing the experimental and simulated potentials during open-circuit relaxation at various states of charge. The fitting results show that the lithium diffusion coefficient increases with increasing state of charge. The value ranges from 10(-16) m(2)/s when completely discharged to 10(-14) m(2)/s when completely charged, suggesting that the use of a varying diffusion coefficient is necessary for studying the transport processes in this material and for further application to the macroscopic porous electrode models. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.062204jes] All rights reserved.
C1 [Wu, Shao-Ling; Zhang, Wei; Song, Xiangyun; Shukla, Alpesh K.; Liu, Gao; Battaglia, Vincent; Srinivasan, Venkat] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Wu, SL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
EM swu0226@gmail.com
RI Shukla, Alpesh/B-2058-2013
NR 41
TC 32
Z9 32
U1 9
U2 78
PU ELECTROCHEMICAL SOC INC
PI PENNINGTON
PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
SN 0013-4651
J9 J ELECTROCHEM SOC
JI J. Electrochem. Soc.
PY 2012
VL 159
IS 4
BP A438
EP A444
DI 10.1149/2.062204jes
PG 7
WC Electrochemistry; Materials Science, Coatings & Films
SC Electrochemistry; Materials Science
GA 895HZ
UT WOS:000300488300017
ER
PT J
AU Limmer, SJ
Yelton, WG
Siegal, MP
Lensch-Falk, JL
Pillars, J
Medlin, DL
AF Limmer, Steven J.
Yelton, W. Graham
Siegal, Michael P.
Lensch-Falk, Jessica L.
Pillars, Jamin
Medlin, Douglas L.
TI Electrochemical Deposition of Bi-2(Te,Se)(3) Nanowire Arrays on Si
SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY
LA English
DT Article
ID ANODIC ALUMINUM-OXIDE; THIN-FILMS; ELECTRODEPOSITION; GLASS; GROWTH;
FABRICATION; NUCLEATION; TEMPLATES; BI2TE3; PARAMETERS
AB Improving device performance and extending Moore's Law can be aided through active solid-state cooling, using thermoelectric (TE) materials with a high figure of merit (zT > 1). TE nanowires promise a path to higher zT, and electrochemical deposition (ECD) is a simple and scalable means for synthesizing TE nanowires. In this paper we report the ECD of 75 nm diameter nanowire arrays with a nominal composition of Bi-2(Te0.95Se0.05)(3) onto Si substrates. These nanowires show an improved level of compositional control than previously observed for TE nanowires in this system by ECD. This results from our new non-aqueous bath combined with recently described methods for template formation on Si. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.084204jes] All rights reserved.
C1 [Limmer, Steven J.; Yelton, W. Graham; Siegal, Michael P.; Pillars, Jamin] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Lensch-Falk, Jessica L.; Medlin, Douglas L.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Limmer, SJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM sjlimme@sandia.gov
RI Limmer, Steven/B-3717-2012;
OI Limmer, Steven/0000-0001-6588-372X
FU Sandia National Laboratories; DARPA-MTO; U.S. Department of Energy's
National-Nuclear Security Administration [DE-AC04-94AL85000]
FX The authors acknowledge Don Overmyer for film depositions and XRD
measurements, and Bonnie McKenzie for SEM analysis. Supported by the
Laboratory Directed Research and Development program at Sandia National
Laboratories and DARPA-MTO. Sandia National Laboratories is a
multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National-Nuclear Security Administration under
contract DE-AC04-94AL85000.
NR 44
TC 6
Z9 6
U1 1
U2 25
PU ELECTROCHEMICAL SOC INC
PI PENNINGTON
PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
SN 0013-4651
J9 J ELECTROCHEM SOC
JI J. Electrochem. Soc.
PY 2012
VL 159
IS 4
BP D235
EP D239
DI 10.1149/2.084204jes
PG 5
WC Electrochemistry; Materials Science, Coatings & Films
SC Electrochemistry; Materials Science
GA 895HZ
UT WOS:000300488300059
ER
PT J
AU Small, L
Cook, A
Apblett, C
Ihlefeld, JF
Brennecka, G
Duquette, D
AF Small, Leo
Cook, Adam
Apblett, Christopher
Ihlefeld, Jon F.
Brennecka, Geoff
Duquette, David
TI An Automated Electrochemical Probe for Evaluation of Thin Films
SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY
LA English
DT Article
ID SCANNING DROPLET CELL; HYDROGEN ADSORPTION; PITTING CORROSION;
MICROSCOPY; ELECTRODES; TITANIUM; SURFACES; STEEL; SITES
AB An electrochemical probe station (EPS) for automated electrochemical testing of electronic-grade thin films is presented. Similar in design to a scanning droplet cell, this modular system features a flexible probe tip capable of contacting both metallic and oxide surfaces. Using the highly sensitive Pt-H2SO4 system, it is demonstrated that the EPS obtains results equivalent to those of a traditional electrochemical cell. Further, electrical testing of thin film PbZr0.52Ti0.48O3 shows that this system may be used to ascertain fundamental electrical properties of dielectric films. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.007205jes] All rights reserved.
C1 [Small, Leo; Duquette, David] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA.
[Small, Leo; Cook, Adam; Apblett, Christopher; Ihlefeld, Jon F.; Brennecka, Geoff] Sandia Natl Labs, Albuquerque, NM 87105 USA.
RP Small, L (reprint author), Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA.
EM smalll@rpi.edu
RI Ihlefeld, Jon/B-3117-2009; Brennecka, Geoff/J-9367-2012; Small,
Leo/A-3685-2013
OI Brennecka, Geoff/0000-0002-4476-7655; Small, Leo/0000-0003-0404-6287
FU Laboratory Directed Research and Development (LDRD) program; National
Institute of Nano Engineering (NINE) at Sandia National Laboratories;
U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX This work was supported by the Laboratory Directed Research and
Development (LDRD) program and the National Institute of Nano
Engineering (NINE) at Sandia National Laboratories. Sandia is a
multiprogram laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000.
NR 18
TC 3
Z9 3
U1 0
U2 6
PU ELECTROCHEMICAL SOC INC
PI PENNINGTON
PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
SN 0013-4651
J9 J ELECTROCHEM SOC
JI J. Electrochem. Soc.
PY 2012
VL 159
IS 4
BP F87
EP F90
DI 10.1149/2.007205jes
PG 4
WC Electrochemistry; Materials Science, Coatings & Films
SC Electrochemistry; Materials Science
GA 895HZ
UT WOS:000300488300075
ER
PT J
AU Yoon, H
Woo, JH
Joshi, B
Ra, YM
Yoon, SS
Kim, HY
Ahn, S
Yun, JH
Gwak, J
Yoon, K
James, SC
AF Yoon, Hyun
Woo, Ji Hoon
Joshi, Bhavana
Ra, Young Min
Yoon, Sam S.
Kim, Ho Young
Ahn, SeJin
Yun, Jae Ho
Gwak, Jihye
Yoon, KyungHoon
James, Scott C.
TI CuInSe2 (CIS) Thin Film Solar Cells by Electrostatic Spray Deposition
SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY
LA English
DT Article
ID MU-M; PYROLYSIS; SEMICONDUCTOR; PHOTOVOLTAICS; ELECTROSPRAY; GENERATION;
DIAMETER; LIQUIDS; DEVICE
AB In this paper, we demonstrate, for the first time, the manufacture of a CuInSe2 thin film whose absorber layer is coated using an electrostatic spray deposition (ESD) technique; its complete transformation into a working device with measured conversion efficiency is presented. ESD is superior to pneumatic spraying because it produces nano-scaled, self-dispersive (non-agglomerating), highly wettable (electrowetting) and adhesive droplets to yield a uniform coating on a substrate. Furthermore, ESD's extremely low material consumption rate holds promises for practical use in the solar cell industry. Copper and indium salts are added to various solvents, which are electrostatically sprayed onto a molybdenum-coated soda-lime glass substrate. The effect of substrate temperature on the thin film characteristics is examined. Our cell is completed by adding CdS and ZnO layers onto the CuInSe2 absorber layer. Light illuminated current-density voltage (J-V) characteristics demonstrate a power conversion efficiency of eta = 1.75% +/- 0.09 with an open-circuit voltage of V-OC = 0.23 V, a short-circuit current density of J(SC) = 21.72 mA/cm(2), and fill factor of FF = 0.34. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.jes113086] All rights reserved.
C1 [Yoon, Hyun; Woo, Ji Hoon; Joshi, Bhavana; Ra, Young Min; Yoon, Sam S.; Kim, Ho Young] Korea Univ, Sch Mech Engn, Seoul 136713, South Korea.
[Ahn, SeJin; Yun, Jae Ho; Gwak, Jihye; Yoon, KyungHoon] Korea Inst Energy Res, Photovolta Res Ctr, Taejon 305343, South Korea.
[James, Scott C.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Yoon, H (reprint author), Korea Univ, Sch Mech Engn, Seoul 136713, South Korea.
EM skyoon@korea.ac.kr
OI James, Scott/0000-0001-7955-0491
FU Center for Inorganic Photovoltaic Materials [NRF-2011-0007182,
2010-0010217]; Korean government (MEST); Converging Research Center
through the Ministry of Education Science and Technology [2010K000969];
Research Center through the Korea Institute of Energy Technology
Evaluation and Planning (KETEP); Ministry of Knowledge Economy
[2009-3021010030-11-1]
FX This work was supported by the Center for Inorganic Photovoltaic
Materials NRF-2011-0007182 and 2010-0010217 funded by the Korean
government (MEST). This research was also supported by the Converging
Research Center Program through the Ministry of Education Science and
Technology (2010K000969). This research was also supported by the
Research Center of Break-through Technology Program through the Korea
Institute of Energy Technology Evaluation and Planning (KETEP) funded by
the Ministry of Knowledge Economy (2009-3021010030-11-1).
NR 30
TC 12
Z9 12
U1 1
U2 25
PU ELECTROCHEMICAL SOC INC
PI PENNINGTON
PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
SN 0013-4651
J9 J ELECTROCHEM SOC
JI J. Electrochem. Soc.
PY 2012
VL 159
IS 4
BP H444
EP H449
DI 10.1149/2.jes113086
PG 6
WC Electrochemistry; Materials Science, Coatings & Films
SC Electrochemistry; Materials Science
GA 895HZ
UT WOS:000300488300098
ER
PT J
AU Desai, AV
Tice, JD
Apblett, CA
Kenis, PJA
AF Desai, Amit V.
Tice, Joshua D.
Apblett, Christopher A.
Kenis, Paul J. A.
TI Design considerations for electrostatic microvalves with applications in
poly(dimethylsiloxane)-based microfluidics
SO LAB ON A CHIP
LA English
DT Article
ID MICROELECTROMECHANICAL SYSTEMS; SOFT LITHOGRAPHY; PDMS MEMBRANE; MEMS;
ADHESION; DEFORMATION; STABILITY; CHIP
AB Microvalves are critical in the operation of integrated microfluidic chips for a wide range of applications. In this paper, we present an analytical model to guide the design of electrostatic microvalves that can be integrated into microfluidic chips using standard fabrication processes and can reliably operate at low actuation potentials (<250 V). Based on the analytical model, we identify design guidelines and operational considerations for elastomeric electrostatic microvalves and formulate strategies to minimize their actuation potentials, while maintaining the feasibility of fabrication and integration. We specifically explore the application of the model to design microfluidic microvalves fabricated in poly(dimethylsiloxane), using only soft-lithographic techniques. We discuss the electrostatic actuation in terms of several microscale phenomena, including squeeze-film damping and adhesion-driven microvalve collapse. The actuation potentials predicted by the model are in good agreement with experimental data obtained with a microfabricated array of electrostatic microvalves actuated in air and oil. The model can also be extended to the design of peristaltic pumps for microfluidics and to the prediction of actuation potentials of microvalves in viscous liquid environments. Additionally, due to the compact ancillaries required to generate low potentials, these electrostatic microvalves can potentially be used in portable microfluidic chips.
C1 [Desai, Amit V.; Tice, Joshua D.; Kenis, Paul J. A.] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA.
[Apblett, Christopher A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Apblett, Christopher A.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA.
RP Kenis, PJA (reprint author), Univ Illinois, Dept Chem & Biomol Engn, 600 S Mathews Ave, Urbana, IL 61801 USA.
EM kenis@illinois.edu
RI Kenis, Paul/S-7229-2016
OI Kenis, Paul/0000-0001-7348-0381
FU Department of Energy (DOE) through the National Institute for
NanoEngineering (NINE) initiative of the Lab Directed Research and
Development (LDRD); National Center for Supercomputing Applications
(NCSA) [MSS080036]; U.S. Department of Energy [DE-FG02-07ER46453,
DE-FG02-07ER46471]
FX We gratefully acknowledge financial support from the Department of
Energy (DOE) through the National Institute for NanoEngineering (NINE)
initiative of the Lab Directed Research and Development (LDRD) program
at Sandia National Laboratories. This work was partially supported by
the National Center for Supercomputing Applications (NCSA) under
proposal number MSS080036 and utilized the SGI-Altix (Cobalt) for FEA
simulations. Scanning electron microscopy and profilometry was carried
out in part in the Frederick Seitz Materials Research Laboratory Central
Facilities, University of Illinois, which are partially supported by the
U.S. Department of Energy under grants DE-FG02-07ER46453 and
DE-FG02-07ER46471. We also thank Dr R.C. Givler and Dr G.A. Ten Eyck
from Sandia National Laboratories for stimulating discussions, and Tom
Bassett from the University of Illinois for his help in fabrication and
characterization of some of the valves.
NR 54
TC 12
Z9 12
U1 6
U2 26
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1473-0197
EI 1473-0189
J9 LAB CHIP
JI Lab Chip
PY 2012
VL 12
IS 6
BP 1078
EP 1088
DI 10.1039/c2lc21133e
PG 11
WC Biochemical Research Methods; Chemistry, Multidisciplinary; Nanoscience
& Nanotechnology
SC Biochemistry & Molecular Biology; Chemistry; Science & Technology -
Other Topics
GA 895QO
UT WOS:000300511500010
PM 22301791
ER
PT J
AU Zhou, Y
Leith, CE
Herring, JR
Kimura, Y
AF Zhou, Ye
Leith, Cecil E.
Herring, Jackson R.
Kimura, Yoshifumi
TI Predictability error growth of turbulent flows
SO MECHANICS RESEARCH COMMUNICATIONS
LA English
DT Article
DE Turbulent flows; Predictability
ID QUASI-GEOSTROPHIC TURBULENCE; 2-DIMENSIONAL TURBULENCE; ATMOSPHERIC
PREDICTABILITY; MODEL; UNCERTAINTY; CASCADE; SCALES
AB Recently, alternative viewpoints were suggested that is in contrast to the conventional picture of predictability error growth in the spectral domain. We survey key historical and current literatures and suggest that the traditional perspective has not been invalidated. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Zhou, Ye; Leith, Cecil E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Herring, Jackson R.] Natl Ctr Atmospher Res, Boulder, CO 80308 USA.
[Kimura, Yoshifumi] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648601, Japan.
RP Zhou, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM yezhou@llnl.gov
FU Lawrence Livermore National Security, LLC [DE-AC52-07NA27344]
FX This work was performed under the auspices of the Lawrence Livermore
National Security, LLC under contract No. DE-AC52-07NA27344. The first
author (Y.Z.) is extremely grateful to Professor Sir David Wallace,
Director of Isaac Newton Institute for Mathematical Sciences, University
of Cambridge and Professor John Huthnance, co-organiser of the
Mathematical and Statistical Approaches to Climate Modelling and
Prediction Programmes, for their kind invitation.
NR 24
TC 0
Z9 0
U1 1
U2 9
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0093-6413
J9 MECH RES COMMUN
JI Mech. Res. Commun.
PD JAN
PY 2012
VL 39
IS 1
BP 15
EP 17
DI 10.1016/j.mechrescom.2011.08.004
PG 3
WC Mechanics
SC Mechanics
GA 892GU
UT WOS:000300275500003
ER
PT S
AU Rehm, KE
AF Rehm, K. E.
GP IOP
BE Auerbach, N
Hass, M
Paul, M
TI The Origin of Oxygen in the Universe - A new approach to an Old Question
SO NUCLEAR PHYSICS IN ASTROPHYSICS V
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 5th Biannual Conference on Nuclear Physics in Astrophysics (NPA)/24th
Nuclear Physics Divisional Conference of the European-Physical-Society
(EPS)
CY APR 03-08, 2011
CL Eilat, ISRAEL
SP European Phys Soc (EPS), Nucl Phys Div, Hebrew Univ, Soreq Nucl Res Ctr, Tel Aviv Univ, Weizmann Inst Sci
ID DELAYED ALPHA-SPECTRUM; CROSS-SECTION; NUCLEAR ASTROPHYSICS; MASSIVE
STARS; C-12(ALPHA,GAMMA)O-16; NUCLEOSYNTHESIS; GAMMA)O-16; C-12(ALPHA;
ENERGIES; N-16
AB Carbon and oxygen are not only important elements for the existence of life on Earth, but they also play an important role in the evolution of stars towards the end of their life cycle. The formation of C-12 through the so-called triple-alpha reaction is quite well understood. The next step, the formation of O-16 through the alpha capture reaction C-12(alpha,gamma) O-16 on the other hand, still has an experimental uncertainty of similar to 30%. Direct measurements of the C-12(alpha,gamma)O-16 reaction by detecting either the outgoing gamma radiation in a high acceptance Ge-detector array or the residual O-16 nuclei in a mass spectrometer do not allow for order-of-magnitude improvements. In this contribution, the possibility of using superheated bubble detectors for a measurement of the time-inverse O-16(gamma,alpha) C-12 reaction is being discussed. The first results of a 'proof-of-principle' experiment of the 19 F(gamma,alpha) N-15 reaction are also being presented.
C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RP Rehm, KE (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Av, Argonne, IL 60439 USA.
EM rehm@anl.gov
NR 31
TC 2
Z9 2
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2012
VL 337
AR 012006
DI 10.1088/1742-6596/337/1/012006
PG 6
WC Astronomy & Astrophysics; Physics, Nuclear
SC Astronomy & Astrophysics; Physics
GA BYU54
UT WOS:000300434600006
ER
PT J
AU Craven-Jones, J
Kudenov, MW
Dereniak, EL
AF Craven-Jones, Julia
Kudenov, Michael W.
Dereniak, Eustace L.
TI Tunable interference contrast using a variable Wollaston prism
SO OPTICAL ENGINEERING
LA English
DT Article
DE birefringent interferometer; Fourier transform spectrometer; fringe
contrast; sapphire; Wollaston prism
AB A Fourier transform spectrometer (FTS) acquires interferogram data for spectral measurements. Conventional FTS instruments incorporate Michelson interferometers. However, limitations of the Michelson for imaging applications have produced interest in alternative interferometer configurations. Common path interferometers, such as birefringent interferometers, offer advantages for remote sensing applications. To ensure the best possible signal-to-noise ratio, the fringe contrast provided by the interferometer should be maximized. Unfortunately some birefringent interferometers, such as those that utilize Wollaston prisms (WPs), require stringent tolerances in order to ensure high fringe contrast across even a modest field of view (FOV). Fabricating an interferometer to meet these tolerances adds fabrication cost and time to the development of an instrument. We present how the introduction of additional birefringent elements into birefringent interferometer can be used to compensate for a decrease in fringe visibility due to manufacturing errors. These components form a variable angle WP (VWP), which can be used to vary the fringe visibility across the FOV. Experimental results confirming the ability of the VWP to vary the fringe visibility of a birefringent interferometer are included. These results are compared to polarization raytrace simulations for the system. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.1.013002]
C1 [Craven-Jones, Julia] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Kudenov, Michael W.; Dereniak, Eustace L.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA.
RP Craven-Jones, J (reprint author), Sandia Natl Labs, POB 5800-0406, Albuquerque, NM 87185 USA.
EM jcjone@sandia.gov
FU Department of Energy, NNSA [NA-22]; State of Arizona TRIF Imaging
Student Fellowship
FX This work has been supported by the Department of Energy, NNSA NA-22,
Dr. Victoria Franques, Program Manager, and a State of Arizona TRIF
Imaging Student Fellowship. When this research was performed, J.
Craven-Jones was with the College of Optical Sciences, University of
Arizona.
NR 10
TC 1
Z9 1
U1 1
U2 9
PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA
SN 0091-3286
J9 OPT ENG
JI Opt. Eng.
PD JAN
PY 2012
VL 51
IS 1
AR 013002
DI 10.1117/1.OE.51.1.013002
PG 7
WC Optics
SC Optics
GA 896ZV
UT WOS:000300611300017
ER
PT J
AU Simms, LM
De Vries, W
Riot, V
Olivier, SS
Pertica, A
Bauman, BJ
Phillion, D
Nikolaev, S
AF Simms, Lance M.
De Vries, Willem
Riot, Vincent
Olivier, Scot S.
Pertica, Alex
Bauman, Brian J.
Phillion, Don
Nikolaev, Sergei
TI Space-based telescopes for actionable refinement of ephemeris pathfinder
mission
SO OPTICAL ENGINEERING
LA English
DT Article
DE space situational awareness; satellites; space debris; orbital
refinement
AB The Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) program will collect the information needed to help satellite operators avoid collisions in space by using a network of nanosatellites to determine more accurate trajectories for selected space objects orbiting the Earth. In the first phase of the STARE program, two pathfinder cube-satellites (CubeSats) equipped with an optical imaging payload are being developed and deployed to demonstrate the main elements of the STARE concept. We first give an overview of the STARE program. The details of the optical imaging payload for the STARE pathfinder CubeSats are then described, followed by a description of the track detection algorithm that will be used on the images it acquires. Finally, simulation results that highlight the effectiveness of the mission are presented. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.1.011004]
C1 [Simms, Lance M.; De Vries, Willem; Riot, Vincent; Olivier, Scot S.; Pertica, Alex; Bauman, Brian J.; Phillion, Don; Nikolaev, Sergei] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Simms, LM (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,MS L210, Livermore, CA 94550 USA.
EM simms8@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 10
TC 2
Z9 2
U1 0
U2 3
PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA
SN 0091-3286
J9 OPT ENG
JI Opt. Eng.
PD JAN
PY 2012
VL 51
IS 1
AR 011004
DI 10.1117/1.OE.51.1.011004
PG 12
WC Optics
SC Optics
GA 896ZV
UT WOS:000300611300006
ER
PT J
AU Hu, JY
Ni, XL
Feng, X
Era, M
Elsegood, MRJ
Teat, SJ
Yamato, T
AF Hu, Jian-Yong
Ni, Xin-Long
Feng, Xing
Era, Masanao
Elsegood, Mark R. J.
Teat, Simon J.
Yamato, Takehiko
TI Highly emissive hand-shaped pi-conjugated alkynylpyrenes: Synthesis,
structures, and photophysical properties
SO ORGANIC & BIOMOLECULAR CHEMISTRY
LA English
DT Article
ID LIGHT-EMITTING-DIODES; ORGANIC ELECTRONICS; THIN-FILM; PYRENE
DERIVATIVES; OPTICAL-PROPERTIES; BLUE OLEDS; ELECTROLUMINESCENCE;
DEVICES; ORGANIZATION; FLUORESCENCE
AB Three alkynyl-functionalised, hand-shaped, highly fluorescent and stable emitters, namely, 2-tert-butyl-4,5,7,9,10-pentakis(p-R-phenylethynyl)pyrenes have been successfully synthesized via a Pd/Cu-catalysed Sonogashira cross-coupling reaction. The chemical structures of the alkynylpyrenes were fully characterized by their H-1/C-13 NMR spectra, mass spectroscopy and elemental analysis. Synchrotron single-crystal X-ray analysis revealed that there is a 1-D, slipped, face-to-face motif with off-set, head-to-tail stacked columns, which are clearly influenced by the single, bulky, tert-butyl group in the pyrene ring at the 2-position. Detailed studies on the photophysical properties in both solutions and thin films strongly indicate that they might be promising candidates for optoelectronic applications, such as organic light-emitting devices (OLEDs) or as models for investigating the fluorescent structure-property relationship of the alkynyl-functionalised pyrene derivatives.
C1 [Hu, Jian-Yong; Ni, Xin-Long; Feng, Xing; Era, Masanao; Yamato, Takehiko] Saga Univ, Dept Appl Chem, Fac Sci & Engn, Saga 840, Japan.
[Hu, Jian-Yong] Yamagata Univ, Dept Organ Device Engn, Yonezawa, Yamagata 9928510, Japan.
[Elsegood, Mark R. J.] Univ Loughborough, Dept Chem, Loughborough LE11 3TU, Leics, England.
[Teat, Simon J.] Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Hu, JY (reprint author), Saga Univ, Dept Appl Chem, Fac Sci & Engn, Honjo Machi 1, Saga 840, Japan.
EM yamatot@cc.saga-u.ac.jp
RI Elsegood, Mark/K-1663-2013
OI Elsegood, Mark/0000-0002-8984-4175
FU Office of Science, Office of Basic Energy Science, of the US Department
of Energy [DE-AC02-05CH11231]
FX This work was performed under the Cooperative Research Program of the
Network Joint Research Center for Materials and Devices (Institute for
Materials Chemistry and Engineering, Kyushu University). The Advanced
Light Source is supported by the Director, Office of Science, Office of
Basic Energy Science, of the US Department of Energy under Contract No.
DE-AC02-05CH11231. We thank Dr Yong-Jin Pu (Department of Organic Device
Engineering, Yamagata University) for fruitful discussions.
NR 73
TC 15
Z9 15
U1 0
U2 27
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1477-0520
EI 1477-0539
J9 ORG BIOMOL CHEM
JI Org. Biomol. Chem.
PY 2012
VL 10
IS 11
BP 2255
EP 2262
DI 10.1039/c2ob06865f
PG 8
WC Chemistry, Organic
SC Chemistry
GA 897NE
UT WOS:000300656600012
PM 22307027
ER
PT J
AU Gallis, MA
Torczynski, JR
AF Gallis, M. A.
Torczynski, J. R.
TI Direct simulation Monte Carlo-based expressions for the gas mass flow
rate and pressure profile in a microscale tube
SO PHYSICS OF FLUIDS
LA English
DT Article
ID LINEARIZED BOLTZMANN-EQUATION; ARBITRARY KNUDSEN NUMBERS;
TEMPERATURE-JUMP PROBLEM; RAREFIED-GAS; POISEUILLE FLOW; CYLINDRICAL
TUBE; FINITE-LENGTH; LONG TUBE; ACCOMMODATION; CHANNELS
AB The direct simulation Monte Carlo (DSMC) method of Bird is used to develop simple closed-form expressions for the mass flow rate and the pressure profile for the steady isothermal flow of an ideal gas through a microscale tube connecting two infinite reservoirs at different pressures but at the temperature of the tube wall. Gas molecules reflect from the tube wall according to the Maxwell model (a linear combination of specular and diffuse reflections at the wall temperature) with a unity or sub-unity value of the accommodation coefficient (the probability that molecules reflect diffusely from the wall). The DSMC-based expressions have four parameters. Two parameters are specified so that the mass flow rate reduces to the known expression in the free-molecular regime. One parameter was previously determined by comparison to DSMC simulations in the slip regime. The remaining parameter is determined by comparison to DSMC simulations for pressures spanning the transition regime with several values of the accommodation coefficient. The expressions for the mass flow rate and the pressure profile agree well with the DSMC simulations (rms and maximum differences of 2% and 5% for all cases examined), with other more complicated expressions and with recent experiments involving microscale tubes and channels for all flow regimes. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3678337]
C1 [Gallis, M. A.; Torczynski, J. R.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA.
RP Gallis, MA (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA.
EM magalli@sandia.gov
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000. The authors
thank R. P. Manginell of Sandia National Laboratories for helpful
technical discussions and T. Ewart of the Institut de Mecanique des
Fluides de Toulouse for helpful information about his experimental
measurements.
NR 55
TC 7
Z9 7
U1 2
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-6631
J9 PHYS FLUIDS
JI Phys. Fluids
PD JAN
PY 2012
VL 24
IS 1
AR 012005
DI 10.1063/1.3678337
PG 21
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA 895WI
UT WOS:000300527000013
ER
PT J
AU Wei, MJ
Qawasmeh, BR
Barone, M
Waanders, BGV
Zhou, L
AF Wei, Mingjun
Qawasmeh, Bashar R.
Barone, Matthew
Waanders, Bart G. van Bloemen
Zhou, Lin
TI Low-dimensional model of spatial shear layers
SO PHYSICS OF FLUIDS
LA English
DT Article
ID MIXING LAYERS; STABILITY; FLOW; RECONSTRUCTION; TRANSITION; EQUATIONS;
SYSTEMS
AB The aim of this work is to develop nonlinear low-dimensional models to describe vortex dynamics in spatially developing shear layers with periodicity in time. By allowing a free variable g(x) to dynamically describe downstream thickness spreading, we are able to obtain basis functions in a scaled reference frame and construct effective models with only a few modes in the new space. To apply this modified version of proper orthogonal decomposition (POD)/Galerkin projection, we first scale the flow along y dynamically to match a template function as it is developing downstream. In the scaled space, the first POD mode can capture more than 80% energy for each frequency. However, to construct a Galerkin model, the second POD mode plays a critical role and needs to be included. Finally, a reconstruction equation for the scaling variable g is derived to relate the scaled space to physical space, where downstream spreading of shear thickness occurs. Using only two POD modes at each frequency, our models capture the basic dynamics of shear layers, such as vortex roll-up (from a one-frequency model) and vortex-merging (from a two-frequency model). When arbitrary excitation at different harmonics is added to the model, we can clearly observe the promoting or delaying/eliminating vortex merging events as a result of mode competition, which is commonly demonstrated in experiments and numerical simulations of shear layers. (C) 2012 American Institute of Physics. [doi:10.1063/1.3678016]
C1 [Wei, Mingjun; Qawasmeh, Bashar R.; Zhou, Lin] New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA.
[Barone, Matthew; Waanders, Bart G. van Bloemen] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Zhou, Lin] Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Peoples R China.
RP Wei, MJ (reprint author), New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA.
EM mjwei@nmsu.edu
RI Wei, Mingjun/C-6905-2012
OI Wei, Mingjun/0000-0001-7757-2355
FU Sandia; United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX We thank Professor Clancy Rowley for constructive discussion. M.W. and
B.Q. also gratefully acknowledge the support from Sandia-University
Research Program (SURP). Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company for the United States
Department of Energy's National Nuclear Security Administration under
Contract No. DE-AC04-94AL85000.
NR 30
TC 1
Z9 1
U1 0
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-6631
J9 PHYS FLUIDS
JI Phys. Fluids
PD JAN
PY 2012
VL 24
IS 1
AR 014108
DI 10.1063/1.3678016
PG 21
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA 895WI
UT WOS:000300527000028
ER
PT J
AU Rodriguez, DF
Saul, L
Wurz, P
Fuselier, SA
Funsten, HO
McComas, DJ
Mobius, E
AF Rodriguez M, D. F.
Saul, L.
Wurz, P.
Fuselier, S. A.
Funsten, H. O.
McComas, D. J.
Moebius, E.
TI IBEX-Lo observations of energetic neutral hydrogen atoms originating
from the lunar surface
SO PLANETARY AND SPACE SCIENCE
LA English
DT Article
DE Energetic neutral atoms; ENAs Moon albedo; Solar wind; IBEX-Lo
ID INTERSTELLAR BOUNDARY EXPLORER; SCATTERING; MONITOR
AB In this paper we present quantitative results of observations of energetic neutral atoms (ENAs) originating from the lunar surface. These ENAs, which are hydrogen atoms, are the result of the solar wind protons being reflected from and neutralised at the surface of the Moon. These measurements were made with IBEX-Lo on NASA's IBEX satellite. From these measurements we derive the energy spectrum of the ENAs, their flux, and the lunar albedo for ENAs (i.e., the ratio of ENAs to the incoming solar wind protons). The energy spectra of the ENAs clearly show that their origin is directly from the solar wind via backscattering, and that they are not sputtered atoms. From several observation periods we derived an average global albedo of A(H)=0.09 +/- 0.05. From the observed energy spectra we derive a generic spectrum for unshielded bodies in the solar wind. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Rodriguez M, D. F.; Saul, L.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland.
[Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, Space Phys Dept, Palo Alto, CA 94304 USA.
[Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM USA.
[McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78249 USA.
[McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA.
[Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Moebius, E.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
RP Rodriguez, DF (reprint author), Univ Bern, Inst Phys, Sidlerstr 5, CH-3012 Bern, Switzerland.
EM diego.rodriguez@space.unibe.ch
RI Funsten, Herbert/A-5702-2015;
OI Funsten, Herbert/0000-0002-6817-1039; Moebius,
Eberhard/0000-0002-2745-6978
FU IBEX mission as a part of NASA
FX We gratefully acknowledge provision of the IBEX data by the IBEX team
and IBEX Science Operations Center (ISOC), the IBEX-Lo cross talk matrix
by Lee W. Petersen, Uni. New Hampshire, and the IBEX orbits plots by
Steve Petrinec. Simulation results of magnetosphere have been provided
by the Community Coordinated Modeling Center (CCMC) at Goddard Space
Flight Center through their public runs on request system
(http://ccmc.gsfc.nasa.gov). The CCMC is a multi-agency partnership
between NASA, AFMC, AFOSR, AFRL, AFWA, NOAA, NSF and ONR. The BATSRUS
with RCM Model was developed by the Dr. Tamas Gombosi et al. at the
CSEM. Solar wind data from the ACE is provided by the SWEPAM team. Work
on this study by the U.S. authors was supported by the IBEX mission as a
part of NASA's Explorers program.
NR 21
TC 10
Z9 10
U1 0
U2 1
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0032-0633
J9 PLANET SPACE SCI
JI Planet Space Sci.
PD JAN
PY 2012
VL 60
IS 1
BP 297
EP 303
DI 10.1016/j.pss.2011.09.009
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 895GC
UT WOS:000300483200033
ER
PT J
AU Buttler, WT
Lamoreaux, SK
Torgerson, JR
AF Buttler, William T.
Lamoreaux, Steven K.
Torgerson, Justin R.
TI PRACTICAL FOUR-DIMENSIONAL QUANTUM KEY DISTRIBUTION WITHOUT ENTANGLEMENT
SO QUANTUM INFORMATION & COMPUTATION
LA English
DT Article
DE Quantum key distribution; Mutually unbiased bases; four dimensional
single photon
ID POLARIZED PHOTONS; OPTICAL-FIBER; CRYPTOGRAPHY; SECURITY; DISTANCES;
SYSTEMS; PROOF
AB We describe a four-dimensional (D = 4) single-photon quantum cryptography protocol with up to twenty (D x (2(2) +1)) possible states generated by a polarization-, phase- and time-encoding transmitter. This protocol can be experimentally realized with existing technology, drawing from time- and polarization-encoded systems. The protocol is error tolerant and has a maximum raw bit rate of two raw bits per detection, which when combined with state detection efficiency yields a qubit rate of up to one per transmission under ideal assumptions, or up to twice the raw bit rate of two-dimensional protocols such as the well-known BB84 protocol.
C1 [Buttler, William T.; Torgerson, Justin R.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA.
[Lamoreaux, Steven K.] Yale Univ SPL, New Haven, CT 06520 USA.
RP Buttler, WT (reprint author), Los Alamos Natl Lab, Div Phys, MS H803, Los Alamos, NM 87545 USA.
NR 30
TC 2
Z9 2
U1 0
U2 6
PU RINTON PRESS, INC
PI PARAMUS
PA 565 EDMUND TERRACE, PARAMUS, NJ 07652 USA
SN 1533-7146
J9 QUANTUM INF COMPUT
JI Quantum Inform. Comput.
PD JAN
PY 2012
VL 12
IS 1-2
BP 1
EP 8
PG 8
WC Computer Science, Theory & Methods; Physics, Particles & Fields;
Physics, Mathematical
SC Computer Science; Physics
GA 896AO
UT WOS:000300538000001
ER
PT S
AU Chrenek, MA
Dalal, N
Gardner, C
Grossniklaus, H
Jiang, Y
Boatright, JH
Nickerson, JM
AF Chrenek, Micah A.
Dalal, Nupur
Gardner, Christopher
Grossniklaus, Hans
Jiang, Yi
Boatright, Jeffrey H.
Nickerson, John M.
BE LaVail, MM
Ash, JD
Anderson, RE
Hollyfield, JG
Grimm, C
TI Analysis of the RPE Sheet in the rd10 Retinal Degeneration Model
SO RETINAL DEGENERATIVE DISEASES
SE Advances in Experimental Medicine and Biology
LA English
DT Article; Book Chapter
DE Retinal pigment epithelium; RPE; Morphometrics; rd10; Degeneration; Zona
occludens 1
ID ROD CGMP-PHOSPHODIESTERASE; PIGMENT EPITHELIUM; BETA-SUBUNIT; MOUSE
C1 [Chrenek, Micah A.; Dalal, Nupur; Gardner, Christopher; Grossniklaus, Hans; Boatright, Jeffrey H.; Nickerson, John M.] Emory Univ, Dept Ophthalmol, Atlanta, GA 30322 USA.
[Jiang, Yi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Nickerson, JM (reprint author), Emory Univ, Dept Ophthalmol, 1365B Clifton Rd NE,TEC B5602, Atlanta, GA 30322 USA.
EM micah.chrenek@emory.edu; ndalal@lsuhsc.cdu;
christopher.gardner@emory.edu; ophtheg@emory.edu; jiang@lanl.gov;
litjn@emory.edu; litjn@emory.edu
FU NEI NIH HHS [P30 EY006360, P30EY06360, R01 EY014026, R01 EY016470,
R01EY014026, R01EY016470, R24 EY017045, R24EY017045]
NR 9
TC 12
Z9 12
U1 0
U2 0
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0065-2598
BN 978-1-4614-0630-3
J9 ADV EXP MED BIOL
JI Adv.Exp.Med.Biol.
PY 2012
VL 723
BP 641
EP 647
DI 10.1007/978-1-4614-0631-0_81
D2 10.1007/978-1-4614-0631-0
PG 7
WC Biology; Medicine, Research & Experimental; Ophthalmology
SC Life Sciences & Biomedicine - Other Topics; Research & Experimental
Medicine; Ophthalmology
GA BYQ08
UT WOS:000299709700081
PM 22183388
ER
PT J
AU Wang, XJ
Goswami, M
Kumar, R
Sumpter, BG
Mays, J
AF Wang, Xiaojun
Goswami, Monojoy
Kumar, Rajeev
Sumpter, Bobby G.
Mays, Jimmy
TI Morphologies of block copolymers composed of charged and neutral blocks
SO SOFT MATTER
LA English
DT Review
ID POLYMER ELECTROLYTE MEMBRANES; PROTON-EXCHANGE MEMBRANE; IONIC DIBLOCK
COPOLYMERS; X-RAY-SCATTERING; SULFONATED
POLYSTYRENE-BLOCK-POLY(ETHYLENE-RAN-BUTYLENE)-BLOCK-POLYSTYRENE
COPOLYMERS; ABA TRIBLOCK COPOLYMERS; PHASE-BEHAVIOR;
TRANSPORT-PROPERTIES; MICROPHASE SEPARATION; RADICAL POLYMERIZATION
AB This article reviews current experimental observations and theoretical calculations devoted towards understanding micro-phase separation in charged block copolymer systems. We discuss bulk morphologies in melt and in solution, as well as some of the new emerging research directions. Overall, a comprehensive picture is beginning to emerge on the fundamental role of electrostatics in the micro-phase separation of charged block copolymers. This understanding provides exciting new insight that may be used to direct targeted structures that endow the materials with desired properties that can have tremendous potential in technological applications.
C1 [Goswami, Monojoy; Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
[Wang, Xiaojun; Mays, Jimmy] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Kumar, Rajeev] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA.
[Sumpter, Bobby G.; Mays, Jimmy] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Mays, Jimmy] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Sumpter, BG (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
EM sumpterbg@ornl.gov; jimmymays@utk.edu
RI Wang, Xiaojun/E-5510-2012; KUMAR, RAJEEV/D-2562-2010; Goswami,
Monojoy/G-7943-2012; Sumpter, Bobby/C-9459-2013; Kumar,
Rajeev/Q-2255-2015
OI Goswami, Monojoy/0000-0002-4473-4888; Sumpter,
Bobby/0000-0001-6341-0355; Kumar, Rajeev/0000-0001-9494-3488
FU US Department of Energy, Basic Energy Sciences, MSE Division; Center for
Nanophase Materials Sciences; ORNL by DOE/BES
FX This work was supported by the US Department of Energy, Basic Energy
Sciences, MSE Division, and in part at the Center for Nanophase
Materials Sciences, sponsored at ORNL by DOE/BES.
NR 174
TC 34
Z9 34
U1 3
U2 108
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1744-683X
J9 SOFT MATTER
JI Soft Matter
PY 2012
VL 8
IS 11
BP 3036
EP 3052
DI 10.1039/c2sm07223h
PG 17
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Multidisciplinary; Polymer Science
SC Chemistry; Materials Science; Physics; Polymer Science
GA 896MR
UT WOS:000300571600001
ER
PT J
AU Mudalige, TK
Sherman, WB
AF Mudalige, Thilak Kumara
Sherman, William B.
TI Atomic force microscopy of arrays of asymmetrical DNA motifs
SO SOFT MATTER
LA English
DT Article
ID NUCLEIC-ACID JUNCTIONS; CROSSOVER COMPLEXES; NANOSCALE SHAPES; FOLDING
DNA; DESIGN; NANOSTRUCTURES; CONSTRUCTION; NANOTUBES; CRYSTALS; TILES
AB DNA can easily be assembled into wide and relatively flat nanostructures that lend themselves to study via Atomic Force Microscopy (AFM). It is often important to know which side of an assembly the AFM is imaging. This is particularly crucial for characterizing nanomachines, where the movement must be measured relative to fiducial features visible to the AFM. We have developed a cheap and simple technique for building DNA arrays with distinguishable sides, a technique requiring 10 or fewer strands - dozens or hundreds of strands fewer than used for these purposes previously. Our approach involves constructing arrays out of DNA tiles that have low apparent symmetry when imaged via AFM. We have surveyed the effects of varying degrees of motif asymmetry in AFM micrographs. Even at resolutions where the individual tiles cannot be resolved (either because of sub-optimal tip quality, or very gentle tapping by the AFM tip) the larger scale features of the arrays have predictable structures that allow the determination of which side of the array is facing up. We have used this information to verify that DNA hairpins attached to either the up-or down-facing side of an array on mica can be detected in AFM height scans. We have also characterized differences in appearance between hairpins attached to different sides of the arrays.
C1 [Mudalige, Thilak Kumara; Sherman, William B.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Sherman, WB (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
EM sherman@mailaps.org
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX We thank Dmytro Nykypanchuk for his assistance with the early AFM
images, and Erik Winfree and Alexei Tkachenko for helpful discussions.
Research carried out in whole at the Center for Functional
Nanomaterials, Brookhaven National Laboratory, which is supported by the
U.S. Department of Energy, Office of Basic Energy Sciences, under
Contract No. DE-AC02-98CH10886.
NR 54
TC 1
Z9 1
U1 1
U2 13
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1744-683X
J9 SOFT MATTER
JI Soft Matter
PY 2012
VL 8
IS 11
BP 3094
EP 3104
DI 10.1039/c2sm07205j
PG 11
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Multidisciplinary; Polymer Science
SC Chemistry; Materials Science; Physics; Polymer Science
GA 896MR
UT WOS:000300571600009
ER
PT J
AU Fraboni, B
Scida, A
Cavallini, A
Milita, S
Cosseddu, P
Bonfiglio, A
Wang, Y
Nastasi, M
AF Fraboni, B.
Scida, A.
Cavallini, A.
Milita, S.
Cosseddu, P.
Bonfiglio, A.
Wang, Y.
Nastasi, M.
TI Photocurrent spectroscopy of ion-implanted organic thin film transistors
SO SYNTHETIC METALS
LA English
DT Article; Proceedings Paper
CT Symposium N on Controlling and Characterising the Structure of Organic
Semiconductor Films/Spring Meeting of the
European-Material-Research-Society (E-MRS)
CY MAY 09-13, 2011
CL Nice, FRANCE
SP European Mat Res Soc (E-MRS)
DE Organic thin film transistor; Density of electronic states distribution;
Ion implantation
ID FIELD-EFFECT TRANSISTORS; PENTACENE FILMS; MOBILITY
AB In this paper we investigate the distribution of the electrically available states near the band-edge in pentacene thin films of different thicknesses, aiming to the identification of the active thickness of pentacene layers in fully operational devices such as organic thin film transistors (OTFTs). The film structure has been studied by X-ray diffraction technique, while their relative electronic density of states distribution (DOS) around the band-edge has been investigated by photocurrent (PC) spectroscopy analyses. The effects of ion implantation on OTFTs have been investigated by PC analyses of OTFTs implanted with N+ ions of different energy and doses. We show how PC spectroscopy has the remarkable ability to detect modifications of the DOS distribution in a non invasive way, thus allowing the direct study of the active semiconductor film in fully operational OTFTs. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Fraboni, B.; Scida, A.; Cavallini, A.] Univ Bologna, Dipartimento Fis, I-40127 Bologna, Italy.
[Milita, S.] CNR IMM, I-40129 Bologna, Italy.
[Cosseddu, P.; Bonfiglio, A.] Univ Cagliari, Dipartimento Ingn Elettr & Elettron, I-09123 Cagliari, Italy.
[Cosseddu, P.; Bonfiglio, A.] CNR IMM S3, I-41100 Modena, Italy.
[Wang, Y.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Fraboni, B (reprint author), Univ Bologna, Dipartimento Fis, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
EM beatrice.fraboni@unibo.it
RI Fraboni, Beatrice/I-8356-2012; Bonfiglio, Annalisa/J-7232-2012; Milita,
Silvia/A-6048-2015;
OI Milita, Silvia/0000-0002-9612-2541; COSSEDDU, Piero/0000-0003-4896-504X
NR 18
TC 2
Z9 2
U1 0
U2 8
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHETIC MET
JI Synth. Met.
PD JAN
PY 2012
VL 161
IS 23-24
BP 2585
EP 2588
DI 10.1016/j.synthmet.2011.09.017
PG 4
WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer
Science
SC Materials Science; Physics; Polymer Science
GA 897MB
UT WOS:000300653700016
ER
PT S
AU Li, XY
Biggin, MD
AF Li, Xiao-Yong
Biggin, Mark D.
BE Vancura, A
TI Genome-Wide In Vivo Cross-linking of Sequence-Specific Transcription
Factors
SO TRANSCRIPTIONAL REGULATION: METHODS AND PROTOCOLS
SE Methods in Molecular Biology
LA English
DT Article; Book Chapter
DE In vivo cross-linking; Sequence-specific transcription factors;
ChIP-chip; Chip-seq
ID CHIP-SEQ DATA; DNA-BINDING; CHROMATIN IMMUNOPRECIPITATION; PROTEINS;
REGIONS; THOUSANDS; SYSTEM; SITES; MODEL
AB Immunoprecipitation of cross-linked chromatin in. combination with microarrays (ChIP-chip) or ultra high-throughput sequencing (ChIP-seq) is widely used to map genome-wide in vivo transcription factor binding. Both methods employ initial steps of in vivo cross-linking, chromatin isolation, DNA fragmentation, and immunoprecipitation. For ChIP-chip, the immunoprecipitated DNA samples are then amplified, labeled, and hybridized to DNA microarrays. For ChIP-seq, the immunoprecipitated DNA is prepared for a sequencing library, and then the library DNA fragments are sequenced using ultra high-throughput sequencing platform. The protocols described here have been developed for ChIP-chip and ChIP-seq analysis of sequence-specific transcription factor binding in Drosophila embryos. A series of controls establish that these protocols have high sensitivity and reproducibility and provide a quantitative measure of relative transcription factor occupancy. The quantitative nature of the assay is important because regulatory transcription factors bind to highly overlapping sets of thousands of genomic regions and the unique regulatory specificity of each factor is determined by relative moderate differences in occupancy between factors at commonly bound regions.
C1 [Li, Xiao-Yong; Biggin, Mark D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA.
RP Li, XY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA.
NR 28
TC 4
Z9 4
U1 0
U2 2
PU HUMANA PRESS INC
PI TOTOWA
PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA
SN 1064-3745
BN 978-1-61779-375-2
J9 METHODS MOL BIOL
JI Methods Mol. Biol.
PY 2012
VL 809
BP 3
EP 26
DI 10.1007/978-1-61779-376-9_1
D2 10.1007/978-1-61779-376-9
PG 24
WC Biochemical Research Methods; Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA BYQ02
UT WOS:000299709100001
PM 22113265
ER
PT S
AU Serkland, DK
Geib, KM
Peake, GM
Keeler, GA
Hsu, AY
AF Serkland, Darwin K.
Geib, Kent M.
Peake, Gregory M.
Keeler, Gordon A.
Hsu, Alan Y.
BE Lei, C
Choquette, KD
TI 850-nm VCSELs optimized for cryogenic data transmission
SO VERTICAL-CAVITY SURFACE-EMITTING LASERS XVI
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Vertical-Cavity Surface-Emitting Lasers XVI (VCSELs)/SPIE
Photonics West Symposium
CY JAN 25-26, 2012
CL San Francisco, CA
SP SPIE
DE VCSEL; vertical-cavity surface-emitting laser; optical interconnects;
cryogenic sensors; optical transmitters
ID QUANTUM-WELLS
AB We report on the development of 850-nm high-speed VCSELs optimized for low-power data transmission at cryogenic temperatures near 100 K. These VCSELs operate on the n=1 quantum well transition at cryogenic temperatures (near 100 K) and on the n=2 transition at room temperature (near 300 K) such that cryogenic cooling is not required for initial testing of the optical interconnects at room temperature. Relative to previous work at 950 nm, the shorter 850-nm wavelength of these VCSELs makes them compatible with high-speed receivers that employ GaAs photodiodes.
C1 [Serkland, Darwin K.; Geib, Kent M.; Peake, Gregory M.; Keeler, Gordon A.; Hsu, Alan Y.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Serkland, DK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM DKSERKL@sandia.gov
NR 4
TC 1
Z9 1
U1 0
U2 2
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-0-81948-919-7
J9 PROC SPIE
PY 2012
VL 8276
AR 82760S
DI 10.1117/12.909590
PG 7
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BYT88
UT WOS:000300250900026
ER
PT J
AU Grzenia, DL
Wickramasinghe, SR
Schell, DJ
AF Grzenia, David L.
Wickramasinghe, S. Ranil
Schell, Daniel J.
TI Fermentation of Reactive-Membrane-Extracted and
Ammonium-Hydroxide-Conditioned Dilute-Acid-Pretreated Corn Stover
SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
LA English
DT Article
DE Pretreatment; Bioethanol; Membrane; Extraction; Fermentation
ID REDUCING SOLVENT TOXICITY; ACETIC-ACID; ETHANOL; HYDROLYSATE;
HEMICELLULOSE; REMOVAL; NANOFILTRATION; STRATEGIES; BIOETHANOL; BIOMASS
AB Acid-pretreated biomass contains various compounds (acetic acid, etc.) that are inhibitory to fermentative microorganisms. Removing or deactivating these compounds using detoxification methods such as overliming or ammonium hydroxide conditioning (AHC) improves sugar-to-ethanol yields. In this study, we treated the liquor fraction of dilute-acid-pretreated corn stover using AHC and a new reactive membrane extraction technique, both separately and in combination, and then the sugars in the treated liquors were fermented to ethanol with the glucose-xylose-fermenting bacterium, Zymomonas mobilis 8b. We performed reactive extraction with mixtures of octanol/Alamine 336 or oleyl alcohol/Alamine 336. The best ethanol yields and rates were achieved for oleyl alcohol-extracted hydrolysates followed by AHC hydrolysates, while octanol-extracted hydrolysates were unfermentable because highly toxic octanol was found in the hydrolysate. Adding olive oil significantly improved yields for octanol-extracted hydrolysate. Additional work is underway to determine if this technology is a cost-effective alternative to traditional hydrolysate conditioning processes.
C1 [Schell, Daniel J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
[Grzenia, David L.] Colorado State Univ, Dept Chem & Biol Engn, Ft Collins, CO 80523 USA.
[Wickramasinghe, S. Ranil] Univ Arkansas, Dept Chem Engn, Fayetteville, AR 72701 USA.
RP Schell, DJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
EM dan.schell@nrel.gov
FU US Department of Energy's Office of the Biomass Program; National
Renewable Energy Laboratory [KXDJ-0-30622-02, ZFT-8-88524-01]
FX Funding for this work was provided by the US Department of Energy's
Office of the Biomass Program. Funding for Colorado State University was
provided by subcontracts with the National Renewable Energy Laboratory
(KXDJ-0-30622-02, ZFT-8-88524-01). We wish to thank Ali Mohagheghi and
Gary McMillen for help with the detoxification and fermentation
processes.
NR 29
TC 5
Z9 5
U1 1
U2 11
PU HUMANA PRESS INC
PI TOTOWA
PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA
SN 0273-2289
J9 APPL BIOCHEM BIOTECH
JI Appl. Biochem. Biotechnol.
PD JAN
PY 2012
VL 166
IS 2
BP 470
EP 478
DI 10.1007/s12010-011-9442-5
PG 9
WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
GA 892OR
UT WOS:000300296000019
PM 22161211
ER
PT J
AU Laursen, TA
Puso, MA
Sanders, J
AF Laursen, Tod A.
Puso, Michael A.
Sanders, Jessica
TI Mortar contact formulations for deformable-deformable contact: Past
contributions and new extensions for enriched and embedded interface
formulations
SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
LA English
DT Article
DE Contact; Mortar formulations; Interface; Stabilization
ID FINITE-ELEMENT-METHOD; ELASTICITY; STRATEGY
AB The past 10-15 years have seen important extensions of the mortar method, a technique for joining dissimilar grids popularized by the domain decomposition community, to the more general problem of contact and impact interactions in finite element analysis. This development has taken place largely in response to several long-standing problems in computational contact mechanics: lack of robustness in solution of the nonlinear and nonsmooth equations of evolution: degradation of spatial convergence rates in problems involving nonconforming meshes on interfaces; lack of a variationally consistent technique for stress recovery on interfaces; and so on. This survey paper summarizes some of the major steps in development of mortar contact formulations. It begins with a basic summary of the mortaring idea in the context of tied contact, it discusses key concepts required for the extension of these methods to large deformation, large sliding formulations of contact-impact, and it previews new results where lessons learned from mortar contact formulations can be extended to a much broader class of interface mechanics applications, considering in particular enriched interface formulations and embedded interface approaches to fluid-structure interaction. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Laursen, Tod A.] Khalifa Univ Sci Technol & Res KUSTAR, Abu Dhabi, U Arab Emirates.
[Puso, Michael A.] Lawrence Livermore Natl Lab, Methods Dev Grp, Livermore, CA 94550 USA.
[Sanders, Jessica] Duke Univ, Pratt Sch Engn, Duke Computat Mech Lab, Durham, NC 27706 USA.
RP Laursen, TA (reprint author), Khalifa Univ, Presidents Off, POB 127788, Abu Dhabi, U Arab Emirates.
EM laursen@duke.edu; puso1@llnl.gov; jessica.sanders@duke.edu
OI Laursen, Tod/0000-0003-4704-7730
FU Air Force Office of Scientific Research [FA9550-06-1-0108]; Department
of Energy; Lawrence Livermore National Laboratory; US Department of
Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
FX The authors would like to acknowledge the support of the Air Force
Office of Scientific Research Grant FA9550-06-1-0108, the Department of
Energy, and Lawrence Livermore National Laboratory. The work of M.A.
Puso was performed under the auspices of the US Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NR 37
TC 17
Z9 17
U1 0
U2 17
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0045-7825
J9 COMPUT METHOD APPL M
JI Comput. Meth. Appl. Mech. Eng.
PY 2012
VL 205
SI SI
BP 3
EP 15
DI 10.1016/j.cma.2010.09.006
PG 13
WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary
Applications; Mechanics
SC Engineering; Mathematics; Mechanics
GA 890FI
UT WOS:000300130100002
ER
PT J
AU Konidaris, KF
Polyzou, CD
Kostakis, GE
Tasiopoulos, AJ
Roubeau, O
Teat, SJ
Manessi-Zoupa, E
Powell, AK
Perlepes, SP
AF Konidaris, Konstantis F.
Polyzou, Christina D.
Kostakis, George E.
Tasiopoulos, Anastasios J.
Roubeau, Olivier
Teat, Simon J.
Manessi-Zoupa, Evy
Powell, Annie K.
Perlepes, Spyros P.
TI Metal ion-assisted transformations of 2-pyridinealdoxime and
hexafluorophosphate
SO DALTON TRANSACTIONS
LA English
DT Article
ID COORDINATION POLYMERS; CARBOXYLATE CHEMISTRY; COMPLEXES; LIGANDS; OXIME;
REARRANGEMENT; HYDROLYSIS; DINUCLEAR; AMIDES; TETRANUCLEAR
AB Metal-ion mediated reactions of 2-pyridinealdoxime and hexafluorophosphate lead to Zn-II complexes containing picolinic acid, picolinamide and monofluorophosphate (-2) as ligands.
C1 [Konidaris, Konstantis F.; Polyzou, Christina D.; Kostakis, George E.; Powell, Annie K.] Karlsruhe Inst Technol, Inst Nanotechnol, D-76344 Eggenstein Leopoldshafen, Germany.
[Polyzou, Christina D.; Manessi-Zoupa, Evy; Perlepes, Spyros P.] Univ Patras, Dept Chem, Patras 26504, Greece.
[Tasiopoulos, Anastasios J.] Univ Cyprus, Dept Chem, CY-1678 Nicosia, Cyprus.
[Roubeau, Olivier] Univ Zaragoza, Fac Ciencias, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain.
[Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Perlepes, Spyros P.] Fdn Res & Technol Hellas FORTH ICE HT, Inst Chem Engn & High Temp Chem Proc, GR-26504 Patras, Greece.
RP Powell, AK (reprint author), Karlsruhe Inst Technol, Inst Nanotechnol, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany.
EM annie.powell@kit.edu; perlepes@patreas.upatras.gr
RI Kostakis, George/J-2066-2012; Roubeau, Olivier/A-6839-2010; Powell,
Annie/B-8665-2012;
OI Kostakis, George/0000-0002-4316-4369; Roubeau,
Olivier/0000-0003-2095-5843; Powell, Annie/0000-0003-3944-7427;
Tasiopoulos, Anastasios/0000-0002-4804-3822; Konidaris,
Konstantis/0000-0002-7366-5682
FU DFG [SFB/TRR 88]; University of Patras; Karlsruhe and Alexander Onassis
Public Benefit Foundation [G ZG 034/2010-2011]; Research Committee of
the University of Patras [C584]; Office of Science, Office of Basic
Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
FX S.P.P thanks the DFG-funded transregional collaborative research center
SFB/TRR 88 "3MET" for support. C.D.P gratefully acknowledges University
of Patras for an Erasmus Placement fellowship during her work in
Karlsruhe and Alexander Onassis Public Benefit Foundation for a MSc
fellowship (G ZG 034/2010-2011). E.M.-Z thanks the Research Committee of
the University of Patras for financial support (C. Caratheodory Program,
Grant 2008, C584). The Advanced Light Source is supported by the
Director, Office of Science, Office of Basic Energy Sciences, of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also
thank Prof. V. Nastopoulos for helpful discussions.
NR 37
TC 19
Z9 19
U1 2
U2 4
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1477-9226
EI 1477-9234
J9 DALTON T
JI Dalton Trans.
PY 2012
VL 41
IS 10
BP 2862
EP 2865
DI 10.1039/c1dt11881a
PG 4
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 894QZ
UT WOS:000300443000002
PM 22119853
ER
PT J
AU Poineau, F
Forster, PM
Todorova, TK
Gagliardi, L
Sattelberger, AP
Czerwinski, KR
AF Poineau, Frederic
Forster, Paul M.
Todorova, Tanya K.
Gagliardi, Laura
Sattelberger, Alfred P.
Czerwinski, Kenneth R.
TI Multi-configurational quantum chemical studies of the Tc2X8n- (X = Cl,
Br; n=2, 3) anions. Crystallographic structure of
octabromoditechnetate(3(-))
SO DALTON TRANSACTIONS
LA English
DT Article
ID OCTACHLORODITECHNETATE; COMPLEXES; ORDERS; ION; NP; PU
AB The [Cs(2 + x)][H3O(1 -x)]Tc2Br8 center dot 4.6H(2)O (x = 0.221) salt has been synthesized and characterized by single crystal XRD. Multi-configurational quantum chemical calculations on Tc2X8n- (X = Cl, Br; n = 2, 3) have been performed and indicate the p component in the Tc-Tc bond to be stronger for n = 3.
C1 [Poineau, Frederic; Forster, Paul M.; Sattelberger, Alfred P.; Czerwinski, Kenneth R.] Univ Nevada Las Vegas, Dept Chem, Las Vegas, NV 89154 USA.
[Todorova, Tanya K.] Ecole Polytech Fed Lausanne, Lab Computat Mol Design, Inst Sci & Ingn Chim, CH-1015 Lausanne, Switzerland.
[Gagliardi, Laura] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA.
[Gagliardi, Laura] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA.
[Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Argonne, IL 60439 USA.
RP Poineau, F (reprint author), Univ Nevada Las Vegas, Dept Chem, Las Vegas, NV 89154 USA.
EM poineauf@unlv.nevada.edu
RI Todorova, Tanya/M-1849-2013;
OI Todorova, Tanya/0000-0002-7731-6498; Forster, Paul/0000-0003-3319-4238
FU US Department of Energy [0089445, DE-AC07-05ID14517]; U. S. Department
of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357, DE-AC02-05CH11231, DE-SC002183]; University of
Minnesota Supercomputing Institute
FX Funding for this research was provided by a subcontract through Battelle
0089445 from the US Department of Energy, agreement no.:
DE-AC07-05ID14517. Use of the Advanced Photon Source was supported by
the U. S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this work
was supported by the U. S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Contract No. DE-AC02-05CH11231
and Contract No. DE-SC002183 (LG) and the University of Minnesota
Supercomputing Institute.
NR 23
TC 11
Z9 11
U1 0
U2 1
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1477-9226
J9 DALTON T
JI Dalton Trans.
PY 2012
VL 41
IS 10
BP 2869
EP 2872
DI 10.1039/c2dt11952h
PG 4
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 894QZ
UT WOS:000300443000004
PM 22258182
ER
PT J
AU Baturina, TI
Postolova, SV
Mironov, AY
Glatz, A
Baklanov, MR
Vinokur, VM
AF Baturina, T. I.
Postolova, S. V.
Mironov, A. Yu.
Glatz, A.
Baklanov, M. R.
Vinokur, V. M.
TI Superconducting phase transitions in ultrathin TiN films
SO EPL
LA English
DT Article
ID KOSTERLITZ-THOULESS TRANSITION; ELECTRON INELASTIC-SCATTERING;
ANTIVORTEX PAIR DISSOCIATION; THIN-FILM; 2-DIMENSIONAL SUPERCONDUCTOR;
INSULATOR TRANSITION; ALUMINUM FILMS; CRITICAL DISORDER; COULOMB-GAS;
FLUCTUATION
AB Building on the complete account of quantum contributions to conductivity, we demonstrate that the resistance of thin superconducting films exhibits a non-monotonic temperature behaviour due to the competition between weak localization, electron-electron interaction, and superconducting fluctuations. We show that superconducting fluctuations give rise to an appreciable decrease in the resistance even at temperatures well exceeding the superconducting transition temperature, T-c, with this decrease being dominated by the Maki-Thompson process. The transition to a global phase-coherent superconducting state occurs via the Berezinskii-Kosterlitz-Thouless (BKT) transition, which we observe both by power-law behaviour in current-voltage characteristics and by flux flow transport in the magnetic field. The ratio T-BKT/T-c follows the universal relation. Copyright (C) EPLA, 2012
C1 [Baturina, T. I.; Postolova, S. V.; Mironov, A. Yu.] AV Rzhanov Inst Semicond Phys SB RAS, Novosibirsk 630090, Russia.
[Baturina, T. I.; Glatz, A.; Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Baklanov, M. R.] IMEC, B-3001 Louvain, Belgium.
RP Baturina, TI (reprint author), AV Rzhanov Inst Semicond Phys SB RAS, 13 Lavrentjev Ave, Novosibirsk 630090, Russia.
EM tatbat@isp.nsc.ru
FU Russian Academy of Sciences; Russian Foundation for Basic Research
[09-02-01205]; U.S. Department of Energy Office of Science
[DE-AC02-06CH11357]
FX This research is supported by the Program "Quantum Physics of Condensed
Matter" of the Russian Academy of Sciences, by the Russian Foundation
for Basic Research (Grant No. 09-02-01205), and by the U.S. Department
of Energy Office of Science under the Contract No. DE-AC02-06CH11357.
NR 47
TC 24
Z9 24
U1 1
U2 36
PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
PI MULHOUSE
PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE
SN 0295-5075
J9 EPL-EUROPHYS LETT
JI EPL
PD JAN
PY 2012
VL 97
IS 1
AR 17012
DI 10.1209/0295-5075/97/17012
PG 6
WC Physics, Multidisciplinary
SC Physics
GA 891XT
UT WOS:000300250800043
ER
PT J
AU Rupert, BL
Cherepy, NJ
Sturm, BW
Sanner, RD
Payne, SA
AF Rupert, B. L.
Cherepy, N. J.
Sturm, B. W.
Sanner, R. D.
Payne, S. A.
TI Bismuth-loaded plastic scintillators for gamma-ray spectroscopy
SO EPL
LA English
DT Article
ID ORGANOMETALLIC COMPOUNDS; RADIATION
AB Polyvinylcarbazole polymer scintillators with high loading of a bismuth organometallic exhibit good light yields, and are found to be capable of gamma-ray spectroscopy. When activated by a standard fluor, diphenylanthracene, a bismuth-loaded polymer produces similar to 12000 photons/MeV, exhibits an emission maximum at 420 nm, a similar to 15 ns decay, and energy resolution of 9% at 662 keV is measured. The same bismuth-loaded polymer doped with an iridium complex fluor has an emission maximum of 500 nm, a decay time of 1.2 mu s, a light yield of similar to 30000 photons/MeV, and energy resolution better than 7% FWHM at 662 keV. Copyright (C) EPLA, 2012
C1 [Rupert, B. L.; Cherepy, N. J.; Sturm, B. W.; Sanner, R. D.; Payne, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Rupert, BL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM cherepy1@llnl.gov
RI Cherepy, Nerine/F-6176-2013
OI Cherepy, Nerine/0000-0001-8561-923X
FU National Nuclear Security Administration, Office of Defense Nuclear
Nonproliferation, Office of Nonproliferation Research and Development
(NA-22) of the U.S. Department of Energy [DE-AC03-76SF00098]; U.S.
Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was supported by the National Nuclear Security Administration,
Office of Defense Nuclear Nonproliferation, Office of Nonproliferation
Research and Development (NA-22) of the U.S. Department of Energy under
Contract No. DE-AC03-76SF00098, and performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344.
NR 8
TC 25
Z9 25
U1 1
U2 16
PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
PI MULHOUSE
PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE
SN 0295-5075
J9 EPL-EUROPHYS LETT
JI EPL
PD JAN
PY 2012
VL 97
IS 2
AR 22002
DI 10.1209/0295-5075/97/22002
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 892AP
UT WOS:000300259100018
ER
PT J
AU Tsvelik, AM
AF Tsvelik, A. M.
TI Riding a wild horse: Majorana fermions interacting with solitons of fast
bosonic fields
SO EPL
LA English
DT Article
ID MODEL
AB I consider a class of one-dimensional models where Majorana fermions interact with bosonic fields. Contrary to a more familiar situation where bosonic degrees of freedom are phonons and as such form a slow subsystem, I consider fast bosons. Such situation exists when the bosonic modes appear as collective excitations of interacting electrons as, for instance, in superconductors or carbon nanotubes. It is shown that an entire new class of excitations emerge, namely bound states of solitons and Majorana fermions. The latter bound states are not topological and their existence and number depend on the interactions and the soliton's velocity. Intriguingly the number of bound states increases with the soliton's velocity. Copyright (C) EPLA, 2012
C1 Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
RP Tsvelik, AM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
EM tsvelik@bnl.gov
FU US DOE [DE-AC02 -98 CH 10886]
FX I am grateful to A. NERSESYAN and R. KONIK for interesting discussions.
AMT was supported by US DOE under contract No. DE-AC02 -98 CH 10886.
NR 9
TC 4
Z9 4
U1 1
U2 1
PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
PI MULHOUSE
PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE
SN 0295-5075
J9 EPL-EUROPHYS LETT
JI EPL
PD JAN
PY 2012
VL 97
IS 1
AR 17011
DI 10.1209/0295-5075/97/17011
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 891XT
UT WOS:000300250800042
ER
PT S
AU Ogawa, N
Biggin, MD
AF Ogawa, Nobuo
Biggin, Mark D.
BE Deplancke, B
Gheldof, N
TI High-Throughput SELEX Determination of DNA Sequences Bound by
Transcription Factors In Vitro
SO GENE REGULATORY NETWORKS: METHODS AND PROTOCOLS
SE Methods in Molecular Biology
LA English
DT Article; Book Chapter
DE Transcription factor; SELEX; DNA-binding sequence; In vitro assay
ID BINDING; ENHANCERS
AB SELEX (systematic evolution of ligands by exponential enrichment) was created 20 years ago as a method to enrich small populations of bound DNAs from a random sequence pool by Pat amplification. It provides a powerful way to determine the in vitro binding specificities of DNA-binding proteins such as transcription factors. Here, we present a robust version of the SELEX protocol for high-throughput analysis. Protein-bound beads prepared from insoluble recombinant 6x HIS-tagged transcription factor protein are used in a simple pull-down assay. To allow efficient determination of the enriched DNA sequences, bound oligonucleotides are concatenated, allowing approximately 1,000 oligonucleotides to be sequenced from one 96-well format plate. Successive rounds of SELEX data are statistically useful for understanding the full range of moderate affinity and high-affinity binding sites.
C1 [Ogawa, Nobuo; Biggin, Mark D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA.
RP Ogawa, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA.
FU NIGMS NIH HHS [GM704403]
NR 14
TC 5
Z9 5
U1 0
U2 4
PU HUMANA PRESS INC
PI TOTOWA
PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA
SN 1064-3745
BN 978-1-61779-291-5
J9 METHODS MOL BIOL
JI Methods Mol. Biol.
PY 2012
VL 786
BP 51
EP 63
DI 10.1007/978-1-61779-292-2_3
D2 10.1007/978-1-61779-292-2
PG 13
WC Biochemical Research Methods; Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA BYM15
UT WOS:000299299900003
PM 21938619
ER
PT J
AU Kao, DL
Wong, PC
AF Kao, David L.
Wong, Pak C.
TI Special issue of selected papers from visualization and data analysis
2011
SO INFORMATION VISUALIZATION
LA English
DT Editorial Material
C1 [Kao, David L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Wong, Pak C.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Kao, DL (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
NR 0
TC 0
Z9 0
U1 0
U2 1
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1473-8716
J9 INFORM VISUAL
JI Inf. Vis.
PD JAN
PY 2012
VL 11
IS 1
SI SI
BP 3
EP 4
DI 10.1177/1473871611431117
PG 2
WC Computer Science, Software Engineering
SC Computer Science
GA 892FI
UT WOS:000300271700001
ER
PT J
AU Lereu, AL
Passian, A
Dumas, P
AF Lereu, A. L.
Passian, A.
Dumas, Ph
TI Near field optical microscopy: a brief review
SO INTERNATIONAL JOURNAL OF NANOTECHNOLOGY
LA English
DT Article
DE near field optical microscopy; nanoantennas; plasmons
ID SINGLE-MOLECULE FLUORESCENCE; SURFACE-PLASMON INTERFERENCE; SHEAR-FORCE;
APERTURE PROBES; FAR-FIELD; RESOLUTION; ANTENNAS; FABRICATION; EMISSION;
LIGHT
AB Near Field Optical Microscopy (NSOM) has evolved into a mature member of the family of scanning probe microscopy. In this article, we briefly go over the principle of NSOM, its breakthroughs and setbacks. We will describe some of the most commonly used NSOM modalities and conclude with the recent advances based on optical nanoantennas. We will then highlight the potential of this high-resolution optical microscopy for chemical and biological applications as well as for materials sciences.
C1 [Lereu, A. L.; Dumas, Ph] CINaM CNRS, F-13288 Marseille, France.
[Passian, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Passian, A.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA.
RP Lereu, AL (reprint author), CINaM CNRS, Campus Luminy, F-13288 Marseille, France.
EM lereu@cinam.univ-mrs.fr; passianan@ornl.gov; dumas@cinam.univ-mrs.fr
RI Lereu, Aude/P-6414-2016
OI Lereu, Aude/0000-0001-7390-7832
FU CNRS; C Nano PACA; US DOE [DE-AC05-00OR22725]
FX A.L. Lereu and Ph. Dumas want to acknowledge the program "Interface
physique, biologie et chimie: soutien a la prise de risque" from the
CNRS and the C Nano PACA program for their financial supports. A.
Passian would like to acknowledge the Laboratory Directed Research and
Development (LDRD) Program of ORNL. ORNL is managed by UT-Battelle, LLC,
for the US DOE under contract DE-AC05-00OR22725.
NR 73
TC 8
Z9 8
U1 5
U2 54
PU INDERSCIENCE ENTERPRISES LTD
PI GENEVA
PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 896, CH-1215
GENEVA, SWITZERLAND
SN 1475-7435
J9 INT J NANOTECHNOL
JI Int. J. Nanotechnol.
PY 2012
VL 9
IS 3-7
BP 488
EP 501
DI 10.1504/IJNT.2012.045353
PG 14
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 894AX
UT WOS:000300400400022
ER
PT J
AU Carado, AJ
Quarles, CD
Duffin, AM
Barinaga, CJ
Russo, RE
Marcus, RK
Eiden, GC
Koppenaal, DW
AF Carado, Anthony J.
Quarles, C. Derrick, Jr.
Duffin, Andrew M.
Barinaga, Charles J.
Russo, Richard E.
Marcus, R. Kenneth
Eiden, Gregory C.
Koppenaal, David W.
TI Femtosecond laser ablation particle introduction to a liquid
sampling-atmospheric pressure glow discharge ionization source
SO JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY
LA English
DT Article
ID PLASMA-MASS SPECTROMETRY; ICP-MS MEASUREMENTS; PERFORMANCE; COLLISION
AB This work describes the use of a compact, liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source to ionize metal particles within a laser ablation aerosol. Mass analysis was performed with a Thermo Scientific Exactive Mass Spectrometer which utilizes an orbitrap mass analyzer capable of producing mass resolution exceeding m/Delta m > 160,000. The LS-APGD source generates a low-power plasma between the surface of an electrolytic solution flowing at several mu l min(-1) through a fused silica capillary and a counter electrode consisting of a stainless steel capillary employed to deliver the laser ablation particles into the plasma. Sample particles of approximately 100 nm were generated with an Applied Spectra femtosecond laser located remotely and transported through 25 meters of polyurethane tubing by means of argon carrier gas. Samples consisted of an oxygen free copper shard, a disk of solder, and a one-cent U.S. coin. Analyte signal onset was readily detectable relative to the background signal produced by the carrier gas alone. The high mass resolution capability of the orbitrap mass spectrometer was demonstrated on the solder sample with resolution exceeding 90,000 for Pb and 160,000 for Cu. In addition, results from a laser ablation depth-profiling experiment of a one cent coin revealed retention of the relative locations of the similar to 10 mu m copper cladding and zinc rich bulk layers.
C1 [Carado, Anthony J.; Duffin, Andrew M.; Barinaga, Charles J.; Eiden, Gregory C.; Koppenaal, David W.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Quarles, C. Derrick, Jr.; Marcus, R. Kenneth] Clemson Univ, Dept Chem, Clemson, SC 29634 USA.
[Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Koppenaal, DW (reprint author), Pacific NW Natl Lab, Battelle Blvd, Richland, WA 99352 USA.
FU US DOE by Batelle Memorial Institute [DE-AC06-76RLO-1830]; U.S.
Department of Energy's Office of Biological and Environmental Research
(BER); DOE Office of Non-Proliferation Research and Engineering [NA22]
FX This work was performed at Pacific Northwest National Laboratory,
operated for the US DOE by Batelle Memorial Institute under Contract
DE-AC06-76RLO-1830. The Exactive MS capability was provided by the W. R.
Wiley Environmental Molecular Science Laboratory, a national scientific
user facility sponsored by the U.S. Department of Energy's Office of
Biological and Environmental Research (BER) program. Support for this
work was provided by the DOE Office of Non-Proliferation Research and
Engineering (NA22).
NR 22
TC 13
Z9 13
U1 2
U2 23
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0267-9477
J9 J ANAL ATOM SPECTROM
JI J. Anal. At. Spectrom.
PY 2012
VL 27
IS 3
BP 385
EP 389
DI 10.1039/c2ja10331a
PG 5
WC Chemistry, Analytical; Spectroscopy
SC Chemistry; Spectroscopy
GA 892WL
UT WOS:000300316200001
ER
PT J
AU Zhang, XL
Ting, K
Pathmanathan, D
Ko, T
Chen, WW
Chen, F
Lee, HF
James, AW
Siu, RK
Shen, J
Culiat, CT
Soo, C
AF Zhang, Xinli
Ting, Kang
Pathmanathan, Dharmini
Ko, Theodore
Chen, Weiwei
Chen, Feng
Lee, Haofu
James, Aaron W.
Siu, Ronald K.
Shen, Jia
Culiat, Cymbeline T.
Soo, Chia
TI Calvarial Cleidocraniodysplasia-Like Defects With ENU-Induced Nell-1
Deficiency
SO JOURNAL OF CRANIOFACIAL SURGERY
LA English
DT Article
DE Runx2; membranous bone; Sox9; endochondral bone
ID OSTEOBLAST DIFFERENTIATION; BONE-FORMATION; EXPRESSION; CELLS; RUNX2;
GENE; CBFA1; MICE; CRANIOSYNOSTOSIS; PROTEINS
AB Nell-1, first identified by its overexpression in synostotic cranial sutures, is a novel osteoinductive growth and differentiation factor. To further define Nell-1's role in craniofacial patterning, we characterized defects of the ENU-induced Nell-1-deficient (END) mice, focusing on both intramembranous and endochondral cranial bones. Results showed that calvarial bones of neonatal END mice were reduced in thickness and density, with a phenotype resembling calvarial cleidocraniodysplasia. In addition, a global reduction in osteoblast markers was observed, including reductions in Runx2, alkaline phosphatase, and osteocalcin. Remarkably, detailed analysis of endochondral bones showed dysplasia as well. The chondrocranium in the END mouse showed enrichment for early, proliferating Sox9(+) chondrocytes, whereas in contrast markers of chondrocytes maturation were reduced. These data suggest that Nell-1 is an important growth factor for regulation of osteochondral differentiation, by regulating both Runx2 and Sox9 expression within the calvarium. In summary, Nell-1 is required for normal craniofacial membranous and endochondral skeletal development.
C1 [Zhang, Xinli; Ting, Kang; Chen, Weiwei; Chen, Feng; James, Aaron W.; Shen, Jia] Univ Calif Los Angeles, Sch Dent, Dent & Craniofacial Res Inst, Los Angeles, CA 90095 USA.
[Zhang, Xinli; Ting, Kang; Pathmanathan, Dharmini; Ko, Theodore; Lee, Haofu] Univ Calif Los Angeles, Sch Dent, Sect Orthodont, Los Angeles, CA 90095 USA.
[Ting, Kang; Soo, Chia] Univ Calif Los Angeles, Orthopaed Hosp, Dept Orthoped Surg, Los Angeles, CA 90095 USA.
[Ting, Kang; Soo, Chia] Univ Calif Los Angeles, Orthopaed Hosp, Res Ctr, Los Angeles, CA 90095 USA.
[Siu, Ronald K.] Univ Calif Los Angeles, Sch Engn, Dept Bioengn, Los Angeles, CA 90095 USA.
[Culiat, Cymbeline T.] Oak Ridge Natl Lab, Oak Ridge, TN USA.
RP Ting, K (reprint author), Univ Calif Los Angeles, Sch Dent, Dent & Craniofacial Res Inst, Le Conte Ave,CHS 30-117, Los Angeles, CA 90095 USA.
EM kting@dentistry.ucla.edu
FU NIH/NIDCR [R21 DE0177711, RO1 DE01607]; UC [07-10677]; Thomas R. Bales
Endowed Chair
FX This work was supported by the NIH/NIDCR (grants R21 DE0177711 and RO1
DE01607), UC Discovery Grant 07-10677, and the Thomas R. Bales Endowed
Chair.
NR 28
TC 10
Z9 11
U1 0
U2 7
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 1049-2275
J9 J CRANIOFAC SURG
JI J. Craniofac. Surg.
PD JAN
PY 2012
VL 23
IS 1
BP 61
EP 66
DI 10.1097/SCS.0b013e318240c8c4
PG 6
WC Surgery
SC Surgery
GA 891RS
UT WOS:000300234900040
PM 22337375
ER
PT J
AU Carcelen, V
Kim, KH
Camarda, GS
Bolotnikov, AE
Hossain, A
Yang, G
Crocco, J
Bensalah, H
Dierre, F
Dieguez, E
James, RB
AF Carcelen, V.
Kim, K. H.
Camarda, G. S.
Bolotnikov, A. E.
Hossain, A.
Yang, G.
Crocco, J.
Bensalah, H.
Dierre, F.
Dieguez, E.
James, R. B.
TI Pt coldfinger improves quality of Bridgman-grown Cd0.9Zn0.1Te:Bi
crystals
SO JOURNAL OF CRYSTAL GROWTH
LA English
DT Article
DE Crystal structure; Bridgman technique; Cadmium compounds; Semiconducting
II-VI materials
ID CADMIUM ZINC TELLURIDE; SOLID-LIQUID INTERFACE; CDZNTE CRYSTALS; CDTE;
DETECTORS; SHAPE; FURNACE; SYSTEM
AB Cadmium zinc telluride (Cd1-xZnxTe) crystals have many applications in optoelectronics and as room-temperature detectors. We grew bismuth-doped CZT crystals by the standard Bridgman Oscillation Method, and compared them with such crystals grown in the thermal environment of a furnace modified with a Pt coldfinger (metal rod). The coldfinger serves as a tool for stabilizing the solid-liquid interface by extracting heat from the as-grown crystal, and thereby improving the ingot's crystalline quality. We detailed the crystal's quality via high-resolution X-ray diffraction (HRXRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Synchrotron-based X-ray microfluorescence (mu SXRF) images, as well as by etch-pit density (EPD) measurements. Our results demonstrated that the Pt coldfinger is an effective tool for improving the quality of CZT bulk material. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Carcelen, V.; Crocco, J.; Bensalah, H.; Dierre, F.; Dieguez, E.] Univ Autonoma Madrid, Dept Mat Phys, Crystal Growth Lab, Fac Ciencias, E-28049 Madrid, Spain.
[Carcelen, V.; Kim, K. H.; Camarda, G. S.; Bolotnikov, A. E.; Hossain, A.; Yang, G.; James, R. B.] Brookhaven Natl Lab, Nonproliferat & Natl Secur Dept, Upton, NY 11973 USA.
RP Carcelen, V (reprint author), Univ Autonoma Madrid, Dept Mat Phys, Crystal Growth Lab, Fac Ciencias, E-28049 Madrid, Spain.
EM veronica.carcelen@uam.es
RI Carcelen, Veronica /B-3750-2017
FU Spanish "Ministerio de Educacion y Ciencia" [E5P2006-09935]; Spanish
"Comunidad de Madrid" [S-0505/MAT-0279]; European Commission
[FP7-SEC-2007-01]; European Space Agency [14240/00/NL/SH]; European
Space Agency; U.S. Department of Energy-Geosciences [DE-FG02-92ER14244]
FX This work was supported by the following Projects: Spanish "Ministerio
de Educacion y Ciencia", E5P2006-09935; Spanish "Comunidad de Madrid",
S-0505/MAT-0279; European Commission, FP7-SEC-2007-01; and Contract
number 14240/00/NL/SH, European Space Agency. One of the authors, VC, is
grateful to the Ministry of Education and Science, Spain for financial
support. Portions of this work were performed at Beam line X27A,
National Synchrotron Light Source (NSLS), Brookhaven National
Laboratory. X27A is supported in part by the U.S. Department of
Energy-Geosciences (DE-FG02-92ER14244 to The University of Chicago-CARS)
and Brookhaven National Laboratory-Department of Environmental Sciences.
Use of the NSLS was supported by the U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences, under Contract no.
DE-AC02-98CH10886. This work also was partially supported by the U.S.
Department of Energy, Office of Nonproliferation Research and
Development, NA-22.
NR 29
TC 5
Z9 5
U1 1
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-0248
J9 J CRYST GROWTH
JI J. Cryst. Growth
PD JAN 1
PY 2012
VL 338
IS 1
BP 1
EP 5
DI 10.1016/j.jcrysgro.2011.09.031
PG 5
WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied
SC Crystallography; Materials Science; Physics
GA 884PQ
UT WOS:000299720400001
ER
PT J
AU Ptak, AJ
France, R
Beaton, DA
Alberi, K
Simon, J
Mascarenhas, A
Jiang, CS
AF Ptak, A. J.
France, R.
Beaton, D. A.
Alberi, K.
Simon, J.
Mascarenhas, A.
Jiang, C. -S.
TI Kinetically limited growth of GaAsBi by molecular-beam epitaxy
SO JOURNAL OF CRYSTAL GROWTH
LA English
DT Article
DE Atomic-Force Microscopy; Growth Models; Segregation; Molecular-Beam
Epitaxy; Bismuth Compounds; Semiconducting III-V Materials
ID SURFACE SEGREGATION; BISMUTH; DIFFUSION
AB The growth of GaAsBi alloys is plagued by the appearance of Bi droplets due to excess Bi that accumulates during growth. Here we present an alternate growth regime that kinetically limits the amount of Bi on the surface, eliminating Bi droplets for a wide range of Bi compositions, while yielding atomically smooth surfaces. Growth rate plays a major role in the amount of Bi that accumulates on the surface, with high growth rates and low Bi fluxes leading to less surface Bi. A balance can be achieved between low Bi coverage, the resultant rough surfaces, and the excessive Bi coverage that leads to Bi droplets. Bi incorporation in this growth regime is linear with Bi flux and scales inversely with growth rate. Unlike previous studies, there is no sign of saturating Bi incorporation with increasing Bi flux, allowing for intuitive prediction and control of Hi content in this regime. (C) 2011 Published by Elsevier B.V.
C1 [Ptak, A. J.; France, R.; Beaton, D. A.; Alberi, K.; Simon, J.; Mascarenhas, A.; Jiang, C. -S.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Ptak, AJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM aaron.ptak@nrel.gov
RI jiang, chun-sheng/F-7839-2012
FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division [AC36-08G028308]
FX This research was supported by the U.S. Department of Energy, Basic
Energy Sciences, Materials Sciences and Engineering Division under
DE-AC36-08G028308.
NR 21
TC 49
Z9 49
U1 1
U2 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-0248
J9 J CRYST GROWTH
JI J. Cryst. Growth
PD JAN 1
PY 2012
VL 338
IS 1
BP 107
EP 110
DI 10.1016/j.jcrysgro.2011.10.040
PG 4
WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied
SC Crystallography; Materials Science; Physics
GA 884PQ
UT WOS:000299720400020
ER
PT J
AU Vahidi, M
Tang, ZZ
Tucker, J
Peshek, TJ
Zhang, L
Kopas, C
Singh, RK
van Schilfgaarde, M
Newman, N
AF Vahidi, M.
Tang, Z. Z.
Tucker, J.
Peshek, T. J.
Zhang, L.
Kopas, C.
Singh, R. K.
van Schilfgaarde, M.
Newman, N.
TI Experimental study of the kinetically-limited decomposition of ZnGeAs2
and its role in determining optimal conditions for thin film growth
SO JOURNAL OF CRYSTAL GROWTH
LA English
DT Article
DE Kinetics; Desorption; Thermodynamics; Thin film; Semiconducting ternary
compounds
ID EPITAXIAL-GROWTH; DEPOSITION; SEMICONDUCTOR
AB To understand the thermochemistry and determine the rate limiting steps of ZnGeAs2 thin-film synthesis, experiments were performed to measure the (a) thermal decomposition rate and (b) elemental composition and deposition rate of films produced with pulsed laser deposition (PLD). The decomposition rate is kinetically limited with an activation energy of 1.08 +/- 0.05 eV and an evaporation coefficient of similar to 10(-3). We show that ZnGeAs2 thin film synthesis is a metastable process with the kinetically-limited decomposition rate playing a dominant role at the elevated temperatures needed to attain epitaxy. Our conclusions are in contrast to those of earlier reports that assumed the growth rate is limited by desorption and the resulting low reactant sticking coefficient. The thermochemical analysis presented here can be used to predict optimal conditions for ZnGeAs2 film physical vapor deposition and thermal processing. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Vahidi, M.; Tang, Z. Z.; Tucker, J.; Peshek, T. J.; Zhang, L.; Kopas, C.; Singh, R. K.; van Schilfgaarde, M.; Newman, N.] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA.
[Peshek, T. J.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Newman, N (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA.
EM Nathan.Newman@asu.edu
RI Newman, Nathan/E-1466-2011;
OI Newman, Nathan/0000-0003-2819-9616; Kopas, Cameron/0000-0002-6184-2987
FU DOE-EERE [DE-FG36-08GO18002]
FX This project was supported by DOE-EERE grant DE-FG36-08GO18002. The use
of facilities in the LeRoy Eyring Center for Solid State Science at
Arizona State University is acknowledged.
NR 24
TC 1
Z9 1
U1 1
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-0248
EI 1873-5002
J9 J CRYST GROWTH
JI J. Cryst. Growth
PD JAN 1
PY 2012
VL 338
IS 1
BP 267
EP 271
DI 10.1016/j.jcrysgro.2011.11.004
PG 5
WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied
SC Crystallography; Materials Science; Physics
GA 884PQ
UT WOS:000299720400050
ER
PT J
AU Weinberger, CR
Cai, W
AF Weinberger, Christopher R.
Cai, Wei
TI Plasticity of metal nanowires
SO JOURNAL OF MATERIALS CHEMISTRY
LA English
DT Article
ID DISLOCATION DYNAMICS SIMULATIONS; PHASE-TRANSFORMATION; YIELD STRENGTH;
GOLD NANOWIRES; DEPENDENT PLASTICITY; COPPER NANOWIRES; SILVER
NANOWIRES; SURFACE-ENERGY; CU NANOWIRES; FCC METALS
AB The mechanisms of plasticity in metal nanowires with diameters below 100 nm are reviewed. At these length scales, plasticity in face-centered-cubic metals subjected to uniaxial loading is dominated by dislocation nucleation from free surfaces, which has been studied extensively by molecular dynamics. These simulations show that nanowires can deform in a variety of ways including slip via perfect dislocations, partial dislocations and deformation twins. The competition between these mechanisms can be explained primarily through the Schmid factor and material properties, although surface orientation and roughness also contribute. The strength of these materials is very high and can be described by classical nucleation theory which predicts strong temperature and geometry dependence as well as a weak strain rate dependence. Additionally, nanowires exhibit, through twinning or phase transformation, pseudo-elastic and shape-memory behaviors which are attributed to their small size and the surface stress. The plasticity of nanowires subject to torsion and bending as well as those composed of body-centered-cubic metals are also summarized.
C1 [Weinberger, Christopher R.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Cai, Wei] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA.
RP Weinberger, CR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM crweinb@sandia.gov; caiwei@stanford.edu
RI Weinberger, Christopher/E-2602-2011;
OI Weinberger, Christopher/0000-0001-9550-6992; Cai,
Wei/0000-0001-5919-8734
FU U.S. Department of Energy [DE-AC04-94AL85000]; National Science
Foundation [CMS-0547681]; Army High Performance Computing Research
Center at Stanford
FX This research was supported in part by an appointment to the Sandia
National Laboratories Truman Fellowship in National Security Science and
Engineering, sponsored by Sandia Corporation (a wholly owned subsidiary
of Lockheed Martin Corporation) as Operator of Sandia National
Laboratories under its U.S. Department of Energy Contract No.
DE-AC04-94AL85000. The work was partly supported by National Science
Foundation Career Grant CMS-0547681 and the Army High Performance
Computing Research Center at Stanford.
NR 105
TC 59
Z9 59
U1 2
U2 81
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0959-9428
J9 J MATER CHEM
JI J. Mater. Chem.
PY 2012
VL 22
IS 8
BP 3277
EP 3292
DI 10.1039/c2jm13682a
PG 16
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 884HL
UT WOS:000299695400001
ER
PT J
AU Adelstein, N
Neaton, JB
Asta, M
De Jonghe, LC
AF Adelstein, Nicole
Neaton, Jeffrey B.
Asta, Mark
De Jonghe, Lutgard C.
TI First-principles studies of proton-Ba interactions in doped LaPO4
SO JOURNAL OF MATERIALS CHEMISTRY
LA English
DT Article
ID ELECTRICAL-CONDUCTION PROPERTIES; TOTAL-ENERGY CALCULATIONS; WAVE
BASIS-SET; TRANSPORT; OXIDES; DYNAMICS; DEFECTS; DOPANTS; METALS; LAP3O9
AB The interactions between an aliovalent cation dopant, Ba, and protons in LaPO4 are studied with first-principles density functional theory. This work is motivated by the desire to use doped LaPO4 as a proton conducting solid electrolyte or hydrogen separation membrane. In this context, the strength and range of proton-dopant interactions are important factors underlying proton mobilities. Using periodic supercells, we find that similar to 3% Ba-doping stabilizes a proton at a distance 2.7 angstrom from the dopant by up to 0.2 eV relative to positions far from the dopant. The Ba-dopant creates a narrow potential energy well and only changes the proton's potential energy surface by +/- 0.05 eV when the proton is farther than 2.7 angstrom from the dopant. Electrostatic interactions between the proton and dopant account for the majority of the binding energy of proton sites and are associated with a complex redistribution of the charge induced by the dopant on the neighboring oxygen ions. In contrast, the strain field created by the Ba-dopant gives rise to a relatively small contribution to the interaction energy.
C1 [Adelstein, Nicole; Asta, Mark; De Jonghe, Lutgard C.] Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA.
RP Adelstein, N (reprint author), Dept Mat Sci & Engn, 210 Hearst Mem Min Bldg, Berkeley, CA 94720 USA.
EM adelstein@berkeley.edu
RI Neaton, Jeffrey/F-8578-2015
OI Neaton, Jeffrey/0000-0001-7585-6135
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, of the U.S. Department of Energy
[DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences,
of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science
of the U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work
at the Molecular Foundry was supported by the Office of Science, Office
of Basic Energy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. We also gratefully acknowledge
computational support from NERSC, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. The authors would like to thank Hannah L. Ray for
useful discussions and Alexey Zayak for help with Fig. 4.
NR 27
TC 4
Z9 4
U1 1
U2 20
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0959-9428
J9 J MATER CHEM
JI J. Mater. Chem.
PY 2012
VL 22
IS 9
BP 3758
EP 3763
DI 10.1039/c2jm16214h
PG 6
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 890ZX
UT WOS:000300187000014
ER
PT J
AU Guan, JG
Yan, GQ
Wang, W
Liu, J
AF Guan, Jianguo
Yan, Gongqin
Wang, Wei
Liu, Jun
TI External field-assisted solution synthesis and selectively catalytic
properties of amorphous iron nanoplatelets
SO JOURNAL OF MATERIALS CHEMISTRY
LA English
DT Article
ID MAGNETIC-FIELD; ELECTROMAGNETIC PROPERTIES; CYCLOHEXANE OXIDATION;
INDUCED GROWTH; THIN-FILMS; NANOPARTICLES; SILVER; TEMPERATURE;
HYDROGEN; COBALT
AB This work describes an easy and flexible approach for the synthesis of 2D nanostructures by external composite field-induced self-assembly. Amorphous iron nanoplatelets with a large aspect ratio were prepared by reducing a concentrated FeSO4 solution with NaBH4 without any templates or surfactants under a magnetic field and a shear field, and characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Based on the morphological dependence of the resultant iron nanostructures on the kinetic parameters such as reactant concentration, reaction temperature, external fields as well as reaction time, etc., a novel conceivable formation mechanism of the iron nanoplatelets was substantiated to be a self-assembly of concentrated iron nuclei induced by the synergistic effect of both a magnetic field and a shear field. Due to the amorphous nature and shape anisotropy, the as-synthesized iron nanoplatelets exhibit quite different magnetic properties with an enhanced coercivity of >220 Oe from isotropic iron nanoparticles. In the oxidation of cyclohexane with hydrogen peroxide as a "green'' oxidant, the as-obtained amorphous iron nanoplatelets show a conversion more than 84% and a complete selectivity for cyclohexanol and cyclohexanone due to the unique structure. Moreover, their catalytic performances are strongly influenced by their morphology, and the iron atoms located on the faces tend to catalyze the formation of cyclohexanol while those on the sides tend to catalyze the formation of cyclohexanone. The external composite field-induced solution synthesis reported here can be readily explored for fabricating other 2D magnetic nanoplatelets, and the resulting iron nanoplatelets are promising for a number of applications such as high efficient selective catalysis, energy, environment fields and so forth.
C1 [Guan, Jianguo; Yan, Gongqin; Wang, Wei] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China.
[Yan, Gongqin] Guangxi Univ Technol, Dept Mech Engn, Liuzhou 545006, Guangxi, Peoples R China.
[Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Guan, JG (reprint author), Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China.
EM guanjg@whut.edu.cn
RI Guan, Jianguo/E-1118-2011
OI Guan, Jianguo/0000-0002-2223-4524
FU National High Technology Research and Development Program of China
[2006AA03A209]; Fok Ying Tung Education Foundation [101049]; Natural
Science Foundation of Hubei Province [20101j0167, 20101j0157]; Subject
Leadership Project of Wuhan City [201150530145]
FX This work was supported by National High Technology Research and
Development Program of China (no. 2006AA03A209), Young Teachers from Fok
Ying Tung Education Foundation (no. 101049), the Natural Science
Foundation of Hubei Province (20101j0167 and 20101j0157) and the Subject
Leadership Project of Wuhan City (201150530145).
NR 53
TC 4
Z9 4
U1 3
U2 42
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0959-9428
J9 J MATER CHEM
JI J. Mater. Chem.
PY 2012
VL 22
IS 9
BP 3909
EP 3915
DI 10.1039/c2jm15000j
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 890ZX
UT WOS:000300187000033
ER
PT J
AU Xu, W
Read, A
Koech, PK
Hu, DH
Wang, CM
Xiao, J
Padmaperuma, AB
Graff, GL
Liu, J
Zhang, JG
AF Xu, Wu
Read, Adam
Koech, Phillip K.
Hu, Dehong
Wang, Chongmin
Xiao, Jie
Padmaperuma, Asanga B.
Graff, Gordon L.
Liu, Jun
Zhang, Ji-Guang
TI Factors affecting the battery performance of anthraquinone-based organic
cathode materials
SO JOURNAL OF MATERIALS CHEMISTRY
LA English
DT Article
ID LI-ION BATTERIES; RECHARGEABLE BATTERIES; CORRELATION-ENERGY; LITHIUM
BATTERIES; ACTIVE MATERIAL; SECONDARY BATTERIES; STORAGE MATERIALS;
RADICAL CATHODES; DENSITY; POLYMERS
AB Two organic cathode materials based on the poly(anthraquinonyl sulfide) structure with different substitution positions were synthesized and their electrochemical behavior and battery performance were investigated. The substitution positions on the anthraquinone structure, the type of binders for electrode preparation, and electrolyte formulations have been found to have significant effects on the performance of batteries containing these organic cathode materials. The polymer with less steric hindrance at the substitution positions has higher capacity, longer cycle life and better high-rate capability. Polyvinylidene fluoride binder and ether-based electrolytes are favorable for the high capacity and long cycle life of the anthraquinonyl organic cathodes.
C1 [Xu, Wu; Read, Adam; Koech, Phillip K.; Xiao, Jie; Padmaperuma, Asanga B.; Graff, Gordon L.; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA.
[Read, Adam] Brigham Young Univ, Dept Chem Engn, Provo, UT 84602 USA.
[Hu, Dehong; Liu, Jun] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA.
[Wang, Chongmin] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99354 USA.
RP Xu, W (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA.
EM wu.xu@pnnl.gov; jiguang.zhang@pnnl.gov
RI Hu, Dehong/B-4650-2010;
OI Hu, Dehong/0000-0002-3974-2963; Koech, Phillip/0000-0003-2996-0593; Xu,
Wu/0000-0002-2685-8684
FU U.S. Department of Energy (DOE), Office of Vehicle Technologies (through
the Lawrence Berkeley National Laboratory); Pacific Northwest National
Laboratory (PNNL); DOE's Office of Biological and Environmental
Research; PNNL
FX This work was sponsored by the U.S. Department of Energy (DOE), Office
of Vehicle Technologies (through the Batteries for Advanced
Transportation Technologies program at Lawrence Berkeley National
Laboratory) and the Laboratory Directed Research and Development Project
of Pacific Northwest National Laboratory (PNNL). The TEM measurement was
performed in Environmental Molecular Sciences Laboratory, a national
scientific user facility sponsored by the DOE's Office of Biological and
Environmental Research and located at PNNL.
NR 33
TC 46
Z9 46
U1 12
U2 92
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0959-9428
J9 J MATER CHEM
JI J. Mater. Chem.
PY 2012
VL 22
IS 9
BP 4032
EP 4039
DI 10.1039/c2jm15764k
PG 8
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 890ZX
UT WOS:000300187000050
ER
PT J
AU Xiao, HY
Zhang, Y
Snead, LL
Shutthanandan, V
Xue, HZ
Weber, WJ
AF Xiao, H. Y.
Zhang, Y.
Snead, L. L.
Shutthanandan, V.
Xue, H. Z.
Weber, W. J.
TI Near-surface and bulk behavior of Ag in SiC
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID SILICON-CARBIDE; IMPLANTATION TEMPERATURE; BETA-SIC(001) SURFACES;
DAMAGE ACCUMULATION; STRUCTURAL-ANALYSIS; FUEL-PARTICLES; NOBLE-METALS;
ADSORPTION; DIFFUSION; ENERGY
AB The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85-1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Xiao, H. Y.; Zhang, Y.; Xue, H. Z.; Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Zhang, Y.; Snead, L. L.; Weber, W. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Shutthanandan, V.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Xiao, HY (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
EM hxiao@utk.edu
RI Weber, William/A-4177-2008
OI Weber, William/0000-0002-9017-7365
FU University of Tennessee/Oak Ridge National Laboratory (UTK/ORNL) Joint
Institute for Advanced Materials; DOE Office of Nuclear Energy at UTK;
ORNL
FX This work was supported in part by the University of Tennessee/Oak Ridge
National Laboratory (UTK/ORNL) Joint Institute for Advanced Materials,
and by the DOE Office of Nuclear Energy programs at UTK and ORNL. The
theoretical calculations were performed using the supercomputer
resources at the National Energy Research Scientific Computing Center
(NERSC) located at Lawrence Berkeley National Laboratory, and at the
Environmental Molecular Sciences Laboratory (EMSL) located at Pacific
Northwest National Laboratory (PNNL). A portion of experiments was
performed at the EMSL, a national scientific user facility sponsored by
the Department of Energy's Office of Biological and Environmental
Research and located at PNNL.
NR 60
TC 19
Z9 19
U1 4
U2 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JAN
PY 2012
VL 420
IS 1-3
BP 123
EP 130
DI 10.1016/j.jnucmat.2011.09.028
PG 8
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 894YB
UT WOS:000300462300016
ER
PT J
AU Chung, CW
Urn, W
Valenta, MM
Sundaram, SK
Chun, J
Parker, KE
Kimura, ML
Westsik, JH
AF Chung, Chul-Woo
Urn, Wooyong
Valenta, Michelle M.
Sundaram, S. K.
Chun, Jaehun
Parker, Kent E.
Kimura, Marcia L.
Westsik, Joseph H., Jr.
TI Characteristics of Cast Stone cementitious waste form for immobilization
of secondary wastes from vitrification process
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID AFM PHASE
AB The high-temperature in vitrification process of radioactive wastes could cause radioactive technetium (Tc-99) in secondary liquid wastes to become volatile. Solidified cementitious waste forms at low temperature were developed to immobilize radioactive secondary waste. This research focuses on the characterization of a cementitious waste form called Cast Stone. Properties including compressive strength, surface area, phase composition, and technetium leaching were measured. The results indicate that technetium diffusivity is affected by simulant type. Additionally, ettringite and AFm (Al2O3-Fe2O3-mono) main crystalline phases were formed during hydration. The Cast Stone waste form passed the qualification requirements for a secondary waste form, which are compressive strength of 3.45 MPa and technetium diffusivity of 10(-9) cm(2)/sec. Cast Stone was found to be a good candidate for immobilizing secondary waste streams. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Chung, Chul-Woo; Urn, Wooyong; Valenta, Michelle M.; Sundaram, S. K.; Chun, Jaehun; Parker, Kent E.; Kimura, Marcia L.; Westsik, Joseph H., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Chung, CW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM Chul-Woo.Chung@pnnl.gov
FU Washington River Protection Solutions (WRPS); Division of Advanced
Nuclear Engineering (DANE) in POSTECH through the National Research
Foundation of Korea; Ministry of Education, Science and Technology
[R31-30005]; United States Department of Energy [DE-AC06-76RLO 1830]
FX The project was supported by Washington River Protection Solutions
(WRPS). Additional funding was supported by WCU (World Class University)
program at the Division of Advanced Nuclear Engineering (DANE) in
POSTECH through the National Research Foundation of Korea funded by the
Ministry of Education, Science and Technology (R31-30005). The authors
deeply appreciate the comments and discussions provided by Prof. Leslie
J. Struble (University of Illinois at Urbana Champaign). The authors
appreciate the assistance provided by Carolyne Burns and Stan Pitman in
Pacific Northwest National Laboratory (PNNL) for particle size
measurement of raw cementitious materials and compressive strength
measurements of Cast Stone. We also appreciate the support of raw
materials from Mr. John Harris in Lafarge North America. PNNL is a
multi-program national laboratory operated by Battelle Memorial
Institute for the United States Department of Energy under contract
DE-AC06-76RLO 1830.
NR 28
TC 2
Z9 3
U1 0
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JAN
PY 2012
VL 420
IS 1-3
BP 164
EP 174
DI 10.1016/j.jnucmat.2011.09.021
PG 11
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 894YB
UT WOS:000300462300021
ER
PT J
AU Sun, C
Yu, KY
Lee, JH
Liu, Y
Wang, H
Shao, L
Maloy, SA
Hartwig, KT
Zhang, X
AF Sun, C.
Yu, K. Y.
Lee, J. H.
Liu, Y.
Wang, H.
Shao, L.
Maloy, S. A.
Hartwig, K. T.
Zhang, X.
TI Enhanced radiation tolerance of ultrafine grained Fe-Cr-Ni alloy
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID AUSTENITIC STAINLESS-STEELS; HELIUM ION-IRRADIATION; NANOSTRUCTURED
MATERIALS; NEUTRON-IRRADIATION; DAMAGE; BOUNDARIES; EVOLUTION; BUBBLES;
METALS; COPPER
AB The evolutions of microstructure and mechanical properties of Fe-14Cr-16Ni (wt.%) alloy subjected to Helium ion irradiations were investigated. Equal channel angular pressing (ECAP) process was used to significantly reduce the average grain size from 700 gm to 400 nm. At a peak fluence level of 5.5 displacement per atom (dpa), helium bubbles, 0.5-2 nm in diameter, were observed in both coarse-grained (CG) and ultrafine grained (UFG) alloy. The density of He bubbles, dislocation loops, as well as radiation hardening were reduced in the UFG Fe-Cr-Ni alloy comparing to those in its CG counterpart. The results imply that radiation tolerance in bulk metals can be effectively enhanced by refinement of microstructures. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Sun, C.; Yu, K. Y.; Liu, Y.; Hartwig, K. T.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA.
[Lee, J. H.; Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA.
[Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA.
[Maloy, S. A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA.
EM zhangx@tamu.edu
RI Lujan Center, LANL/G-4896-2012; Sun, Cheng/G-8953-2013; Yu, Kaiyuan
/B-8398-2014; Liu, Yue/H-4071-2014; Zhang, Xinghang/H-6764-2013; Wang,
Haiyan/P-3550-2014; Maloy, Stuart/A-8672-2009
OI Sun, Cheng/0000-0002-1368-243X; Yu, Kaiyuan /0000-0002-5442-2992; Liu,
Yue/0000-0001-8518-5734; Zhang, Xinghang/0000-0002-8380-8667; Wang,
Haiyan/0000-0002-7397-1209; Maloy, Stuart/0000-0001-8037-1319
FU DOE-NEUP [DE-AC07-05ID14517-00088120]; US Army Research Office -
Materials Science Division [W911NF-09-1-0223]; NSF [0846835]
FX We acknowledges financial support by DOE-NEUP under Contract No.
DE-AC07-05ID14517-00088120. Partial support by US Army Research Office -
Materials Science Division is also acknowledged under Contract No.
W911NF-09-1-0223. Shao acknowledges support by NSF under Grant No.
0846835. We also acknowledge the usage of microscopes at the Microscopy
and Imaging Center at Texas A&M University.
NR 52
TC 35
Z9 35
U1 2
U2 45
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JAN
PY 2012
VL 420
IS 1-3
BP 235
EP 240
DI 10.1016/j.jnucmat.2011.10.001
PG 6
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 894YB
UT WOS:000300462300031
ER
PT J
AU Usov, IO
Valdez, JA
Won, J
Devlin, DJ
AF Usov, I. O.
Valdez, J. A.
Won, J.
Devlin, D. J.
TI Ion irradiation temperature effect on HfO2/MgO multi-layer structures
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID ZRO2 COMPOSITE-MATERIAL; PHASE-TRANSITION; ZIRCONIA; CERAMICS; FUEL;
TRANSMUTATION; FABRICATION; ACTINIDES; HAFNIA
AB Properties of nuclear materials may be improved by employing composite materials. However, these properties usually degrade during the operation in a nuclear reactor environment due to radiation damage accumulation. For this study we fabricated a multi-layer structure composed of MgO and HfO2 thin films on a sapphire substrate. This multi-layer structure was designed to mimic a CERCER (ceramic-ceramic) composite fuel form. The goal of this study was to investigate features of radiation damage evolution cause by ion beam irradiation in a wide temperature range. We observed phase transformation in HfO2 from monoclinic to the tetragonal polymorph and no changes in MgO. Formation of thin amorphous regions adjacent to the MgO/HfO2 and HfO2/sapphire substrate interfaces was identified in both cases. Phase and microstructural changes demonstrated pronounced dependence on irradiation temperature, which we attributed to either enhanced annihilation of irradiation induced point defects or intermixing between the components of our multi-layered structure. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Usov, I. O.; Valdez, J. A.; Won, J.; Devlin, D. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Usov, IO (reprint author), Los Alamos Natl Lab, Mailstop E549, Los Alamos, NM 87545 USA.
EM iusov@lanl.gov
OI won, Jonghan/0000-0002-7612-1322
FU Los Alamos National Laboratory, Laboratory Directed Research and
Development (LDRD); US Department of Energy
FX This work was supported by a Los Alamos National Laboratory, Laboratory
Directed Research and Development (LDRD) grant and US Department of
Energy Advanced Fuel Cycle Campaign and Fuel Cycle R&D Program. Ion
irradiation and RBS analysis was performed at the Ion Beam Materials
Laboratory (IBML) and TEM analysis was performed at the Electron
Microscopy Laboratory (EML) at LANL. The authors would like to thank J.
Tesmer and Y. Wang from the IBML facility and R. Dickerson from EML for
their technical assistance.
NR 28
TC 4
Z9 4
U1 1
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JAN
PY 2012
VL 420
IS 1-3
BP 262
EP 267
DI 10.1016/j.jnucmat.2011.09.024
PG 6
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 894YB
UT WOS:000300462300035
ER
PT J
AU Cui, D
Rondinella, VV
Fortner, JA
Kropf, AJ
Eriksson, L
Wronkiewicz, DJ
Spahiu, K
AF Cui, D.
Rondinella, V. V.
Fortner, J. A.
Kropf, A. J.
Eriksson, L.
Wronkiewicz, D. J.
Spahiu, K.
TI Characterization of alloy particles extracted from spent nuclear fuel
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID RAY-ABSORPTION SPECTROSCOPY; PWR FUEL; BEHAVIOR; DISSOLUTION; RESIDUES;
ELECTRON; IFEFFIT; METAL; STATE
AB We characterized, for the first time, submicro- and nanosized fission product-alloy particles that were extracted nondestructively from spent nuclear fuel, in terms of noble metal (Mo-Ru-Tc-Rh-Pd-Te) composition, atomic level homogeneity and lattice parameters. The evidences obtained in this work contribute to an improved understanding of the redox chemistry of radionuclides in nuclear waste repository environments and, in particular, of the catalytic properties of these unique metal alloy particles. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Cui, D.] Studsvik AB, S-61182 Nykoping, Sweden.
[Cui, D.; Eriksson, L.] Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden.
[Rondinella, V. V.] Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany.
[Fortner, J. A.; Kropf, A. J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Wronkiewicz, D. J.] Missouri Univ Sci & Technol, Dept Geol Sci & Engn, Rolla, MO 65409 USA.
[Spahiu, K.] SKB, SE-10240 Stockholm, Sweden.
RP Cui, D (reprint author), Studsvik AB, S-61182 Nykoping, Sweden.
EM daqing.cui@studsvik.se
RI ID, MRCAT/G-7586-2011
FU Swedish Nuclear Fuel and Waste Management Co. (SKB) [14938]; United
States Department of Energy (DOE) [DE-AC02-06CH11357]
FX The experimental work and a part of manuscript writing were done at
Studsvik Nuclear AB, Sweden, coordinated and supported by Swedish
Nuclear Fuel and Waste Management Co. (SKB) under R & D Project 14938.
Part of manuscript writing was done during D.Cui's visiting stay at
JRC-ITU, European Commission. The EXAFS characterization performed at
Argonne National Laboratory, USA, was supported by the United States
Department of Energy (DOE) (DE-AC02-06CH11357). Thanks to H. Bergqvist,
W. Sahle and M. Kallberg for microscope analysis and to J. Low for
solution analysis.
NR 33
TC 8
Z9 8
U1 4
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JAN
PY 2012
VL 420
IS 1-3
BP 328
EP 333
DI 10.1016/j.jnucmat.2011.10.015
PG 6
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 894YB
UT WOS:000300462300045
ER
PT J
AU Yang, TF
Huang, XJ
Gao, Y
Wang, CX
Zhang, YW
Xue, JM
Yan, S
Wang, YG
AF Yang, Tengfei
Huang, Xuejun
Gao, Yuan
Wang, Chenxu
Zhang, Yanwen
Xue, Jianming
Yan, Sha
Wang, Yugang
TI Damage evolution of yttria-stabilized zirconia induced by He irradiation
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID RADIATION-DAMAGE; IMPLANTATION; IONS
AB The study presents an investigation of damage evolution of yttria-stabilized zirconia (YSZ) induced by irradiation of 100 key He ions at room temperature as a function of fluence. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and atomic force microscopy (AFM) were used in order to study the nature and evolution of structural damage at different levels. Our study shows that various kinds of defects are formed with the increasing fluence. Firstly, at low fluences, from 1 x 10(16) to 4 x 10(16) cm(-2), of which maximum values of displacement per atom (dpa) range from 0.29 to 1.17, an elastic strain which is attributed to the accumulation of irradiation-induced discrete point defects, is presented. Secondly, in the intermediate fluences ranging from 8 x 10(16) to 1 x 10(17) cm(-2) with corresponding dpa varying from 2.33 to 2.91, a large drop of elastic strain occurs accompanied by presence of an intensive damage region, which is comprised by large and interacted defect clusters. Thirdly, at the two high fluences of 2 x 10(17) and 4 x 10(17) cm(-2). of which dpa are 5.83 and 11.65 respectively, a great amount of ribbon-like He bubbles with granular structure and cracks are presented at the depth of maximum concentration of deposited He atoms. The structural damage evolution and the mechanism of formation of He bubbles are discussed. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Yang, Tengfei; Huang, Xuejun; Gao, Yuan; Wang, Chenxu; Xue, Jianming; Yan, Sha; Wang, Yugang] Peking Univ, Ctr Appl Phys & Technol, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China.
[Zhang, Yanwen] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Zhang, Yanwen] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Wang, YG (reprint author), Peking Univ, Ctr Appl Phys & Technol, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China.
EM ygwang@pku.edu.cn
OI , /0000-0003-2655-0804
FU Ministry of Science and Technology of China [2010CB832904,
2008CB717803]; National Natural Science Foundation of China [11075005];
US Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division
FX This work was financially supported by the Ministry of Science and
Technology of China (2010CB832904, 2008CB717803) and National Natural
Science Foundation of China (11075005), Fundamental Research Funds for
the Central Universities. Part of the research is supported by the US
Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division. Wenguang Zhao's effect in XRD measurements is
appreciated. Tengfei Yang is grateful for the discussion with Aurelien
Debelle.
NR 27
TC 14
Z9 15
U1 7
U2 32
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JAN
PY 2012
VL 420
IS 1-3
BP 430
EP 436
DI 10.1016/j.jnucmat.2011.10.033
PG 7
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 894YB
UT WOS:000300462300059
ER
PT J
AU Ogden, MD
Meier, GP
Nash, KL
AF Ogden, Mark D.
Meier, G. Patrick
Nash, Kenneth L.
TI Synthesis and Evaluation of Conformationally Restricted N-4-Tetradentate
Ligands for Implementation in An(III)/Ln(III) Separations
SO JOURNAL OF SOLUTION CHEMISTRY
LA English
DT Article
DE Copper(II); Stability constants; Acid dissociation constants; Phase
distribution; Ligand preorganization; Nitrogen donor complexants
ID PAIR EXTRACTION BEHAVIOR; CHARGED COMPLEXES; POLYAMINE LIGANDS;
METAL-CATIONS; PYRIDYL; THERMODYNAMICS; CHEMISTRY
AB The previous literature demonstrates that donor atoms softer than oxygen are effective for separating trivalent lanthanides (Ln(III)) from trivalent actinides (An(III)) (Nash, K.L., in: Gschneider, K.A. Jr., et al. (eds.) Handbook on the Physics and Chemistry of Rare Earths, vol. 18-Lanthanides/Actinides Chemistry, pp. 197-238. Elsevier Science, Amsterdam, 1994). It has also been shown that ligands that "restrict" their donor groups in a favorable geometry, appropriate to the steric demands of the cation, have an increased binding affinity. A series of tetradentate nitrogen containing ligands have been synthesized with increased steric "limits". The pK (a) values for these ligands have been determined using potentiometric titration methods and the formation of the colored copper(II) complex has been used as a method to determine ligand partitioning between the organic and aqueous phases. The results for the 2-methylpyridyl-substituted amine ligands are encouraging, but the results for the 2-methylpyridyl-substituted diimines indicate that these ligands are unsuitable for implementation in a solvent extraction system due to hydrolysis.
C1 [Ogden, Mark D.; Meier, G. Patrick; Nash, Kenneth L.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA.
[Ogden, Mark D.] Idaho Natl Lab, Idaho Falls, ID 83514 USA.
RP Nash, KL (reprint author), Washington State Univ, Dept Chem, Pullman, WA 99164 USA.
EM mark.ogden@inl.gov; knash@wsu.edu
FU U.S. Department of Energy, Division of Nuclear Energy Science and
Technology, Nuclear Energy Research Initiative Consortium (NERI-C)
[DE-FG07-07ID14896]
FX The authors would like to thank Dr. Mikael Nilsson, Dr. Sarah Pepper,
Dr. Peter Zalupski and Dr. Syouhei Nishihama for their support and
insight in this project. This research was conducted at WSU with funding
provided by the U.S. Department of Energy, Division of Nuclear Energy
Science and Technology, Nuclear Energy Research Initiative Consortium
(NERI-C) program under project number DE-FG07-07ID14896.
NR 21
TC 4
Z9 4
U1 2
U2 9
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0095-9782
J9 J SOLUTION CHEM
JI J. Solut. Chem.
PD JAN
PY 2012
VL 41
IS 1
BP 1
EP 16
DI 10.1007/s10953-011-9784-1
PG 16
WC Chemistry, Physical
SC Chemistry
GA 892OT
UT WOS:000300296200001
ER
PT J
AU Harris, WM
Nelson, GJ
Kiss, AM
Izzo, JR
Liu, Y
Liu, ML
Wang, S
Chu, YS
Chiu, WKS
AF Harris, William M.
Nelson, George J.
Kiss, Andrew M.
Izzo, John R., Jr.
Liu, Yong
Liu, Meilin
Wang, Steve
Chu, Yong S.
Chiu, Wilson K. S.
TI Nondestructive volumetric 3-D chemical mapping of nickel-sulfur
compounds at the nanoscale
SO NANOSCALE
LA English
DT Article
ID X-RAY-ABSORPTION; OXIDE FUEL-CELLS; TOLERANT ANODE MATERIALS;
3-DIMENSIONAL MICROSTRUCTURE; ELECTRODE; RECONSTRUCTION; REGENERATION;
IMPURITIES; CATALYSTS; CATHODE
AB Nano-structures of nickel (Ni) and nickel subsulfide (Ni3S2) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.
C1 [Harris, William M.; Nelson, George J.; Kiss, Andrew M.; Izzo, John R., Jr.; Chiu, Wilson K. S.] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA.
[Liu, Yong; Liu, Meilin] Georgia Inst Technol, Ctr Innovat Fuel Cell & Battery Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA.
[Wang, Steve] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Chu, Yong S.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA.
RP Chiu, WKS (reprint author), Univ Connecticut, Dept Mech Engn, 191 Auditorium Rd,Unit 3139, Storrs, CT 06269 USA.
EM wchiu@engr.uconn.edu
RI Liu, Meilin/E-5782-2010
OI Liu, Meilin/0000-0002-6188-2372
FU Energy Frontier Research Center on Science Based Nano-Structure Design
and Synthesis of Heterogeneous Functional Materials for Energy Systems
(HeteroFoaM Center); U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-SC0001061, DE-AC02-06CH11357];
National Science Foundation [CBET-1134052]; Brookhaven Science
Associates, LLC [DE-AC02-98CH10886]
FX Financial support from an Energy Frontier Research Center on Science
Based Nano-Structure Design and Synthesis of Heterogeneous Functional
Materials for Energy Systems (HeteroFoaM Center) funded by the U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
(Award DE-SC0001061) and the National Science Foundation (Award
CBET-1134052) are gratefully acknowledged. Portions of this research
were carried out at the Advanced Photon Source supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under contract No. DE-AC02-06CH11357, and by the Brookhaven
Science Associates, LLC under Contract No. DE-AC02-98CH10886.
NR 44
TC 9
Z9 9
U1 3
U2 31
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2040-3364
J9 NANOSCALE
JI Nanoscale
PY 2012
VL 4
IS 5
BP 1557
EP 1560
DI 10.1039/c2nr11690a
PG 4
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 894NO
UT WOS:000300433700023
PM 22297306
ER
PT J
AU Tian, YM
Beavers, CM
Busani, T
Martin, KE
Jacobsen, JL
Mercado, BQ
Swartzentruber, BS
van Swol, F
Medforth, CJ
Shelnutt, JA
AF Tian, Yongming
Beavers, Christine M.
Busani, Tito
Martin, Kathleen E.
Jacobsen, John L.
Mercado, Brandon Q.
Swartzentruber, Brian S.
van Swol, Frank
Medforth, Craig J.
Shelnutt, John A.
TI Binary ionic porphyrin nanosheets: electronic and light-harvesting
properties regulated by crystal structure
SO NANOSCALE
LA English
DT Article
ID SELF-METALLIZATION; METAL-IONS; MACROCYCLE; NANOTUBES; COMPLEXES
AB Crystalline solids self-assembled from anionic and cationic porphyrins provide a new class of multifunctional optoelectronic micro- and nanomaterials. A 1 : 1 combination of zinc(II) tetra(4-sulfonatophenyl)porphyrin (ZnTPPS) and tin(IV) tetra(N-methyl-4-pyridiniumyl)porphyrin (SnTNMePyP) gives porphyrin nanosheets with high aspect ratios and varying thickness. The room temperature preparation of the nanosheets has provided the first X-ray crystal structure of a cooperative binary ionic (CBI) solid. The unit cell contains one and one-half molecules of aquo-ZnTPPS4- (an electron donor) and three half molecules of dihydroxy-SnTNMePyP4+ (an electron acceptor). Charge balance in the solid is reached without any non-porphyrinic ions, as previously determined for other CBI nanomaterials by non-crystallographic means. The crystal structure reveals a complicated molecular arrangement with slipped pi-pi stacking only occurring in isolated dimers of one of the symmetrically unique zinc porphyrins. Consistent with the crystal structure, UV-visible J-aggregate bands indicative of exciton delocalization and extended pi-pi stacking are not observed. XRD measurements show that the structure of the Zn/Sn nanosheets is distinct from that of Zn/Sn four-leaf clover-like CBI solids reported previously. In contrast with the Zn/Sn clovers that do exhibit J-aggregate bands and are photoconductive, the nanosheets are not photoconductive. Even so, the nanosheets act as light-harvesting structures in an artificial photosynthesis system capable of reducing water to hydrogen but not as efficiently as the Zn/Sn clovers.
C1 [Tian, Yongming; Martin, Kathleen E.; Swartzentruber, Brian S.; van Swol, Frank; Shelnutt, John A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA.
[Tian, Yongming; Martin, Kathleen E.; Swartzentruber, Brian S.; van Swol, Frank; Shelnutt, John A.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87106 USA.
[Tian, Yongming] New Mexico Inst Min & Technol, Dept Mat Engn, Socorro, NM 87801 USA.
[Beavers, Christine M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Busani, Tito] Univ Nova Lisboa CENIMAT I3N, Dept Ciencia Mat, Fac Ciencias & Tecnol, CEMOP UNINOVA, P-2829516 Caparica, Portugal.
[Busani, Tito; Martin, Kathleen E.; van Swol, Frank; Medforth, Craig J.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87106 USA.
[Busani, Tito; Martin, Kathleen E.; van Swol, Frank; Medforth, Craig J.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87106 USA.
[Jacobsen, John L.; Mercado, Brandon Q.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.
[Medforth, Craig J.] Univ Porto, REQUIMTE Dept Quim & Bioquim, Fac Ciencias, P-4169007 Oporto, Portugal.
[Shelnutt, John A.] Univ Georgia, Dept Chem, Athens, GA 30602 USA.
RP Shelnutt, JA (reprint author), Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA.
EM jasheln@unm.edu
RI Beavers, Christine/C-3539-2009; Medforth, Craig/D-8210-2013; REQUIMTE,
AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, FMN/M-5611-2013;
REQUIMTE, UCIBIO/N-9846-2013; Tian, Yongming/B-9720-2009
OI Beavers, Christine/0000-0001-8653-5513; Medforth,
Craig/0000-0003-3046-4909;
FU Marie Curie Fellowship from the Fundacao para a Ciencia e a Tecnologia,
Portugal; Marie Curie Action Cofund; United States Department of Energy,
Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering; Director, Office of Science, Office of Basic Energy
Sciences; U.S. Department of Energy [DE-AC02-05CH11231]; Sandia National
Laboratories; U.S. Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX CJM is the recipient of a Marie Curie Fellowship from the Fundacao para
a Ciencia e a Tecnologia, Portugal and the Marie Curie Action Cofund.
Research supported by the United States Department of Energy, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering.
The Advanced Light Source is supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. Sandia National
Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.
NR 26
TC 21
Z9 21
U1 1
U2 49
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2040-3364
J9 NANOSCALE
JI Nanoscale
PY 2012
VL 4
IS 5
BP 1695
EP 1700
DI 10.1039/c2nr11826b
PG 6
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 894NO
UT WOS:000300433700047
PM 22310932
ER
PT J
AU Song, P
Zhang, XY
Sun, MX
Cui, XL
Lin, YH
AF Song, Peng
Zhang, Xiaoyan
Sun, Mingxuan
Cui, Xiaoli
Lin, Yuehe
TI Graphene oxide modified TiO2 nanotube arrays: enhanced visible light
photoelectrochemical properties
SO NANOSCALE
LA English
DT Article
ID EXFOLIATED GRAPHITE OXIDE; SENSITIZED SOLAR-CELLS; DOPED TIO2;
PHOTOCATALYTIC ACTIVITY; CHEMICAL-REDUCTION; PERFORMANCE; ANATASE;
FILMS; NANOCRYSTALS; SCATTERING
AB Novel nanocomposite films, based on graphene oxide (GO) and TiO2 nanotube arrays, were synthesized by assembling GO on the surface of self-organized TiO2 nanotube arrays through a simple impregnation method. The composite films were characterized with field emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and UV-vis diffuse reflectance spectroscopy. The photoelectrochemical properties of the composite nanotube arrays were investigated under visible light illumination. Remarkably enhanced visible light photoelectrochemical response was observed for the GO decorated TiO2 nanotube composite electrode compared with pristine TiO2 nanotube arrays. The sensitizing effect of GO on the photoelectrochemical response of the TiO2 nanotube arrays was demonstrated and about 15 times enhanced maximum photoconversion efficiency was obtained with the presence of GO. An enhanced photocatalytic activity of the TiO2 nanotube arrays towards the degradation of methyl blue was also demonstrated after modification with GO. The results presented here demonstrate GO to be efficient for the improved utilization of visible light for TiO2 nanotube arrays.
C1 [Song, Peng; Zhang, Xiaoyan; Sun, Mingxuan; Cui, Xiaoli] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China.
[Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Cui, XL (reprint author), Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China.
EM xiaolicui@fudan.edu.cn
RI Lin, Yuehe/D-9762-2011; Sun, Mingxuan/G-1330-2015; 张, 晓艳/A-8125-2016
OI Lin, Yuehe/0000-0003-3791-7587; Sun, Mingxuan/0000-0001-8681-8951;
FU National Basic Research Program of China [2012CB934300, 2011CB933302];
Shanghai Science Technology Commission [1052nm01800]; Fudan's
Undergraduate Research Opportunities Program [10073]; LDRD at Pacific
Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830]
FX This work is supported by the National Basic Research Program of China
(No. 2012CB934300 and 2011CB933302), the Shanghai Science Technology
Commission (No. 1052nm01800) and Fudan's Undergraduate Research
Opportunities Program (No. 10073). Dr Y. Lin would like to acknowledge
support from the LDRD program at Pacific Northwest National Laboratory
(PNNL). PNNL is operated by Battelle for DOE under Contract
DE-AC05-76RL01830. We appreciate the referees' very valuable comments,
which have greatly improved the quality of the manuscript.
NR 42
TC 88
Z9 92
U1 7
U2 172
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2040-3364
J9 NANOSCALE
JI Nanoscale
PY 2012
VL 4
IS 5
BP 1800
EP 1804
DI 10.1039/c2nr11938b
PG 5
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 894NO
UT WOS:000300433700063
PM 22297577
ER
PT J
AU Peters, GP
Marland, G
Le Quere, C
Boden, T
Canadell, JG
Raupach, MR
AF Peters, Glen P.
Marland, Gregg
Le Quere, Corinne
Boden, Thomas
Canadell, Josep G.
Raupach, Michael R.
TI CORRESPONDENCE: Rapid growth in CO2 emissions after the 2008-2009 global
financial crisis
SO NATURE CLIMATE CHANGE
LA English
DT Editorial Material
ID CARBON-DIOXIDE
C1 [Peters, Glen P.] CICERO, N-0318 Oslo, Norway.
[Marland, Gregg] Appalachian State Univ, Res Inst Environm Energy & Econ, Boone, NC 28608 USA.
[Le Quere, Corinne] Univ E Anglia, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, Norfolk, England.
[Boden, Thomas] Oak Ridge Natl Lab, CDIAC, Oak Ridge, TN 37831 USA.
[Canadell, Josep G.; Raupach, Michael R.] CSIRO Marine & Atmospher Res, Global Carbon Project, Canberra, ACT 2601, Australia.
RP Peters, GP (reprint author), CICERO, POB 1129 Blindern, N-0318 Oslo, Norway.
EM glen.peters@cicero.uio.no
RI Peters, Glen/B-1012-2008; Canadell, Josep/E-9419-2010; Le Quere,
Corinne/C-2631-2017
OI Peters, Glen/0000-0001-7889-8568; Canadell, Josep/0000-0002-8788-3218;
Le Quere, Corinne/0000-0003-2319-0452
NR 13
TC 267
Z9 279
U1 10
U2 149
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1758-678X
J9 NAT CLIM CHANGE
JI Nat. Clim. Chang.
PD JAN
PY 2012
VL 2
IS 1
BP 2
EP 4
PG 3
WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric
Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 881OH
UT WOS:000299495500002
ER
PT J
AU Spassov, DS
Wong, CH
Harris, G
McDonough, S
Phojanakong, P
Wang, D
Hann, B
Bazarov, AV
Yaswen, P
Khanafshar, E
Moasser, MM
AF Spassov, D. S.
Wong, C. H.
Harris, G.
McDonough, S.
Phojanakong, P.
Wang, D.
Hann, B.
Bazarov, A. V.
Yaswen, P.
Khanafshar, E.
Moasser, M. M.
TI A tumor-suppressing function in the epithelial adhesion protein Trask
SO ONCOGENE
LA English
DT Article
DE Trask; CDCP1; SIMA135; 3p21.3; metastasis
ID DOMAIN-CONTAINING PROTEIN-1; CUB-DOMAIN; SUBSTRATE TRASK; LUNG
METASTASIS; FAK INHIBITOR; CANCER-CELLS; KINASE; EXPRESSION; CDCP1;
ADENOCARCINOMA
AB Trask/CDCP1 is a transmembrane glycoprotein widely expressed in epithelial tissues whose functions are just beginning to be understood, but include a role as an anti-adhesive effector of Src kinases. Early studies looking at RNA transcript levels seemed to suggest overexpression in some cancers, but immunostaining studies are now providing more accurate analyses of its expression. In an immuno-histochemical survey of human cancer specimens, we find that Trask expression is retained, reduced or sometimes lost in some tumors compared with their normal epithelial tissue counterparts. A survey of human cancer cell lines also show a similar wide variation in the expression of Trask, including some cell types with the loss of Trask expression, and additional cell types that have lost the physiological detachment-induced phosphorylation of Trask. Three experimental models were established to interrogate the role of Trask in tumor progression, including two gain-of-function models with tet-inducible expression of Trask in tumor cells lacking Trask expression, and one loss-of-function model to suppress Trask expression in tumor cells with abundant Trask expression. The induction of Trask expression and phosphorylation in MCF-7 cells and in 3T3v-src cells was associated with a reduction in tumor metastases while the shRNA-induced knockdown of Trask in L3.6pl cancer cells was associated with increased tumor metastases. The results from these three models are consistent with a tumor-suppressing role for Trask. These data identify Trask as one of several potential candidates for functionally relevant tumor suppressors on the 3p21.3 region of the genome frequently lost in human cancers. Oncogene (2012) 31, 419-431; doi: 10.1038/onc.2011.246; published online 27 June 2011
C1 [Spassov, D. S.; Wong, C. H.; Harris, G.; McDonough, S.; Moasser, M. M.] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA.
[Spassov, D. S.; Wong, C. H.; Phojanakong, P.; Wang, D.; Hann, B.; Moasser, M. M.] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94143 USA.
[Bazarov, A. V.; Yaswen, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Khanafshar, E.] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94143 USA.
RP Moasser, MM (reprint author), Univ Calif San Francisco, Dept Med, UCSF Box 1387,2340 Sutter St,Rm N-144, San Francisco, CA 94143 USA.
EM mmoasser@medicine.ucsf.edu
FU National Institutes of Health [CA113952]; Susan G Komen for the Cure;
California Breast Cancer Research Program Postdoctoral Fellowship
FX This work was funded by the National Institutes of Health CA113952
(MMM). DS is funded by a Susan G Komen for the Cure Postdoctoral
Fellowship. CHW is funded by a California Breast Cancer Research Program
Postdoctoral Fellowship. We wish to thank Michael McManus and the UCSF
Sandler Lentiviral RNAi core facility. We acknowledge the use of core
facilities of the UCSF Helen Diller Family Comprehensive Cancer Center,
including the Preclinical Therapeutics Core, the immunohistochemistry
core and the mouse pathology core.
NR 41
TC 7
Z9 7
U1 0
U2 0
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0950-9232
J9 ONCOGENE
JI Oncogene
PD JAN
PY 2012
VL 31
IS 4
BP 419
EP 431
DI 10.1038/onc.2011.246
PG 13
WC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics &
Heredity
SC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics &
Heredity
GA 891LU
UT WOS:000300219300002
PM 21706059
ER
PT J
AU Gaur, S
Miller, JT
Stellwagen, D
Sanampudi, A
Kumar, CSSR
Spivey, JJ
AF Gaur, Sarthak
Miller, Jeffrey T.
Stellwagen, Daniel
Sanampudi, Ashwin
Kumar, Challa S. S. R.
Spivey, James J.
TI Synthesis, characterization, and testing of supported Au catalysts
prepared from atomically-tailored Au-38(SC12H25)(24) clusters
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID MONOLAYER-PROTECTED CLUSTERS; SELF-ASSEMBLED MONOLAYERS; TEMPERATURE CO
OXIDATION; GOLD NANOPARTICLES; AU/TIO2 CATALYSTS; INFRARED-SPECTROSCOPY;
ELECTRON-MICROSCOPY; CARBON-MONOXIDE; PARTICLE-SIZE; TIO2
AB Nearly monodispersed Au-38(SC12H25)(24) clusters (1.7 +/- 0.2 nm) were synthesized using a modified Brust process while utilizing a "thiol etching'' approach for the ligand exchange. HRTEM, MALDI, FTIR, and XAS analysis confirmed the formation of the 38-atom clusters in solution. This solution was used to impregnate a microporous TiO2 support to give 0.7% Au-38/TiO2 catalyst. Subsequent drying in air and treatment with H-2/He at 400 degrees C removed most of the sulfur ligands, and also increased the Au cluster size to 3.9 +/- 0.96 nm. XPS and EXAFS analysis of this supported catalyst showed trace levels of residual sulfides, apparently located at the Au-TiO2 interface. CO oxidation tests on these supported clusters show an activation energy and range of TOFs comparable to those reported by others. These results suggest that supported Au clusters of controllable size can be prepared with this thiol-ligated solution-based method, providing a new approach to the synthesis of these catalysts.
C1 [Gaur, Sarthak; Sanampudi, Ashwin; Spivey, James J.] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70820 USA.
[Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Stellwagen, Daniel] Univ Utrecht, Debye Inst Nanomat Sci, NL-3584 CG Utrecht, Netherlands.
[Kumar, Challa S. S. R.] J Bennett Johnston Sr Ctr Adv Microstruct & Devic, Baton Rouge, LA 70806 USA.
RP Spivey, JJ (reprint author), Louisiana State Univ, Cain Dept Chem Engn, 110 S Stadium Dr, Baton Rouge, LA 70820 USA.
EM jjspivey@lsu.edu
RI ID, MRCAT/G-7586-2011; Institute (DINS), Debye/G-7730-2014
FU Center for Atomic Level Catalyst Design, an Energy Frontier Research
Center; U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences [DE-SC0001058, DE-AC02-06CH11357]; Department of Energy;
MRCAT member institutions; Institute for Atom-efficient Chemical
Transformations (IACT), an Energy Frontier Research Center
FX This material is based upon work supported as part of the Center for
Atomic Level Catalyst Design, an Energy Frontier Research Center funded
by the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences under Award Number DE-SC0001058. Use of the Advanced
Photon Source was supported by the U. S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. MRCAT operations are supported by the Department of
Energy and the MRCAT member institutions. JTM's effort was supported as
part of the Institute for Atom-efficient Chemical Transformations
(IACT), an Energy Frontier Research Center funded by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences. We also
thank Kimberly Hutchison in the Department of Soil Science at North
Carolina State University for doing the ICP-OES analysis of catalyst
samples.
NR 51
TC 35
Z9 35
U1 1
U2 29
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2012
VL 14
IS 5
BP 1627
EP 1634
DI 10.1039/c1cp22438g
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 876MZ
UT WOS:000299113000011
PM 22006215
ER
PT J
AU Zeitler, TR
Greathouse, JA
Cygan, RT
AF Zeitler, Todd R.
Greathouse, Jeffery A.
Cygan, Randall T.
TI Effects of thermodynamic ensembles and mineral surfaces on interfacial
water structure
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATION; NANOCONFINED WATER; OXYHYDROXIDE;
ADSORPTION; ENERGETICS; CLAY
AB While performing molecular dynamics simulations of water or aqueous solutions in a slab geometry, such as at mineral surfaces, it is important to match bulk water density in the diffuse region of the model system with that expected for the appropriate experimental conditions. Typically, a slab geometry represents parallel surfaces with a variable region of confined water (this region can range in size from a few AAngstroms to many tens of Angstroms). While constant-pressure simulations usually result in appropriate density values in the bulk diffuse region removed from either surface, constant-volume simulations have also been widely used, sometimes without careful consideration of the method for determining water content. Simulations using two thermodynamic ensembles as well as two methods for calculating the water-accessible volume have been investigated for two distinct silicate surfaces-hydrophilic cristobalite (111) and hydrophobic pyrophyllite (001). In cases where NPT simulations are not feasible, a simple geometry-based treatment of the accessible volume can be sufficient to replicate bulk water density far from the surface. However, the use of the Connolly method can be more appropriate in cases where a surface is less well-defined. Specific water-surface interactions (e.g., hydrophobic repulsion) also play a role in determining water content in a confined water simulation. While reported here for planar surfaces, these results can be extended to an interface with any solvent, or to other types of surfaces and geometries.
C1 [Zeitler, Todd R.; Greathouse, Jeffery A.; Cygan, Randall T.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Zeitler, TR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM tzeitle@sandia.gov
FU US Department of Energy, Office of Basic Energy Sciences, Geosciences
Research; US Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX We gratefully acknowledge three reviewers who helped improve the
manuscript. This work is supported by the US Department of Energy,
Office of Basic Energy Sciences, Geosciences Research. Sandia National
Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the US Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000.
NR 25
TC 11
Z9 11
U1 3
U2 30
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2012
VL 14
IS 5
BP 1728
EP 1734
DI 10.1039/c2cp22593j
PG 7
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 876MZ
UT WOS:000299113000024
PM 22186883
ER
PT J
AU Gee, RH
Kuo, IFW
Chinn, SC
Raber, E
AF Gee, Richard H.
Kuo, I-Feng W.
Chinn, Sarah C.
Raber, Ellen
TI First-principles molecular dynamics simulations of condensed-phase
V-type nerve agent reaction pathways and energy barriers
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID CHEMICAL WARFARE AGENTS; NUCLEOPHILIC-SUBSTITUTION;
DEGRADATION-PRODUCTS; METADYNAMICS; HYDROLYSIS; SOLVOLYSIS;
PHOSPHOTRIESTERASE; DETOXIFICATION; S(N)2-AT-P; MECHANISM
AB Computational studies of condensed-phase chemical reactions are challenging in part because of complexities in understanding the effects of the solvent environment on the reacting chemical species. Such studies are further complicated due to the demanding computational resources required to implement high-level ab initio quantum chemical methods when considering the solvent explicitly. Here, we use first-principles molecular dynamics simulations to examine condensed-phase decontamination reactions of V-type nerve agents in an explicit aqueous solvent. Our results include a detailed study of hydrolysis, base-hydrolysis, and nucleophilic oxidation of both VX and R-VX, as well as their protonated counterparts (i.e., VXH+ and R-VXH+). The decontamination mechanisms and chemical reaction energy barriers, as determined from our simulations, are found to be in good agreement with experiment. The results demonstrate the applicability of using such simulations to assist in understanding new decontamination technologies or other applications that require computational screening of condensed-phase chemical reaction mechanisms.
C1 [Gee, Richard H.; Kuo, I-Feng W.; Chinn, Sarah C.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA.
[Raber, Ellen] Lawrence Livermore Natl Lab, Global Secur Directorate, Livermore, CA 94550 USA.
RP Gee, RH (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA.
EM gee10@llnl.gov
FU U. S. Department of Homeland Security Science and Technology Directorate
[HSHQPM-10-X-00019]; U.S. Department of Energy by Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]
FX We thank the U. S. Department of Homeland Security Science and
Technology Directorate for financial support under Interagency Agreement
HSHQPM-10-X-00019. This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. We also would like to thank Livermore
Computing for the copious amounts of computer time required to perform
this work and Dennis Reutter for technical discussions of the results.
NR 42
TC 3
Z9 3
U1 3
U2 29
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2012
VL 14
IS 10
BP 3316
EP 3322
DI 10.1039/c2cp23126c
PG 7
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 892VQ
UT WOS:000300314100006
PM 22298156
ER
PT J
AU Sankaranarayanan, SKRS
Subbaraman, R
Ramanathan, S
AF Sankaranarayanan, Subramanian K. R. S.
Subbaraman, Ram
Ramanathan, Shriram
TI Considerations on ultra-high frequency electric field effects on oxygen
vacancy concentration in oxide thin films
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; TEMPERATURE OXIDATION; ALUMINUM-OXIDE;
METAL; TECHNOLOGY; ZIRCONIUM; MECHANISM; GROWTH
AB Atomistic simulations employing dynamic charge transfer between atoms are used to investigate ultra-thin oxide growth on Al(100) metal substrates in the presence of an ac electric field. In the range of 1-10 GHz frequencies, the enhancement in oxidation kinetics by similar to 12% over natural oxidation can be explained by the Cabrera-Mott mechanism. At field frequencies approaching 0.1-1 THz, however, we observe a dramatic lowering of the kinetics of oxygen incorporation by similar to 35% compared to the maximum oxidation achieved, which results in oxygen non-stoichiometry near the oxide-gas interface (O/Al approximate to 1.0). This is attributed to oxygen desorption from the oxide surface. These results suggest a general strategy to tune oxygen concentration at oxide surfaces using ac electric fields that could be of interest in diverse fields related to surface chemistry and applications such as tunnel barriers, thin dielectrics and oxide interfaces.
C1 [Sankaranarayanan, Subramanian K. R. S.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Subbaraman, Ram] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA.
[Ramanathan, Shriram] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
RP Sankaranarayanan, SKRS (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM skrssank@anl.gov
FU U. S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX Use of the Center for Nanoscale Materials was supported by the U. S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. The authors also thank
the computational facilities provided by CNM-ANL.
NR 39
TC 0
Z9 0
U1 0
U2 11
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2012
VL 14
IS 10
BP 3360
EP 3368
DI 10.1039/c2cp22696k
PG 9
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 892VQ
UT WOS:000300314100011
PM 22297437
ER
PT S
AU Phillips, MC
Suter, JD
Bernacki, BE
AF Phillips, M. C.
Suter, J. D.
Bernacki, B. E.
BE Razeghi, M
Tournie, E
Brown, GJ
TI Hyperspectral microscopy using an external cavity quantum cascade laser
and its applications for explosives detection
SO QUANTUM SENSING AND NANOPHOTONIC DEVICES IX
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Quantum Sensing and Nanophotonic Devices IX
CY JAN 22-26, 2012
CL San Francisco, CA
SP SPIE
DE Infrared spectroscopy; quantum cascade laser; tunable laser; infrared
microscopy; explosives detection
ID FOCAL-PLANE ARRAY; RESOLUTION
AB Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 mu m in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits.
C1 [Phillips, M. C.; Suter, J. D.; Bernacki, B. E.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Phillips, MC (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
RI Razeghi, Manijeh/B-7265-2009;
OI Suter, Jonathan/0000-0001-5709-6988
NR 19
TC 7
Z9 7
U1 0
U2 3
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-0-81948-911-1
J9 PROC SPIE
PY 2012
VL 8268
AR 82681R
DI 10.1117/12.907488
PG 10
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BYT71
UT WOS:000300191700047
ER
PT S
AU Suter, JD
Bernacki, BE
Phillips, MC
AF Suter, Jonathan D.
Bernacki, Bruce E.
Phillips, Mark C.
BE Razeghi, M
Tournie, E
Brown, GJ
TI Angle-resolved scattering spectroscopy of explosives using an external
cavity quantum cascade laser
SO QUANTUM SENSING AND NANOPHOTONIC DEVICES IX
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Quantum Sensing and Nanophotonic Devices IX
CY JAN 22-26, 2012
CL San Francisco, CA
SP SPIE
DE Infrared spectroscopy; explosives detection; quantum cascade laser;
hyperspectral imaging
ID OPTICAL-PROPERTIES; CONTINUOUS-WAVE; ENERGETIC MATERIALS; STANDOFF
DETECTION; ROOM-TEMPERATURE; RDX; HMX
AB We present a study of the spectral and angular dependence of the diffuse scatter of mid-infrared (MIR) laser light from explosives residues on surfaces. Experiments were performed using an external cavity quantum cascade laser (ECQCL) tunable between 7 and 8 mu m (1270 to 1400 cm(-1)) for surface illumination. A mercury cadmium telluride (MCT) detector was used to detect backscattered spectra as a function of surface angle at a 2 meter standoff. A ferroelectric focal plane array was used to build hyperspectral images at a 0.5 meter standoff. Residues of RDX, tetryl, and TNT were investigated on surfaces including a painted car door for angles between zero (specular) and 50 degrees. We observe spectral signatures of the explosives in the diffuse scattering geometry which differ significantly from those observed in transmission geometries. Characterization of the scattered light spectra of explosives on surfaces will be essential for understanding the performance of standoff explosives detection instruments and developing robust spectral analysis techniques.
C1 [Suter, Jonathan D.; Bernacki, Bruce E.; Phillips, Mark C.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Suter, JD (reprint author), Pacific NW Natl Lab, POB 999,K5-25, Richland, WA 99352 USA.
RI Razeghi, Manijeh/B-7265-2009;
OI Suter, Jonathan/0000-0001-5709-6988
NR 27
TC 2
Z9 2
U1 0
U2 5
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-0-81948-911-1
J9 PROC SPIE
PY 2012
VL 8268
AR 82681O
DI 10.1117/12.908653
PG 8
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BYT71
UT WOS:000300191700044
ER
PT S
AU Taubman, MS
Myers, TL
Bernacki, BE
Stahl, RD
Cannon, BD
Schiffern, JT
Phillips, MC
AF Taubman, Matthew S.
Myers, Tanya L.
Bernacki, Bruce E.
Stahl, Robert D.
Cannon, Bret D.
Schiffern, John T.
Phillips, Mark C.
BE Razeghi, M
Tournie, E
Brown, GJ
TI A modular architecture for multi-channel external cavity quantum cascade
laser-based chemical sensors: a systems approach
SO QUANTUM SENSING AND NANOPHOTONIC DEVICES IX
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Quantum Sensing and Nanophotonic Devices IX
CY JAN 22-26, 2012
CL San Francisco, CA
SP SPIE
DE Infrared spectroscopy; astigmatic Herriott cell; quantum cascade laser;
tunable laser; modular systems
ID SPECTROSCOPY
AB A multi-channel laser-based chemical sensor platform is presented, in which a modular architecture allows the exchange of complete sensor channels without disruption to overall operation. Each sensor channel contains custom optical and electronics packages, which can be selected to access laser wavelengths, interaction path lengths and modulation techniques optimal for a given application or mission. Although intended primarily to accommodate mid-infrared external cavity quantum cascade lasers and astigmatic Herriott cells, channels using visible or near infrared lasers or other gas cell architectures can also be used, making this a truly versatile platform. Analog and digital resources have been carefully chosen to facilitate small footprint, rapid spectral scanning, low-noise signal recovery, fail-safe autonomous operation, and in-situ chemometric data analysis, storage and transmission. Results from the demonstration of a two-channel version of this platform are also presented.
C1 [Taubman, Matthew S.; Myers, Tanya L.; Bernacki, Bruce E.; Stahl, Robert D.; Cannon, Bret D.; Schiffern, John T.; Phillips, Mark C.] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Taubman, MS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99354 USA.
RI Razeghi, Manijeh/B-7265-2009
NR 11
TC 3
Z9 3
U1 0
U2 3
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-0-81948-911-1
J9 PROC SPIE
PY 2012
VL 8268
AR 82682G
DI 10.1117/12.908676
PG 14
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BYT71
UT WOS:000300191700062
ER
PT J
AU Subin, ZM
Murphy, LN
Li, FY
Bonfils, C
Riley, WJ
AF Subin, Zachary M.
Murphy, Lisa N.
Li, Fuyu
Bonfils, Celine
Riley, William J.
TI Boreal lakes moderate seasonal and diurnal temperature variation and
perturb atmospheric circulation: analyses in the Community Earth System
Model 1 (CESM1)
SO TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY
LA English
DT Article
DE lake modelling; climate model evaluation; land atmosphere interactions;
atmospheric dynamics; boreal climate change
ID SEA-LEVEL PRESSURE; NORTHERN-HEMISPHERE WINTER; REGIONAL CLIMATE MODEL;
LAURENTIAN GREAT-LAKES; INLAND WATER SURFACES; LAND-COVER CHANGE; ICE
COVER; MULTIDECADAL VARIABILITY; GEOPOTENTIAL HEIGHT; STATIONARY WAVES
AB We used a lake thermal physics model recently coupled into the Community Earth System Model 1 (CESM1) to study the effects of lake distribution in present and future climate. Under present climate, correcting the large underestimation of lake area in CESM1 (denoted CCSM4 in the configuration used here) caused 1 degrees C spring decreases and fall increases in surface air temperature throughout large areas of Canada and the US. Simulated summer surface diurnal air temperature range decreased by up to 4 degrees C, reducing CCSM4 biases. These changes were much larger than those resulting from prescribed lake disappearance in some present-day permafrost regions under doubled-CO2 conditions. Correcting the underestimation of lake area in present climate caused widespread high-latitude summer cooling at 850 hPa. Significant remote changes included decreases in the strength of fall Southern Ocean westerlies. We found significantly different winter responses when separately analysing 45-yr subperiods, indicating that relatively long simulations are required to discern the impacts of surface changes on remote conditions. We also investigated the surface forcing of lakes using idealised aqua-planet experiments which showed that surface changes of 2 degrees C in the Northern Hemisphere extra-tropics could cause substantial changes in precipitation and winds in the tropics and Southern Hemisphere. Shifts in the Inter-Tropical Convergence Zone were opposite in sign to those predicted by some previous studies. Zonal mean circulation changes were consistent in character but much larger than those occurring in the lake distribution experiments, due to the larger magnitude and more uniform surface forcing in the idealised aqua-planet experiments.
C1 [Subin, Zachary M.; Murphy, Lisa N.; Li, Fuyu; Riley, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Bonfils, Celine] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA.
RP Subin, ZM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM zmsubin@lbl.gov
RI Bonfils, Celine/H-2356-2012; Subin, Zachary/K-5168-2012; Murphy,
Lisa/B-8547-2013; Li, Fuyu/B-9055-2013; Riley, William/D-3345-2015
OI Bonfils, Celine/0000-0002-4674-5708; Subin, Zachary/0000-0002-9257-9288;
Murphy, Lisa/0000-0003-4343-8005; Riley, William/0000-0002-4615-2304
FU Office of Science, Office of Biological and Environmental Research,
Climate and Environmental Science Division, of the US Department of
Energy [DE-AC02-05CH11231]
FX Michael Wehner (Lawrence Berkeley National Lab), John Chiang (University
of California, Berkeley), Benjamin Santer (Lawrence Livermore National
Lab), William Collins(Lawrence Berkeley National Lab) and Sarah Kang
(Columbia University) provided helpful comments on interpreting
large-scale atmospheric responses to regional changes in terrestrial
surface forcing. David Lawrence (National Center for Atmospheric
Research) facilitated interaction with the CESM Land Model Working Group
and support in running and interpreting the model. One anonymous
reviewer and one named reviewer (Sumant Nigam) provided helpful comments
in clarifying and improving the manuscript. This work was supported by
the Director, Office of Science, Office of Biological and Environmental
Research, Climate and Environmental Science Division, of the US
Department of Energy under Contract No. DE-AC02-05CH11231 to Berkeley
Lab.
NR 120
TC 10
Z9 10
U1 1
U2 25
PU CO-ACTION PUBLISHING
PI JARFALLA
PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN
SN 0280-6495
EI 1600-0870
J9 TELLUS A
JI Tellus Ser. A-Dyn. Meteorol. Oceanol.
PY 2012
VL 64
AR 15639
DI 10.3402/tellusa.v64i0.15639
PG 21
WC Meteorology & Atmospheric Sciences; Oceanography
SC Meteorology & Atmospheric Sciences; Oceanography
GA 893ZQ
UT WOS:000300396900001
ER
PT J
AU Kendrick, BK
AF Kendrick, Brian K.
TI Time-dependent wave packet propagation using quantum hydrodynamics
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
ID REACTIVE SCATTERING; DYNAMICS; EQUATIONS; MOTION; STATES;
EQUIDISTRIBUTION; TRAJECTORIES; FORMULATION; MECHANICS; GRIDS
AB A new approach for propagating time-dependent quantum wave packets is presented based on the direct numerical solution of the quantum hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics. A generalized iterative finite difference method (IFDM) is used to solve the resulting set of non-linear coupled equations. The IFDM is 2nd-order accurate in both space and time and exhibits exponential convergence with respect to the iteration count. The stability and computational efficiency of the IFDM is significantly improved by using a "smart" Eulerian grid which has the same computational advantages as a Lagrangian or Arbitrary Lagrangian Eulerian (ALE) grid. The IFDM is generalized to treat higher-dimensional problems and anharmonic potentials. The method is applied to a one-dimensional Gaussian wave packet scattering from an Eckart barrier, a one-dimensional Morse oscillator, and a two-dimensional (2D) model collinear reaction using an anharmonic potential energy surface. The 2D scattering results represent the first successful application of an accurate direct numerical solution of the quantum hydrodynamic equations to an anharmonic potential energy surface.
C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Kendrick, BK (reprint author), Los Alamos Natl Lab, Div Theoret, T-1,MS B268, Los Alamos, NM 87545 USA.
EM bkendric@lanl.gov
FU US Department of Energy at Los Alamos National Laboratory; National
Nuclear Security Administration of the US Department of Energy
[DE-AC52-06NA25396]
FX This work was done under the auspices of the US Department of Energy at
Los Alamos National Laboratory. Los Alamos National Laboratory is
operated by Los Alamos National Security, LLC, for the National Nuclear
Security Administration of the US Department of Energy under contract
DE-AC52-06NA25396.
NR 42
TC 8
Z9 8
U1 3
U2 28
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD JAN
PY 2012
VL 131
IS 1
AR 1075
DI 10.1007/s00214-011-1075-9
PG 19
WC Chemistry, Physical
SC Chemistry
GA 891JT
UT WOS:000300213700004
ER
PT J
AU Cummings, ML
Chien, TY
Preissner, C
Madhavan, V
Diesing, D
Bode, M
Freeland, JW
Rose, V
AF Cummings, M. L.
Chien, T. Y.
Preissner, C.
Madhavan, V.
Diesing, D.
Bode, M.
Freeland, J. W.
Rose, V.
TI Combining scanning tunneling microscopy and synchrotron radiation for
high-resolution imaging and spectroscopy with chemical, electronic, and
magnetic contrast
SO ULTRAMICROSCOPY
LA English
DT Article
DE Photoelectron microscopy; Scanning tunneling microscopy; Synchrotron
radiation; x-Ray magnetic circular dichroism; SXSTM
ID TIP
AB The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-Flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Chien, T. Y.; Preissner, C.; Freeland, J. W.; Rose, V.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Cummings, M. L.] Rice Univ, Mech Engn & Mat Sci Dept, Houston, TX 77005 USA.
[Cummings, M. L.; Bode, M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Madhavan, V.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA.
[Diesing, D.] Univ Duisburg Essen, Fac Chem, D-45141 Essen, Germany.
RP Rose, V (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM vrose@anl.gov
RI Rose, Volker/B-1103-2008; Bode, Matthias/S-3249-2016
OI Rose, Volker/0000-0002-9027-1052; Bode, Matthias/0000-0001-7514-5560
FU US Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX Work at the Advanced Photon Source was supported by the US Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract DE-AC02-06CH11357. Work at the Center for Nanoscale Materials
was supported by the US Department of Energy, Office of Science, Office
of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Work at the
Electron Microscopy Center was supported by the US Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract
DE-AC02-06CH11357. We thank Jon Hiller for the support in scanning
electron microscopy. Damian Buerstel is acknowledged for help with the
sample preparation.
NR 32
TC 20
Z9 20
U1 2
U2 28
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3991
J9 ULTRAMICROSCOPY
JI Ultramicroscopy
PD JAN
PY 2012
VL 112
IS 1
BP 22
EP 31
DI 10.1016/j.ultramic.2011.09.018
PG 10
WC Microscopy
SC Microscopy
GA 894XU
UT WOS:000300461600004
PM 22088505
ER
PT S
AU Harger, JR
Crossno, PJ
AF Harger, John R.
Crossno, Patricia J.
BE Wong, PC
Kao, DL
Hao, MC
Chen, C
Kosara, R
Livingston, MA
Park, J
Roberts, I
TI Comparison of Open Source Visual Analytics Toolkits
SO VISUALIZATION AND DATA ANALYSIS 2012
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT 19th SPIE Conference on Visualization and Data Analysis (VDA)
CY JAN 23-25, 2012
CL Burlingame, CA
SP Soc Imaging Sci & Technol (IS&T), SPIE, Hewlett Packard Co, Kitware Inc, Pacific NW Natl Lab, SAGE Publicat Ltd, U.S. Dept Homeland Secur
DE Visual Analytics; open source; toolkits; comparison; evaluation
ID VISUALIZATION; GRAPHS; DRAWINGS; SOFTWARE
AB We present the results of the first stage of a two-stage evaluation of open source visual analytics packages. This stage is a broad feature comparison over a range of open source toolkits. Although we had originally intended to restrict ourselves to comparing visual analytics toolkits, we quickly found that very few were available. So we expanded our study to include information visualization, graph analysis, and statistical packages. We examine three aspects of each toolkit: visualization functions, analysis capabilities, and development environments. With respect to development environments, we look at platforms, language bindings, multi-threading/parallelism, user interface frameworks, ease of installation, documentation, and whether the package is still being actively developed.
C1 [Harger, John R.; Crossno, Patricia J.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Harger, JR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM jrharge@sandia.gov; pjcross@sandia.gov
NR 47
TC 0
Z9 0
U1 0
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-0-81948-941-8
J9 PROC SPIE
PY 2012
VL 8294
AR 82940E
DI 10.1117/12.911901
PG 10
WC Engineering, Electrical & Electronic; Optics
SC Engineering; Optics
GA BYT62
UT WOS:000300179600012
ER
PT S
AU Steed, CA
Symons, CT
DeNap, FA
Potok, TE
AF Steed, Chad A.
Symons, Christopher T.
DeNap, Frank A.
Potok, Thomas E.
BE Wong, PC
Kao, DL
Hao, MC
Chen, C
Kosara, R
Livingston, MA
Park, J
Roberts, I
TI Guided Text Analysis Using Adaptive Visual Analytics
SO VISUALIZATION AND DATA ANALYSIS 2012
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT 19th SPIE Conference on Visualization and Data Analysis (VDA)
CY JAN 23-25, 2012
CL Burlingame, CA
SP Soc Imaging Sci & Technol (IS&T), SPIE, Hewlett Packard Co, Kitware Inc, Pacific NW Natl Lab, SAGE Publicat Ltd, U.S. Dept Homeland Secur
DE visual analytics; text visualization; machine learning; search
interfaces
ID VISUALIZATION
AB This paper demonstrates the promise of augmenting interactive visualizations with semi-supervised machine learning techniques to improve the discovery of significant associations and insight in the search and analysis of textual information. More specifically, we have developed a system-called Gryffin-that hosts a unique collection of techniques that facilitate individualized investigative search pertaining to an ever-changing set of analytical questions over an indexed collection of open-source publications related to national infrastructure. The Gryffin client hosts dynamic displays of the search results via focus+context record listings, temporal timelines, term-frequency views, and multiple coordinated views. Furthermore, as the analyst interacts with the display, the interactions are recorded and used to label the search records. These labeled records are then used to drive semi-supervised machine learning algorithms that re-rank the unlabeled search records such that potentially relevant records are moved to the top of the record listing. Gryffin is described in the context of the daily tasks encountered at the Department of Homeland Security's Fusion Centers, with whom we are collaborating in its development. The resulting system is capable of addressing the analysts information overload that can be directly attributed to the deluge of information that must be addressed in search and investigative analysis of textual information.
C1 [Steed, Chad A.; Symons, Christopher T.; DeNap, Frank A.; Potok, Thomas E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Steed, CA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM csteed@acm.org; symonsct@ornl.gov; denapfa@ornl.gov; potokte@ornl.gov
OI Potok, Thomas/0000-0001-6687-3435; Steed, Chad/0000-0002-3501-909X
NR 22
TC 0
Z9 0
U1 0
U2 8
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-0-81948-941-8
J9 PROC SPIE
PY 2012
VL 8294
AR 829408
DI 10.1117/12.904904
PG 14
WC Engineering, Electrical & Electronic; Optics
SC Engineering; Optics
GA BYT62
UT WOS:000300179600006
ER
PT J
AU Chung, CW
Suraneni, P
Popovics, JS
Struble, LJ
AF Chung, Chul-Woo
Suraneni, Prannoy
Popovics, John S.
Struble, Leslie J.
TI Setting Time Measurement Using Ultrasonic Wave Reflection
SO ACI MATERIALS JOURNAL
LA English
DT Article
DE buffer; cement paste; setting; stiffening; ultrasonic shear wave
reflection
ID CEMENT-BASED MATERIALS; CONCRETE; MONITOR
AB Ultrasonic shear wave reflection was used to investigate setting times of cement pastes by measuring the reflection coefficient at the interface between hydrating cement pastes of varying water-cement ratio (w/c) and an ultrasonic buffer material. Several different buffer materials were employed, and the choice of buffer was seen to strongly affect measurement sensitivity; high-impact polystyrene showed the highest sensitivity to setting processes because it had the lowest acoustic impedance value. The results show that ultrasonic shear-wave reflection can be used successfully to to monitor early setting processes of cement paste with good sensitivity when such a low impedance buffer is employed. Criteria are proposed to define set times, and the resulting initial and final set times agreed broadly with those determined using the standard penetration resistance test.
C1 [Chung, Chul-Woo] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Suraneni, Prannoy] Swiss Fed Inst Technol, Inst Bldg Mat, Zurich, Switzerland.
[Popovics, John S.; Struble, Leslie J.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA.
[Popovics, John S.] ACI Publicat Comm, Farmington Hills, MI USA.
[Popovics, John S.] ACI Comm 123, Farmington Hills, MI USA.
[Popovics, John S.] ACI Comm 215, Farmigton Hills, MI USA.
RP Chung, CW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
OI Suraneni, Prannoy/0000-0002-0899-2601
NR 21
TC 13
Z9 13
U1 1
U2 6
PU AMER CONCRETE INST
PI FARMINGTON HILLS
PA 38800 COUNTRY CLUB DR, FARMINGTON HILLS, MI 48331 USA
SN 0889-325X
J9 ACI MATER J
JI ACI Mater. J.
PD JAN-FEB
PY 2012
VL 109
IS 1
BP 109
EP 117
PG 9
WC Construction & Building Technology; Materials Science, Multidisciplinary
SC Construction & Building Technology; Materials Science
GA 888UT
UT WOS:000300030800012
ER
PT J
AU Plank, H
Smith, DA
Haber, T
Rack, PD
Hofer, F
AF Plank, Harald
Smith, Daryl A.
Haber, Thomas
Rack, Philip D.
Hofer, Ferdinand
TI Fundamental Proximity Effects in Focused Electron Beam Induced
Deposition
SO ACS NANO
LA English
DT Article
DE electron beam induced deposition; Monte Carlo simulation;
nanotechnology; platinum; patterning
ID MONTE-CARLO CALCULATION; ION-BEAM; RESOLUTION; REPAIR; MASK;
FABRICATION; SIMULATION; MICROSCOPY; DAMAGE; TIPS
AB Fundamental proximity effects for electron beam induced deposition processes on nonflat surfaces were studied experimentally and via simulation. Two specific effects were elucidated and exploited to considerably increase the volumetric growth rate of this nanoscale direct write method: (1) increasing the scanning electron pitch to the scale of the lateral electron straggle increased the volumetric growth rate by 250% by enhancing the effective forward scattered, backscattered, and secondary electron coefficients as well as by strong recollection effects of adjacent features; and (2) strategic patterning sequences are introduced to reduce precursor depletion effects which increase volumetric growth rates by more than 90%, demonstrating the strong Influence of patterning parameters on the final performance of this powerful direct write technique.
C1 [Plank, Harald; Hofer, Ferdinand] Graz Univ Technol, Inst Electron Microscopy, A-8010 Graz, Austria.
[Plank, Harald; Haber, Thomas; Hofer, Ferdinand] Ctr Electron Microscopy, A-8010 Graz, Austria.
[Smith, Daryl A.; Rack, Philip D.] Univ Tennessee, Knoxville, TN 37996 USA.
[Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Plank, H (reprint author), Graz Univ Technol, Inst Electron Microscopy, Steyrergasse 17, A-8010 Graz, Austria.
EM harald.plank@felmi-zfe.at
RI Smith, Daryl/K-2379-2014;
OI Rack, Philip/0000-0002-9964-3254; Hofer, Ferdinand/0000-0001-9986-2193
FU Semiconductor Research Corporation; Oak Ridge National Laboratory by the
Office of Basic Energy Sciences, U.S. Department of Energy
FX H.P. gratefully acknowledges support from Prof. Dr. G. Kothleitner and
Dr. J. Wagner. P.D.R. and D.A.S. gratefully acknowledge support from
Semiconductor Research Corporation (Dan Herr program Manager). P.D.R.
also acknowledges that part of his time developing the single scattering
Monte Carlo simulation was conducted at the Center for Nanophase
Materials Sciences, which is sponsored at Oak Ridge National Laboratory
by the Office of Basic Energy Sciences, U.S. Department of Energy.
NR 65
TC 32
Z9 32
U1 5
U2 33
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD JAN
PY 2012
VL 6
IS 1
BP 286
EP 294
DI 10.1021/nn204237h
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 879YH
UT WOS:000299368300037
PM 22181556
ER
PT J
AU Lang, MR
He, L
Xiu, FX
Yu, XX
Tang, JS
Wang, Y
Kou, XF
Jiang, WJ
Fedorov, AV
Wang, KL
AF Lang, Murong
He, Liang
Xiu, Faxian
Yu, Xinxin
Tang, Jianshi
Wang, Yong
Kou, Xufeng
Jiang, Wanjun
Fedorov, Alexei V.
Wang, Kang L.
TI Revelation of Topological Surface States in Bi2Se3 Thin Films by In Situ
Al Passivation
SO ACS NANO
LA English
DT Article
DE topological insulator; aluminum passivation; thin films; Shubnikov-de
Hass oscillations; weak antilocalization; surface state degradation
ID HGTE QUANTUM-WELLS; SINGLE DIRAC CONE; INSULATOR NANORIBBONS; BERRYS
PHASE; GRAPHENE; ANTILOCALIZATION; BI2TE3
AB Topological insulators (TIs) are extraordinary materials that possess massless, Dirac-like topological surface states in which backscattering is prohibited due to the strong spin-orbit coupling. However, there have been reports on degradation of topological surface states in ambient conditions, which presents a great challenge for probing the original topological surface states after TI materials are prepared. Here, we show that in situ Al passivation inside a molecular beam epitaxy (MBE) chamber could inhibit the degradation process and reveal the pristine topological surface states. Dual evidence from Shubnikov-de Hass (AN) oscillations and weak antilocalization (WAL) effect, originated from the pi Berry phase, suggests that the helically spin-polarized surface states are well preserved by the proposed In situ Al passivation. In contrast, we show the degradation of surface states for the unpassivated control samples, in which the 2D carrier density is increased 39.2% due to ambient n-doping, the SdH oscillations are completely absent, and a large deviation from WAL is observed.
C1 [Lang, Murong; He, Liang; Yu, Xinxin; Tang, Jianshi; Kou, Xufeng; Jiang, Wanjun; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Device Res Lab, Los Angeles, CA 90095 USA.
[Xiu, Faxian] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA.
[Wang, Yong] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China.
[Fedorov, Alexei V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA.
RP He, L (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Device Res Lab, Los Angeles, CA 90095 USA.
EM heliang@ee.ucla.edu; wang@ee.ucla.edu
RI Xiu, Faxian/B-4985-2012; Jiang, Wanjun/E-6994-2011; Wang,
Yong/A-7766-2010; He, Liang/E-5935-2012; Tang, Jianshi/I-5543-2014;
OI Jiang, Wanjun/0000-0003-0918-3862; Wang, Yong/0000-0002-9893-8296; Tang,
Jianshi/0000-0001-8369-0067; Kou, Xufeng/0000-0002-8860-5105
FU Focus Center; Center on Functional Engineered Nano Architectonics
(FENA); Defense Advanced Research Projects Agency (DARPA)
FX The authors acknowledge helpful discussions with Y. Fan, P. Upadhyaya,
and technical support from L. T. Chang, X. Jiang, C. Zeng, and M. Wang
from the Device Research Laboratory at UCLA. This work was in part
supported by Focus Center Research Program, Center on Functional
Engineered Nano Architectonics (FENA) and Defense Advanced Research
Projects Agency (DARPA).
NR 46
TC 39
Z9 39
U1 4
U2 60
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD JAN
PY 2012
VL 6
IS 1
BP 295
EP 302
DI 10.1021/nn204239d
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 879YH
UT WOS:000299368300038
PM 22147687
ER
PT J
AU Wild, B
Cao, LN
Sun, YG
Khanal, BP
Zubarev, ER
Gray, SK
Scherer, NF
Pelton, M
AF Wild, Barbara
Cao, Lina
Sun, Yugang
Khanal, Bishnu P.
Zubarev, Eugene R.
Gray, Stephen K.
Scherer, Norbert F.
Pelton, Matthew
TI Propagation Lengths and Group Velocities of Plasmons in Chemically
Synthesized Gold and Silver Nanowires
SO ACS NANO
LA English
DT Article
DE surface plasmons; nanowires; propagation length; group velocity
ID POLYOL SYNTHESIS; WAVE-GUIDE; SURFACE; POLARITONS; NANOSTRUCTURES;
INTERFACE; METALS; OPTICS
AB Recent advances In chemical synthesis have made it possible to produce gold and silver nanowires that are free of large-scale crystalline defects and surface roughness. Surface plasmons can propagate along the wires, allowing them to serve as optical waveguides with cross sections much smaller than the optical wavelength. Gold nanowires provide improved chemical stability as compared to silver nanowires, but at the cost of higher losses for the propagating plasmons. In order to characterize this trade-off, we measured the propagation length and group velocity of plasmons in both gold and silver nanowires. Propagation lengths are measured by fluorescence imaging of the plasmonic near fields. Group velocities are deduced from the spacing of fringes in the spectrum of coherent light transmitted by the wires. In contrast to previous work we interpret these fringes as arising from a far-field interference effect. The measured propagation characteristics agree with numerical simulations, indicating that propagation in these wires is dominated by the material properties of the metals, with additional losses due to scattering from roughness or grain boundaries providing at most a minor contribution. The propagation lengths and group velocities can also be described by a simple analytical model that considers only the lowest-order waveguide mode in a solid metal cylinder, showing that this single mode dominates in real nanowires. Comparison between experiments and theory Indicates that widely used tabulated values for dielectric functions provide a good description of plasmons in gold nanowires but significantly overestimate plasmon losses in silver nanowires.
C1 [Cao, Lina; Sun, Yugang; Gray, Stephen K.; Scherer, Norbert F.; Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Wild, Barbara; Cao, Lina; Scherer, Norbert F.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA.
[Wild, Barbara; Cao, Lina; Scherer, Norbert F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.
[Khanal, Bishnu P.; Zubarev, Eugene R.] Rice Univ, Dept Chem, Houston, TX 77005 USA.
RP Pelton, M (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM pelton@anl.gov
RI Zubarev, Eugene/C-9288-2011; Sun, Yugang /A-3683-2010; Pelton,
Matthew/H-7482-2013
OI Sun, Yugang /0000-0001-6351-6977; Pelton, Matthew/0000-0002-6370-8765
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; Deutsche Forschungsgemeinschaft [WI
3878/1-1]; NSF CCI at UC Irvine [CHE-0616663]; NSF [CHE-1059057,
DMR-0547399, DMR-1105878]; Robert A. Welch Foundation [C-1703]
FX Work at the Center for Nanoscale Materials was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. B.W. was supported by
Deutsche Forschungsgemeinschaft (WI 3878/1-1). L.C. was partially
supported by NSF CCI at UC Irvine (CHE-0616663). N.F.S. and S.K.G.
acknowledges financial support from the NSF (CHE-1059057). E.R.Z.
acknowledges financial support from the NSF (DMR-0547399, DMR-1105878)
and the Robert A. Welch Foundation (C-1703). We thank Dr. Stephan Link
for helpful discussions and Dr. Mason Guffey for assistance with SEM
imaging.
NR 40
TC 84
Z9 84
U1 12
U2 118
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD JAN
PY 2012
VL 6
IS 1
BP 472
EP 482
DI 10.1021/nn203802e
PG 11
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 879YH
UT WOS:000299368300058
PM 22185403
ER
PT J
AU Kim, Y
Kumar, A
Ovchinnikov, O
Jesse, S
Han, H
Pantel, D
Vrejoiu, I
Lee, W
Hesse, D
Alexe, M
Kalinin, SV
AF Kim, Yunseok
Kumar, Amit
Ovchinnikov, Oleg
Jesse, Stephen
Han, Hee
Pantel, Daniel
Vrejoiu, Ionela
Lee, Woo
Hesse, Dietrich
Alexe, Marin
Kalinin, Sergei V.
TI First-Order Reversal Curve Probing of Spatially Resolved Polarization
Switching Dynamics in Ferroelectric Nanocapacitors
SO ACS NANO
LA English
DT Article
DE ferroelectric nanocapacitor; spatially resolved switching dynamics; PFM;
BEPS; KAI; FORC
ID DOMAIN NUCLEATION; HIGH-RESOLUTION; CAPACITORS; HETEROSTRUCTURES;
GENERATION; DENSITY; BIFEO3; WALLS; FILMS; MODEL
AB Spatially resolved polarization switching In ferroelectric nanocapacitors was studied on the sub-25 nm scale using the first-order reversal curve (FORC) method. The chosen capacitor geometry allows both high-veracity observation of the domain structure and mapping of polarization switching in a uniform field, synergistically combining microstructural observations and probing of uniform-field polarization responses as relevant to device operation. A classical Kolmogorov-Avrami-Ishibashi model has been adapted to the voltage domain, and the individual switching dynamics of the FORC response curves are well approximated by the adapted model. The comparison with microstructures suggests a strong spatial variability of the switching dynamics inside the nanocapacitors.
C1 [Kim, Yunseok; Kumar, Amit; Ovchinnikov, Oleg; Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Han, Hee; Lee, Woo] KRISS, Taejon 305340, South Korea.
[Pantel, Daniel; Vrejoiu, Ionela; Hesse, Dietrich; Alexe, Marin] Max Planck Inst Microstruct Phys, D-06120 Halle, Saale, Germany.
RP Kim, Y (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM kimy4@ornl.gov; sergei2@ornl.gov
RI Lee, Woo/B-5268-2008; Kumar, Amit/C-9662-2012; Kalinin,
Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Alexe, Marin/K-3882-2016
OI Lee, Woo/0000-0003-4560-8901; Kumar, Amit/0000-0002-1194-5531; Kalinin,
Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Alexe,
Marin/0000-0002-0386-3026
FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division; German Science Foundation (DFG) [SFB 762]
FX This research was supported (S.V.K., Y.K.) by the U.S. Department of
Energy, Basic Energy Sciences, Materials Sciences and Engineering
Division and partially performed at the Center for Nanophase Materials
Sciences (S.V.K.), a DOE-BES user facility. The work of Max Planck
Institute of Microstructure Physics was supported by German Science
Foundation (DFG) via SFB 762.
NR 55
TC 19
Z9 19
U1 5
U2 81
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD JAN
PY 2012
VL 6
IS 1
BP 491
EP 500
DI 10.1021/nn203831h
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 879YH
UT WOS:000299368300060
PM 22136402
ER
PT J
AU Tepavcevic, S
Xiong, H
Stamenkovic, VR
Zuo, XB
Balasubramanian, M
Prakapenka, VB
Johnson, CS
Rajh, T
AF Tepavcevic, Sanja
Xiong, Hui
Stamenkovic, Vojislav R.
Zuo, Xiaobing
Balasubramanian, Mahalingam
Prakapenka, Vitali B.
Johnson, Christopher S.
Rajh, Tijana
TI Nanostructured Bilayered Vanadium Oxide Electrodes for Rechargeable
Sodium-Ion Batteries
SO ACS NANO
LA English
DT Article
DE nanostructured electrodes; electrochemical deposition; bilayered V2O5;
sodium-ion battery
ID LITHIUM BATTERIES; V2O5 NANOWIRES; INSERTION; CATHODES; INTERCALATION;
ABSORPTION; TRANSITION; PENTOXIDE; AEROGEL
AB Tailoring nanoarchitecture of materials offers unprecedented opportunities In utilization of their functional properties. Nanostructures of vanadium oxide, synthesized by electrochemical deposition, are studied as a cathode material for rechargeable Na-ion batteries. Ex situ and in situ synchrotron characterizations revealed the presence of an electrochemically responsive bilayered structure with adjustable intralayer spacing that accommodates intercalation of Na+ ions. Sodium intake induces organization of overall structure with appearance of both long- and short-range order, while deintercalation is accompanied with the loss of long-range order, whereas short-range order is preserved. Nanostructured electrodes achieve theoretical reversible capacity for Na2V2O5 stochiometry of 250 mAh/g. The stability evaluation during charge discharge cycles at room temperature revealed an efficient 3 V cathode material with superb performance: energy density of similar to 760 Wh/kg and power density of 1200 W/kg. These results demonstrate feasibility of development of the ambient temperature Na-ion rechargeable batteries by employment of electrodes with tailored nanoarchitectures.
C1 [Stamenkovic, Vojislav R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Tepavcevic, Sanja; Xiong, Hui; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Zuo, Xiaobing; Balasubramanian, Mahalingam] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Prakapenka, Vitali B.] Univ Chicago, Ctr Adv Radiat Sources, Argonne, IL 60439 USA.
RP Stamenkovic, VR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM vrstamenkovic@anl.gov; cjohnson@anl.gov; rajh@anl.gov
RI Xiong, Hui/C-4216-2011; Zuo, Xiaobing/F-1469-2010
OI Xiong, Hui/0000-0003-3126-1476;
FU U.S. Department of Energy; U.S. DOE-BES [DE-AC02-06CH11357]; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; NSERC (Canada); National Science Foundation-Earth
Sciences [EAR-0622171]; Department of Energy-Geosciences
[DE-FG02-94ER14466]
FX The authors would like to thank Dr. Yuzi Liu for HRTEM measurements and
useful discussions. This work was supported by the U.S. Department of
Energy, U.S. DOE-BES, under Contract No. DE-AC02-06CH11357. Use of the
Center for Nanoscale Materials and Advanced Photon Source was supported
by the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under Contract No. DE-AC02-06CH11357. Work at sector 20
and research at these facilities supported by the U.S. DOE, NSERC
(Canada), and Sector 13 GeoSoilEnviroCARS by the National Science
Foundation-Earth Sciences (EAR-0622171) and Department of
Energy-Geosciences (DE-FG02-94ER14466).
NR 30
TC 116
Z9 118
U1 27
U2 333
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD JAN
PY 2012
VL 6
IS 1
BP 530
EP 538
DI 10.1021/nn203869a
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 879YH
UT WOS:000299368300064
PM 22148185
ER
PT J
AU Li, Q
Han, CB
Horton, SR
Fuentes-Cabrera, M
Sumpter, BG
Lu, WC
Bernholc, J
Maksymovych, P
Pan, MH
AF Li, Qing
Han, Chengbo
Horton, Scott R.
Fuentes-Cabrera, Miguel
Sumpter, Bobby G.
Lu, Wenchang
Bernholc, Jerry
Maksymovych, Petro
Pan, Minghu
TI Supramolecular Self-Assembly of pi-Conjugated Hydrocarbons via 2D
Cooperative CH/pi Interaction
SO ACS NANO
LA English
DT Article
DE phenylacetylene; self-assembly; STM; supramolecule; hydrogen bonding;
magic cluster
ID SCANNING-TUNNELING-MICROSCOPY; INTERMOLECULAR INTERACTIONS;
CRYSTAL-STRUCTURE; AU(111) SURFACE; MONOLAYER
AB Supramolecular self-assembly on well-defined surfaces provides access to a multitude of nanoscale architectures, including clusters of distinct symmetry and size. The driving forces underlying supramolecular structures generally Involve both graphoepitaxy and weak directional nonconvalent interactions. Here we show that functionalizing a benzene molecule with an ethyne group introduces attractive interactions in a 2D geometry, which would otherwise be dominated by intermolecular repulsion. Furthermore, the attractive interactions enable supramolecular self-assembly, wherein a subtle balance between very weak CH/pi bonding and molecule-surface interactions produces a well-defined "magic" dimension and chirality of supramolecular clusters. The nature of the process is corroborated by extensive scanning tunneling microscopy/spectroscopy (STM/S) measurements and ab initio calculations, which emphasize the cooperative, multicenter characters of the CH/pi Interaction. This work points out new possibilities for chemical functionalization of pi-conjugated hydrocarbon molecules that may allow for the rational design of supramolecular clusters with a desired shape and size.
C1 [Li, Qing; Horton, Scott R.; Fuentes-Cabrera, Miguel; Sumpter, Bobby G.; Maksymovych, Petro; Pan, Minghu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Han, Chengbo; Lu, Wenchang; Bernholc, Jerry] N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA.
[Han, Chengbo; Lu, Wenchang; Bernholc, Jerry] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Fuentes-Cabrera, Miguel; Sumpter, Bobby G.; Lu, Wenchang; Bernholc, Jerry] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
RP Pan, MH (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM fuentescabma@ornl.gov; maksymovychp@ornl.gov; panm@ornl.gov
RI Sumpter, Bobby/C-9459-2013; Fuentes-Cabrera, Miguel/Q-2437-2015;
Maksymovych, Petro/C-3922-2016
OI Sumpter, Bobby/0000-0001-6341-0355; Fuentes-Cabrera,
Miguel/0000-0001-7912-7079; Maksymovych, Petro/0000-0003-0822-8459
FU Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge
National Laboratory; DOE [DE-FG02-98ER45685]
FX This research was conducted at the Center for Nanophase Materials
Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by
the Office of Basic Energy Sciences, U.S. Department of Energy. The work
at NCSU was supported by DOE Grant DE-FG02-98ER45685. The computations
were performed using the resources of the CNMS and the National Center
for Computational Sciences at Oak Ridge National Laboratory.
NR 30
TC 21
Z9 21
U1 7
U2 99
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD JAN
PY 2012
VL 6
IS 1
BP 566
EP 572
DI 10.1021/nn203952e
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 879YH
UT WOS:000299368300068
PM 22168531
ER
PT J
AU Johnson, GE
Priest, T
Laskin, J
AF Johnson, Grant E.
Priest, Thomas
Laskin, Julia
TI Charge Retention by Gold Clusters on Surfaces Prepared Using Soft
Landing of Mass Selected Ions
SO ACS NANO
LA English
DT Article
DE cluster; monodisperse; charge; self-assembled monolayer; electrospray
ionization; soft landing
ID ASSEMBLED MONOLAYER SURFACES; DENSITY-FUNCTIONAL CALCULATIONS;
LIGAND-EXCHANGE REACTIONS; AU NANOPARTICLES SPONGES;
ELECTROSPRAY-IONIZATION; METAL-CLUSTERS; PEPTIDE IONS; GAS-PHASE;
ABSORPTION-SPECTROSCOPY; MOBILITY MEASUREMENTS
AB Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas phase, and mass selection was employed to isolate a single ionic cluster species (Au11L53+, L = 1,3-bis(diphenylphosphino)propane), which was delivered to surfaces at well-controlled kinetic energies. Using in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS), it is demonstrated that the Au11L53+ cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-perfluorodecanethiol self-assembled monolayer (FSAM) on gold. In contrast, when deposited onto 16-mercaptohexadecanoic add (COOH-SAM) and 1-dodecanethiol (HSAM) surfaces on gold, the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the FSAM and HSAM surfaces are investigated using in situ Fourier transform ion cyclotron resonance (FT-ICR) SIMS. It is shown that an extremely slow interfacial (harp reduction occurs on the FSAM surface while an almost instantaneous neutralization takes place on the surface of the HSAM. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected Ions onto carefully selected substrates.
C1 [Johnson, Grant E.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA.
RP Johnson, GE (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, POB 999,MSIN K8-88, Richland, WA 99352 USA.
EM grant.johnson@pnnl.gov; Julia.laskin@pnnl.gov
RI Laskin, Julia/H-9974-2012;
OI Laskin, Julia/0000-0002-4533-9644; Johnson, Grant/0000-0003-3352-4444
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences; Pacific
Northwest National Laboratory (PNNL); DOE at Pacific Northwest National
Laboratory (PNNL)
FX The authors acknowledge support for this research by a grant from the
U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences and the
Laboratory Directed Research and Development Program at the Pacific
Northwest National Laboratory (PNNL). This work was performed at the
W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a
national scientific user facility sponsored by the U.S. DOE of
Biological and Environmental Research and located at PNNL PNNL is
operated by Battelle for the U.S. DOE. T.P. acknowledges support from
the DOE Science Undergraduate Laboratory Internship (SULI) program at
Pacific Northwest National Laboratory (PNNL). G.E.J. is grateful for the
support of the Linus Pauling Distinguished Postdoctoral Fellowship
Program at PNNL.
NR 104
TC 22
Z9 22
U1 10
U2 69
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD JAN
PY 2012
VL 6
IS 1
BP 573
EP 582
DI 10.1021/nn2039565
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 879YH
UT WOS:000299368300069
PM 22136556
ER
PT J
AU Yan, HP
Collins, BA
Gann, E
Wang, C
Ade, H
McNeill, CR
AF Yan, Hongping
Collins, Brian A.
Gann, Eliot
Wang, Cheng
Ade, Harald
McNeill, Christopher R.
TI Correlating the Efficiency and Nanomorphology of Polymer Blend Solar
Cells Utilizing Resonant Soft X-ray Scattering
SO ACS NANO
LA English
DT Article
DE bulk heterojunction; polymer blends; polymer solar cells; soft X-rays;
X-ray scattering
ID NANOSCALE PHASE-SEPARATION; PHOTOVOLTAIC DEVICES; MDMO-PPV; MORPHOLOGY
CONTROL; FULLERENE BLENDS; FILL FACTOR; PERFORMANCE; PHOTOCURRENT;
DISSOCIATION; ORGANIZATION
AB Enhanced scattering contrast afforded by resonant soft X-ray scattering (R-SoXS) is used to probe the nanomorphology of all-polymer solar cells based on blends of the donor polymer poly(3-hexylthiophene) (P3HT) with either the acceptor polymer poly((9,9-dioctytfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazolel-2',2 ''-diyl) (F8TBT) or poly(N,N'-bis(2-octyldodecyl)-11-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-12-bithiophene)) (P(NDI20D-T2)). Both P3HT:F8TBT and P3HT:P(NDI20D-T2) blends processed from chloroform with subsequent annealing exhibit complicated morphologies with a hierarchy of phase separation. A bimodal distribution of domain sizes is observed for P3HT:P(NDI20D-T2) blends with small domains of size 10 nm that evolve with annealing and larger domains of size 100 nm that are insensitive to annealing. P3HT:F8TBT blends In contrast show a broader distribution of domain size but with the majority of this blend structured on the 10 nm length sole. For both P3HT:P(NDI20D-T2) and P3HT:F8TBT blends, an evolution in device performance is observed that is correlated with a coarsening and purification of domains on the 5-10 nm length scale. Grazing-Incidence wide-angle X-ray scattering (GI-WAXS) is also employed to probe material crystallinity, revealing P(NDI20D-T2) crystallites 25-40 nm in thickness that are embedded In the larger domains observed by R-SoXS. A higher degree of P3HT crystallinity Is also observed in blends with P(NDI20D-T2) compared to F8TBT with the propensity of the polymers to crystallize in P3HT:P(NDI20D-T2) blends hindering the structuring of morphology on the sub-10 nm length scale. This work also underscores the complementarity of R-SoXS and GI-WAXS, with R-SoXS measuring the size of compositionally distinguishable domains and GI-WAXS providing information regarding crystallinity and crystallite thickness.
C1 [Yan, Hongping; Collins, Brian A.; Gann, Eliot; Ade, Harald] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Wang, Cheng] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[McNeill, Christopher R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England.
RP Ade, H (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
EM harald_ade@ncsu.edu; christopher.mcneill@monash.edu
RI Gann, Eliot/A-5246-2014; McNeill, Christopher/B-4530-2008; Wang, Cheng
/E-7399-2012; Collins, Brian/M-5182-2013; Ade, Harald/E-7471-2011; YAN,
HONGPING/N-7549-2013; Wang, Cheng/A-9815-2014
OI McNeill, Christopher/0000-0001-5221-878X; Collins,
Brian/0000-0003-2047-8418; YAN, HONGPING/0000-0001-6235-4523;
FU EPSRC in UK [EP/E051804/1]; ARC in Australia [FT100100275]; DOE
[DE-AC02-05CH1123]; OS; BES; MSE [DE-FG02-98ER45737]
FX This work was supported in the UK by the EPSRC (EP/E051804/1) and in
Australia by the ARC (FT100100275). NCSU's contribution (GI-WAXS,
R-SOXS) is supported by DOE, OS, BES, MSE (DE-FG02-98ER45737). Data were
acquired at beamlines 11.0.1.2, 73.3, and 5.3.2.2 at the ALS, which is
supported by DOE (DE-AC02-05CH1123). The authors thank Cambridge Display
Technology Ltd. for the supply of F8TBT.
NR 58
TC 94
Z9 94
U1 12
U2 96
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD JAN
PY 2012
VL 6
IS 1
BP 677
EP 688
DI 10.1021/nn204150f
PG 12
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 879YH
UT WOS:000299368300082
PM 22168639
ER
PT J
AU Li, XD
Meng, GW
Qin, SY
Xu, QL
Chu, ZQ
Zhu, XG
Kong, MG
Li, AP
AF Li, Xiangdong
Meng, Guowen
Qin, Shengyong
Xu, Qiaoling
Chu, Zhaoqin
Zhu, Xiaoguang
Kong, Mingguang
Li, An-Ping
TI Nanochannel-Directed Growth of Multi-Segment Nanowire Heterojunctions of
Metallic Au1-xGex and Semiconducting Ge
SO ACS NANO
LA English
DT Article
DE germanium; gold; multiple segment hybrid nanowires; electrodeposition;
chemical vapor deposition
ID ANODIC ALUMINA; ARRAYS; FABRICATION; SENSORS
AB We report on the synthesis of multi-segment nanowire (NW) junctions of Au1-xGex and Ge inside the nanochannels of porous anodic aluminum oxide template. The one-dimensional heterostructures are grown with a low-temperature chemical vapor deposition process, assisted by electrodeposited Au nanowires (AuNWs). The Au-catalyzed vapor liquid solid growth process occurs simultaneously in multiple locations along the nanochannel, which leads to multi-segment Au1-xGex/Ge heterojunctions. The structures of the as-grown hybrid NWs, analyzed by using transmission election microscopy and energy-dispersive X-ray spectroscopy elemental mapping, show dear compositional modulation with variable modulation period and controllable junction numbers. Remarkably, both GeNW and Au1-xGexNW segments are single crystalline with abrupt Interfaces and good crystallographic coherences. The electronic and transport properties of individual NW junctions are measured by using a multi-probe scanning tunneling microscope, which confirms the semiconducting nature of Ge segments and the metallic behavior of Au1-xGex segments, respectively. The high yield of multiple segment NW junctions of a metal semiconductor can facilitate the applications In nanoelectronics and optoelectronics that harness multiple functionalities of heterointerfaces.
C1 [Li, Xiangdong; Meng, Guowen; Xu, Qiaoling; Chu, Zhaoqin; Zhu, Xiaoguang; Kong, Mingguang] Chinese Acad Sci, Key Lab Mat Phys, Inst Solid State Phys, Hefei 230031, Peoples R China.
[Li, Xiangdong; Meng, Guowen; Xu, Qiaoling; Chu, Zhaoqin; Zhu, Xiaoguang; Kong, Mingguang] Chinese Acad Sci, Anhui Key Lab Nanomat & Nanostruct, Inst Solid State Phys, Hefei 230031, Peoples R China.
[Qin, Shengyong; Li, An-Ping] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Meng, GW (reprint author), Chinese Acad Sci, Key Lab Mat Phys, Inst Solid State Phys, Hefei 230031, Peoples R China.
EM gwmeng@issp.ac.cn; apli@ornl.gov
RI Li, An-Ping/B-3191-2012; li, Xiangdong/K-2008-2013; Qin,
Shengyong/A-7348-2012
OI Li, An-Ping/0000-0003-4400-7493; li, Xiangdong/0000-0003-2519-8757;
FU Oak Ridge National Laboratory by the Office of Basic Energy Sciences,
U.S. Department of Energy; National Natural Science Foundation of China
[50525207, 50972145]; National Basic Research Program of China
[2007CB936601]; China Postdoctoral Science Foundation [2011M501069]
FX A portion of this research was conducted at the Center for Nanophase
Materials Sciences, which is sponsored at Oak Ridge National Laboratory
by the Office of Basic Energy Sciences, U.S. Department of Energy. The
work was financially supported by the National Natural Science
Foundation of China (Grant Nos. 50525207 and 50972145), National Basic
Research Program of China (Grant No. 2007CB936601), and China
Postdoctoral Science Foundation funded project (No. 2011M501069).
NR 28
TC 8
Z9 9
U1 6
U2 57
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD JAN
PY 2012
VL 6
IS 1
BP 831
EP 836
DI 10.1021/nn2043466
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 879YH
UT WOS:000299368300097
PM 22195681
ER
PT J
AU Lowe, SB
Dick, JAG
Cohen, BE
Stevens, MM
AF Lowe, Stuart B.
Dick, John A. G.
Cohen, Bruce E.
Stevens, Molly M.
TI Multiplex Sensing of Protease and Kinase Enzyme Activity via Orthogonal
Coupling of Quantum Dot Peptide Conjugates
SO ACS NANO
LA English
DT Article
DE quantum dots; multiplexing; FRET; biosensors; bionanotechnology; enzyme
activity; breast cancer
ID RESONANCE ENERGY-TRANSFER; BREAST-CANCER; PROGNOSTIC RELEVANCE;
POOR-PROGNOSIS; NANOPARTICLE; AMPLIFICATION; INHIBITOR; UROKINASE;
INVASION; THERAPY
AB Nanoparticle-based labels are emerging as simpler and more sensitive alternatives to traditional fluorescent small molecules and radioactive reporters In biomarker assays. The determination of biomarker levels is a recommended clinical practice for the assessment of many diseases, and detection of multiple analytes in a single assay, known as multiplexing, can increase predictive accuracy. While multiplexed detection can also simplify assay procedures and reduce systematic variability, combining multiple assays into a single procedure can lead to complications such as substrate cross-reactivity, signal overlap, and loss of sensitivity. By combining the specificity of biomolecular interactions with the tunability of quantum dot optical properties, we have developed a detection system capable of simultaneous evaluation of the activity of two critical enzyme classes, proteases and kinases. We avoid cross-reactivity and signal overlap by synthesizing enzyme-specific peptide sequences with orthogonal terminal functionalization for attachment to quantum dots with distinct emission spectra. Enzyme activity is reported via binding of either gold nanoparticle peptide conjugates or FRET acceptor dye-labeled antibodies, which mediate changes in quantum dot emission spectra. To the best of our knowledge, this Is the first demonstration of the multiplexed sensing of the activity of two different classes of enzymes via a nanoparticle-based activity assay. Using the quantum dot-based assay described herein, we were able to detect the protease activity of urokinase-type plasminogen activator at concentrations >= 50 ng/mL and the kinase activity of human epidermal growth factor receptor 2 at concentrations >= 7.5 nM, levels that are clinically relevant for determination of breast cancer prognosis. The modular nature of this assay design allows for the detection of different classes of enzymes simultaneously and represents a generic platform for high-throughput enzyme screening in rapid disease diagnosis and drug discovery.
C1 [Lowe, Stuart B.; Dick, John A. G.; Stevens, Molly M.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England.
[Lowe, Stuart B.; Dick, John A. G.; Stevens, Molly M.] Univ London Imperial Coll Sci Technol & Med, Inst Biomed Engn, London SW7 2AZ, England.
[Stevens, Molly M.] Univ London Imperial Coll Sci Technol & Med, Dept Bioengn, London SW7 2AZ, England.
[Cohen, Bruce E.] Lawrence Berkeley Natl Lab, Biol Nanostruct Facil, Mol Foundry, Berkeley, CA 94720 USA.
RP Stevens, MM (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, Exhibit Rd, London SW7 2AZ, England.
EM m.stevens@imperial.ac.uk
FU EPSRC; Office of Science, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX M.M.S. thanks the EPSRC for funding of S.B.L Work at the Molecular
Foundry was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering,
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 34
TC 74
Z9 75
U1 11
U2 154
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD JAN
PY 2012
VL 6
IS 1
BP 851
EP 857
DI 10.1021/nn204361s
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 879YH
UT WOS:000299368300100
PM 22148227
ER
PT J
AU Telg, H
Duque, JG
Staiger, M
Tu, XM
Hennrich, F
Kappes, MM
Zheng, M
Maultzsch, J
Thomsen, C
Doorn, SK
AF Telg, Hagen
Duque, Juan G.
Staiger, Matthias
Tu, Xiaomin
Hennrich, Frank
Kappes, Manfred M.
Zheng, Ming
Maultzsch, Janina
Thomsen, Christian
Doorn, Stephen K.
TI Chiral Index Dependence of the G(+) and G(-) Raman Modes in
Semiconducting Carbon Nanotubes
SO ACS NANO
LA English
DT Article
DE single-wall carbon nanotubes; Raman spectroscopy; G mode; LO/TO phonons;
diameter determination; (n,m) assignment
ID SINGLE-WALL; SPECTROSCOPY; SCATTERING; SYMMETRY; GRAPHITE
AB Raman spectroscopy on the radial breathing mode Is a common tool to determine the diameter d or chiral indices (n,m) of single-wall carbon nanotubes. In this work we present an alternative technique to determine d and (n,m) based on the high-energy G(-) mode. From resonant Raman scattering experiments on 14 highly purified single chirality (n,m) samples we obtain the diameter, chiral angle, and family dependence of the G(-) and G(+) peak position. Considering theoretical predictions we discuss the origin of these dependences with respect to rehybridization of the carbon orbitals, confinement, and electron-electron interactions. The relative Raman intensities of the two peaks have a systematic chiral angle dependence in agreement with theories considering the symmetry of nanotubes and the associated phonons.
C1 [Telg, Hagen; Duque, Juan G.; Doorn, Stephen K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Staiger, Matthias; Maultzsch, Janina; Thomsen, Christian] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany.
[Tu, Xiaomin; Zheng, Ming] Natl Inst Stand & Technol, Div Polymers, Gaithersburg, MD 20899 USA.
[Hennrich, Frank; Kappes, Manfred M.] Karlsruher Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany.
[Duque, Juan G.] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect C PCS, Los Alamos, NM 87545 USA.
RP Telg, H (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
EM hagen@lanl.gov; skdoorn@lanl.gov
RI Thomsen, Christian/E-2295-2012; Telg, Hagen/O-3348-2013; Thomsen,
Christian/B-5014-2015; Maultzsch, Janina/A-4781-2017
OI Telg, Hagen/0000-0002-4911-2703; Thomsen, Christian/0000-0001-6057-1401;
FU U.S. Department of Energy; NSF [CMS-060950]; European Research Council,
ERC [259286]; DFG; Helmholtz Association
FX H.T, J.G.D., and S.K.D. acknowledge support of the U.S. Department of
Energy through the LANL-LDRD program. X.T. and M.Z. acknowledge the
support of NSF Grant CMS-060950. J.M. acknowledges support from the
European Research Council, ERC grant no. 259286. F.H. and M.K.
acknowledge support by the DFG-funded Center for Functional
Nanostructures (CFN) and by the Helmholtz Association. This work was
performed in part at the Center for Integrated Nanotechnologies, a U.S.
Department of Energy, Office of Basic Energy Sciences, user facility.
NR 33
TC 30
Z9 30
U1 3
U2 43
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD JAN
PY 2012
VL 6
IS 1
BP 904
EP 911
DI 10.1021/nn2044356
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 879YH
UT WOS:000299368300107
PM 22175270
ER
PT J
AU Terlyga, O
Bellout, H
Bloom, F
AF Terlyga, Olga
Bellout, Hamid
Bloom, Frederick
TI GLOBAL EXISTENCE, UNIQUENESS, AND STABILITY FOR A NONLINEAR
HYPERBOLIC-PARABOLIC PROBLEM IN PULSE COMBUSTION
SO ACTA MATHEMATICA SCIENTIA
LA English
DT Article
DE pulse combustion; hyperbolic-parabolic system; global existence;
regularity
ID PULSATING COMBUSTION; MODEL
AB A global existence theorem is established for an initial-boundary value problem; with time-dependent boundary data, arising in a lumped parameter model of pulse combustion; the model in question gives rise to a nonlinear mixed hyperbolic-parabolic system. Using results previously established for the associated linear problem, a fixed point argument is employed to prove local existence for a regularized version of the nonlinear problem with artificial viscosity. Appropriate a-priori estimates are then derived which imply that the local existence result can be extended to a global existence theorem for the regularized problem. Finally, a different set of a priori estimates is generated which allows for taking the limit as the artificial viscosity parameter converges to zero; the corresponding solution of the regularized problem is then proven to converge to the unique solution of the initial-boundary value problem for the original, nonlinear, hyperbolic-parabolic system.
C1 [Bellout, Hamid; Bloom, Frederick] No Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA.
[Terlyga, Olga] Fermi Natl Lab, Batavia, IL 60510 USA.
RP Bloom, F (reprint author), No Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA.
EM terlyga@fnal.gov; bellout@math.niu.edu; bloom@math.niu.edu
NR 22
TC 2
Z9 2
U1 0
U2 3
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0252-9602
J9 ACTA MATH SCI
JI Acta Math. Sci.
PD JAN
PY 2012
VL 32
IS 1
BP 41
EP 74
PG 34
WC Mathematics
SC Mathematics
GA 890BJ
UT WOS:000300119800004
ER
PT J
AU Lim, H
Kaman, T
Yu, Y
Mahadeo, V
Xu, Y
Zhang, H
Glimm, J
Dutta, S
Sharp, DH
Plohr, B
AF Lim, H.
Kaman, T.
Yu, Y.
Mahadeo, V.
Xu, Y.
Zhang, H.
Glimm, J.
Dutta, S.
Sharp, D. H.
Plohr, B.
TI A MATHEMATICAL THEORY FOR LES CONVERGENCE
SO ACTA MATHEMATICA SCIENTIA
LA English
DT Article
DE numerical methods; turbuent mixing
ID NUMERICAL SIMULATIONS; TURBULENCE; TRANSPORT; INSTABILITY; FLOW
AB Practical simulations of turbulent processes are generally cutoff, with a grid resolution that stops within the inertial range, meaning that multiple active regions and length scales occur below the grid level and are not resolved. This is the regime of large eddy simulations (LES), in which the larger but not the smaller of the turbulent length scales are resolved. Solutions of the fluid Navier-Stokes equations, when considered in the inertial regime, are conventionally regarded as solutions of the Euler equations. In other words, the viscous and diffusive transport terms in the Navier-Stokes equations can be neglected in the inertial regime and in LES simulations, while the Euler equation becomes fundamental.
For such simulations, significant new solution details emerge as the grid is refined. It follows that conventional notions of grid convergence are at risk of failure, and that a new, and weaker notion of convergence may be appropriate. It is generally understood that the LES or inertial regime is inherently fluctuating and its description must be statistical in nature. Here we develop such a point of view systematically, based on Young measures, which are measures depending on or indexed by space time points. In the Young measure dv(xi)(x,t), the random variable xi of the measure is a solution state variable, i.e., a solution dependent variable, representing momentum, density, energy and species concentrations, while the space time coordinates, x, t, serve to index the measure. Theoretical evidence suggests that convergence via Young measures is sufficiently weak to encompass the LES/inertial regime; numerical and theoretical evidence suggests that this notion may be required for passive scalar concentration and thermal degrees of freedom. Our objective in this research is twofold: turbulent simulations without recourse to adjustable parameters (calibration) and extension to more complex physics, without use of additional models or parameters, in both cases with validation through comparison to experimental data.
C1 [Lim, H.; Kaman, T.; Yu, Y.; Mahadeo, V.; Xu, Y.; Zhang, H.; Glimm, J.] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA.
[Dutta, S.] Coll St Catherine, Madison, NJ USA.
[Sharp, D. H.; Plohr, B.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
RP Lim, H (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA.
EM hyulim@ams.sunysb.edu; tkaman@ams.sunysb.edu; yan2000@ams.sunsb.edu;
vmahadeo@ams.sunysb.edu; yxu@ams.sunysb.edu; hazhang@ams.sunysb.edu;
glimm@ams.sunysb.edu; srabastidutta@gmail.com; dhs@lanl.gov;
plohr@lanl.gov
FU Department of Energy [NEUP-09-349]; Battelle Energy Alliance LLC
[00088495]; Leland Stanford Junior University [2175022040367A]; Army
Research Office [W911NF0910306]; US Department of Energy [DEAC
5206NA25396]; DOE; Office of Science of the U.S. Department of Energy
[DE-AC02-06CH11357]
FX Received November 2, 2011. This work is supported in part by the Nuclear
Energy University Program of the Department of Energy, project
NEUP-09-349, Battelle Energy Alliance LLC 00088495 (subaward with DOE as
prime sponsor), Leland Stanford Junior University 2175022040367A
(subaward with DOE as prime sponsor), Army Research Office
W911NF0910306. The work of D.H. Sharp was supported by the US Department
of Energy under Contract DEAC 5206NA25396.; Computational resources were
provided by the Stony Brook Galaxy cluster and the Stony Brook/BNL New
York Blue Gene/L IBM machine. This research used resources of the
Argonne Leadership Computing Facility at Argonne National Laboratory,
which is supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-06CH11357.
NR 41
TC 5
Z9 5
U1 0
U2 6
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0252-9602
J9 ACTA MATH SCI
JI Acta Math. Sci.
PD JAN
PY 2012
VL 32
IS 1
BP 237
EP 258
PG 22
WC Mathematics
SC Mathematics
GA 890BJ
UT WOS:000300119800015
ER
PT J
AU Gamazo, P
Saaltink, MW
Carrera, J
Slooten, L
Bea, S
AF Gamazo, P.
Saaltink, M. W.
Carrera, J.
Slooten, L.
Bea, S.
TI A consistent compositional formulation for multiphase reactive transport
where chemistry affects hydrodynamics
SO ADVANCES IN WATER RESOURCES
LA English
DT Article
DE Multiphase reactive transport; Coupling effects; Arid soil evaporation;
Hydrated minerals; Invariant point
ID NATURAL-WATERS; POROUS-MEDIA; GROUNDWATER CONTAMINATION;
ORGANIC-COMPOUNDS; MODEL DEVELOPMENT; SIMULATION; REMEDIATION;
EVAPORATION; PREDICTION; COMPONENTS
AB Multiphase reactive transport formulations usually decouple flow (i.e., phase conservation) from reactive transport calculations (i.e., species conservation). Decoupling is not appropriate when reactions affect flow controlling variables (such as the partial pressure of gaseous components or the activity of water). We present a consistent compositional formulation that couples the conservation of all components. No explicit conservation of phases mass is required since they result from the conservation of all species in each phase. The formulation acknowledges that constant activity species do not affect speciation and can be eliminated, which reduces the number of unknowns. We discuss the formulation, the numerical solution, and the implementation into an object oriented code. The advantages of the formulation are illustrated by simulating the effect of mineral dehydration (including invariant points) on the hydrodynamic processes in an unsaturated column that reaches extremely dry conditions. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Gamazo, P.] Univ Republ, Water Dept, Gral Rivera 50000, Salto, Uruguay.
[Gamazo, P.; Saaltink, M. W.] Univ Politecn Cataluna, GHS, Dept Geotech Engn & Geosci, UPC BarcelonaTech, ES-08034 Barcelona, Spain.
[Carrera, J.; Slooten, L.] CSIC, GHS, Inst Environm Assessment & Water Res IDAEA, E-08028 Barcelona, Spain.
[Bea, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Gamazo, P (reprint author), Univ Republ, Water Dept, Gral Rivera 50000, Salto, Uruguay.
EM pablogamazo@gmail.com
RI Gamazo Rusnac, Pablo Andres/A-9253-2012; Bea, Sergio /A-9056-2012;
OI Bea, Sergio /0000-0001-9237-4103; Saaltink, Maarten
W./0000-0003-0553-4573
NR 45
TC 8
Z9 8
U1 1
U2 11
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0309-1708
J9 ADV WATER RESOUR
JI Adv. Water Resour.
PD JAN
PY 2012
VL 35
BP 83
EP 93
DI 10.1016/j.advwatres.2011.09.006
PG 11
WC Water Resources
SC Water Resources
GA 888UV
UT WOS:000300031000008
ER
PT J
AU Foston, MB
McGaughey, J
O'Neill, H
Evans, BR
Ragauskas, A
AF Foston, Marcus B.
McGaughey, Joseph
O'Neill, Hugh
Evans, Barbara R.
Ragauskas, Arthur
TI Deuterium incorporation in biomass cell wall components by NMR analysis
SO ANALYST
LA English
DT Article
ID BIOLOGY; RATIO; SANS
AB A commercially available deuterated kale sample was analyzed for deuterium incorporation by ionic liquid solution H-2 and H-1 nuclear magnetic resonance (NMR). This protocol was found to effectively measure the percent deuterium incorporation at 33%, comparable to the 31% value determined by combustion. The solution NMR technique also suggested by a qualitative analysis that deuterium is preferentially incorporated into the carbohydrate components of the kale sample.
C1 [Foston, Marcus B.; Ragauskas, Arthur] Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, Atlanta, GA 30332 USA.
[McGaughey, Joseph; Evans, Barbara R.] Oak Ridge Natl Lab, Div Chem Sci, Mol Biosci & Biotechnol Grp, Oak Ridge, TN 37831 USA.
[O'Neill, Hugh] Oak Ridge Natl Lab, Div Chem Sci, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA.
RP Ragauskas, A (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, Atlanta, GA 30332 USA.
EM arthur.ragauskas@chemistry.gatech.edu
OI O'Neill, Hugh/0000-0003-2966-5527; Ragauskas, Arthur/0000-0002-3536-554X
FU Office of Biological and Environmental Research, U. S. Department of
Energy [FWP ERKP752]
FX This research is funded by the Genomic Science Program, Office of
Biological and Environmental Research, U. S. Department of Energy, under
FWP ERKP752.
NR 17
TC 6
Z9 6
U1 2
U2 10
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0003-2654
J9 ANALYST
JI Analyst
PY 2012
VL 137
IS 5
BP 1090
EP 1093
DI 10.1039/c2an16025k
PG 4
WC Chemistry, Analytical
SC Chemistry
GA 888XR
UT WOS:000300038400005
PM 22223179
ER
PT J
AU Kumari, H
Mossine, AV
Kline, SR
Dennis, CL
Fowler, DA
Teat, SJ
Barnes, CL
Deakyne, CA
Atwood, JL
AF Kumari, Harshita
Mossine, Andrew V.
Kline, Steven R.
Dennis, Cindi L.
Fowler, Drew A.
Teat, Simon J.
Barnes, Charles L.
Deakyne, Carol A.
Atwood, Jerry L.
TI Controlling the Self-Assembly of Metal-Seamed Organic Nanocapsules
SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
LA English
DT Article
DE molecular capsules; pyrogallol[4]arenes; small-angle neutron scattering;
supramolecular chemistry
ID ANGLE NEUTRON-SCATTERING
C1 [Kumari, Harshita; Mossine, Andrew V.; Fowler, Drew A.; Barnes, Charles L.; Deakyne, Carol A.; Atwood, Jerry L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA.
[Kline, Steven R.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Dennis, Cindi L.] Natl Inst Stand & Technol, Mat Measurement Lab, Gaithersburg, MD 20899 USA.
[Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Deakyne, CA (reprint author), Univ Missouri, Dept Chem, 601 S Coll Ave, Columbia, MO 65211 USA.
EM deakynec@missouri.edu; atwoodj@missouri.edu
FU National Science Foundation [DMR-0944772, CHE1012998]
FX This work utilized facilities supported in part by the National Science
Foundation under Agreement No. DMR-0944772 (S.R.K.) and CHE1012998
(J.L.A.). The use of specific trade names does not imply endorsement of
products or companies by NIST but are used to fully describe the
experimental procedures.
NR 16
TC 45
Z9 45
U1 5
U2 32
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1433-7851
J9 ANGEW CHEM INT EDIT
JI Angew. Chem.-Int. Edit.
PY 2012
VL 51
IS 6
BP 1452
EP 1454
DI 10.1002/anie.201107182
PG 3
WC Chemistry, Multidisciplinary
SC Chemistry
GA 884VG
UT WOS:000299736300031
PM 22294358
ER
PT J
AU You, LY
Chen, SG
Zhao, X
Liu, Y
Lan, WX
Zhang, Y
Lu, HJ
Cao, CY
Li, ZT
AF You, Li-Yan
Chen, Shi-Gui
Zhao, Xin
Liu, Yi
Lan, Wen-Xian
Zhang, Ying
Lu, Hao-Jie
Cao, Chun-Yang
Li, Zhan-Ting
TI C?H center dot center dot center dot O Hydrogen Bonding Induced Triazole
Foldamers: Efficient Halogen Bonding Receptors for Organohalogens
SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
LA English
DT Article
DE foldamer; halogen bonds; hydrogen bonds; molecular recognition; nitrogen
heterocycles
ID SUPRAMOLECULAR CHEMISTRY; COMPLEXES; BINDING; COOPERATIVITY;
AGGREGATION; RECOGNITION; PERSISTENT; IONS
C1 [You, Li-Yan; Chen, Shi-Gui; Zhao, Xin; Lan, Wen-Xian; Cao, Chun-Yang; Li, Zhan-Ting] Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, Shanghai 200032, Peoples R China.
[Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Zhang, Ying; Lu, Hao-Jie; Li, Zhan-Ting] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China.
RP Zhao, X (reprint author), Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, 345 Lingling Lu, Shanghai 200032, Peoples R China.
EM xzhao@mail.sioc.ac.cn; ztli@mail.sioc.ac.cn
FU NSFC [20921091, 20974118]; STCSM [10J1412200, 09XD1405300]
FX We thank NSFC (20921091 and 20974118) and STCSM (10J1412200 and
09XD1405300) for financial support.
NR 60
TC 43
Z9 44
U1 6
U2 66
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1433-7851
J9 ANGEW CHEM INT EDIT
JI Angew. Chem.-Int. Edit.
PY 2012
VL 51
IS 7
BP 1657
EP 1661
DI 10.1002/anie.201106996
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA 887RJ
UT WOS:000299946400029
PM 22238223
ER
PT J
AU Kosuda, KM
Wittstock, A
Friend, CM
Baumer, M
AF Kosuda, Kathryn M.
Wittstock, Arne
Friend, Cynthia M.
Baeumer, Marcus
TI Oxygen-Mediated Coupling of Alcohols over Nanoporous Gold Catalysts at
Ambient Pressures
SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
LA English
DT Article
DE alcohols; cross-coupling; heterogeneous catalysis; nanoporous gold;
selective oxidation
ID AEROBIC OXIDATION; LOW-TEMPERATURE; CO OXIDATION; CHEMISTRY; METHANOL;
ETHANOL; ACID
C1 [Wittstock, Arne; Baeumer, Marcus] Univ Bremen, Zentrum Umweltforsch & Nachhaltige Technol, D-28359 Bremen, Germany.
[Kosuda, Kathryn M.; Friend, Cynthia M.] Harvard Univ, Sch Engn & Appl Sci, Dept Chem & Chem Biol, Cambridge, MA 02138 USA.
[Wittstock, Arne] Lawrence Livermore Natl Lab, NSCL, Livermore, CA 94550 USA.
[Wittstock, Arne; Baeumer, Marcus] Univ Bremen, Inst Angew & Phys Chem, D-28359 Bremen, Germany.
RP Wittstock, A (reprint author), Univ Bremen, Zentrum Umweltforsch & Nachhaltige Technol, Leobener Str NW2, D-28359 Bremen, Germany.
EM awittstock@uni-bremen.de
RI Baumer, Marcus/S-5441-2016
OI Baumer, Marcus/0000-0002-8620-1764
FU NSF through Harvard NSEC [PHY-0646094]; MRSEC [DMR-0820484]; U.S.
Department of Energy through LLNL [DE-AC52-07NA27344]
FX This work was supported in part by the NSF through Harvard NSEC
(PHY-0646094) and by MRSEC (DMR-0820484). A.W. was supported in part by
the U.S. Department of Energy through LLNL under contract
DE-AC52-07NA27344.
NR 33
TC 57
Z9 59
U1 1
U2 84
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1433-7851
J9 ANGEW CHEM INT EDIT
JI Angew. Chem.-Int. Edit.
PY 2012
VL 51
IS 7
BP 1698
EP 1701
DI 10.1002/anie.201107178
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA 887RJ
UT WOS:000299946400038
PM 22223430
ER
PT J
AU Burling, IR
Yokelson, RJ
Akagi, SK
Urbanski, SP
Wold, CE
Griffith, DWT
Johnson, TJ
Reardon, J
Weise, DR
AF Burling, I. R.
Yokelson, R. J.
Akagi, S. K.
Urbanski, S. P.
Wold, C. E.
Griffith, D. W. T.
Johnson, T. J.
Reardon, J.
Weise, D. R.
TI Airborne and ground-based measurements of the trace gases and particles
emitted by prescribed fires in the United States (vol 11, pg 12197,
2011)
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Correction
C1 [Burling, I. R.; Yokelson, R. J.; Akagi, S. K.] Univ Montana, Dept Chem, Missoula, MT 59812 USA.
[Urbanski, S. P.; Wold, C. E.; Reardon, J.] US Forest Serv, USDA, Rocky Mt Res Stn, Fire Sci Lab, Missoula, MT 59808 USA.
[Griffith, D. W. T.] Univ Wollongong, Dept Chem, Wollongong, NSW 2500, Australia.
[Johnson, T. J.] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Weise, D. R.] US Forest Serv, USDA, Pacific SW Res Stn, Riverside, CA USA.
RP Yokelson, RJ (reprint author), Univ Montana, Dept Chem, Missoula, MT 59812 USA.
EM bob.yokelson@umontana.edu
NR 1
TC 0
Z9 0
U1 0
U2 22
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2012
VL 12
IS 1
BP 103
EP 103
DI 10.5194/acp-12-103-2012
PG 1
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 892XZ
UT WOS:000300320200003
ER
PT J
AU Kleinman, LI
Daum, PH
Lee, YN
Lewis, ER
Sedlacek, AJ
Senum, GI
Springston, SR
Wang, J
Hubbe, J
Jayne, J
Min, Q
Yum, SS
Allen, G
AF Kleinman, L. I.
Daum, P. H.
Lee, Y. -N.
Lewis, E. R.
Sedlacek, A. J.
Senum, G. I.
Springston, S. R., III
Wang, J.
Hubbe, J.
Jayne, J.
Min, Q.
Yum, S. S.
Allen, G.
TI Aerosol concentration and size distribution measured below, in, and
above cloud from the DOE G-1 during VOCALS-REx
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID MARINE STRATOCUMULUS CLOUDS; BOUNDARY-LAYER; OZONE CONCENTRATIONS;
CONDENSATION NUCLEI; HYGROSCOPIC GROWTH; SOUTHEAST PACIFIC; ACTIVATION;
AIR; PARTICLES; EVOLUTION
AB During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O-3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 degrees C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (D-p > 100 nm) gives a linear relation up to a number concentration of similar to 150 cm(-3), followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that similar to 25% of aerosol with D-p > 100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the interstitial aerosol appears to have a background, upon which is superimposed a high frequency signal that contains the anti-correlation. The anti-correlation is a possible source of information on particle activation or evaporation.
C1 [Kleinman, L. I.; Daum, P. H.; Lee, Y. -N.; Lewis, E. R.; Sedlacek, A. J.; Senum, G. I.; Springston, S. R., III; Wang, J.] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA.
[Hubbe, J.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
[Jayne, J.] Aerodyne Res Inc, Billerica, MA 01821 USA.
[Min, Q.] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA.
[Yum, S. S.] Yonsei Univ, Dept Atmospher Sci, Seoul 120749, South Korea.
[Allen, G.] Univ Manchester, Ctr Atmospher Sci, Manchester M13 9PL, Lancs, England.
RP Kleinman, LI (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA.
EM kleinman@bnl.gov
RI Allen, Grant /A-7737-2013; Wang, Jian/G-9344-2011
OI Allen, Grant /0000-0002-7070-3620;
FU Korean Meteorological Administration [RACS 2010-5001]; US DOE
[DE-AC02-98CH10886]
FX We thank chief pilot Bob Hannigan and the flight crew from PNNL for a
job well done. Thanks to Robert McGraw of BNL for droplet evaporation
calculations. We gratefully acknowledge the Atmospheric Science Program
within the Office of Biological and Environmental Research of DOE for
supporting field and analysis activities and for providing the G-1
aircraft. Use of a c-ToF-AMS provided by EMSL is appreciated. The VOCALS
Regional Experiment owes its success to many people. We would like to
single out Robert Wood (Univ. of Washington), Christopher Bretherton
(Univ. of Washington), and C.'Roberto Mechoso (UCLA) for their
organizational skills and scientific leadership. S. S. Yum is partially
supported by the Korean Meteorological Administration Research and
Development Program under Grant RACS 2010-5001. This research was
performed under sponsorship of the US DOE under contracts
DE-AC02-98CH10886.
NR 55
TC 24
Z9 24
U1 0
U2 18
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2012
VL 12
IS 1
BP 207
EP 223
DI 10.5194/acp-12-207-2012
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 892XZ
UT WOS:000300320200010
ER
PT J
AU Lauvaux, T
Schuh, AE
Uliasz, M
Richardson, S
Miles, N
Andrews, AE
Sweeney, C
Diaz, LI
Martins, D
Shepson, PB
Davis, KJ
AF Lauvaux, T.
Schuh, A. E.
Uliasz, M.
Richardson, S.
Miles, N.
Andrews, A. E.
Sweeney, C.
Diaz, L. I.
Martins, D.
Shepson, P. B.
Davis, K. J.
TI Constraining the CO2 budget of the corn belt: exploring uncertainties
from the assumptions in a mesoscale inverse system
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID ATMOSPHERIC TRANSPORT MODELS; CARBON-DIOXIDE EXCHANGE; REGIONAL-SCALE
FLUXES; SYNTHETIC DATA; PART 1; SINKS; LAND; SENSITIVITY; CONTINENT;
AIRBORNE
AB We performed an atmospheric inversion of the CO2 fluxes over Iowa and the surrounding states, from June to December 2007, at 20 km resolution and weekly timescale. Eight concentration towers were used to constrain the carbon balance in a 1000x1000 km(2) domain in this agricultural region of the US upper midwest. The CO2 concentrations of the boundaries derived from CarbonTracker were adjusted to match direct observations from aircraft profiles around the domain. The regional carbon balance ends up with a sink of 183 Tg C +/- 35 Tg C over the area for the period June-December, 2007. Potential bias from incorrect boundary conditions of about 0.55 ppm over the 7 months was corrected using mixing ratios from four different aircraft profile sites operated at a weekly time scale, acting as an additional source of uncertainty of 24 Tg C. We used two different prior flux estimates, the SiBCrop model and the inverse flux product from the CarbonTracker system. We show that inverse flux estimates using both priors converge to similar posterior estimates (20 Tg C difference), in our reference inversion, but some spatial structures from the prior fluxes remain in the posterior fluxes, revealing the importance of the prior flux resolution and distribution despite the large amount of atmospheric data available. The retrieved fluxes were compared to eddy flux towers in the corn and grassland areas, revealing an improvement in the seasonal cycles between the two compared to the prior fluxes, despite large absolute differences due to representation errors. The uncertainty of 34 Tg C (or 34 g C m(2)) was derived from the posterior uncertainty obtained with our reference inversion of about 25 to 30 Tg C and from sensitivity tests of the assumptions made in the inverse system, for a mean carbon balance over the region of -183 Tg C, slightly weaker than the reference. Because of the potential large bias (similar to 24 Tg C in this case) due to choice of background conditions, proportional to the surface but not to the regional flux, this methodology seems limited to regions with a large signal (sink or source), unless additional observations can be used to constrain the boundary inflow.
C1 [Lauvaux, T.; Richardson, S.; Miles, N.; Diaz, L. I.; Martins, D.; Davis, K. J.] Penn State Univ, Dept Meteorol, Inversity Pk, PA USA.
[Schuh, A. E.] NREL, Ft Collins, CO USA.
[Shepson, P. B.] Purdue Univ, W Lafayette, IN 47907 USA.
[Andrews, A. E.; Sweeney, C.] Natl Ocean & Atmospher Assoc, ESRL GMD, Boulder, CO USA.
[Schuh, A. E.; Uliasz, M.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
RP Lauvaux, T (reprint author), Penn State Univ, Dept Meteorol, Inversity Pk, PA USA.
EM lauvaux@meteo.psu.edu
RI Shepson, Paul/E-9955-2012; Andrews, Arlyn/K-3427-2012;
OI Lauvaux, Thomas/0000-0002-7697-742X
FU NOAA/ESRL division; CarbonTracker products; Office of Science (BER) US
Department of Energy; US National Aeronautics and Space Administration;
US National Oceanographic and Atmospheric Administration, Office of
Global Programs
FX We thank Andy Jacobson from NOAA/ESRL division for discussions and
support with CarbonTracker products, Arlyn Andrews from NOAA/ESRL
division for data support and management for the West Branch tall tower,
Colm Sweeney and Gabrielle Petron from NOAA/ESRL division for data from
the aircraft program, Tim Griffis from University of Minnesota for his
comments and the eddy-covariance flux data from Rosemount, Shashi Verma
and Andrew Suyker from University of Nebraska-Lincoln for
eddy-covariance flux data from Mead, Tilden Meyers from NOAA/ARL
division for eddy-covariance flux data from Brookings and Bondville, and
Roser Matamala from Argonne National Laboratory for eddy-covariance flux
data from Fermi. This research was supported by the Office of Science
(BER) US Department of Energy, Terrestrial Carbon Program, the US
National Aeronautics and Space Administration's Terrestrial Ecology
Program, and the US National Oceanographic and Atmospheric
Administration, Office of Global Programs, Global Carbon Cycle program.
NR 60
TC 43
Z9 44
U1 0
U2 20
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2012
VL 12
IS 1
BP 337
EP 354
DI 10.5194/acp-12-337-2012
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 892XZ
UT WOS:000300320200018
ER
PT J
AU Zuidema, P
Leon, D
Pazmany, A
Cadeddu, M
AF Zuidema, P.
Leon, D.
Pazmany, A.
Cadeddu, M.
TI Aircraft millimeter-wave passive sensing of cloud liquid water and water
vapor during VOCALS-REx
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID MARINE STRATOCUMULUS; SOUTHEAST PACIFIC; MODELS; PATH; RADIOMETER;
OCEAN; PERMITTIVITY; FREQUENCIES; RETRIEVALS; VALIDATION
AB Routine liquid water path measurements and water vapor path are valuable for process studies of the cloudy marine boundary layer and for the assessment of large-scale models. The VOCALS Regional Experiment respected this goal by including a small, inexpensive, upward-pointing millimeter-wavelength passive radiometer on the fourteen research flights of the NCAR C-130 plane, the G-band (183 GHz) Vapor Radiometer (GVR). The radiometer permitted above-cloud retrievals of the free-tropospheric water vapor path (WVP). Retrieved free-tropospheric (above-cloud) water vapor paths possessed a strong longitudinal gradient, with off-shore values of one to two mm and near-coastal values reaching tenmm. The VOCALS-REx free troposphere was drier than that of previous years. Cloud liquid water paths (LWPs) were retrieved from the sub-cloud and cloudbase aircraft legs through a combination of the GVR, remotely-sensed cloud boundary information, and in-situ thermodynamic data. The absolute (between-leg) and relative (within-leg) accuracy of the LWP retrievals at 1 Hz (similar to 100 m) resolution was estimated at 20 gm(-2) and 3 g m(-2) respectively for well-mixed conditions, and 25 g m(-2) absolute uncertainty for decoupled conditions where the input WVP specification was more uncertain. Retrieved liquid water paths matched adiabatic values derived from coincident cloud thickness measurements exceedingly well. A significant contribution of the GVR dataset was the extended information on the thin clouds, with 62% (28 %) of the retrieved LWPs < 100 (40) gm(-2). Coastal LWPs values were lower than those offshore. For the four dedicated 20 degrees S flights, the mean (median) coastal LWP was 67 (61) gm(-2), increasing to 166 (120) gm(-2) 1500 km offshore. The overall LWP cloud fraction from thirteen research flights was 63 %, higher than that of adiabatic LWPs at 40 %, but lower than the lidar-determined cloud cover of 85 %, further testifying to the frequent occurrence of thin clouds.
C1 [Zuidema, P.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA.
[Leon, D.] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA.
[Pazmany, A.] Prosensing Inc, Amherst, MA USA.
[Cadeddu, M.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Zuidema, P (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA.
EM pzuidema@rsmas.miami.edu
RI Zuidema, Paquita/C-9659-2013
OI Zuidema, Paquita/0000-0003-4719-372X
FU NSF Large-Scale Dynamics Division [0745470]; VOCALS-REx PIs
FX PZ acknowledges support from the NSF Large-Scale Dynamics Division under
Award 0745470. We thank Walt Robinson and the VOCALS-REx PIs Rob Wood
and Roberto Mechoso for their support and leadership.
NR 45
TC 18
Z9 18
U1 0
U2 3
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2012
VL 12
IS 1
BP 355
EP 369
DI 10.5194/acp-12-355-2012
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 892XZ
UT WOS:000300320200019
ER
PT J
AU Feng, R
Xenos, M
Girdhar, G
Kang, W
Davenport, JW
Deng, YF
Bluestein, D
AF Feng, Rui
Xenos, Michalis
Girdhar, Gaurav
Kang, Wei
Davenport, James W.
Deng, Yuefan
Bluestein, Danny
TI Viscous flow simulation in a stenosis model using discrete particle
dynamics: a comparison between DPD and CFD
SO BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
LA English
DT Article
DE Viscous flow; Lennard-Jones potential; Computational fluid dynamics;
Molecular dynamics; Discrete particle dynamics; Parallelcomputing
ID SCALABLE MOLECULAR-DYNAMICS; LOW REYNOLDS-NUMBERS; BLUE-GENE/L SYSTEM;
TRANSPORT-COEFFICIENTS; BOUNDARY-CONDITIONS; POROUS-MEDIA; FLUID; NAMD;
HYDRODYNAMICS; PARALLEL
AB Flow and stresses induced by blood flow acting on the blood cellular constituents can be represented to a certain extent by a continuum mechanics approach down to the order of the mu m level. However, the molecular effects of, e. g., adhesion/aggregation bonds of blood clotting can be on the order of nm. The coupling of the disparate length and timescales between such molecular levels and macroscopic transport represents a major computational challenge. To address this challenge, a multiscale numerical approach based on discrete particle dynamics (DPD) methodology derived from molecular dynamics (MD) principles is proposed. The feasibility of the approach was firstly tested for its ability to simulate viscous flow conditions. Simulations were conducted in low Reynolds numbers flows (Re = 25-33) through constricted tubes representing blood vessels with various degrees of stenosis. Multiple discrete particles interacting with each other were simulated, with 1.24-1.36 million particles representing the flow domain and 0.4 million particles representing the vessel wall. The computation was carried out on the massive parallel supercomputer NY BlueGene/L employing NAMD-a parallel MD package for high performance computing (HPC). Typical recirculation zones were formed distal to the stenoses. The velocity profiles and recirculation zones were in excellent agreement with computational fluid dynamics (CFD) 3D Navier-Stokes viscous fluid flow simulations and with classic numerical and experimental results by YC Fung in constricted tubes. This feasibility analysis demonstrates the potential of a methodology that widely departs from a continuum approach to simulate multiscale phenomena such as flow induced blood clotting.
C1 [Xenos, Michalis; Girdhar, Gaurav; Bluestein, Danny] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11790 USA.
[Feng, Rui; Davenport, James W.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA.
[Feng, Rui] Beihang Univ, Sch Comp Sci & Engn, Beijing 100083, Peoples R China.
[Kang, Wei; Davenport, James W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Deng, Yuefan] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11790 USA.
RP Bluestein, D (reprint author), SUNY Stony Brook, Dept Biomed Engn, HSC T18-030, Stony Brook, NY 11790 USA.
EM danny.bluestein@sunysb.edu
RI Kang, Wei/A-9784-2012;
OI Kang, Wei/0000-0001-9989-0485; Deng, Yuefan/0000-0002-5224-3958; Xenos,
Michalis/0000-0001-8441-1306
FU National Institute of Biomedical Imaging and Bioengineering [1R01
EB008004-01]; US Department of Energy [DE-AC02-98CH10886]; State of New
York
FX This publication was made possible by grant number 1R01 EB008004-01 (DB)
from the National Institute of Biomedical Imaging and Bioengineering.
This research utilized resources at the New York Center for
Computational Sciences at Stony Brook University/Brookhaven National
Laboratory, which is supported by the US Department of Energy under
Contract No. DE-AC02-98CH10886 and by the State of New York.
NR 40
TC 12
Z9 12
U1 1
U2 19
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1617-7959
J9 BIOMECH MODEL MECHAN
JI Biomech. Model. Mechanobiol.
PD JAN
PY 2012
VL 11
IS 1-2
BP 119
EP 129
DI 10.1007/s10237-011-0297-z
PG 11
WC Biophysics; Engineering, Biomedical
SC Biophysics; Engineering
GA 891QB
UT WOS:000300230600009
PM 21369918
ER
PT J
AU Torrens, PM
Nara, A
Li, X
Zhu, HJ
Griffin, WA
Brown, SB
AF Torrens, Paul M.
Nara, Atsushi
Li, Xun
Zhu, Haojie
Griffin, William A.
Brown, Scott B.
TI An extensible simulation environment and movement metrics for testing
walking behavior in agent-based models
SO COMPUTERS ENVIRONMENT AND URBAN SYSTEMS
LA English
DT Article
DE Walking; Agent-based modeling; Movement; Trajectory measurement
ID PEDESTRIAN BEHAVIOR; CROWD DYNAMICS; FRACTAL DIMENSION; SAFETY; PATHS;
SEGREGATION; EVACUATION; NAVIGATION; MOBILITY; DOWNTOWN
AB Human movement is a significant ingredient of many social, environmental, and technical systems, yet the importance of movement is often discounted in considering systems' complexity. Movement is commonly abstracted in agent-based modeling (which is perhaps the methodological vehicle for modeling complex systems), despite the influence of movement upon information exchange and adaptation in a system. In particular, agent-based models of urban pedestrians often treat movement in proxy form at the expense of faithfully treating movement behavior with realistic agency. There exists little consensus about which method is appropriate for representing movement in agent-based schemes. In this paper, we examine popularly-used methods to drive movement in agent-based models, first by introducing a methodology that can flexibly handle many representations of movement at many different scales and second, introducing a suite of tools to benchmark agent movement between models and against real-world trajectory data. We find that most popular movement schemes do a relatively poor job of representing movement, but that some schemes may well be "good enough" for some applications. We also discuss potential avenues for improving the representation of movement in agent-based frameworks. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Torrens, Paul M.; Nara, Atsushi; Li, Xun; Zhu, Haojie] Univ Maryland, Dept Geog, Geosimulat Res Lab, College Pk, MD 20742 USA.
[Griffin, William A.] Arizona State Univ, Ctr Social Dynam & Complex, Tempe, AZ 85287 USA.
[Brown, Scott B.] Idaho Natl Lab, Idaho Falls, ID 83402 USA.
RP Torrens, PM (reprint author), Univ Maryland, Dept Geog, Geosimulat Res Lab, 2181 LeFrak Hall, College Pk, MD 20742 USA.
EM torrens@geosimulation.com; atsushi.nara@asu.edu; Xun.Li@asu.edu;
Haojie.Zhu@asu.edu; WILLIAM.GRIFFIN@asu.edu;
scott.brown@spatial-reasoning.org
OI Li, Xun/0000-0002-1367-2901
NR 102
TC 20
Z9 20
U1 1
U2 22
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0198-9715
EI 1873-7587
J9 COMPUT ENVIRON URBAN
JI Comput. Environ. Urban Syst.
PD JAN
PY 2012
VL 36
IS 1
BP 1
EP 17
DI 10.1016/j.compenvurbsys.2011.07.005
PG 17
WC Computer Science, Interdisciplinary Applications; Engineering,
Environmental; Environmental Studies; Geography; Operations Research &
Management Science
SC Computer Science; Engineering; Environmental Sciences & Ecology;
Geography; Operations Research & Management Science
GA 890EN
UT WOS:000300128000001
ER
PT J
AU Middleton, RS
Kuby, MJ
Bielicki, JM
AF Middleton, Richard S.
Kuby, Michael J.
Bielicki, Jeffrey M.
TI Generating candidate networks for optimization: The CO2 capture and
storage optimization problem
SO COMPUTERS ENVIRONMENT AND URBAN SYSTEMS
LA English
DT Article
DE CO2 capture and storage (CCS); Carbon sequestration; Network
optimization; Network design; SimCCS; Infrastructure optimization
ID GAS TRANSMISSION NETWORKS; CCS INFRASTRUCTURE; CARBON CAPTURE;
SEQUESTRATION SITE; PIPELINE DESIGN; PLANNING-MODEL; COST; SYSTEM; GIS;
TECHNOLOGY
AB We develop a new framework for spatially optimizing infrastructure for CO2 capture and storage (CCS). CCS is a complex and challenging problem: domestically deploying CCS at a meaningful scale will require linking hundreds of coal-fired power plants with CO2 sequestration reservoirs through a dedicated and extensive (many tens-of-thousands of miles) CO2 pipeline network. We introduce a unique method for generating a candidate network from scratch, from which the optimization model selects the optimal set of arcs to form the pipeline network. This new generation method can be applied to any network optimization problem including transmission line, roads, and telecommunication applications. We demonstrate the model and candidate network methodology using a real example of capturing CO2 from coal-fired power plants in the US Midwest and storing the CO2 in depleted oil and gas fields. Results illustrate the critical need to balance CCS investments with generating a candidate network of arcs. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Middleton, Richard S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Kuby, Michael J.] Arizona State Univ, Sch Geog Sci & Urban Planning, Tempe, AZ 85287 USA.
[Bielicki, Jeffrey M.] Univ Minnesota, Humphrey Sch Publ Affairs, Minneapolis, MN 55455 USA.
RP Middleton, RS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM rsm@lanl.gov; mikekuby@asu.edu; jbielick@umn.edu
RI Middleton, Richard/A-5470-2011; Bielicki, Jeffrey/D-4239-2016;
OI Bielicki, Jeffrey/0000-0001-8449-9328; Middleton,
Richard/0000-0002-8039-6601; Kuby, Michael/0000-0002-7988-5766
NR 57
TC 26
Z9 27
U1 4
U2 17
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0198-9715
J9 COMPUT ENVIRON URBAN
JI Comput. Environ. Urban Syst.
PD JAN
PY 2012
VL 36
IS 1
BP 18
EP 29
DI 10.1016/j.compenvurbsys.2011.08.002
PG 12
WC Computer Science, Interdisciplinary Applications; Engineering,
Environmental; Environmental Studies; Geography; Operations Research &
Management Science
SC Computer Science; Engineering; Environmental Sciences & Ecology;
Geography; Operations Research & Management Science
GA 890EN
UT WOS:000300128000002
ER
PT J
AU Zhang, B
Zhao, BT
Huang, SH
Zhang, RY
Xu, P
Wang, HL
AF Zhang, Bin
Zhao, Botao
Huang, Shenghui
Zhang, Ruiying
Xu, Ping
Wang, Hsing-Lin
TI One-pot interfacial synthesis of Au nanoparticles and Au-polyaniline
nanocomposites for catalytic applications
SO CRYSTENGCOMM
LA English
DT Article
ID CHEMICAL-DEPOSITION; FACILE SYNTHESIS; NANOFIBERS; PARTICLES; NANOTUBES;
CHEMISTRY; CLUSTERS; GOLD
AB We demonstrate here a facile one-pot interfacial synthesis of Au nanoparticles and Au-polyaniline nanocomposites through the polymerization of aniline by HAuCl4, and the nanocomposites are efficient catalysts for the reduction of rhodamine B.
C1 [Zhang, Bin; Zhao, Botao; Huang, Shenghui; Zhang, Ruiying; Xu, Ping] Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China.
[Xu, Ping; Wang, Hsing-Lin] Los Alamos Natl Lab, C PCS, Los Alamos, NM 87545 USA.
RP Xu, P (reprint author), Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China.
EM pxu@hit.edu.cn; hwang@lanl.gov
RI Xu, Ping/I-1910-2013
OI Xu, Ping/0000-0002-1516-4986
FU NSFC [21101041, 20776032, 91122002]; China Postdoctoral Fund;
Fundamental Research Funds for the Central Universities [HIT. NSRIF.
2010065, 2011017]; LANL
FX PX thanks the support from the China Postdoctoral Fund, NSFC (no.
21101041, 20776032, 91122002), Fundamental Research Funds for the
Central Universities (grant no. HIT. NSRIF. 2010065 and 2011017), and
Director's Postdoctoral Fellow from LANL.
NR 24
TC 34
Z9 34
U1 0
U2 29
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1466-8033
J9 CRYSTENGCOMM
JI Crystengcomm
PY 2012
VL 14
IS 5
BP 1542
EP 1544
DI 10.1039/c2ce06396d
PG 3
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA 889AF
UT WOS:000300045200006
ER
PT J
AU Dekker, SC
Vrugt, JA
Elkington, RJ
AF Dekker, Stefan C.
Vrugt, Jasper A.
Elkington, Rebecca J.
TI Significant variation in vegetation characteristics and dynamics from
ecohydrological optimality of net carbon profit
SO ECOHYDROLOGY
LA English
DT Article
DE soil moisture dynamics; gas exchange; photosynthesis; optimality
principle; net carbon profit; leaf area index; DiffeRential Evolution
Adaptive Metropolis; eddy correlation measurements; Markov Chain Monte
Carlo simulation; Douglas-fir
ID HYDRAULIC CONDUCTIVITY; CANOPY PHOTOSYNTHESIS; TEMPERATURE RESPONSE;
FOREST TRANSPIRATION; MODEL PARAMETERS; SOIL; LEAVES; OPTIMIZATION;
SIMULATION; EVOLUTION
AB Recent contributions to the ecological literature have questioned the continued usefulness of the classical model calibration paradigm in estimating parameters in coupled ecohydrological models. Schymanski (2007) and Schymanski et al. (2007, 2008) have demonstrated that the assumption of vegetation optimality precludes the need for site-specific data for estimating vegetation properties, transpiration fluxes, and CO2 assimilation. The goal of this article is twofold. We first show that significant advances in optimality-based vegetation modelling can be made if we embrace a novel concept of stochastic optimization that includes explicit recognition of parameter uncertainty. We adapted the original Vegetation Optimality Model (VOM) to a multi-layer soil and canopy vegetation optimality model, VOMmlsc with dynamically varying throughfall fraction. The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm is used to find parameter values with high values of net carbon profit (NCP), a proxy for biological fitness. We then show that significant variability exists in optimized vegetation properties and primarily transpiration fluxes from optimality of NCP. Seemingly, a myriad of vegetation species is possible that results in optimal values of NCP. Using data from a Douglas-fir plantation in The Netherlands, we found relative poor correspondence between modelled and measured ET and CO2-fluxes. The fitting of these two fluxes and values of the model parameters can be much improved when VOMmlsc is calibrated directly against these respective observations. Yet, the NCP values derived this way deviate considerably from their maximum possible value. This challenges the appropriateness of current weights to aggregate the various carbon costs and benefits into a single NCP scalar. Copyright (c) 2010 John Wiley & Sons, Ltd.
C1 [Dekker, Stefan C.; Elkington, Rebecca J.] Univ Utrecht, Dept Environm Sci, NL-3508 TC Utrecht, Netherlands.
[Vrugt, Jasper A.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA.
[Vrugt, Jasper A.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, NL-1018 WV Amsterdam, Netherlands.
[Vrugt, Jasper A.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
RP Dekker, SC (reprint author), Univ Utrecht, Dept Environm Sci, POB 80115, NL-3508 TC Utrecht, Netherlands.
EM s.dekker@geo.uu.nl
RI Dekker, Stefan/F-5581-2013; Vrugt, Jasper/C-3660-2008
OI Dekker, Stefan/0000-0001-7764-2464;
FU Utrecht University; Los Alamos National Laboratory
FX We acknowledge the many constructive and useful comments of the
reviewers that helped us to improve our manuscript. In particular, we
thank Stan Schymanski for his valuable comments and suggestions
regarding the development of VOMmlsc, and Norman Bean for
help with the figures. The first author is sponsored by a High Potential
Program of Utrecht University, and the second author is supported by a
J. Robert Oppenheimer Fellowship of the Los Alamos National Laboratory
Postdoctoral Program. The source code of DREAM and VOMmlsc
used throughout this article is written in MATLAB and can be obtained
from the second author (jasper@uci.edu) upon request.
NR 46
TC 7
Z9 7
U1 1
U2 9
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1936-0584
EI 1936-0592
J9 ECOHYDROLOGY
JI Ecohydrology
PD JAN
PY 2012
VL 5
IS 1
BP 1
EP 18
DI 10.1002/eco.177
PG 18
WC Ecology; Environmental Sciences; Water Resources
SC Environmental Sciences & Ecology; Water Resources
GA 885JZ
UT WOS:000299776600001
ER
PT J
AU Deng, ZD
Martinez, JJ
Colotelo, AH
Abel, TK
LeBarge, AP
Brown, RS
Pflugrath, BD
Mueller, RP
Carlson, TJ
Seaburg, AG
Johnson, RL
Ahmann, ML
AF Deng, Z. Daniel
Martinez, Jayson J.
Colotelo, Alison H.
Abel, Tylor K.
LeBarge, Andrea P.
Brown, Richard S.
Pflugrath, Brett D.
Mueller, Robert P.
Carlson, Thomas J.
Seaburg, Adam G.
Johnson, Robert L.
Ahmann, Martin L.
TI Development of external and neutrally buoyant acoustic transmitters for
juvenile salmon turbine passage evaluation
SO FISHERIES RESEARCH
LA English
DT Article
DE Juvenile Salmon; Turbine passage; Fish telemetry; Acoustic transmitter
ID SWIMMING PERFORMANCE; RADIO TRANSMITTERS; CHINOOK SALMON; TELEMETRY
TRANSMITTERS; RAINBOW-TROUT; SURGICAL IMPLANTATION; TAGGING LESION;
SUTURE TYPE; FISH; SYSTEM
AB Fish can sustain injury or mortality when they pass through hydroelectric facilities. To develop a method to monitor the passage and survival of juvenile salmonids without bias through turbines within the Federal Columbia River Power System, we developed and fabricated two designs of neutrally buoyant transmitters: Type A (sutured to the dorsal musculature of the fish anterior to the dorsal fin) and Type B (two-part design attached with wire pushed through the dorsal musculature, ventral to the dorsal fin). To determine the efficacy of the two designs under non-turbine passage-related conditions, fish had one of the tags attached and were held for 14 days to determine any potential effects of the tags on growth, survival and tissue damage. We also evaluated the attachment method by monitoring tag retention. These two neutrally buoyant tag designs were compared to nontagged individuals and those surgically implanted with current Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters and passive integrated responder (PIT) tags. In addition, two suture materials (Monocryl and Vicryl Rapide) were tested for attachment of Type A tags. When compared with non-tagged individuals, fish tagged with Type A tags did not differ significantly with respect to growth or mortality over a 14-d holding period. However, fish tagged with Type B transmitters had lower growth rates than the nontagged controls or other tag treatments. The efficacy of two designs was also compared to nontagged individuals under shear exposure. Fish were exposed to a submerged, 6.35-cm-diameter water jet at velocities ranging from 3.0 to 12.2 m/s in a water flume to simulate turbine conditions within the Columbia River basin. Throughout the shear exposure study, no mortalities or tag loss were observed. There was also no significant difference in the rates of shear injury between untagged fish and fish tagged with Type A or Type B tags. When tissue damage was assessed for tagged individuals exposed to shear forces, those tagged with Type A tags showed lower rates and severity of injury when compared to Type B-tagged fish. Overall, Type A tags may be a viable tag design for juvenile Chinook salmon passing through hydropower facilities. Published by Elsevier B.V.
C1 [Deng, Z. Daniel; Martinez, Jayson J.; Colotelo, Alison H.; Abel, Tylor K.; LeBarge, Andrea P.; Brown, Richard S.; Pflugrath, Brett D.; Mueller, Robert P.; Carlson, Thomas J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Seaburg, Adam G.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98101 USA.
[Johnson, Robert L.; Ahmann, Martin L.] USA, Corps Engineers, Walla Walla, WA 99362 USA.
RP Deng, ZD (reprint author), POB 999,K9-33, Richland, WA 99352 USA.
EM zhiqun.deng@pnnl.gov
RI Deng, Daniel/A-9536-2011
OI Deng, Daniel/0000-0002-8300-8766
FU U.S. Army Corps of Engineers (USACE), Portland District; U.S. Department
of Energy [DE-AC05-76RL01830]
FX The work described in this article was funded by the U.S. Army Corps of
Engineers (USACE), Portland District. The authors thank USACE staff,
including Brad Eppard, Dennis Schwartz, and Mike Langeslay, and the
USACE Turbine Survival Technical Team, for their commitment, assistance,
and oversight. Author appreciation also goes out to Duane Balvage,
Andrea Currie, Marybeth Gay, Jill Janak, Curt Lavender, Tim Linley,
Geoff McMichael, Mitchell Myjak, Jes Smart, Cory Overman, John
Stephenson, Noel Tavan, Ricardo Walker, Mark Weiland, all of Pacific
Northwest National Laboratory. The Pacific Northwest National Laboratory
animal facilities used in this research are AAALAC-certified; fish were
handled in accordance with federal guidelines for the care and use of
laboratory animals, and protocols for our study were approved by the
Institutional Animal Care and Use Committee at Battelle - Pacific
Northwest Division. The study was conducted at Pacific Northwest
National Laboratory in Richland, WA, which is operated by Battelle for
the U.S. Department of Energy under Contract DE-AC05-76RL01830.
NR 55
TC 13
Z9 13
U1 4
U2 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0165-7836
J9 FISH RES
JI Fish Res.
PD JAN
PY 2012
VL 113
IS 1
BP 94
EP 105
DI 10.1016/j.fishres.2011.08.018
PG 12
WC Fisheries
SC Fisheries
GA 887EZ
UT WOS:000299911000010
ER
PT J
AU Field, JJ
Sheetz, KE
Chandler, EV
Hoover, EE
Young, MD
Ding, SY
Sylvester, AW
Kleinfeld, D
Squier, JA
AF Field, Jeffrey J.
Sheetz, Kraig E.
Chandler, Eric V.
Hoover, Erich E.
Young, Michael D.
Ding, Shi-you
Sylvester, Anne W.
Kleinfeld, David
Squier, Jeff A.
TI Differential Multiphoton Laser Scanning Microscopy
SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS
LA English
DT Article
DE Fluorescence microscopy; nonlinear microscopy; nonlinear optics;
second-harmonic generation (SHG); two-photon microscopy; ultrafast
optics
ID STOKES-RAMAN SCATTERING; PHOTONIC CRYSTAL FIBER; SUPERCONTINUUM
LIGHT-SOURCE; 3RD HARMONIC-GENERATION; FLUORESCENCE MICROSCOPY; 2-PHOTON
EXCITATION; MULTIFOCAL MICROSCOPY; COUNTING MICROSCOPY; RESOLUTION;
COHERENT
AB Multifocal multiphoton laser scanning microscopy (mfMPLSM) in the biological and medical sciences has the potential to become a ubiquitous tool for obtaining high-resolution images at video rates. While current implementations of mfMPLSM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for mfMPLSM in which whole-field detection with a single detector, rather than detection with a matrix of detectors, such as a charge-coupled device (CCD) camera, is implemented. This advance makes mfMPLSM fully compatible for use in imaging through scattering media. Further, we demonstrate that this method makes it possible to simultaneously obtain multiple images and view differences in excitation parameters in a single scan of the specimen.
C1 [Field, Jeffrey J.; Chandler, Eric V.; Hoover, Erich E.; Young, Michael D.; Squier, Jeff A.] Colorado Sch Mines, Dept Phys, Ctr Microintegrated Opt Adv Bioimaging & Control, Golden, CO 80401 USA.
[Sheetz, Kraig E.] US Mil Acad, Dept Phys & Nucl Engn, West Point, NY 10996 USA.
[Ding, Shi-you] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Sylvester, Anne W.] Univ Wyoming, Dept Mol Biol, Laramie, WY 82071 USA.
[Kleinfeld, David] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
RP Field, JJ (reprint author), Colorado Sch Mines, Dept Phys, Ctr Microintegrated Opt Adv Bioimaging & Control, Golden, CO 80401 USA.
EM jjfield@gmail.com; kraigsheetz@gmail.com; echandle@mines.edu;
ehoover@mines.edu; miyoung@mines.edu; Shi.you.Ding@nrel.gov;
annesyl@uwyo.edu; dk@physics.ucsd.edu; jsquier@mines.edu
FU National Institute for Biomedical Imaging and Bioengineering [BRP
EB-003832]; National Science Foundation (Renewable Energy Materials
Research Science and Engineering Center); Division of Biological
Instrumentation [0501862]
FX This work was supported by the National Institute for Biomedical Imaging
and Bioengineering under Grant BRP EB-003832 and by the National Science
Foundation (Renewable Energy Materials Research Science and Engineering
Center). The work of A. W. Sylvester was supported by Division of
Biological Instrumentation under Grant 0501862.
NR 71
TC 4
Z9 4
U1 2
U2 19
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1077-260X
J9 IEEE J SEL TOP QUANT
JI IEEE J. Sel. Top. Quantum Electron.
PD JAN-FEB
PY 2012
VL 18
IS 1
BP 14
EP 28
DI 10.1109/JSTQE.2010.2077622
PG 15
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA 887ND
UT WOS:000299933700004
PM 27390511
ER
PT J
AU Chollet, M
Ahr, B
Walko, DA
Rose-Petruck, C
Adams, B
AF Chollet, Matthieu
Ahr, Brian
Walko, Donald A.
Rose-Petruck, Christoph
Adams, Bernhard
TI 2-ps Hard X-Ray Streak Camera Measurements at Sector 7 Beamline of the
Advanced Photon Source
SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS
LA English
DT Article
DE Diffraction; streak camera; time resolved; X-ray absorption near-edge
spectroscopy (XANES); X-ray
ID FEMTOSECOND TRANSIENT ABSORPTION; SOLVATED FE(CO)(5); DYNAMICS;
SPECTROSCOPY; DISSOCIATION; TRANSITION; FTIR
AB A hard X-ray streak camera capable of 2-ps time resolution is in operation at the Sector 7 beamline of the Advanced Photon Source. It is used for laser-pump, X-ray probe experiments using the Ti:Sapphire femtosecond laser system installed on the beamline. This streak camera, combined with standardized and prealigned experimental setups, can perform time-resolved liquid-phase absorption spectroscopy, reflectivity, and diffraction experiments.
C1 [Chollet, Matthieu; Walko, Donald A.; Adams, Bernhard] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Ahr, Brian; Rose-Petruck, Christoph] Brown Univ, Dept Chem, Providence, RI 02912 USA.
RP Chollet, M (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM chollet@aps.anl.gov; brianahr@brown.edu; d-walko@anl.gov;
crosepet@brown.ed; ams@aps.anl.gov
FU U.S. Department of Energy (DOE) [DE-FG02-08ER15937, DE-AC02-06CH11357]
FX This work was supported in part by the U.S. Department of Energy (DOE)
under Grant DE-FG02-08ER15937 and in part by the U.S. DOE under Contract
DE-AC02-06CH11357.
NR 24
TC 2
Z9 3
U1 0
U2 8
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1077-260X
J9 IEEE J SEL TOP QUANT
JI IEEE J. Sel. Top. Quantum Electron.
PD JAN-FEB
PY 2012
VL 18
IS 1
BP 66
EP 73
DI 10.1109/JSTQE.2011.2105464
PG 8
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA 887ND
UT WOS:000299933700008
ER
PT J
AU Wall, S
Rini, M
Dhesi, SS
Schoenlein, RW
Cavalleri, A
AF Wall, Simon
Rini, Matteo
Dhesi, Sarnjeet S.
Schoenlein, Robert W.
Cavalleri, Andrea
TI Advances in Ultrafast Control and Probing of Correlated-Electron
Materials
SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS
LA English
DT Article
DE Manganites; photoinduced phase transitions; ultrafast spectroscopy;
vibrational excitation
ID X-RAY-ABSORPTION; INSULATOR-METAL TRANSITION; MAGNETORESISTIVE
MANGANITE; SPECTROSCOPY; FIELD; PR0.7CA0.3MNO3; INSTABILITY; DISTORTION;
DYNAMICS; PHASE
AB In this paper, we present recent results on ultrafast control and probing of strongly correlated-electron materials. We focus on magnetoresistive manganites, applying excitation and probing wavelengths that cover the mid-IR to the soft X-rays. In analogy with near-equilibrium "filling" and "bandwidth" control of phase transitions, our approach uses both visible and mid-IR pulses to stimulate the dynamics by exciting either charges across electronic bandgaps or specific vibrational resonances. X-rays are used to unambiguously measure the microscopic electronic, orbital, and structural dynamics. Our experiments dissect and separate the nonequilibrium physics of these compounds, revealing the complex interplay and evolution of spin, lattice, charge, and orbital degrees of freedoms in the time domain.
C1 [Wall, Simon; Cavalleri, Andrea] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England.
[Rini, Matteo; Schoenlein, Robert W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Dhesi, Sarnjeet S.] Diamond Light Source, Didcot OX11 0DE, Oxon, England.
[Cavalleri, Andrea] Univ Hamburg CFEL, Max Planck Res Dept Struct Dynam, D-22607 Hamburg, Germany.
RP Wall, S (reprint author), Fritz Haber Inst, Dept Phys Chem, D-14195 Berlin, Germany.
EM wall@fhi-berlin.mpg.de; matteo.rini@ec.europa.eu; dhesi@diamond.ac.uk;
rwschoenlein@lbl.gov; andrea.cavalleri@mpsd.cfel.de
RI Wall, Simon/E-3771-2012; Schoenlein, Robert/D-1301-2014
OI Wall, Simon/0000-0002-6136-0224; Schoenlein, Robert/0000-0002-6066-7566
FU U. S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-AC02-05CH11231]; Scientific User
Facilities Division [DE-AC02-05CH11231]; Alexander von Humboldt
Foundation
FX The work of M. Rini and R. W. Schoenlein at LBNL Materials Sciences
Division and the Advanced Light Source was supported by the U. S.
Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering and the Scientific User Facilities
Division respectively under Contract DE-AC02-05CH11231. The work of S.
Wall was supported by the Alexander von Humboldt Foundation.
NR 49
TC 7
Z9 7
U1 2
U2 29
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1077-260X
J9 IEEE J SEL TOP QUANT
JI IEEE J. Sel. Top. Quantum Electron.
PD JAN-FEB
PY 2012
VL 18
IS 1
BP 81
EP 91
DI 10.1109/JSTQE.2011.2105465
PG 11
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA 887ND
UT WOS:000299933700010
ER
PT J
AU Zholents, A
AF Zholents, Alexander
TI Next-Generation X-Ray Free-Electron Lasers
SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS
LA English
DT Article
DE Attosecond (as); brightness; echo-enabled harmonic generation (EEHG);
electron gun; emittance; femtosecond; free-electron laser (FEL);
high-gain harmonic generation (HGHG); linac; oscillator; self-amplified
spontaneous emission (SASE); self-seeding; X-rays; x-ray free-electron
laser oscillator (XFELO)
ID HARMONIC-GENERATION; EXTREME-ULTRAVIOLET; FEL OSCILLATOR; RADIATION;
INTENSE; REGION; LIGHT; ACCELERATORS; PERFORMANCE; UNDULATOR
AB Research frontiers for future free-electron lasers are discussed. Attention is given to ideas for improving the temporal coherence and obtaining subfemtosecond X-ray pulses. Improving brightness of the electron bunches is considered to be a major step forward for an electron beam accelerator simultaneously supporting multiple free-electron laser lines.
C1 Argonne Natl Lab, Accelerator Syst Div, Argonne, IL 60439 USA.
RP Zholents, A (reprint author), Argonne Natl Lab, Accelerator Syst Div, Argonne, IL 60439 USA.
EM azholents@aps.anl.gov
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX Manuscript received December 7, 2010; revised January 10, 2011; accepted
January 16, 2011. Date of publication April 5, 2011; date of current
version January 31, 2012. This work was supported in part by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract DE-AC02-06CH11357.
NR 95
TC 1
Z9 1
U1 2
U2 16
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1077-260X
J9 IEEE J SEL TOP QUANT
JI IEEE J. Sel. Top. Quantum Electron.
PD JAN-FEB
PY 2012
VL 18
IS 1
BP 248
EP 257
DI 10.1109/JSTQE.2011.2108641
PG 10
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA 887ND
UT WOS:000299933700027
ER
PT J
AU Schlau-Cohen, GS
Dawlaty, JM
Fleming, GR
AF Schlau-Cohen, Gabriela S.
Dawlaty, Jahan M.
Fleming, Graham R.
TI Ultrafast Multidimensional Spectroscopy: Principles and Applications to
Photosynthetic Systems
SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS
LA English
DT Article
DE Four-wave mixing; nonlinear optics; ultrafast optics
ID 2-DIMENSIONAL ELECTRONIC SPECTROSCOPY; LIGHT-HARVESTING COMPLEX; 2D IR
SPECTROSCOPY; QUANTUM COHERENCE; ENERGY-TRANSFER; PHYSIOLOGICAL
TEMPERATURE; FEMTOSECOND SPECTROSCOPY; SPECTRAL INTERFEROMETRY;
HIGHER-PLANTS; PHASE
AB We present the utility of 2-D electronic spectroscopy for the investigation of energy transfer dynamics in photosynthetic light-harvesting systems. Elucidating ultrafast energy transfer within photosynthetic systems is difficult due to the large number of molecules and complex environments involved in the process. In many spectroscopic methods, these systems appear as overlapping peaks with broad linewidths, obscuring the details of the dynamics. 2-D spectroscopy is a nonlinear, ultrafast method that yields a correlation map between excitation and emission energies, and can track incoherent and coherent energy transfer processes with femtosecond resolution. A 2-D spectrum can provide important insight into the structure and the mechanisms behind the excited state dynamics. We review the principles behind 2-D spectroscopy and describe the content of a 2-D electronic spectrum. Several recent applications of this technique to the major light-harvesting complex of Photosystem II are presented, including monitoring the time scales of energy transfer processes, investigation of the excited state energies, and determination of the relative orientations of the excited state transition dipole moments.
C1 [Schlau-Cohen, Gabriela S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Schlau-Cohen, Gabriela S.; Dawlaty, Jahan M.; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Dawlaty, Jahan M.] Quantitat Biosci Inst, Berkeley, CA 94720 USA.
RP Schlau-Cohen, GS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM grfleming@lbl.gov
FU U.S. Department of Energy; Office of Basic Energy Sciences, the Office
of Science [DE-AC02-05CH11231]; Division of Chemical Sciences,
Geosciences, and Biosciences (at Lawrence Berkeley National Laboratory
and University of California Berkeley) [DE-AC03-76SF000098]; Defense
Advanced Research Projects Agency [N66001-09-1-2026]; American
Association of University Women American; QB3 Distinguished Postdoctoral
fellowship
FX Manuscript received November 3, 2010; revised January 4, 2011; accepted
January 21, 2011. Date of publication April 7, 2011; date of current
version January 31, 2012. This work was supported by the U.S. Department
of Energy, by the Office of Basic Energy Sciences, the Office of Science
under Contract DE-AC02-05CH11231, and the Division of Chemical Sciences,
Geosciences, and Biosciences under Grant DE-AC03-76SF000098 (at Lawrence
Berkeley National Laboratory and University of California Berkeley), and
by the Defense Advanced Research Projects Agency under Grant
N66001-09-1-2026. The work of G. S. Schlau-Cohen was supported by the
American Association of University Women American Dissertation
Fellowship. The work of J. M. Dawlaty was supported by the QB3
Distinguished Postdoctoral fellowship.
NR 73
TC 16
Z9 17
U1 4
U2 56
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1077-260X
J9 IEEE J SEL TOP QUANT
JI IEEE J. Sel. Top. Quantum Electron.
PD JAN-FEB
PY 2012
VL 18
IS 1
BP 283
EP 295
DI 10.1109/JSTQE.2011.2112640
PG 13
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA 887ND
UT WOS:000299933700030
ER
PT J
AU Bunermann, O
Kornilov, O
Leone, SR
Neumark, DM
Gessner, O
AF Buenermann, Oliver
Kornilov, Oleg
Leone, Stephen R.
Neumark, Daniel M.
Gessner, Oliver
TI Femtosecond Extreme Ultraviolet Ion Imaging of Ultrafast Dynamics in
Electronically Excited Helium Nanodroplets
SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS
LA English
DT Article
DE Photochemistry; physics; photonics; UV sources
ID SUPERFLUID-HELIUM; LIQUID-HELIUM; SURFACE-BARRIER; CLUSTERS; DROPLETS;
MOLECULES; HE-4; PHOTOIONIZATION; SPECTROSCOPY; DENSITY
AB A novel femtosecond extreme ultraviolet (EUV) ion-imaging technique is applied to study ultrafast dynamics in electronically excited helium nanodroplets. Ion mass spectra recorded by single-photon EUV ionization and by transient EUV-pump/IR-probe two-photon ionization differ significantly for EUV photon energies below and above similar to 24 eV, in agreement with recently performed synchrotron measurements. Pump-probe time-delay-dependent ion kinetic energy (KE) spectra exhibit two major contributions: a decaying high KE component and a rising low KE component, which are attributed to the different excitation regimes. A model is presented that describes the excitation energy dependence of the relaxation and ionization dynamics within the framework of bulk and surface states. The model is supported by recent ab initio calculations on electronically excited states of 25-atom clusters. An intraband relaxation mechanism is proposed that proceeds on a similar to 10-20-ps time scale and that corresponds to the transfer of electronic excitation in the Rydberg n = 2 manifold from bulk to surface states.
C1 [Buenermann, Oliver] Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany.
[Buenermann, Oliver; Kornilov, Oleg; Leone, Stephen R.; Neumark, Daniel M.; Gessner, Oliver] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ultrafast X Ray Sci Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Buenermann, Oliver; Kornilov, Oleg; Leone, Stephen R.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP Bunermann, O (reprint author), Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany.
EM ogessner@lbl.gov
RI Neumark, Daniel/B-9551-2009
OI Neumark, Daniel/0000-0002-3762-9473
FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences
Division, U.S. Department of Energy [DE-AC02-05CH11231]; Deutsche
Forschungsgemeinschaft
FX Manuscript received October 16, 2010; revised December 14, 2010;
accepted January 21, 2011. Date of publication April 7, 2011; date of
current version January 31, 2012. This work was supported by the
Director, Office of Science, Office of Basic Energy Sciences, Chemical
Sciences Division, U.S. Department of Energy under Contract
DE-AC02-05CH11231. The tenure of O. Bunermann at the Ultrafast X-ray
Science Laboratory was supported by a Research Fellowship from the
Deutsche Forschungsgemeinschaft.
NR 51
TC 8
Z9 8
U1 3
U2 21
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1077-260X
J9 IEEE J SEL TOP QUANT
JI IEEE J. Sel. Top. Quantum Electron.
PD JAN-FEB
PY 2012
VL 18
IS 1
BP 308
EP 317
DI 10.1109/JSTQE.2011.2109054
PG 10
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA 887ND
UT WOS:000299933700032
ER
PT J
AU Talbayev, D
Chia, EEM
Trugman, SA
Zhu, JX
Taylor, AJ
AF Talbayev, Diyar
Chia, Elbert E. M.
Trugman, Stuart A.
Zhu, Jian-Xin
Taylor, Antoinette J.
TI Relaxation of Photoinduced Quasi-Particles in Correlated Electron Metals
SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS
LA English
DT Article
DE Correlated electrons; heavy fermions; high-temperature superconductors;
spin density wave (SDW); ultrafast optics
ID NODELESS SUPERCONDUCTING GAPS; FERMI-SURFACE; UNCONVENTIONAL
SUPERCONDUCTIVITY; PHOTOEMISSION-SPECTROSCOPY; FEMTOSECOND SPECTROSCOPY;
ANTIFERROMAGNET UNIGA5; DYNAMICS; BA0.6K0.4FE2AS2; PSEUDOGAP; CRYSTAL
AB We present our studies of photoinduced quasi-particle dynamics in correlated electron metals. At room temperature, these materials exhibit metallic behavior characterized by the presence of a Fermi surface. Electronic correlations lead to a modification of the low-energy electronic structure near the Fermi level resulting in the opening of gaps or partial gaps due to such phenomena as density waves or superconductivity. We describe the results of optical pump-probe studies of quasi-particle dynamics in the spin density wave metal UNiGa5, the heavy-fermion superconductor PuCoGa5, and the pnictide high-temperature superconductor (Ba,K)Fe2As2
C1 [Talbayev, Diyar] Yale Univ, Dept Chem, New Haven, CT 06511 USA.
[Chia, Elbert E. M.] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore.
[Trugman, Stuart A.; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Taylor, Antoinette J.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
RP Talbayev, D (reprint author), Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06511 USA.
EM diyar.talbayev@yale.edu; elbertchia@ntu.edu.sg; sat@lanl.gov;
jxzhu@lanl.gov; ttaylor@lanl.gov
RI Chia, Elbert/B-6996-2011; Talbayev, Diyar/C-5525-2009;
OI Chia, Elbert/0000-0003-2066-0834; Talbayev, Diyar/0000-0003-3537-1656;
Trugman, Stuart/0000-0002-6688-7228; Zhu, Jianxin/0000-0001-7991-3918
FU Los Alamos National Laboratory LDRD; Center for Integrated
Nanotechnologies, U.S.; Singapore Ministry of Education AcRF [Tier 1 (RG
41/07), Tier 2 (ARC 23/08)]; National Research Foundation of Singapore
[NRF-CRP4-2008-04]; DOE/BES Materials Science Division; Center for
Integrated Nanotechnologies
FX Manuscript received November 5, 2010; revised January 28, 2011; accepted
January 29, 2011. Date of publication May 12, 2011; date of current
version January 31, 2012. This work was supported in part by the Los
Alamos National Laboratory LDRD program and the Center for Integrated
Nanotechnologies, U.S., in part by the Singapore Ministry of Education
AcRF under Grant Tier 1 (RG 41/07) and Grant Tier 2 (ARC 23/08), in part
by the National Research Foundation of Singapore under Grant
NRF-CRP4-2008-04, in part by the DOE/BES Materials Science Division, and
in part by the Center for Integrated Nanotechnologies.
NR 63
TC 6
Z9 6
U1 4
U2 23
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1077-260X
J9 IEEE J SEL TOP QUANT
JI IEEE J. Sel. Top. Quantum Electron.
PD JAN-FEB
PY 2012
VL 18
IS 1
BP 340
EP 350
DI 10.1109/JSTQE.2011.2136373
PG 11
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA 887ND
UT WOS:000299933700035
ER
PT J
AU Miao, JW
Sandberg, RL
Song, CY
AF Miao, Jianwei
Sandberg, Richard L.
Song, Changyong
TI Coherent X-Ray Diffraction Imaging
SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS
LA English
DT Article
DE Ankylography; coherent diffraction imaging (CDI); equally sloped
tomography (EST); high harmonic generation (HHG); lensless imaging;
oversampling; phase retrieval; X-ray free-electron lasers (XFEL)
ID FREE-ELECTRON LASER; HIGH-HARMONIC-GENERATION; HIGH-ORDER HARMONICS;
EQUALLY-SLOPED TOMOGRAPHY; PHASE-MATCHED GENERATION; FOURIER-TRANSFORM;
HOLOGRAPHIC MICROSCOPY; WAVELENGTH RESOLUTION; NONLINEAR OPTICS; 32 NM
AB For centuries, lens-based microscopy, such as optical, phase-contrast, fluorescence, confocal, and electron microscopy, has played an important role in the evolution of modern science and technology. In 1999, a novel form of microscopy, i.e., coherent diffraction imaging (also termed coherent diffraction microscopy or lensless imaging), was developed and transformed our conventional view of microscopy, in which the diffraction pattern of a noncrystalline specimen or a nanocrystal was first measured and then directly phased to obtain a high-resolution image. The well-known phase problem was solved by combining the oversampling method with iterative algorithms. In this paper, we will briefly discuss the principle of coherent diffraction imaging, present various implementation schemes of this imaging modality, and illustrate its broad applications in materials science, nanoscience, and biology. As coherent X-ray sources such as high harmonic generation and X-ray free-electron lasers are presently under rapid development worldwide, coherent diffraction imaging can potentially be applied to perform high-resolution imaging of materials/nanoscience and biological specimens at the femtosecond time scale.
C1 [Miao, Jianwei] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Miao, Jianwei] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA.
[Sandberg, Richard L.] Los Alamos Natl Lab, Phys Chem & Adv Spect Grp, Div Chem, Los Alamos, NM 87544 USA.
[Song, Changyong] RIKEN SPring 8 Ctr, Mikazuki, Hyogo 6795148, Japan.
RP Miao, JW (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
EM miao@physics.ucla.edu; sandberg@lanl.gov; cysong@spring8.or.jp
OI Sandberg, Richard/0000-0001-9719-8188
FU National Institute of Health [GM081409-01A1]; U.S. Department of Energy,
Basic Energy Service [DE-FG02-06ER46276]; Los Alamos National
Laboratory; RIKEN, Hyogo, Japan
FX Manuscript received January 1, 2011; revised April 26, 2011; accepted
May 14, 2011. Date of publication May 27, 2011; date of current version
January 31, 2012. This work was supported in part by the National
Institute of Health under Grant GM081409-01A1; U.S. Department of
Energy, Basic Energy Service, under the Contract DE-FG02-06ER46276; and
Los Alamos National Laboratory Director's Postdoctoral Fellowship. Use
of the RIKEN beamline (BL29XUL) at SPring-8 Center was supported by
RIKEN, Hyogo, Japan.
NR 153
TC 42
Z9 42
U1 7
U2 77
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1077-260X
EI 1558-4542
J9 IEEE J SEL TOP QUANT
JI IEEE J. Sel. Top. Quantum Electron.
PD JAN-FEB
PY 2012
VL 18
IS 1
BP 399
EP 410
DI 10.1109/JSTQE.2011.2157306
PG 12
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA 887ND
UT WOS:000299933700041
ER
PT J
AU DiChiara, AD
Ghimire, S
Blaga, CI
Sistrunk, E
Power, EP
March, AM
Miller, TA
Reis, DA
Agostini, P
DiMauro, LF
AF DiChiara, Anthony D.
Ghimire, Shambhu
Blaga, Cosmin I.
Sistrunk, Emily
Power, Erik P.
March, Anne M.
Miller, Terry A.
Reis, David A.
Agostini, Pierre
DiMauro, Louis F.
TI Scaling of High-Order Harmonic Generation in the Long Wavelength Limit
of a Strong Laser Field
SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS
LA English
DT Article
DE Atomic physics; frequency conversion; laser amplifiers; optical
propagation in absorbing media; photoionization
ID MULTIPHOTON IONIZATION; THRESHOLD IONIZATION; PULSES; PHASE; GASES;
PHYSICS; LIGHT; ATOMS; RADIATION; MODEL
AB The development of intense, ultrashort, table-top lasers operating in the mid-infrared spectral region, offers many new avenues for strong-field physics. Atoms submitted to such radiation allow photoelectrons to acquire huge quiver energies well over an order of magnitude larger than the binding energy of the neutral. Consequently, many interesting phenomena arise. First, wavelength offers a convenient experimental knob to tune the ionization regime by controlling the Keldysh parameter. Second, high harmonic generation depends directly on the quiver energy and can, therefore, be pushed to unprecedented limits. Third, wavelength controls the spectral phase of harmonics, and hence the possibility to improve the generation of pulses in the attosecond regime. The use of long wavelength lasers is critical to studying high-order harmonic generation in condensed phase systems, because they facilitate harmonic generation within the transmission window of the material and increase the damage threshold. We review some of the recent discoveries in long wavelength driven high-order harmonic generation in the case of isolated atoms, bulk crystals, and liquid.
C1 [DiChiara, Anthony D.; Blaga, Cosmin I.; Sistrunk, Emily; Miller, Terry A.; Agostini, Pierre; DiMauro, Louis F.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Ghimire, Shambhu; Reis, David A.] SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA 94025 USA.
[Reis, David A.] Stanford Univ, Dept Photon Sci, Stanford, CA 94305 USA.
[Reis, David A.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
[Power, Erik P.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[March, Anne M.] Argonne Natl Lab, XSD, Argonne, IL 60439 USA.
RP DiChiara, AD (reprint author), Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
EM dichiara@mps.ohio-state.edu; shambhu@slac.stanford.edu;
cblaga@mps.ohio-state.edu; sistrunk@mps.ohio-state.edu;
eppower@umich.edu; amarch@anl.gov; tamiller@chemistry.ohio-state.edu;
dreis@slac.stanford.edu; agostini@mps.ohio-state.edu;
dimauro@mps.ohio-state.edu
RI Miller, Terry/F-6607-2014
OI Miller, Terry/0000-0003-0731-8006
FU US Department of Energy/Basic Energy Sciences [DE-FG02-06ER15833X,
DE-FG02-04ER15614]; National Science Foundation [PHY-0653022]; OSU
Hagenlocker chair
FX Manuscript received November 15, 2010; revised March 9, 2011; accepted
May 14, 2011. Date of publication June 2, 2011; date of current version
January 31, 2012. This work was supported by the US Department of
Energy/Basic Energy Sciences contracts DE-FG02-06ER15833X and
DE-FG02-04ER15614. The work of C. I. Blaga and E. Sistrunk was supported
by the National Science Foundation under contract PHY-0653022, while the
work of L. F. DiMauro was supported by the OSU Hagenlocker chair.
NR 70
TC 5
Z9 5
U1 2
U2 29
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1077-260X
J9 IEEE J SEL TOP QUANT
JI IEEE J. Sel. Top. Quantum Electron.
PD JAN-FEB
PY 2012
VL 18
IS 1
BP 419
EP 433
DI 10.1109/JSTQE.2011.2158391
PG 15
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA 887ND
UT WOS:000299933700043
ER
PT J
AU Bravo, H
Szapiro, BT
Wachulak, PW
Marconi, MC
Chao, WL
Anderson, EH
Menoni, CS
Rocca, JJ
AF Bravo, Herman
Szapiro, Ben T.
Wachulak, Przemyslaw W.
Marconi, Mario C.
Chao, Weilun
Anderson, Erik H.
Menoni, Carmen S.
Rocca, Jorge J.
TI Demonstration of Nanomachining With Focused Extreme Ultraviolet Laser
Beams
SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS
LA English
DT Article
DE Extreme ultraviolet (EUV) lasers; laser ablation; nanomachining;
nanotechology
ID X-RAY LASER; HZ REPETITION RATE; FEMTOSECOND LASER; ORGANIC POLYMERS;
ABLATION; PULSES; RADIATION
AB A major challenge in laser machining of microstructures is that of extending the spatial domain to the smaller dimensions of interest in nanotechnology. We demonstrate the feasibility of directly machining nanoscale structures with a focused extreme ultraviolet (EUV) laser beam. Clean sub-200-nm-wide trenches (130-nm full width at half maximum) were ablated on polymethyl methacrylate photoresist by focusing the 46.9-nm wavelength beam from a Ne-like Ar capillary discharge tabletop laser with a Fresnel zone plate lens. Considering that clean 82-nm holes were also ablated using the same laser, it can be expected that focused EUV laser light will enable the machining of significantly smaller features.
C1 [Bravo, Herman; Marconi, Mario C.; Menoni, Carmen S.; Rocca, Jorge J.] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA.
[Szapiro, Ben T.] Univ South, Dept Phys, Sewanee, TN 37383 USA.
[Wachulak, Przemyslaw W.] Mil Univ Technol, Inst Optoelect, Warsaw, Poland.
[Chao, Weilun; Anderson, Erik H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr X Ray Opt, Berkeley, CA 94720 USA.
RP Bravo, H (reprint author), Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA.
EM herman.bravo@colostate.edu; bszapiro@sewanee.edu;
przemek@engr.colostate.edu; marconi@engr.colostate.edu; wlchao@lbl.gov;
ehanderson@lbl.gov; c.menoni@ieee.org; Jorge.rocca@colostate.edu
RI Menoni, Carmen/B-4989-2011
FU National Science Foundation (NSF) Engineering Research Center under NSF
[EEC-0310717]; U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering
[DE-AC02-05CH11231]
FX Manuscript received December 15, 2010; revised March 25, 2011; accepted
May 14, 2011. Date of publication June 2, 2011; date of current version
January 31, 2012. This work was supported by the National Science
Foundation (NSF) Engineering Research Centers Program under NSF Award
EEC-0310717, and by the U.S. Department of Energy, Office of Basic
Energy Sciences, Division of Materials Sciences and Engineering, under
Contract DE-AC02-05CH11231 for E. H. Anderson and W. Chao
NR 24
TC 16
Z9 16
U1 1
U2 26
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1077-260X
EI 1558-4542
J9 IEEE J SEL TOP QUANT
JI IEEE J. Sel. Top. Quantum Electron.
PD JAN-FEB
PY 2012
VL 18
IS 1
BP 443
EP 448
DI 10.1109/JSTQE.2011.2158392
PG 6
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA 887ND
UT WOS:000299933700045
ER
PT J
AU Ritalahti, KM
Justicia-Leon, SD
Cusick, KD
Ramos-Hernandez, N
Rubin, M
Dornbush, J
Loffler, FE
AF Ritalahti, Kirsti M.
Justicia-Leon, Shandra D.
Cusick, Kathleen D.
Ramos-Hernandez, Natalia
Rubin, Michael
Dornbush, Jessica
Loeffler, Frank E.
TI Sphaerochaeta globosa gen. nov., sp nov and Sphaerochaeta pleomorpha sp
nov., free-living, spherical spirochaetes
SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY
LA English
DT Article
ID MICROBIAL DIVERSITY; FATTY-ACIDS; SPIROCHAETA; BACTERIOLOGY;
INVOLVEMENT; ANTARCTICA; LEPTOSPIRA; ENRICHMENT; SEQUENCES; COMMITTEE
AB Free-living bacteria with spherical cells 0.5-2.5 mu m in diameter were isolated from freshwater sediment. 16S rRNA gene sequence analysis placed the new isolates within the phylum Spirochaetes ('spirochaetes'). The isolates never displayed a helical morphology or motility. Growth occurred in the presence of 100 mg ampicillin l(-1) in complex and defined mineral salts medium amended with vitamins, yeast extract and monosaccharides, disaccharides or soluble starch as fermentable substrates. Two distinct isolates, designated Buddy(T) and Grapes(T), exhibited doubling times of 21 +/- 2 and 15 +/- 1 h in glucose-amended medium and grew at 15-37 and 15-30 degrees C. Optimum growth was observed between 25 and 30 degrees C and pH 6.5-7.5, with no growth below pH 5 or above pH 10. Hexose and pentose fermentation yielded ethanol, acetate and formate as major end products. Growth was strictly fermentative and anaerobic, but the isolates tolerated brief oxygen exposure. Nitrate, sulfate, thiosulfate and carbon dioxide were not used as electron acceptors, but soluble Fe(III) was reduced to Fe(II) in glucose-amended medium. The DNA G + C base contents of isolates Buddy(T) and Grapes(T) were 45.5-46.4 and 47.0-49.2 mol%, respectively. Phospholipid fatty acid (PLFA) profiles contained large proportions of C-14 : 0 and C-16 : 0 straight-chain saturated fatty acids; C-16 : 1 omega 7c and C-16 : 1 omega 9c dominated the mono-unsaturated PLFAs in isolate Grapes(T), whereas isolate Buddy(T) also possessed C-18 : 1 omega 5C, C-18 : 1 omega 7c and C-18 : 1 omega 9c fatty acids. Branched monoenoic acids accounted for up to 12.4 and 30% of the total PLFA in isolates Grapes(T) and Buddy(T), respectively. Based on their unique morphological features and the phylogenetic distance from their closest relatives, we propose the new genus, Sphaerochaeta gen. nov., to accommodate the new isolates within the novel species Sphaerocha eta globosa sp. nov. (type strain Buddy(T) = DSM 22777(T) =ATCC BAA-1886(T)) and Sphaerochaeta pleomorpha sp. nov. (type strain Grapes(T) = DSM 22778(T) =ATCC BAA-1885(T)). Sphaerochaeta globosa is the type species of the genus.
C1 [Ritalahti, Kirsti M.; Cusick, Kathleen D.; Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.
[Ritalahti, Kirsti M.; Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Justicia-Leon, Shandra D.; Ramos-Hernandez, Natalia; Rubin, Michael; Dornbush, Jessica] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA.
[Justicia-Leon, Shandra D.; Ramos-Hernandez, Natalia; Rubin, Michael; Dornbush, Jessica] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA.
[Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA.
RP Loffler, FE (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.
EM frank.loeffler@utk.edu
RI Loeffler, Frank/M-8216-2013
FU National Science Foundation [0919251]
FX We are indebted to John Breznak for encouragement and many helpful
discussions, and Noha M. Mesbah for determining the G C content of
isolates Buddy and Grapes. Appreciation to all the microscopists who
participated in imaging, particularly Shirley Owens, Jeanette Taylor,
and the late Rob Apkarian. Thanks also to Jarrod Pollock for help with
the iron analysis. This material is based upon work supported by the
National Science Foundation under grant no. 0919251.
NR 35
TC 20
Z9 20
U1 5
U2 23
PU SOC GENERAL MICROBIOLOGY
PI READING
PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG,
BERKS, ENGLAND
SN 1466-5026
J9 INT J SYST EVOL MICR
JI Int. J. Syst. Evol. Microbiol.
PD JAN
PY 2012
VL 62
BP 210
EP 216
DI 10.1099/ijs.0.023986-0
PN 1
PG 7
WC Microbiology
SC Microbiology
GA 890HR
UT WOS:000300136200035
PM 21398503
ER
PT J
AU Brothers, MC
Nesbitt, AE
Hallock, MJ
Rupasinghe, SG
Tang, M
Harris, J
Baudry, J
Schuler, MA
Rienstra, CM
AF Brothers, Michael C.
Nesbitt, Anna E.
Hallock, Michael J.
Rupasinghe, Sanjeewa G.
Tang, Ming
Harris, Jason
Baudry, Jerome
Schuler, Mary A.
Rienstra, Chad M.
TI VITAL NMR: using chemical shift derived secondary structure information
for a limited set of amino acids to assess homology model accuracy
SO JOURNAL OF BIOMOLECULAR NMR
LA English
DT Article
DE Protein structure prediction; Homology modeling; Solid-state NMR
spectroscopy; TALOS database; Chemical shift analysis
ID SOLID-STATE NMR; PROTEIN-STRUCTURE DETERMINATION; MEMBRANE-PROTEINS;
3-DIMENSIONAL STRUCTURES; MOLECULAR-DYNAMICS; QUALITY ASSESSMENT;
COUPLED RECEPTORS; DIPOLAR COUPLINGS; HIGH-THROUGHPUT; SPECTROSCOPY
AB Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., C-13-C-13 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.
C1 [Rienstra, Chad M.] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA.
[Brothers, Michael C.; Nesbitt, Anna E.; Hallock, Michael J.; Tang, Ming; Rienstra, Chad M.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA.
[Rupasinghe, Sanjeewa G.; Schuler, Mary A.] Univ Illinois, Dept Cell & Dev Biol, Urbana, IL 61801 USA.
[Harris, Jason; Baudry, Jerome] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA.
[Baudry, Jerome] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37830 USA.
[Schuler, Mary A.; Rienstra, Chad M.] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA.
RP Rienstra, CM (reprint author), Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA.
EM rienstra@illinois.edu
RI Tang, Ming/A-5348-2010
OI Tang, Ming/0000-0001-7479-6206
FU National Institute of Health [R01GM79530, R01GM75937]; NRSA [F32
GM095344]; Ruth L. Kirschstein National Research Service; Chemical
Biology Interface Training Program [GM070421-06]; Department of Homeland
Security
FX The authors thank the National Institute of Health for funding through
R01GM79530, R01GM75937, NRSA (F32 GM095344), the Ruth L. Kirschstein
National Research Service Award to AEN and the Chemical Biology
Interface Training Program (GM070421-06) to MCB and the Department of
Homeland Security Fellowship Program to MCB, as well as Dr. Ying Li, Dr.
Aleksandra Kijac, and Dr. Andrew Nieuwkoop for early assistance on this
project.
NR 80
TC 2
Z9 2
U1 0
U2 11
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0925-2738
J9 J BIOMOL NMR
JI J. Biomol. NMR
PD JAN
PY 2012
VL 52
IS 1
BP 41
EP 56
DI 10.1007/s10858-011-9576-3
PG 16
WC Biochemistry & Molecular Biology; Spectroscopy
SC Biochemistry & Molecular Biology; Spectroscopy
GA 890TC
UT WOS:000300167000006
PM 22183804
ER
PT J
AU Simonetti, DA
Carr, RT
Iglesia, E
AF Simonetti, Dante A.
Carr, Robert T.
Iglesia, Enrique
TI Acid strength and solvation effects on methylation, hydride transfer,
and isomerization rates during catalytic homologation of C-1 species
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE Dimethyl ether; Solid acid catalysis; Acid strength; Confinement
effects; Zeolites; Carbenium ion; Homologation
ID DENSITY-FUNCTIONAL THEORY; 2,2,3-TRIMETHYLBUTANE TRIPTANE; PROPANE
CONVERSION; MOLECULAR-SIEVES; ALKANE SORPTION; LIGHT ALKANES; SOLID
ACIDS; ZINC IODIDE; ZEOLITES; CRACKING
AB Dimethyl ether (DME) homologation forms isobutane and triptane (2,2,3-trimethylbutane) with supra-equilibrium selectivities within C-4 and C-7 hydrocarbons on both mesoporous solid acids (SiO2-Al2O3, H3PW12O40/SiO2) and the acid forms of various zeolites (BEA, FAU, MFI) via methylation and hydride transfer steps that favor isobutane and triptane formation because of the relative stabilities of ion-pairs at transition states for chains along the preferred growth path. The stabilities of ion-pair transition states increase as acid sites become stronger and energies for charge separation decrease and as van der Waals interactions within pores become stronger, which respectively lead to higher rates on H3PW12O40/SiO2 and aluminosilicate zeolites than on amorphous SiO2-Al2O3. Solid acids with different strengths and abilities to solvate ion-pairs by confinement differ in selectivity because strength and solvation influence transition states for the hydride transfer, methylation, and isomerization steps to different extents. Stronger acid sites on H3PW/O-2(40)/SiO2 favor isomerization and hydride transfer over methylation: they lead to higher selectivities to n-butane and non-triptane C-7 isomers than the weaker acid sites on BEA, FAU, and mesoporous SiO2-Al2O3. This preference for hydride transfer and isomerization on stronger acids reflects transition states with more diffuse cationic charge, which interact less effectively with conjugate anions than more localized cations at methylation transition states. The latter recover a larger fraction of the energy required to form the ion-pair, and their stabilities are less sensitive to acid strength than for diffuse cations. Large-pore zeolites (BEA, FAU) form triptane with higher selectivity than SiO2-Al2O3 because confinement within large pores preferentially solvates the larger transition states for hydride transfer and methylation, which preserve the four-carbon backbone in triptane, over smaller transition states for alkoxide isomerization steps, which disrupt this backbone and cause growth beyond C-7 chains and subsequent facile beta-scission to form isobutane. MFI forms isobutane and triptane with much lower selectivity than mesoporous acids or large-pore zeolites, because smaller pores restrict the formation of bimolecular methylation and hydride transfer transition states required for chain growth and termination steps to a greater extent than those for monomolecular alkoxide isomerization. These data and their mechanistic interpretations show that the selective formation of isobutane and triptane from C-7 precursors like DME is favored on all acids as a result of the relative stability of methylation, hydride transfer, and isomerization transition states, but to a lesser extent when small confining voids and stronger acid sites preferentially stabilize monomolecular isomerization transition states. The observed effects of acid strength and confinement on rates and selectivities reflect the more effective stabilization of all ion-pairs on stronger acids and within solvating environments, but a preference for transition states with more diffuse charge on stronger acids and for ion-pairs with the appropriate solvation within voids of molecular dimensions. (C) 2011 Elsevier Inc.
Al rights reserved.
C1 [Simonetti, Dante A.; Carr, Robert T.; Iglesia, Enrique] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Iglesia, Enrique] EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Iglesia, E (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
EM iglesia@cchem.berkeley.edu
RI Iglesia, Enrique/D-9551-2017
OI Iglesia, Enrique/0000-0003-4109-1001
FU BP p.l.c; Chemical Sciences Division, Office of Basic Energy Sciences,
Office of Science, US Department of Energy [DE-FG02-03ER15479]
FX We acknowledge partial financial support from BP p.l.c as part of the
Methane Conversion Cooperative Program at the UC-Berkeley and from the
Chemical Sciences Division, Office of Basic Energy Sciences, Office of
Science, US Department of Energy under Grant No. DE-FG02-03ER15479. We
thank Rajamani Gounder for valuable discussions about thermochemical
cycles in acid catalysis and about the effects of confinement in zeolite
catalysis. We also thank Professor Matthew Neurock (University of
Virginia) for useful discussions during the course of this study and Dr.
Wei Qi for the synthesis of 5 wt.%
H3PW12O40/SiO2 and the
titration data on this sample.
NR 47
TC 17
Z9 18
U1 9
U2 88
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9517
J9 J CATAL
JI J. Catal.
PD JAN
PY 2012
VL 285
IS 1
BP 19
EP 30
DI 10.1016/j.jcat.2011.09.007
PG 12
WC Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 889LD
UT WOS:000300074300004
ER
PT J
AU Wu, ZL
Li, MJ
Overbury, SH
AF Wu, Zili
Li, Meijun
Overbury, Steven H.
TI On the structure dependence of CO oxidation over CeO2 nanocrystals with
well-defined surface planes
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE Ceria nanoshapes; Rods; Cubes; Octahedra; CO oxidation; Structure
dependence; In situ spectroscopy; Reaction mechanism
ID GAS SHIFT REACTION; TRANSFORM INFRARED-SPECTROSCOPY; CERIUM OXIDE;
ROOM-TEMPERATURE; CARBON-MONOXIDE; OXYGEN STORAGE; RAMAN-SPECTROSCOPY;
CATALYTIC-ACTIVITY; ISOTOPIC EXCHANGE; VACANCY FORMATION
AB CO oxidation is a model reaction for probing the redox property of ceria-based catalysts. In this study. CO oxidation was investigated over ceria nanocrystals with defined surface planes (nanoshapes) including rods ({1 1 0} + {1 0 0}), cubes ({1 0 0}), and octahedra ({1 1 1}). To understand the strong dependence of CO oxidation observed on these different ceria nanoshapes, in situ techniques including infrared and Raman spectroscopy coupled with online mass spectrometer, and temperature-programmed reduction (TPR) were employed to reveal how CO interacts with the different ceria surfaces, while the mobility of ceria lattice oxygen was investigated via oxygen isotopic exchange experiment. CO adsorption at room temperature leads to strongly bonded carbonate species on the more reactive surfaces of rods and cubes but weakly bonded ones on the rather inert octahedra surface. CO-TPR, proceeding via several channels including CO removal of lattice oxygen, surface water-gas shift reaction, and CO disproportionation reaction, reveals that the reducibility of these ceria nanoshapes is in line with their CO oxidation activity, i.e., rods > cubes > octahedra. The mobility of lattice oxygen also shows similar dependence. It is suggested that surface oxygen vacancy formation energy, defect sites, and coordinatively unsaturated sites on ceria play a direct role in facilitating both CO interaction with ceria surface and the reactivity and mobility of lattice oxygen. The oxygen vacancy formation energy, nature and amount of the defect and low coordination sites are intrinsically affected by the surface planes of the ceria nanoshapes. Several reaction pathways for CO oxidation over the ceria nanoshapes are proposed, and certain types of carbonates, especially those associated with reduced ceria surface, are considered among the reaction intermediates to form CO2, while the majority of carbonate species observed under CO oxidation condition are believed to be spectators. (C) 2011 Elsevier Inc. All rights reserved.
C1 [Wu, Zili; Li, Meijun; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Wu, Zili; Overbury, Steven H.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Wu, ZL (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM wuz1@ornl.gov; overburysh@ornl.gov
RI Wu, Zili/F-5905-2012; Overbury, Steven/C-5108-2016
OI Wu, Zili/0000-0002-4468-3240; Overbury, Steven/0000-0002-5137-3961
FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences, US Department of Energy; Oak Ridge National
Laboratory, by the Office of Basic Energy Science, US Department of
Energy
FX This Research is sponsored by the Division of Chemical Sciences,
Geosciences, and Biosciences, Office of Basic Energy Sciences, US
Department of Energy. Part of the work including Raman and TEM/SEM was
conducted