FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Frauenfelder, H AF Frauenfelder, Hans TI Giorgio Careri: A physicist in the life sciences SO JOURNAL OF BIOLOGICAL PHYSICS LA English DT Editorial Material C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, T-6, Los Alamos, NM 87545 USA. EM frauenfelder@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0092-0606 J9 J BIOL PHYS JI J. Biol. Phys. PD JAN PY 2012 VL 38 IS 1 SI SI BP 3 EP 3 DI 10.1007/s10867-011-9258-0 PG 1 WC Biophysics SC Biophysics GA 898WZ UT WOS:000300774400002 PM 23277665 ER PT J AU Christensen, U Scheller, HV AF Christensen, Ulla Scheller, Henrik Vibe TI Regulation of (1,3;1,4)-beta-D-glucan synthesis in developing endosperm of barley lys mutants SO JOURNAL OF CEREAL SCIENCE LA English DT Article DE Hordeum vulgare; Endosperm; (1,3;1,4)-beta-D-glucan; CSLF ID HORDEUM-VULGARE; BETA-GLUCAN; GENE FAMILY; CELLULOSE; BIOSYNTHESIS; ARABIDOPSIS; METHYLATION; EXPRESSION; GRAIN AB The mechanism behind altered content of (1,3:1,4)-beta-D-glucan was investigated in developing endosperm of barley lys3 and lys5 mutants. Both types of mutants are primarily affected in starch biosynthesis, and hence effects on (1,3;1,4)-beta-D-glucan are likely to be pleiotropic. The mutant alleles lys5f and lys5g exerted pronounced effects on the cell wall with increased level of (1,3;1,4)-beta-D-glucan content. The low-starch high-(1,3;1,4)-beta-D-glucan phenotype was most pronounced in lys5f. Among the Cellulose Synthase-Like (CSL) gene members belonging to the families CSLF and CSLH, which all encode (1,3;1,4)-beta-D-glucan synthase proteins, CSLF6 was by far the highest expressed in the wild type, whereas both lys5f and lys5g exhibited a decreased level of CSLF6 transcript. Thus, the lys5 mutants have increased (1,3:1,4)-beta-D-glucan level in spite of lower transcript levels. This suggests the presence of a sensing and signaling system in the cell wall, which in the case of the lys5 mutants caused a decreased transcript level in response to the increased (1,3;1,4)-beta-D-glucan levels. In the lys3a mutant we found a 1000-fold repression of the CSLF6 transcript throughout the whole endosperm development. Thus CSLF6 is under the control of the Lys3 transcriptional regulatory mechanism that operates during barley grain development. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Scheller, Henrik Vibe] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Christensen, Ulla; Scheller, Henrik Vibe] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA 94608 USA. [Christensen, Ulla] Univ Copenhagen, Fac Life Sci, Dept Plant Biol & Biotechnol, DK-1871 Copenhagen C, Denmark. RP Scheller, HV (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, 1 Cyclotron Rd,MS978R4121, Berkeley, CA 94720 USA. EM hscheller@lbl.gov FU University of Copenhagen, Faculty of Life Sciences; Office of Science, Office of Biological and Environmental Research, of the U. S. Department of Energy [DE-AC02-05CH11231] FX Charlotte Sorensen, Louise Nancke and Sten Malmmose are thanked for excellent technical assistance and Drs. Jesper Harholt, Lars Munck and Graeme Coles for many interesting and motivating conversations. This work was supported by a fellowship from the University of Copenhagen, Faculty of Life Sciences, and by the Office of Science, Office of Biological and Environmental Research, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 7 Z9 7 U1 2 U2 19 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0733-5210 J9 J CEREAL SCI JI J. Cereal Sci. PD JAN PY 2012 VL 55 IS 1 BP 69 EP 76 DI 10.1016/j.jcs.2011.10.005 PG 8 WC Food Science & Technology SC Food Science & Technology GA 894ZW UT WOS:000300467000010 ER PT J AU Font-Ribera, A McDonald, P Miralda-Escude, J AF Font-Ribera, Andreu McDonald, Patrick Miralda-Escude, Jordi TI Generating mock data sets for large-scale Lyman-alpha forest correlation measurements SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE Lyman alpha forest; redshift surveys; cosmological simulations; intergalactic media ID DIGITAL SKY SURVEY; POWER SPECTRUM; FLUCTUATIONS AB Massive spectroscopic surveys of high-redshift quasars yield large numbers of correlated Ly alpha absorption spectra that can be used to measure large-scale structure. Simulations of these surveys are required to accurately interpret the measurements of correlations and correct for systematic errors. An efficient method to generate mock realizations of Ly alpha forest surveys is presented which generates a field over the lines of sight to the survey sources only, instead of having to generate it over the entire three-dimensional volume of the survey. The method can be calibrated to reproduce the power spectrum and one-point distribution function of the transmitted flux fraction, as well as the redshift evolution of these quantities, and is easily used for modeling any survey systematic effects. We present an example of how these mock surveys are applied to predict the measurement errors in a survey with similar parameters as the BOSS quasar survey in SDSS-III. C1 [Font-Ribera, Andreu] Inst Ciencies Espai CSIC IEEC, Fac Ciencies, Bellaterra, Catalonia, Spain. [McDonald, Patrick] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [McDonald, Patrick] Brookhaven Natl Lab, Upton, NY 11375 USA. [Miralda-Escude, Jordi] Inst Catalana Recerca & Estudis Avancats, Barcelona, Catalonia, Spain. [Miralda-Escude, Jordi] Inst Ciencies Cosmos UB IEEC, Barcelona, Catalonia, Spain. RP Font-Ribera, A (reprint author), Inst Ciencies Espai CSIC IEEC, Fac Ciencies, Campus UAB,Torre C5 Parell 2, Bellaterra, Catalonia, Spain. EM font@ieec.uab.es; pvmcdonald@lbl.gov; miralda@icc.ub.edu OI Miralda-Escude, Jordi/0000-0002-2316-8370 FU Spanish grant [AYA2009-09745]; Canada Foundation for Innovation; Ontario Innovation Trust; Ontario Research Fund FX The simulations in this work were performed on CITA's Sunnyvale clusters which are funded by the Canada Foundation for Innovation, the Ontario Innovation Trust, and the Ontario Research Fund. The authors thank Anze Slosar, Jean-Marc LeGoff and Nicolas Busca for very helpful discussions. This work was supported in part by Spanish grant AYA2009-09745. NR 21 TC 19 Z9 19 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD JAN PY 2012 IS 1 AR 001 DI 10.1088/1475-7516/2012/01/001 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 894BZ UT WOS:000300403300001 ER PT J AU Lin, QL Xu, Y Fu, EG Baber, S Bao, ZB Yu, L Deng, SG Kundu, J Hollingsworth, J Bauer, E McCleskey, TM Burrell, AK Jia, QX Luo, HM AF Lin, Qianglu Xu, Yun Fu, Engang Baber, Stacy Bao, Zongbi Yu, Liang Deng, Shuguang Kundu, Janardan Hollingsworth, Jennifer Bauer, Eve McCleskey, T. Mark Burrell, Anthony K. Jia, Quanxi Luo, Hongmei TI Polymer-assisted chemical solution approach to YVO4:Eu nanoparticle networks SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID LUMINESCENCE PROPERTIES; COLLOIDAL NANOPARTICLES; YVO4-EU PHOSPHORS; FABRICATION; DEPOSITION; FILMS; NANOCRYSTALS AB Phosphor YVO4:Eu nanoparticle networks were synthesized using water soluble ethylenediaminetetraacetic acid (EDTA) and polyethyleneimine (PEI) as binding ligands. The morphology, particle size, BET surface area, and photoluminescence of YVO4:Eu processed at different annealing temperatures (500, 600, 700, and 800 degrees C) and EDTA/PEI mass ratios (1 : 4, 1 : 2.5, 1 : 2, 1 : 1.5, 1 : 1, 2 : 1, and 4 : 1) were determined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, fluorescence spectrophotometer, and N-2 adsorption and desorption. The red emission was observed with increasing the annealing temperature. Importantly, the nanoparticles did not aggregate at high annealing temperatures up to 800 degrees C. The smallest size of the YVO4: Eu nanoparticles is about 18 nm and the surface area is 35 m(2) g(-1) with the EDTA/PEI mass ratios of 1 : 1-2.5. C1 [Fu, Engang; Kundu, Janardan; Hollingsworth, Jennifer; Bauer, Eve; McCleskey, T. Mark; Burrell, Anthony K.; Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Lin, Qianglu; Xu, Yun; Baber, Stacy; Bao, Zongbi; Yu, Liang; Deng, Shuguang; Luo, Hongmei] New Mexico State Univ, Dept Chem Engn, Las Cruces, NM 88003 USA. RP Jia, QX (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM qxjia@lanl.gov; hluo@nmsu.edu RI Deng, Shuguang/G-5926-2011; Bao, Zongbi/E-9429-2011; McCleskey, Thomas/J-4772-2012; Dennis, Allison/A-7654-2014; Jia, Q. X./C-5194-2008 OI Deng, Shuguang/0000-0003-2892-3504; FU NSF/CMMI Nano-Manufacturing [1131290]; New Mexico Consortium; Los Alamos National Laboratory; NMSU; U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX We acknowledge the support from NSF/CMMI Nano-Manufacturing Program under Grant No. 1131290, New Mexico Consortium, Los Alamos National Laboratory, and the Interdisciplinary Research Grant (IRG) from NMSU. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 28 TC 12 Z9 12 U1 1 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 12 BP 5835 EP 5839 DI 10.1039/c2jm15628h PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 899TC UT WOS:000300838100077 ER PT J AU Brown, RS Pflugrath, BD Carlson, TJ Deng, ZD AF Brown, Richard S. Pflugrath, Brett D. Carlson, Thomas J. Deng, Z. Daniel TI The effect of an externally attached neutrally buoyant transmitter on mortal injury during simulated hydroturbine passage SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Article; Proceedings Paper CT Photovoltaic Technical Conference CY 2011 CL Aix en Provence, FRANCE DE acoustic devices; biological techniques; dams; hydraulic turbines; hydroelectric power stations; transmitters; underwater acoustic telemetry ID JUVENILE CHINOOK SALMON; BAROTRAUMA AB On their seaward migration, juvenile salmonids commonly pass hydroelectric dams. Fish passing through hydroturbines experience a rapid decrease in pressure as they pass by the turbine blade. The severity of this decompression can be highly variable but can result in injuries such as swim bladder rupture, exophthalmia, and emboli and hemorrhaging in the fins and tissues. Recent research indicates that the presence of a telemetry tag (acoustic, radio, inductive) implanted inside the coelom of a juvenile salmon increases the likelihood that the fish will be injured or die during turbine passage. Thus, previous turbine passage survival research conducted using telemetry tags implanted into the coelom of fish may have been inaccurate. Therefore, a new technique is needed to provide unbiased estimates of survival through turbines. This study evaluated the effectiveness of a neutrally buoyant externally attached acoustic transmitter on decompression-stressed juvenile Chinook salmon. Both nontagged fish and fish tagged with a neutrally buoyant external transmitter were exposed to a range of rapid decompressions simulating turbine passage. Juvenile Chinook salmon tagged with a neutrally buoyant externally attached acoustic transmitter did not experience a higher degree of barotrauma-induced injuries than their nontagged counterparts. We suggest that future research include field-based comparisons of survival and behavior among fish tagged with a neutrally buoyant external transmitter and those internally implanted with transmitters. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682062] C1 [Brown, Richard S.; Pflugrath, Brett D.] Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA. [Carlson, Thomas J.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. [Deng, Z. Daniel] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. RP Brown, RS (reprint author), Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA. EM Rich.Brown@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 NR 18 TC 5 Z9 5 U1 6 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD JAN 1 PY 2012 VL 4 IS 1 AR 013107 DI 10.1063/1.3682062 PG 7 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 901GJ UT WOS:000300951000018 ER PT J AU Duan, YH AF Duan, Yuhua TI A first-principles density functional theory study of the electronic structural and thermodynamic properties of M2ZrO3 and M2CO3 (M=Na, K) and their capabilities for CO2 capture SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Article; Proceedings Paper CT Photovoltaic Technical Conference CY 2011 CL Aix en Provence, FRANCE DE density functional theory; desorption; electronic structure; lattice dynamics; phonon dispersion relations; potassium compounds; sodium compounds; thermodynamic properties ID NEUTRON POWDER DIFFRACTION; CARBON-DIOXIDE SORPTION; LITHIUM ZIRCONATE; CRYSTAL-STRUCTURE; SODIUM-CARBONATE; NA2ZRO3; ENERGY; CHEMISORPTION; SEQUESTRATION; ABSORPTION AB Alkali metal zirconates could be used as solid sorbents for CO2 capture. The structural, electronic, and phonon properties of Na2ZrO3, K2ZrO3, Na2CO3, and K2CO3 are investigated by combining the density functional theory with lattice phonon dynamics. The thermodynamics of CO2 absorption/desorption reactions of these two zirconates are analyzed. The calculated results show that their optimized structures are in a good agreement with experimental measurements. The calculated band gaps are 4.339 eV (indirect), 3.641 eV (direct), 3.935 eV (indirect), and 3.697 eV (direct) for Na2ZrO3, K2ZrO3, Na2CO3, and K2CO3, respectively. The calculated phonon dispersions and phonon density of states for M2ZrO3 and M2CO3 (M=K, Na, Li) revealed that from K to Na to Li, their frequency peaks are shifted to high frequencies due to the molecular weight decreased from K to Li. From the calculated reaction heats and relationships of free energy change versus temperatures and CO2 pressures of the M2ZrO3 (M K, Na, Li) reacting with CO2, we found that the performance of Na2ZrO3 capturing CO2 is similar to that of Li2ZrO3 and is better than that of K2ZrO3. Therefore, Na2ZrO3 and Li2ZrO3 are good candidates of high temperature CO2 sorbents and could be used for post-combustion CO2 capture technologies. [doi:10.1063/1.3683519] C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Duan, YH (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM yuhua.duan@netl.doe.gov RI Duan, Yuhua/D-6072-2011 OI Duan, Yuhua/0000-0001-7447-0142 NR 50 TC 11 Z9 11 U1 1 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD JAN 1 PY 2012 VL 4 IS 1 AR 013109 DI 10.1063/1.3683519 PG 17 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 901GJ UT WOS:000300951000020 ER PT J AU Miller, MB Bing, W Luebke, DR Enick, RM AF Miller, Matthew B. Bing, Wei Luebke, David R. Enick, Robert M. TI Solid CO2-philes as potential phase-change physical solvents for CO2 SO JOURNAL OF SUPERCRITICAL FLUIDS LA English DT Article DE Binary phase equilibria; Ternary phase equilibria; Carbon dioxide; Hydrogen; Sugar acetates; Tert-butylated aromatics; Carbon capture ID SUPERCRITICAL CARBON-DIOXIDE; DISPERSION POLYMERIZATION; PDMS MACROMONOMER; BETA-CYCLODEXTRIN; SUGAR ACETATES; BINARY-SYSTEM; SOLUBILITY; BEHAVIOR; POLYMERS; SURFACTANTS AB The binary phase behavior of mixtures of CO2 and highly CO2-philic solids has been determined at 298 K. The solids include sugar acetates (beta-D-galactose pentaacetate, beta-D-ribofuranose tetraacetate, alpha-D(+)-glucose pentaacetate, D-(+)-sucrose octaacetate), tert-butylated aromatics (2,4-di-tert-butylphenol, 2,6-di-tert-butyl-4-methylphenol, 3,5-di-tert-butylphenol, 1,2,4-triacetoxybenzene), and a highly oxygenated cyclic compound (1,3,5-trioxane). The results are presented in the form of phase behavior (Px) diagrams at 298 K that exhibit either one (vapor-liquid-solid, VLS) or two (vapor-liquid-liquid, VL1L2 and vapor-liquid-solid, VL2S) three-phase equilibrium lines. Ternary phase behavior at 298 K has also been determined and presented in the form of a pseudo-binary Px diagram for mixtures of an equimolar gas blend of CO2 and H-2 and each of these CO2-philic solids and several other previously identified highly CO2-philic compounds. Only four compounds, sucrose octaacetate, 1,3,5-tri-tert-butylbenzene, 2,4-di-tert-butylbenzene, and 1,3,5-trioxane, melted at 298 K in the presence of the CO2/H-2 mixture at three-phase vapor-liquid-solid pressures ranging between 6 MPa and 10 MPa. These four compounds are candidates for the selective absorption of CO2 from a CO2/H-2 mixture using solid compounds that can melt and selectively absorb CO2. (C) 2011 Elsevier B.V. All rights reserved. C1 [Miller, Matthew B.; Luebke, David R.; Enick, Robert M.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Miller, Matthew B.; Bing, Wei; Enick, Robert M.] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. RP Miller, MB (reprint author), Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM mbm35@pitt.edu; weibing1984@gmail.com; david.luebke@NETL.DOE.GOV; rme@pitt.edu FU National Energy Technology Laboratory NETL-RUA under RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in carbon capture NETL-RUA program under RES contract DE-FE0004000. NR 46 TC 1 Z9 2 U1 2 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0896-8446 J9 J SUPERCRIT FLUID JI J. Supercrit. Fluids PD JAN PY 2012 VL 61 BP 212 EP 220 DI 10.1016/j.supflu.2011.09.003 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 902CC UT WOS:000301015200027 ER PT J AU Tandon, R Shahin, D Swiler, TP AF Tandon, Rajan Shahin, David Swiler, Thomas P. TI Cracking up Fragmentation of an anti-reflective coating SO MATERIALS TODAY LA English DT Editorial Material C1 [Tandon, Rajan; Swiler, Thomas P.] Sandia Natl Labs, Livermore, CA 94550 USA. [Shahin, David] Missouri Univ Sci & Technol, Rolla, MO 65409 USA. RP Tandon, R (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 5 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 J9 MATER TODAY JI Mater. Today PD JAN-FEB PY 2012 VL 15 IS 1-2 BP 71 EP 71 PG 1 WC Materials Science, Multidisciplinary SC Materials Science GA 899SC UT WOS:000300835400022 ER PT J AU Fernandez-Martinez, P Palomo, FR Diez, S Hidalgo, S Ullan, M Flores, D Sorge, R AF Fernandez-Martinez, P. Palomo, F. R. Diez, S. Hidalgo, S. Ullan, M. Flores, D. Sorge, R. TI Simulation methodology for dose effects in lateral DMOS transistors SO MICROELECTRONICS JOURNAL LA English DT Article DE Total ionising dose (TID); Power LDMOS transistors; TCAD simulation; High energy physics (HEP) experiments; Radiation effects ID X-RAY; MOS DEVICES; OXIDES; DAMAGE; CO-60; IRRADIATIONS; DISPLACEMENT AB Due to the increasing interest on laterally diffused MOS (LDMOS) transistors as a part of power electronics in the high energy physics (HEP) experiments, the effect of total ionising dose (TID) on their electrical performances has been experimentally measured. The analysis of the experimental results requires the aid of physics-based simulations to study the impact of TID effects on the LDMOS drift oxide layer. In this work, a simulation methodology is developed in order to analyse the changes in the electric field distribution as a consequence of the TID induced trapped charge, and its relationship with the technological parameters and the bias conditions. The simulation results are compared with the experimental data. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Fernandez-Martinez, P.; Hidalgo, S.; Ullan, M.; Flores, D.] CSIC, CNM, IMB, Barcelona 08193, Spain. [Palomo, F. R.] Univ Seville, Sch Engn, Dept Elect Engn, Seville 41092, Spain. [Diez, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sorge, R.] Innovat High Performance Microelect IHP, D-15236 Frankfurt, Oder, Germany. RP Fernandez-Martinez, P (reprint author), CSIC, CNM, IMB, Campus UAB, Barcelona 08193, Spain. EM pablo.fernandez@imb-cnm.csic.es; rogelio@gte.esi.us.es RI Palomo Pinto, Francisco Rogelio/K-7400-2014; Fernandez-Martinez, Pablo/I-1193-2015; Ullan, Miguel/P-7392-2015; Hidalgo, Salvador/B-2649-2012 OI Palomo Pinto, Francisco Rogelio/0000-0002-1147-0812; Fernandez-Martinez, Pablo/0000-0002-7818-6971; Hidalgo, Salvador/0000-0002-8070-3499 FU Ministerio de Ciencia e Innovacion, Spain [FPA2010-22163-C02-02 (DET4HEP), FPA2009-13234-C04-04]; FEDER FX This work was partially supported by Ministerio de Ciencia e Innovacion, Spain, under grants FPA2010-22163-C02-02 (DET4HEP) and FPA2009-13234-C04-04, and co-financed with FEDER funds. NR 27 TC 0 Z9 0 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0026-2692 J9 MICROELECTRON J JI Microelectron. J. PD JAN PY 2012 VL 43 IS 1 BP 50 EP 56 DI 10.1016/j.mejo.2011.10.013 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA 895FR UT WOS:000300482100007 ER PT J AU Budny, RV AF Budny, R. V. TI Alpha heating in ITER L-mode and H-mode plasmas SO NUCLEAR FUSION LA English DT Article ID TRANSPORT MODEL; DISCHARGES; ABSORPTION; STABILITY AB Predictions of alpha heating in ITER L-mode and H-mode DT plasmas are generated using the PTRANSP code. The baseline toroidal field (5.3 T), plasma current ramped to 15MA and a flat electron density profile ramped to Greenwald fraction 0.85 are assumed. Various combinations of external heating by negative ion neutral beam injection, ion cyclotron resonance and electron cyclotron resonance are assumed to start half-way up the density ramp with the full power planned (P-ext = 73 MW). 50 s later the power is reduced to 50MW to increase Q(DT), and to prevent excessive heat flow to the divertor and walls as the alpha heating increases. The time evolution of plasma temperatures and bulk toroidal rotation v(phi) are predicted assuming GLF23 and boundary parameters. Conservatively low temperatures (similar or equal to 0.6 keV) and v(phi) similar or equal to 400 rad s(-1) at the boundary (r/a similar or equal to 0.85) are assumed. Alternative options are used to predict v(phi) and the flow-shearing rates induced by the neutral beam torques in order to assess effects of uncertainties. Option 1 assumes the momentum transport coefficient X-phi is half the energy transport coefficient X-i predicted consistently with the GLF23-predicted temperatures. With this assumption flow shearing does not have large effects on the energy transport, plasma temperatures and alpha heating. Option 2 uses GLF23 to predict v(phi) directly. Higher flow-shearing rates and alpha heating powers are predicted for heating mixes with neutral beam heating. If the L -> H power threshold is twice the ITPA fit then the heating mixes with the highest neutral beam power (and the most alpha heating) transition to H-mode during the density ramp. Other heating mixes remain in L-mode. Predictions of H-mode temperatures and alpha heating depend sensitively on the assumed pedestal pressures. A scan in pedestal pressures is presented using the more pessimistic option 1. A linear increase in alpha heating with pedestal temperature and pressure is predicted. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Budny, RV (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM budny@princeton.edu FU US Department of Energy [DE-AC02-09CH11466] FX This work is supported by the US Department of Energy contract DE-AC02-09CH11466. NR 34 TC 7 Z9 7 U1 1 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013001 DI 10.1088/0029-5515/52/1/013001 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700003 ER PT J AU Goldston, RJ AF Goldston, R. J. TI Heuristic drift-based model of the power scrape-off width in low-gas-puff H-mode tokamaks SO NUCLEAR FUSION LA English DT Article ID ALCATOR C-MOD; DIII-D; ASDEX UPGRADE; PLASMA-FLOW; DIVERTOR TOKAMAKS; HEAT-FLUX; LAYER; TRANSPORT; EDGE; BOUNDARY AB A heuristic model for the plasma scrape-off width in low-gas-puff tokamak H-mode plasmas is introduced. Grad B and curv B drifts into the scrape-off layer (SOL) are balanced against near-sonic parallel flows out of the SOL, to the divertor plates. The overall particle flow pattern posited is a modification for open field lines of Pfirsch-Schluter flows to include order-unity sinks to the divertors. These assumptions result in an estimated SOL width of similar to 2a rho(p)/R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, derived above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Harm parallel thermal conduction losses to the divertor. This results in a heuristic closed-form prediction for the power scrape-off width that is in reasonable quantitative agreement both in absolute magnitude and in scaling with recent experimental data. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Goldston, RJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM rgoldston@pppl.gov FU US Department of Energy [DE-AC02-09CH11466] FX The author thanks Thomas Eich, Wojtek Fundamenski, Sergei Krasheninnikov, Brian LaBombard, Bruce Lipschultz, Vladimir Rozhansky, Peter Stangeby, the TCV Group, Dennis Whyte and Michael Zarnstorff for helpful discussions. This research is supported by the US Department of Energy, under contract DE-AC02-09CH11466. NR 48 TC 77 Z9 77 U1 3 U2 21 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013009 DI 10.1088/0029-5515/52/1/013009 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700011 ER PT J AU Hanson, JM Reimerdes, H Lanctot, MJ In, Y La Haye, RJ Jackson, GL Navratil, GA Okabayashi, M Sieck, PE Strait, EJ AF Hanson, J. M. Reimerdes, H. Lanctot, M. J. In, Y. La Haye, R. J. Jackson, G. L. Navratil, G. A. Okabayashi, M. Sieck, P. E. Strait, E. J. TI Feedback control of the proximity to marginal RWM stability using active MHD spectroscopy SO NUCLEAR FUSION LA English DT Article ID DIII-D TOKAMAK; RESISTIVE WALL MODES; PLASMA ROTATION; STORED ENERGY; BETA-LIMIT; STABILIZATION; SYSTEM; INSTABILITIES; DISCHARGES; DYNAMICS AB DIII-D experiments yield the first proof-of-principle results in feedback control of the proximity to the resistive wall mode (RWM) stability boundary using an active MHD spectroscopic stability measurement and neutral beam injection heating. In contrast to calculations of the stability of reconstructed equilibria, the spectroscopic measurement is independent of the assumed RWM stability model. The real-time implementation enables the control system to react to unforeseen changes in plasma parameters and hence stability limits. In the experimentally accessed regime, near but below the ideal-MHD no-wall limit for the n = 1 external kink instability, the control dynamics are described by a linear model that depends on the plasma stored energy. This model is used to aid in optimizing feedback gain settings. C1 [Hanson, J. M.; Reimerdes, H.; Lanctot, M. J.; Navratil, G. A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Hanson, J. M.] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA. [In, Y.] FAR TECH Inc, San Diego, CA 92121 USA. [La Haye, R. J.; Jackson, G. L.; Sieck, P. E.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hanson, JM (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, 2960 Broadway, New York, NY 10027 USA. EM jmh2130@columbia.edu RI Lanctot, Matthew J/O-4979-2016 OI Lanctot, Matthew J/0000-0002-7396-3372 FU US Department of Energy (DOE) [DE-AC05-06OR23100, DE-FG02-04ER54761, DE-AC52-07NA27344, DE-FG02-06ER84442, DE-FC02-04ER54698, DE-AC02-09CH11466] FX This research was performed under an appointment to the US Department of Energy (DOE) Fusion Energy Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education under DE-AC05-06OR23100 between the US Department of Energy and Oak Ridge Associated Universities, with additional support from the US Department of Energy under DE-FG02-04ER54761, DE-AC52-07NA27344, DE-FG02-06ER84442, DE-FC02-04ER54698 and DE-AC02-09CH11466. NR 37 TC 6 Z9 6 U1 0 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013003 DI 10.1088/0029-5515/52/1/013003 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700005 ER PT J AU James, AN Austin, ME Commaux, N Eidietis, NW Evans, TE Hollmann, EM Humphreys, DA Hyatt, AW Izzo, VA Jernigan, TC La Haye, RJ Parks, PB Strait, EJ Tynan, GR Wesley, JC Yu, JH AF James, A. N. Austin, M. E. Commaux, N. Eidietis, N. W. Evans, T. E. Hollmann, E. M. Humphreys, D. A. Hyatt, A. W. Izzo, V. A. Jernigan, T. C. La Haye, R. J. Parks, P. B. Strait, E. J. Tynan, G. R. Wesley, J. C. Yu, J. H. TI Measurements of hard x-ray emission from runaway electrons in DIII-D SO NUCLEAR FUSION LA English DT Article ID DISRUPTION MITIGATION; D TOKAMAK; ENERGY DISTRIBUTIONS; CURRENT TERMINATION; CYCLOTRON EMISSION; PLASMA; BREMSSTRAHLUNG; GAS; SYSTEMS; JT-60U AB The spatial distribution of runaway electron (RE) strikes to the wall during argon pellet-initiated rapid shutdown of diverted and limited plasma shapes in DIII-D is studied using a new array of hard x-ray (HXR) scintillators. Two plasma configurations were investigated: an elongated diverted H-mode and a low-elongation limited L-mode. HXR emission from MeV level REs generated during the argon pellet injection is observed during the thermal quench (TQ) in diverted discharges from REs lost into the divertor. In limiter discharges, this prompt TQ loss is reduced, suggesting improved TQ confinement of REs in this configuration. During the plateau phase when the plasma current is carried by REs, toroidally symmetric HXR emission from remaining confined REs is seen. Transient HXR bursts during this RE current plateau suggest the presence of a small level of wall losses due to the presence of an unidentified instability. Eventually, an abrupt final loss of the remaining RE current occurs. This final loss HXR emission shows a strong toroidal peaking and a consistent spatiotemporal evolution that suggests the development of a kink instability. C1 [James, A. N.; Hollmann, E. M.; Izzo, V. A.; Tynan, G. R.; Yu, J. H.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Austin, M. E.] Univ Texas Austin, Univ Stn 1, Austin, TX 78712 USA. [Commaux, N.; Jernigan, T. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Eidietis, N. W.; Evans, T. E.; Humphreys, D. A.; Hyatt, A. W.; La Haye, R. J.; Parks, P. B.; Strait, E. J.; Wesley, J. C.] Gen Atom Co, San Diego, CA 92186 USA. RP James, AN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM jamesan@fusion.gat.com FU US Department of Energy [DE-FG02-07ER54917, DE-FG02-07ER54912, DE-FG03-97ER54415, DE-AC05-00OR22725, DE-FC02-04ER54698] FX This work was supported by the US Department of Energy under DE-FG02-07ER54917, DE-FG02-07ER54912, DE-FG03-97ER54415, DE-AC05-00OR22725 and DE-FC02-04ER54698. The authors would like to acknowledge outstanding support and numerous contributions from the DIII-D team which enabled these experiments, and especially contributions of N. Antoniuk, R.A. Moyer, and J.A. Boedo for assistance troubleshooting experimental hardware. NR 67 TC 12 Z9 12 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013007 DI 10.1088/0029-5515/52/1/013007 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700009 ER PT J AU Lundberg, DP Kaita, R Majeski, R AF Lundberg, D. P. Kaita, R. Majeski, R. TI Molecular hydrogen density measurements of short-pulse, high-density fuelling from a molecular cluster injector SO NUCLEAR FUSION LA English DT Article ID FREE-JET; BEAM; GAS; TARGET; FLUORESCENCE; TOKAMAK AB A molecular cluster injector (MCI) has been developed to provide short-pulse, high-density fuelling for the lithium tokamak experiment (LTX). Using an electron-beam fluorescence method, the molecular density profiles produced by the injector are measured with sub-cm spatial resolution. The system, which is cryogenically cooled to promote the formation of molecular clusters, demonstrates a significant increase in molecular density relative to room-temperature supersonic gas injectors. The transient characteristics of short pulses (3-5 ms) are measured with 250 mu s temporal resolution, and the jet shock structure is found to evolve significantly on that time scale. Supplemental measurements with a pressure transducer validate the electron-beam measurements. The measured density profiles are consistent with supersonic flows suitable for producing substantial populations of molecular clusters. The measured densities and flow rates are appropriate for high-density fuelling of LTX plasmas. The MCI will be used to investigate the physics of molecular cluster fuelling of LTX plasmas. C1 [Lundberg, D. P.; Kaita, R.; Majeski, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Lundberg, DP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM dlundberg@pppl.gov FU US Department of Energy [DE-AC02-09CH11466] FX This work was supported by US Department of Energy Contract Number DE-AC02-09CH11466. NR 31 TC 2 Z9 2 U1 0 U2 22 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013016 DI 10.1088/0029-5515/52/1/013016 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700018 ER PT J AU Medley, SS Kolesnichenko, YI Yakovenko, YV Bell, RE Bortolon, A Crocker, NA Darrow, DS Diallo, A Domier, CW Fonck, RJ Fredrickson, ED Gerhardt, SP Gorelenkov, NN Kramer, GJ Kubota, S LeBlanc, BP Lee, KC Mazzucato, E McKee, GR Podesta, M Ren, Y Roquemore, AL Smith, DR Stutman, D Tritz, K White, RB AF Medley, S. S. Kolesnichenko, Ya. I. Yakovenko, Yu. V. Bell, R. E. Bortolon, A. Crocker, N. A. Darrow, D. S. Diallo, A. Domier, C. W. Fonck, R. J. Fredrickson, E. D. Gerhardt, S. P. Gorelenkov, N. N. Kramer, G. J. Kubota, S. LeBlanc, B. P. Lee, K. C. Mazzucato, E. McKee, G. R. Podesta, M. Ren, Y. Roquemore, A. L. Smith, D. R. Stutman, D. Tritz, K. White, R. B. TI Investigation of a transient energetic charge exchange flux enhancement ('spike-on-tail') observed in neutral-beam-heated H-mode discharges in the National Spherical Torus Experiment SO NUCLEAR FUSION LA English DT Article ID FAST-ION LOSS; EXPERIMENT NSTX; DRIVEN INSTABILITIES; TOKAMAK EXPERIMENT; PLASMAS; CONFINEMENT; TRANSPORT; PARTICLES; OPERATION; REACTOR AB In the National Spherical Torus Experiment (NSTX), a large increase in the charge exchange neutral flux localized around the neutral beam (NB) injection full energy is measured using a neutral particle analyser. Termed the high-energy feature (HEF), it appears on the NB-injected energetic-ion spectrum only in discharges where tearing or kink-type modes (f < 50 kHz) are absent, toroidal Alfven eigenmode activity (f similar to 50-150 kHz) is weak and global Alfven eigenmode (GAE) activity (f similar to 400-1000 kHz) is robust. Compressional Alfven eigenmode activity (f > 1000 kHz) is usually sporadic or absent during the HEF event. The HEF exhibits growth times of Delta t similar to 20-80 ms, durations spanning 100-600 ms and peak-to-base flux ratios up to H = F-max/ F-min similar to 10. In infrequent cases, a slowing-down distribution below the HEF energy can develop that continues to evolve over periods of order 100 ms, a time scale long compared with the typical fast-ion equilibration times. HEFs are observed only in H-mode (not L-mode) discharges with injected power P-b >= 4 MW and in the pitch range chi equivalent to upsilon(parallel to)/upsilon similar to 0.7-0.9; i.e. only for passing particles. Increases of order 10-30% in the measured neutron yield and total stored energy that are observed to coincide with the feature appear to be driven by concomitant broadening of measured T-e(r), T-i(r) and n(e)(r) profiles and not the HEF itself. While the HEF has minimal impact on plasma performance, it nevertheless poses a challenging wave-particle interaction phenomenon to understand. Candidate mechanisms for HEF formation are developed based on quasilinear (QL) theory of wave-particle interaction. The only mechanism found to lead to the large NPA flux ratios, H = F-max/ F-min, observed in NSTX is the QL evolution of the energetic-ion distribution, F-b(E,chi, r), in phase space. A concomitant loss of some particles is observed due to interaction through cyclotron resonance of the particles with destabilized modes having sufficiently high frequencies, f similar to 700-1000 kHz, in the plasma frame that are tentatively identified as GAEs. C1 [Medley, S. S.; Bell, R. E.; Darrow, D. S.; Diallo, A.; Fredrickson, E. D.; Gerhardt, S. P.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Mazzucato, E.; Podesta, M.; Ren, Y.; Roquemore, A. L.; White, R. B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Kolesnichenko, Ya. I.; Yakovenko, Yu. V.] Inst Nucl Res, UA-03680 Kiev, Ukraine. [Bortolon, A.] Univ Calif Irvine, Irvine, CA 90095 USA. [Crocker, N. A.; Kubota, S.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Domier, C. W.; Lee, K. C.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Fonck, R. J.; McKee, G. R.; Smith, D. R.] Univ Wisconsin Madison, Dept Engn Phys, Madison, WI 53706 USA. [Stutman, D.; Tritz, K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. RP Medley, SS (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM medley@pppl.gov RI White, Roscoe/D-1773-2013; Bortolon, Alessandro/H-5764-2015; Stutman, Dan/P-4048-2015; OI White, Roscoe/0000-0002-4239-2685; Bortolon, Alessandro/0000-0002-0094-0209; Yakovenko, Yuriy/0000-0002-3499-5275 FU US Department of Energy [DE-AC02-09CH11466, DE-FG02-89ER53296, DE-SC0001288, DE-FG02-06ER54867, DE-FG02-99ER54527, DE-FG02-99ER54518]; Science and Technology Center in Ukraine [4588] FX This work was supported by the US Department of Energy under Contract No DE-AC02-09CH11466. This work was partly supported by Project #4588 of the Science and Technology Center in Ukraine, US DOE Grant Nos DE-FG02-89ER53296 and DE-SC0001288 (U. Wisconsin-Madison), US DOE Grant No DE-FG02-06ER54867 (UC Irvine), US DOE Grant No DE-FG02-99ER54527 (UCLA) and US DOE Grant No DE-FG02-99ER54518 (UC Davis). NR 60 TC 3 Z9 3 U1 0 U2 11 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013014 DI 10.1088/0029-5515/52/1/013014 PG 25 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700016 ER PT J AU Petty, CC Jayakumar, RJ Makowski, MA Holcomb, CT Humphreys, DA La Haye, RJ Luce, TC Politzer, PA Prater, R Wade, MR Welander, AS AF Petty, C. C. Jayakumar, R. J. Makowski, M. A. Holcomb, C. T. Humphreys, D. A. La Haye, R. J. Luce, T. C. Politzer, P. A. Prater, R. Wade, M. R. Welander, A. S. TI Spatiotemporal changes in the pressure-driven current densities on DIII-D due to magnetic islands SO NUCLEAR FUSION LA English DT Article ID NEOCLASSICAL TEARING MODES; CYCLOTRON CURRENT DRIVE; ASDEX UPGRADE; COMPLETE SUPPRESSION; NONLINEAR GROWTH; CURRENT PROFILES; D TOKAMAK; PERFORMANCE; DISCHARGES; STABILIZATION AB Using direct analysis of the motional Stark effect (MSE) signals, an explicit measurement of the `missing' bootstrap current density around the island location of a neoclassical tearing mode (NTM) is made for the first time. When the NTM is suppressed using co-electron cyclotron current drive, the measured changes in the current profile that restore the bootstrap current are also directly found from the MSE measurements. Additionally, direct analysis of helical perturbations in the MSE signals during slowly rotating `quasi-stationary' modes shows the first explicit measurement of the deficit in the toroidal current density in the island O-point. C1 [Petty, C. C.; Humphreys, D. A.; La Haye, R. J.; Luce, T. C.; Politzer, P. A.; Prater, R.; Wade, M. R.; Welander, A. S.] Gen Atom Co, San Diego, CA 92186 USA. [Jayakumar, R. J.; Makowski, M. A.; Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Petty, CC (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344] FX This work was supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC52-07NA27344. NR 41 TC 1 Z9 1 U1 0 U2 2 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013011 DI 10.1088/0029-5515/52/1/013011 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700013 ER PT J AU Ghaemi, P Wilczek, F AF Ghaemi, Pouyan Wilczek, Frank TI Near-zero modes in superconducting graphene SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT Nobel Symposium on Graphene and Quantum Matter CY MAY 27-31, 2010 CL Saltsjobaden, SWEDEN ID CONDENSED-MATTER; STATISTICS; GRAPHITE; VORTICES; PARITY; SYSTEM; STATES; FIELD AB Vortices in the simplest superconducting state of graphene contain very-low-energy excitations whose existence is connected to an index theorem that applies strictly to an approximate form of the relevant Bogoliubov-de Gennes equations. When Zeeman interactions are taken into account, the zero modes required by the index theorem are (slightly) displaced. Thus, the vortices acquire internal structure, which plausibly supports interesting dynamical phenomena. C1 [Ghaemi, Pouyan] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ghaemi, Pouyan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wilczek, Frank] MIT, Ctr Theoret Phys, Dept Phys, Cambridge, MA 02139 USA. RP Ghaemi, P (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM pouyan@berkeley.edu NR 26 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD JAN PY 2012 VL T146 AR 014019 DI 10.1088/0031-8949/2012/T146/014019 PG 4 WC Physics, Multidisciplinary SC Physics GA 895OD UT WOS:000300504800020 ER PT J AU Uchoa, B Reed, JP Gan, Y Joe, YI Fradkin, E Abbamonte, P Casa, D AF Uchoa, Bruno Reed, James P. Gan, Yu Joe, Young Il Fradkin, Eduardo Abbamonte, Peter Casa, Diego TI The electron many-body problem in graphene SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT Nobel Symposium on Graphene and Quantum Matter CY MAY 27-31, 2010 CL Saltsjobaden, SWEDEN ID SUSPENDED GRAPHENE; DYNAMICS AB We give a brief summary of the current status of the electron many-body problem in graphene. We claim that graphene has intrinsic dielectric properties which should dress the interactions among the quasiparticles, and may explain why the observation of electron-electron renormalization effects has been so elusive in the recent experiments. We argue that the strength of Coulomb interactions in graphene may be characterized by an effective fine structure constant given by alpha(star) (k, omega) equivalent to 2.2/epsilon(k, omega), where epsilon(k, omega) is the dynamical dielectric function. At long wavelengths, alpha(star) (k, omega) appears to have its smallest value in the static regime, where alpha(star) (k -> 0, 0) approximate to 1/7 according to recent inelastic x-ray measurements, and the largest value in the optical limit, where alpha(star) (0, omega) approximate to 2.6. We conclude that the strength of Coulomb interactions in graphene is not universal, but is highly dependent on the scale of the phenomenon of interest. We propose a prescription in order to reconcile different experiments. C1 [Uchoa, Bruno; Reed, James P.; Gan, Yu; Joe, Young Il; Fradkin, Eduardo; Abbamonte, Peter] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Uchoa, Bruno; Reed, James P.; Gan, Yu; Joe, Young Il; Fradkin, Eduardo; Abbamonte, Peter] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Casa, Diego] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Uchoa, B (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RI Fradkin, Eduardo/B-5612-2013; Casa, Diego/F-9060-2016; OI Fradkin, Eduardo/0000-0001-6837-463X NR 29 TC 2 Z9 2 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD JAN PY 2012 VL T146 AR 014014 DI 10.1088/0031-8949/2012/T146/014014 PG 6 WC Physics, Multidisciplinary SC Physics GA 895OD UT WOS:000300504800015 ER PT J AU Benisti, D Yampolsky, NA Fisch, NJ AF Benisti, Didier Yampolsky, Nikolai A. Fisch, Nathaniel J. TI Comparisons between nonlinear kinetic modelings of simulated Raman scattering using envelope equations SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA-WAVES; INSTABILITIES AB In this paper, we compare two recent models [N. A. Yampolsky and N. J. Fisch, Phys. Plasmas 16, 072104 (2009); D. Benisti, D. J. Strozzi, L. Gremillet, and O. Morice, Phys. Rev. Lett. 103, 155002 (2009)] introduced to predict the nonlinear growth of stimulated Raman scattering in the kinetic regime, and providing moreover a nonlinear description of the collisionless, Landau-like, damping rate of the driven electron plasma wave. We first recall the general theoretical framework common to these two models, based on the derivation of the imaginary part of the electron susceptibility, vi, and then discuss in detail why the two approaches differ. By comparing the theoretical predictions for vi to those derived from test particle or Vlasov simulations, we moreover discuss the range of validity of the two models. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677264] C1 [Benisti, Didier] CEA, DIF, DAM, F-91297 Arpajon, France. [Yampolsky, Nikolai A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fisch, Nathaniel J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Benisti, D (reprint author), CEA, DIF, DAM, F-91297 Arpajon, France. EM didier.benisti@cea.fr RI Yampolsky, Nikolai/A-7521-2011 NR 21 TC 11 Z9 11 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 013110 DI 10.1063/1.3677264 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400066 ER PT J AU Burgos, JMM Schmitz, O Loch, SD Ballance, CP AF Burgos, J. M. Munoz Schmitz, O. Loch, S. D. Ballance, C. P. TI Hybrid time dependent/independent solution for the He I line ratio temperature and density diagnostic for a thermal helium beam with applications in the scrape-off layer-edge regions in tokamaks SO PHYSICS OF PLASMAS LA English DT Article ID RATE COEFFICIENTS; PLASMAS; RECOMBINATION; EMISSION; POPULATIONS; EXCITATION; SCATTERING; STATE; IONS AB Spectroscopic studies of line emission intensities and ratios offer an attractive option in the development of non-invasive plasma diagnostics. Evaluating ratios of selected He I line emission profiles from the singlet and triplet neutral helium spin systems allows for simultaneous measurement of electron density (n(e)) and temperature (T-e) profiles. Typically, this powerful diagnostic tool is limited by the relatively long relaxation times of the S-3 metastable term of helium that populates the triplet spin system, and on which electron temperature sensitive lines are based. By developing a time dependent analytical solution, we model the time evolution of the two spin systems. We present a hybrid time dependent/independent line ratio solution that improves the range of application of this diagnostic technique in the scrape-off layer (SOL) and edge plasma regions when comparing it against the current equilibrium line ratio helium model used at TEXTOR. (c) 2012 American Institute of Physics. [doi:10.1063/1.3672230] C1 [Burgos, J. M. Munoz] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA. [Schmitz, O.] Forschungszentrum Julich, Assoc EURATOM FZJ, Inst Energieforsch Plasmaphys, D-52425 Julich, Germany. [Loch, S. D.; Ballance, C. P.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Burgos, JMM (reprint author), Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA. EM munozj@fusion.gat.com; o.schmitz@fz-juelich.de; loch@physics.auburn.edu; ballance@physics.auburn.edu FU US Department of Energy [DE-AC05-06OR23100, DE-FC02-04ER54698]; atomic physics group at Auburn University; ADAS consortium FX This work was supported in part by the US Department of Energy under DE-AC05-06OR23100 and DE-FC02-04ER54698. The authors wish to acknowledge the support of the atomic physics group at Auburn University, the ADAS consortium, the support of Yuhong Xu for his work in the TEXTOR fast probe data, Mikhael Kantor for the TEXTOR edge Thomson data contribution, and Nicolas Commaux for his help preparing some of the figures. NR 27 TC 14 Z9 14 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 012501 DI 10.1063/1.3672230 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400040 ER PT J AU Ellison, CL Raitses, Y Fisch, NJ AF Ellison, C. L. Raitses, Y. Fisch, N. J. TI Cross-field electron transport induced by a rotating spoke in a cylindrical Hall thruster SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA-OSCILLATIONS; CLOSED DRIFT; ACCELERATION; DIFFUSION; DISCHARGE AB Rotating spoke phenomena have been observed in a variety of Hall thruster and other E x B devices. It has been suggested that the spoke may be associated with the enhancement of the electron cross-field transport. In this paper, the current conducted across the magnetic field via a rotating spoke has been directly measured for the first time in the E x B discharge of a cylindrical Hall thruster. The spoke current was measured using a segmented anode. Synchronized measurements with a high speed camera and a four-segment anode allow observation of the current as a function of time and azimuthal position. Upwards of 50% of the total current is conducted through the spoke, which occupies a quarter of the Hall thruster channel area. To determine the transport mechanism, emissive and Langmuir probes were installed to measure fluctuating plasma potential, electron density, and temperature. A perturbed, azimuthal electric field and density are observed to oscillate in-phase with the rotating spoke. The resulting drift current is found to enhance electron transport with a magnitude equal to the spoke current to within margins of error. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3671920] C1 [Ellison, C. L.; Raitses, Y.; Fisch, N. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ellison, CL (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU DOE; U.S. Department of Energy [DE-AC02-09CH11466]; Air Force Office of Scientific Research (AFOSR) FX The authors would like to thank J. Parker, M. Griswold, J. C. Gayoso, J. P. Sheehan, K. Matyash and R. Schneider for their assistance and helpful discussions. This work was performed under the support of a DOE-Fusion Energy Sciences Fellowship. This manuscript has been authored by Princeton University and collaborators under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy with additional support from the Air Force Office of Scientific Research (AFOSR). NR 35 TC 38 Z9 38 U1 5 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 013503 DI 10.1063/1.3671920 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400074 ER PT J AU Krasheninnikova, NS Finnegan, SM Schmitt, MJ AF Krasheninnikova, Natalia S. Finnegan, Sean M. Schmitt, Mark J. TI An initial assessment of three-dimensional polar direct drive capsule asymmetries for implosions at the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; RAYLEIGH-TAYLOR GROWTH; LASER-DRIVEN; SPECTRAL DISPERSION; TARGETS; OMEGA; INSTABILITY; UNIFORMITY; STABILITY; LIGHT AB The National Ignition Facility (NIF) provides a unique opportunity to study implosion physics with nuclear yield. The use of polar direct drive (PDD) [A. M. Cok, R. S. Craxton, and P. W. McKenty, Phys. Plasmas 15, 082705 (2008)] provides a simple platform for the experimental studies without expensive optics upgrades to NIF. To determine the optimum PDD laser pointing geometry on NIF and provide a baseline for validating inertial confinement fusion codes against experiments for symmetric and asymmetric implosions, computer simulations using the 3D radiation-hydrodynamics code HYDRA [M. M. Marinak, R. E. Tipton, O. L. Landen, T. J. Murphy, P. Amendt, S. W. Haan, S. P. Hatchett, C. J. Keane, R. McEachern, and R. Wallace, Phys. Plasmas 3, 2070 (1996)] were preformed. The upper hemisphere of a DT-filled CH capsule was imploded by 96 NIF beams in a PDD configuration. Asymmetries in both polar and equatorial directions around the capsule were observed, with the former dominating the latter. Analysis of the simulation results indicates that the lack of symmetry in the initial power density profile (during the first 200 ps of the implosion) is a primary cause of late-time asymmetry in the implosion as well as decreased yield. By adjusting the laser pointings, the symmetry and total neutron yield were improved. Simulations with dropped quads (four of the NIF laser system's 192 beamlines) without repointing worsen the overall symmetry by a factor of 10 (with respect to rms radial variation around the capsule) and reduce neutron yield by a factor of 2. Both of these degraded implosion characteristics are restored by azimuthal repointing of the remaining quads. [doi:10.1063/1.3671972] C1 [Krasheninnikova, Natalia S.; Schmitt, Mark J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Finnegan, Sean M.] Off Fus Energy Sci, Germantown, MD 20874 USA. RP Krasheninnikova, NS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Lujan Center, LANL/G-4896-2012; OI Schmitt, Mark/0000-0002-0197-9180 FU US DOE/NNSA; LANS LLC [DE-AC52-06NA25396] FX This research was supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under Contract No. DE-AC52-06NA25396. The authors are extremely grateful to Marty Marinak and the rest of the HYDRA team for making their code available to us to perform this work. We also would like to express our gratitude to Larry Suter and Ines Heinz for facilitating computational access to HYDRA. NR 46 TC 10 Z9 11 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 012702 DI 10.1063/1.3671972 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400050 ER PT J AU Lemons, DS AF Lemons, Don S. TI Pitch angle scattering of relativistic electrons from stationary magnetic waves: Continuous Markov process and quasilinear theory SO PHYSICS OF PLASMAS LA English DT Article ID GEOMAGNETIC STORMS; FIELD; MAGNETOSPHERE; DIFFUSION AB We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density-a regime that may govern pitch angle scattering of high-energy electrons into the geomagnetic loss cone. (c) 2012 American Institute of Physics. [doi:10.1063/1.3676156] C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lemons, DS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 24 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 012306 DI 10.1063/1.3676156 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400030 ER PT J AU Saito, S Gary, SP AF Saito, S. Gary, S. Peter TI Beta dependence of electron heating in decaying whistler turbulence: Particle-in-cell simulations SO PHYSICS OF PLASMAS LA English DT Article ID SOLAR-WIND; MAGNETOHYDRODYNAMIC TURBULENCE; DISSIPATION RANGE; WAVE TURBULENCE; MAGNETIC-FIELD; FLUCTUATIONS; ANISOTROPY; CASCADE; SCALES AB Two-dimensional particle-in-cell simulations have been carried out to study electron beta dependence of decaying whistler turbulence and electron heating in a homogeneous, collisionless magnetized plasma. Initially, applied whistler fluctuations at relatively long wavelengths cascade their energy into shorter wavelengths. This cascade leads to whistler turbulence with anisotropic wavenumber spectra which are broader in directions perpendicular to the background magnetic field than in the parallel direction. Comparing the development of whistler turbulence at different electron beta values, it is found that both the wavenumber spectrum anisotropy and electron heating anisotropy decrease with increasing electron beta. This indicates that higher electron beta reduces the perpendicular energy cascade of whistler turbulence. Fluctuation energy dissipation by electron Landau damping responsible for the electron parallel heating becomes weaker at higher electron beta, which leads to more isotropic heating. It suggests that electron kinetic processes are important in determining the properties of whistler turbulence. This kinetic property is applied to discuss the generation of suprathermal strahl electron distributions in the solar wind. (c) 2012 American Institute of Physics. [doi:10.1063/1.3676155] C1 [Saito, S.] Natl Inst Informat & Commun Technol, Koganei, Tokyo 1848795, Japan. [Gary, S. Peter] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Saito, S (reprint author), Natl Inst Informat & Commun Technol, 4-2-1 Nukui Kitamachi, Koganei, Tokyo 1848795, Japan. EM ssaito@nict.go.jp; pgary@lanl.gov FU Japan Society for the Promotion of Science [21740353]; U.S. Department of Energy (DOE); National Aeronautics and Space Administration FX This work was supported by Grant-in-Aid for Young Scientists (B) Grant No. 21740353 from Japan Society for the Promotion of Science. The Los Alamos portion of this work was performed under the auspices of the U.S. Department of Energy (DOE). It was supported by the Solar and Heliospheric Physics SR&T and Heliophysics Guest Investigators Programs of the National Aeronautics and Space Administration. NR 25 TC 16 Z9 16 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 012312 DI 10.1063/1.3676155 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400036 ER PT J AU Schroeder, CB Benedetti, C Esarey, E Gruner, FJ Leemans, WP AF Schroeder, C. B. Benedetti, C. Esarey, E. Gruener, F. J. Leemans, W. P. TI Particle beam self-modulation instability in tapered and inhomogeneous plasma SO PHYSICS OF PLASMAS LA English DT Article ID ACCELERATION; ELECTRONS AB The particle beam self-modulation instability in tapered and inhomogeneous plasmas is analyzed via an evolution equation for the beam radius. For a sufficiently fast taper, the instability is suppressed, and the condition for growth suppression is derived. The form of the taper to phase lock a trailing witness bunch in the plasma wave driven by a self-modulated beam is determined, which can increase the energy gain by several orders of magnitude. Growth of the instability places stringent constraints on the initial background plasma density fluctuations. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677358] C1 [Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gruener, F. J.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. RP Schroeder, CB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Gruner, Florian/M-1212-2016; OI Gruner, Florian/0000-0001-8382-9225; Schroeder, Carl/0000-0002-9610-0166 FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 14 TC 15 Z9 15 U1 3 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 010703 DI 10.1063/1.3677358 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400003 ER PT J AU Seguin, FH Li, CK Manuel, JE Rinderknecht, HG Sinenian, N Frenje, JA Rygg, JR Hicks, DG Petrasso, RD Delettrez, J Betti, R Marshall, FJ Smalyuk, VA AF Seguin, F. H. Li, C. K. Manuel, J. -E. Rinderknecht, H. G. Sinenian, N. Frenje, J. A. Rygg, J. R. Hicks, D. G. Petrasso, R. D. Delettrez, J. Betti, R. Marshall, F. J. Smalyuk, V. A. TI Time evolution of filamentation and self-generated fields in the coronae of directly driven inertial-confinement fusion capsules SO PHYSICS OF PLASMAS LA English DT Article ID LASER-PLASMA INTERACTION; RHO-R; PROTON RADIOGRAPHY; OMEGA LASER; IMPLOSIONS; NONUNIFORMITY; INSTABILITY; TRANSPORT; TARGETS AB Time-gated radiography with monoenergetic 15-MeV protons, 3-MeV protons, and 4-MeV alpha particles has revealed a rich and complex evolution of electromagnetic field structures in and around imploding, directly driven inertial-confinement fusion (ICF) targets at the OMEGA laser facility. Plastic-shell capsules and solid plastic spheres were imaged during and after irradiation with ICF-relevant laser drive (up to 6 x 10(14) W/cm(2)). Radial filaments appeared while the laser was on; they filled, and were frozen into, the out-flowing corona, persisting until well after the end of the laser drive. Data from specially designed experiments indicate that the filaments were not generated by two-plasmon-decay instabilities or by Rayleigh-Taylor instabilities associated with shell acceleration. Before the onset of visible filamentation, quasi-spherical field structures appeared outside the capsule in the images in a form that suggests outgoing shells of net positive charge. We conjecture that these discrete shells are related to multiple peaks seen previously in the spectra of protons ablated from the targets. (c) 2012 American Institute of Physics. [doi:10.1063/1.3671908] C1 [Seguin, F. H.; Li, C. K.; Manuel, J. -E.; Rinderknecht, H. G.; Sinenian, N.; Frenje, J. A.; Rygg, J. R.; Hicks, D. G.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Delettrez, J.; Betti, R.; Marshall, F. J.; Smalyuk, V. A.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Betti, R.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA. [Betti, R.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. [Rygg, J. R.; Hicks, D. G.; Smalyuk, V. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Seguin, FH (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Hicks, Damien/B-5042-2015; Manuel, Mario/L-3213-2015; OI Hicks, Damien/0000-0001-8322-9983; Manuel, Mario/0000-0002-5834-1161; /0000-0003-4969-5571 FU Laboratory for Laser Energetics (LLE) National Laser User's Facility [DE-FG03-03SF22691]; Fusion Science Center at the University of Rochester [412761-G] FX This work was supported in part by the Laboratory for Laser Energetics (LLE) National Laser User's Facility (DE-FG03-03SF22691) and the Fusion Science Center at the University of Rochester (412761-G). We thank General Atomics for the fabrication of targets; the operations staff and Michelle Burke at LLE for their help with the experiments; and Jocelyn Schaeffer at MIT for data processing. In addition, an anonymous referee provided very useful suggestions. NR 34 TC 16 Z9 16 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 012701 DI 10.1063/1.3671908 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400049 ER PT J AU Velikovich, AL Giuliani, JL Zalesak, ST Thornhill, JW Gardiner, TA AF Velikovich, A. L. Giuliani, J. L. Zalesak, S. T. Thornhill, J. W. Gardiner, T. A. TI Exact self-similar solutions for the magnetized Noh Z pinch problem SO PHYSICS OF PLASMAS LA English DT Article ID ARRAY Z-PINCHES; IDEAL MAGNETOHYDRODYNAMICS; 2-DIMENSIONAL SIMULATIONS; RADIATION TRANSPORT; INSTABILITY; FLUX; FLOW; MHD; HYDRODYNAMICS; IMPLOSIONS AB A self-similar solution is derived for a radially imploding cylindrical plasma with an embedded, azimuthal magnetic field. The plasma stagnates through a strong, outward propagating shock wave of constant velocity. This analysis is an extension of the classic Noh gasdynamics problem to its ideal magnetohydrodynamics (MHD) counterpart. The present exact solution is especially suitable as a test for MHD codes designed to simulate linear Z pinches. To demonstrate the application of the new solution to code verification, simulation results from the cylindrical R-Z version of Mach2 and the 3D Cartesian code Athena are compared against the analytic solution. Alternative routines from the default ones in Athena lead to significant improvement of the results, thereby demonstrating the utility of the self-similar solution for verification. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3678213] C1 [Velikovich, A. L.; Giuliani, J. L.; Thornhill, J. W.] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. [Zalesak, S. T.] Berkeley Res Associates Inc, Beltsville, MD 20705 USA. [Gardiner, T. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Velikovich, AL (reprint author), USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. FU National Nuclear Security Administration of DOE; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors are grateful to M. Frese of NumerEx for several discussions on running the Mach2 code and presentation of the resulting solutions and to E. P. Yu of Sandia National Laboratories for fruitful discussions of the analytical self-similar solutions. The authors would also like to thank J. H. Cooley of Los Alamos National Laboratory for initiating our interest in the problem of an MHD verification tool. The work was supported by the National Nuclear Security Administration of DOE. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 47 TC 7 Z9 7 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 012707 DI 10.1063/1.3678213 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400055 ER PT J AU Abernathy, DL Stone, MB Loguillo, MJ Lucas, MS Delaire, O Tang, X Lin, JYY Fultz, B AF Abernathy, D. L. Stone, M. B. Loguillo, M. J. Lucas, M. S. Delaire, O. Tang, X. Lin, J. Y. Y. Fultz, B. TI Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID STATE AB The wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source (SNS) is optimized to provide a high neutron flux at the sample position with a large solid angle of detector coverage. The instrument incorporates modern neutron instrumentation, such as an elliptically focused neutron guide, high speed magnetic bearing choppers, and a massive array of He-3 linear position sensitive detectors. Novel features of the spectrometer include the use of a large gate valve between the sample and detector vacuum chambers and the placement of the detectors within the vacuum, both of which provide a window-free final flight path to minimize background scattering while allowing rapid changing of the sample and sample environment equipment. ARCS views the SNS decoupled ambient temperature water moderator, using neutrons with incident energy typically in the range from 15 to 1500 meV. This range, coupled with the large detector coverage, allows a wide variety of studies of excitations in condensed matter, such as lattice dynamics and magnetism, in both powder and single-crystal samples. Comparisons of early results to both analytical and Monte Carlo simulation of the instrument performance demonstrate that the instrument is operating as expected and its neutronic performance is understood. ARCS is currently in the SNS user program and continues to improve its scientific productivity by incorporating new instrumentation to increase the range of science covered and improve its effectiveness in data collection. CD 2012 American Institute of Physics. [doi:10.1063/1.3680104] C1 [Abernathy, D. L.; Stone, M. B.; Loguillo, M. J.; Lucas, M. S.; Delaire, O.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Tang, X.; Lin, J. Y. Y.; Fultz, B.] CALTECH, Pasadena, CA 91125 USA. RP Abernathy, DL (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM abernathydl@ornl.gov RI Stone, Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012; Lin, Jiao/A-2529-2016; BL18, ARCS/A-3000-2012 OI Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X; Lin, Jiao/0000-0001-9233-0100; FU DOE [DE-FG02-01ER45950, DE-AC05-000R22725]; Scientific User Facilities Division, Office of Basic Energy Sciences, DOE FX The ARCS project was only made possible by the support of numerous colleagues at the SNS, Caltech and the IDT members. In particular, expert design work was provided by K. Shaw and S. Howard, outstanding support for neutronic calculations by E. Iverson, and excellent project management by P. Albertson and B. Thibadeau. Many essential discussions were held with J. Ankner, J. Carpenter, G. Ehlers, G. Granroth, M. Hagen, and K. Herwig. We acknowledge T. Kelley for his work on creating the early version of the reduction software, and M. Aivazis for his guidance on software architecture and design. We thank D. Mikkelson, R. Mikkelson, and A. Schultz for developing the ISAW handling of ARCS data. A. Kolesnikov graciously provided the idea and sample for the C4H2I2S measurement. Data for the liquid 4He measurement were provided by S. Diallo, R. Azuah and H. Glyde. Data for the FeSi single crystal measurements were provided by O. Delaire. ARCS was supported by the DOE under Grant No. DE-FG02-01ER45950. ORNL/SNS is managed by UT-Battelle, LLC, for the DOE under Contract No. DE-AC05-000R22725. Research at the SNS was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. NR 48 TC 77 Z9 77 U1 1 U2 24 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JAN PY 2012 VL 83 IS 1 AR 015114 DI 10.1063/1.3680104 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 896TS UT WOS:000300594900072 PM 22299993 ER PT J AU Islam, Z Ruff, JPC Ross, KA Nojiri, H Gaulin, BD AF Islam, Zahirul Ruff, Jacob P. C. Ross, Kate A. Nojiri, Hiroyuki Gaulin, Bruce D. TI Time-resolved one-dimensional detection of x-ray scattering in pulsed magnetic fields SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SYNCHROTRON-RADIATION; LOW-TEMPERATURE; DIFFRACTION AB We have developed an application of a one-dimensional micro-strip detector for capturing x-ray diffraction data in pulsed magnetic fields. This detector consists of a large array of 50 mu m-wide Si strips with a full-frame read out at 20 kHz. Its use substantially improves data-collection efficiency and quality as compared to point detectors, because diffraction signals are recorded along an arc in reciprocal space in a time-resolved manner. By synchronizing with pulsed fields, the entire field dependence of a two-dimensional swath of reciprocal space may be determined using a small number of field pulses. (C) 2012 American Institute of Physics. [doi:10.1063/1.3675478] C1 [Islam, Zahirul; Ruff, Jacob P. C.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Ross, Kate A.; Gaulin, Bruce D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Nojiri, Hiroyuki] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 980, Japan. [Gaulin, Bruce D.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4C6, Canada. [Gaulin, Bruce D.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Islam, Z (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Nojiri, Hiroyuki/B-3688-2011 FU U. S. Department of Energy (DOE), Office of Science [DE-AC02-06CH11357]; International Collaboration Center at the Institute for Materials Research (ICC-IMR) at Tohoku University; MEXT [23224009]; Natural Sciences and Engineering Research Council (NSERC) of Canada FX We appreciate R. Goldsbrough (Quantum Detectors) and A. Micelli (APS) for technical assistance with the strip detector and its control software. Use of the APS is supported by the U. S. Department of Energy (DOE), Office of Science (Contract No. DE-AC02-06CH11357). A part of the is supported by International Collaboration Center at the Institute for Materials Research (ICC-IMR) at Tohoku University. H.N. acknowledges KAKENHI No. 23224009 from MEXT. J.P.C.R., B.D.G., and K.R. acknowledge the support of Natural Sciences and Engineering Research Council (NSERC) of Canada. NR 28 TC 3 Z9 3 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JAN PY 2012 VL 83 IS 1 AR 013113 DI 10.1063/1.3675478 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 896TS UT WOS:000300594900014 PM 22299935 ER PT J AU Moon, GH Kim, HI Shin, Y Choi, W AF Moon, Gun-hee Kim, Hyoung-il Shin, Yongsoon Choi, Wonyong TI Chemical-free growth of metal nanoparticles on graphene oxide sheets under visible light irradiation SO RSC ADVANCES LA English DT Article ID CARBON NANOTUBES; NANOCOMPOSITES; REDUCTION; NANOSHEETS; SURFACES; WATER AB In the presence of silver or gold ions, visible light irradiation (> 420 nm) induces the formation of metal nanoparticles on graphene (GO) sheets without the need of any chemical reducing reagents. GO sheets serve as not only a good substrate for dispersion of metal nanoparticles but also a self-reactive material itself for the photo-induced reduction of metal ions. C1 [Moon, Gun-hee; Choi, Wonyong] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 790784, South Korea. [Kim, Hyoung-il; Choi, Wonyong] Pohang Univ Sci & Technol POSTECH, Sch Environm Sci & Engn, Pohang 790784, South Korea. [Shin, Yongsoon] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Choi, W (reprint author), Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 790784, South Korea. EM wchoi@postech.edu RI Choi, Wonyong/F-8206-2010; Kim, Hyoung-il/D-1053-2014; Moon, Gun-hee/A-3279-2017 OI Choi, Wonyong/0000-0003-1801-9386; Kim, Hyoung-il/0000-0003-4358-1442; FU Korea government (MEST through NRF) [R0A-2008-000-20068-0, 2011-0031571, NRF-2011-C1AAA001-2011-0030278] FX This work was supported by the Korea government (MEST through NRF) projects: KOSEF NRL program (No. R0A-2008-000-20068-0); the Global Frontier R&D Program on Center for Multiscale Energy System (2011-0031571); the Korea Center for Artificial Photosynthesis (KCAP: Sogang Univ.) (NRF-2011-C1AAA001-2011-0030278). NR 31 TC 14 Z9 14 U1 0 U2 15 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2012 VL 2 IS 6 BP 2205 EP 2207 DI 10.1039/c2ra00875k PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 899PN UT WOS:000300828400004 ER PT J AU Dawedeit, C Kim, SH Braun, T Worsley, MA Letts, SA Wu, KJ Walton, CC Chernov, AA Satcher, JH Hamza, AV Biener, J AF Dawedeit, Christoph Kim, Sung Ho Braun, Tom Worsley, Marcus A. Letts, Stephan A. Wu, Kuang Jen Walton, Christopher C. Chernov, Alexander A. Satcher, Joe H., Jr. Hamza, Alex V. Biener, Juergen TI Tuning the rheological properties of sols for low-density aerogel coating applications SO SOFT MATTER LA English DT Article ID POLYMERIZATION; DICYCLOPENTADIENE; FABRICATION; UNIFORMITY; FIREX AB Coating of cylindrical and spherical surfaces with thin and homogeneous low-density aerogel films requires precise control over viscosity and gel time. If the viscosity is too low, shear forces can damage the growing gel network and prevent the formation of uniform coatings. Using the example of dicyclopentadiene-based polymer gels, we demonstrate that the gelation behaviour can be manipulated by reducing the amount of cross-linking through co-polymerization with a monomer that can only form linear chains. Even small additions of a linear co-polymer (1-10 wt. %) increase the viscosity at the sol-gel transition by several orders of magnitude, and drastically improve the uniformity of gel films formed under the influence of shear. These results are discussed in the context of the classical gel theory. C1 [Dawedeit, Christoph; Kim, Sung Ho; Braun, Tom; Worsley, Marcus A.; Letts, Stephan A.; Wu, Kuang Jen; Walton, Christopher C.; Chernov, Alexander A.; Satcher, Joe H., Jr.; Hamza, Alex V.; Biener, Juergen] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. [Dawedeit, Christoph] Tech Univ Munich, D-85748 Garching, Germany. RP Dawedeit, C (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. RI Worsley, Marcus/G-2382-2014 OI Worsley, Marcus/0000-0002-8012-7727 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; TUM Faculty Graduate Center Mechanical Engineering at the Technische Universitat Munchen FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The author gratefully acknowledges the support of the TUM Faculty Graduate Center Mechanical Engineering at the Technische Universitat Munchen. NR 23 TC 11 Z9 11 U1 0 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X EI 1744-6848 J9 SOFT MATTER JI Soft Matter PY 2012 VL 8 IS 13 BP 3518 EP 3521 DI 10.1039/c2sm07396j PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 904LN UT WOS:000301198100003 ER PT J AU Haxton, TK Whitelam, S AF Haxton, Thomas K. Whitelam, Stephen TI Design rules for the self-assembly of a protein crystal SO SOFT MATTER LA English DT Article ID PHASE-SEPARATION; CRYSTALLIZATION; NUCLEATION; KINETICS; GROWTH; SUSPENSIONS; TRANSITION; BEHAVIOR; DIAGRAM; LAYERS AB Theories of protein crystallization based on spheres that form close-packed crystals predict optimal assembly within a 'slot' of second virial coefficients and enhanced assembly near the metastable liquid-vapor critical point. However, most protein crystals are open structures stabilized by anisotropic interactions. Here, we use theory and simulation to show that assembly of one such structure is not predicted by the second virial coefficient or enhanced by the critical point. Instead, good assembly requires that the thermodynamic driving force be on the order of the thermal energy and that interactions be made as nonspecific as possible without promoting liquid-vapor phase separation. C1 [Haxton, Thomas K.; Whitelam, Stephen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Whitelam, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM swhitelam@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Caroline Ajo-Franklin, Robert Jack, Behzad Rad, and Jeremy Schmit for discussions. This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, used resources of the National Energy Research Scientific Computing Center, and was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 50 TC 25 Z9 25 U1 1 U2 42 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2012 VL 8 IS 13 BP 3558 EP 3562 DI 10.1039/c2sm07436b PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 904LN UT WOS:000301198100008 ER PT J AU Rosales, AM Murnen, HK Kline, SR Zuckermann, RN Segalman, RA AF Rosales, Adrianne M. Murnen, Hannah K. Kline, Steven R. Zuckermann, Ronald N. Segalman, Rachel A. TI Determination of the persistence length of helical and non-helical polypeptoids in solution SO SOFT MATTER LA English DT Article ID SEQUENCE-SPECIFIC POLYPEPTOIDS; AROMATIC SIDE-CHAINS; SECONDARY STRUCTURE; PEPTOID OLIGOMERS; LIGHT-SCATTERING; PROTEINS; CIS; CONFORMATIONS; ISOMERIZATION; POLYMERS AB Control over the shape of a polymer chain is desirable from a materials perspective because polymer stiffness is directly related to chain characteristics such as liquid crystallinity and entanglement, which in turn are related to mechanical properties. However, the relationship between main chain helicity in novel biologically derived and inspired polymers and chain stiffness (persistence length) is relatively poorly understood. Polypeptoids, or poly(N-substituted glycines), constitute a modular, biomimetic system that enables precise tuning of chain sequence and are therefore a good model system for understanding the interrelationship between monomer structure, helicity, and persistence length. The incorporation of bulky chiral monomers is known to cause main chain helicity in polypeptoids. Here, we show that helical polypeptoid chains have a flexibility nearly identical to an analogous random coil polypeptoid as observed via small angle neutron scattering (SANS). Additionally, our findings show that polypeptoids with aromatic phenyl side chains are inherently flexible with persistence lengths ranging from 0.5 to 1 nm. C1 [Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Rosales, Adrianne M.; Murnen, Hannah K.; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Kline, Steven R.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Zuckermann, RN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov; segalman@berkeley.edu RI Zuckermann, Ronald/A-7606-2014; OI Zuckermann, Ronald/0000-0002-3055-8860; Segalman, Rachel/0000-0002-4292-5103 FU Office of Naval Research; National Science Foundation; Department of Defense; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DMR-0454672]; Office of Biological and Environmental Research; DOE [DE-AC05-00OR22725] FX We gratefully acknowledge funding from the Office of Naval Research via a Presidential Early Career Award in Science and Engineering. A.M.R. and H.K.M also gratefully acknowledge the National Science Foundation and the Department of Defense for graduate fellowships (respectively). Polypeptoid synthesis and associated chemical characterization were performed at the Molecular Foundry, a Lawrence Berkeley National Laboratory user facility supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC02-05CH11231. The neutron scattering in this work is based on activities at the NIST Center for Neutron Research, which is supported in part by the National Science Foundation under Agreement No. DMR-0454672. Certain trade names and company products are identified to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily best for the purpose. A portion of this research was also performed at Oak Ridge National Laboratory. The authors thank Dr Volker S. Urban at Oak Ridge National Laboratory for assistance on SANS data collection. The SANS studies at Oak Ridge National Laboratory's Center for Structural Molecular Biology were supported by the Office of Biological and Environmental Research, using facilities supported by the DOE, managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725. NR 38 TC 23 Z9 23 U1 3 U2 49 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2012 VL 8 IS 13 BP 3673 EP 3680 DI 10.1039/c2sm07092h PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 904LN UT WOS:000301198100022 ER PT J AU Gaire, C Rao, S Riley, M Chen, L Goyal, A Lee, S Bhat, I Lu, TM Wang, GC AF Gaire, C. Rao, S. Riley, M. Chen, L. Goyal, A. Lee, S. Bhat, I. Lu, T. -M. Wang, G. -C. TI Epitaxial growth of CdTe thin film on cube-textured Ni by metal-organic chemical vapor deposition SO THIN SOLID FILMS LA English DT Article DE Epitaxy; Cadmium telluride; Cube-textured nickel; Metal organic chemical vapor deposition; X-ray pole figures; Electron backscattered diffraction; Oriented domains ID SOLAR-CELLS; SURFACE; SPECTROSCOPY; REDUCTION; INTERFACE; HYDROGEN AB Single crystal-like CdTe thin film has been grown by metalorganic chemical vapor deposition on cube-textured Ni(100) substrate. Using X-ray pole figure measurements we observed the epitaxial relationship of {111}(CdTe)//{001}(Ni) with [1 (1) over bar0](CdTe)//[010](Ni) and [11 (2) over bar](CdTe)//[100](Ni). The 12 diffraction peaks in the (111) pole figure of CdTe film and their relative positions with respect to the four peak positions in the (111) pole figure of Ni substrate are consistent with four equivalent orientational domains of CdTe with three to four superlattice match of about 1.6% in the [1 (1) over bar0] direction of CdTe and the [010] direction of Ni. The electron backscattered diffraction images show that the CdTe domains are 30 degrees oriented from each other. These high structural quality films may find applications in low cost optoelectronic devices. (C) 2011 Elsevier B.V. All rights reserved. C1 [Gaire, C.; Chen, L.; Lu, T. -M.; Wang, G. -C.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Rao, S.; Bhat, I.] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA. [Riley, M.] Rensselaer Polytech Inst, Dept Chem & Biol Engn, Troy, NY 12180 USA. [Goyal, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lee, S.] USA, ARDEC Benet Labs, Watervliet, NY 12189 USA. RP Wang, GC (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. EM wangg@rpi.edu RI chen, liang/L-9868-2013 OI chen, liang/0000-0002-1680-2628 FU NSF [0506738, 0333314, 0828401] FX This work was supported by NSF 0506738, NSF 0333314, and NSF 0828401. We thank Tom Parker for help in experiments. NR 21 TC 11 Z9 11 U1 0 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JAN 1 PY 2012 VL 520 IS 6 BP 1862 EP 1865 DI 10.1016/j.tsf.2011.09.019 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 894WW UT WOS:000300459200034 ER PT J AU Smith, RS Petrik, NG Kimmel, GA Kay, BD AF Smith, R. Scott Petrik, Nikolay G. Kimmel, Greg A. Kay, Bruce D. TI Thermal and Nonthermal Physiochemical Processes in Nanoscale Films of Amorphous Solid Water SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID ELECTRON-STIMULATED PRODUCTION; LIQUID WATER; 150 K; CRYSTALLIZATION KINETICS; MOLECULAR-HYDROGEN; SELF-DIFFUSIVITY; ICE; ENERGY; PT(111); DESORPTION AB Amorphous solid water (ASW) is a disordered version of ice created by vapor deposition onto a cold substrate (typically less than 130 K). It has a higher free energy than the crystalline phase of ice, and when heated above its glass transition temperature, it transforms into a metastable supercooled liquid. This unusual form of water exists on earth only in laboratories, after preparation with highly specialized equipment. It is thus fair to ask why there is any interest in studying such an esoteric material. Much of the scientific interest results from the ability to use ASW as a model system for exploring the physical and reactive properties of liquid water and aqueous solutions. ASW is also thought to be the predominant form of water in the extremely cold temperatures of many interstellar and planetary environments. In addition, ASW is a convenient model system for studying the stability of amorphous and glassy materials as well as the properties of highly porous materials. A fundamental understanding of such properties is invaluable in a diverse range of applications, including cryobiology, food science, pharmaceuticals, astrophysics, and nuclear waste storage, among others. Over the past 15 years, we have used molecular beams and surface science techniques to probe the thermal and nonthermal properties of nanoscale films of ASW. In this Account, we present a survey of our research on the properties of ASW using this approach. We use molecular beams to precisely control the deposition conditions (flux, incident energy, and incident angle) and create compositionally tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity and diffusivity), we heat the amorphous films above their glass transition temperature, T-g, at which they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near T-g, the viscosity is approximately 15 orders of magnitude larger than that of a normal liquid. As a result, the crystallization kinetics are dramatically slowed, increasing the time available for experiments. For example, near T-g, a water molecule moves less than the distance of a single molecule on a typical laboratory time scale (similar to 1000 s). For this reason, nanoscale films help to probe the behavior and reactions of supercooled liquids at these low temperatures. ASW films can also be used for investigating the nonthermal reactions relevant to radiolysis. C1 [Smith, R. Scott; Petrik, Nikolay G.; Kimmel, Greg A.; Kay, Bruce D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Smith, RS (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM Scott.Smith@pnl.gov; Nikolai.Petrik@pnl.gov; Greg.Kimmel@pnl.gov; Bruce.Kay@pnl.gov RI Smith, Scott/G-2310-2015; Petrik, Nikolay/G-3267-2015; OI Smith, Scott/0000-0002-7145-1963; Petrik, Nikolay/0000-0001-7129-0752; Kimmel, Greg/0000-0003-4447-2440 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; DOE'S Office of Biological and Environmental Research [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The research was performed using EMSL, a national scientific user facility sponsored by DOE'S Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. DOE under Contract DE-AC05-76RL01830. NR 51 TC 28 Z9 28 U1 6 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD JAN PY 2012 VL 45 IS 1 SI SI BP 33 EP 42 DI 10.1021/ar200070w PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 902ZT UT WOS:000301083400005 PM 21627126 ER PT J AU Asmis, KR Neumark, DM AF Asmis, Knut R. Neumark, Daniel M. TI Vibrational Spectroscopy of Microhydrated Conjugate Base Anions SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID DOUBLY-CHARGED ANION; PHOTOELECTRON-SPECTROSCOPY; DICARBOXYLATE DIANIONS; INFRARED-SPECTROSCOPY; GAS-PHASE; IONS; WATER; HYDRATION; CLUSTERS; SPECIATION AB Conjugate-base anions are ubiquitous in aqueous solution. Understanding the hydration of these anions at the molecular level represents a long-standing goal in chemistry. A molecular-level perspective on ion hydration is also important for understanding the surface spedation and reactivity of aerosols, which are a central component of atmospheric and oceanic chemical cycles. In this Account, as a means of studying conjugate-base anions in water, we describe infrared multiple-photon dissociation spectroscopy on clusters in which the sulfate, nitrate, bicarbonate, and suberate anions are hydrated by a known number of water molecules. This spectral technique, used over the range of 550-1800 cm(-1), serves as a structural probe of these clusters. The experiments follow how the solvent network around the conjugate-base anion evolves, one water molecule at a time. We make structural assignments by comparing the experimental infrared spectra to those obtained from electronic structure calculations. Our results show how changes in anion structure, symmetry, and charge state have a profound effect on the structure of the solvent network. Conversely, they indicate how hydration can markedly affect the structure of the anion core in a microhydrated cluster. Some key results include the following. The first few water molecules bind to the anion terminal oxo groups in a bridging fashion, forming two anion-water hydrogen bonds. Each oxo group can form up to three hydrogen bonds; one structural result, for example, is the highly symmetric, fully coordinated SO42-(H2O)(6) cluster, which only contains bridging water molecules. Adding more water molecules results in the formation of a solvent network comprising water-water hydrogen bonding in addition to hydrogen bonding to the anion. For the nitrate, bicarbonate, and suberate anions, fewer bridging sites are available, namely, three, two, and one (per carboxylate group), respectively. As a result, an earlier onset of water-water hydrogen bonding is observed. When there are more than three hydrating water molecules (n>3), the formation of a particularly stable four-membered water ring is observed for hydrated nitrate and bicarbonate clusters. This ring binds in either a side-on (bicarbonate) or top-on (nitrate) fashion. In the case of bicarbonate, additional water molecules then add to this water ring rather than directly to the anion, indicating a preference for surface hydration. In contrast, doubly charged sulfate dianions are internally hydrated and characterized by the dosing of the first hydration shell at n = 12. The situation is different for the -O2C(CH2)(6)CO2- (suberate) dianion, which adapts to the hydration network by changing from a linear to a folded structure at n>15. This change is driven by the formation of additional solute-solvent hydrogen bonds. C1 [Asmis, Knut R.] Fritz Haber Inst Max Planck Gesell, D-14195 Berlin, Germany. [Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Asmis, KR (reprint author), Fritz Haber Inst Max Planck Gesell, Faradayweg 4-6, D-14195 Berlin, Germany. EM asmis@fhi-berlin.mpg.de; dneumark@berkeley.edu RI Asmis, Knut/N-5408-2014 OI Asmis, Knut/0000-0001-6297-5856 FU European Community; Air Force Office of Scientific Research [F49620-03-1-0085] FX We thank the Stichting voor Fundamenteel Onderzoek der Matere (FOM) for beam time and the staff for support and assistance. This research is funded by the European Community's Seventh Framework Programme (FP7/2007-2013) Grant No. 226716, and by the Air Force Office of Scientific Research under Grant No. F49620-03-1-0085. NR 48 TC 49 Z9 49 U1 3 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD JAN PY 2012 VL 45 IS 1 SI SI BP 43 EP 52 DI 10.1021/ar2000748 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 902ZT UT WOS:000301083400006 PM 21675714 ER PT J AU Faubel, M Siefermann, KR Liu, Y Abel, B AF Faubel, M. Siefermann, K. R. Liu, Y. Abel, B. TI Ultrafast Soft X-ray Photoelectron Spectroscopy at Liquid Water Microjets SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID HYDRATED ELECTRON; DYNAMICS; CLUSTERS; PHASE; BOND; PHOTOEMISSION; EVAPORATION; IONIZATION; MOLECULES; BEAM AB Since the pioneering work of Kai Siegbahn, electron spectroscopy for chemical analysis (ESCA) has been developed into an indispensable analytical technique for surface science. The value of this powerful method of photoelectron spectroscopy (PES, also termed photoemission spectroscopy) and Siegbahn's contributions were recognized in the 1981 Nobel Prize in Physics. The need for high vacuum, however, originally prohibited PES of , volatile liquids, and only allowed for investigation of low-vapor-pressure molecules attached to a surface (or dose to a surface) or liquid films of low volatility. Only with the invention of liquid beams of volatile liquids compatible with high-vacuum conditions was PES from liquid surfaces under vacuum made feasible. Because of the ubiquity of water interfaces in nature, the liquid water vacuum interface became a most attractive research topic, particularly over the past 10 years. PES studies of these important aqueous interfaces remained significantly challenging because of the need to develop high-pressure PES methods. For decades, ESCA or PES (termed XPS, for X-ray photoelectron spectroscopy, in the case of soft X-ray photons) was restricted to conventional laboratory X-ray sources or beamlines in synchrotron facilities. This approach enabled frequency domain measurements, but with poor time resolution. Indirect access to time-resolved processes in the condensed phase was only achieved if line-widths could be analyzed or if processes could be related to a fast clock, that is, reference processes that are fast enough and are also well understood in the condensed phase. Just recently, the emergence of high harmonic light sources, providing short-wavelength radiation in ultrashort light pulses, added the dimension of time to the classical ESCA or XPS technique and opened the door to (soft) X-ray photoelectron spectroscopy with ultrahigh time resolution. The combination of high harmonic light sources (providing radiation with laserlike beam qualities) and liquid microjet technology recently enabled the first liquid interface PES experiments in the IR/UV-pump and extreme ultraviolet-probe (EUV-probe) configuration. In this Account, we highlight features of the technology and a number of recent applications, including extreme states of matter and the discovery and detection of short-lived transients of the solvated electron in water. Properties of the EUV radiation, such as its controllable polarization and features of the liquid microjet, will enable unique experiments in the near future. PES measures electron binding energies and angular distributions of photoelectrons, which comprise unique information about electron orbitals and their involvement in chemical bonding. One of the future goals is to use this information to trace molecular orbitals, over time, in chemical reactions or biological transformations. C1 [Liu, Y.; Abel, B.] Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, D-04103 Leipzig, Germany. [Faubel, M.] Univ Gottingen, Max Planck Inst Dynamik & Selbstorg, D-37073 Gottingen, Germany. [Siefermann, K. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Abel, B (reprint author), Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, Linnestr 2, D-04103 Leipzig, Germany. EM bernd.abel@uni-leipzig.de FU Graduate School 782 of the DFG; [SPP1134]; [SFB 755] FX Financial support from the SPP1134, the SFB 755, and the Graduate School 782 of the DFG is gratefully achnowledged. NR 48 TC 36 Z9 36 U1 9 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD JAN PY 2012 VL 45 IS 1 SI SI BP 120 EP 130 DI 10.1021/ar200154w PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 902ZT UT WOS:000301083400014 PM 22075058 ER PT J AU Oakes, M Weber, RJ Lai, B Russell, A Ingall, ED AF Oakes, M. Weber, R. J. Lai, B. Russell, A. Ingall, E. D. TI Characterization of iron speciation in urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence measurements: investigating the relationship between speciation and fractional iron solubility SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MINERAL DUST; PARTICULATE MATTER; CHEMICAL-COMPOSITION; ATMOSPHERIC AEROSOL; TRANSITION-METALS; OXIDATIVE STRESS; EPITHELIAL-CELLS; IN-VITRO; NANOPARTICLES; OCEAN AB Soluble iron in fine atmospheric particles has been identified as a public health concern by participating in reactions that generate reactive oxygen species (ROS). The mineralogy and oxidation state (speciation) of iron have been shown to influence fractional iron solubility (soluble iron/total iron). In this study, iron speciation was determined in single particles at urban and rural sites in Georgia USA using synchrotron-based techniques, such as X-ray Absorption Near-Edge Structure (XANES) spectroscopy and microscopic X-ray fluorescence measurements. Soluble and total iron content (soluble + insoluble iron) of these samples was measured using spectrophotometry and synchrotron-based techniques, respectively. These bulk measurements were combined with synchrotron-based measurements to investigate the relationship between iron speciation and fractional iron solubility in ambient aerosols. XANES measurements indicate that iron in the single particles was present as a mixture of Fe(II) and Fe(III), with Fe(II) content generally between 5 and 35% (mean: similar to 25 %). XANES and elemental analyses (e. g. elemental molar ratios of single particles based on microscopic X-ray fluorescence measurements) indicate that a majority (74 %) of iron-containing particles are best characterized as Al-substituted Fe-oxides, with a Fe/Al molar ratio of 4.9. The next most abundant group of particles (12 %) was Fe-aluminosilicates, with Si/Al molar ratio of 1.4. No correlation was found between fractional iron solubility (soluble iron/total iron) and the abundance of Al-substituted Fe-oxides and Fe-aluminosilicates present in single particles at any of the sites during different seasons, suggesting solubility largely depended on factors other than differences in major iron phases. C1 [Oakes, M.; Weber, R. J.; Ingall, E. D.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Lai, B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Russell, A.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. RP Oakes, M (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM michelle.oakes@eas.gatech.edu RI Ingall, Ellery/A-5447-2008 OI Ingall, Ellery/0000-0003-1954-0317 FU U.S. National Science Foundation [ATM-0802237]; Environmental Protection Agency [RD-83283501] FX Financial support was provided by from the U.S. National Science Foundation through grant ATM-0802237 and the Environmental Protection Agency STAR Research Grant RD-83283501. The views expressed in this manuscript are solely those of the authors and EPA does not endorse any of the products or commercial services mentioned in the publication. NR 43 TC 35 Z9 35 U1 5 U2 59 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2012 VL 12 IS 2 BP 745 EP 756 DI 10.5194/acp-12-745-2012 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 892YL UT WOS:000300321500009 ER PT J AU Matsui, N Long, CN Augustine, J Halliwell, D Uttal, T Longenecker, D Niebergall, O Wendell, J Albee, R AF Matsui, N. Long, C. N. Augustine, J. Halliwell, D. Uttal, T. Longenecker, D. Niebergall, O. Wendell, J. Albee, R. TI Evaluation of Arctic broadband surface radiation measurements SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID ENERGY BUDGET; EARTHS; INSTRUMENTATION; CLOUDS; ICE AB The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed. C1 [Matsui, N.; Longenecker, D.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Matsui, N.; Augustine, J.; Uttal, T.; Longenecker, D.; Wendell, J.; Albee, R.] Natl Ocean & Atmospher Adm, Boulder, CO USA. [Halliwell, D.; Niebergall, O.] Environm Canada, Regina, SK, Canada. [Long, C. N.] Pacific NW Lab, Richland, WA USA. [Albee, R.] Sci Technol Corp, Boulder, CO USA. RP Matsui, N (reprint author), Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM nobuki.matsui@colorado.edu FU NOAA/GMD; NOAA SEARCH; Office of Biological and Environmental Research (OBER) of the US Department of Energy (DOE) FX The authors thank Dutton, E., and Michalsky, J. (NOAA/GMD) and McArthur, L. J. B. for their expertise, support and encouragement. We salute all the hard work by CANDAC and Environment Canada operators in Eureka. This work was supported by the NOAA SEARCH program and the Office of Biological and Environmental Research (OBER) of the US Department of Energy (DOE) as part of the Atmospheric System Research (ASR) Program. NR 34 TC 4 Z9 4 U1 1 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2012 VL 5 IS 2 BP 429 EP 438 DI 10.5194/amt-5-429-2012 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 900HD UT WOS:000300876700012 ER PT J AU Schneider, J Jia, HF Muckerman, JT Fujita, E AF Schneider, Jacob Jia, Hongfei Muckerman, James T. Fujita, Etsuko TI Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts SO CHEMICAL SOCIETY REVIEWS LA English DT Review ID CARBON-DIOXIDE ACTIVATION; SOLVATION FREE-ENERGIES; INITIO MO/SD-CI; AQUEOUS-SOLUTION; ELECTROCATALYTIC REDUCTION; ELECTROCHEMICAL REDUCTION; COBALT(I) MACROCYCLE; NICKEL(II) COMPLEXES; CRYSTAL-STRUCTURES; ELECTRON-TRANSFER AB In our developing world, carbon dioxide has become one of the most abundant greenhouse gases in the atmosphere. It is a stable, inert, small molecule that continues to present significant challenges toward its chemical activation as a useful carbon end product. This tutorial review describes one approach to the reduction of carbon dioxide to carbon fuels, using cobalt and nickel molecular catalysts, with particular focus on studying the thermodynamics and kinetics of CO2 binding to metal catalytic sites. C1 [Schneider, Jacob; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Jia, Hongfei] Toyota Motor Engn & Mfg N Amer Inc, Toyota Res Inst N Amer, Mat Res Dept, Ann Arbor, MI 48105 USA. RP Schneider, J (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM jschneider@bnl.gov; fujita@bnl.gov RI Muckerman, James/D-8752-2013; Fujita, Etsuko/D-8814-2013 FU U.S. Department of Energy [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences under its Solar Energy Utilization initiative; Toyota Motor Engineering & Manufacturing of North America, Inc. FX We thank Dr Carol Creutz in the Chemistry Department at Brookhaven National Laboratory (BNL) for her careful reading of the manuscript and suggestions. We thank Dr David J. Szalda at Baruch College, CUNY, for making the ORTEP diagram in Fig. 8. The work at BNL is funded under contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences under its Solar Energy Utilization initiative. We also thank Toyota Motor Engineering & Manufacturing of North America, Inc., for funding for the CO2 utilization research via a Cooperative Research and Development Agreement (CRADA). NR 62 TC 140 Z9 142 U1 46 U2 336 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0306-0012 J9 CHEM SOC REV JI Chem. Soc. Rev. PY 2012 VL 41 IS 6 BP 2036 EP 2051 DI 10.1039/c1cs15278e PG 16 WC Chemistry, Multidisciplinary SC Chemistry GA 899EI UT WOS:000300797700003 PM 22167246 ER PT J AU Liu, J Thallapally, PK McGrail, BP Brown, DR Liu, J AF Liu, Jian Thallapally, Praveen K. McGrail, B. Peter Brown, Daryl R. Liu, Jun TI Progress in adsorption-based CO2 capture by metal-organic frameworks SO CHEMICAL SOCIETY REVIEWS LA English DT Review ID CARBON-DIOXIDE CAPTURE; ZEOLITIC IMIDAZOLATE FRAMEWORKS; HENRYS LAW REGION; GAS-ADSORPTION; MOLECULAR SIMULATION; CU-BTC; HYDROGEN STORAGE; COORDINATION POLYMERS; SWING ADSORPTION; ACTIVATED CARBON AB Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, large surface areas, and potential applications as novel adsorbents. The recent progress in adsorption-based CO2 capture by MOFs is reviewed and summarized in this critical review. CO2 adsorption in MOFs has been divided into two sections, adsorption at high pressures and selective adsorption at approximate atmospheric pressures. Keys to CO2 adsorption in MOFs at high pressures and low pressures are summarized to be pore volumes of MOFs, and heats of adsorption, respectively. Many MOFs have high CO2 selectivities over N-2 and CH4. Water effects on CO2 adsorption in MOFs are presented and compared with benchmark zeolites. In addition, strategies appeared in the literature to enhance CO2 adsorption capacities and/or selectivities in MOFs have been summarized into three main categories, catenation and interpenetration, chemical bonding enhancement, and electrostatic force involvement. Besides the advantages, two main challenges of using MOFs in CO2 capture, the cost of synthesis and the stability toward water vapor, have been analyzed and possible solutions and path forward have been proposed to address the two challenges as well (150 references). C1 [Liu, Jian; Thallapally, Praveen K.; McGrail, B. Peter; Brown, Daryl R.; Liu, Jun] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Thallapally, PK (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM Praveen.Thallapally@pnnl.gov RI Liu, Jian/D-3393-2009; thallapally, praveen/I-5026-2014; Liu, Jian/C-4707-2011 OI Liu, Jian/0000-0001-5329-7408; thallapally, praveen/0000-0001-7814-4467; Liu, Jian/0000-0001-5329-7408 FU Laboratory Direct Research; U.S. Department of Energy, Office of Fossil Energy; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; U.S. Department of Energy [DE-AC05-76RL01830] FX Jian Liu would like to thank Prof. M. Douglas LeVan at Vanderbilt University for introducing him into gas adsorption in MOFs research. We would like to thank Laboratory Direct Research and U.S. Department of Energy, Office of Fossil Energy for financial support. In addition we would like to thank U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award KC020105-FWP12152. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 146 TC 559 Z9 567 U1 79 U2 739 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0306-0012 EI 1460-4744 J9 CHEM SOC REV JI Chem. Soc. Rev. PY 2012 VL 41 IS 6 BP 2308 EP 2322 DI 10.1039/c1cs15221a PG 15 WC Chemistry, Multidisciplinary SC Chemistry GA 899EI UT WOS:000300797700017 PM 22143077 ER PT J AU Nancharaiah, YV Venugopalan, VP Francis, AJ AF Nancharaiah, Y. Venkata Venugopalan, V. P. Francis, A. J. TI Removal and biotransformation of U(VI) and Cr(VI) by aerobically grown mixed microbial granules SO DESALINATION AND WATER TREATMENT LA English DT Article DE Aerobic microbial granules; Aerobic granular sludge; Aerobic granules; Biosorption; Biotransformation; Bioremediation; Cr(VI) reduction; Uranium (VI) ID SEQUENCING BATCH REACTOR; SLUDGE; REDUCTION; IMMOBILIZATION; BIOFILMS; CHROMATE; URANIUM AB We assessed the potential of aerobic granular sludge consisting of mixed species of bacteria to remove and immobilize uranium (VI) and chromium (VI). Microbial granules were cultivated in a laboratory sequencing batch reactor (SBR) by feeding with acetate-containing synthetic media. Microbial granules formed in the SBR exhibited excellent settling characteristics and predominantly consisted of rod/cocci shaped bacteria. The microbial granules immobilized 218 +/- 2 mg of U(VI) g(-1) dry granular biomass. X-ray photoelectron spectroscopy (XPS) showed the association of U(VI) with the microbial granules and transformation of U(VI) to U(IV). Microbial granules reduced Cr(VI) and immobilized to Cr(III) at 0.17 mmoles/d/g under anaerobic conditions. X-ray absorption near edge spectroscopy (XANES) of chromium associated with microbial granules revealed complete conversion of Cr(VI) to Cr(III). Extended X-ray absorption fi ne structure (EXAFS) analysis of the Cr-laden microbial granules showed similarity to Cr(III)-phosphate. This study demonstrates the biotransformation and immobilization of U(VI) and Cr(VI) by mixed species microbial granules. C1 [Nancharaiah, Y. Venkata; Venugopalan, V. P.] Bhabha Atom Res Ctr, Water & Steam Chem Div, Chem Grp, Biofouling & Biofilm Proc Sect, Kalpakkam 603102, Tamil Nadu, India. [Francis, A. J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Francis, A. J.] POSTECH, Div Adv Nucl Engn, Pohang, South Korea. RP Nancharaiah, YV (reprint author), Bhabha Atom Res Ctr, Water & Steam Chem Div, Chem Grp, Biofouling & Biofilm Proc Sect, Kalpakkam 603102, Tamil Nadu, India. EM venkatany@gmail.com FU American Society for Microbiology (ASM); WCU (World Class University) through the National Research Foundation of Korea; Ministry of Education, Science and Technology [R31 - 30005] FX Authors thank S. Bera, Bhabha Atomic Research Centre, Kalpakkam for XPS analysis and C.J. Dodge, Brookhaven National Laboratory, Upton for XANES/EXAFS analysis. YVN acknowledges American Society for Microbiology (ASM) for Indo-US Visiting Research Professorship Award. This research was in part supported by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31 - 30005). NR 17 TC 5 Z9 7 U1 3 U2 19 PU DESALINATION PUBL PI HOPKINTON PA 36 WALCOTT VALLEY DRIVE,, HOPKINTON, MA 01748 USA SN 1944-3994 J9 DESALIN WATER TREAT JI Desalin. Water Treat. PD JAN PY 2012 VL 38 IS 1-3 BP 90 EP 95 DI 10.5004/dwt.2012.2315 PG 6 WC Engineering, Chemical; Water Resources SC Engineering; Water Resources GA 900TA UT WOS:000300911400013 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baron-Celli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinnia, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Ceveninia, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Cioccaa, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S De Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dean, S Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luisea, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A DosAnjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, A Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Hen, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Jovin, T Ju, X Juranek, V Jussel, P Rozas, AJ Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Keung, J Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG Mc-Cubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Moenig, K Moser, N Mohapatra, S Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforou, N Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randle-Conde, AS Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tian, F Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G Von der Schmitt, H Von Loeben, J Von Radziewski, H Von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A Nedden, MZ Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baron-Celli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinnia, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Ceveninia, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Cioccaa, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. De Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luisea, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. DosAnjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J. -C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K. -J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Hen, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J. -Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Irles Quiles, A. Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Jovin, T. Ju, X. Juranek, V. Jussel, P. Rozas, A. Juste Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Keung, J. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J. -R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Martins, P. J. Magalhaes Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. Mc-Cubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Verge, L. Miralles Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Paige, F. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Cavalcanti, T. Codina, E. Perez Perez Garcia-Estan, M. T. Perez Reale, V. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randle-Conde, A. S. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. Von der Schmitt, H. Von Loeben, J. Von Radziewski, H. Von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W-M. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. Nedden, M. Zur Zutshi, V. Zwalinski, L. CA Atlas Collaboration TI Performance of missing transverse momentum reconstruction in proton-proton collisions at root s=7 TeV with ATLAS SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article AB The measurement of missing transverse momentum in the ATLAS detector, described in this paper, makes use of the full event reconstruction and a calibration based on reconstructed physics objects. The performance of the missing transverse momentum reconstruction is evaluated using data collected in pp collisions at a centre-of-mass energy of 7 TeV in 2010. Minimum bias events and events with jets of hadrons are used from data samples corresponding to an integrated luminosity of about 0.3 nb(-1) and 600 nb(-1) respectively, together with events containing a Z boson decaying to two leptons (electrons or muons) or a W boson decaying to a lepton (electron or muon) and a neutrino, from a data sample corresponding to an integrated luminosity of about 36 pb(-1). An estimate of the systematic uncertainty on the missing transverse momentum scale is presented. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; Von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Dhullipudi, R.; Ernst, J.; Greenwood, Z. D.; Rojo, V.; Sawyer, L.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Apolle, R.; Davies, E.; Mattravers, C.; Nash, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk; Yilmaz, M.] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vaque, F. Vives; Vorwerk, V.] Inst Fis Altes Energies, Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vaque, F. Vives; Vorwerk, V.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vaque, F. Vives; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Jovin, T.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Hackenburg, R.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Griso, S. Pagan; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Nedden, M. Zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Haefner, P.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Cioccaa, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Cioccaa, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; Von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hadavand, H. K.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J. -C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Gray, H. M.; Grognuz, J.; Haber, C.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stewart, G. A.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Perez Reale, V.; Tian, F.; Tuts, P. M.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, INFN Grp Coll Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadley, D. R.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Randle-Conde, A. S.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K. -J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K. -J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Friedrich, F.; Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. Fachhsch Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Garcia Navarro, J. E.; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Iacobucci, G.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380060 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Annovi, A.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, CNRS, IN2P3, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Childers, J. T.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-6900 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Mete, A. S.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kishimoto, T.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Suzuki, Y.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Haas, A.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pueschel, E.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Simoniello, R.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Univ Milan, Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Simoniello, R.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; De Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Hahn, F.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stonjek, S.; Von der Schmitt, H.; Von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Ceveninia, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Univ Naples Federico II, Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Ceveninia, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fisiche, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lavorato, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Cambiaghi, M.; Conta, C.; Ferrari, R.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Univ Pavia, Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinnia, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinnia, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Abdesselam, A.; Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; Mc-Cubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baron-Celli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luisea, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Univ Roma Tre, Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luisea, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Phys, Marrakech 40000, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Xu, C.; Yu, J.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondamentales Univers, F-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, S.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Jankowski, E.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Ist Nazl Fis Nucl, Grp Coll Udine, Trieste, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; DosAnjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Hen, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Villeurbanne, France. [Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Carvalho, J.; Fiolhais, M. C. N.; Martins, P. J. Magalhaes; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Greenwood, Z. D.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Guler, H.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Bold, T.; Grabowska-Bold, I.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; la rotonda, laura/B-4028-2016; Idzik, Marek/A-2487-2017; Mashinistov, Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Solfaroli Camillocci, Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Villa, Mauro/C-9883-2009; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Amorim, Antonio/C-8460-2013; Vanyashin, Aleksandr/H-7796-2013; La Rosa, Alessandro/I-1856-2013; Casadei, Diego/I-1785-2013; Ishikawa, Akimasa/G-6916-2012; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Rotaru, Marina/A-3097-2011; Wolter, Marcin/A-7412-2012; Bergeaas Kuutmann, Elin/A-5204-2013; messina, andrea/C-2753-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Stoicea, Gabriel/B-6717-2011; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Gutierrez, Phillip/C-1161-2011; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Giordano, Raffaele/J-3695-2012; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; valente, paolo/A-6640-2010; Ferrando, James/A-9192-2012; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Doyle, Anthony/C-5889-2009; Fazio, Salvatore /G-5156-2010; Smirnova, Lidia/D-8089-2012; Sivoklokov, Sergey/D-8150-2012; Smirnov, Sergei/F-1014-2011 OI Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Anjos, Nuno/0000-0002-0018-0633; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; De Lotto, Barbara/0000-0003-3624-4480; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Prokoshin, Fedor/0000-0001-6389-5399; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Rotaru, Marina/0000-0003-3303-5683; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Stoicea, Gabriel/0000-0002-7511-4614; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Gladilin, Leonid/0000-0001-9422-8636; Barreiro, Fernando/0000-0002-3021-0258; valente, paolo/0000-0002-5413-0068; Ferrando, James/0000-0002-1007-7816; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Doyle, Anthony/0000-0001-6322-6195; Smirnov, Sergei/0000-0002-6778-073X FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 27 TC 21 Z9 21 U1 4 U2 47 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2012 VL 72 IS 1 AR 1844 DI 10.1140/epjc/s10052-011-1844-6 PG 35 WC Physics, Particles & Fields SC Physics GA 897FM UT WOS:000300631800020 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Alessan-Driaa, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andari, N Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chislett, RT Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L Branco, MDO De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dean, S Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M Della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luisea, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dieli, MV Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlischa, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heine, K Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Jen-La Plante, I Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jonanda, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Keung, J Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lapin, VV Laplace, S Lapoire, C Laporte, JF Laria, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquima, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzonia, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarellia, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, M Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Radora, T Ragus, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rensch, B Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltranaa, DR Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santosa, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Selldena, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolina, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighia, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, H Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessan-Driaa, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andari, N. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chislett, R. T. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Mello, A. Da Rocha Gesualdi Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. Della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luisea, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dieli, M. V. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlischa, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heine, K. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Irles Quiles, A. Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Jen-La Plante, I. Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jonanda, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Keung, J. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Laria, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquima, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzonia, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarellia, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M-C. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oye, O. K. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Radora, T. Ragus, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rensch, B. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltranaa, D. Romero Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santosa, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Selldena, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelina, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighia, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, Hs. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Viti, M. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W-M. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Performance of the ATLAS Trigger System in 2010 SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID COLLISIONS; SEARCH; LHC AB Proton-proton collisions at root s = 7 TeV and heavy ion collisions at root(NN)-N-s = 2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. A brief outline of plans for the trigger system in 2011 is presented. C1 [Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Dahlhoff, A.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Dhullipudi, R.; Ernst, J.; Greenwood, Z. D.; Rojo, V.; Sawyer, L.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Pinfold, J. L.; Soni, N.; Subramania, Hs.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Grybel, K.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Istin, S.; Ozcan, V. E.; Radora, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarellia, A.; Monzani, S.; Piccinini, M.; Polini, A.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighia, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Milan, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarellia, A.; Monzani, S.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Mello, A. Da Rocha Gesualdi; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquima, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, RJ, Brazil. Fed Univ Juiz de Fora UFJF, Juiz De Fora, MG, Brazil. Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, MG, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Banfi, D.; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Grognuz, J.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stewart, G. A.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Jen-La Plante, I.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltranaa, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Milan, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Heine, K.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Heine, K.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Griesmayer, E.] Fachhochschule Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Abdesselam, A.; Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Iacobucci, G.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Morone, M-C.; Nektarijevic, S.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Milan, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Davygora, Y.; Dieli, M. V.; Dietzsch, T. A.; Foehlischa, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res, JINR Dubna, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] Natl Lab High Energy Phys, KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Cazzato, A.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Prudent, X.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Prudent, X.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Sherman, D.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Llorente Merino, J.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Linnemann, J. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wu, Y.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessan-Driaa, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Laria, T.; Lazzaro, A.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragus, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragus, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Guler, H.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Itoh, Y.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; Della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Abdesselam, A.; Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Crescioli, F.; Dotti, A.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Abi, B.; Crescioli, F.; Dotti, A.; Khanov, A.; Reinsch, A.; Rizatdinova, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sakamoto, H.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sakamoto, H.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Buszello, C. P.; Ekelof, T.; Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Abdesselam, A.; Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzonia, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzonia, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santosa, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Artoni, G.; Bacci, C.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bacci, C.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Baroncelli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luisea, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Biglietti, M.; Ceradini, F.; Di Luisea, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci, Semlalia Dept Phys, Marrakech 40000, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Xu, C.; Yu, J.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Lowe, A. J.; Miller, D. W.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jonanda, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Selldena, B.; Silverstein, S. B.; Sjoelina, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jonanda, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelina, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Potter, C. J.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, H.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, D.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bobbink, G. J.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Keung, J.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingenier Elect, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Astbury, A.; Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hamacher, K.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, Ctr Calcul, IN2P3, Domaine Sci Doua, Villeurbanne, France. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, CFNUL, Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Carvalho, J.; Fiolhais, M. C. N.; Magalhaes Martins, P. J.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. Louisiana Tech Univ, Ruston, LA 71270 USA. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, D.; Meng, Z.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Mateos, D. Lopez; Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Pina, Joao /C-4391-2012; Amorim, Antonio/C-8460-2013; Vanyashin, Aleksandr/H-7796-2013; La Rosa, Alessandro/I-1856-2013; Casadei, Diego/I-1785-2013; Ishikawa, Akimasa/G-6916-2012; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Rotaru, Marina/A-3097-2011; Wolter, Marcin/A-7412-2012; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Stoicea, Gabriel/B-6717-2011; Brooks, William/C-8636-2013; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Gutierrez, Phillip/C-1161-2011; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Giordano, Raffaele/J-3695-2012; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Villa, Mauro/C-9883-2009; Fazio, Salvatore /G-5156-2010; Smirnova, Lidia/D-8089-2012; Sivoklokov, Sergey/D-8150-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; valente, paolo/A-6640-2010; Ferrando, James/A-9192-2012; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012; Britton, David/F-2602-2010; Barreiro, Fernando/D-9808-2012; Li, Xuefei/C-3861-2012; Doyle, Anthony/C-5889-2009; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; KHODINOV, ALEKSANDR/D-6269-2015; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Idzik, Marek/A-2487-2017; Mashinistov, Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Fullana Torregrosa, Esteban/A-7305-2016; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; McKee, Shawn/B-6435-2012; Grinstein, Sebastian/N-3988-2014; la rotonda, laura/B-4028-2016; OI Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Rotaru, Marina/0000-0003-3303-5683; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Stoicea, Gabriel/0000-0002-7511-4614; Brooks, William/0000-0001-6161-3570; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; valente, paolo/0000-0002-5413-0068; Ferrando, James/0000-0002-1007-7816; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Barreiro, Fernando/0000-0002-3021-0258; Doyle, Anthony/0000-0001-6322-6195; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Prokoshin, Fedor/0000-0001-6389-5399; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Troncon, Clara/0000-0002-7997-8524; Bailey, David C/0000-0002-7970-7839; Cataldi, Gabriella/0000-0001-8066-7718; Evans, Harold/0000-0003-2183-3127; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Nielsen, Jason/0000-0002-9175-4419; Adye, Tim/0000-0003-0627-5059; Grancagnolo, Francesco/0000-0002-9367-3380; Dell'Asta, Lidia/0000-0002-9601-4225; Chen, Hucheng/0000-0002-9936-0115; Sawyer, Lee/0000-0001-8295-0605; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Begel, Michael/0000-0002-1634-4399; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Vari, Riccardo/0000-0002-2814-1337; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; McKee, Shawn/0000-0002-4551-4502; Nisati, Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Mincer, Allen/0000-0002-6307-1418; Grinstein, Sebastian/0000-0002-6460-8694; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; De Lotto, Barbara/0000-0003-3624-4480; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Casadei, Diego/0000-0002-3343-3529; Vivarelli, Iacopo/0000-0003-0097-123X; MARTINEZ, MARIO/0000-0002-3135-945X; Della Volpe, Domenico/0000-0001-8530-7447; Salvatore, Fabrizio/0000-0002-3709-1554; Cranmer, Kyle/0000-0002-5769-7094; Romero-Maltrana, Diego/0000-0003-2550-5243; Klinkby, Esben Bryndt/0000-0002-1908-5644; Pomarede, Daniel/0000-0003-2038-0488; Orellana, Frederik/0000-0001-7614-3882; Vos, Marcel/0000-0001-8474-5357; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Farrington, Sinead/0000-0001-5350-9271; Turra, Ruggero/0000-0001-8740-796X; Robson, Aidan/0000-0002-1659-8284; Canelli, Florencia/0000-0001-6361-2117; Weber, Michele/0000-0002-2770-9031; Strube, Jan/0000-0001-7470-9301; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Lacasta, Carlos/0000-0002-2623-6252; Chen, Chunhui /0000-0003-1589-9955; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; abi, babak/0000-0001-7036-9645; Quinonez Granados, Fernando Andres/0000-0002-0153-6160; Belanger-Champagne, Camille/0000-0003-2368-2617 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS; CEA-DSM/I RFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern, Switzerland; Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/I RFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 42 TC 8 Z9 8 U1 7 U2 67 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2012 VL 72 IS 1 AR 1849 DI 10.1140/epjc/s10052-011-1849-1 PG 61 WC Physics, Particles & Fields SC Physics GA 897FM UT WOS:000300631800017 ER PT J AU Abramowicz, H Abt, I Adamczyk, L Adamus, M Aggarwal, R Antonelli, S Antonioli, P Antonov, A Arneodo, M Ashery, D Aushev, V Aushev, Y Bachynska, O Bamberger, A Barakbaev, AN Barbagli, G Bari, G Barreiro, F Bartosik, N Bartsch, D Basile, M Behnke, O Behr, J Behrens, U Bellagamba, L Bertolin, A Bhadra, S Bindi, M Blohm, C Bokhonov, V Bold, T Bondarenko, K Boos, EG Borras, K Boscherini, D Bot, D Brock, I Brownson, E Brugnera, R Brummer, N Bruni, A Bruni, G Brzozowska, B Bussey, PJ Bylsma, B Caldwell, A Capua, M Carlin, R Catterall, CD Chekanov, S Chwastowski, J Ciborowski, J Ciesielski, R Cifarelli, L Cindolo, F Contin, A Cooper-Sarkar, AM Coppola, N Corradi, M Corriveau, F Costa, M D'Agostini, G Dal Corso, F del Peso, J Dementiev, RK De Pasquale, S Derrick, M Devenish, RCE Dobur, D Dolgoshein, BA Dolinska, G Doyle, AT Drugakov, V Durkin, LS Dusini, S Eisenberg, Y Ermolov, PF Eskreys, S Fang, S Fazio, S Ferrando, J Ferrero, MI Figiel, J Forrest, M Foster, B Gach, G Galas, A Gallo, E Garfagnini, A Geiser, A Gialas, I Gladilin, LK Gladkov, D Glasman, C Gogota, O Golubkov, YA Gottlicher, P Grabowska-Bold, I Grebenyuk, J Gregor, I Grigorescu, G Grzelak, G Gueta, O Gurvich, E Guzik, M Gwenlan, C Haas, T Hain, W Hamatsu, R Hart, JC Hartmann, H Hartner, G Hilger, E Hochman, D Hori, R Horton, K Huttmann, A Ibrahim, ZA Iga, Y Ingbir, R Ishitsuka, M Jakob, HP Januschek, F Jones, TW Jungst, M Kadenko, I Kahle, B Kananov, S Kanno, T Karshon, U Karstens, F Katkov, II Kaur, M Kaur, P Keramidas, A Khein, LA Kim, JY Kisielewska, D Kitamura, S Klanner, R Klein, U Koffeman, E Kooijman, P Korol, I Korzhavina, IA Kotanski, A Kotz, U Kowalski, H Kuprash, O Kuze, M Lee, A Levchenko, BB Levy, A Libov, V Limentani, S Ling, TY Lisovyi, M Lobodzinska, E Lohmann, W Lohr, B Lohrmann, E Long, KR Longhin, A Lontkovskyi, D Lukina, OY Maeda, J Magill, S Makarenko, I Malka, J Mankel, R Margotti, A Marini, G Martin, JF Mastroberardino, A Mattingly, MCK Melzer-Pellmann, IA Mergelmeyer, S Miglioranzi, S Idris, FM Monaco, V Montanari, A Morris, JD Mujkic, K Musgrave, B Nagano, K Namsoo, T Nania, R Nigro, A Ning, Y Nobe, T Noor, U Notz, D Nowak, RJ Nuncio-Quiroz, AE Oh, BY Okazaki, N Oliver, K Olkiewicz, K Onishchuk, Y Papageorgiu, K Parenti, A Paul, E Pawlak, JM Pawlik, B Pelfer, PG Pellegrino, A Perlanski, W Perrey, H Piotrzkowski, K Plucinski, P Pokrovskiy, NS Polini, A Proskuryakov, AS Przybycien, M Raval, A Reeder, DD Reisert, B Ren, Z Repond, J Ri, YD Robertson, A Roloff, P Rubinsky, I Ruspa, M Sacchi, R Salii, A Samson, U Sartorelli, G Savin, AA Saxon, DH Schioppa, M Schlenstedt, S Schleper, P Schmidke, WB Schneekloth, U Schonberg, V Schorner-Sadenius, T Schwartz, J Sciulli, F Shcheglova, LM Shehzadi, R Shimizu, S Singh, I Skillicorn, IO Slominski, W Smith, WH Sola, V Solano, A Son, D Sosnovtsev, V Spiridonov, A Stadie, H Stanco, L Stern, A Stewart, TP Stifutkin, A Stopa, P Suchkov, S Susinno, G Suszycki, L Sztuk-Dambietz, J Szuba, D Szuba, J Tapper, AD Tassi, E Terron, J Theedt, T Tiecke, H Tokushuku, K Tomalak, O Tomaszewska, J Tsurugai, T Turcato, M Tymieniecka, T Vazquez, M Verbytskyi, A Viazlo, O Vlasov, NN Volynets, O Walczak, R Abdullah, WATW Whitmore, JJ Wiggers, L Wing, M Wlasenko, M Wolf, G Wolfe, H Wrona, K Yagues-Molina, AG Yamada, S Yamazaki, Y Yoshida, R Youngman, C Zarnecki, AF Zawiejski, L Zenaiev, O Zeuner, W Zhautykov, BO Zhmak, N Zhou, C Zichichi, A Zolkapli, Z Zolko, M Zotkin, DS AF Abramowicz, H. Abt, I. Adamczyk, L. Adamus, M. Aggarwal, R. Antonelli, S. Antonioli, P. Antonov, A. Arneodo, M. Ashery, D. Aushev, V. Aushev, Y. Bachynska, O. Bamberger, A. Barakbaev, A. N. Barbagli, G. Bari, G. Barreiro, F. Bartosik, N. Bartsch, D. Basile, M. Behnke, O. Behr, J. Behrens, U. Bellagamba, L. Bertolin, A. Bhadra, S. Bindi, M. Blohm, C. Bokhonov, V. Bold, T. Bondarenko, K. Boos, E. G. Borras, K. Boscherini, D. Bot, D. Brock, I. Brownson, E. Brugnera, R. Bruemmer, N. Bruni, A. Bruni, G. Brzozowska, B. Bussey, P. J. Bylsma, B. Caldwell, A. Capua, M. Carlin, R. Catterall, C. D. Chekanov, S. Chwastowski, J. Ciborowski, J. Ciesielski, R. Cifarelli, L. Cindolo, F. Contin, A. Cooper-Sarkar, A. M. Coppola, N. Corradi, M. Corriveau, F. Costa, M. D'Agostini, G. Dal Corso, F. del Peso, J. Dementiev, R. K. De Pasquale, S. Derrick, M. Devenish, R. C. E. Dobur, D. Dolgoshein, B. A. Dolinska, G. Doyle, A. T. Drugakov, V. Durkin, L. S. Dusini, S. Eisenberg, Y. Ermolov, P. F. Eskreys, S. Fang, S. Fazio, S. Ferrando, J. Ferrero, M. I. Figiel, J. Forrest, M. Foster, B. Gach, G. Galas, A. Gallo, E. Garfagnini, A. Geiser, A. Gialas, I. Gladilin, L. K. Gladkov, D. Glasman, C. Gogota, O. Golubkov, Yu. A. Goettlicher, P. Grabowska-Bold, I. Grebenyuk, J. Gregor, I. Grigorescu, G. Grzelak, G. Gueta, O. Gurvich, E. Guzik, M. Gwenlan, C. Haas, T. Hain, W. Hamatsu, R. Hart, J. C. Hartmann, H. Hartner, G. Hilger, E. Hochman, D. Hori, R. Horton, K. Huettmann, A. Ibrahim, Z. A. Iga, Y. Ingbir, R. Ishitsuka, M. Jakob, H. -P. Januschek, F. Jones, T. W. Juengst, M. Kadenko, I. Kahle, B. Kananov, S. Kanno, T. Karshon, U. Karstens, F. Katkov, I. I. Kaur, M. Kaur, P. Keramidas, A. Khein, L. A. Kim, J. Y. Kisielewska, D. Kitamura, S. Klanner, R. Klein, U. Koffeman, E. Kooijman, P. Korol, Ie. Korzhavina, I. A. Kotanski, A. Kotz, U. Kowalski, H. Kuprash, O. Kuze, M. Lee, A. Levchenko, B. B. Levy, A. Libov, V. Limentani, S. Ling, T. Y. Lisovyi, M. Lobodzinska, E. Lohmann, W. Loehr, B. Lohrmann, E. Long, K. R. Longhin, A. Lontkovskyi, D. Lukina, O. Yu. Maeda, J. Magill, S. Makarenko, I. Malka, J. Mankel, R. Margotti, A. Marini, G. Martin, J. F. Mastroberardino, A. Mattingly, M. C. K. Melzer-Pellmann, I. -A. Mergelmeyer, S. Miglioranzi, S. Idris, F. Mohamad Monaco, V. Montanari, A. Morris, J. D. Mujkic, K. Musgrave, B. Nagano, K. Namsoo, T. Nania, R. Nigro, A. Ning, Y. Nobe, T. Noor, U. Notz, D. Nowak, R. J. Nuncio-Quiroz, A. E. Oh, B. Y. Okazaki, N. Oliver, K. Olkiewicz, K. Onishchuk, Yu. Papageorgiu, K. Parenti, A. Paul, E. Pawlak, J. M. Pawlik, B. Pelfer, P. G. Pellegrino, A. Perlanski, W. Perrey, H. Piotrzkowski, K. Plucinski, P. Pokrovskiy, N. S. Polini, A. Proskuryakov, A. S. Przybycien, M. Raval, A. Reeder, D. D. Reisert, B. Ren, Z. Repond, J. Ri, Y. D. Robertson, A. Roloff, P. Rubinsky, I. Ruspa, M. Sacchi, R. Salii, A. Samson, U. Sartorelli, G. Savin, A. A. Saxon, D. H. Schioppa, M. Schlenstedt, S. Schleper, P. Schmidke, W. B. Schneekloth, U. Schoenberg, V. Schoerner-Sadenius, T. Schwartz, J. Sciulli, F. Shcheglova, L. M. Shehzadi, R. Shimizu, S. Singh, I. Skillicorn, I. O. Slominski, W. Smith, W. H. Sola, V. Solano, A. Son, D. Sosnovtsev, V. Spiridonov, A. Stadie, H. Stanco, L. Stern, A. Stewart, T. P. Stifutkin, A. Stopa, P. Suchkov, S. Susinno, G. Suszycki, L. Sztuk-Dambietz, J. Szuba, D. Szuba, J. Tapper, A. D. Tassi, E. Terron, J. Theedt, T. Tiecke, H. Tokushuku, K. Tomalak, O. Tomaszewska, J. Tsurugai, T. Turcato, M. Tymieniecka, T. Vazquez, M. Verbytskyi, A. Viazlo, O. Vlasov, N. N. Volynets, O. Walczak, R. Abdullah, W. A. T. Wan Whitmore, J. J. Wiggers, L. Wing, M. Wlasenko, M. Wolf, G. Wolfe, H. Wrona, K. Yaguees-Molina, A. G. Yamada, S. Yamazaki, Y. Yoshida, R. Youngman, C. Zarnecki, A. F. Zawiejski, L. Zenaiev, O. Zeuner, W. Zhautykov, B. O. Zhmak, N. Zhou, C. Zichichi, A. Zolkapli, Z. Zolko, M. Zotkin, D. S. CA Zeus Collaboration TI Exclusive electroproduction of two pions at HERA SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID CENTRAL TRACKING DETECTOR; VECTOR-MESON PRODUCTION; RHO-MESON; FORM-FACTOR; DIFFRACTIVE ELECTROPRODUCTION; J/PSI MESONS; TAU-DECAYS; PHOTOPRODUCTION; CALORIMETER; SCATTERING AB The exclusive electroproduction of two pions in the mass range 0.4 < M-pi pi < 2.5 GeV has been studied with the ZEUS detector at HERA using an integrated luminosity of 82 pb(-1). The analysis was carried out in the kine-matic range of 2 < Q(2) < 80 GeV2, 32 < W < 180 GeV and vertical bar t vertical bar < 0.6 GeV2, where Q(2) is the photon virtuality, W is the photon-proton centre-of-mass energy and t is the squared four-momentum transfer at the proton vertex. The two-pion invariant-mass distribution is interpreted in terms of the pion electromagnetic form factor, vertical bar F(M-pi pi)vertical bar, assuming that the studied mass range includes the contributions of the rho, rho' and rho '' vector-meson states. The masses and widths of the resonances were obtained and the Q(2) dependence of the cross-section ratios sigma(rho ' -> pi pi)/sigma(rho) and sigma (rho '' -> pi pi)/sigma(rho) was extracted. The pion form factor obtained in the present analysis is compared to that obtained in e(+) e(-) -> pi(+) pi(-). C1 [Abramowicz, H.; Ashery, D.; Gueta, O.; Gurvich, E.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Chekanov, S.; Derrick, M.; Katkov, I. I.; Magill, S.; Musgrave, B.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Margotti, A.; Nania, R.; Polini, A.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ & INFN Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Mergelmeyer, S.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, Bonn, Germany. [Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Aggarwal, R.; Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Ibrahim, Z. A.; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Zolkapli, Z.] Univ Malaya, Jabatan Fiz, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA. [Chwastowski, J.; Eskreys, S.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Gach, G.; Grabowska-Bold, I.; Guzik, M.; Kisielewska, D.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagellonian Univ, Dept Phys, Krakow, Poland. [Bachynska, O.; Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Kotz, U.; Kowalski, H.; Kuprash, O.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Lontkovskyi, D.; Makarenko, I.; Malka, J.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Mujkic, K.; Namsoo, T.; Notz, D.; Parenti, A.; Perrey, H.; Raval, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Schoerner-Sadenius, T.; Spiridonov, A.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Verbytskyi, A.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zenaiev, O.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.] Ist Nazl Fis Nucl, I-50125 Florence, Italy. [Pelfer, P. G.] Univ & INFN Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Chios, Greece. [Klanner, R.; Lohrmann, E.; Schleper, P.; Stadie, H.; Sztuk-Dambietz, J.; Szuba, D.; Turcato, M.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] Natl Lab High Energy Phys, KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 305, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Bokhonov, V.; Dolinska, G.; Gogota, O.; Korol, Ie.; Viazlo, O.; Zhmak, N.] Natl Acad Sci, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Aushev, Y.; Bartosik, N.; Bondarenko, K.; Dolinska, G.; Gogota, O.; Kadenko, I.; Korol, Ie.; Onishchuk, Yu.; Salii, A.; Tomalak, O.; Viazlo, O.; Volynets, O.; Zolko, M.] Natl Taras Shevchenko Univ Kyiv, Dept Nucl Phys, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Schwartz, J.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Stanco, L.] Ist Nazl Fis Nucl, Padua, Italy. [Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Dipartimento Fis Univ, Padua, Italy. [Oh, B. Y.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ishitsuka, M.; Kanno, T.; Kuze, M.; Maeda, J.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Okazaki, N.; Shimizu, S.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kitamura, S.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Arneodo, M.; Costa, M.; Ferrero, M. I.; Monaco, V.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Jones, T. W.; Wing, M.] UCL, Phys & Astron Dept, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.] Univ Warsaw, Fac Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.; Tymieniecka, T.] Natl Ctr Nucl Res, Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, Rehovot, Israel. [Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Hartner, G.; Noor, U.] York Univ, Dept Phys, Toronto, ON M3J 1P3, Canada. [Singh, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tassi, E.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Chwastowski, J.] Cracow Univ Technol, Fac Phys Math & Appl Comp Sci, Krakow, Poland. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, J.] AGH Univ Sci & Technol, FPACS, Krakow, Poland. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. RP Abramowicz, H (reprint author), Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. EM levy@alzt.tau.ac.il RI Wiggers, Leo/B-5218-2015; Suchkov, Sergey/M-6671-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Korzhavina, Irina/D-6848-2012; Ferrando, James/A-9192-2012; Doyle, Anthony/C-5889-2009; Fazio, Salvatore /G-5156-2010; Lukina, Olga/D-8875-2012; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; Shcheglova, Lydia/E-2221-2012; Katkov, Igor/E-2627-2012 OI Wiggers, Leo/0000-0003-1060-0520; De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Chwastowski, Janusz/0000-0002-6190-8376; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337; Ferrando, James/0000-0002-1007-7816; Doyle, Anthony/0000-0001-6322-6195; Gladilin, Leonid/0000-0001-9422-8636; Barreiro, Fernando/0000-0002-3021-0258; Katkov, Igor/0000-0003-3064-0466 FU US Department of Energy; Italian National Institute for Nuclear Physics (INFN); German Federal Ministry for Education and Research (BMBF) [05 H09PDF, 05h09GUF]; Science and Technology Facilities Council, UK; FRGS from the Malaysian government; US National Science Foundation; Polish Ministry of Science and Higher Education [DPN/N188/DESY/2009]; Deutsche Forschungsgemeinschaft (DFG) [SFB 676]; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT); Korean Ministry of Education; Korea Science and Engineering Foundation; FNRS; Belgian Federal Science Policy Office; Spanish Ministry of Education and Science through CICYT; Natural Sciences and Engineering Research Council of Canada (NSERC); RF [N 4142.2010.2]; Russian Ministry of Education and Science [02.740.11.0244]; Netherlands Foundation for Research on Matter (FOM); Israel Science Foundation; Max Planck Institute for Physics, Munich, Germany; Warsaw University, Poland; DESY, Germany; Russian Foundation for Basic Research [11-02-91345-DFG_a]; National Science Foundation; [1 P03B 04529] FX Supported by the US Department of Energy; Supported by the Italian National Institute for Nuclear Physics (INFN); Supported by the German Federal Ministry for Education and Research (BMBF), under contract No. 05 H09PDF; Supported by the Science and Technology Facilities Council, UK; Supported by an FRGS grant from the Malaysian government; Supported by the US National Science Foundation. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation; Supported by the Polish Ministry of Science and Higher Education as a scientific project No. DPN/N188/DESY/2009; Supported by the German Federal Ministry for Education and Research (BMBF), under contract No. 05h09GUF, and the SFB 676 of the Deutsche Forschungsgemeinschaft (DFG); Supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and its grants for Scientific Research; Supported by the Korean Ministry of Education and Korea Science and Engineering Foundation; Supported by FNRS and its associated funds (IISN and FRIA) and by an Inter-University Attraction Poles Programme subsidised by the Belgian Federal Science Policy Office; Supported by the Spanish Ministry of Education and Science through funds provided by CICYT; Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC); Supported by RF Presidential grant N 4142.2010.2 for Leading Scientific Schools, by the Russian Ministry of Education and Science through its grant for Scientific Research on High Energy Physics and under contract No. 02.740.11.0244; Supported by the Netherlands Foundation for Research on Matter (FOM); Supported by the Israel Science Foundation; Also funded by Max Planck Institute for Physics, Munich, Germany; Supported by the research grant No. 1 P03B 04529 (2005-2008); Partially supported by Warsaw University, Poland; Supported by DESY, Germany; Partly supported by the Russian Foundation for Basic Research, grant 11-02-91345-DFG_a; This material was based on work supported by the National Science Foundation, while working at the Foundation NR 63 TC 7 Z9 7 U1 0 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2012 VL 72 IS 1 AR 1869 DI 10.1140/epjc/s10052-012-1869-5 PG 12 WC Physics, Particles & Fields SC Physics GA 897FM UT WOS:000300631800002 ER PT J AU Arbey, A Battaglia, M Mahmoudi, F AF Arbey, A. Battaglia, M. Mahmoudi, F. TI Implications of LHC searches on SUSY particle spectra SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID EVEN HIGGS BOSONS; LARGE TAN-BETA; DARK-MATTER; QCD CORRECTIONS; RELIC DENSITY; FORTRAN CODE; MSSM; SUPERSYMMETRY; PROGRAM; MASSES AB We study the implications of LHC searches on SUSY particle spectra using flat scans of the 19-parameter pMSSM phase space. We apply constraints from flavour physics, g(mu) - 2, dark matter and earlier LEP and Tevatron searches. The sensitivity of the LHC SUSY searches with jets, leptons and missing energy is assessed by reproducing with fast simulation the recent CMS analyses after validation on benchmark points. We present results in terms of the fraction of pMSSM points compatible with all the constraints which are excluded by the LHC searches with 1 fb(-1) and 15 fb(-1) as a function of the mass of strongly and weakly interacting SUSY particles. We also discuss the suppression of Higgs production cross sections for the MSSM points not excluded and contrast the region of parameter space tested by the LHC data with the constraints from dark matter direct detection experiments. C1 [Arbey, A.] Univ Lyon 1, CNRS, IN2P3, IPNL UMR5822, F-69622 Villeurbanne, France. [Arbey, A.; Battaglia, M.; Mahmoudi, F.] CERN, CH-1211 Geneva 23, Switzerland. [Arbey, A.] Observ Lyon, Ecole Normale Super Lyon, CNRS, CRAL UMR5574, F-69561 St Genis Laval, France. [Battaglia, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Battaglia, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mahmoudi, F.] Univ Blaise Pascal, Univ Clermont Ferrand 2, IN2P3, CNRS,LPC, F-63000 Clermont Ferrand, France. RP Arbey, A (reprint author), Univ Lyon 1, CNRS, IN2P3, IPNL UMR5822, F-69622 Villeurbanne, France. EM mahmoudi@in2p3.fr NR 80 TC 57 Z9 57 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2012 VL 72 IS 1 AR 1847 DI 10.1140/epjc/s10052-011-1847-3 PG 14 WC Physics, Particles & Fields SC Physics GA 897FM UT WOS:000300631800019 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hoch, M Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Trauner, C Wagner, P Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, S Benucci, L De Wolf, EA Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Blekman, F Blyweert, S D'Hondt, J Devroede, O Suarez, RG Kalogeropoulos, A Maes, M Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Marage, PE Raval, A Thomas, L Vander Marcken, G Vander Velde, C Vanlaer, P Adler, V Cimmino, A Costantini, S Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J Ceard, L Gil, EC De Jeneret, JD Delaere, C Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Ovyn, S Pagano, D Pin, A Piotrzkowski, K Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Brito, L Damiao, DD Pol, ME Souza, MHG Alda, WL Carvalho, W Da Costa, EM Martins, CD De Souza, SF Figueiredo, DM Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SMS Sznajder, A Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Darmenov, N Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Dimitrov, A Hadjiiska, R Karadzhinova, A Kozhuharov, V Litov, L Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Ban, Y Guo, S Guo, Y Li, W Mao, Y Qian, SJ Teng, H Zhu, B Zou, W Cabrera, A Moreno, BG Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Luetic, J Morovic, S Attikis, A Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Kamel, AE Khalil, S Mahmoud, MA Radi, A Hektor, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Azzolini, V Eerola, P Fedi, G Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Karjalainen, A Korpela, A Tuuva, T Sillou, D Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Shreyber, I Titov, M Verrecchia, P Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dahms, T Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Thiebaux, C Wyslouch, B Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Van Hove, P Fassi, F Mercier, D Baty, C Beauceron, S Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Lomidze, D Anagnostou, G Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Ata, M Dietz-Laursonn, E Erdmann, M Hebbeker, T Heidemann, C Hinzmann, A Hoepfner, K Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Lingemann, J Magass, C Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Hoehle, F Kargoll, B Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Cakir, A Campbell, A Castro, E Dammann, D Eckerlin, G Eckstein, D Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Petrukhin, A Pitzl, D Raspereza, A Rosin, M Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Tomaszewska, J Walsh, R Wissing, C Autermann, C Blobel, V Bobrovskyi, S Draeger, J Enderle, H Gebbert, U Gorner, M Hermanns, T Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Naumann-Emme, S Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schlieckau, E Schroder, M Schum, T Stadie, H Steinbruck, G Thomsen, J Barth, C Bauer, J Berger, J Buege, V Chwalek, T De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Katkov, I Komaragiri, JR Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Renz, M Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Weiler, T Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Petrakou, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Stiliaris, E Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Hajdu, C Hidas, P Horvath, D Kapusi, A Krajczar, K Sikler, F Veres, GI Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, AP Singh, J Singh, SP Ahuja, S Choudhary, BC Gupta, P Kumar, A Kumar, A Malhotra, S Naimuddin, M Ranjan, K Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Choudhury, RK Dutta, D Kailas, S Kumar, V Mehta, P Mohanty, AK Pant, LM Shukla, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A De Guio, F Di Matteo, L Gennai, S Ghezzi, A Malvezzi, S Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Fabozzi, F Iorio, AOM Lista, L Merola, M Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Fanzago, F Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Baesso, P Berzano, U Ratti, SP Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeria, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Romeo, F Santocchia, A Taroni, S Valdata, M Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Meridiani, P Nourbakhsh, S Organtini, G Pandolfi, F Paramatti, R Rahatlou, S Rovelli, C Sigamani, M Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Pereira, AV Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Heo, SG Nam, SK Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Ro, SR Son, DC Son, T Kim, JY Kim, ZJ Song, S Choi, S Hong, B Jo, M Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Martisiute, D Petrov, P Polujanskas, M Sabonis, T Castilla-Valdez, H De La Cruz-Burelo, E Heredia-De La Cruz, I Lopez-Fernandez, R Villalba, RM Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Tam, J Butler, PH Doesburg, R Silverwood, H Ahmad, M Ahmed, I Ansari, MH Asghar, MI Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Brona, G Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Musella, P Nayak, A Pela, J Ribeiro, PQ Seixas, J Varela, J Afanasiev, S Belotelov, I Bunin, P Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Kaftanov, V Kossov, M Krokhotin, A Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Pardos, CD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Bell, AJ Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Bona, M Breuker, H Bunkowski, K Camporesi, T Cerminara, G Christiansen, T Perez, JAC Cure, B D'Enterria, D De Roeck, A Di Guida, S Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Gaddi, A Georgiou, G Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gouzevitch, M Govoni, P Gowdy, S Guiducci, L Hansen, M Hartl, C Harvey, J Hegeman, J Hegner, B Hoffmann, HF Honma, A Innocente, V Janot, P Kaadze, K Karavakis, E Lecoq, P Lourenco, C Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Maurisset, A Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Nguyen, M Orimoto, T Orsini, L Cortezon, EP Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rommerskirchen, T Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiropulu, M Stoye, M Tropea, P Tsirou, A Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Bani, L Bortignon, P Caminada, L Casal, B Chanon, N Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Hintz, W Lecomte, P Lustermann, W Marchica, C del Arbol, PMR Milenovic, P Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Rossini, M Sala, L Sanchez, AK Sawley, MC Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, M Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Otiougova, P Robmann, P Schmidt, A Snoek, H Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Volpe, R Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Shiu, JG Tzeng, YM Wan, X Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Isildak, B Kaya, M Kaya, O Ozbek, M Ozkorucuklu, S Sonmez, N Levchuk, L Bostock, F Brooke, JJ Cheng, TL Clement, E Cussans, D Frazier, R Goldstein, J Grimes, M Hartley, D Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L MacEvoy, BC Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardle, N Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Teodorescu, L Hatakeyama, K Liu, H Henderson, C Bose, T Jarrin, EC Fantasia, C Heister, A John, JS Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Rutherford, B Salur, S Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Duris, J Erhan, S Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Babb, J Chandra, A Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Shin, K Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Henriksson, K Hopkins, W Khukhunaishvili, A Kreis, B Liu, Y Kaufman, GN Patterson, JR Puigh, D Ryd, A Saelim, M Salvati, E Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Cooper, W Eartly, DP Elvira, VD Esen, S Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jensen, H Johnson, M Joshi, U Klima, B Kousouris, K Kunori, S Kwan, S Leonidopoulos, C Limon, P Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Pivarski, J Pordes, R Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Goldberg, S Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Mitselmakher, G Muniz, L Prescott, C Remington, R Rinkevicius, A Schmitt, M Scurlock, B Sellers, P Skhirtladze, N Snowball, M Wang, D Yelton, J Zakaria, M Gaultney, V Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Veeraraghavan, V Baarmand, MM Dorney, B Guragain, S Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kunde, GJ Lacroix, F Malek, M O'Brien, C Silkworth, C Silvestre, C Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Kenny, RP Murray, M Noonan, D Sanders, S Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Eno, SC Ferencek, D Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Lu, Y Mignerey, AC Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Cushman, P Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Klapoetke, K Kubota, Y Mans, J Pastika, N Rekovic, V Rusack, R Sasseville, M Singovsky, A Tambe, N Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Jindal, P Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Alverson, G Barberis, E Baumgartel, D Boeriu, O Chasco, M Reucroft, S Swain, J Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Hill, C Killewald, P Kotov, K Ling, TY Rodenburg, M Vuosalo, C Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hunt, A Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Safdi, B Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D De Mattia, M Everett, A Garfinkel, AF Gutay, L Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Yoo, HD Zablocki, J Zheng, Y Parashar, N Adair, A Boulahouache, C Ecklund, KM Geurts, FJM Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R De Barbaro, P Demina, R Eshaq, Y Flacher, H Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Sakumoto, W Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Atramentov, O Barker, A Contreras-Campana, C Contreras-Campana, E Duggan, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Patel, R Richards, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Safonov, A Sengupta, S Suarez, I Tatarinov, A Toback, D Weinberger, M Akchurin, N Bardak, C Damgov, J Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Issah, M Johns, W Johnston, C Kurt, P Maguire, C Melo, A Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goadhouse, S Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Yohay, R Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Belknap, D Bellinger, JN Carlsmith, D Dasu, S Efron, J Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Parker, W Reeder, D Ross, I Savin, A Smith, WH Swanson, J Weinberg, M AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Trauner, C. Wagner, P. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, S. Benucci, L. De Wolf, E. A. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Blekman, F. Blyweert, S. D'Hondt, J. Devroede, O. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Marage, P. E. Raval, A. Thomas, L. Vander Marcken, G. Vander Velde, C. Vanlaer, P. Adler, V. Cimmino, A. Costantini, S. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. Ceard, L. Gil, E. Cortina De Jeneret, J. De Favereau Delaere, C. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Brito, L. De Jesus Damiao, D. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Matos Figueiredo, D. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Silva Do Amaral, S. M. Sznajder, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, S. S. Darmenov, N. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Dimitrov, A. Hadjiiska, R. Karadzhinova, A. Kozhuharov, V. Litov, L. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Guo, Y. Li, W. Mao, Y. Qian, S. J. Teng, H. Zhu, B. Zou, W. Cabrera, A. Gomez Moreno, B. Ocampo Rios, A. A. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Morovic, S. Attikis, A. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Khalil, S. Mahmoud, M. A. Radi, A. Hektor, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Azzolini, V. Eerola, P. Fedi, G. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Karjalainen, A. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Verrecchia, P. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dahms, T. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Wyslouch, B. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beauceron, S. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Lomidze, D. Anagnostou, G. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Ata, M. Dietz-Laursonn, E. Erdmann, M. Hebbeker, T. Heidemann, C. Hinzmann, A. Hoepfner, K. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Lingemann, J. Magass, C. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Cakir, A. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Eckstein, D. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Petrukhin, A. Pitzl, D. Raspereza, A. Rosin, M. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Tomaszewska, J. Walsh, R. Wissing, C. Autermann, C. Blobel, V. Bobrovskyi, S. Draeger, J. Enderle, H. Gebbert, U. Goerner, M. Hermanns, T. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Naumann-Emme, S. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schroeder, M. Schum, T. Stadie, H. Steinbrueck, G. Thomsen, J. Barth, C. Bauer, J. Berger, J. Buege, V. Chwalek, T. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Katkov, I. Komaragiri, J. R. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Renz, M. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Weiler, T. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Petrakou, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Stiliaris, E. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Hajdu, C. Hidas, P. Horvath, D. Kapusi, A. Krajczar, K. Sikler, F. Veres, G. I. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, A. P. Singh, J. Singh, S. P. Ahuja, S. Choudhary, B. C. Gupta, P. Kumar, A. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, S. Jain, S. Khurana, R. Sarkar, S. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mehta, P. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. De Guio, F. Di Matteo, L. Gennai, S. Ghezzi, A. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Fabozzi, F. Iorio, A. O. M. Lista, L. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Fanzago, F. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Baesso, P. Berzano, U. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeria, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Santocchia, A. Taroni, S. Valdata, M. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Meridiani, P. Nourbakhsh, S. Organtini, G. Pandolfi, F. Paramatti, R. Rahatlou, S. Rovelli, C. Sigamani, M. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Pereira, A. Vilela Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Heo, S. G. Nam, S. K. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Son, T. Kim, J. Y. Kim, Z. J. Song, S. Choi, S. Hong, B. Jo, M. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Martisiute, D. Petrov, P. Polujanskas, M. Sabonis, T. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Villalba, R. Magana Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Tam, J. Butler, P. H. Doesburg, R. Silverwood, H. Ahmad, M. Ahmed, I. Ansari, M. H. Asghar, M. I. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Brona, G. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Musella, P. Nayak, A. Pela, J. Ribeiro, P. Q. Seixas, J. Varela, J. Afanasiev, S. Belotelov, I. Bunin, P. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Kaftanov, V. Kossov, M. Krokhotin, A. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Diez Pardos, C. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bell, A. J. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Bona, M. Breuker, H. Bunkowski, K. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Cure, B. D'Enterria, D. De Roeck, A. Di Guida, S. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Gaddi, A. Georgiou, G. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gouzevitch, M. Govoni, P. Gowdy, S. Guiducci, L. Hansen, M. Hartl, C. Harvey, J. Hegeman, J. Hegner, B. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Lecoq, P. Lourenco, C. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Maurisset, A. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Nguyen, M. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiropulu, M. Stoye, M. Tropea, P. Tsirou, A. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Baeni, L. Bortignon, P. Caminada, L. Casal, B. Chanon, N. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. del Arbol, P. Martinez Ruiz Milenovic, P. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Sawley, M. -C. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, M. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Otiougova, P. Robmann, P. Schmidt, A. Snoek, H. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Volpe, R. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozbek, M. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bostock, F. Brooke, J. J. Cheng, T. L. Clement, E. Cussans, D. Frazier, R. Goldstein, J. Grimes, M. Hartley, D. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. MacEvoy, B. C. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Teodorescu, L. Hatakeyama, K. Liu, H. Henderson, C. Bose, T. Jarrin, E. Carrera Fantasia, C. Heister, A. John, J. St. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Rutherford, B. Salur, S. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Duris, J. Erhan, S. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Babb, J. Chandra, A. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Shin, K. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Henriksson, K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Liu, Y. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Ryd, A. Saelim, M. Salvati, E. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cooper, W. Eartly, D. P. Elvira, V. D. Esen, S. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jensen, H. Johnson, M. Joshi, U. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Leonidopoulos, C. Limon, P. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Pivarski, J. Pordes, R. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Goldberg, S. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Mitselmakher, G. Muniz, L. Prescott, C. Remington, R. Rinkevicius, A. Schmitt, M. Scurlock, B. Sellers, P. Skhirtladze, N. Snowball, M. Wang, D. Yelton, J. Zakaria, M. Gaultney, V. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Dorney, B. Guragain, S. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kunde, G. J. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Silvestre, C. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Eno, S. C. Ferencek, D. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Lu, Y. Mignerey, A. C. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Jindal, P. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Chasco, M. Reucroft, S. Swain, J. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Hill, C. Killewald, P. Kotov, K. Ling, T. Y. Rodenburg, M. Vuosalo, C. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hunt, A. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Safdi, B. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. De Mattia, M. Everett, A. Garfinkel, A. F. Gutay, L. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Adair, A. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. De Barbaro, P. Demina, R. Eshaq, Y. Flacher, H. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Sakumoto, W. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Atramentov, O. Barker, A. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Patel, R. Richards, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Safonov, A. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Weinberger, M. Akchurin, N. Bardak, C. Damgov, J. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Issah, M. Johns, W. Johnston, C. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goadhouse, S. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Belknap, D. Bellinger, J. N. Carlsmith, D. Dasu, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Parker, W. Reeder, D. Ross, I. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI Forward energy flow, central charged-particle multiplicities, and pseudorapidity gaps in W and Z boson events from pp collisions at root s=7 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID DIFFRACTIVE W; RAPIDITY GAPS; QCD ANALYSIS; SCATTERING; POMERON AB A study of forward energy flow and central charged-particle multiplicity in events with W and Z bosons decaying into leptons is presented. The analysis uses a sample of 7 TeV pp collisions, corresponding to an integrated luminosity of 36 pb(-1), recorded by the CMS experiment at the LHC. The observed forward energy depositions, their correlations, and the central charged-particle multiplicities are not well described by the available non-diffractive soft-hadron production models. A study of about 300 events with no significant energy deposited in one of the forward calorimeters, corresponding to a pseudorapidity gap of at least 1.9 units, is also presented. An indication for a diffractive component in these events comes from the observation that the majority of the charged leptons from the W(Z) decays are found in the hemisphere opposite to the gap. When fitting the signed lepton pseudorapidity distribution of these events with predicted distributions from an admixture of diffractive (POMPYT) and non-diffractive (PYTHIA) Monte Carlo simulations, the diffractive component is determined to be (50.0 +/- 9.3 (stat.) +/- 5.2 (syst.))%. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Trauner, C.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, S.; Benucci, L.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Raval, A.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Cimmino, A.; Costantini, S.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; Gil, E. Cortina; De Jeneret, J. De Favereau; Delaere, C.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Brito, L.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, RJ, Brazil. [Alda Junior, W. L.; Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, RJ, Brazil. [Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, S. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Darmenov, N.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Cabrera, A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Khalil, S.; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.; Fedi, G.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS, IN2P3,Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Fassi, F.; Mercier, D.] Ctr Calcul, Inst Natl Phys Nucl & Phys Particules IN2P3, Villeurbanne, France. [Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.] Univ Lyon 1, CNRS, Inst Phys Nucl Lyon, IN2P3, F-69622 Villeurbanne, France. [Lomidze, D.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Dietz-Laursonn, E.; Erdmann, M.; Hebbeker, T.; Heidemann, C.; Hinzmann, A.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Inst Phys B 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Rosin, M.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Wissing, C.; Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Goerner, M.; Hermanns, T.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schroeder, M.; Schum, T.; Stadie, H.; Steinbrueck, G.; Thomsen, J.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Bauer, J.; Berger, J.; Buege, V.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Veres, G. I.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Choudhary, B. C.; Gupta, P.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, S.; Jain, S.; Khurana, R.; Sarkar, S.] Saha Inst Nucl Phys, Kolkata, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res & Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Masetti, G.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Lenzi, P.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Merola, M.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Baesso, P.; Berzano, U.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Baesso, P.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeria, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Caponeria, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Azzurri, P.; Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Meridiani, P.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Sigamani, M.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Pelliccioni, M.; Potenza, A.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nuc, Sez Trieste, Trieste, Italy. [Della Ricca, G.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Z. J.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Polujanskas, M.; Sabonis, T.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Villalba, R. Magana; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzado, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.; Tam, J.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Brona, G.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bluj, M.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Musella, P.; Nayak, A.; Pela, J.; Ribeiro, P. Q.; Seixas, J.; Varela, J.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Belotelov, I.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Diez Pardos, C.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Hammer, J.; Darmenov, N.; Genchev, V.; Iaydjiev, P.; Jung, H.; Hajdu, C.; Sikler, F.; Mohanty, A. K.; Chiorboli, M.; Tropiano, A.; De Guio, F.; Gennai, S.; Montoya, C. A. Carrillo; Iorio, A. O. M.; Nespolo, M.; Perrozzi, L.; Lucaroni, A.; Taroni, S.; Tonelli, G.; Grassi, M.; Paramatti, R.; Rovelli, C.; Botta, C.; Graziano, A.; Gallinaro, M.; Pela, J.; Kossov, M.; Grishin, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Bona, M.; Breuker, H.; Bunkowski, K.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Cure, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegeman, J.; Hegner, B.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Lecoq, P.; Lourenco, C.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Maurisset, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiropulu, M.; Stoye, M.; Tropea, P.; Tsirou, A.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Caminada, L.; Marchica, C.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Caminada, L.; Casal, B.; Chanon, N.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; del Arbol, P. Martinez Ruiz; Milenovic, P.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Schmidt, A.; Snoek, H.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozbek, M.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Natl Sci Ctr, Kharkov Inst Phys & Technol, Kharkov, Ukraine. [Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; MacEvoy, B. C.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.] Baylor Univ, Waco, TX 76798 USA. [Henderson, C.] Univ Alabama, Tuscaloosa, AL USA. [Bose, T.; Jarrin, E. Carrera; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Rutherford, B.; Salur, S.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Felcini, M.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Chandra, A.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Spiropulu, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Henriksson, K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Liu, Y.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Ryd, A.; Saelim, M.; Salvati, E.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Johnson, M.; Joshi, U.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Limon, P.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pivarski, J.; Pordes, R.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Piedra Gomez, J.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Prescott, C.; Remington, R.; Rinkevicius, A.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois Chicago UIC, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Wyslouch, B.; Kaya, O.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Jindal, P.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Reucroft, S.; Swain, J.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Vuosalo, C.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; De Mattia, M.; Everett, A.; Garfinkel, A. F.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; De Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Sakumoto, W.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Atramentov, O.; Barker, A.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Safonov, A.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Issah, M.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goadhouse, S.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Belknap, D.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Parker, W.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Khalil, S.] British Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] Ain Shams Univ, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Krajczar, K.; Veres, G. I.; Vesztergombi, G.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Bakhshiansohi, H.; Fahim, A.; Jafari, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.; Zeinali, M.] Isfahan Univ Technol, Esfahan, Iran. [Mohammadi, A.] Shiraz Univ, Shiraz, Iran. [Colafranceschi, S.] Univ Roma, Fac Ingn, Rome, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Lacaprara, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Bell, A. J.] Univ Geneva, Geneva, Switzerland. [Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Demir, D.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Kunde, G. J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Dahms, Torsten/A-8453-2015; Hektor, Andi/G-1804-2011; Cavallo, Nicola/F-8913-2012; Ivanov, Andrew/A-7982-2013; Markina, Anastasia/E-3390-2012; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Bartalini, Paolo/E-2512-2014; Codispoti, Giuseppe/F-6574-2014; Liu, Chang/B-7249-2009; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Stahl, Achim/E-8846-2011; Mercadante, Pedro/K-1918-2012; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Alves, Gilvan/C-4007-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Novaes, Sergio/D-3532-2012; Padula, Sandra /G-3560-2012; Lujan Center, LANL/G-4896-2012; Tinoco Mendes, Andre David/D-4314-2011; Fruhwirth, Rudolf/H-2529-2012; Chen, Jie/H-6210-2011; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Wulz, Claudia-Elisabeth/H-5657-2011; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Ragazzi, Stefano/D-2463-2009; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Krammer, Manfred/A-6508-2010; Savrin, Victor/D-6213-2012; Raidal, Martti/F-4436-2012; Lokhtin, Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Belyaev, Andrey/E-1540-2012; Katkov, Igor/E-2627-2012; Boos, Eduard/D-9748-2012; Snigirev, Alexander/D-8912-2012; Tomei, Thiago/E-7091-2012; Focardi, Ettore/E-7376-2012; Fassi, Farida/F-3571-2016; Varela, Joao/K-4829-2016; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Grandi, Claudio/B-5654-2015; Leonidov, Andrey/P-3197-2014; Bernardes, Cesar Augusto/D-2408-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; vilar, rocio/P-8480-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014 OI Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Hektor, Andi/0000-0001-7873-8118; Ivanov, Andrew/0000-0002-9270-5643; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Stahl, Achim/0000-0002-8369-7506; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Novaes, Sergio/0000-0003-0471-8549; Tinoco Mendes, Andre David/0000-0001-5854-7699; Azzi, Patrizia/0000-0002-3129-828X; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; de Jesus Damiao, Dilson/0000-0002-3769-1680; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Ragazzi, Stefano/0000-0001-8219-2074; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Krammer, Manfred/0000-0003-2257-7751; Dudko, Lev/0000-0002-4462-3192; Katkov, Igor/0000-0003-3064-0466; Tomei, Thiago/0000-0002-1809-5226; Focardi, Ettore/0000-0002-3763-5267; Fassi, Farida/0000-0002-6423-7213; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Varela, Joao/0000-0003-2613-3146; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Safdi, Benjamin R./0000-0001-9531-1319; Lloret Iglesias, Lara/0000-0002-0157-4765; Carrera, Edgar/0000-0002-0857-8507; Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152 FU FMSR (Austria); FNRS (Belgium); FWO (Belgium); CNPq, (Brazil); CAPES, (Brazil); FAPERJ, (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS, (China); MoST, (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences (Estonia); NICPB (Estonia); Academy of Finland (Finland); ME (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF, (Germany); DFG, (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); WCU (Korea); LAS (Lithuania); CINVESTAV, (Mexico); CONACYT, (Mexico); SEP, (Mexico); UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST (Russia); MAE (Russia); MSTDS (Serbia); MICINN (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK (Turkey); TAEK (Turkey); STFC (United Kingdom); DOE (USA); NSF (USA); European Union; Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy) FX We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We would like to thank P. Skands for many explanations and discussions concerning the different underlying event tunes. We would also like to thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie IEF program (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; and the Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy). NR 30 TC 6 Z9 6 U1 0 U2 55 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2012 VL 72 IS 1 AR 1839 DI 10.1140/epjc/s10052-011-1839-3 PG 28 WC Physics, Particles & Fields SC Physics GA 897FM UT WOS:000300631800021 ER PT J AU Sobczyk, JT AF Sobczyk, Jan T. TI Transverse enhancement model and MiniBooNE charge current quasi-elastic neutrino scattering data SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID MESON-EXCHANGE CURRENTS AB Recently proposed Transverse Enhancement Model of nuclear effects in Charge Current Quasi-Elastic neutrino scattering (A. Bodek, H. S. Budd, M. E. Christy, Eur. Phys. J. C 71:1726, 2011) is confronted with the MiniBooNE high statistics experimental data. C1 [Sobczyk, Jan T.] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. [Sobczyk, Jan T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Sobczyk, JT (reprint author), Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. EM jsobczyk@ift.uni.wroc.pl RI Sobczyk, Jan/C-9761-2016 FU [N N202 368439]; [DWM/57/T2K/2007] FX The author was supported by the grants: N N202 368439 and DWM/57/T2K/2007. NR 20 TC 8 Z9 8 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2012 VL 72 IS 1 AR 1850 DI 10.1140/epjc/s10052-011-1850-8 PG 4 WC Physics, Particles & Fields SC Physics GA 897FM UT WOS:000300631800016 ER PT J AU Venturini, G Marian, J Knap, J Campbell, G Ortiz, M AF Venturini, G. Marian, J. Knap, J. Campbell, G. Ortiz, M. TI THERMAL EXPANSION BEHAVIOR OF AL AND TA USING A FINITE-TEMPERATURE EXTENSION OF THE QUASICONTINUUM METHOD SO INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING LA English DT Article DE multiscale modeling; finite temperature; thermal expansion; Langevin equation AB Numerical methods that bridge the atomistic and continuum scales concurrently have been applied successfully to a number of materials science problems involving both nonlinear and long-range deformation fields. However, extension of these methods to finite temperature, nonequilibrium dynamics is difficult due to the intrinsic incoherency between molecular dynamics and continuum thermodynamics, which possess different crystal vibrational spectra and therefore result in unphysical wave reflections across domain boundaries. Here we review our recent finite temperature extension of the three-dimensional, non-local quasicontinuum (QC) method based on Langevin dynamics and carry out an analysis of the systematic errors associated with the entropic depletion that results from the QC reduction. We apply the method to Al and Ta structured meshes ranging from atomistic resolution to minimum-node representations using the thermal expansion coefficient as the standard metric. We find that, while Al errors scale linearly with the number of mesh nodes, Ta displays a very erratic behavior that degrades rapidly with mesh coarsening. C1 [Venturini, G.; Ortiz, M.] CALTECH, Pasadena, CA 91125 USA. [Marian, J.; Campbell, G.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Venturini, G (reprint author), CALTECH, Pasadena, CA 91125 USA. EM venturin@caltech.edu FU LDRD [06-SI-005]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the LDRD Project No. 06-SI-005, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory, under Contract No. DE-AC52-07NA27344. G.V. and M.O. gratefully acknowledge the support of the Department of Energy through Caltech's PSAAP Center for the Predictive Simulation of the Dynamic Response of Materials. NR 16 TC 2 Z9 2 U1 0 U2 9 PU BEGELL HOUSE INC PI REDDING PA 50 CROSS HIGHWAY, REDDING, CT 06896 USA SN 1543-1649 J9 INT J MULTISCALE COM JI Int. J. Multiscale Comput. Eng. PY 2012 VL 10 IS 1 BP 1 EP 11 PG 11 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 903AL UT WOS:000301085200002 ER PT J AU Pask, JE Sukumar, N Mousavi, SE AF Pask, J. E. Sukumar, N. Mousavi, S. E. TI LINEAR SCALING SOLUTION OF THE ALL-ELECTRON COULOMB PROBLEM IN SOLIDS SO INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING LA English DT Article DE density functional theory; all-electron; real-space formulation; Poisson equation; enriched finite elements ID DENSITY-FUNCTIONAL THEORY; FINITE-ELEMENT-METHOD; PERIODIC BOUNDARY-CONDITIONS; FAST MULTIPOLE METHOD; GAUSSIAN-ORBITALS; POISSONS-EQUATION; WAVE METHOD; COMPUTATIONS; PARTITION; ALGORITHM AB We present a linear scaling formulation for the solution of the all-electron Coulomb problem in crystalline solids. The resulting method is systematically improvable and well suited to large-scale quantum mechanical calculations in which the Coulomb potential and energy of a continuous electronic density and singular nuclear density are required. Linear scaling is achieved by introducing smooth, strictly local neutralizing densities to render nuclear interactions strictly local, and solving the remaining neutral Poisson problem for the electrons in real space. Although the formulation includes singular nuclear potentials without smearing approximations, the required Poisson solution is in Sobolev space H-1, as required for convergence in the energy norm. We employ enriched finite elements, with enrichments from isolated atom solutions, for an efficient solution of the resulting Poisson problem in the interacting solid. We demonstrate the accuracy and convergence of the approach by direct comparison to standard Ewald sums for a lattice of point charges and demonstrate the accuracy in all-electron quantum mechanical calculations with an application to crystalline diamond. C1 [Pask, J. E.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Sukumar, N.; Mousavi, S. E.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. RP Pask, JE (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. EM pask1@llnl.gov RI Mousavi, Seyed Ebrahim/B-4353-2010; Sukumar, N/B-1660-2008 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program; National Science Foundation [DMS-0811025]; UC Lab FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. We gratefully acknowledge support from the Laboratory Directed Research and Development Program; the National Science Foundation through contract Grant No. DMS-0811025 to the University of California at Davis; and additional financial support from the UC Lab Fees Research Program. NR 54 TC 9 Z9 9 U1 1 U2 13 PU BEGELL HOUSE INC PI DANBURY PA 50 NORTH ST, DANBURY, CT 06810 USA SN 1543-1649 EI 1940-4352 J9 INT J MULTISCALE COM JI Int. J. Multiscale Comput. Eng. PY 2012 VL 10 IS 1 BP 83 EP 99 PG 17 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 903AL UT WOS:000301085200007 ER PT J AU Yoon, S Liao, C Sun, XG Bridges, CA Unocic, RR Nanda, J Dai, S Paranthaman, MP AF Yoon, Sukeun Liao, Chen Sun, Xiao-Guang Bridges, Craig A. Unocic, Raymond R. Nanda, Jagjit Dai, Sheng Paranthaman, M. Parans TI Conductive surface modification of LiFePO4 with nitrogen-doped carbon layers for lithium-ion batteries SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID ELECTROCHEMICAL PROPERTIES; CATHODE MATERIALS; LIMPO4 M=MN; PERFORMANCE; LIQUIDS; OXIDE; PRECURSORS; ELECTRODES; FE; CO AB The surface of rod-like LiFePO4 modified with a conductive nitrogen-doped carbon layer has been prepared using hydrothermal processing followed by post-annealing in the presence of an ionic liquid. The conductive surface modified rod-like LiFePO4 exhibits good capacity retention and high rate capability as the nitrogen-doped carbon layer improves conductivity and prevents aggregation of the rods during cycling. C1 [Yoon, Sukeun; Liao, Chen; Sun, Xiao-Guang; Bridges, Craig A.; Dai, Sheng; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Unocic, Raymond R.; Nanda, Jagjit] Oak Ridge Natl Lab, Mat Sci Technol Div, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM dais@ornl.gov; paranthamanm@ornl.gov RI liao, chen/E-3755-2012; Paranthaman, Mariappan/N-3866-2015; Dai, Sheng/K-8411-2015; OI liao, chen/0000-0001-5168-6493; Paranthaman, Mariappan/0000-0003-3009-8531; Dai, Sheng/0000-0002-8046-3931; Unocic, Raymond/0000-0002-1777-8228 FU Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Basic Energy Sciences, U.S. Department of Energy; Office of the Assistant Secretary for Energy Efficiency and Renewable Energy; Office of Vehicle Technologies of the U.S. Department of Energy; ORISE FX This work was sponsored by the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. Microscopy and XPS work were conducted at the ORNL SHaRE user facility, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. J. N. acknowledges funding support from the Office of the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy. We acknowledge Harry Meyer III for assistance with XPS data analysis. S. Yoon acknowledges the support of the ORISE postdoctoral fellowship. NR 33 TC 41 Z9 41 U1 3 U2 80 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 11 BP 4611 EP 4614 DI 10.1039/c2jm15325d PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 896MP UT WOS:000300571400008 ER PT J AU Park, CY Lee, TH Dorris, SE Balachandran, U AF Park, C. Y. Lee, T. H. Dorris, S. E. Balachandran, U. (Balu) TI Palladium based film-type cermet membranes for hydrogen separation SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID CHEMICAL-STABILITY; PERMEATION; PERMEABILITY; RESISTANCES; TRANSPORT AB Thin-film type cermet (i.e., ceramic-metal composite) membranes were made by a paste painting method, and their hydrogen transport properties were evaluated. The hydrogen permeability of a 30 mu m thick Pd/YSZ (palladium/yttrium-stabilized zirconia) film was compared with that of Pd foil (thickness of 0.1 mm). To test the reproducibility of the results and stability of the Pd/YSZ film, the film's permeability was measured over a period of similar to 300 h as a function of temperature, gas flow rate, and hydrogen partial pressure. In addition, the influence of a porous alumina substrate was investigated by measuring the hydrogen flux of the Pd foil with and without an Al2O3 substrate in front of the foil. The differences between the hydrogen permeability of the cermet film and that of the Pd foil are discussed. As additional practical information about the cermet film, its thermal expansion behavior was studied in air and in nitrogen, and changes in its microstructure were examined during stability tests. Taken together, the results indicate that thin-film Pd/YSZ cermet membranes can meet the requirements of hydrogen transport membranes. C1 [Park, C. Y.; Lee, T. H.; Dorris, S. E.; Balachandran, U. (Balu)] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Park, CY (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cpark@anl.gov FU U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory [DE-AC02-06CH11357] FX Work supported by the U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory's Advanced Fuels Technology Program, under Contract DE-AC02-06CH11357. NR 22 TC 4 Z9 4 U1 0 U2 20 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 EI 1364-5501 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 11 BP 4904 EP 4909 DI 10.1039/c2jm14741f PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 896MP UT WOS:000300571400051 ER PT J AU Yang, YQ Tu, HY Zhang, AD Du, D Lin, YH AF Yang, Yuqi Tu, Haiyang Zhang, Aidong Du, Dan Lin, Yuehe TI Preparation and characterization of Au-ZrO2-SiO2 nanocomposite spheres and their application in enrichment and detection of organophosphorus agents SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID MASS-SPECTROMETRIC ANALYSIS; SOLID-PHASE EXTRACTION; NERVE AGENTS; PHOSPHORYLATED ACETYLCHOLINESTERASE; ZIRCONIA NANOPARTICLES; SELECTIVE ENRICHMENT; CARBON NANOTUBES; PESTICIDES; EXPOSURE; PEPTIDES AB Au-ZrO2-SiO2 nanocomposite spheres were synthesized and used as selective sorbents for the solid-phase extraction (SPE) of organophosphorous agents. A non-enzymatic electrochemical sensor based on a Au-ZrO2-SiO2 modified electrode was developed for the selective detection of organophosphorous pesticides (OPs). The Au-ZrO2-SiO2 nanocomposite spheres were synthesized by the hydrolysis and condensation of zirconium n-butoxide (TBOZ) on the surface of SiO2 spheres and then the introduction of gold nanoparticles on the surface. Transmission electron microscopy and X-ray photoelectron spectroscopy were performed to characterize the formation of the nanocomposite spheres. Fast extraction of OP was achieved by the Au-ZrO2-SiO2 modified electrode within 5 min via the specific affinity between zirconia and the phosphoric group. The assay yields a broad concentration range of paraoxon-ethyl from 1.0 to 500 ng mL(-1) with a detection limit of 0.5 ng mL(-1). This selective and sensitive method holds great promise for the enrichment and detection of OPs. C1 [Yang, Yuqi; Tu, Haiyang; Zhang, Aidong; Du, Dan] Cent China Normal Univ, Coll Chem, Key Lab Pesticide & Chem Biol, Minist Educ, Wuhan 430079, Peoples R China. [Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Du, D (reprint author), Cent China Normal Univ, Coll Chem, Key Lab Pesticide & Chem Biol, Minist Educ, Wuhan 430079, Peoples R China. EM dudan@mail.ccnu.edu.cn; yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012 OI Lin, Yuehe/0000-0003-3791-7587; FU National Natural Science Foundation of China [21075047, 21172088]; Special Fund for Basic Scientific Research of Central Colleges [CCNU11C01002, CCNU10A02005]; NIH from the National Institute of Environmental Health Sciences (NIEHS) [U54 ES16015]; US-DOE [DE-AC05-76RL01830] FX This work was supported by the National Natural Science Foundation of China (21075047, 21172088) and the Special Fund for Basic Scientific Research of Central Colleges (CCNU11C01002, CCNU10A02005). Y. Lin acknowledges the financial support by a NIH grant (U54 ES16015) from the National Institute of Environmental Health Sciences (NIEHS). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Pacific Northwest National Laboratory is operated by Battelle for US-DOE under Contract DE-AC05-76RL01830. NR 32 TC 17 Z9 17 U1 5 U2 63 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 11 BP 4977 EP 4981 DI 10.1039/c2jm15129d PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 896MP UT WOS:000300571400062 ER PT J AU Nagaraja, AR Perry, NH Mason, TO Tang, Y Grayson, M Paudel, TR Lany, S Zunger, A AF Nagaraja, Arpun R. Perry, Nicola H. Mason, Thomas O. Tang, Yang Grayson, Matthew Paudel, Tula R. Lany, Stephan Zunger, Alex TI Band or Polaron: The Hole Conduction Mechanism in the p-Type Spinel Rh2ZnO4 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID AMORPHOUS OXIDE SEMICONDUCTOR; ELECTRICAL-PROPERTIES; VALENCE-BAND; TRANSPORT; CRYSTALS; ENERGY AB Given the emerging role of oxide spinels as hole conductors, we discuss in this article the traditional vs. new methodologies of determining the type of conduction mechanism at playlocalized polaronic vs. band-like transport. Applying (i) traditional small polaron analysis to our in-situ high temperature four-point conductivity and thermopower measurements, we previously found an activated mobility, which is indicative of the small polaron mechanism. However, (ii) employing the recent developments in correcting density functional methodologies for hole localization, we predict that the self-trapped hole is unstable and that Rh2ZnO4 is instead a band conductor with a large effective mass. The hole mobility measured by high-field room temperature Hall effect also suggests band rather than polaron conduction. The apparent contradiction between the conclusion of the traditional procedure (i) and first-principles theory (ii) is resolved by taking into account in the previous transport analysis the temperature dependence of the effective density of states, which leads to the result that the mobility is actually temperature-independent in Rh2ZnO4. Our case study on Rh2ZnO4 illustrates the range of experimental and theoretical approaches at hand to determine whether the transport mechanism of a semiconductor is band or small polaron conduction. C1 [Nagaraja, Arpun R.; Perry, Nicola H.; Mason, Thomas O.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Tang, Yang; Grayson, Matthew] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. [Paudel, Tula R.; Lany, Stephan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mason, TO (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM t-mason@northwestern.edu RI Grayson, Matthew/B-7159-2009; Mason, Thomas/B-7528-2009; Zunger, Alex/A-6733-2013; OI Lany, Stephan/0000-0002-8127-8885 FU Basic Energy Science Division, U.S. Department of Energy [DE-AC36-08GO28308]; National Science Foundation's MRSEC [DMR-0520513] FX This work was supported by the Basic Energy Science Division, U.S. Department of Energy, under Grant No. DE-AC36-08GO28308 to NREL. The "Center for Inverse Design" is a DOE Energy Frontier Research Center. The high magnetic field work and use of the J. B. Cohen X-Ray Diffraction Facility were supported by the National Science Foundation's MRSEC Program (DMR-0520513) at the Materials Research Center of Northwestern University. NR 38 TC 24 Z9 24 U1 3 U2 45 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JAN PY 2012 VL 95 IS 1 BP 269 EP 274 DI 10.1111/j.1551-2916.2011.04771.x PG 6 WC Materials Science, Ceramics SC Materials Science GA 871JX UT WOS:000298735300046 ER PT J AU Bale, H Blacklock, M Begley, MR Marshall, DB Cox, BN Ritchie, RO AF Bale, Hrishikesh Blacklock, Matthew Begley, Matthew R. Marshall, David B. Cox, Brian N. Ritchie, Robert O. TI Characterizing Three-Dimensional Textile Ceramic Composites Using Synchrotron X-Ray Micro-Computed-Tomography SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID 3D WOVEN COMPOSITES; INFILTRATED SIC/SIC COMPOSITES; FIBER ARCHITECTURE; COMPRESSION; FAILURE; DEFORMATION; MECHANISMS; BEHAVIOR; GEOMETRY; CRACKING AB Three-dimensional (3-D) images of two ceramic-matrix textile composites were captured by X-ray micron-resolution computed tomography (mu CT) on a synchrotron beamline. Compared to optical images of sections, CT data reveal comprehensive geometrical information about the fiber tows; information at smaller scales, on matrix voids, individual fibers, and fiber coatings, can also be extracted but image artifacts can compromise interpretation. A statistical analysis of the shape and positioning of the fiber tows in the 3-D woven architecture is performed, based on a decomposition of the spatial variations of any geometrical characteristic of the tows into non-stochastic periodic trends and non-periodic stochastic deviations. The periodic trends are compiled by exploiting the nominal translational invariance of the textile, a process that maximizes the information content of the relatively small specimens that can be imaged at high resolution. The stochastic deviations (or geometrical defects in the textile) are summarized in terms of the standard deviation of any characteristic at a single point along the axis of a tow and correlations between the values of deviations at two different points on the same or different tows. The tow characteristics analyzed consist of the coordinates of the centroids of a tow, together with the area, aspect ratio, and orientation of its cross-section. The tabulated statistics are sufficient to calibrate a probabilistic generator (detailed elsewhere) that can create virtual specimens of any size that are individually distinct but share the statistical characteristics of the small specimens analyzed by X-ray mu CT. The data analysis presented herein forms the first step in formulating a virtual test of textile composites, by providing the statistical information required for realistic description of the textile reinforcement. C1 [Bale, Hrishikesh; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Bale, Hrishikesh; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Blacklock, Matthew; Begley, Matthew R.] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. [Marshall, David B.; Cox, Brian N.] Teledyne Sci Co, Thousand Oaks, CA 91360 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008; OI Ritchie, Robert/0000-0002-0501-6998; Blacklock, Matthew/0000-0001-5399-9231 FU Air Force Office of Scientific Research; NASA under the National Hypersonics Science Center for Materials and Structures (AFOSR) [FA9550-09-1-0477]; Office of Science of the U.S. Department of Energy [DE AC02 05CH11231] FX This work was supported by the Air Force Office of Scientific Research (Dr. Ali Sayir) and NASA (Dr. Anthony Calomino) under the National Hypersonics Science Center for Materials and Structures (AFOSR Contract No. FA9550-09-1-0477). We acknowledge the use of the X-ray synchrotron micro-tomography beam line (8.3.2) at the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract No. DE AC02 05CH11231. NR 28 TC 39 Z9 39 U1 4 U2 44 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JAN PY 2012 VL 95 IS 1 BP 392 EP 402 DI 10.1111/j.1551-2916.2011.04802.x PG 11 WC Materials Science, Ceramics SC Materials Science GA 871JX UT WOS:000298735300064 ER PT S AU Wang, GT Li, QM Wierer, J Figiel, J Wright, JB Luk, TS Brener, I AF Wang, George T. Li, Qiming Wierer, Jonathan Figiel, Jeffrey Wright, Jeremy B. Luk, Ting S. Brener, Igal BE Streubel, KP Jeon, H Tu, LW Linder, N TI Top-down fabrication of GaN-based nanorod LEDs and lasers SO LIGHT-EMITTING DIODES: MATERIALS, DEVICES, AND APPLICATIONS FOR SOLID STATE LIGHTING XVI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Light-Emitting Diodes - Materials, Devices, and Applications for Solid State Lighting XVI CY JAN 24-26, 2012 CL San Francisco, CA SP SPIE, OSRAM GmbH DE GaN; nanowire; nanorod; LED; laser; solid-state lighting; top-down; chemical vapor deposition ID EMITTING DIODE-ARRAYS; NANOWIRES AB Although planar heterostructures dominate current optoelectronic architectures, 1D nanowires and nanorods have distinct and advantageous properties that may enable higher efficiency, longer wavelength, and cheaper devices. We have developed a top-down approach for fabricating ordered arrays of high quality GaN-based nanorods with controllable height, pitch and diameter. This approach avoids many of the limitations of bottom-up synthesis methods. In addition to GaN nanorods, the fabrication and characterization of both axial and radial-type GaN/InGaN nanorod LEDs have been achieved. The precise control over nanorod geometry achiveable by this technique also enables single-mode single nanowire lasing with linewidths of less than 0.1 nm and low lasing thresholds of similar to 250kW/cm(2). C1 [Wang, George T.; Li, Qiming; Wierer, Jonathan; Figiel, Jeffrey; Wright, Jeremy B.; Luk, Ting S.; Brener, Igal] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wang, GT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gtwang@sandia.gov RI Wang, George/C-9401-2009; Wright, Jeremy/G-7149-2011; Wierer, Jonathan/G-1594-2013 OI Wang, George/0000-0001-9007-0173; Wright, Jeremy/0000-0001-6861-930X; Wierer, Jonathan/0000-0001-6971-4835 NR 13 TC 1 Z9 1 U1 1 U2 17 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-921-0 J9 PROC SPIE PY 2012 VL 8278 AR 827816 DI 10.1117/12.909377 PG 6 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BZB68 UT WOS:000301055700017 ER PT J AU Wheatley, PV Peckham, H Newsome, SD Koch, PL AF Wheatley, Patrick V. Peckham, Hoyt Newsome, Seth D. Koch, Paul L. TI Estimating marine resource use by the American crocodile Crocodylus acutus in southern Florida, USA SO MARINE ECOLOGY PROGRESS SERIES LA English DT Article DE Osmoregulation; Saltwater tolerance; Isotope; Reptile; Alligator; Marine iguana; Sea turtle ID CARBON-ISOTOPE DISCRIMINATION; ORGANIC-MATTER; STABLE ISOTOPES; AMBLYRHYNCHUS-CRISTATUS; ESTUARINE CROCODILES; STRONTIUM ISOTOPES; CONTINENTAL-SHELF; FORAGING ECOLOGY; CARETTA-CARETTA; FOOD WEBS AB Alligators and crocodiles differ in their physiological capacity to live in saline waters. Crocodiles can tolerate high-salinity water, at least for limited timeframes, whereas alligators and their close relatives cannot. Experiments have placed different crocodylians in various water salinities to document physiological responses, but no study has estimated the extent to which natural populations of crocodylids can live independent of fresh water. Here we estimated marine food and perhaps seawater contributions to a population of American crocodile Crocodylus acutus in southernmost Florida, USA. We evaluated the use of carbon, oxygen, and strontium isotopes as tracers of marine versus terrestrial sources. We compared C. acutus isotopic values to those of marine reptiles (marine iguanas and Pacific loggerhead turtles) and to American alligators, which require fresh water. We found that freshwater reptiles can be discriminated from those that drink seawater (or survive on metabolic and prey-included water in saline habitats) based on the magnitude of population-level oxygen isotope variation in bioapatite, whereas mean carbon isotope values discriminate between marine versus terrestrial food consumption. We used a 2 end-member (seawater and fresh water) mixing model to calculate percentage of marine resources used by C. acutus. Results indicate that adult C. acutus in southern Florida use marine food about 65% of the time and seawater or water gleaned from marine food about 80% of the time. This suggests that behavioral osmoregulatory techniques (i.e. seeking fresh water specifically for drinking, as suggested by other researchers) may not be necessary and that C. acutus is capable of being largely ecologically independent of fresh water. C1 [Wheatley, Patrick V.; Koch, Paul L.] Univ Calif Santa Cruz, Earth & Planetary Sci Dept, Santa Cruz, CA 95064 USA. [Peckham, Hoyt] Grp Tortuguero Calif, La Paz 23060, Baja California, Mexico. [Peckham, Hoyt] Stanford Univ, Ctr Ocean Solut, Monterey, CA 93940 USA. [Newsome, Seth D.] Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA. RP Wheatley, PV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Isotope Geochem, Berkeley, CA 94720 USA. EM pvwheatley@lbl.gov FU CDELSI; NSF [EAR-0819943] FX H. Schwartz, J. Zachos, and 4 anonymous reviewers made suggestions to better this manuscript, and it is much improved thanks to their efforts. We thank R, Elsey at Rockefeller Wildlife Refuge (RWR) in Louisiana for supplying samples from RWR. We thank the University of Florida (UF) curators, M. Nickerson, K. Krysko, and especially F. W. King, for access and permission to sample the UF crocodylian collection. J. Vendum at the California Academy of Sciences provided access and samples of marine iguanas. Although sampling logistics never worked out, M. Slaughter at J. D. Murphree WMA in Port Author, Texas, was very helpful in trying to supply samples for this study. Support for this research was supplied by CDELSI and by NSF Grant EAR-0819943 to P.L.K. NR 105 TC 11 Z9 12 U1 4 U2 43 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0171-8630 EI 1616-1599 J9 MAR ECOL PROG SER JI Mar. Ecol.-Prog. Ser. PY 2012 VL 447 BP 211 EP 229 DI 10.3354/meps09503 PG 19 WC Ecology; Marine & Freshwater Biology; Oceanography SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography GA 897OG UT WOS:000300660600015 ER PT J AU Cho, KT Mench, MM AF Cho, Kyu Taek Mench, Matthew M. TI Investigation of the role of the micro-porous layer in polymer electrolyte fuel cells with hydrogen deuterium contrast neutron radiography SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID PLANE WATER DISTRIBUTION; COMPOSITE CARBON-BLACK; MICROPOROUS LAYER; DIFFUSION LAYER; MEMBRANE; TRANSPORT; EXCHANGE; PEMFCS; MEDIA; PEFCS AB In this study, the high resolution hydrogen-deuterium contrast radiography method was applied to elucidate the impact of the micro-porous layer (MPL) on water distribution in the porous fuel cell media. At the steady state, deuterium replaced hydrogen in the anode stream, and the large difference in neutron attenuation of the D2O produced at the cathode was used to track the produced water. It was found that the water content peaked in the cathode-side diffusion media (DM) for the cell without MPL, but with an MPL on the anode and cathode DM, the peak water amount was pushed toward the anode, resulting in a relatively flattened water profile through components and demonstrating a liquid barrier effect. Additionally, the dynamic water behavior in diffusion media was analyzed to understand the effect of a MPL and operating conditions. The water content in the DM changed with applied current, although there is a significant amount of residual liquid content that does not appear to be part of capillary channels. The effect of the MPL on irreducible saturation in DM and cell performance was also investigated. C1 [Mench, Matthew M.] Univ Tennessee, Electrochem Energy Storage & Convers Lab, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Mench, Matthew M.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Mench, MM (reprint author), Univ Tennessee, Electrochem Energy Storage & Convers Lab, Dept Mech Aerosp & Biomed Engn, 1512 Middle Dr,414 Dougherty Engn Bldg, Knoxville, TN 37996 USA. EM mmench@utk.edu FU NSF [CBET-0644811] FX The authors wish to thank Drs D. Hussey and D. Jacobson for valuable discussions at the NIST imaging facility. A portion of this study was funded by NSF award #CBET-0644811. NR 43 TC 16 Z9 16 U1 0 U2 24 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 12 BP 4296 EP 4302 DI 10.1039/c2cp23686a PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 901FA UT WOS:000300946600031 PM 22337210 ER PT J AU Du, JC Tian, ZX Sui, Y Zhao, MX Song, QJ Cannon, SB Cregan, P Ma, JX AF Du, Jianchang Tian, Zhixi Sui, Yi Zhao, Meixia Song, Qijian Cannon, Steven B. Cregan, Perry Ma, Jianxin TI Pericentromeric Effects Shape the Patterns of Divergence, Retention, and Expression of Duplicated Genes in the Paleopolyploid Soybean SO PLANT CELL LA English DT Article ID MUTATION-RATE VARIATION; ARABIDOPSIS-THALIANA; GENOME DUPLICATION; GLYCINE-MAX; DROSOPHILA-MELANOGASTER; TRANSPOSABLE ELEMENTS; RECOMBINATION RATES; DNA METHYLATION; EVOLUTION; SEQUENCE AB The evolutionary forces that govern the divergence and retention of duplicated genes in polyploids are poorly understood. In this study, we first investigated the rates of nonsynonymous substitution (Ka) and the rates of synonymous substitution (Ks) for a nearly complete set of genes in the paleopolyploid soybean (Glycine max) by comparing the orthologs between soybean and its progenitor species Glycine soja and then compared the patterns of gene divergence and expression between pericentromeric regions and chromosomal arms in different gene categories. Our results reveal strong associations between duplication status and Ka and gene expression levels and overall low Ks and low levels of gene expression in pericentromeric regions. It is theorized that deleterious mutations can easily accumulate in recombination-suppressed regions, because of Hill-Robertson effects. Intriguingly, the genes in pericentromeric regions-the cold spots for meiotic recombination in soybean-showed significantly lower Ka and higher levels of expression than their homoeologs in chromosomal arms. This asymmetric evolution of two members of individual whole genome duplication (WGD)-derived gene pairs, echoing the biased accumulation of singletons in pericentromeric regions, suggests that distinct genomic features between the two distinct chromatin types are important determinants shaping the patterns of divergence and retention of WGD-derived genes. C1 [Du, Jianchang; Tian, Zhixi; Sui, Yi; Zhao, Meixia; Ma, Jianxin] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. [Du, Jianchang] Jiangsu Acad Agr Sci, Inst Ind Crops, Nanjing 210014, Jiangsu, Peoples R China. [Zhao, Meixia] Chinese Acad Agr Sci, Inst Oil Crops, Wuhan 430062, Peoples R China. [Song, Qijian; Cregan, Perry] ARS, US DOE, Soybean Genom & Improvement Lab, Beltsville Agr Res Ctr W, Beltsville, MD 20705 USA. [Cannon, Steven B.] ARS, US DOE, Corn Insect & Crop Genet Res Unit, Ames, IA 50011 USA. RP Ma, JX (reprint author), Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. EM maj@purdue.edu RI ZHAO, MEIXIA/N-3124-2015 OI ZHAO, MEIXIA/0000-0001-8812-8217 FU Indiana Soybean Alliance; National Science Foundation Plant Genome Research [IOS-0822258]; Purdue Agricultural Research Award; Jiangsu Academy of Agricultural Sciences FX We thank Hon-Ming Lam and Xin Liu for providing the soybean genome resequencing data, and Brandon Gaut and Michael Purugganan for their help interpreting some observations reported in this study. This work was partially supported by Indiana Soybean Alliance (J.M.), National Science Foundation Plant Genome Research Program (IOS-0822258) (J.M., P.C.), Purdue Agricultural Research Award (J.M.), and Jiangsu Academy of Agricultural Sciences Startup Funds (J.D.). NR 80 TC 34 Z9 37 U1 0 U2 13 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 J9 PLANT CELL JI Plant Cell PD JAN PY 2012 VL 24 IS 1 BP 21 EP 32 DI 10.1105/tpc.111.092759 PG 12 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 900JA UT WOS:000300881800006 PM 22227891 ER PT J AU Gou, JY Miller, LM Hou, GC Yu, XH Chen, XY Liu, CJ AF Gou, Jin-Ying Miller, Lisa M. Hou, Guichuan Yu, Xiao-Hong Chen, Xiao-Ya Liu, Chang-Jun TI Acetylesterase-Mediated Deacetylation of Pectin Impairs Cell Elongation, Pollen Germination, and Plant Reproduction SO PLANT CELL LA English DT Article ID ERWINIA-CHRYSANTHEMI 3937; SUGAR-BEET; GENE-EXPRESSION; TUBE GROWTH; CAPILLARY-ELECTROPHORESIS; ACETYL-ESTERIFICATION; 2-AMINOBENZOIC ACID; SEQUENCE ALIGNMENT; WALL-ACETYLATION; O-ACETYLATION AB Pectin is a major component of the primary cell wall of higher plants. Some galacturonyl residues in the backbone of pectinaceous polysaccharides are often O-acetylated at the C-2 or C-3 position, and the resulting acetylesters change dynamically during the growth and development of plants. The processes involve both enzymatic acetylation and deacetylation. Through genomic sequence analysis, we identified a pectin acetylesterase (PAE1) from black cotton-wood (Populus trichocarpa). Recombinant Pt PAE1 exhibited preferential activity in releasing the acetate moiety from sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectin in vitro. Overexpressing Pt PAE1 in tobacco (Nicotiana tabacum) decreased the level of acetyl esters of pectin but not of xylan. Deacetylation engendered differential changes in the composition and/or structure of cell wall polysaccharides that subsequently impaired the cellular elongation of floral styles and filaments, the germination of pollen grains, and the growth of pollen tubes. Consequently, plants overexpressing PAE1 exhibited severe male sterility. Furthermore, in contrast to the conventional view, PAE1-mediated deacetylation substantially lowered the digestibility of pectin. Our data suggest that pectin acetylesterase functions as an important structural regulator in planta by modulating the precise status of pectin acetylation to affect the remodeling and physiochemical properties of the cell wall's polysaccharides, thereby affecting cell extensibility. C1 [Gou, Jin-Ying; Yu, Xiao-Hong; Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Hou, Guichuan] Appalachian State Univ, Boone, NC 28608 USA. [Chen, Xiao-Ya] Shanghai Inst Biol Sci, Natl Key Lab Plant Mol Genet, Inst Plant Physiol & Ecol, Shanghai 200032, Peoples R China. RP Liu, CJ (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM cliu@bnl.gov RI Gou, Jin-Ying/G-7628-2012; OI Chen, Xiaoya/0000-0002-2909-8414 FU U.S. Department of Energy [DEAC0298CH10886]; National Science Foundation [MCB-1051675]; Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership for Creative Research Teams in Plant Metabolisms; National Science Foundation of China [31028003]; Office of Basic Energy Sciences, U.S. Department of Energy [DEAC02-98CH10886] FX We thank Simon Park, William Willis, and Randy Smith at the National Synchrotron Light Source for their help with FTIR microspectroscopy. Sugar beet pectin was kindly provided by CP Kelco U.S. This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DEAC0298CH10886 and by the National Science Foundation through Grant MCB-1051675 (to C.-J.L.), the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams in Plant Metabolisms (to X.-Y.C), and the scholarship for distinguished overseas researcher from the National Science Foundation of China (31028003; to C.-J.L.). Use of the National Synchrotron light and confocal microscope at the Center of Functional Nanomaterials was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DEAC02-98CH10886. NR 77 TC 36 Z9 37 U1 2 U2 47 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD JAN PY 2012 VL 24 IS 1 BP 50 EP 65 DI 10.1105/tpc.111.092411 PG 16 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 900JA UT WOS:000300881800008 PM 22247250 ER PT J AU Du, Q Kamm, JR Lehoucq, RB Parks, ML AF Du, Qiang Kamm, James R. Lehoucq, R. B. Parks, Michael L. TI A NEW APPROACH FOR A NONLOCAL, NONLINEAR CONSERVATION LAW SO SIAM JOURNAL ON APPLIED MATHEMATICS LA English DT Article DE conservation laws; advection; nonlocal operator; integral operator; Burgers equation; peridynamics ID DIFFUSION EQUATION; BURGERS-EQUATION; SOLID MECHANICS; WAVES; MODEL; POSEDNESS; EXISTENCE; FLUX AB We describe an approach to nonlocal, nonlinear advection in one dimension that extends the usual pointwise concepts to account for nonlocal contributions to the flux. The spatially nonlocal operators we consider do not involve derivatives. Instead, the spatial operator involves an integral that, in a distributional sense, reduces to a conventional nonlinear advective operator. In particular, we examine a nonlocal inviscid Burgers equation, which gives a basic form with which to characterize properties associated with well-posedness, and to examine numerical results for specific cases. We describe the connection to a nonlocal viscous regularization, which mimics the viscous Burgers equation in an appropriate limit. We present numerical results that compare the behavior of the nonlocal Burgers formulation to the standard local case. The developments presented in this paper form the preliminary building blocks upon which to build a theory of nonlocal advection phenomena consistent within the peridynamic theory of continuum mechanics. C1 [Du, Qiang] Penn State Univ, Dept Math, University Pk, PA 16802 USA. [Kamm, James R.; Lehoucq, R. B.; Parks, Michael L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Du, Q (reprint author), Penn State Univ, Dept Math, University Pk, PA 16802 USA. EM qdu@math.psu.edu; jrkamm@sandia.gov; rblehou@sandia.gov; mlparks@sandia.gov RI Du, Qiang/B-1021-2008 OI Du, Qiang/0000-0002-1067-8937 FU U.S. Department of Energy [DE-SC0005346, DE-AC04-94-AL85000]; NSF [DMS-1016073]; Sandia National Laboratories FX This author was supported in part by U.S. Department of Energy grant DE-SC0005346 and NSF grant DMS-1016073.; The work of these authors was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94-AL85000. NR 38 TC 19 Z9 20 U1 1 U2 18 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0036-1399 J9 SIAM J APPL MATH JI SIAM J. Appl. Math. PY 2012 VL 72 IS 1 BP 464 EP 487 DI 10.1137/110833233 PG 24 WC Mathematics, Applied SC Mathematics GA 900LV UT WOS:000300889500024 ER PT J AU Draganescu, A Petra, C AF Draganescu, Andrei Petra, Cosmin TI MULTIGRID PRECONDITIONING OF LINEAR SYSTEMS FOR INTERIOR POINT METHODS APPLIED TO A CLASS OF BOX-CONSTRAINED OPTIMAL CONTROL PROBLEMS SO SIAM JOURNAL ON NUMERICAL ANALYSIS LA English DT Article DE multigrid; interior point methods; PDE-constrained optimization ID ILL-POSED PROBLEMS; SEMISMOOTH NEWTON METHODS; MULTILEVEL ALGORITHMS; OPTIMIZATION; CONVERGENCE; SCHEME AB In this article we construct and analyze multigrid preconditioners for discretizations of operators of the form D-lambda+ kappa*kappa, where D-lambda is the multiplication with a relatively smooth function lambda > 0 and kappa is a compact linear operator. These systems arise when applying interior point methods to the minimization problem min(u) 1/2 (parallel to kappa u-f parallel to(2) + beta parallel to u parallel to(2)) with box-constraints (u) under bar <= u <= (u) over bar on the controls. The presented preconditioning technique is closely related to the one developed by Draganescu and Dupont [Math. Comp., 77 (2008), pp. 2001-2038] for the associated unconstrained problem and is intended for large-scale problems. As in that work, the quality of the resulting preconditioners is shown to increase as h down arrow 0, but it decreases as the smoothness of lambda declines. We test this algorithm on a Tikhonov-regularized backward parabolic equation with box-constraints on the control and on a standard elliptic-constrained optimization problem. In both cases it is shown that the number of linear iterations per optimization step, as well as the total number of finest-scale matrix-vector multiplications, is decreasing with increasing resolution, thus showing the method to be potentially very efficient for truly large-scale problems. C1 [Draganescu, Andrei] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA. [Petra, Cosmin] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Draganescu, A (reprint author), Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA. EM draga@umbc.edu; petra@mcs.anl.gov FU Department of Energy [DE-SC0005455]; National Science Foundation [DMS-1016177, DMS-0821311, CCF-0728878] FX The work of this author was supported in part by the Department of Energy under contract DE-SC0005455 and by the National Science Foundation under awards DMS-1016177 and DMS-0821311.; The work of this author was supported in part by the National Science Foundation under award CCF-0728878. NR 28 TC 2 Z9 2 U1 0 U2 1 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0036-1429 J9 SIAM J NUMER ANAL JI SIAM J. Numer. Anal. PY 2012 VL 50 IS 1 BP 328 EP 353 DI 10.1137/100786502 PG 26 WC Mathematics, Applied SC Mathematics GA 900MK UT WOS:000300891000016 ER PT J AU Anitescu, M Chen, J Wang, L AF Anitescu, Mihai Chen, Jie Wang, Lei TI A MATRIX-FREE APPROACH FOR SOLVING THE PARAMETRIC GAUSSIAN PROCESS MAXIMUM LIKELIHOOD PROBLEM SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE Gaussian process; maximum likelihood estimation; sample average approximation; preconditioned conjugate gradient; Toeplitz system; circulant preconditioner; fast multipole method ID INTERPOLATION; CALIBRATION; ALGORITHM; TREECODE; SYSTEMS AB Gaussian processes are the cornerstone of statistical analysis in many application areas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for computing the solution of the maximum likelihood problem involving Gaussian processes. The approach is based on a stochastic programming reformulation followed by sample average approximation applied to either the maximization problem or its optimality conditions. We provide statistical estimates of the approximate solution. The method is illustrated on several examples where the data is provided on a regular or irregular grid. In the latter case, the action of a covariance matrix on a vector is computed by means of fast multipole methods. For each of the examples presented, we demonstrate that the approach scales linearly with an increase in the number of sites. C1 [Anitescu, Mihai; Chen, Jie; Wang, Lei] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Anitescu, M (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM anitescu@mcs.anl.gov; jiechen@mcs.anl.gov; lwang@mcs.anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy under contract DE-AC02-06CH11357. The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. DE-AC02-06CH11357 with the U. S. Department of Energy. The U. S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 34 TC 17 Z9 17 U1 0 U2 5 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 EI 1095-7197 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2012 VL 34 IS 1 BP A240 EP A262 DI 10.1137/110831143 PG 23 WC Mathematics, Applied SC Mathematics GA 901BU UT WOS:000300937500010 ER PT J AU Demmel, J Grigori, L Hoemmen, M Langou, J AF Demmel, James Grigori, Laura Hoemmen, Mark Langou, Julien TI COMMUNICATION-OPTIMAL PARALLEL AND SEQUENTIAL QR AND LU FACTORIZATIONS SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE linear algebra; QR factorization; LU factorization ID MATRIX; DECOMPOSITION; PERFORMANCE; ALGORITHMS; COMPLEXITY; SYSTEMS; SERIAL AB We present parallel and sequential dense QR factorization algorithms that are both optimal (up to polylogarithmic factors) in the amount of communication they perform and just as stable as Householder QR. We prove optimality by deriving new lower bounds for the number of multiplications done by "non-Strassen-like" QR, and using these in known communication lower bounds that are proportional to the number of multiplications. We not only show that our QR algorithms attain these lower bounds (up to polylogarithmic factors), but that existing LAPACK and ScaLAPACK algorithms perform asymptotically more communication. We derive analogous communication lower bounds for LU factorization and point out recent LU algorithms in the literature that attain at least some of these lower bounds. The sequential and parallel QR algorithms for tall and skinny matrices lead to significant speedups in practice over some of the existing algorithms, including LAPACK and ScaLAPACK, for example, up to 6.7 times over ScaLAPACK. A performance model for the parallel algorithm for general rectangular matrices predicts significant speedups over ScaLAPACK. C1 [Demmel, James] Univ Calif Berkeley, EECS, Berkeley, CA 94720 USA. [Grigori, Laura] Univ Paris 11, INRIA Saclay Ile France, Lab Rech Informat, F-91405 Orsay, France. [Hoemmen, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Langou, Julien] Univ Colorado Denver, Dept Math Sci, Denver, CO 80202 USA. [Langou, Julien] Hlth Sci Ctr, Denver, CO 80202 USA. RP Demmel, J (reprint author), Univ Calif Berkeley, EECS, 831 Evans Hall, Berkeley, CA 94720 USA. EM demmel@eecs.berkeley.edu; Laura.Grigori@inria.fr; mhoemme@sandia.gov; julien.langou@ucdenver.edu RI Langou, Julien/G-5788-2013 NR 48 TC 44 Z9 44 U1 0 U2 3 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2012 VL 34 IS 1 BP A206 EP A239 DI 10.1137/080731992 PG 34 WC Mathematics, Applied SC Mathematics GA 901BU UT WOS:000300937500009 ER PT J AU Sargsyan, K Safta, C Debusschere, B Najm, H AF Sargsyan, Khachik Safta, Cosmin Debusschere, Bert Najm, Habib TI UNCERTAINTY QUANTIFICATION GIVEN DISCONTINUOUS MODEL RESPONSE AND A LIMITED NUMBER OF MODEL RUNS SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE uncertainty quantification; polynomial chaos; Bayesian inference; discontinuity detection; Rosenblatt transformation ID FINITE-ELEMENT-METHOD; EDGE-DETECTION; PROPAGATION; SYSTEMS AB We outline a methodology for forward uncertainty quantification in systems with uncertain parameters, discontinuous model response, and a limited number of model runs. Our approach involves two stages. First we detect the discontinuity with Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve for arbitrarily distributed input parameters. Then, employing the Rosenblatt transform, we construct spectral representations of the uncertain model output, using polynomial chaos (PC) expansions on either side of the discontinuity curve, leading to an averaged PC representation of the forward model response that allows efficient uncertainty quantification. We obtain PC modes by either orthogonal projection or Bayesian inference, and argue for a hybrid approach that targets a balance between the accuracy provided by the orthogonal projection and the flexibility provided by the Bayesian inference. The uncertain model output is then computed by taking an ensemble average over PC expansions corresponding to sampled realizations of the discontinuity curve. The methodology is demonstrated on synthetic examples of discontinuous model response with adjustable sharpness and structure. C1 [Sargsyan, Khachik; Safta, Cosmin; Debusschere, Bert; Najm, Habib] Sandia Natl Labs, Livermore, CA 94550 USA. RP Sargsyan, K (reprint author), Sandia Natl Labs, 7011 East Ave,MS 9051, Livermore, CA 94550 USA. EM ksargsy@sandia.gov; csafta@sandia.gov; bjdebus@sandia.gov; hnnajm@sandia.gov FU Sandia National Laboratories Seniors' Council LDRD; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Sandia National Laboratories Seniors' Council LDRD (Laboratory Directed Research and Development) program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by these rights. NR 31 TC 9 Z9 9 U1 0 U2 5 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 EI 1095-7197 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2012 VL 34 IS 1 BP B44 EP B64 DI 10.1137/100817899 PG 21 WC Mathematics, Applied SC Mathematics GA 901BU UT WOS:000300937500024 ER PT J AU Breshears, DD Kirchner, TB Whicker, JJ Field, JP Allen, CD AF Breshears, David D. Kirchner, Thomas B. Whicker, Jeffrey J. Field, Jason P. Allen, Craig D. TI Modeling aeolian transport in response to succession, disturbance and future climate: Dynamic long-term risk assessment for contaminant redistribution SO AEOLIAN RESEARCH LA English DT Article; Proceedings Paper CT 7th International Conference on Aeolian Research (ICAR) CY JUL 05-09, 2010 CL Santa Rosa, ARGENTINA DE Aeolian; Contaminant transport; Wind erosion; Dust emission; Risk assessment; Sediment production ID GRASSLAND-FOREST CONTINUUM; CHANGE-TYPE DROUGHT; WIND EROSION; SEDIMENT TRANSPORT; SEMIARID SHRUBLAND; UNITED-STATES; NEW-MEXICO; DIE-OFF; VEGETATION; PLANT AB Aeolian sediment transport is a fundamental process redistributing sediment, nutrients, and contaminants in dryland ecosystems. Over time frames of centuries or longer, horizontal sediment fluxes and associated rates of contaminant transport are likely to be influenced by succession, disturbances, and changes in climate, yet models of horizontal sediment transport that account for these fundamental factors are lacking, precluding in large part accurate assessment of human health risks associated with persistent soil-bound contaminants. We present a simple model based on empirical measurements of horizontal sediment transport (predominantly saltation) to predict potential contaminant transport rates for recently disturbed sites such as a landfill cover. Omnidirectional transport is estimated within vegetation that changes using a simple Markov model that simulates successional trajectory and considers three types of short-term disturbances (surface fire, crown fire, and drought-induced plant mortality) under current and projected climates. The model results highlight that movement of contaminated soil is sensitive to vegetation dynamics and increases substantially (e.g., > fivefold) when disturbance and/or future climate are considered. The time-dependent responses in horizontal sediment fluxes and associated contaminant fluxes were sensitive to variability in the timing of disturbance, with longer intervals between disturbance allowing woody plants to become dominant and crown fire and drought abruptly reducing woody plant cover. Our results, which have direct implications for contaminant transport and landfill management in the specific context of our assessment, also have general relevance because they highlight the need to more fully account for vegetation dynamics, disturbance, and changing climate in aeolian process studies. (C) 2011 Published by Elsevier B.V. C1 [Breshears, David D.; Field, Jason P.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85737 USA. [Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85737 USA. [Kirchner, Thomas B.] Carlsbad Environm Monitoring & Res Ctr, Carlsbad, NM 88220 USA. [Whicker, Jeffrey J.] Los Alamos Natl Lab, Environm Programs, Los Alamos, NM 87545 USA. [Allen, Craig D.] US Geol Survey, Ft Collins Sci Ctr, Jemez Mt Field Stn, Los Alamos, NM 87544 USA. RP Breshears, DD (reprint author), Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85737 USA. EM daveb@email.arizona.edu NR 77 TC 9 Z9 9 U1 2 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-9637 J9 AEOLIAN RES JI Aeolian Res. PD JAN PY 2012 VL 3 IS 4 SI SI BP 445 EP 457 DI 10.1016/j.aeolia.2011.03.012 PG 13 WC Geography, Physical SC Physical Geography GA 896AM UT WOS:000300537800009 ER PT J AU Chen, F Freedman, DL Falta, RW Murdoch, LC AF Chen, Fei Freedman, David L. Falta, Ronald W. Murdoch, Lawrence C. TI Henry's law constants of chlorinated solvents at elevated temperatures SO CHEMOSPHERE LA English DT Article DE Henry's law constant; Chlorinated volatile organic compound (CVOC); Thermal remediation; Vapor pressure; Solubility ID DILUTE AQUEOUS-SOLUTIONS; WATER; COEFFICIENTS; TRICHLOROETHYLENE; REMEDIATION; PREDICTION; DEPENDENCE; CHEMICALS AB Henry's law constants for 12 chlorinated volatile organic compounds (CVOCs) were measured as a function of temperature ranging from 8 to 93 degrees C, using the modified equilibrium partitioning in closed system (EPICS) method. The chlorinated compounds include tetrachloroethylene, trichloroethylene, cis-1,2-dichloroethylene, vinyl chloride, 1,1,1-trichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, chloroethane, carbon tetrachloride, chloroform, dichloromethane, and chloromethane. The variation in Henry's constants for these compounds as a function of temperature ranged from around 3-fold (chloroethane) to 30-fold (1.2-dichloroethane). Aqueous solubilities of the pure compounds were measured over the temperature range of 8-75 degrees C. The temperature dependence of Henry's constant was predicted using the ratio of pure vapor pressure to aqueous solubility, both of which are functions of temperature. The calculated Henry's constants are in a reasonable agreement with the measured results. With the improved data on Henry's law constants at high temperatures measured in this study, it will be possible to more accurately model subsurface remediation processes that operate near the boiling point of water. Published by Elsevier Ltd. C1 [Chen, Fei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chen, Fei; Freedman, David L.; Falta, Ronald W.; Murdoch, Lawrence C.] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA. RP Chen, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM feic@clemson.edu RI Chen, Fei/G-5444-2014 FU Strategic Environmental Research and Development Program [ER-1553] FX This research was supported in part by Grant ER-1553 from the Strategic Environmental Research and Development Program. NR 23 TC 15 Z9 15 U1 3 U2 54 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD JAN PY 2012 VL 86 IS 2 BP 156 EP 165 DI 10.1016/j.chemosphere.2011.10.004 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA 896UC UT WOS:000300595900008 PM 22071373 ER PT J AU Dukowicz, JK AF Dukowicz, J. K. TI Reformulating the full-Stokes ice sheet model for a more efficient computational solution SO CRYOSPHERE LA English DT Article ID SUBGLACIAL LAKES; HIGHER-ORDER; DYNAMICS AB The first-order or Blatter-Pattyn ice sheet model, in spite of its approximate nature, is an attractive alternative to the full Stokes model in many applications because of its reduced computational demands. In contrast, the unapproximated Stokes ice sheet model is more difficult to solve and computationally more expensive. This is primarily due to the fact that the Stokes model is indefinite and involves all three velocity components, as well as the pressure, while the Blatter-Pattyn discrete model is positive-definite and involves just the horizontal velocity components. The Stokes model is indefinite because it arises from a constrained minimization principle where the pressure acts as a Lagrange multiplier to enforce incompressibility. To alleviate these problems we reformulate the full Stokes problem into an unconstrained, positive-definite minimization problem, similar to the Blatter-Pattyn model but without any of the approximations. This is accomplished by introducing a divergence-free velocity field that satisfies appropriate boundary conditions as a trial function in the variational formulation, thus dispensing with the need for a pressure. Such a velocity field is obtained by vertically integrating the continuity equation to give the vertical velocity as a function of the horizontal velocity components, as is in fact done in the Blatter-Pattyn model. This leads to a reduced system for just the horizontal velocity components, again just as in the Blatter-Pattyn model, but now without approximation. In the process we obtain a new, reformulated Stokes action principle as well as a novel set of Euler-Lagrange partial differential equations and boundary conditions. The model is also generalized from the common case of an ice sheet in contact with and sliding along the bed to other situations, such as to a floating ice shelf. These results are illustrated and validated using a simple but nontrivial Stokes flow problem involving a sliding ice sheet. C1 Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling COSIM Project, Grp T 3, Los Alamos, NM 87545 USA. RP Dukowicz, JK (reprint author), Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling COSIM Project, Grp T 3, MS B216, Los Alamos, NM 87545 USA. EM duk@lanl.gov FU US Department of Energy's Office of Science (Biological and Environmental Research); National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX Funding for this work was provided by the Climate Modeling program in the US Department of Energy's Office of Science (Biological and Environmental Research). Los Alamos National Laboratory is operated under the auspices of the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-06NA25396. NR 19 TC 3 Z9 3 U1 0 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1994-0416 EI 1994-0424 J9 CRYOSPHERE JI Cryosphere PY 2012 VL 6 IS 1 BP 21 EP 34 DI 10.5194/tc-6-21-2012 PG 14 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 891OO UT WOS:000300226700002 ER PT J AU Lux, SF Lucas, IT Pollak, E Passerini, S Winter, M Kostecki, R AF Lux, S. F. Lucas, I. T. Pollak, E. Passerini, S. Winter, M. Kostecki, R. TI The mechanism of HF formation in LiPF6 based organic carbonate electrolytes SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Lithium ion batteries; Hydrofluoric acid; Spectroscopic ellipsometry; LiPF6 degradation ID ION BATTERY ELECTROLYTES; RECHARGEABLE BATTERIES; STABILITY; TEMPERATURE; SALT; CONDUCTIVITY; ELECTRODES; PF5 AB Spectroscopic ellipsometry was used to study the time-dependent formation of HF upon the thermal degradation of LiPF6 at 50 degrees C in a lithium ion battery electrolyte containing ethylene carbonate and diethyl carbonate. The generated HF was monitored by following the etching rate of a 300 nm thick SiO2 layer, grown on both sides of a silicon wafer substrate, as a function of the immersion time in the electrolyte at 50 C degrees. It was found that the formation of HF starts after 70 h of exposure time and occurs following several different phases. The amount of generated HF was calculated using an empirical formula correlating the etching rate to the temperature. Combining the results of the HF formation with literature data, a simplified mechanism for the formation of the HF involving LiPF6 degradation, and a simplified catalytical reaction pathway of the formed HF and silicon dioxide are proposed to describe the kinetics of HF formation. (C) 2011 Elsevier B.V. All rights reserved. C1 [Lux, S. F.; Passerini, S.; Winter, M.] Univ Munster, Inst Phys Chem, MEET Labs, D-48149 Munster, Germany. [Lux, S. F.; Lucas, I. T.; Pollak, E.; Kostecki, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Lux, SF (reprint author), Univ Munster, Inst Phys Chem, MEET Labs, Corrensstr 46, D-48149 Munster, Germany. EM simon.lux@uni-muenster.de RI LUCAS, Ivan /S-5742-2016; OI LUCAS, Ivan /0000-0001-8930-0437; Passerini, Stefano/0000-0002-6606-5304 FU German Ministry of Education and Research (BMBF) within the research alliance [03X4601A, LIB2015]; Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work was carried out under the joint sponsorship of the German Ministry of Education and Research (BMBF) in the project "LiVe" (03X4601A) within the "LIB2015" research alliance and by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, under contract no. DE-AC02-05CH11231. NR 21 TC 125 Z9 127 U1 13 U2 115 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD JAN PY 2012 VL 14 IS 1 BP 47 EP 50 DI 10.1016/j.elecom.2011.10.026 PG 4 WC Electrochemistry SC Electrochemistry GA 891EL UT WOS:000300199900013 ER PT J AU Marsh, GE AF Marsh, Gerald E. TI CLIMATE CHANGE: SOURCES OF WARMING IN THE LATE 20TH CENTURY SO ENERGY & ENVIRONMENT LA English DT Editorial Material ID NORTH-ATLANTIC OSCILLATION; TEMPERATURE AB The role of the North Atlantic Oscillation, the Pacific Decadal Oscillation, volcanic and other aerosols, as well as the extraordinary solar activity of the late 20th century are discussed in the context of the warming since the mid-1970s. Much of that warming is found to be due to natural causes. C1 [Marsh, Gerald E.] Argonne Natl Lab, Chicago, IL 60615 USA. EM gemarsh@uchicago.edu NR 15 TC 0 Z9 0 U1 0 U2 3 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 0958-305X J9 ENERG ENVIRON-UK JI Energy Environ. PY 2012 VL 23 IS 1 BP 95 EP 104 PG 10 WC Environmental Studies SC Environmental Sciences & Ecology GA 898RH UT WOS:000300759000009 ER PT B AU Vishnivetskaya, TA Raman, B Phelps, TJ Podar, M Elkins, JG AF Vishnivetskaya, Tatiana A. Raman, Babu Phelps, Tommy J. Podar, Mircea Elkins, James G. BE Anitori, RP TI Cellulolytic Microorganisms from Thermal Environments SO EXTREMOPHILES: MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article; Book Chapter ID YELLOWSTONE-NATIONAL-PARK; THERMOPHILE CALDOCELLUM-SACCHAROLYTICUM; CLOSTRIDIUM-THERMOCELLUM JW20; PAPER SLUDGE HYDROLYSATE; ICELANDIC HOT-SPRINGS; SP-NOV; CALDICELLULOSIRUPTOR-SACCHAROLYTICUS; HYDROGEN-PRODUCTION; GEN-NOV; ANAEROCELLUM-THERMOPHILUM AB Conversion of lignocellulosic biomass to liquid fuels using biological processes offers a potential solution to partially offset the world's dependence on fossil fuels for energy In nature, decomposition of organic plant biomass is brought about by the combined action of several interacting microorganisms existing in complex communities. Bioprospecting in natural environments with high cellulolytic activity (for example, thermal springs) may yield novel cellulolytic microorganisms and enzymes with elevated rates of biomass hydrolysis for use in industrial biofuel production. In this chapter, various cellulose-degrading microorganisms (in particular, thermophilic anaerobic bacteria), their hydrolytic enzymes, and recent developments in the application of biomass fermentations for production of sustainable bioenergy are reviewed. In this context, results from ongoing research at the Oak Ridge National Laboratory in the isolation and subsequent phylogenetic and metabolic characterization of thermophilic, anaerobic, cellulolytic bacteria from the hot springs of Yellowstone National Park are presented. C1 [Vishnivetskaya, Tatiana A.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA. [Phelps, Tommy J.; Podar, Mircea; Elkins, James G.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN USA. [Phelps, Tommy J.; Podar, Mircea; Elkins, James G.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Raman, Babu] Dow AgroSci, Bioproc R&D, Indianapolis, IN USA. RP Vishnivetskaya, TA (reprint author), Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA. EM tvishniv@utk.edu; braman@dow.com; phelpstj@ornl.gov; podarm@ornl.gov; elkinsjg@ornl.gov RI Elkins, James/A-6199-2011 OI Elkins, James/0000-0002-8052-5688 NR 124 TC 1 Z9 1 U1 1 U2 9 PU CAISTER ACADEMIC PRESS PI WYMONDHAM PA 32 HEWITTS LANE, WYMONDHAM NR 18 0JA, ENGLAND BN 978-1-904455-98-1 PY 2012 BP 131 EP 158 PG 28 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA BYN37 UT WOS:000299435800008 ER PT J AU Houf, WG Evans, GH Merilo, E Groethe, M James, SC AF Houf, William G. Evans, Greg H. Merilo, Erik Groethe, Mark James, Scott C. TI Releases from hydrogen fuel-cell vehicles in tunnels SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen fuel-cell vehicle; Tunnel; Dispersion; Deflagration; Modeling; Experiments ID DEFLAGRATIONS AB An important issue concerning the safe use of hydrogen-powered fuel-cell vehicles is the possibility of accidents inside tunnels resulting in the release of hydrogen. To investigate the potential consequences, a combined experimental and modeling study has been performed to characterize releases from a hydrogen fuel-cell vehicle inside a tunnel. In the scenario studied, all three of the fuel-cell vehicle's onboard hydrogen tanks were simultaneously released through three thermal pressure relief devices (TPRDs) toward the road surface. Computation fluid dynamics (CFD) simulations were used to model the release of hydrogen from the fuel-cell vehicle and to study the behavior of the ignitable hydrogen cloud inside the tunnel. Deflagration overpressure simulations of the hydrogen cloud within the tunnel were also performed for different ignition delay times and ignition locations. To provide model validation data for these simulations, experiments were performed in a scaled tunnel test facility at the SRI Corral Hollow Experiment Site (CHES). The scaled tunnel tests were designed to resemble the full-scale tunnel simulations using Froude scaling. The scale factor, based on the square route of the ratio of the SRI tunnel area to the full-scale tunnel area was 1/2.53. The same computational models used in the full-scale tunnel simulations were applied to these scaled tunnel tests to validate the modeling approach. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Houf, William G.; Evans, Greg H.; James, Scott C.] Sandia Natl Labs, Livermore, CA 94551 USA. [Merilo, Erik; Groethe, Mark] SRI Int, Menlo Pk, CA 94025 USA. RP Houf, WG (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM will@sandia.gov OI James, Scott/0000-0001-7955-0491 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy FX The authors wish to acknowledge Jeff LaChance for his helpful discussions regarding the risk analysis considerations in the paper. This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program under the Safety, Codes, and Standards subprogram element managed by Antonio Ruiz. NR 16 TC 6 Z9 6 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JAN PY 2012 VL 37 IS 1 BP 715 EP 719 DI 10.1016/j.ijhydene.2011.09.110 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 895BA UT WOS:000300470000069 ER PT J AU Zhou, YY Weng, QH Gurney, KR Shuai, YM Hu, XF AF Zhou, Yuyu Weng, Qihao Gurney, Kevin R. Shuai, Yanmin Hu, Xuefei TI Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use SO ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING LA English DT Article DE Anthropogenic heat discharge; Building energy use; Multi-scale; Urban heat island; Urban remote sensing ID LANDSAT SURFACE REFLECTANCE; BALANCE ALGORITHM; URBAN CLIMATES; TEB SCHEME; ASTER; ALBEDO; EMISSIVITY; SIMULATION; SEPARATION; EMISSIONS AB This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered. (C) 2011 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved. C1 [Zhou, Yuyu] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Weng, Qihao] Indiana State Univ, Dept Earth & Environm Syst, Ctr Urban & Environm Change, Terre Haute, IN 47809 USA. [Gurney, Kevin R.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Shuai, Yanmin] Earth Resources Technol Inc, Laurel, MD 20707 USA. [Shuai, Yanmin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hu, Xuefei] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA. RP Zhou, YY (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM zhouyuyu@gmail.com RI Shuai, Yanmin/G-1329-2012; OI Weng, Qihao/0000-0002-2498-0934 NR 39 TC 17 Z9 20 U1 4 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-2716 EI 1872-8235 J9 ISPRS J PHOTOGRAMM JI ISPRS-J. Photogramm. Remote Sens. PD JAN PY 2012 VL 67 BP 65 EP 72 DI 10.1016/j.isprsjprs.2011.10.007 PG 8 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA 898NU UT WOS:000300749900007 ER PT J AU Carpenter, JS Vogel, SC AF Carpenter, John S. Vogel, Sven C. TI Perspective on Neutron Diffraction as a Tool for Characterizing Minerals, Metals, and Materials SO JOM LA English DT Editorial Material C1 [Carpenter, John S.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Vogel, Sven C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Carpenter, John S.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Carpenter, JS (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM carpenter@lanl.gov RI Lujan Center, LANL/G-4896-2012; OI Vogel, Sven C./0000-0003-2049-0361; Carpenter, John/0000-0001-8821-043X NR 0 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 102 EP 103 DI 10.1007/s11837-011-0227-7 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000016 ER PT J AU Vogel, SC Carpenter, JS AF Vogel, Sven C. Carpenter, John S. TI Brief Introduction to Neutron Scattering and Global Neutron User Facilities SO JOM LA English DT Article ID DIFFRACTOMETER AB Neutrons play a vital role as a powerful tool in basic science and applied research. In this article, the basic properties of neutrons, their generation and detection, as well as some fundamental aspects of neutron instrumentation are introduced. Neutron user facilities, at which the user may obtain more specific information and apply for beam time, are also discussed. C1 [Vogel, Sven C.; Carpenter, John S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Vogel, SC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sven@lanl.gov RI Lujan Center, LANL/G-4896-2012; OI Vogel, Sven C./0000-0003-2049-0361; Carpenter, John/0000-0001-8821-043X NR 17 TC 4 Z9 4 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 104 EP 111 DI 10.1007/s11837-011-0220-1 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000017 ER PT J AU Proffen, T AF Proffen, Th. TI Neutron Total Scattering Analysis of Nanoparticles SO JOM LA English DT Article AB Nanoparticles are entering many aspects of our lives as they often possess properties their bulk counterparts lack. The arsenal of structural characterization techniques for bulk materials is well established. In the case of nanomaterials these tools are just starting to emerge. In this paper the total scattering approach applied to nanomaterials and the promises it holds are discussed. C1 Oak Ridge Natl Lab, Div Neutron Sci, Oak Ridge, TN 37831 USA. RP Proffen, T (reprint author), Oak Ridge Natl Lab, Div Neutron Sci, Oak Ridge, TN 37831 USA. EM tproffen@ornl.gov RI Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 NR 8 TC 3 Z9 3 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 112 EP 116 DI 10.1007/s11837-011-0216-x PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000018 ER PT J AU Clausen, B Brown, DW Noyan, IC AF Clausen, Bjorn Brown, Donald W. Noyan, I. C. TI Engineering Applications of Time-of-Flight Neutron Diffraction SO JOM LA English DT Article ID RESIDUAL-STRESS MEASUREMENTS; ZIRCALOY-4 WELD; REFINEMENT AB Time-of-flight neutron diffraction is widely used in characterizing the microstructure and mechanical response of heterogeneous systems. Microstructural characterization techniques include spatial or temporal mapping of the phases and determination of grain size, dislocation structure, and grain orientations (texture) within these phases. Mechanical response analysis utilizes the crystallographic selectivity of the diffraction process to measure the partitioning of strain within the system. The microstructural and mechanical response information is then used to develop more realistic constitutive models. In this article we review some examples of such measurements, based on our experiences at the Lujan Center of Los Alamos National Laboratory. C1 [Clausen, Bjorn] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. [Noyan, I. C.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. RP Clausen, B (reprint author), Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. EM icn2@columbia.edu RI Lujan Center, LANL/G-4896-2012; Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X FU Department of Energy's Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. We thank all our collaborators over the past decade whose contributions are summarized here. Special thanks are due to Prof. D.G. Carr for permission to use Figs. 9 and 10. NR 13 TC 3 Z9 4 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 117 EP 126 DI 10.1007/s11837-011-0119-x PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000019 ER PT J AU Ren, Y AF Ren, Yang TI High-Energy Synchrotron X-Ray Diffraction and Its Application to In Situ Structural Phase-Transition Studies in Complex Sample Environments SO JOM LA English DT Article ID MANGANITES; MAGNETORESISTANCE; SCIENCE AB A solid may undergo a phase transition due to internal interaction competition or external stimuli. It is increasingly recognized that the lattice degrees of freedom often play a crucial role, especially in the vicinity of competing phases, where many intriguing properties exist. A crystal structure transition is usually accompanied by a drastic change in the mechanical, electrical, magnetic, and other properties. In situ study of the microscopic structural information of materials during phase transformation is of ultimate importance not only in understanding fundamental mechanisms but also in developing and processing advanced materials for broad technological applications. The availability of synchrotron-generated high-flux and high-energy x-rays has significantly advanced the field of materials research because of the deep penetration and low absorption of high-energy x-rays. Synchrotron high-energy x-ray diffraction facilities provide great research opportunities, especially for probing structural phase transformations of bulk materials in real time and in realistic conditions. In this overview we present technical details and capabilities of a synchrotron high-energy x-ray facility and its applications to in situ structural investigations of phase transitions in advanced materials in research areas ranging from condensed-matter and materials science and engineering to energy science. C1 Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Ren, Y (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM yren@anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357] FX We would like to thank all our colleagues, collaborators, and users, who contributed to the development and upgrade of the beamline and helped the experimental activities and worked on the scientific research projects at the beamline. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. NR 28 TC 6 Z9 6 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 140 EP 149 DI 10.1007/s11837-011-0218-8 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000022 ER PT J AU Wang, YD Nie, ZH Ren, Y Liaw, PK AF Wang, Y. D. Nie, Z. H. Ren, Y. Liaw, P. K. TI High-Energy Synchrotron X-Ray Diffraction for In Situ Study of Phase Transformation in Shape-Memory Alloys SO JOM LA English DT Article ID NI2MNGA; CRYSTALS; STRESS; TRANSITIONS AB This overview highlights very recent progress on the application of high-energy x-ray diffraction for in situ study of the phase transformation of shape-memory alloys. The advantages of the synchrotron-based high-energy x-ray diffraction method and the experimental setup for exploring the phase-transition behavior of single crystals or textured polycrystalline materials under multiple external fields are described. Experimental investigations on the influence of external stress, magnetic, and thermal fields on the phase-transformation behaviors of thermal and ferromagnetic shape-memory alloys, and nanowire-reinforced shape-memory composites are also summarized. Special attention is given to recent scientific issues related to the microscopic "memory" of martensite variants, transition kinetics, magnetic field-induced selection of variants, magnetic field-driven phase transition, and superelasticity. C1 [Wang, Y. D.; Nie, Z. H.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. [Ren, Y.] Argonne Natl Lab, XRay Sci Div, Argonne, IL 60439 USA. [Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Wang, YD (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. EM ydwang@bit.edu.cn RI Nie, Zhihua/G-9459-2013; ran, shi/G-9380-2013; wang, yandong/G-9404-2013 OI Nie, Zhihua/0000-0002-2533-933X; FU National Natural Science Foundation of China [50725102, 50971031, 51001015]; National Basic Research Program of China (973 Program) [2012CB619405]; US Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357]; National Science Foundation [DMR-0231320, DMR-0909037, CMMI-0900271, CMMI-1100080] FX This work is supported by the National Natural Science Foundation of China (Grant Nos. 50725102, 50971031, and 51001015) and National Basic Research Program of China (973 Program) under Contract No. 2012CB619405. The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. P.K.L. greatly appreciates the support of the National Science Foundation (DMR-0231320, DMR-0909037, CMMI-0900271, and CMMI-1100080) with Drs. C. Huber, A. Ardell, and C.V. Cooper as Program Directors. NR 34 TC 2 Z9 2 U1 1 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 150 EP 160 DI 10.1007/s11837-011-0221-0 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000023 ER PT J AU Cheng, TL Ma, FDD Zhou, JE Jennings, G Ren, Y Jin, YMM Wang, YU AF Cheng, Tian-Le Ma, Fengde D. Zhou, Jie E. Jennings, Guy Ren, Yang Jin, Yongmei M. Wang, Yu U. TI In Situ Three-Dimensional Reciprocal-Space Mapping of Diffuse Scattering Intensity Distribution and Data Analysis for Precursor Phenomenon in Shape-Memory Alloy SO JOM LA English DT Article ID NI2MNGA AB Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy. C1 [Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jin, Yongmei M.; Wang, Yu U.] Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA. [Jennings, Guy; Ren, Yang] Argonne Natl Lab, Argonne, IL 60439 USA. RP Cheng, TL (reprint author), Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA. EM wangyu@mtu.edu FU NSF [DMR-1002521]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences (DOE) [DE-FG02-09ER46674]; DOE [DE-AC02-06CH11357] FX This work was supported by NSF under Award No. DMR-1002521 and by Materials Sciences and Engineering Division, Office of Basic Energy Sciences (DOE) under Award No. DE-FG02-09ER46674. Use of the Advanced Photon Source, an Office of Science User Facility operated for US DOE Office of Science by Argonne National Laboratory, was supported by DOE under Contract No. DE-AC02-06CH11357. NR 9 TC 5 Z9 5 U1 3 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 167 EP 173 DI 10.1007/s11837-011-0228-6 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000025 ER PT J AU Boutchko, R Rayz, VL Vandehey, NT O'Neil, JP Budinger, TF Nico, PS Druhan, JL Saloner, DA Gullberg, GT Moses, WW AF Boutchko, Rostyslav Rayz, Vitaliy L. Vandehey, Nicholas T. O'Neil, James P. Budinger, Thomas F. Nico, Peter S. Druhan, Jennifer L. Saloner, David A. Gullberg, Grant T. Moses, William W. TI Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics SO JOURNAL OF APPLIED GEOPHYSICS LA English DT Article DE Nuclear emission tomography; PET; SPECT; Column flow; Imaging ID BIOREMEDIATION; VISUALIZATION; POROSITY; URANIUM; ROCK AB This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using F-18-FDG PET are used to trace flow through a 5 cm diameter x 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image Tc-99m-DTPA tracer propagation in a through-flowing column (10 cm diameter x 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems. Published by Elsevier B.V. C1 [Boutchko, Rostyslav; Vandehey, Nicholas T.; O'Neil, James P.; Budinger, Thomas F.; Gullberg, Grant T.; Moses, William W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Radiotracer Dev & Imaging Technol, Berkeley, CA 94720 USA. [Rayz, Vitaliy L.; Saloner, David A.] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA. [Nico, Peter S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Geochem, Berkeley, CA 94720 USA. [Druhan, Jennifer L.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94710 USA. RP Boutchko, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Radiotracer Dev & Imaging Technol, 1 Cyclotron Rd,MS55R0121, Berkeley, CA 94720 USA. EM rbuchko@lbl.gov RI Druhan, Jennifer/G-2584-2011; Nico, Peter/F-6997-2010; OI Nico, Peter/0000-0002-4180-9397; Vandehey, Nicholas/0000-0003-0286-7532 FU Office of Science, Office of Biological and Environmental Research, Biological Systems Science; Climate and Environmental Science Divisions of the U.S. Department of Energy [DE-AC02-05CH11231]; National Institutes of Health [K25NS059891] FX This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, Biological Systems Science and Climate and Environmental Science Divisions of the U.S. Department of Energy under contract no. DE-AC02-05CH11231, "Radiotracer Imaging Technologies for Plant, Microbial, and Environmental Systems" and "Subsurface Science Sustainable Systems" Scientific Focus areas, and by National Institutes of Health grant no. K25NS059891. NR 20 TC 13 Z9 13 U1 0 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-9851 J9 J APPL GEOPHYS JI J. Appl. Geophys. PD JAN PY 2012 VL 76 BP 74 EP 81 DI 10.1016/j.jappgeo.2011.10.003 PG 8 WC Geosciences, Multidisciplinary; Mining & Mineral Processing SC Geology; Mining & Mineral Processing GA 896EA UT WOS:000300547000009 PM 24917693 ER PT J AU Singh, G Thomas, R Kumar, A Katiyar, RS Manivannan, A AF Singh, Gurpreet Thomas, R. Kumar, Arun Katiyar, R. S. Manivannan, A. TI Electrochemical and Structural Investigations on ZnO Treated 0.5 Li2MnO3-0.5LiMn(0.5)Ni(0.5)O(2) Layered Composite Cathode Material for Lithium Ion Battery SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID RECHARGEABLE BATTERIES; IRREVERSIBLE CAPACITY; HIGH-VOLTAGE; ELECTRODES; MN; NI; CO; INTERCALATION; IMPROVEMENT; GRAPHITE AB 0.5Li(2)MnO(3)-0.5LiMn(0.5)Ni(0.5)O(2) composite cathode material with and without ZnO treatment has been synthesized using carbonate based co-precipitation method for rechargeable lithium ion battery. The X-ray diffraction study confirms that the material has layered LiNi0.5Mn0.5O2 structure along with the formation of the superlattice ordering of Li2MnO3; without any major change in the crystal structure with ZnO treatment. Raman spectroscopy has revealed two different types of ionic arrangements corresponding to space groups of C2/m and R (3) over barm for Li2MnO3 and LiNi0.5Mn0.5O2 respectively. Morphological studies revealed primary particles are of similar to 1 micron size and have sharp, elongated edges. The particles are present as spherical agglomerates (similar to 10 micron). Elemental mapping and X-ray photoelectron spectroscopy confirmed the presence of Zn in the ZnO treated samples. Charge/discharge capacity of the composite cathode materials (with andwithout ZnO coating) increases with number of cycles due to more andmore activation of the Li2MnO3. However, ZnO treated 0.5Li(2)MnO(3)-0.5LiMn(0.5)Ni(0.5)O(2) composite material showed higher charge/discharge capacites attaining saturation in less number of cycles. Lower resistance to charge transfer in the case of ZnO treated sample is responsible for its better performance. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.100204jes] All rights reserved. C1 [Singh, Gurpreet; Thomas, R.; Kumar, Arun; Katiyar, R. S.] Univ Puerto Rico, Dept Phys, San Juan, PR 00936 USA. [Singh, Gurpreet; Thomas, R.; Kumar, Arun; Katiyar, R. S.] Univ Puerto Rico, Inst Funct Nanomat, San Juan, PR 00936 USA. [Manivannan, A.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26508 USA. RP Singh, G (reprint author), Univ Puerto Rico, Dept Phys, San Juan, PR 00936 USA. EM gurpreetsingh268@gmail.com; rkatiyar@uprrp.edu RI Thomas, Reji/B-2669-2010; Singh, Gurpreet/B-5293-2012 OI Thomas, Reji/0000-0003-3588-2317; Singh, Gurpreet/0000-0001-5496-6992 NR 42 TC 59 Z9 61 U1 5 U2 74 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 4 BP A470 EP A478 DI 10.1149/2.100204jes PG 9 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 895HZ UT WOS:000300488300022 ER PT J AU Wu, SL Zhang, W Song, X Shukla, AK Liu, G Battaglia, V Srinivasan, V AF Wu, Shao-Ling Zhang, Wei Song, Xiangyun Shukla, Alpesh K. Liu, Gao Battaglia, Vincent Srinivasan, Venkat TI High Rate Capability of Li(Ni1/3Mn1/3Co1/3)O-2 Electrode for Li-Ion Batteries SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID LITHIUM INSERTION MATERIAL; SOLID-STATE CHEMISTRY; CATHODE MATERIALS; KINETIC-PARAMETERS; NICKEL-HYDROXIDE; PROTON DIFFUSION; LICO1/3NI1/3MN1/3O2; LINI1/3CO1/3MN1/3O2; DISCHARGE; LI(NI1/3CO1/3MN1/3)O-2 AB The rate capability of Li(Ni1/3Mn1/3Co1/3)O-2 (NMC) electrode is studied in this paper at the particle scale. Experimental results obtained on thin electrodes show that NMC is an extremely high-rate material capable of charge and discharge at rates exceeding 100C. The high capacity retention has not been previously reported in the literature. Even higher rate capability was seen on charge. The transport properties of the material were explored by combining experiments on thin electrodes with a continuum model of a single spherical particle. The use of thin electrodes minimized porous electrode effects and allowed the assumption of a uniform current distribution in the electrode. A qualitative estimate of the lithium diffusion coefficient in the NMC particle was obtained by comparing the experimental and simulated potentials during open-circuit relaxation at various states of charge. The fitting results show that the lithium diffusion coefficient increases with increasing state of charge. The value ranges from 10(-16) m(2)/s when completely discharged to 10(-14) m(2)/s when completely charged, suggesting that the use of a varying diffusion coefficient is necessary for studying the transport processes in this material and for further application to the macroscopic porous electrode models. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.062204jes] All rights reserved. C1 [Wu, Shao-Ling; Zhang, Wei; Song, Xiangyun; Shukla, Alpesh K.; Liu, Gao; Battaglia, Vincent; Srinivasan, Venkat] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Wu, SL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM swu0226@gmail.com RI Shukla, Alpesh/B-2058-2013 NR 41 TC 32 Z9 32 U1 9 U2 78 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 4 BP A438 EP A444 DI 10.1149/2.062204jes PG 7 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 895HZ UT WOS:000300488300017 ER PT J AU Limmer, SJ Yelton, WG Siegal, MP Lensch-Falk, JL Pillars, J Medlin, DL AF Limmer, Steven J. Yelton, W. Graham Siegal, Michael P. Lensch-Falk, Jessica L. Pillars, Jamin Medlin, Douglas L. TI Electrochemical Deposition of Bi-2(Te,Se)(3) Nanowire Arrays on Si SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID ANODIC ALUMINUM-OXIDE; THIN-FILMS; ELECTRODEPOSITION; GLASS; GROWTH; FABRICATION; NUCLEATION; TEMPLATES; BI2TE3; PARAMETERS AB Improving device performance and extending Moore's Law can be aided through active solid-state cooling, using thermoelectric (TE) materials with a high figure of merit (zT > 1). TE nanowires promise a path to higher zT, and electrochemical deposition (ECD) is a simple and scalable means for synthesizing TE nanowires. In this paper we report the ECD of 75 nm diameter nanowire arrays with a nominal composition of Bi-2(Te0.95Se0.05)(3) onto Si substrates. These nanowires show an improved level of compositional control than previously observed for TE nanowires in this system by ECD. This results from our new non-aqueous bath combined with recently described methods for template formation on Si. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.084204jes] All rights reserved. C1 [Limmer, Steven J.; Yelton, W. Graham; Siegal, Michael P.; Pillars, Jamin] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lensch-Falk, Jessica L.; Medlin, Douglas L.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Limmer, SJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sjlimme@sandia.gov RI Limmer, Steven/B-3717-2012; OI Limmer, Steven/0000-0001-6588-372X FU Sandia National Laboratories; DARPA-MTO; U.S. Department of Energy's National-Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge Don Overmyer for film depositions and XRD measurements, and Bonnie McKenzie for SEM analysis. Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories and DARPA-MTO. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National-Nuclear Security Administration under contract DE-AC04-94AL85000. NR 44 TC 6 Z9 6 U1 1 U2 25 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 4 BP D235 EP D239 DI 10.1149/2.084204jes PG 5 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 895HZ UT WOS:000300488300059 ER PT J AU Small, L Cook, A Apblett, C Ihlefeld, JF Brennecka, G Duquette, D AF Small, Leo Cook, Adam Apblett, Christopher Ihlefeld, Jon F. Brennecka, Geoff Duquette, David TI An Automated Electrochemical Probe for Evaluation of Thin Films SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID SCANNING DROPLET CELL; HYDROGEN ADSORPTION; PITTING CORROSION; MICROSCOPY; ELECTRODES; TITANIUM; SURFACES; STEEL; SITES AB An electrochemical probe station (EPS) for automated electrochemical testing of electronic-grade thin films is presented. Similar in design to a scanning droplet cell, this modular system features a flexible probe tip capable of contacting both metallic and oxide surfaces. Using the highly sensitive Pt-H2SO4 system, it is demonstrated that the EPS obtains results equivalent to those of a traditional electrochemical cell. Further, electrical testing of thin film PbZr0.52Ti0.48O3 shows that this system may be used to ascertain fundamental electrical properties of dielectric films. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.007205jes] All rights reserved. C1 [Small, Leo; Duquette, David] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. [Small, Leo; Cook, Adam; Apblett, Christopher; Ihlefeld, Jon F.; Brennecka, Geoff] Sandia Natl Labs, Albuquerque, NM 87105 USA. RP Small, L (reprint author), Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. EM smalll@rpi.edu RI Ihlefeld, Jon/B-3117-2009; Brennecka, Geoff/J-9367-2012; Small, Leo/A-3685-2013 OI Brennecka, Geoff/0000-0002-4476-7655; Small, Leo/0000-0003-0404-6287 FU Laboratory Directed Research and Development (LDRD) program; National Institute of Nano Engineering (NINE) at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development (LDRD) program and the National Institute of Nano Engineering (NINE) at Sandia National Laboratories. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 18 TC 3 Z9 3 U1 0 U2 6 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 4 BP F87 EP F90 DI 10.1149/2.007205jes PG 4 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 895HZ UT WOS:000300488300075 ER PT J AU Yoon, H Woo, JH Joshi, B Ra, YM Yoon, SS Kim, HY Ahn, S Yun, JH Gwak, J Yoon, K James, SC AF Yoon, Hyun Woo, Ji Hoon Joshi, Bhavana Ra, Young Min Yoon, Sam S. Kim, Ho Young Ahn, SeJin Yun, Jae Ho Gwak, Jihye Yoon, KyungHoon James, Scott C. TI CuInSe2 (CIS) Thin Film Solar Cells by Electrostatic Spray Deposition SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID MU-M; PYROLYSIS; SEMICONDUCTOR; PHOTOVOLTAICS; ELECTROSPRAY; GENERATION; DIAMETER; LIQUIDS; DEVICE AB In this paper, we demonstrate, for the first time, the manufacture of a CuInSe2 thin film whose absorber layer is coated using an electrostatic spray deposition (ESD) technique; its complete transformation into a working device with measured conversion efficiency is presented. ESD is superior to pneumatic spraying because it produces nano-scaled, self-dispersive (non-agglomerating), highly wettable (electrowetting) and adhesive droplets to yield a uniform coating on a substrate. Furthermore, ESD's extremely low material consumption rate holds promises for practical use in the solar cell industry. Copper and indium salts are added to various solvents, which are electrostatically sprayed onto a molybdenum-coated soda-lime glass substrate. The effect of substrate temperature on the thin film characteristics is examined. Our cell is completed by adding CdS and ZnO layers onto the CuInSe2 absorber layer. Light illuminated current-density voltage (J-V) characteristics demonstrate a power conversion efficiency of eta = 1.75% +/- 0.09 with an open-circuit voltage of V-OC = 0.23 V, a short-circuit current density of J(SC) = 21.72 mA/cm(2), and fill factor of FF = 0.34. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.jes113086] All rights reserved. C1 [Yoon, Hyun; Woo, Ji Hoon; Joshi, Bhavana; Ra, Young Min; Yoon, Sam S.; Kim, Ho Young] Korea Univ, Sch Mech Engn, Seoul 136713, South Korea. [Ahn, SeJin; Yun, Jae Ho; Gwak, Jihye; Yoon, KyungHoon] Korea Inst Energy Res, Photovolta Res Ctr, Taejon 305343, South Korea. [James, Scott C.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Yoon, H (reprint author), Korea Univ, Sch Mech Engn, Seoul 136713, South Korea. EM skyoon@korea.ac.kr OI James, Scott/0000-0001-7955-0491 FU Center for Inorganic Photovoltaic Materials [NRF-2011-0007182, 2010-0010217]; Korean government (MEST); Converging Research Center through the Ministry of Education Science and Technology [2010K000969]; Research Center through the Korea Institute of Energy Technology Evaluation and Planning (KETEP); Ministry of Knowledge Economy [2009-3021010030-11-1] FX This work was supported by the Center for Inorganic Photovoltaic Materials NRF-2011-0007182 and 2010-0010217 funded by the Korean government (MEST). This research was also supported by the Converging Research Center Program through the Ministry of Education Science and Technology (2010K000969). This research was also supported by the Research Center of Break-through Technology Program through the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Ministry of Knowledge Economy (2009-3021010030-11-1). NR 30 TC 12 Z9 12 U1 1 U2 25 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 4 BP H444 EP H449 DI 10.1149/2.jes113086 PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 895HZ UT WOS:000300488300098 ER PT J AU Desai, AV Tice, JD Apblett, CA Kenis, PJA AF Desai, Amit V. Tice, Joshua D. Apblett, Christopher A. Kenis, Paul J. A. TI Design considerations for electrostatic microvalves with applications in poly(dimethylsiloxane)-based microfluidics SO LAB ON A CHIP LA English DT Article ID MICROELECTROMECHANICAL SYSTEMS; SOFT LITHOGRAPHY; PDMS MEMBRANE; MEMS; ADHESION; DEFORMATION; STABILITY; CHIP AB Microvalves are critical in the operation of integrated microfluidic chips for a wide range of applications. In this paper, we present an analytical model to guide the design of electrostatic microvalves that can be integrated into microfluidic chips using standard fabrication processes and can reliably operate at low actuation potentials (<250 V). Based on the analytical model, we identify design guidelines and operational considerations for elastomeric electrostatic microvalves and formulate strategies to minimize their actuation potentials, while maintaining the feasibility of fabrication and integration. We specifically explore the application of the model to design microfluidic microvalves fabricated in poly(dimethylsiloxane), using only soft-lithographic techniques. We discuss the electrostatic actuation in terms of several microscale phenomena, including squeeze-film damping and adhesion-driven microvalve collapse. The actuation potentials predicted by the model are in good agreement with experimental data obtained with a microfabricated array of electrostatic microvalves actuated in air and oil. The model can also be extended to the design of peristaltic pumps for microfluidics and to the prediction of actuation potentials of microvalves in viscous liquid environments. Additionally, due to the compact ancillaries required to generate low potentials, these electrostatic microvalves can potentially be used in portable microfluidic chips. C1 [Desai, Amit V.; Tice, Joshua D.; Kenis, Paul J. A.] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA. [Apblett, Christopher A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Apblett, Christopher A.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Kenis, PJA (reprint author), Univ Illinois, Dept Chem & Biomol Engn, 600 S Mathews Ave, Urbana, IL 61801 USA. EM kenis@illinois.edu RI Kenis, Paul/S-7229-2016 OI Kenis, Paul/0000-0001-7348-0381 FU Department of Energy (DOE) through the National Institute for NanoEngineering (NINE) initiative of the Lab Directed Research and Development (LDRD); National Center for Supercomputing Applications (NCSA) [MSS080036]; U.S. Department of Energy [DE-FG02-07ER46453, DE-FG02-07ER46471] FX We gratefully acknowledge financial support from the Department of Energy (DOE) through the National Institute for NanoEngineering (NINE) initiative of the Lab Directed Research and Development (LDRD) program at Sandia National Laboratories. This work was partially supported by the National Center for Supercomputing Applications (NCSA) under proposal number MSS080036 and utilized the SGI-Altix (Cobalt) for FEA simulations. Scanning electron microscopy and profilometry was carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois, which are partially supported by the U.S. Department of Energy under grants DE-FG02-07ER46453 and DE-FG02-07ER46471. We also thank Dr R.C. Givler and Dr G.A. Ten Eyck from Sandia National Laboratories for stimulating discussions, and Tom Bassett from the University of Illinois for his help in fabrication and characterization of some of the valves. NR 54 TC 12 Z9 12 U1 6 U2 26 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1473-0197 EI 1473-0189 J9 LAB CHIP JI Lab Chip PY 2012 VL 12 IS 6 BP 1078 EP 1088 DI 10.1039/c2lc21133e PG 11 WC Biochemical Research Methods; Chemistry, Multidisciplinary; Nanoscience & Nanotechnology SC Biochemistry & Molecular Biology; Chemistry; Science & Technology - Other Topics GA 895QO UT WOS:000300511500010 PM 22301791 ER PT J AU Zhou, Y Leith, CE Herring, JR Kimura, Y AF Zhou, Ye Leith, Cecil E. Herring, Jackson R. Kimura, Yoshifumi TI Predictability error growth of turbulent flows SO MECHANICS RESEARCH COMMUNICATIONS LA English DT Article DE Turbulent flows; Predictability ID QUASI-GEOSTROPHIC TURBULENCE; 2-DIMENSIONAL TURBULENCE; ATMOSPHERIC PREDICTABILITY; MODEL; UNCERTAINTY; CASCADE; SCALES AB Recently, alternative viewpoints were suggested that is in contrast to the conventional picture of predictability error growth in the spectral domain. We survey key historical and current literatures and suggest that the traditional perspective has not been invalidated. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Zhou, Ye; Leith, Cecil E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Herring, Jackson R.] Natl Ctr Atmospher Res, Boulder, CO 80308 USA. [Kimura, Yoshifumi] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648601, Japan. RP Zhou, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM yezhou@llnl.gov FU Lawrence Livermore National Security, LLC [DE-AC52-07NA27344] FX This work was performed under the auspices of the Lawrence Livermore National Security, LLC under contract No. DE-AC52-07NA27344. The first author (Y.Z.) is extremely grateful to Professor Sir David Wallace, Director of Isaac Newton Institute for Mathematical Sciences, University of Cambridge and Professor John Huthnance, co-organiser of the Mathematical and Statistical Approaches to Climate Modelling and Prediction Programmes, for their kind invitation. NR 24 TC 0 Z9 0 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0093-6413 J9 MECH RES COMMUN JI Mech. Res. Commun. PD JAN PY 2012 VL 39 IS 1 BP 15 EP 17 DI 10.1016/j.mechrescom.2011.08.004 PG 3 WC Mechanics SC Mechanics GA 892GU UT WOS:000300275500003 ER PT S AU Rehm, KE AF Rehm, K. E. GP IOP BE Auerbach, N Hass, M Paul, M TI The Origin of Oxygen in the Universe - A new approach to an Old Question SO NUCLEAR PHYSICS IN ASTROPHYSICS V SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 5th Biannual Conference on Nuclear Physics in Astrophysics (NPA)/24th Nuclear Physics Divisional Conference of the European-Physical-Society (EPS) CY APR 03-08, 2011 CL Eilat, ISRAEL SP European Phys Soc (EPS), Nucl Phys Div, Hebrew Univ, Soreq Nucl Res Ctr, Tel Aviv Univ, Weizmann Inst Sci ID DELAYED ALPHA-SPECTRUM; CROSS-SECTION; NUCLEAR ASTROPHYSICS; MASSIVE STARS; C-12(ALPHA,GAMMA)O-16; NUCLEOSYNTHESIS; GAMMA)O-16; C-12(ALPHA; ENERGIES; N-16 AB Carbon and oxygen are not only important elements for the existence of life on Earth, but they also play an important role in the evolution of stars towards the end of their life cycle. The formation of C-12 through the so-called triple-alpha reaction is quite well understood. The next step, the formation of O-16 through the alpha capture reaction C-12(alpha,gamma) O-16 on the other hand, still has an experimental uncertainty of similar to 30%. Direct measurements of the C-12(alpha,gamma)O-16 reaction by detecting either the outgoing gamma radiation in a high acceptance Ge-detector array or the residual O-16 nuclei in a mass spectrometer do not allow for order-of-magnitude improvements. In this contribution, the possibility of using superheated bubble detectors for a measurement of the time-inverse O-16(gamma,alpha) C-12 reaction is being discussed. The first results of a 'proof-of-principle' experiment of the 19 F(gamma,alpha) N-15 reaction are also being presented. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Rehm, KE (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Av, Argonne, IL 60439 USA. EM rehm@anl.gov NR 31 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 337 AR 012006 DI 10.1088/1742-6596/337/1/012006 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear SC Astronomy & Astrophysics; Physics GA BYU54 UT WOS:000300434600006 ER PT J AU Craven-Jones, J Kudenov, MW Dereniak, EL AF Craven-Jones, Julia Kudenov, Michael W. Dereniak, Eustace L. TI Tunable interference contrast using a variable Wollaston prism SO OPTICAL ENGINEERING LA English DT Article DE birefringent interferometer; Fourier transform spectrometer; fringe contrast; sapphire; Wollaston prism AB A Fourier transform spectrometer (FTS) acquires interferogram data for spectral measurements. Conventional FTS instruments incorporate Michelson interferometers. However, limitations of the Michelson for imaging applications have produced interest in alternative interferometer configurations. Common path interferometers, such as birefringent interferometers, offer advantages for remote sensing applications. To ensure the best possible signal-to-noise ratio, the fringe contrast provided by the interferometer should be maximized. Unfortunately some birefringent interferometers, such as those that utilize Wollaston prisms (WPs), require stringent tolerances in order to ensure high fringe contrast across even a modest field of view (FOV). Fabricating an interferometer to meet these tolerances adds fabrication cost and time to the development of an instrument. We present how the introduction of additional birefringent elements into birefringent interferometer can be used to compensate for a decrease in fringe visibility due to manufacturing errors. These components form a variable angle WP (VWP), which can be used to vary the fringe visibility across the FOV. Experimental results confirming the ability of the VWP to vary the fringe visibility of a birefringent interferometer are included. These results are compared to polarization raytrace simulations for the system. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.1.013002] C1 [Craven-Jones, Julia] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Kudenov, Michael W.; Dereniak, Eustace L.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. RP Craven-Jones, J (reprint author), Sandia Natl Labs, POB 5800-0406, Albuquerque, NM 87185 USA. EM jcjone@sandia.gov FU Department of Energy, NNSA [NA-22]; State of Arizona TRIF Imaging Student Fellowship FX This work has been supported by the Department of Energy, NNSA NA-22, Dr. Victoria Franques, Program Manager, and a State of Arizona TRIF Imaging Student Fellowship. When this research was performed, J. Craven-Jones was with the College of Optical Sciences, University of Arizona. NR 10 TC 1 Z9 1 U1 1 U2 9 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD JAN PY 2012 VL 51 IS 1 AR 013002 DI 10.1117/1.OE.51.1.013002 PG 7 WC Optics SC Optics GA 896ZV UT WOS:000300611300017 ER PT J AU Simms, LM De Vries, W Riot, V Olivier, SS Pertica, A Bauman, BJ Phillion, D Nikolaev, S AF Simms, Lance M. De Vries, Willem Riot, Vincent Olivier, Scot S. Pertica, Alex Bauman, Brian J. Phillion, Don Nikolaev, Sergei TI Space-based telescopes for actionable refinement of ephemeris pathfinder mission SO OPTICAL ENGINEERING LA English DT Article DE space situational awareness; satellites; space debris; orbital refinement AB The Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) program will collect the information needed to help satellite operators avoid collisions in space by using a network of nanosatellites to determine more accurate trajectories for selected space objects orbiting the Earth. In the first phase of the STARE program, two pathfinder cube-satellites (CubeSats) equipped with an optical imaging payload are being developed and deployed to demonstrate the main elements of the STARE concept. We first give an overview of the STARE program. The details of the optical imaging payload for the STARE pathfinder CubeSats are then described, followed by a description of the track detection algorithm that will be used on the images it acquires. Finally, simulation results that highlight the effectiveness of the mission are presented. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.1.011004] C1 [Simms, Lance M.; De Vries, Willem; Riot, Vincent; Olivier, Scot S.; Pertica, Alex; Bauman, Brian J.; Phillion, Don; Nikolaev, Sergei] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Simms, LM (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,MS L210, Livermore, CA 94550 USA. EM simms8@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 10 TC 2 Z9 2 U1 0 U2 3 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD JAN PY 2012 VL 51 IS 1 AR 011004 DI 10.1117/1.OE.51.1.011004 PG 12 WC Optics SC Optics GA 896ZV UT WOS:000300611300006 ER PT J AU Hu, JY Ni, XL Feng, X Era, M Elsegood, MRJ Teat, SJ Yamato, T AF Hu, Jian-Yong Ni, Xin-Long Feng, Xing Era, Masanao Elsegood, Mark R. J. Teat, Simon J. Yamato, Takehiko TI Highly emissive hand-shaped pi-conjugated alkynylpyrenes: Synthesis, structures, and photophysical properties SO ORGANIC & BIOMOLECULAR CHEMISTRY LA English DT Article ID LIGHT-EMITTING-DIODES; ORGANIC ELECTRONICS; THIN-FILM; PYRENE DERIVATIVES; OPTICAL-PROPERTIES; BLUE OLEDS; ELECTROLUMINESCENCE; DEVICES; ORGANIZATION; FLUORESCENCE AB Three alkynyl-functionalised, hand-shaped, highly fluorescent and stable emitters, namely, 2-tert-butyl-4,5,7,9,10-pentakis(p-R-phenylethynyl)pyrenes have been successfully synthesized via a Pd/Cu-catalysed Sonogashira cross-coupling reaction. The chemical structures of the alkynylpyrenes were fully characterized by their H-1/C-13 NMR spectra, mass spectroscopy and elemental analysis. Synchrotron single-crystal X-ray analysis revealed that there is a 1-D, slipped, face-to-face motif with off-set, head-to-tail stacked columns, which are clearly influenced by the single, bulky, tert-butyl group in the pyrene ring at the 2-position. Detailed studies on the photophysical properties in both solutions and thin films strongly indicate that they might be promising candidates for optoelectronic applications, such as organic light-emitting devices (OLEDs) or as models for investigating the fluorescent structure-property relationship of the alkynyl-functionalised pyrene derivatives. C1 [Hu, Jian-Yong; Ni, Xin-Long; Feng, Xing; Era, Masanao; Yamato, Takehiko] Saga Univ, Dept Appl Chem, Fac Sci & Engn, Saga 840, Japan. [Hu, Jian-Yong] Yamagata Univ, Dept Organ Device Engn, Yonezawa, Yamagata 9928510, Japan. [Elsegood, Mark R. J.] Univ Loughborough, Dept Chem, Loughborough LE11 3TU, Leics, England. [Teat, Simon J.] Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Hu, JY (reprint author), Saga Univ, Dept Appl Chem, Fac Sci & Engn, Honjo Machi 1, Saga 840, Japan. EM yamatot@cc.saga-u.ac.jp RI Elsegood, Mark/K-1663-2013 OI Elsegood, Mark/0000-0002-8984-4175 FU Office of Science, Office of Basic Energy Science, of the US Department of Energy [DE-AC02-05CH11231] FX This work was performed under the Cooperative Research Program of the Network Joint Research Center for Materials and Devices (Institute for Materials Chemistry and Engineering, Kyushu University). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Science, of the US Department of Energy under Contract No. DE-AC02-05CH11231. We thank Dr Yong-Jin Pu (Department of Organic Device Engineering, Yamagata University) for fruitful discussions. NR 73 TC 15 Z9 15 U1 0 U2 27 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-0520 EI 1477-0539 J9 ORG BIOMOL CHEM JI Org. Biomol. Chem. PY 2012 VL 10 IS 11 BP 2255 EP 2262 DI 10.1039/c2ob06865f PG 8 WC Chemistry, Organic SC Chemistry GA 897NE UT WOS:000300656600012 PM 22307027 ER PT J AU Gallis, MA Torczynski, JR AF Gallis, M. A. Torczynski, J. R. TI Direct simulation Monte Carlo-based expressions for the gas mass flow rate and pressure profile in a microscale tube SO PHYSICS OF FLUIDS LA English DT Article ID LINEARIZED BOLTZMANN-EQUATION; ARBITRARY KNUDSEN NUMBERS; TEMPERATURE-JUMP PROBLEM; RAREFIED-GAS; POISEUILLE FLOW; CYLINDRICAL TUBE; FINITE-LENGTH; LONG TUBE; ACCOMMODATION; CHANNELS AB The direct simulation Monte Carlo (DSMC) method of Bird is used to develop simple closed-form expressions for the mass flow rate and the pressure profile for the steady isothermal flow of an ideal gas through a microscale tube connecting two infinite reservoirs at different pressures but at the temperature of the tube wall. Gas molecules reflect from the tube wall according to the Maxwell model (a linear combination of specular and diffuse reflections at the wall temperature) with a unity or sub-unity value of the accommodation coefficient (the probability that molecules reflect diffusely from the wall). The DSMC-based expressions have four parameters. Two parameters are specified so that the mass flow rate reduces to the known expression in the free-molecular regime. One parameter was previously determined by comparison to DSMC simulations in the slip regime. The remaining parameter is determined by comparison to DSMC simulations for pressures spanning the transition regime with several values of the accommodation coefficient. The expressions for the mass flow rate and the pressure profile agree well with the DSMC simulations (rms and maximum differences of 2% and 5% for all cases examined), with other more complicated expressions and with recent experiments involving microscale tubes and channels for all flow regimes. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3678337] C1 [Gallis, M. A.; Torczynski, J. R.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Gallis, MA (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM magalli@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors thank R. P. Manginell of Sandia National Laboratories for helpful technical discussions and T. Ewart of the Institut de Mecanique des Fluides de Toulouse for helpful information about his experimental measurements. NR 55 TC 7 Z9 7 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JAN PY 2012 VL 24 IS 1 AR 012005 DI 10.1063/1.3678337 PG 21 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 895WI UT WOS:000300527000013 ER PT J AU Wei, MJ Qawasmeh, BR Barone, M Waanders, BGV Zhou, L AF Wei, Mingjun Qawasmeh, Bashar R. Barone, Matthew Waanders, Bart G. van Bloemen Zhou, Lin TI Low-dimensional model of spatial shear layers SO PHYSICS OF FLUIDS LA English DT Article ID MIXING LAYERS; STABILITY; FLOW; RECONSTRUCTION; TRANSITION; EQUATIONS; SYSTEMS AB The aim of this work is to develop nonlinear low-dimensional models to describe vortex dynamics in spatially developing shear layers with periodicity in time. By allowing a free variable g(x) to dynamically describe downstream thickness spreading, we are able to obtain basis functions in a scaled reference frame and construct effective models with only a few modes in the new space. To apply this modified version of proper orthogonal decomposition (POD)/Galerkin projection, we first scale the flow along y dynamically to match a template function as it is developing downstream. In the scaled space, the first POD mode can capture more than 80% energy for each frequency. However, to construct a Galerkin model, the second POD mode plays a critical role and needs to be included. Finally, a reconstruction equation for the scaling variable g is derived to relate the scaled space to physical space, where downstream spreading of shear thickness occurs. Using only two POD modes at each frequency, our models capture the basic dynamics of shear layers, such as vortex roll-up (from a one-frequency model) and vortex-merging (from a two-frequency model). When arbitrary excitation at different harmonics is added to the model, we can clearly observe the promoting or delaying/eliminating vortex merging events as a result of mode competition, which is commonly demonstrated in experiments and numerical simulations of shear layers. (C) 2012 American Institute of Physics. [doi:10.1063/1.3678016] C1 [Wei, Mingjun; Qawasmeh, Bashar R.; Zhou, Lin] New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA. [Barone, Matthew; Waanders, Bart G. van Bloemen] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Zhou, Lin] Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Peoples R China. RP Wei, MJ (reprint author), New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA. EM mjwei@nmsu.edu RI Wei, Mingjun/C-6905-2012 OI Wei, Mingjun/0000-0001-7757-2355 FU Sandia; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Professor Clancy Rowley for constructive discussion. M.W. and B.Q. also gratefully acknowledge the support from Sandia-University Research Program (SURP). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 30 TC 1 Z9 1 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JAN PY 2012 VL 24 IS 1 AR 014108 DI 10.1063/1.3678016 PG 21 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 895WI UT WOS:000300527000028 ER PT J AU Rodriguez, DF Saul, L Wurz, P Fuselier, SA Funsten, HO McComas, DJ Mobius, E AF Rodriguez M, D. F. Saul, L. Wurz, P. Fuselier, S. A. Funsten, H. O. McComas, D. J. Moebius, E. TI IBEX-Lo observations of energetic neutral hydrogen atoms originating from the lunar surface SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Energetic neutral atoms; ENAs Moon albedo; Solar wind; IBEX-Lo ID INTERSTELLAR BOUNDARY EXPLORER; SCATTERING; MONITOR AB In this paper we present quantitative results of observations of energetic neutral atoms (ENAs) originating from the lunar surface. These ENAs, which are hydrogen atoms, are the result of the solar wind protons being reflected from and neutralised at the surface of the Moon. These measurements were made with IBEX-Lo on NASA's IBEX satellite. From these measurements we derive the energy spectrum of the ENAs, their flux, and the lunar albedo for ENAs (i.e., the ratio of ENAs to the incoming solar wind protons). The energy spectra of the ENAs clearly show that their origin is directly from the solar wind via backscattering, and that they are not sputtered atoms. From several observation periods we derived an average global albedo of A(H)=0.09 +/- 0.05. From the observed energy spectra we derive a generic spectrum for unshielded bodies in the solar wind. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Rodriguez M, D. F.; Saul, L.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, Space Phys Dept, Palo Alto, CA 94304 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM USA. [McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Moebius, E.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. RP Rodriguez, DF (reprint author), Univ Bern, Inst Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. EM diego.rodriguez@space.unibe.ch RI Funsten, Herbert/A-5702-2015; OI Funsten, Herbert/0000-0002-6817-1039; Moebius, Eberhard/0000-0002-2745-6978 FU IBEX mission as a part of NASA FX We gratefully acknowledge provision of the IBEX data by the IBEX team and IBEX Science Operations Center (ISOC), the IBEX-Lo cross talk matrix by Lee W. Petersen, Uni. New Hampshire, and the IBEX orbits plots by Steve Petrinec. Simulation results of magnetosphere have been provided by the Community Coordinated Modeling Center (CCMC) at Goddard Space Flight Center through their public runs on request system (http://ccmc.gsfc.nasa.gov). The CCMC is a multi-agency partnership between NASA, AFMC, AFOSR, AFRL, AFWA, NOAA, NSF and ONR. The BATSRUS with RCM Model was developed by the Dr. Tamas Gombosi et al. at the CSEM. Solar wind data from the ACE is provided by the SWEPAM team. Work on this study by the U.S. authors was supported by the IBEX mission as a part of NASA's Explorers program. NR 21 TC 10 Z9 10 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JAN PY 2012 VL 60 IS 1 BP 297 EP 303 DI 10.1016/j.pss.2011.09.009 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 895GC UT WOS:000300483200033 ER PT J AU Buttler, WT Lamoreaux, SK Torgerson, JR AF Buttler, William T. Lamoreaux, Steven K. Torgerson, Justin R. TI PRACTICAL FOUR-DIMENSIONAL QUANTUM KEY DISTRIBUTION WITHOUT ENTANGLEMENT SO QUANTUM INFORMATION & COMPUTATION LA English DT Article DE Quantum key distribution; Mutually unbiased bases; four dimensional single photon ID POLARIZED PHOTONS; OPTICAL-FIBER; CRYPTOGRAPHY; SECURITY; DISTANCES; SYSTEMS; PROOF AB We describe a four-dimensional (D = 4) single-photon quantum cryptography protocol with up to twenty (D x (2(2) +1)) possible states generated by a polarization-, phase- and time-encoding transmitter. This protocol can be experimentally realized with existing technology, drawing from time- and polarization-encoded systems. The protocol is error tolerant and has a maximum raw bit rate of two raw bits per detection, which when combined with state detection efficiency yields a qubit rate of up to one per transmission under ideal assumptions, or up to twice the raw bit rate of two-dimensional protocols such as the well-known BB84 protocol. C1 [Buttler, William T.; Torgerson, Justin R.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Lamoreaux, Steven K.] Yale Univ SPL, New Haven, CT 06520 USA. RP Buttler, WT (reprint author), Los Alamos Natl Lab, Div Phys, MS H803, Los Alamos, NM 87545 USA. NR 30 TC 2 Z9 2 U1 0 U2 6 PU RINTON PRESS, INC PI PARAMUS PA 565 EDMUND TERRACE, PARAMUS, NJ 07652 USA SN 1533-7146 J9 QUANTUM INF COMPUT JI Quantum Inform. Comput. PD JAN PY 2012 VL 12 IS 1-2 BP 1 EP 8 PG 8 WC Computer Science, Theory & Methods; Physics, Particles & Fields; Physics, Mathematical SC Computer Science; Physics GA 896AO UT WOS:000300538000001 ER PT S AU Chrenek, MA Dalal, N Gardner, C Grossniklaus, H Jiang, Y Boatright, JH Nickerson, JM AF Chrenek, Micah A. Dalal, Nupur Gardner, Christopher Grossniklaus, Hans Jiang, Yi Boatright, Jeffrey H. Nickerson, John M. BE LaVail, MM Ash, JD Anderson, RE Hollyfield, JG Grimm, C TI Analysis of the RPE Sheet in the rd10 Retinal Degeneration Model SO RETINAL DEGENERATIVE DISEASES SE Advances in Experimental Medicine and Biology LA English DT Article; Book Chapter DE Retinal pigment epithelium; RPE; Morphometrics; rd10; Degeneration; Zona occludens 1 ID ROD CGMP-PHOSPHODIESTERASE; PIGMENT EPITHELIUM; BETA-SUBUNIT; MOUSE C1 [Chrenek, Micah A.; Dalal, Nupur; Gardner, Christopher; Grossniklaus, Hans; Boatright, Jeffrey H.; Nickerson, John M.] Emory Univ, Dept Ophthalmol, Atlanta, GA 30322 USA. [Jiang, Yi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Nickerson, JM (reprint author), Emory Univ, Dept Ophthalmol, 1365B Clifton Rd NE,TEC B5602, Atlanta, GA 30322 USA. EM micah.chrenek@emory.edu; ndalal@lsuhsc.cdu; christopher.gardner@emory.edu; ophtheg@emory.edu; jiang@lanl.gov; litjn@emory.edu; litjn@emory.edu FU NEI NIH HHS [P30 EY006360, P30EY06360, R01 EY014026, R01 EY016470, R01EY014026, R01EY016470, R24 EY017045, R24EY017045] NR 9 TC 12 Z9 12 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0065-2598 BN 978-1-4614-0630-3 J9 ADV EXP MED BIOL JI Adv.Exp.Med.Biol. PY 2012 VL 723 BP 641 EP 647 DI 10.1007/978-1-4614-0631-0_81 D2 10.1007/978-1-4614-0631-0 PG 7 WC Biology; Medicine, Research & Experimental; Ophthalmology SC Life Sciences & Biomedicine - Other Topics; Research & Experimental Medicine; Ophthalmology GA BYQ08 UT WOS:000299709700081 PM 22183388 ER PT J AU Wang, XJ Goswami, M Kumar, R Sumpter, BG Mays, J AF Wang, Xiaojun Goswami, Monojoy Kumar, Rajeev Sumpter, Bobby G. Mays, Jimmy TI Morphologies of block copolymers composed of charged and neutral blocks SO SOFT MATTER LA English DT Review ID POLYMER ELECTROLYTE MEMBRANES; PROTON-EXCHANGE MEMBRANE; IONIC DIBLOCK COPOLYMERS; X-RAY-SCATTERING; SULFONATED POLYSTYRENE-BLOCK-POLY(ETHYLENE-RAN-BUTYLENE)-BLOCK-POLYSTYRENE COPOLYMERS; ABA TRIBLOCK COPOLYMERS; PHASE-BEHAVIOR; TRANSPORT-PROPERTIES; MICROPHASE SEPARATION; RADICAL POLYMERIZATION AB This article reviews current experimental observations and theoretical calculations devoted towards understanding micro-phase separation in charged block copolymer systems. We discuss bulk morphologies in melt and in solution, as well as some of the new emerging research directions. Overall, a comprehensive picture is beginning to emerge on the fundamental role of electrostatics in the micro-phase separation of charged block copolymers. This understanding provides exciting new insight that may be used to direct targeted structures that endow the materials with desired properties that can have tremendous potential in technological applications. C1 [Goswami, Monojoy; Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Wang, Xiaojun; Mays, Jimmy] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Kumar, Rajeev] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.; Mays, Jimmy] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Mays, Jimmy] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Sumpter, BG (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM sumpterbg@ornl.gov; jimmymays@utk.edu RI Wang, Xiaojun/E-5510-2012; KUMAR, RAJEEV/D-2562-2010; Goswami, Monojoy/G-7943-2012; Sumpter, Bobby/C-9459-2013; Kumar, Rajeev/Q-2255-2015 OI Goswami, Monojoy/0000-0002-4473-4888; Sumpter, Bobby/0000-0001-6341-0355; Kumar, Rajeev/0000-0001-9494-3488 FU US Department of Energy, Basic Energy Sciences, MSE Division; Center for Nanophase Materials Sciences; ORNL by DOE/BES FX This work was supported by the US Department of Energy, Basic Energy Sciences, MSE Division, and in part at the Center for Nanophase Materials Sciences, sponsored at ORNL by DOE/BES. NR 174 TC 34 Z9 34 U1 3 U2 108 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2012 VL 8 IS 11 BP 3036 EP 3052 DI 10.1039/c2sm07223h PG 17 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 896MR UT WOS:000300571600001 ER PT J AU Mudalige, TK Sherman, WB AF Mudalige, Thilak Kumara Sherman, William B. TI Atomic force microscopy of arrays of asymmetrical DNA motifs SO SOFT MATTER LA English DT Article ID NUCLEIC-ACID JUNCTIONS; CROSSOVER COMPLEXES; NANOSCALE SHAPES; FOLDING DNA; DESIGN; NANOSTRUCTURES; CONSTRUCTION; NANOTUBES; CRYSTALS; TILES AB DNA can easily be assembled into wide and relatively flat nanostructures that lend themselves to study via Atomic Force Microscopy (AFM). It is often important to know which side of an assembly the AFM is imaging. This is particularly crucial for characterizing nanomachines, where the movement must be measured relative to fiducial features visible to the AFM. We have developed a cheap and simple technique for building DNA arrays with distinguishable sides, a technique requiring 10 or fewer strands - dozens or hundreds of strands fewer than used for these purposes previously. Our approach involves constructing arrays out of DNA tiles that have low apparent symmetry when imaged via AFM. We have surveyed the effects of varying degrees of motif asymmetry in AFM micrographs. Even at resolutions where the individual tiles cannot be resolved (either because of sub-optimal tip quality, or very gentle tapping by the AFM tip) the larger scale features of the arrays have predictable structures that allow the determination of which side of the array is facing up. We have used this information to verify that DNA hairpins attached to either the up-or down-facing side of an array on mica can be detected in AFM height scans. We have also characterized differences in appearance between hairpins attached to different sides of the arrays. C1 [Mudalige, Thilak Kumara; Sherman, William B.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sherman, WB (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM sherman@mailaps.org FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank Dmytro Nykypanchuk for his assistance with the early AFM images, and Erik Winfree and Alexei Tkachenko for helpful discussions. Research carried out in whole at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 54 TC 1 Z9 1 U1 1 U2 13 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2012 VL 8 IS 11 BP 3094 EP 3104 DI 10.1039/c2sm07205j PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 896MR UT WOS:000300571600009 ER PT J AU Fraboni, B Scida, A Cavallini, A Milita, S Cosseddu, P Bonfiglio, A Wang, Y Nastasi, M AF Fraboni, B. Scida, A. Cavallini, A. Milita, S. Cosseddu, P. Bonfiglio, A. Wang, Y. Nastasi, M. TI Photocurrent spectroscopy of ion-implanted organic thin film transistors SO SYNTHETIC METALS LA English DT Article; Proceedings Paper CT Symposium N on Controlling and Characterising the Structure of Organic Semiconductor Films/Spring Meeting of the European-Material-Research-Society (E-MRS) CY MAY 09-13, 2011 CL Nice, FRANCE SP European Mat Res Soc (E-MRS) DE Organic thin film transistor; Density of electronic states distribution; Ion implantation ID FIELD-EFFECT TRANSISTORS; PENTACENE FILMS; MOBILITY AB In this paper we investigate the distribution of the electrically available states near the band-edge in pentacene thin films of different thicknesses, aiming to the identification of the active thickness of pentacene layers in fully operational devices such as organic thin film transistors (OTFTs). The film structure has been studied by X-ray diffraction technique, while their relative electronic density of states distribution (DOS) around the band-edge has been investigated by photocurrent (PC) spectroscopy analyses. The effects of ion implantation on OTFTs have been investigated by PC analyses of OTFTs implanted with N+ ions of different energy and doses. We show how PC spectroscopy has the remarkable ability to detect modifications of the DOS distribution in a non invasive way, thus allowing the direct study of the active semiconductor film in fully operational OTFTs. (C) 2011 Elsevier B.V. All rights reserved. C1 [Fraboni, B.; Scida, A.; Cavallini, A.] Univ Bologna, Dipartimento Fis, I-40127 Bologna, Italy. [Milita, S.] CNR IMM, I-40129 Bologna, Italy. [Cosseddu, P.; Bonfiglio, A.] Univ Cagliari, Dipartimento Ingn Elettr & Elettron, I-09123 Cagliari, Italy. [Cosseddu, P.; Bonfiglio, A.] CNR IMM S3, I-41100 Modena, Italy. [Wang, Y.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Fraboni, B (reprint author), Univ Bologna, Dipartimento Fis, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. EM beatrice.fraboni@unibo.it RI Fraboni, Beatrice/I-8356-2012; Bonfiglio, Annalisa/J-7232-2012; Milita, Silvia/A-6048-2015; OI Milita, Silvia/0000-0002-9612-2541; COSSEDDU, Piero/0000-0003-4896-504X NR 18 TC 2 Z9 2 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0379-6779 J9 SYNTHETIC MET JI Synth. Met. PD JAN PY 2012 VL 161 IS 23-24 BP 2585 EP 2588 DI 10.1016/j.synthmet.2011.09.017 PG 4 WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer Science SC Materials Science; Physics; Polymer Science GA 897MB UT WOS:000300653700016 ER PT S AU Li, XY Biggin, MD AF Li, Xiao-Yong Biggin, Mark D. BE Vancura, A TI Genome-Wide In Vivo Cross-linking of Sequence-Specific Transcription Factors SO TRANSCRIPTIONAL REGULATION: METHODS AND PROTOCOLS SE Methods in Molecular Biology LA English DT Article; Book Chapter DE In vivo cross-linking; Sequence-specific transcription factors; ChIP-chip; Chip-seq ID CHIP-SEQ DATA; DNA-BINDING; CHROMATIN IMMUNOPRECIPITATION; PROTEINS; REGIONS; THOUSANDS; SYSTEM; SITES; MODEL AB Immunoprecipitation of cross-linked chromatin in. combination with microarrays (ChIP-chip) or ultra high-throughput sequencing (ChIP-seq) is widely used to map genome-wide in vivo transcription factor binding. Both methods employ initial steps of in vivo cross-linking, chromatin isolation, DNA fragmentation, and immunoprecipitation. For ChIP-chip, the immunoprecipitated DNA samples are then amplified, labeled, and hybridized to DNA microarrays. For ChIP-seq, the immunoprecipitated DNA is prepared for a sequencing library, and then the library DNA fragments are sequenced using ultra high-throughput sequencing platform. The protocols described here have been developed for ChIP-chip and ChIP-seq analysis of sequence-specific transcription factor binding in Drosophila embryos. A series of controls establish that these protocols have high sensitivity and reproducibility and provide a quantitative measure of relative transcription factor occupancy. The quantitative nature of the assay is important because regulatory transcription factors bind to highly overlapping sets of thousands of genomic regions and the unique regulatory specificity of each factor is determined by relative moderate differences in occupancy between factors at commonly bound regions. C1 [Li, Xiao-Yong; Biggin, Mark D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. RP Li, XY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. NR 28 TC 4 Z9 4 U1 0 U2 2 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA SN 1064-3745 BN 978-1-61779-375-2 J9 METHODS MOL BIOL JI Methods Mol. Biol. PY 2012 VL 809 BP 3 EP 26 DI 10.1007/978-1-61779-376-9_1 D2 10.1007/978-1-61779-376-9 PG 24 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA BYQ02 UT WOS:000299709100001 PM 22113265 ER PT S AU Serkland, DK Geib, KM Peake, GM Keeler, GA Hsu, AY AF Serkland, Darwin K. Geib, Kent M. Peake, Gregory M. Keeler, Gordon A. Hsu, Alan Y. BE Lei, C Choquette, KD TI 850-nm VCSELs optimized for cryogenic data transmission SO VERTICAL-CAVITY SURFACE-EMITTING LASERS XVI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Vertical-Cavity Surface-Emitting Lasers XVI (VCSELs)/SPIE Photonics West Symposium CY JAN 25-26, 2012 CL San Francisco, CA SP SPIE DE VCSEL; vertical-cavity surface-emitting laser; optical interconnects; cryogenic sensors; optical transmitters ID QUANTUM-WELLS AB We report on the development of 850-nm high-speed VCSELs optimized for low-power data transmission at cryogenic temperatures near 100 K. These VCSELs operate on the n=1 quantum well transition at cryogenic temperatures (near 100 K) and on the n=2 transition at room temperature (near 300 K) such that cryogenic cooling is not required for initial testing of the optical interconnects at room temperature. Relative to previous work at 950 nm, the shorter 850-nm wavelength of these VCSELs makes them compatible with high-speed receivers that employ GaAs photodiodes. C1 [Serkland, Darwin K.; Geib, Kent M.; Peake, Gregory M.; Keeler, Gordon A.; Hsu, Alan Y.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Serkland, DK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM DKSERKL@sandia.gov NR 4 TC 1 Z9 1 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-919-7 J9 PROC SPIE PY 2012 VL 8276 AR 82760S DI 10.1117/12.909590 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BYT88 UT WOS:000300250900026 ER PT J AU Grzenia, DL Wickramasinghe, SR Schell, DJ AF Grzenia, David L. Wickramasinghe, S. Ranil Schell, Daniel J. TI Fermentation of Reactive-Membrane-Extracted and Ammonium-Hydroxide-Conditioned Dilute-Acid-Pretreated Corn Stover SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE Pretreatment; Bioethanol; Membrane; Extraction; Fermentation ID REDUCING SOLVENT TOXICITY; ACETIC-ACID; ETHANOL; HYDROLYSATE; HEMICELLULOSE; REMOVAL; NANOFILTRATION; STRATEGIES; BIOETHANOL; BIOMASS AB Acid-pretreated biomass contains various compounds (acetic acid, etc.) that are inhibitory to fermentative microorganisms. Removing or deactivating these compounds using detoxification methods such as overliming or ammonium hydroxide conditioning (AHC) improves sugar-to-ethanol yields. In this study, we treated the liquor fraction of dilute-acid-pretreated corn stover using AHC and a new reactive membrane extraction technique, both separately and in combination, and then the sugars in the treated liquors were fermented to ethanol with the glucose-xylose-fermenting bacterium, Zymomonas mobilis 8b. We performed reactive extraction with mixtures of octanol/Alamine 336 or oleyl alcohol/Alamine 336. The best ethanol yields and rates were achieved for oleyl alcohol-extracted hydrolysates followed by AHC hydrolysates, while octanol-extracted hydrolysates were unfermentable because highly toxic octanol was found in the hydrolysate. Adding olive oil significantly improved yields for octanol-extracted hydrolysate. Additional work is underway to determine if this technology is a cost-effective alternative to traditional hydrolysate conditioning processes. C1 [Schell, Daniel J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Grzenia, David L.] Colorado State Univ, Dept Chem & Biol Engn, Ft Collins, CO 80523 USA. [Wickramasinghe, S. Ranil] Univ Arkansas, Dept Chem Engn, Fayetteville, AR 72701 USA. RP Schell, DJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM dan.schell@nrel.gov FU US Department of Energy's Office of the Biomass Program; National Renewable Energy Laboratory [KXDJ-0-30622-02, ZFT-8-88524-01] FX Funding for this work was provided by the US Department of Energy's Office of the Biomass Program. Funding for Colorado State University was provided by subcontracts with the National Renewable Energy Laboratory (KXDJ-0-30622-02, ZFT-8-88524-01). We wish to thank Ali Mohagheghi and Gary McMillen for help with the detoxification and fermentation processes. NR 29 TC 5 Z9 5 U1 1 U2 11 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD JAN PY 2012 VL 166 IS 2 BP 470 EP 478 DI 10.1007/s12010-011-9442-5 PG 9 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 892OR UT WOS:000300296000019 PM 22161211 ER PT J AU Laursen, TA Puso, MA Sanders, J AF Laursen, Tod A. Puso, Michael A. Sanders, Jessica TI Mortar contact formulations for deformable-deformable contact: Past contributions and new extensions for enriched and embedded interface formulations SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article DE Contact; Mortar formulations; Interface; Stabilization ID FINITE-ELEMENT-METHOD; ELASTICITY; STRATEGY AB The past 10-15 years have seen important extensions of the mortar method, a technique for joining dissimilar grids popularized by the domain decomposition community, to the more general problem of contact and impact interactions in finite element analysis. This development has taken place largely in response to several long-standing problems in computational contact mechanics: lack of robustness in solution of the nonlinear and nonsmooth equations of evolution: degradation of spatial convergence rates in problems involving nonconforming meshes on interfaces; lack of a variationally consistent technique for stress recovery on interfaces; and so on. This survey paper summarizes some of the major steps in development of mortar contact formulations. It begins with a basic summary of the mortaring idea in the context of tied contact, it discusses key concepts required for the extension of these methods to large deformation, large sliding formulations of contact-impact, and it previews new results where lessons learned from mortar contact formulations can be extended to a much broader class of interface mechanics applications, considering in particular enriched interface formulations and embedded interface approaches to fluid-structure interaction. (C) 2010 Elsevier B.V. All rights reserved. C1 [Laursen, Tod A.] Khalifa Univ Sci Technol & Res KUSTAR, Abu Dhabi, U Arab Emirates. [Puso, Michael A.] Lawrence Livermore Natl Lab, Methods Dev Grp, Livermore, CA 94550 USA. [Sanders, Jessica] Duke Univ, Pratt Sch Engn, Duke Computat Mech Lab, Durham, NC 27706 USA. RP Laursen, TA (reprint author), Khalifa Univ, Presidents Off, POB 127788, Abu Dhabi, U Arab Emirates. EM laursen@duke.edu; puso1@llnl.gov; jessica.sanders@duke.edu OI Laursen, Tod/0000-0003-4704-7730 FU Air Force Office of Scientific Research [FA9550-06-1-0108]; Department of Energy; Lawrence Livermore National Laboratory; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to acknowledge the support of the Air Force Office of Scientific Research Grant FA9550-06-1-0108, the Department of Energy, and Lawrence Livermore National Laboratory. The work of M.A. Puso was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 37 TC 17 Z9 17 U1 0 U2 17 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PY 2012 VL 205 SI SI BP 3 EP 15 DI 10.1016/j.cma.2010.09.006 PG 13 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA 890FI UT WOS:000300130100002 ER PT J AU Konidaris, KF Polyzou, CD Kostakis, GE Tasiopoulos, AJ Roubeau, O Teat, SJ Manessi-Zoupa, E Powell, AK Perlepes, SP AF Konidaris, Konstantis F. Polyzou, Christina D. Kostakis, George E. Tasiopoulos, Anastasios J. Roubeau, Olivier Teat, Simon J. Manessi-Zoupa, Evy Powell, Annie K. Perlepes, Spyros P. TI Metal ion-assisted transformations of 2-pyridinealdoxime and hexafluorophosphate SO DALTON TRANSACTIONS LA English DT Article ID COORDINATION POLYMERS; CARBOXYLATE CHEMISTRY; COMPLEXES; LIGANDS; OXIME; REARRANGEMENT; HYDROLYSIS; DINUCLEAR; AMIDES; TETRANUCLEAR AB Metal-ion mediated reactions of 2-pyridinealdoxime and hexafluorophosphate lead to Zn-II complexes containing picolinic acid, picolinamide and monofluorophosphate (-2) as ligands. C1 [Konidaris, Konstantis F.; Polyzou, Christina D.; Kostakis, George E.; Powell, Annie K.] Karlsruhe Inst Technol, Inst Nanotechnol, D-76344 Eggenstein Leopoldshafen, Germany. [Polyzou, Christina D.; Manessi-Zoupa, Evy; Perlepes, Spyros P.] Univ Patras, Dept Chem, Patras 26504, Greece. [Tasiopoulos, Anastasios J.] Univ Cyprus, Dept Chem, CY-1678 Nicosia, Cyprus. [Roubeau, Olivier] Univ Zaragoza, Fac Ciencias, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Perlepes, Spyros P.] Fdn Res & Technol Hellas FORTH ICE HT, Inst Chem Engn & High Temp Chem Proc, GR-26504 Patras, Greece. RP Powell, AK (reprint author), Karlsruhe Inst Technol, Inst Nanotechnol, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. EM annie.powell@kit.edu; perlepes@patreas.upatras.gr RI Kostakis, George/J-2066-2012; Roubeau, Olivier/A-6839-2010; Powell, Annie/B-8665-2012; OI Kostakis, George/0000-0002-4316-4369; Roubeau, Olivier/0000-0003-2095-5843; Powell, Annie/0000-0003-3944-7427; Tasiopoulos, Anastasios/0000-0002-4804-3822; Konidaris, Konstantis/0000-0002-7366-5682 FU DFG [SFB/TRR 88]; University of Patras; Karlsruhe and Alexander Onassis Public Benefit Foundation [G ZG 034/2010-2011]; Research Committee of the University of Patras [C584]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX S.P.P thanks the DFG-funded transregional collaborative research center SFB/TRR 88 "3MET" for support. C.D.P gratefully acknowledges University of Patras for an Erasmus Placement fellowship during her work in Karlsruhe and Alexander Onassis Public Benefit Foundation for a MSc fellowship (G ZG 034/2010-2011). E.M.-Z thanks the Research Committee of the University of Patras for financial support (C. Caratheodory Program, Grant 2008, C584). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also thank Prof. V. Nastopoulos for helpful discussions. NR 37 TC 19 Z9 19 U1 2 U2 4 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2012 VL 41 IS 10 BP 2862 EP 2865 DI 10.1039/c1dt11881a PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 894QZ UT WOS:000300443000002 PM 22119853 ER PT J AU Poineau, F Forster, PM Todorova, TK Gagliardi, L Sattelberger, AP Czerwinski, KR AF Poineau, Frederic Forster, Paul M. Todorova, Tanya K. Gagliardi, Laura Sattelberger, Alfred P. Czerwinski, Kenneth R. TI Multi-configurational quantum chemical studies of the Tc2X8n- (X = Cl, Br; n=2, 3) anions. Crystallographic structure of octabromoditechnetate(3(-)) SO DALTON TRANSACTIONS LA English DT Article ID OCTACHLORODITECHNETATE; COMPLEXES; ORDERS; ION; NP; PU AB The [Cs(2 + x)][H3O(1 -x)]Tc2Br8 center dot 4.6H(2)O (x = 0.221) salt has been synthesized and characterized by single crystal XRD. Multi-configurational quantum chemical calculations on Tc2X8n- (X = Cl, Br; n = 2, 3) have been performed and indicate the p component in the Tc-Tc bond to be stronger for n = 3. C1 [Poineau, Frederic; Forster, Paul M.; Sattelberger, Alfred P.; Czerwinski, Kenneth R.] Univ Nevada Las Vegas, Dept Chem, Las Vegas, NV 89154 USA. [Todorova, Tanya K.] Ecole Polytech Fed Lausanne, Lab Computat Mol Design, Inst Sci & Ingn Chim, CH-1015 Lausanne, Switzerland. [Gagliardi, Laura] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Gagliardi, Laura] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Argonne, IL 60439 USA. RP Poineau, F (reprint author), Univ Nevada Las Vegas, Dept Chem, Las Vegas, NV 89154 USA. EM poineauf@unlv.nevada.edu RI Todorova, Tanya/M-1849-2013; OI Todorova, Tanya/0000-0002-7731-6498; Forster, Paul/0000-0003-3319-4238 FU US Department of Energy [0089445, DE-AC07-05ID14517]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-AC02-05CH11231, DE-SC002183]; University of Minnesota Supercomputing Institute FX Funding for this research was provided by a subcontract through Battelle 0089445 from the US Department of Energy, agreement no.: DE-AC07-05ID14517. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this work was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-05CH11231 and Contract No. DE-SC002183 (LG) and the University of Minnesota Supercomputing Institute. NR 23 TC 11 Z9 11 U1 0 U2 1 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 J9 DALTON T JI Dalton Trans. PY 2012 VL 41 IS 10 BP 2869 EP 2872 DI 10.1039/c2dt11952h PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 894QZ UT WOS:000300443000004 PM 22258182 ER PT J AU Baturina, TI Postolova, SV Mironov, AY Glatz, A Baklanov, MR Vinokur, VM AF Baturina, T. I. Postolova, S. V. Mironov, A. Yu. Glatz, A. Baklanov, M. R. Vinokur, V. M. TI Superconducting phase transitions in ultrathin TiN films SO EPL LA English DT Article ID KOSTERLITZ-THOULESS TRANSITION; ELECTRON INELASTIC-SCATTERING; ANTIVORTEX PAIR DISSOCIATION; THIN-FILM; 2-DIMENSIONAL SUPERCONDUCTOR; INSULATOR TRANSITION; ALUMINUM FILMS; CRITICAL DISORDER; COULOMB-GAS; FLUCTUATION AB Building on the complete account of quantum contributions to conductivity, we demonstrate that the resistance of thin superconducting films exhibits a non-monotonic temperature behaviour due to the competition between weak localization, electron-electron interaction, and superconducting fluctuations. We show that superconducting fluctuations give rise to an appreciable decrease in the resistance even at temperatures well exceeding the superconducting transition temperature, T-c, with this decrease being dominated by the Maki-Thompson process. The transition to a global phase-coherent superconducting state occurs via the Berezinskii-Kosterlitz-Thouless (BKT) transition, which we observe both by power-law behaviour in current-voltage characteristics and by flux flow transport in the magnetic field. The ratio T-BKT/T-c follows the universal relation. Copyright (C) EPLA, 2012 C1 [Baturina, T. I.; Postolova, S. V.; Mironov, A. Yu.] AV Rzhanov Inst Semicond Phys SB RAS, Novosibirsk 630090, Russia. [Baturina, T. I.; Glatz, A.; Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Baklanov, M. R.] IMEC, B-3001 Louvain, Belgium. RP Baturina, TI (reprint author), AV Rzhanov Inst Semicond Phys SB RAS, 13 Lavrentjev Ave, Novosibirsk 630090, Russia. EM tatbat@isp.nsc.ru FU Russian Academy of Sciences; Russian Foundation for Basic Research [09-02-01205]; U.S. Department of Energy Office of Science [DE-AC02-06CH11357] FX This research is supported by the Program "Quantum Physics of Condensed Matter" of the Russian Academy of Sciences, by the Russian Foundation for Basic Research (Grant No. 09-02-01205), and by the U.S. Department of Energy Office of Science under the Contract No. DE-AC02-06CH11357. NR 47 TC 24 Z9 24 U1 1 U2 36 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JAN PY 2012 VL 97 IS 1 AR 17012 DI 10.1209/0295-5075/97/17012 PG 6 WC Physics, Multidisciplinary SC Physics GA 891XT UT WOS:000300250800043 ER PT J AU Rupert, BL Cherepy, NJ Sturm, BW Sanner, RD Payne, SA AF Rupert, B. L. Cherepy, N. J. Sturm, B. W. Sanner, R. D. Payne, S. A. TI Bismuth-loaded plastic scintillators for gamma-ray spectroscopy SO EPL LA English DT Article ID ORGANOMETALLIC COMPOUNDS; RADIATION AB Polyvinylcarbazole polymer scintillators with high loading of a bismuth organometallic exhibit good light yields, and are found to be capable of gamma-ray spectroscopy. When activated by a standard fluor, diphenylanthracene, a bismuth-loaded polymer produces similar to 12000 photons/MeV, exhibits an emission maximum at 420 nm, a similar to 15 ns decay, and energy resolution of 9% at 662 keV is measured. The same bismuth-loaded polymer doped with an iridium complex fluor has an emission maximum of 500 nm, a decay time of 1.2 mu s, a light yield of similar to 30000 photons/MeV, and energy resolution better than 7% FWHM at 662 keV. Copyright (C) EPLA, 2012 C1 [Rupert, B. L.; Cherepy, N. J.; Sturm, B. W.; Sanner, R. D.; Payne, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Rupert, BL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM cherepy1@llnl.gov RI Cherepy, Nerine/F-6176-2013 OI Cherepy, Nerine/0000-0001-8561-923X FU National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development (NA-22) of the U.S. Department of Energy [DE-AC03-76SF00098]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by the National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development (NA-22) of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 8 TC 25 Z9 25 U1 1 U2 16 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JAN PY 2012 VL 97 IS 2 AR 22002 DI 10.1209/0295-5075/97/22002 PG 4 WC Physics, Multidisciplinary SC Physics GA 892AP UT WOS:000300259100018 ER PT J AU Tsvelik, AM AF Tsvelik, A. M. TI Riding a wild horse: Majorana fermions interacting with solitons of fast bosonic fields SO EPL LA English DT Article ID MODEL AB I consider a class of one-dimensional models where Majorana fermions interact with bosonic fields. Contrary to a more familiar situation where bosonic degrees of freedom are phonons and as such form a slow subsystem, I consider fast bosons. Such situation exists when the bosonic modes appear as collective excitations of interacting electrons as, for instance, in superconductors or carbon nanotubes. It is shown that an entire new class of excitations emerge, namely bound states of solitons and Majorana fermions. The latter bound states are not topological and their existence and number depend on the interactions and the soliton's velocity. Intriguingly the number of bound states increases with the soliton's velocity. Copyright (C) EPLA, 2012 C1 Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Tsvelik, AM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM tsvelik@bnl.gov FU US DOE [DE-AC02 -98 CH 10886] FX I am grateful to A. NERSESYAN and R. KONIK for interesting discussions. AMT was supported by US DOE under contract No. DE-AC02 -98 CH 10886. NR 9 TC 4 Z9 4 U1 1 U2 1 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JAN PY 2012 VL 97 IS 1 AR 17011 DI 10.1209/0295-5075/97/17011 PG 5 WC Physics, Multidisciplinary SC Physics GA 891XT UT WOS:000300250800042 ER PT S AU Ogawa, N Biggin, MD AF Ogawa, Nobuo Biggin, Mark D. BE Deplancke, B Gheldof, N TI High-Throughput SELEX Determination of DNA Sequences Bound by Transcription Factors In Vitro SO GENE REGULATORY NETWORKS: METHODS AND PROTOCOLS SE Methods in Molecular Biology LA English DT Article; Book Chapter DE Transcription factor; SELEX; DNA-binding sequence; In vitro assay ID BINDING; ENHANCERS AB SELEX (systematic evolution of ligands by exponential enrichment) was created 20 years ago as a method to enrich small populations of bound DNAs from a random sequence pool by Pat amplification. It provides a powerful way to determine the in vitro binding specificities of DNA-binding proteins such as transcription factors. Here, we present a robust version of the SELEX protocol for high-throughput analysis. Protein-bound beads prepared from insoluble recombinant 6x HIS-tagged transcription factor protein are used in a simple pull-down assay. To allow efficient determination of the enriched DNA sequences, bound oligonucleotides are concatenated, allowing approximately 1,000 oligonucleotides to be sequenced from one 96-well format plate. Successive rounds of SELEX data are statistically useful for understanding the full range of moderate affinity and high-affinity binding sites. C1 [Ogawa, Nobuo; Biggin, Mark D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. RP Ogawa, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. FU NIGMS NIH HHS [GM704403] NR 14 TC 5 Z9 5 U1 0 U2 4 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA SN 1064-3745 BN 978-1-61779-291-5 J9 METHODS MOL BIOL JI Methods Mol. Biol. PY 2012 VL 786 BP 51 EP 63 DI 10.1007/978-1-61779-292-2_3 D2 10.1007/978-1-61779-292-2 PG 13 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA BYM15 UT WOS:000299299900003 PM 21938619 ER PT J AU Kao, DL Wong, PC AF Kao, David L. Wong, Pak C. TI Special issue of selected papers from visualization and data analysis 2011 SO INFORMATION VISUALIZATION LA English DT Editorial Material C1 [Kao, David L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wong, Pak C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kao, DL (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1473-8716 J9 INFORM VISUAL JI Inf. Vis. PD JAN PY 2012 VL 11 IS 1 SI SI BP 3 EP 4 DI 10.1177/1473871611431117 PG 2 WC Computer Science, Software Engineering SC Computer Science GA 892FI UT WOS:000300271700001 ER PT J AU Lereu, AL Passian, A Dumas, P AF Lereu, A. L. Passian, A. Dumas, Ph TI Near field optical microscopy: a brief review SO INTERNATIONAL JOURNAL OF NANOTECHNOLOGY LA English DT Article DE near field optical microscopy; nanoantennas; plasmons ID SINGLE-MOLECULE FLUORESCENCE; SURFACE-PLASMON INTERFERENCE; SHEAR-FORCE; APERTURE PROBES; FAR-FIELD; RESOLUTION; ANTENNAS; FABRICATION; EMISSION; LIGHT AB Near Field Optical Microscopy (NSOM) has evolved into a mature member of the family of scanning probe microscopy. In this article, we briefly go over the principle of NSOM, its breakthroughs and setbacks. We will describe some of the most commonly used NSOM modalities and conclude with the recent advances based on optical nanoantennas. We will then highlight the potential of this high-resolution optical microscopy for chemical and biological applications as well as for materials sciences. C1 [Lereu, A. L.; Dumas, Ph] CINaM CNRS, F-13288 Marseille, France. [Passian, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Passian, A.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Lereu, AL (reprint author), CINaM CNRS, Campus Luminy, F-13288 Marseille, France. EM lereu@cinam.univ-mrs.fr; passianan@ornl.gov; dumas@cinam.univ-mrs.fr RI Lereu, Aude/P-6414-2016 OI Lereu, Aude/0000-0001-7390-7832 FU CNRS; C Nano PACA; US DOE [DE-AC05-00OR22725] FX A.L. Lereu and Ph. Dumas want to acknowledge the program "Interface physique, biologie et chimie: soutien a la prise de risque" from the CNRS and the C Nano PACA program for their financial supports. A. Passian would like to acknowledge the Laboratory Directed Research and Development (LDRD) Program of ORNL. ORNL is managed by UT-Battelle, LLC, for the US DOE under contract DE-AC05-00OR22725. NR 73 TC 8 Z9 8 U1 5 U2 54 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 896, CH-1215 GENEVA, SWITZERLAND SN 1475-7435 J9 INT J NANOTECHNOL JI Int. J. Nanotechnol. PY 2012 VL 9 IS 3-7 BP 488 EP 501 DI 10.1504/IJNT.2012.045353 PG 14 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 894AX UT WOS:000300400400022 ER PT J AU Carado, AJ Quarles, CD Duffin, AM Barinaga, CJ Russo, RE Marcus, RK Eiden, GC Koppenaal, DW AF Carado, Anthony J. Quarles, C. Derrick, Jr. Duffin, Andrew M. Barinaga, Charles J. Russo, Richard E. Marcus, R. Kenneth Eiden, Gregory C. Koppenaal, David W. TI Femtosecond laser ablation particle introduction to a liquid sampling-atmospheric pressure glow discharge ionization source SO JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY LA English DT Article ID PLASMA-MASS SPECTROMETRY; ICP-MS MEASUREMENTS; PERFORMANCE; COLLISION AB This work describes the use of a compact, liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source to ionize metal particles within a laser ablation aerosol. Mass analysis was performed with a Thermo Scientific Exactive Mass Spectrometer which utilizes an orbitrap mass analyzer capable of producing mass resolution exceeding m/Delta m > 160,000. The LS-APGD source generates a low-power plasma between the surface of an electrolytic solution flowing at several mu l min(-1) through a fused silica capillary and a counter electrode consisting of a stainless steel capillary employed to deliver the laser ablation particles into the plasma. Sample particles of approximately 100 nm were generated with an Applied Spectra femtosecond laser located remotely and transported through 25 meters of polyurethane tubing by means of argon carrier gas. Samples consisted of an oxygen free copper shard, a disk of solder, and a one-cent U.S. coin. Analyte signal onset was readily detectable relative to the background signal produced by the carrier gas alone. The high mass resolution capability of the orbitrap mass spectrometer was demonstrated on the solder sample with resolution exceeding 90,000 for Pb and 160,000 for Cu. In addition, results from a laser ablation depth-profiling experiment of a one cent coin revealed retention of the relative locations of the similar to 10 mu m copper cladding and zinc rich bulk layers. C1 [Carado, Anthony J.; Duffin, Andrew M.; Barinaga, Charles J.; Eiden, Gregory C.; Koppenaal, David W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Quarles, C. Derrick, Jr.; Marcus, R. Kenneth] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Koppenaal, DW (reprint author), Pacific NW Natl Lab, Battelle Blvd, Richland, WA 99352 USA. FU US DOE by Batelle Memorial Institute [DE-AC06-76RLO-1830]; U.S. Department of Energy's Office of Biological and Environmental Research (BER); DOE Office of Non-Proliferation Research and Engineering [NA22] FX This work was performed at Pacific Northwest National Laboratory, operated for the US DOE by Batelle Memorial Institute under Contract DE-AC06-76RLO-1830. The Exactive MS capability was provided by the W. R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research (BER) program. Support for this work was provided by the DOE Office of Non-Proliferation Research and Engineering (NA22). NR 22 TC 13 Z9 13 U1 2 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0267-9477 J9 J ANAL ATOM SPECTROM JI J. Anal. At. Spectrom. PY 2012 VL 27 IS 3 BP 385 EP 389 DI 10.1039/c2ja10331a PG 5 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 892WL UT WOS:000300316200001 ER PT J AU Zhang, XL Ting, K Pathmanathan, D Ko, T Chen, WW Chen, F Lee, HF James, AW Siu, RK Shen, J Culiat, CT Soo, C AF Zhang, Xinli Ting, Kang Pathmanathan, Dharmini Ko, Theodore Chen, Weiwei Chen, Feng Lee, Haofu James, Aaron W. Siu, Ronald K. Shen, Jia Culiat, Cymbeline T. Soo, Chia TI Calvarial Cleidocraniodysplasia-Like Defects With ENU-Induced Nell-1 Deficiency SO JOURNAL OF CRANIOFACIAL SURGERY LA English DT Article DE Runx2; membranous bone; Sox9; endochondral bone ID OSTEOBLAST DIFFERENTIATION; BONE-FORMATION; EXPRESSION; CELLS; RUNX2; GENE; CBFA1; MICE; CRANIOSYNOSTOSIS; PROTEINS AB Nell-1, first identified by its overexpression in synostotic cranial sutures, is a novel osteoinductive growth and differentiation factor. To further define Nell-1's role in craniofacial patterning, we characterized defects of the ENU-induced Nell-1-deficient (END) mice, focusing on both intramembranous and endochondral cranial bones. Results showed that calvarial bones of neonatal END mice were reduced in thickness and density, with a phenotype resembling calvarial cleidocraniodysplasia. In addition, a global reduction in osteoblast markers was observed, including reductions in Runx2, alkaline phosphatase, and osteocalcin. Remarkably, detailed analysis of endochondral bones showed dysplasia as well. The chondrocranium in the END mouse showed enrichment for early, proliferating Sox9(+) chondrocytes, whereas in contrast markers of chondrocytes maturation were reduced. These data suggest that Nell-1 is an important growth factor for regulation of osteochondral differentiation, by regulating both Runx2 and Sox9 expression within the calvarium. In summary, Nell-1 is required for normal craniofacial membranous and endochondral skeletal development. C1 [Zhang, Xinli; Ting, Kang; Chen, Weiwei; Chen, Feng; James, Aaron W.; Shen, Jia] Univ Calif Los Angeles, Sch Dent, Dent & Craniofacial Res Inst, Los Angeles, CA 90095 USA. [Zhang, Xinli; Ting, Kang; Pathmanathan, Dharmini; Ko, Theodore; Lee, Haofu] Univ Calif Los Angeles, Sch Dent, Sect Orthodont, Los Angeles, CA 90095 USA. [Ting, Kang; Soo, Chia] Univ Calif Los Angeles, Orthopaed Hosp, Dept Orthoped Surg, Los Angeles, CA 90095 USA. [Ting, Kang; Soo, Chia] Univ Calif Los Angeles, Orthopaed Hosp, Res Ctr, Los Angeles, CA 90095 USA. [Siu, Ronald K.] Univ Calif Los Angeles, Sch Engn, Dept Bioengn, Los Angeles, CA 90095 USA. [Culiat, Cymbeline T.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Ting, K (reprint author), Univ Calif Los Angeles, Sch Dent, Dent & Craniofacial Res Inst, Le Conte Ave,CHS 30-117, Los Angeles, CA 90095 USA. EM kting@dentistry.ucla.edu FU NIH/NIDCR [R21 DE0177711, RO1 DE01607]; UC [07-10677]; Thomas R. Bales Endowed Chair FX This work was supported by the NIH/NIDCR (grants R21 DE0177711 and RO1 DE01607), UC Discovery Grant 07-10677, and the Thomas R. Bales Endowed Chair. NR 28 TC 10 Z9 11 U1 0 U2 7 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1049-2275 J9 J CRANIOFAC SURG JI J. Craniofac. Surg. PD JAN PY 2012 VL 23 IS 1 BP 61 EP 66 DI 10.1097/SCS.0b013e318240c8c4 PG 6 WC Surgery SC Surgery GA 891RS UT WOS:000300234900040 PM 22337375 ER PT J AU Carcelen, V Kim, KH Camarda, GS Bolotnikov, AE Hossain, A Yang, G Crocco, J Bensalah, H Dierre, F Dieguez, E James, RB AF Carcelen, V. Kim, K. H. Camarda, G. S. Bolotnikov, A. E. Hossain, A. Yang, G. Crocco, J. Bensalah, H. Dierre, F. Dieguez, E. James, R. B. TI Pt coldfinger improves quality of Bridgman-grown Cd0.9Zn0.1Te:Bi crystals SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Crystal structure; Bridgman technique; Cadmium compounds; Semiconducting II-VI materials ID CADMIUM ZINC TELLURIDE; SOLID-LIQUID INTERFACE; CDZNTE CRYSTALS; CDTE; DETECTORS; SHAPE; FURNACE; SYSTEM AB Cadmium zinc telluride (Cd1-xZnxTe) crystals have many applications in optoelectronics and as room-temperature detectors. We grew bismuth-doped CZT crystals by the standard Bridgman Oscillation Method, and compared them with such crystals grown in the thermal environment of a furnace modified with a Pt coldfinger (metal rod). The coldfinger serves as a tool for stabilizing the solid-liquid interface by extracting heat from the as-grown crystal, and thereby improving the ingot's crystalline quality. We detailed the crystal's quality via high-resolution X-ray diffraction (HRXRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Synchrotron-based X-ray microfluorescence (mu SXRF) images, as well as by etch-pit density (EPD) measurements. Our results demonstrated that the Pt coldfinger is an effective tool for improving the quality of CZT bulk material. (C) 2011 Elsevier B.V. All rights reserved. C1 [Carcelen, V.; Crocco, J.; Bensalah, H.; Dierre, F.; Dieguez, E.] Univ Autonoma Madrid, Dept Mat Phys, Crystal Growth Lab, Fac Ciencias, E-28049 Madrid, Spain. [Carcelen, V.; Kim, K. H.; Camarda, G. S.; Bolotnikov, A. E.; Hossain, A.; Yang, G.; James, R. B.] Brookhaven Natl Lab, Nonproliferat & Natl Secur Dept, Upton, NY 11973 USA. RP Carcelen, V (reprint author), Univ Autonoma Madrid, Dept Mat Phys, Crystal Growth Lab, Fac Ciencias, E-28049 Madrid, Spain. EM veronica.carcelen@uam.es RI Carcelen, Veronica /B-3750-2017 FU Spanish "Ministerio de Educacion y Ciencia" [E5P2006-09935]; Spanish "Comunidad de Madrid" [S-0505/MAT-0279]; European Commission [FP7-SEC-2007-01]; European Space Agency [14240/00/NL/SH]; European Space Agency; U.S. Department of Energy-Geosciences [DE-FG02-92ER14244] FX This work was supported by the following Projects: Spanish "Ministerio de Educacion y Ciencia", E5P2006-09935; Spanish "Comunidad de Madrid", S-0505/MAT-0279; European Commission, FP7-SEC-2007-01; and Contract number 14240/00/NL/SH, European Space Agency. One of the authors, VC, is grateful to the Ministry of Education and Science, Spain for financial support. Portions of this work were performed at Beam line X27A, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory. X27A is supported in part by the U.S. Department of Energy-Geosciences (DE-FG02-92ER14244 to The University of Chicago-CARS) and Brookhaven National Laboratory-Department of Environmental Sciences. Use of the NSLS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-98CH10886. This work also was partially supported by the U.S. Department of Energy, Office of Nonproliferation Research and Development, NA-22. NR 29 TC 5 Z9 5 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD JAN 1 PY 2012 VL 338 IS 1 BP 1 EP 5 DI 10.1016/j.jcrysgro.2011.09.031 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 884PQ UT WOS:000299720400001 ER PT J AU Ptak, AJ France, R Beaton, DA Alberi, K Simon, J Mascarenhas, A Jiang, CS AF Ptak, A. J. France, R. Beaton, D. A. Alberi, K. Simon, J. Mascarenhas, A. Jiang, C. -S. TI Kinetically limited growth of GaAsBi by molecular-beam epitaxy SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Atomic-Force Microscopy; Growth Models; Segregation; Molecular-Beam Epitaxy; Bismuth Compounds; Semiconducting III-V Materials ID SURFACE SEGREGATION; BISMUTH; DIFFUSION AB The growth of GaAsBi alloys is plagued by the appearance of Bi droplets due to excess Bi that accumulates during growth. Here we present an alternate growth regime that kinetically limits the amount of Bi on the surface, eliminating Bi droplets for a wide range of Bi compositions, while yielding atomically smooth surfaces. Growth rate plays a major role in the amount of Bi that accumulates on the surface, with high growth rates and low Bi fluxes leading to less surface Bi. A balance can be achieved between low Bi coverage, the resultant rough surfaces, and the excessive Bi coverage that leads to Bi droplets. Bi incorporation in this growth regime is linear with Bi flux and scales inversely with growth rate. Unlike previous studies, there is no sign of saturating Bi incorporation with increasing Bi flux, allowing for intuitive prediction and control of Hi content in this regime. (C) 2011 Published by Elsevier B.V. C1 [Ptak, A. J.; France, R.; Beaton, D. A.; Alberi, K.; Simon, J.; Mascarenhas, A.; Jiang, C. -S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ptak, AJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM aaron.ptak@nrel.gov RI jiang, chun-sheng/F-7839-2012 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division [AC36-08G028308] FX This research was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under DE-AC36-08G028308. NR 21 TC 49 Z9 49 U1 1 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD JAN 1 PY 2012 VL 338 IS 1 BP 107 EP 110 DI 10.1016/j.jcrysgro.2011.10.040 PG 4 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 884PQ UT WOS:000299720400020 ER PT J AU Vahidi, M Tang, ZZ Tucker, J Peshek, TJ Zhang, L Kopas, C Singh, RK van Schilfgaarde, M Newman, N AF Vahidi, M. Tang, Z. Z. Tucker, J. Peshek, T. J. Zhang, L. Kopas, C. Singh, R. K. van Schilfgaarde, M. Newman, N. TI Experimental study of the kinetically-limited decomposition of ZnGeAs2 and its role in determining optimal conditions for thin film growth SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Kinetics; Desorption; Thermodynamics; Thin film; Semiconducting ternary compounds ID EPITAXIAL-GROWTH; DEPOSITION; SEMICONDUCTOR AB To understand the thermochemistry and determine the rate limiting steps of ZnGeAs2 thin-film synthesis, experiments were performed to measure the (a) thermal decomposition rate and (b) elemental composition and deposition rate of films produced with pulsed laser deposition (PLD). The decomposition rate is kinetically limited with an activation energy of 1.08 +/- 0.05 eV and an evaporation coefficient of similar to 10(-3). We show that ZnGeAs2 thin film synthesis is a metastable process with the kinetically-limited decomposition rate playing a dominant role at the elevated temperatures needed to attain epitaxy. Our conclusions are in contrast to those of earlier reports that assumed the growth rate is limited by desorption and the resulting low reactant sticking coefficient. The thermochemical analysis presented here can be used to predict optimal conditions for ZnGeAs2 film physical vapor deposition and thermal processing. (C) 2011 Elsevier B.V. All rights reserved. C1 [Vahidi, M.; Tang, Z. Z.; Tucker, J.; Peshek, T. J.; Zhang, L.; Kopas, C.; Singh, R. K.; van Schilfgaarde, M.; Newman, N.] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Peshek, T. J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Newman, N (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. EM Nathan.Newman@asu.edu RI Newman, Nathan/E-1466-2011; OI Newman, Nathan/0000-0003-2819-9616; Kopas, Cameron/0000-0002-6184-2987 FU DOE-EERE [DE-FG36-08GO18002] FX This project was supported by DOE-EERE grant DE-FG36-08GO18002. The use of facilities in the LeRoy Eyring Center for Solid State Science at Arizona State University is acknowledged. NR 24 TC 1 Z9 1 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD JAN 1 PY 2012 VL 338 IS 1 BP 267 EP 271 DI 10.1016/j.jcrysgro.2011.11.004 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 884PQ UT WOS:000299720400050 ER PT J AU Weinberger, CR Cai, W AF Weinberger, Christopher R. Cai, Wei TI Plasticity of metal nanowires SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID DISLOCATION DYNAMICS SIMULATIONS; PHASE-TRANSFORMATION; YIELD STRENGTH; GOLD NANOWIRES; DEPENDENT PLASTICITY; COPPER NANOWIRES; SILVER NANOWIRES; SURFACE-ENERGY; CU NANOWIRES; FCC METALS AB The mechanisms of plasticity in metal nanowires with diameters below 100 nm are reviewed. At these length scales, plasticity in face-centered-cubic metals subjected to uniaxial loading is dominated by dislocation nucleation from free surfaces, which has been studied extensively by molecular dynamics. These simulations show that nanowires can deform in a variety of ways including slip via perfect dislocations, partial dislocations and deformation twins. The competition between these mechanisms can be explained primarily through the Schmid factor and material properties, although surface orientation and roughness also contribute. The strength of these materials is very high and can be described by classical nucleation theory which predicts strong temperature and geometry dependence as well as a weak strain rate dependence. Additionally, nanowires exhibit, through twinning or phase transformation, pseudo-elastic and shape-memory behaviors which are attributed to their small size and the surface stress. The plasticity of nanowires subject to torsion and bending as well as those composed of body-centered-cubic metals are also summarized. C1 [Weinberger, Christopher R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Cai, Wei] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. RP Weinberger, CR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM crweinb@sandia.gov; caiwei@stanford.edu RI Weinberger, Christopher/E-2602-2011; OI Weinberger, Christopher/0000-0001-9550-6992; Cai, Wei/0000-0001-5919-8734 FU U.S. Department of Energy [DE-AC04-94AL85000]; National Science Foundation [CMS-0547681]; Army High Performance Computing Research Center at Stanford FX This research was supported in part by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S. Department of Energy Contract No. DE-AC04-94AL85000. The work was partly supported by National Science Foundation Career Grant CMS-0547681 and the Army High Performance Computing Research Center at Stanford. NR 105 TC 59 Z9 59 U1 2 U2 81 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 8 BP 3277 EP 3292 DI 10.1039/c2jm13682a PG 16 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 884HL UT WOS:000299695400001 ER PT J AU Adelstein, N Neaton, JB Asta, M De Jonghe, LC AF Adelstein, Nicole Neaton, Jeffrey B. Asta, Mark De Jonghe, Lutgard C. TI First-principles studies of proton-Ba interactions in doped LaPO4 SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID ELECTRICAL-CONDUCTION PROPERTIES; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; TRANSPORT; OXIDES; DYNAMICS; DEFECTS; DOPANTS; METALS; LAP3O9 AB The interactions between an aliovalent cation dopant, Ba, and protons in LaPO4 are studied with first-principles density functional theory. This work is motivated by the desire to use doped LaPO4 as a proton conducting solid electrolyte or hydrogen separation membrane. In this context, the strength and range of proton-dopant interactions are important factors underlying proton mobilities. Using periodic supercells, we find that similar to 3% Ba-doping stabilizes a proton at a distance 2.7 angstrom from the dopant by up to 0.2 eV relative to positions far from the dopant. The Ba-dopant creates a narrow potential energy well and only changes the proton's potential energy surface by +/- 0.05 eV when the proton is farther than 2.7 angstrom from the dopant. Electrostatic interactions between the proton and dopant account for the majority of the binding energy of proton sites and are associated with a complex redistribution of the charge induced by the dopant on the neighboring oxygen ions. In contrast, the strain field created by the Ba-dopant gives rise to a relatively small contribution to the interaction energy. C1 [Adelstein, Nicole; Asta, Mark; De Jonghe, Lutgard C.] Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. RP Adelstein, N (reprint author), Dept Mat Sci & Engn, 210 Hearst Mem Min Bldg, Berkeley, CA 94720 USA. EM adelstein@berkeley.edu RI Neaton, Jeffrey/F-8578-2015 OI Neaton, Jeffrey/0000-0001-7585-6135 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also gratefully acknowledge computational support from NERSC, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank Hannah L. Ray for useful discussions and Alexey Zayak for help with Fig. 4. NR 27 TC 4 Z9 4 U1 1 U2 20 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 9 BP 3758 EP 3763 DI 10.1039/c2jm16214h PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 890ZX UT WOS:000300187000014 ER PT J AU Guan, JG Yan, GQ Wang, W Liu, J AF Guan, Jianguo Yan, Gongqin Wang, Wei Liu, Jun TI External field-assisted solution synthesis and selectively catalytic properties of amorphous iron nanoplatelets SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID MAGNETIC-FIELD; ELECTROMAGNETIC PROPERTIES; CYCLOHEXANE OXIDATION; INDUCED GROWTH; THIN-FILMS; NANOPARTICLES; SILVER; TEMPERATURE; HYDROGEN; COBALT AB This work describes an easy and flexible approach for the synthesis of 2D nanostructures by external composite field-induced self-assembly. Amorphous iron nanoplatelets with a large aspect ratio were prepared by reducing a concentrated FeSO4 solution with NaBH4 without any templates or surfactants under a magnetic field and a shear field, and characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Based on the morphological dependence of the resultant iron nanostructures on the kinetic parameters such as reactant concentration, reaction temperature, external fields as well as reaction time, etc., a novel conceivable formation mechanism of the iron nanoplatelets was substantiated to be a self-assembly of concentrated iron nuclei induced by the synergistic effect of both a magnetic field and a shear field. Due to the amorphous nature and shape anisotropy, the as-synthesized iron nanoplatelets exhibit quite different magnetic properties with an enhanced coercivity of >220 Oe from isotropic iron nanoparticles. In the oxidation of cyclohexane with hydrogen peroxide as a "green'' oxidant, the as-obtained amorphous iron nanoplatelets show a conversion more than 84% and a complete selectivity for cyclohexanol and cyclohexanone due to the unique structure. Moreover, their catalytic performances are strongly influenced by their morphology, and the iron atoms located on the faces tend to catalyze the formation of cyclohexanol while those on the sides tend to catalyze the formation of cyclohexanone. The external composite field-induced solution synthesis reported here can be readily explored for fabricating other 2D magnetic nanoplatelets, and the resulting iron nanoplatelets are promising for a number of applications such as high efficient selective catalysis, energy, environment fields and so forth. C1 [Guan, Jianguo; Yan, Gongqin; Wang, Wei] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China. [Yan, Gongqin] Guangxi Univ Technol, Dept Mech Engn, Liuzhou 545006, Guangxi, Peoples R China. [Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Guan, JG (reprint author), Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China. EM guanjg@whut.edu.cn RI Guan, Jianguo/E-1118-2011 OI Guan, Jianguo/0000-0002-2223-4524 FU National High Technology Research and Development Program of China [2006AA03A209]; Fok Ying Tung Education Foundation [101049]; Natural Science Foundation of Hubei Province [20101j0167, 20101j0157]; Subject Leadership Project of Wuhan City [201150530145] FX This work was supported by National High Technology Research and Development Program of China (no. 2006AA03A209), Young Teachers from Fok Ying Tung Education Foundation (no. 101049), the Natural Science Foundation of Hubei Province (20101j0167 and 20101j0157) and the Subject Leadership Project of Wuhan City (201150530145). NR 53 TC 4 Z9 4 U1 3 U2 42 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 9 BP 3909 EP 3915 DI 10.1039/c2jm15000j PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 890ZX UT WOS:000300187000033 ER PT J AU Xu, W Read, A Koech, PK Hu, DH Wang, CM Xiao, J Padmaperuma, AB Graff, GL Liu, J Zhang, JG AF Xu, Wu Read, Adam Koech, Phillip K. Hu, Dehong Wang, Chongmin Xiao, Jie Padmaperuma, Asanga B. Graff, Gordon L. Liu, Jun Zhang, Ji-Guang TI Factors affecting the battery performance of anthraquinone-based organic cathode materials SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID LI-ION BATTERIES; RECHARGEABLE BATTERIES; CORRELATION-ENERGY; LITHIUM BATTERIES; ACTIVE MATERIAL; SECONDARY BATTERIES; STORAGE MATERIALS; RADICAL CATHODES; DENSITY; POLYMERS AB Two organic cathode materials based on the poly(anthraquinonyl sulfide) structure with different substitution positions were synthesized and their electrochemical behavior and battery performance were investigated. The substitution positions on the anthraquinone structure, the type of binders for electrode preparation, and electrolyte formulations have been found to have significant effects on the performance of batteries containing these organic cathode materials. The polymer with less steric hindrance at the substitution positions has higher capacity, longer cycle life and better high-rate capability. Polyvinylidene fluoride binder and ether-based electrolytes are favorable for the high capacity and long cycle life of the anthraquinonyl organic cathodes. C1 [Xu, Wu; Read, Adam; Koech, Phillip K.; Xiao, Jie; Padmaperuma, Asanga B.; Graff, Gordon L.; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Read, Adam] Brigham Young Univ, Dept Chem Engn, Provo, UT 84602 USA. [Hu, Dehong; Liu, Jun] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. [Wang, Chongmin] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99354 USA. RP Xu, W (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM wu.xu@pnnl.gov; jiguang.zhang@pnnl.gov RI Hu, Dehong/B-4650-2010; OI Hu, Dehong/0000-0002-3974-2963; Koech, Phillip/0000-0003-2996-0593; Xu, Wu/0000-0002-2685-8684 FU U.S. Department of Energy (DOE), Office of Vehicle Technologies (through the Lawrence Berkeley National Laboratory); Pacific Northwest National Laboratory (PNNL); DOE's Office of Biological and Environmental Research; PNNL FX This work was sponsored by the U.S. Department of Energy (DOE), Office of Vehicle Technologies (through the Batteries for Advanced Transportation Technologies program at Lawrence Berkeley National Laboratory) and the Laboratory Directed Research and Development Project of Pacific Northwest National Laboratory (PNNL). The TEM measurement was performed in Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. NR 33 TC 46 Z9 46 U1 12 U2 92 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 9 BP 4032 EP 4039 DI 10.1039/c2jm15764k PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 890ZX UT WOS:000300187000050 ER PT J AU Xiao, HY Zhang, Y Snead, LL Shutthanandan, V Xue, HZ Weber, WJ AF Xiao, H. Y. Zhang, Y. Snead, L. L. Shutthanandan, V. Xue, H. Z. Weber, W. J. TI Near-surface and bulk behavior of Ag in SiC SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SILICON-CARBIDE; IMPLANTATION TEMPERATURE; BETA-SIC(001) SURFACES; DAMAGE ACCUMULATION; STRUCTURAL-ANALYSIS; FUEL-PARTICLES; NOBLE-METALS; ADSORPTION; DIFFUSION; ENERGY AB The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85-1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor. (C) 2011 Elsevier B.V. All rights reserved. C1 [Xiao, H. Y.; Zhang, Y.; Xue, H. Z.; Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Zhang, Y.; Snead, L. L.; Weber, W. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Shutthanandan, V.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Xiao, HY (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM hxiao@utk.edu RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 FU University of Tennessee/Oak Ridge National Laboratory (UTK/ORNL) Joint Institute for Advanced Materials; DOE Office of Nuclear Energy at UTK; ORNL FX This work was supported in part by the University of Tennessee/Oak Ridge National Laboratory (UTK/ORNL) Joint Institute for Advanced Materials, and by the DOE Office of Nuclear Energy programs at UTK and ORNL. The theoretical calculations were performed using the supercomputer resources at the National Energy Research Scientific Computing Center (NERSC) located at Lawrence Berkeley National Laboratory, and at the Environmental Molecular Sciences Laboratory (EMSL) located at Pacific Northwest National Laboratory (PNNL). A portion of experiments was performed at the EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 60 TC 19 Z9 19 U1 4 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2012 VL 420 IS 1-3 BP 123 EP 130 DI 10.1016/j.jnucmat.2011.09.028 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 894YB UT WOS:000300462300016 ER PT J AU Chung, CW Urn, W Valenta, MM Sundaram, SK Chun, J Parker, KE Kimura, ML Westsik, JH AF Chung, Chul-Woo Urn, Wooyong Valenta, Michelle M. Sundaram, S. K. Chun, Jaehun Parker, Kent E. Kimura, Marcia L. Westsik, Joseph H., Jr. TI Characteristics of Cast Stone cementitious waste form for immobilization of secondary wastes from vitrification process SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID AFM PHASE AB The high-temperature in vitrification process of radioactive wastes could cause radioactive technetium (Tc-99) in secondary liquid wastes to become volatile. Solidified cementitious waste forms at low temperature were developed to immobilize radioactive secondary waste. This research focuses on the characterization of a cementitious waste form called Cast Stone. Properties including compressive strength, surface area, phase composition, and technetium leaching were measured. The results indicate that technetium diffusivity is affected by simulant type. Additionally, ettringite and AFm (Al2O3-Fe2O3-mono) main crystalline phases were formed during hydration. The Cast Stone waste form passed the qualification requirements for a secondary waste form, which are compressive strength of 3.45 MPa and technetium diffusivity of 10(-9) cm(2)/sec. Cast Stone was found to be a good candidate for immobilizing secondary waste streams. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chung, Chul-Woo; Urn, Wooyong; Valenta, Michelle M.; Sundaram, S. K.; Chun, Jaehun; Parker, Kent E.; Kimura, Marcia L.; Westsik, Joseph H., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chung, CW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Chul-Woo.Chung@pnnl.gov FU Washington River Protection Solutions (WRPS); Division of Advanced Nuclear Engineering (DANE) in POSTECH through the National Research Foundation of Korea; Ministry of Education, Science and Technology [R31-30005]; United States Department of Energy [DE-AC06-76RLO 1830] FX The project was supported by Washington River Protection Solutions (WRPS). Additional funding was supported by WCU (World Class University) program at the Division of Advanced Nuclear Engineering (DANE) in POSTECH through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-30005). The authors deeply appreciate the comments and discussions provided by Prof. Leslie J. Struble (University of Illinois at Urbana Champaign). The authors appreciate the assistance provided by Carolyne Burns and Stan Pitman in Pacific Northwest National Laboratory (PNNL) for particle size measurement of raw cementitious materials and compressive strength measurements of Cast Stone. We also appreciate the support of raw materials from Mr. John Harris in Lafarge North America. PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the United States Department of Energy under contract DE-AC06-76RLO 1830. NR 28 TC 2 Z9 3 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2012 VL 420 IS 1-3 BP 164 EP 174 DI 10.1016/j.jnucmat.2011.09.021 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 894YB UT WOS:000300462300021 ER PT J AU Sun, C Yu, KY Lee, JH Liu, Y Wang, H Shao, L Maloy, SA Hartwig, KT Zhang, X AF Sun, C. Yu, K. Y. Lee, J. H. Liu, Y. Wang, H. Shao, L. Maloy, S. A. Hartwig, K. T. Zhang, X. TI Enhanced radiation tolerance of ultrafine grained Fe-Cr-Ni alloy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID AUSTENITIC STAINLESS-STEELS; HELIUM ION-IRRADIATION; NANOSTRUCTURED MATERIALS; NEUTRON-IRRADIATION; DAMAGE; BOUNDARIES; EVOLUTION; BUBBLES; METALS; COPPER AB The evolutions of microstructure and mechanical properties of Fe-14Cr-16Ni (wt.%) alloy subjected to Helium ion irradiations were investigated. Equal channel angular pressing (ECAP) process was used to significantly reduce the average grain size from 700 gm to 400 nm. At a peak fluence level of 5.5 displacement per atom (dpa), helium bubbles, 0.5-2 nm in diameter, were observed in both coarse-grained (CG) and ultrafine grained (UFG) alloy. The density of He bubbles, dislocation loops, as well as radiation hardening were reduced in the UFG Fe-Cr-Ni alloy comparing to those in its CG counterpart. The results imply that radiation tolerance in bulk metals can be effectively enhanced by refinement of microstructures. (C) 2011 Elsevier B.V. All rights reserved. C1 [Sun, C.; Yu, K. Y.; Liu, Y.; Hartwig, K. T.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Lee, J. H.; Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Maloy, S. A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Lujan Center, LANL/G-4896-2012; Sun, Cheng/G-8953-2013; Yu, Kaiyuan /B-8398-2014; Liu, Yue/H-4071-2014; Zhang, Xinghang/H-6764-2013; Wang, Haiyan/P-3550-2014; Maloy, Stuart/A-8672-2009 OI Sun, Cheng/0000-0002-1368-243X; Yu, Kaiyuan /0000-0002-5442-2992; Liu, Yue/0000-0001-8518-5734; Zhang, Xinghang/0000-0002-8380-8667; Wang, Haiyan/0000-0002-7397-1209; Maloy, Stuart/0000-0001-8037-1319 FU DOE-NEUP [DE-AC07-05ID14517-00088120]; US Army Research Office - Materials Science Division [W911NF-09-1-0223]; NSF [0846835] FX We acknowledges financial support by DOE-NEUP under Contract No. DE-AC07-05ID14517-00088120. Partial support by US Army Research Office - Materials Science Division is also acknowledged under Contract No. W911NF-09-1-0223. Shao acknowledges support by NSF under Grant No. 0846835. We also acknowledge the usage of microscopes at the Microscopy and Imaging Center at Texas A&M University. NR 52 TC 35 Z9 35 U1 2 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2012 VL 420 IS 1-3 BP 235 EP 240 DI 10.1016/j.jnucmat.2011.10.001 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 894YB UT WOS:000300462300031 ER PT J AU Usov, IO Valdez, JA Won, J Devlin, DJ AF Usov, I. O. Valdez, J. A. Won, J. Devlin, D. J. TI Ion irradiation temperature effect on HfO2/MgO multi-layer structures SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ZRO2 COMPOSITE-MATERIAL; PHASE-TRANSITION; ZIRCONIA; CERAMICS; FUEL; TRANSMUTATION; FABRICATION; ACTINIDES; HAFNIA AB Properties of nuclear materials may be improved by employing composite materials. However, these properties usually degrade during the operation in a nuclear reactor environment due to radiation damage accumulation. For this study we fabricated a multi-layer structure composed of MgO and HfO2 thin films on a sapphire substrate. This multi-layer structure was designed to mimic a CERCER (ceramic-ceramic) composite fuel form. The goal of this study was to investigate features of radiation damage evolution cause by ion beam irradiation in a wide temperature range. We observed phase transformation in HfO2 from monoclinic to the tetragonal polymorph and no changes in MgO. Formation of thin amorphous regions adjacent to the MgO/HfO2 and HfO2/sapphire substrate interfaces was identified in both cases. Phase and microstructural changes demonstrated pronounced dependence on irradiation temperature, which we attributed to either enhanced annihilation of irradiation induced point defects or intermixing between the components of our multi-layered structure. (C) 2011 Elsevier B.V. All rights reserved. C1 [Usov, I. O.; Valdez, J. A.; Won, J.; Devlin, D. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Usov, IO (reprint author), Los Alamos Natl Lab, Mailstop E549, Los Alamos, NM 87545 USA. EM iusov@lanl.gov OI won, Jonghan/0000-0002-7612-1322 FU Los Alamos National Laboratory, Laboratory Directed Research and Development (LDRD); US Department of Energy FX This work was supported by a Los Alamos National Laboratory, Laboratory Directed Research and Development (LDRD) grant and US Department of Energy Advanced Fuel Cycle Campaign and Fuel Cycle R&D Program. Ion irradiation and RBS analysis was performed at the Ion Beam Materials Laboratory (IBML) and TEM analysis was performed at the Electron Microscopy Laboratory (EML) at LANL. The authors would like to thank J. Tesmer and Y. Wang from the IBML facility and R. Dickerson from EML for their technical assistance. NR 28 TC 4 Z9 4 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2012 VL 420 IS 1-3 BP 262 EP 267 DI 10.1016/j.jnucmat.2011.09.024 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 894YB UT WOS:000300462300035 ER PT J AU Cui, D Rondinella, VV Fortner, JA Kropf, AJ Eriksson, L Wronkiewicz, DJ Spahiu, K AF Cui, D. Rondinella, V. V. Fortner, J. A. Kropf, A. J. Eriksson, L. Wronkiewicz, D. J. Spahiu, K. TI Characterization of alloy particles extracted from spent nuclear fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; PWR FUEL; BEHAVIOR; DISSOLUTION; RESIDUES; ELECTRON; IFEFFIT; METAL; STATE AB We characterized, for the first time, submicro- and nanosized fission product-alloy particles that were extracted nondestructively from spent nuclear fuel, in terms of noble metal (Mo-Ru-Tc-Rh-Pd-Te) composition, atomic level homogeneity and lattice parameters. The evidences obtained in this work contribute to an improved understanding of the redox chemistry of radionuclides in nuclear waste repository environments and, in particular, of the catalytic properties of these unique metal alloy particles. (C) 2011 Elsevier B.V. All rights reserved. C1 [Cui, D.] Studsvik AB, S-61182 Nykoping, Sweden. [Cui, D.; Eriksson, L.] Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden. [Rondinella, V. V.] Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. [Fortner, J. A.; Kropf, A. J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wronkiewicz, D. J.] Missouri Univ Sci & Technol, Dept Geol Sci & Engn, Rolla, MO 65409 USA. [Spahiu, K.] SKB, SE-10240 Stockholm, Sweden. RP Cui, D (reprint author), Studsvik AB, S-61182 Nykoping, Sweden. EM daqing.cui@studsvik.se RI ID, MRCAT/G-7586-2011 FU Swedish Nuclear Fuel and Waste Management Co. (SKB) [14938]; United States Department of Energy (DOE) [DE-AC02-06CH11357] FX The experimental work and a part of manuscript writing were done at Studsvik Nuclear AB, Sweden, coordinated and supported by Swedish Nuclear Fuel and Waste Management Co. (SKB) under R & D Project 14938. Part of manuscript writing was done during D.Cui's visiting stay at JRC-ITU, European Commission. The EXAFS characterization performed at Argonne National Laboratory, USA, was supported by the United States Department of Energy (DOE) (DE-AC02-06CH11357). Thanks to H. Bergqvist, W. Sahle and M. Kallberg for microscope analysis and to J. Low for solution analysis. NR 33 TC 8 Z9 8 U1 4 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2012 VL 420 IS 1-3 BP 328 EP 333 DI 10.1016/j.jnucmat.2011.10.015 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 894YB UT WOS:000300462300045 ER PT J AU Yang, TF Huang, XJ Gao, Y Wang, CX Zhang, YW Xue, JM Yan, S Wang, YG AF Yang, Tengfei Huang, Xuejun Gao, Yuan Wang, Chenxu Zhang, Yanwen Xue, Jianming Yan, Sha Wang, Yugang TI Damage evolution of yttria-stabilized zirconia induced by He irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RADIATION-DAMAGE; IMPLANTATION; IONS AB The study presents an investigation of damage evolution of yttria-stabilized zirconia (YSZ) induced by irradiation of 100 key He ions at room temperature as a function of fluence. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and atomic force microscopy (AFM) were used in order to study the nature and evolution of structural damage at different levels. Our study shows that various kinds of defects are formed with the increasing fluence. Firstly, at low fluences, from 1 x 10(16) to 4 x 10(16) cm(-2), of which maximum values of displacement per atom (dpa) range from 0.29 to 1.17, an elastic strain which is attributed to the accumulation of irradiation-induced discrete point defects, is presented. Secondly, in the intermediate fluences ranging from 8 x 10(16) to 1 x 10(17) cm(-2) with corresponding dpa varying from 2.33 to 2.91, a large drop of elastic strain occurs accompanied by presence of an intensive damage region, which is comprised by large and interacted defect clusters. Thirdly, at the two high fluences of 2 x 10(17) and 4 x 10(17) cm(-2). of which dpa are 5.83 and 11.65 respectively, a great amount of ribbon-like He bubbles with granular structure and cracks are presented at the depth of maximum concentration of deposited He atoms. The structural damage evolution and the mechanism of formation of He bubbles are discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Yang, Tengfei; Huang, Xuejun; Gao, Yuan; Wang, Chenxu; Xue, Jianming; Yan, Sha; Wang, Yugang] Peking Univ, Ctr Appl Phys & Technol, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Zhang, Yanwen] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, Yanwen] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Wang, YG (reprint author), Peking Univ, Ctr Appl Phys & Technol, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. EM ygwang@pku.edu.cn OI , /0000-0003-2655-0804 FU Ministry of Science and Technology of China [2010CB832904, 2008CB717803]; National Natural Science Foundation of China [11075005]; US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was financially supported by the Ministry of Science and Technology of China (2010CB832904, 2008CB717803) and National Natural Science Foundation of China (11075005), Fundamental Research Funds for the Central Universities. Part of the research is supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Wenguang Zhao's effect in XRD measurements is appreciated. Tengfei Yang is grateful for the discussion with Aurelien Debelle. NR 27 TC 14 Z9 15 U1 7 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2012 VL 420 IS 1-3 BP 430 EP 436 DI 10.1016/j.jnucmat.2011.10.033 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 894YB UT WOS:000300462300059 ER PT J AU Ogden, MD Meier, GP Nash, KL AF Ogden, Mark D. Meier, G. Patrick Nash, Kenneth L. TI Synthesis and Evaluation of Conformationally Restricted N-4-Tetradentate Ligands for Implementation in An(III)/Ln(III) Separations SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Article DE Copper(II); Stability constants; Acid dissociation constants; Phase distribution; Ligand preorganization; Nitrogen donor complexants ID PAIR EXTRACTION BEHAVIOR; CHARGED COMPLEXES; POLYAMINE LIGANDS; METAL-CATIONS; PYRIDYL; THERMODYNAMICS; CHEMISTRY AB The previous literature demonstrates that donor atoms softer than oxygen are effective for separating trivalent lanthanides (Ln(III)) from trivalent actinides (An(III)) (Nash, K.L., in: Gschneider, K.A. Jr., et al. (eds.) Handbook on the Physics and Chemistry of Rare Earths, vol. 18-Lanthanides/Actinides Chemistry, pp. 197-238. Elsevier Science, Amsterdam, 1994). It has also been shown that ligands that "restrict" their donor groups in a favorable geometry, appropriate to the steric demands of the cation, have an increased binding affinity. A series of tetradentate nitrogen containing ligands have been synthesized with increased steric "limits". The pK (a) values for these ligands have been determined using potentiometric titration methods and the formation of the colored copper(II) complex has been used as a method to determine ligand partitioning between the organic and aqueous phases. The results for the 2-methylpyridyl-substituted amine ligands are encouraging, but the results for the 2-methylpyridyl-substituted diimines indicate that these ligands are unsuitable for implementation in a solvent extraction system due to hydrolysis. C1 [Ogden, Mark D.; Meier, G. Patrick; Nash, Kenneth L.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Ogden, Mark D.] Idaho Natl Lab, Idaho Falls, ID 83514 USA. RP Nash, KL (reprint author), Washington State Univ, Dept Chem, Pullman, WA 99164 USA. EM mark.ogden@inl.gov; knash@wsu.edu FU U.S. Department of Energy, Division of Nuclear Energy Science and Technology, Nuclear Energy Research Initiative Consortium (NERI-C) [DE-FG07-07ID14896] FX The authors would like to thank Dr. Mikael Nilsson, Dr. Sarah Pepper, Dr. Peter Zalupski and Dr. Syouhei Nishihama for their support and insight in this project. This research was conducted at WSU with funding provided by the U.S. Department of Energy, Division of Nuclear Energy Science and Technology, Nuclear Energy Research Initiative Consortium (NERI-C) program under project number DE-FG07-07ID14896. NR 21 TC 4 Z9 4 U1 2 U2 9 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD JAN PY 2012 VL 41 IS 1 BP 1 EP 16 DI 10.1007/s10953-011-9784-1 PG 16 WC Chemistry, Physical SC Chemistry GA 892OT UT WOS:000300296200001 ER PT J AU Harris, WM Nelson, GJ Kiss, AM Izzo, JR Liu, Y Liu, ML Wang, S Chu, YS Chiu, WKS AF Harris, William M. Nelson, George J. Kiss, Andrew M. Izzo, John R., Jr. Liu, Yong Liu, Meilin Wang, Steve Chu, Yong S. Chiu, Wilson K. S. TI Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale SO NANOSCALE LA English DT Article ID X-RAY-ABSORPTION; OXIDE FUEL-CELLS; TOLERANT ANODE MATERIALS; 3-DIMENSIONAL MICROSTRUCTURE; ELECTRODE; RECONSTRUCTION; REGENERATION; IMPURITIES; CATALYSTS; CATHODE AB Nano-structures of nickel (Ni) and nickel subsulfide (Ni3S2) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems. C1 [Harris, William M.; Nelson, George J.; Kiss, Andrew M.; Izzo, John R., Jr.; Chiu, Wilson K. S.] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA. [Liu, Yong; Liu, Meilin] Georgia Inst Technol, Ctr Innovat Fuel Cell & Battery Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Wang, Steve] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Chu, Yong S.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. RP Chiu, WKS (reprint author), Univ Connecticut, Dept Mech Engn, 191 Auditorium Rd,Unit 3139, Storrs, CT 06269 USA. EM wchiu@engr.uconn.edu RI Liu, Meilin/E-5782-2010 OI Liu, Meilin/0000-0002-6188-2372 FU Energy Frontier Research Center on Science Based Nano-Structure Design and Synthesis of Heterogeneous Functional Materials for Energy Systems (HeteroFoaM Center); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001061, DE-AC02-06CH11357]; National Science Foundation [CBET-1134052]; Brookhaven Science Associates, LLC [DE-AC02-98CH10886] FX Financial support from an Energy Frontier Research Center on Science Based Nano-Structure Design and Synthesis of Heterogeneous Functional Materials for Energy Systems (HeteroFoaM Center) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (Award DE-SC0001061) and the National Science Foundation (Award CBET-1134052) are gratefully acknowledged. Portions of this research were carried out at the Advanced Photon Source supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357, and by the Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886. NR 44 TC 9 Z9 9 U1 3 U2 31 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 J9 NANOSCALE JI Nanoscale PY 2012 VL 4 IS 5 BP 1557 EP 1560 DI 10.1039/c2nr11690a PG 4 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 894NO UT WOS:000300433700023 PM 22297306 ER PT J AU Tian, YM Beavers, CM Busani, T Martin, KE Jacobsen, JL Mercado, BQ Swartzentruber, BS van Swol, F Medforth, CJ Shelnutt, JA AF Tian, Yongming Beavers, Christine M. Busani, Tito Martin, Kathleen E. Jacobsen, John L. Mercado, Brandon Q. Swartzentruber, Brian S. van Swol, Frank Medforth, Craig J. Shelnutt, John A. TI Binary ionic porphyrin nanosheets: electronic and light-harvesting properties regulated by crystal structure SO NANOSCALE LA English DT Article ID SELF-METALLIZATION; METAL-IONS; MACROCYCLE; NANOTUBES; COMPLEXES AB Crystalline solids self-assembled from anionic and cationic porphyrins provide a new class of multifunctional optoelectronic micro- and nanomaterials. A 1 : 1 combination of zinc(II) tetra(4-sulfonatophenyl)porphyrin (ZnTPPS) and tin(IV) tetra(N-methyl-4-pyridiniumyl)porphyrin (SnTNMePyP) gives porphyrin nanosheets with high aspect ratios and varying thickness. The room temperature preparation of the nanosheets has provided the first X-ray crystal structure of a cooperative binary ionic (CBI) solid. The unit cell contains one and one-half molecules of aquo-ZnTPPS4- (an electron donor) and three half molecules of dihydroxy-SnTNMePyP4+ (an electron acceptor). Charge balance in the solid is reached without any non-porphyrinic ions, as previously determined for other CBI nanomaterials by non-crystallographic means. The crystal structure reveals a complicated molecular arrangement with slipped pi-pi stacking only occurring in isolated dimers of one of the symmetrically unique zinc porphyrins. Consistent with the crystal structure, UV-visible J-aggregate bands indicative of exciton delocalization and extended pi-pi stacking are not observed. XRD measurements show that the structure of the Zn/Sn nanosheets is distinct from that of Zn/Sn four-leaf clover-like CBI solids reported previously. In contrast with the Zn/Sn clovers that do exhibit J-aggregate bands and are photoconductive, the nanosheets are not photoconductive. Even so, the nanosheets act as light-harvesting structures in an artificial photosynthesis system capable of reducing water to hydrogen but not as efficiently as the Zn/Sn clovers. C1 [Tian, Yongming; Martin, Kathleen E.; Swartzentruber, Brian S.; van Swol, Frank; Shelnutt, John A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Tian, Yongming; Martin, Kathleen E.; Swartzentruber, Brian S.; van Swol, Frank; Shelnutt, John A.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87106 USA. [Tian, Yongming] New Mexico Inst Min & Technol, Dept Mat Engn, Socorro, NM 87801 USA. [Beavers, Christine M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Busani, Tito] Univ Nova Lisboa CENIMAT I3N, Dept Ciencia Mat, Fac Ciencias & Tecnol, CEMOP UNINOVA, P-2829516 Caparica, Portugal. [Busani, Tito; Martin, Kathleen E.; van Swol, Frank; Medforth, Craig J.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87106 USA. [Busani, Tito; Martin, Kathleen E.; van Swol, Frank; Medforth, Craig J.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87106 USA. [Jacobsen, John L.; Mercado, Brandon Q.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Medforth, Craig J.] Univ Porto, REQUIMTE Dept Quim & Bioquim, Fac Ciencias, P-4169007 Oporto, Portugal. [Shelnutt, John A.] Univ Georgia, Dept Chem, Athens, GA 30602 USA. RP Shelnutt, JA (reprint author), Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. EM jasheln@unm.edu RI Beavers, Christine/C-3539-2009; Medforth, Craig/D-8210-2013; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, FMN/M-5611-2013; REQUIMTE, UCIBIO/N-9846-2013; Tian, Yongming/B-9720-2009 OI Beavers, Christine/0000-0001-8653-5513; Medforth, Craig/0000-0003-3046-4909; FU Marie Curie Fellowship from the Fundacao para a Ciencia e a Tecnologia, Portugal; Marie Curie Action Cofund; United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Director, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-05CH11231]; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX CJM is the recipient of a Marie Curie Fellowship from the Fundacao para a Ciencia e a Tecnologia, Portugal and the Marie Curie Action Cofund. Research supported by the United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 26 TC 21 Z9 21 U1 1 U2 49 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 J9 NANOSCALE JI Nanoscale PY 2012 VL 4 IS 5 BP 1695 EP 1700 DI 10.1039/c2nr11826b PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 894NO UT WOS:000300433700047 PM 22310932 ER PT J AU Song, P Zhang, XY Sun, MX Cui, XL Lin, YH AF Song, Peng Zhang, Xiaoyan Sun, Mingxuan Cui, Xiaoli Lin, Yuehe TI Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties SO NANOSCALE LA English DT Article ID EXFOLIATED GRAPHITE OXIDE; SENSITIZED SOLAR-CELLS; DOPED TIO2; PHOTOCATALYTIC ACTIVITY; CHEMICAL-REDUCTION; PERFORMANCE; ANATASE; FILMS; NANOCRYSTALS; SCATTERING AB Novel nanocomposite films, based on graphene oxide (GO) and TiO2 nanotube arrays, were synthesized by assembling GO on the surface of self-organized TiO2 nanotube arrays through a simple impregnation method. The composite films were characterized with field emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and UV-vis diffuse reflectance spectroscopy. The photoelectrochemical properties of the composite nanotube arrays were investigated under visible light illumination. Remarkably enhanced visible light photoelectrochemical response was observed for the GO decorated TiO2 nanotube composite electrode compared with pristine TiO2 nanotube arrays. The sensitizing effect of GO on the photoelectrochemical response of the TiO2 nanotube arrays was demonstrated and about 15 times enhanced maximum photoconversion efficiency was obtained with the presence of GO. An enhanced photocatalytic activity of the TiO2 nanotube arrays towards the degradation of methyl blue was also demonstrated after modification with GO. The results presented here demonstrate GO to be efficient for the improved utilization of visible light for TiO2 nanotube arrays. C1 [Song, Peng; Zhang, Xiaoyan; Sun, Mingxuan; Cui, Xiaoli] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. [Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cui, XL (reprint author), Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. EM xiaolicui@fudan.edu.cn RI Lin, Yuehe/D-9762-2011; Sun, Mingxuan/G-1330-2015; 张, 晓艳/A-8125-2016 OI Lin, Yuehe/0000-0003-3791-7587; Sun, Mingxuan/0000-0001-8681-8951; FU National Basic Research Program of China [2012CB934300, 2011CB933302]; Shanghai Science Technology Commission [1052nm01800]; Fudan's Undergraduate Research Opportunities Program [10073]; LDRD at Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830] FX This work is supported by the National Basic Research Program of China (No. 2012CB934300 and 2011CB933302), the Shanghai Science Technology Commission (No. 1052nm01800) and Fudan's Undergraduate Research Opportunities Program (No. 10073). Dr Y. Lin would like to acknowledge support from the LDRD program at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. We appreciate the referees' very valuable comments, which have greatly improved the quality of the manuscript. NR 42 TC 88 Z9 92 U1 7 U2 172 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 J9 NANOSCALE JI Nanoscale PY 2012 VL 4 IS 5 BP 1800 EP 1804 DI 10.1039/c2nr11938b PG 5 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 894NO UT WOS:000300433700063 PM 22297577 ER PT J AU Peters, GP Marland, G Le Quere, C Boden, T Canadell, JG Raupach, MR AF Peters, Glen P. Marland, Gregg Le Quere, Corinne Boden, Thomas Canadell, Josep G. Raupach, Michael R. TI CORRESPONDENCE: Rapid growth in CO2 emissions after the 2008-2009 global financial crisis SO NATURE CLIMATE CHANGE LA English DT Editorial Material ID CARBON-DIOXIDE C1 [Peters, Glen P.] CICERO, N-0318 Oslo, Norway. [Marland, Gregg] Appalachian State Univ, Res Inst Environm Energy & Econ, Boone, NC 28608 USA. [Le Quere, Corinne] Univ E Anglia, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, Norfolk, England. [Boden, Thomas] Oak Ridge Natl Lab, CDIAC, Oak Ridge, TN 37831 USA. [Canadell, Josep G.; Raupach, Michael R.] CSIRO Marine & Atmospher Res, Global Carbon Project, Canberra, ACT 2601, Australia. RP Peters, GP (reprint author), CICERO, POB 1129 Blindern, N-0318 Oslo, Norway. EM glen.peters@cicero.uio.no RI Peters, Glen/B-1012-2008; Canadell, Josep/E-9419-2010; Le Quere, Corinne/C-2631-2017 OI Peters, Glen/0000-0001-7889-8568; Canadell, Josep/0000-0002-8788-3218; Le Quere, Corinne/0000-0003-2319-0452 NR 13 TC 267 Z9 279 U1 10 U2 149 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD JAN PY 2012 VL 2 IS 1 BP 2 EP 4 PG 3 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 881OH UT WOS:000299495500002 ER PT J AU Spassov, DS Wong, CH Harris, G McDonough, S Phojanakong, P Wang, D Hann, B Bazarov, AV Yaswen, P Khanafshar, E Moasser, MM AF Spassov, D. S. Wong, C. H. Harris, G. McDonough, S. Phojanakong, P. Wang, D. Hann, B. Bazarov, A. V. Yaswen, P. Khanafshar, E. Moasser, M. M. TI A tumor-suppressing function in the epithelial adhesion protein Trask SO ONCOGENE LA English DT Article DE Trask; CDCP1; SIMA135; 3p21.3; metastasis ID DOMAIN-CONTAINING PROTEIN-1; CUB-DOMAIN; SUBSTRATE TRASK; LUNG METASTASIS; FAK INHIBITOR; CANCER-CELLS; KINASE; EXPRESSION; CDCP1; ADENOCARCINOMA AB Trask/CDCP1 is a transmembrane glycoprotein widely expressed in epithelial tissues whose functions are just beginning to be understood, but include a role as an anti-adhesive effector of Src kinases. Early studies looking at RNA transcript levels seemed to suggest overexpression in some cancers, but immunostaining studies are now providing more accurate analyses of its expression. In an immuno-histochemical survey of human cancer specimens, we find that Trask expression is retained, reduced or sometimes lost in some tumors compared with their normal epithelial tissue counterparts. A survey of human cancer cell lines also show a similar wide variation in the expression of Trask, including some cell types with the loss of Trask expression, and additional cell types that have lost the physiological detachment-induced phosphorylation of Trask. Three experimental models were established to interrogate the role of Trask in tumor progression, including two gain-of-function models with tet-inducible expression of Trask in tumor cells lacking Trask expression, and one loss-of-function model to suppress Trask expression in tumor cells with abundant Trask expression. The induction of Trask expression and phosphorylation in MCF-7 cells and in 3T3v-src cells was associated with a reduction in tumor metastases while the shRNA-induced knockdown of Trask in L3.6pl cancer cells was associated with increased tumor metastases. The results from these three models are consistent with a tumor-suppressing role for Trask. These data identify Trask as one of several potential candidates for functionally relevant tumor suppressors on the 3p21.3 region of the genome frequently lost in human cancers. Oncogene (2012) 31, 419-431; doi: 10.1038/onc.2011.246; published online 27 June 2011 C1 [Spassov, D. S.; Wong, C. H.; Harris, G.; McDonough, S.; Moasser, M. M.] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA. [Spassov, D. S.; Wong, C. H.; Phojanakong, P.; Wang, D.; Hann, B.; Moasser, M. M.] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94143 USA. [Bazarov, A. V.; Yaswen, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Khanafshar, E.] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94143 USA. RP Moasser, MM (reprint author), Univ Calif San Francisco, Dept Med, UCSF Box 1387,2340 Sutter St,Rm N-144, San Francisco, CA 94143 USA. EM mmoasser@medicine.ucsf.edu FU National Institutes of Health [CA113952]; Susan G Komen for the Cure; California Breast Cancer Research Program Postdoctoral Fellowship FX This work was funded by the National Institutes of Health CA113952 (MMM). DS is funded by a Susan G Komen for the Cure Postdoctoral Fellowship. CHW is funded by a California Breast Cancer Research Program Postdoctoral Fellowship. We wish to thank Michael McManus and the UCSF Sandler Lentiviral RNAi core facility. We acknowledge the use of core facilities of the UCSF Helen Diller Family Comprehensive Cancer Center, including the Preclinical Therapeutics Core, the immunohistochemistry core and the mouse pathology core. NR 41 TC 7 Z9 7 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0950-9232 J9 ONCOGENE JI Oncogene PD JAN PY 2012 VL 31 IS 4 BP 419 EP 431 DI 10.1038/onc.2011.246 PG 13 WC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity GA 891LU UT WOS:000300219300002 PM 21706059 ER PT J AU Gaur, S Miller, JT Stellwagen, D Sanampudi, A Kumar, CSSR Spivey, JJ AF Gaur, Sarthak Miller, Jeffrey T. Stellwagen, Daniel Sanampudi, Ashwin Kumar, Challa S. S. R. Spivey, James J. TI Synthesis, characterization, and testing of supported Au catalysts prepared from atomically-tailored Au-38(SC12H25)(24) clusters SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID MONOLAYER-PROTECTED CLUSTERS; SELF-ASSEMBLED MONOLAYERS; TEMPERATURE CO OXIDATION; GOLD NANOPARTICLES; AU/TIO2 CATALYSTS; INFRARED-SPECTROSCOPY; ELECTRON-MICROSCOPY; CARBON-MONOXIDE; PARTICLE-SIZE; TIO2 AB Nearly monodispersed Au-38(SC12H25)(24) clusters (1.7 +/- 0.2 nm) were synthesized using a modified Brust process while utilizing a "thiol etching'' approach for the ligand exchange. HRTEM, MALDI, FTIR, and XAS analysis confirmed the formation of the 38-atom clusters in solution. This solution was used to impregnate a microporous TiO2 support to give 0.7% Au-38/TiO2 catalyst. Subsequent drying in air and treatment with H-2/He at 400 degrees C removed most of the sulfur ligands, and also increased the Au cluster size to 3.9 +/- 0.96 nm. XPS and EXAFS analysis of this supported catalyst showed trace levels of residual sulfides, apparently located at the Au-TiO2 interface. CO oxidation tests on these supported clusters show an activation energy and range of TOFs comparable to those reported by others. These results suggest that supported Au clusters of controllable size can be prepared with this thiol-ligated solution-based method, providing a new approach to the synthesis of these catalysts. C1 [Gaur, Sarthak; Sanampudi, Ashwin; Spivey, James J.] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70820 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Stellwagen, Daniel] Univ Utrecht, Debye Inst Nanomat Sci, NL-3584 CG Utrecht, Netherlands. [Kumar, Challa S. S. R.] J Bennett Johnston Sr Ctr Adv Microstruct & Devic, Baton Rouge, LA 70806 USA. RP Spivey, JJ (reprint author), Louisiana State Univ, Cain Dept Chem Engn, 110 S Stadium Dr, Baton Rouge, LA 70820 USA. EM jjspivey@lsu.edu RI ID, MRCAT/G-7586-2011; Institute (DINS), Debye/G-7730-2014 FU Center for Atomic Level Catalyst Design, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001058, DE-AC02-06CH11357]; Department of Energy; MRCAT member institutions; Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center FX This material is based upon work supported as part of the Center for Atomic Level Catalyst Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001058. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. JTM's effort was supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. We also thank Kimberly Hutchison in the Department of Soil Science at North Carolina State University for doing the ICP-OES analysis of catalyst samples. NR 51 TC 35 Z9 35 U1 1 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 5 BP 1627 EP 1634 DI 10.1039/c1cp22438g PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 876MZ UT WOS:000299113000011 PM 22006215 ER PT J AU Zeitler, TR Greathouse, JA Cygan, RT AF Zeitler, Todd R. Greathouse, Jeffery A. Cygan, Randall T. TI Effects of thermodynamic ensembles and mineral surfaces on interfacial water structure SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; NANOCONFINED WATER; OXYHYDROXIDE; ADSORPTION; ENERGETICS; CLAY AB While performing molecular dynamics simulations of water or aqueous solutions in a slab geometry, such as at mineral surfaces, it is important to match bulk water density in the diffuse region of the model system with that expected for the appropriate experimental conditions. Typically, a slab geometry represents parallel surfaces with a variable region of confined water (this region can range in size from a few AAngstroms to many tens of Angstroms). While constant-pressure simulations usually result in appropriate density values in the bulk diffuse region removed from either surface, constant-volume simulations have also been widely used, sometimes without careful consideration of the method for determining water content. Simulations using two thermodynamic ensembles as well as two methods for calculating the water-accessible volume have been investigated for two distinct silicate surfaces-hydrophilic cristobalite (111) and hydrophobic pyrophyllite (001). In cases where NPT simulations are not feasible, a simple geometry-based treatment of the accessible volume can be sufficient to replicate bulk water density far from the surface. However, the use of the Connolly method can be more appropriate in cases where a surface is less well-defined. Specific water-surface interactions (e.g., hydrophobic repulsion) also play a role in determining water content in a confined water simulation. While reported here for planar surfaces, these results can be extended to an interface with any solvent, or to other types of surfaces and geometries. C1 [Zeitler, Todd R.; Greathouse, Jeffery A.; Cygan, Randall T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zeitler, TR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tzeitle@sandia.gov FU US Department of Energy, Office of Basic Energy Sciences, Geosciences Research; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We gratefully acknowledge three reviewers who helped improve the manuscript. This work is supported by the US Department of Energy, Office of Basic Energy Sciences, Geosciences Research. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 25 TC 11 Z9 11 U1 3 U2 30 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 5 BP 1728 EP 1734 DI 10.1039/c2cp22593j PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 876MZ UT WOS:000299113000024 PM 22186883 ER PT J AU Gee, RH Kuo, IFW Chinn, SC Raber, E AF Gee, Richard H. Kuo, I-Feng W. Chinn, Sarah C. Raber, Ellen TI First-principles molecular dynamics simulations of condensed-phase V-type nerve agent reaction pathways and energy barriers SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID CHEMICAL WARFARE AGENTS; NUCLEOPHILIC-SUBSTITUTION; DEGRADATION-PRODUCTS; METADYNAMICS; HYDROLYSIS; SOLVOLYSIS; PHOSPHOTRIESTERASE; DETOXIFICATION; S(N)2-AT-P; MECHANISM AB Computational studies of condensed-phase chemical reactions are challenging in part because of complexities in understanding the effects of the solvent environment on the reacting chemical species. Such studies are further complicated due to the demanding computational resources required to implement high-level ab initio quantum chemical methods when considering the solvent explicitly. Here, we use first-principles molecular dynamics simulations to examine condensed-phase decontamination reactions of V-type nerve agents in an explicit aqueous solvent. Our results include a detailed study of hydrolysis, base-hydrolysis, and nucleophilic oxidation of both VX and R-VX, as well as their protonated counterparts (i.e., VXH+ and R-VXH+). The decontamination mechanisms and chemical reaction energy barriers, as determined from our simulations, are found to be in good agreement with experiment. The results demonstrate the applicability of using such simulations to assist in understanding new decontamination technologies or other applications that require computational screening of condensed-phase chemical reaction mechanisms. C1 [Gee, Richard H.; Kuo, I-Feng W.; Chinn, Sarah C.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. [Raber, Ellen] Lawrence Livermore Natl Lab, Global Secur Directorate, Livermore, CA 94550 USA. RP Gee, RH (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. EM gee10@llnl.gov FU U. S. Department of Homeland Security Science and Technology Directorate [HSHQPM-10-X-00019]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank the U. S. Department of Homeland Security Science and Technology Directorate for financial support under Interagency Agreement HSHQPM-10-X-00019. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We also would like to thank Livermore Computing for the copious amounts of computer time required to perform this work and Dennis Reutter for technical discussions of the results. NR 42 TC 3 Z9 3 U1 3 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 10 BP 3316 EP 3322 DI 10.1039/c2cp23126c PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 892VQ UT WOS:000300314100006 PM 22298156 ER PT J AU Sankaranarayanan, SKRS Subbaraman, R Ramanathan, S AF Sankaranarayanan, Subramanian K. R. S. Subbaraman, Ram Ramanathan, Shriram TI Considerations on ultra-high frequency electric field effects on oxygen vacancy concentration in oxide thin films SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; TEMPERATURE OXIDATION; ALUMINUM-OXIDE; METAL; TECHNOLOGY; ZIRCONIUM; MECHANISM; GROWTH AB Atomistic simulations employing dynamic charge transfer between atoms are used to investigate ultra-thin oxide growth on Al(100) metal substrates in the presence of an ac electric field. In the range of 1-10 GHz frequencies, the enhancement in oxidation kinetics by similar to 12% over natural oxidation can be explained by the Cabrera-Mott mechanism. At field frequencies approaching 0.1-1 THz, however, we observe a dramatic lowering of the kinetics of oxygen incorporation by similar to 35% compared to the maximum oxidation achieved, which results in oxygen non-stoichiometry near the oxide-gas interface (O/Al approximate to 1.0). This is attributed to oxygen desorption from the oxide surface. These results suggest a general strategy to tune oxygen concentration at oxide surfaces using ac electric fields that could be of interest in diverse fields related to surface chemistry and applications such as tunnel barriers, thin dielectrics and oxide interfaces. C1 [Sankaranarayanan, Subramanian K. R. S.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Subbaraman, Ram] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Ramanathan, Shriram] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Sankaranarayanan, SKRS (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM skrssank@anl.gov FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors also thank the computational facilities provided by CNM-ANL. NR 39 TC 0 Z9 0 U1 0 U2 11 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 10 BP 3360 EP 3368 DI 10.1039/c2cp22696k PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 892VQ UT WOS:000300314100011 PM 22297437 ER PT S AU Phillips, MC Suter, JD Bernacki, BE AF Phillips, M. C. Suter, J. D. Bernacki, B. E. BE Razeghi, M Tournie, E Brown, GJ TI Hyperspectral microscopy using an external cavity quantum cascade laser and its applications for explosives detection SO QUANTUM SENSING AND NANOPHOTONIC DEVICES IX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Quantum Sensing and Nanophotonic Devices IX CY JAN 22-26, 2012 CL San Francisco, CA SP SPIE DE Infrared spectroscopy; quantum cascade laser; tunable laser; infrared microscopy; explosives detection ID FOCAL-PLANE ARRAY; RESOLUTION AB Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 mu m in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits. C1 [Phillips, M. C.; Suter, J. D.; Bernacki, B. E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Phillips, MC (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. RI Razeghi, Manijeh/B-7265-2009; OI Suter, Jonathan/0000-0001-5709-6988 NR 19 TC 7 Z9 7 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-911-1 J9 PROC SPIE PY 2012 VL 8268 AR 82681R DI 10.1117/12.907488 PG 10 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BYT71 UT WOS:000300191700047 ER PT S AU Suter, JD Bernacki, BE Phillips, MC AF Suter, Jonathan D. Bernacki, Bruce E. Phillips, Mark C. BE Razeghi, M Tournie, E Brown, GJ TI Angle-resolved scattering spectroscopy of explosives using an external cavity quantum cascade laser SO QUANTUM SENSING AND NANOPHOTONIC DEVICES IX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Quantum Sensing and Nanophotonic Devices IX CY JAN 22-26, 2012 CL San Francisco, CA SP SPIE DE Infrared spectroscopy; explosives detection; quantum cascade laser; hyperspectral imaging ID OPTICAL-PROPERTIES; CONTINUOUS-WAVE; ENERGETIC MATERIALS; STANDOFF DETECTION; ROOM-TEMPERATURE; RDX; HMX AB We present a study of the spectral and angular dependence of the diffuse scatter of mid-infrared (MIR) laser light from explosives residues on surfaces. Experiments were performed using an external cavity quantum cascade laser (ECQCL) tunable between 7 and 8 mu m (1270 to 1400 cm(-1)) for surface illumination. A mercury cadmium telluride (MCT) detector was used to detect backscattered spectra as a function of surface angle at a 2 meter standoff. A ferroelectric focal plane array was used to build hyperspectral images at a 0.5 meter standoff. Residues of RDX, tetryl, and TNT were investigated on surfaces including a painted car door for angles between zero (specular) and 50 degrees. We observe spectral signatures of the explosives in the diffuse scattering geometry which differ significantly from those observed in transmission geometries. Characterization of the scattered light spectra of explosives on surfaces will be essential for understanding the performance of standoff explosives detection instruments and developing robust spectral analysis techniques. C1 [Suter, Jonathan D.; Bernacki, Bruce E.; Phillips, Mark C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Suter, JD (reprint author), Pacific NW Natl Lab, POB 999,K5-25, Richland, WA 99352 USA. RI Razeghi, Manijeh/B-7265-2009; OI Suter, Jonathan/0000-0001-5709-6988 NR 27 TC 2 Z9 2 U1 0 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-911-1 J9 PROC SPIE PY 2012 VL 8268 AR 82681O DI 10.1117/12.908653 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BYT71 UT WOS:000300191700044 ER PT S AU Taubman, MS Myers, TL Bernacki, BE Stahl, RD Cannon, BD Schiffern, JT Phillips, MC AF Taubman, Matthew S. Myers, Tanya L. Bernacki, Bruce E. Stahl, Robert D. Cannon, Bret D. Schiffern, John T. Phillips, Mark C. BE Razeghi, M Tournie, E Brown, GJ TI A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach SO QUANTUM SENSING AND NANOPHOTONIC DEVICES IX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Quantum Sensing and Nanophotonic Devices IX CY JAN 22-26, 2012 CL San Francisco, CA SP SPIE DE Infrared spectroscopy; astigmatic Herriott cell; quantum cascade laser; tunable laser; modular systems ID SPECTROSCOPY AB A multi-channel laser-based chemical sensor platform is presented, in which a modular architecture allows the exchange of complete sensor channels without disruption to overall operation. Each sensor channel contains custom optical and electronics packages, which can be selected to access laser wavelengths, interaction path lengths and modulation techniques optimal for a given application or mission. Although intended primarily to accommodate mid-infrared external cavity quantum cascade lasers and astigmatic Herriott cells, channels using visible or near infrared lasers or other gas cell architectures can also be used, making this a truly versatile platform. Analog and digital resources have been carefully chosen to facilitate small footprint, rapid spectral scanning, low-noise signal recovery, fail-safe autonomous operation, and in-situ chemometric data analysis, storage and transmission. Results from the demonstration of a two-channel version of this platform are also presented. C1 [Taubman, Matthew S.; Myers, Tanya L.; Bernacki, Bruce E.; Stahl, Robert D.; Cannon, Bret D.; Schiffern, John T.; Phillips, Mark C.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Taubman, MS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99354 USA. RI Razeghi, Manijeh/B-7265-2009 NR 11 TC 3 Z9 3 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-911-1 J9 PROC SPIE PY 2012 VL 8268 AR 82682G DI 10.1117/12.908676 PG 14 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BYT71 UT WOS:000300191700062 ER PT J AU Subin, ZM Murphy, LN Li, FY Bonfils, C Riley, WJ AF Subin, Zachary M. Murphy, Lisa N. Li, Fuyu Bonfils, Celine Riley, William J. TI Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: analyses in the Community Earth System Model 1 (CESM1) SO TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY LA English DT Article DE lake modelling; climate model evaluation; land atmosphere interactions; atmospheric dynamics; boreal climate change ID SEA-LEVEL PRESSURE; NORTHERN-HEMISPHERE WINTER; REGIONAL CLIMATE MODEL; LAURENTIAN GREAT-LAKES; INLAND WATER SURFACES; LAND-COVER CHANGE; ICE COVER; MULTIDECADAL VARIABILITY; GEOPOTENTIAL HEIGHT; STATIONARY WAVES AB We used a lake thermal physics model recently coupled into the Community Earth System Model 1 (CESM1) to study the effects of lake distribution in present and future climate. Under present climate, correcting the large underestimation of lake area in CESM1 (denoted CCSM4 in the configuration used here) caused 1 degrees C spring decreases and fall increases in surface air temperature throughout large areas of Canada and the US. Simulated summer surface diurnal air temperature range decreased by up to 4 degrees C, reducing CCSM4 biases. These changes were much larger than those resulting from prescribed lake disappearance in some present-day permafrost regions under doubled-CO2 conditions. Correcting the underestimation of lake area in present climate caused widespread high-latitude summer cooling at 850 hPa. Significant remote changes included decreases in the strength of fall Southern Ocean westerlies. We found significantly different winter responses when separately analysing 45-yr subperiods, indicating that relatively long simulations are required to discern the impacts of surface changes on remote conditions. We also investigated the surface forcing of lakes using idealised aqua-planet experiments which showed that surface changes of 2 degrees C in the Northern Hemisphere extra-tropics could cause substantial changes in precipitation and winds in the tropics and Southern Hemisphere. Shifts in the Inter-Tropical Convergence Zone were opposite in sign to those predicted by some previous studies. Zonal mean circulation changes were consistent in character but much larger than those occurring in the lake distribution experiments, due to the larger magnitude and more uniform surface forcing in the idealised aqua-planet experiments. C1 [Subin, Zachary M.; Murphy, Lisa N.; Li, Fuyu; Riley, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Bonfils, Celine] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. RP Subin, ZM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM zmsubin@lbl.gov RI Bonfils, Celine/H-2356-2012; Subin, Zachary/K-5168-2012; Murphy, Lisa/B-8547-2013; Li, Fuyu/B-9055-2013; Riley, William/D-3345-2015 OI Bonfils, Celine/0000-0002-4674-5708; Subin, Zachary/0000-0002-9257-9288; Murphy, Lisa/0000-0003-4343-8005; Riley, William/0000-0002-4615-2304 FU Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the US Department of Energy [DE-AC02-05CH11231] FX Michael Wehner (Lawrence Berkeley National Lab), John Chiang (University of California, Berkeley), Benjamin Santer (Lawrence Livermore National Lab), William Collins(Lawrence Berkeley National Lab) and Sarah Kang (Columbia University) provided helpful comments on interpreting large-scale atmospheric responses to regional changes in terrestrial surface forcing. David Lawrence (National Center for Atmospheric Research) facilitated interaction with the CESM Land Model Working Group and support in running and interpreting the model. One anonymous reviewer and one named reviewer (Sumant Nigam) provided helpful comments in clarifying and improving the manuscript. This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231 to Berkeley Lab. NR 120 TC 10 Z9 10 U1 1 U2 25 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6495 EI 1600-0870 J9 TELLUS A JI Tellus Ser. A-Dyn. Meteorol. Oceanol. PY 2012 VL 64 AR 15639 DI 10.3402/tellusa.v64i0.15639 PG 21 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA 893ZQ UT WOS:000300396900001 ER PT J AU Kendrick, BK AF Kendrick, Brian K. TI Time-dependent wave packet propagation using quantum hydrodynamics SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Article ID REACTIVE SCATTERING; DYNAMICS; EQUATIONS; MOTION; STATES; EQUIDISTRIBUTION; TRAJECTORIES; FORMULATION; MECHANICS; GRIDS AB A new approach for propagating time-dependent quantum wave packets is presented based on the direct numerical solution of the quantum hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics. A generalized iterative finite difference method (IFDM) is used to solve the resulting set of non-linear coupled equations. The IFDM is 2nd-order accurate in both space and time and exhibits exponential convergence with respect to the iteration count. The stability and computational efficiency of the IFDM is significantly improved by using a "smart" Eulerian grid which has the same computational advantages as a Lagrangian or Arbitrary Lagrangian Eulerian (ALE) grid. The IFDM is generalized to treat higher-dimensional problems and anharmonic potentials. The method is applied to a one-dimensional Gaussian wave packet scattering from an Eckart barrier, a one-dimensional Morse oscillator, and a two-dimensional (2D) model collinear reaction using an anharmonic potential energy surface. The 2D scattering results represent the first successful application of an accurate direct numerical solution of the quantum hydrodynamic equations to an anharmonic potential energy surface. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Kendrick, BK (reprint author), Los Alamos Natl Lab, Div Theoret, T-1,MS B268, Los Alamos, NM 87545 USA. EM bkendric@lanl.gov FU US Department of Energy at Los Alamos National Laboratory; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX This work was done under the auspices of the US Department of Energy at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 42 TC 8 Z9 8 U1 3 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-881X J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD JAN PY 2012 VL 131 IS 1 AR 1075 DI 10.1007/s00214-011-1075-9 PG 19 WC Chemistry, Physical SC Chemistry GA 891JT UT WOS:000300213700004 ER PT J AU Cummings, ML Chien, TY Preissner, C Madhavan, V Diesing, D Bode, M Freeland, JW Rose, V AF Cummings, M. L. Chien, T. Y. Preissner, C. Madhavan, V. Diesing, D. Bode, M. Freeland, J. W. Rose, V. TI Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast SO ULTRAMICROSCOPY LA English DT Article DE Photoelectron microscopy; Scanning tunneling microscopy; Synchrotron radiation; x-Ray magnetic circular dichroism; SXSTM ID TIP AB The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-Flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chien, T. Y.; Preissner, C.; Freeland, J. W.; Rose, V.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Cummings, M. L.] Rice Univ, Mech Engn & Mat Sci Dept, Houston, TX 77005 USA. [Cummings, M. L.; Bode, M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Madhavan, V.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Diesing, D.] Univ Duisburg Essen, Fac Chem, D-45141 Essen, Germany. RP Rose, V (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM vrose@anl.gov RI Rose, Volker/B-1103-2008; Bode, Matthias/S-3249-2016 OI Rose, Volker/0000-0002-9027-1052; Bode, Matthias/0000-0001-7514-5560 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Work at the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Work at the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Work at the Electron Microscopy Center was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. We thank Jon Hiller for the support in scanning electron microscopy. Damian Buerstel is acknowledged for help with the sample preparation. NR 32 TC 20 Z9 20 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JAN PY 2012 VL 112 IS 1 BP 22 EP 31 DI 10.1016/j.ultramic.2011.09.018 PG 10 WC Microscopy SC Microscopy GA 894XU UT WOS:000300461600004 PM 22088505 ER PT S AU Harger, JR Crossno, PJ AF Harger, John R. Crossno, Patricia J. BE Wong, PC Kao, DL Hao, MC Chen, C Kosara, R Livingston, MA Park, J Roberts, I TI Comparison of Open Source Visual Analytics Toolkits SO VISUALIZATION AND DATA ANALYSIS 2012 SE Proceedings of SPIE LA English DT Proceedings Paper CT 19th SPIE Conference on Visualization and Data Analysis (VDA) CY JAN 23-25, 2012 CL Burlingame, CA SP Soc Imaging Sci & Technol (IS&T), SPIE, Hewlett Packard Co, Kitware Inc, Pacific NW Natl Lab, SAGE Publicat Ltd, U.S. Dept Homeland Secur DE Visual Analytics; open source; toolkits; comparison; evaluation ID VISUALIZATION; GRAPHS; DRAWINGS; SOFTWARE AB We present the results of the first stage of a two-stage evaluation of open source visual analytics packages. This stage is a broad feature comparison over a range of open source toolkits. Although we had originally intended to restrict ourselves to comparing visual analytics toolkits, we quickly found that very few were available. So we expanded our study to include information visualization, graph analysis, and statistical packages. We examine three aspects of each toolkit: visualization functions, analysis capabilities, and development environments. With respect to development environments, we look at platforms, language bindings, multi-threading/parallelism, user interface frameworks, ease of installation, documentation, and whether the package is still being actively developed. C1 [Harger, John R.; Crossno, Patricia J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Harger, JR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jrharge@sandia.gov; pjcross@sandia.gov NR 47 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-941-8 J9 PROC SPIE PY 2012 VL 8294 AR 82940E DI 10.1117/12.911901 PG 10 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA BYT62 UT WOS:000300179600012 ER PT S AU Steed, CA Symons, CT DeNap, FA Potok, TE AF Steed, Chad A. Symons, Christopher T. DeNap, Frank A. Potok, Thomas E. BE Wong, PC Kao, DL Hao, MC Chen, C Kosara, R Livingston, MA Park, J Roberts, I TI Guided Text Analysis Using Adaptive Visual Analytics SO VISUALIZATION AND DATA ANALYSIS 2012 SE Proceedings of SPIE LA English DT Proceedings Paper CT 19th SPIE Conference on Visualization and Data Analysis (VDA) CY JAN 23-25, 2012 CL Burlingame, CA SP Soc Imaging Sci & Technol (IS&T), SPIE, Hewlett Packard Co, Kitware Inc, Pacific NW Natl Lab, SAGE Publicat Ltd, U.S. Dept Homeland Secur DE visual analytics; text visualization; machine learning; search interfaces ID VISUALIZATION AB This paper demonstrates the promise of augmenting interactive visualizations with semi-supervised machine learning techniques to improve the discovery of significant associations and insight in the search and analysis of textual information. More specifically, we have developed a system-called Gryffin-that hosts a unique collection of techniques that facilitate individualized investigative search pertaining to an ever-changing set of analytical questions over an indexed collection of open-source publications related to national infrastructure. The Gryffin client hosts dynamic displays of the search results via focus+context record listings, temporal timelines, term-frequency views, and multiple coordinated views. Furthermore, as the analyst interacts with the display, the interactions are recorded and used to label the search records. These labeled records are then used to drive semi-supervised machine learning algorithms that re-rank the unlabeled search records such that potentially relevant records are moved to the top of the record listing. Gryffin is described in the context of the daily tasks encountered at the Department of Homeland Security's Fusion Centers, with whom we are collaborating in its development. The resulting system is capable of addressing the analysts information overload that can be directly attributed to the deluge of information that must be addressed in search and investigative analysis of textual information. C1 [Steed, Chad A.; Symons, Christopher T.; DeNap, Frank A.; Potok, Thomas E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Steed, CA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM csteed@acm.org; symonsct@ornl.gov; denapfa@ornl.gov; potokte@ornl.gov OI Potok, Thomas/0000-0001-6687-3435; Steed, Chad/0000-0002-3501-909X NR 22 TC 0 Z9 0 U1 0 U2 8 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-941-8 J9 PROC SPIE PY 2012 VL 8294 AR 829408 DI 10.1117/12.904904 PG 14 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA BYT62 UT WOS:000300179600006 ER PT J AU Chung, CW Suraneni, P Popovics, JS Struble, LJ AF Chung, Chul-Woo Suraneni, Prannoy Popovics, John S. Struble, Leslie J. TI Setting Time Measurement Using Ultrasonic Wave Reflection SO ACI MATERIALS JOURNAL LA English DT Article DE buffer; cement paste; setting; stiffening; ultrasonic shear wave reflection ID CEMENT-BASED MATERIALS; CONCRETE; MONITOR AB Ultrasonic shear wave reflection was used to investigate setting times of cement pastes by measuring the reflection coefficient at the interface between hydrating cement pastes of varying water-cement ratio (w/c) and an ultrasonic buffer material. Several different buffer materials were employed, and the choice of buffer was seen to strongly affect measurement sensitivity; high-impact polystyrene showed the highest sensitivity to setting processes because it had the lowest acoustic impedance value. The results show that ultrasonic shear-wave reflection can be used successfully to to monitor early setting processes of cement paste with good sensitivity when such a low impedance buffer is employed. Criteria are proposed to define set times, and the resulting initial and final set times agreed broadly with those determined using the standard penetration resistance test. C1 [Chung, Chul-Woo] Pacific NW Natl Lab, Richland, WA 99352 USA. [Suraneni, Prannoy] Swiss Fed Inst Technol, Inst Bldg Mat, Zurich, Switzerland. [Popovics, John S.; Struble, Leslie J.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Popovics, John S.] ACI Publicat Comm, Farmington Hills, MI USA. [Popovics, John S.] ACI Comm 123, Farmington Hills, MI USA. [Popovics, John S.] ACI Comm 215, Farmigton Hills, MI USA. RP Chung, CW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. OI Suraneni, Prannoy/0000-0002-0899-2601 NR 21 TC 13 Z9 13 U1 1 U2 6 PU AMER CONCRETE INST PI FARMINGTON HILLS PA 38800 COUNTRY CLUB DR, FARMINGTON HILLS, MI 48331 USA SN 0889-325X J9 ACI MATER J JI ACI Mater. J. PD JAN-FEB PY 2012 VL 109 IS 1 BP 109 EP 117 PG 9 WC Construction & Building Technology; Materials Science, Multidisciplinary SC Construction & Building Technology; Materials Science GA 888UT UT WOS:000300030800012 ER PT J AU Plank, H Smith, DA Haber, T Rack, PD Hofer, F AF Plank, Harald Smith, Daryl A. Haber, Thomas Rack, Philip D. Hofer, Ferdinand TI Fundamental Proximity Effects in Focused Electron Beam Induced Deposition SO ACS NANO LA English DT Article DE electron beam induced deposition; Monte Carlo simulation; nanotechnology; platinum; patterning ID MONTE-CARLO CALCULATION; ION-BEAM; RESOLUTION; REPAIR; MASK; FABRICATION; SIMULATION; MICROSCOPY; DAMAGE; TIPS AB Fundamental proximity effects for electron beam induced deposition processes on nonflat surfaces were studied experimentally and via simulation. Two specific effects were elucidated and exploited to considerably increase the volumetric growth rate of this nanoscale direct write method: (1) increasing the scanning electron pitch to the scale of the lateral electron straggle increased the volumetric growth rate by 250% by enhancing the effective forward scattered, backscattered, and secondary electron coefficients as well as by strong recollection effects of adjacent features; and (2) strategic patterning sequences are introduced to reduce precursor depletion effects which increase volumetric growth rates by more than 90%, demonstrating the strong Influence of patterning parameters on the final performance of this powerful direct write technique. C1 [Plank, Harald; Hofer, Ferdinand] Graz Univ Technol, Inst Electron Microscopy, A-8010 Graz, Austria. [Plank, Harald; Haber, Thomas; Hofer, Ferdinand] Ctr Electron Microscopy, A-8010 Graz, Austria. [Smith, Daryl A.; Rack, Philip D.] Univ Tennessee, Knoxville, TN 37996 USA. [Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Plank, H (reprint author), Graz Univ Technol, Inst Electron Microscopy, Steyrergasse 17, A-8010 Graz, Austria. EM harald.plank@felmi-zfe.at RI Smith, Daryl/K-2379-2014; OI Rack, Philip/0000-0002-9964-3254; Hofer, Ferdinand/0000-0001-9986-2193 FU Semiconductor Research Corporation; Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy FX H.P. gratefully acknowledges support from Prof. Dr. G. Kothleitner and Dr. J. Wagner. P.D.R. and D.A.S. gratefully acknowledge support from Semiconductor Research Corporation (Dan Herr program Manager). P.D.R. also acknowledges that part of his time developing the single scattering Monte Carlo simulation was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 65 TC 32 Z9 32 U1 5 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 286 EP 294 DI 10.1021/nn204237h PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300037 PM 22181556 ER PT J AU Lang, MR He, L Xiu, FX Yu, XX Tang, JS Wang, Y Kou, XF Jiang, WJ Fedorov, AV Wang, KL AF Lang, Murong He, Liang Xiu, Faxian Yu, Xinxin Tang, Jianshi Wang, Yong Kou, Xufeng Jiang, Wanjun Fedorov, Alexei V. Wang, Kang L. TI Revelation of Topological Surface States in Bi2Se3 Thin Films by In Situ Al Passivation SO ACS NANO LA English DT Article DE topological insulator; aluminum passivation; thin films; Shubnikov-de Hass oscillations; weak antilocalization; surface state degradation ID HGTE QUANTUM-WELLS; SINGLE DIRAC CONE; INSULATOR NANORIBBONS; BERRYS PHASE; GRAPHENE; ANTILOCALIZATION; BI2TE3 AB Topological insulators (TIs) are extraordinary materials that possess massless, Dirac-like topological surface states in which backscattering is prohibited due to the strong spin-orbit coupling. However, there have been reports on degradation of topological surface states in ambient conditions, which presents a great challenge for probing the original topological surface states after TI materials are prepared. Here, we show that in situ Al passivation inside a molecular beam epitaxy (MBE) chamber could inhibit the degradation process and reveal the pristine topological surface states. Dual evidence from Shubnikov-de Hass (AN) oscillations and weak antilocalization (WAL) effect, originated from the pi Berry phase, suggests that the helically spin-polarized surface states are well preserved by the proposed In situ Al passivation. In contrast, we show the degradation of surface states for the unpassivated control samples, in which the 2D carrier density is increased 39.2% due to ambient n-doping, the SdH oscillations are completely absent, and a large deviation from WAL is observed. C1 [Lang, Murong; He, Liang; Yu, Xinxin; Tang, Jianshi; Kou, Xufeng; Jiang, Wanjun; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Device Res Lab, Los Angeles, CA 90095 USA. [Xiu, Faxian] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Wang, Yong] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China. [Fedorov, Alexei V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. RP He, L (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Device Res Lab, Los Angeles, CA 90095 USA. EM heliang@ee.ucla.edu; wang@ee.ucla.edu RI Xiu, Faxian/B-4985-2012; Jiang, Wanjun/E-6994-2011; Wang, Yong/A-7766-2010; He, Liang/E-5935-2012; Tang, Jianshi/I-5543-2014; OI Jiang, Wanjun/0000-0003-0918-3862; Wang, Yong/0000-0002-9893-8296; Tang, Jianshi/0000-0001-8369-0067; Kou, Xufeng/0000-0002-8860-5105 FU Focus Center; Center on Functional Engineered Nano Architectonics (FENA); Defense Advanced Research Projects Agency (DARPA) FX The authors acknowledge helpful discussions with Y. Fan, P. Upadhyaya, and technical support from L. T. Chang, X. Jiang, C. Zeng, and M. Wang from the Device Research Laboratory at UCLA. This work was in part supported by Focus Center Research Program, Center on Functional Engineered Nano Architectonics (FENA) and Defense Advanced Research Projects Agency (DARPA). NR 46 TC 39 Z9 39 U1 4 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 295 EP 302 DI 10.1021/nn204239d PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300038 PM 22147687 ER PT J AU Wild, B Cao, LN Sun, YG Khanal, BP Zubarev, ER Gray, SK Scherer, NF Pelton, M AF Wild, Barbara Cao, Lina Sun, Yugang Khanal, Bishnu P. Zubarev, Eugene R. Gray, Stephen K. Scherer, Norbert F. Pelton, Matthew TI Propagation Lengths and Group Velocities of Plasmons in Chemically Synthesized Gold and Silver Nanowires SO ACS NANO LA English DT Article DE surface plasmons; nanowires; propagation length; group velocity ID POLYOL SYNTHESIS; WAVE-GUIDE; SURFACE; POLARITONS; NANOSTRUCTURES; INTERFACE; METALS; OPTICS AB Recent advances In chemical synthesis have made it possible to produce gold and silver nanowires that are free of large-scale crystalline defects and surface roughness. Surface plasmons can propagate along the wires, allowing them to serve as optical waveguides with cross sections much smaller than the optical wavelength. Gold nanowires provide improved chemical stability as compared to silver nanowires, but at the cost of higher losses for the propagating plasmons. In order to characterize this trade-off, we measured the propagation length and group velocity of plasmons in both gold and silver nanowires. Propagation lengths are measured by fluorescence imaging of the plasmonic near fields. Group velocities are deduced from the spacing of fringes in the spectrum of coherent light transmitted by the wires. In contrast to previous work we interpret these fringes as arising from a far-field interference effect. The measured propagation characteristics agree with numerical simulations, indicating that propagation in these wires is dominated by the material properties of the metals, with additional losses due to scattering from roughness or grain boundaries providing at most a minor contribution. The propagation lengths and group velocities can also be described by a simple analytical model that considers only the lowest-order waveguide mode in a solid metal cylinder, showing that this single mode dominates in real nanowires. Comparison between experiments and theory Indicates that widely used tabulated values for dielectric functions provide a good description of plasmons in gold nanowires but significantly overestimate plasmon losses in silver nanowires. C1 [Cao, Lina; Sun, Yugang; Gray, Stephen K.; Scherer, Norbert F.; Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Wild, Barbara; Cao, Lina; Scherer, Norbert F.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Wild, Barbara; Cao, Lina; Scherer, Norbert F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Khanal, Bishnu P.; Zubarev, Eugene R.] Rice Univ, Dept Chem, Houston, TX 77005 USA. RP Pelton, M (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pelton@anl.gov RI Zubarev, Eugene/C-9288-2011; Sun, Yugang /A-3683-2010; Pelton, Matthew/H-7482-2013 OI Sun, Yugang /0000-0001-6351-6977; Pelton, Matthew/0000-0002-6370-8765 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Deutsche Forschungsgemeinschaft [WI 3878/1-1]; NSF CCI at UC Irvine [CHE-0616663]; NSF [CHE-1059057, DMR-0547399, DMR-1105878]; Robert A. Welch Foundation [C-1703] FX Work at the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. B.W. was supported by Deutsche Forschungsgemeinschaft (WI 3878/1-1). L.C. was partially supported by NSF CCI at UC Irvine (CHE-0616663). N.F.S. and S.K.G. acknowledges financial support from the NSF (CHE-1059057). E.R.Z. acknowledges financial support from the NSF (DMR-0547399, DMR-1105878) and the Robert A. Welch Foundation (C-1703). We thank Dr. Stephan Link for helpful discussions and Dr. Mason Guffey for assistance with SEM imaging. NR 40 TC 84 Z9 84 U1 12 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 472 EP 482 DI 10.1021/nn203802e PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300058 PM 22185403 ER PT J AU Kim, Y Kumar, A Ovchinnikov, O Jesse, S Han, H Pantel, D Vrejoiu, I Lee, W Hesse, D Alexe, M Kalinin, SV AF Kim, Yunseok Kumar, Amit Ovchinnikov, Oleg Jesse, Stephen Han, Hee Pantel, Daniel Vrejoiu, Ionela Lee, Woo Hesse, Dietrich Alexe, Marin Kalinin, Sergei V. TI First-Order Reversal Curve Probing of Spatially Resolved Polarization Switching Dynamics in Ferroelectric Nanocapacitors SO ACS NANO LA English DT Article DE ferroelectric nanocapacitor; spatially resolved switching dynamics; PFM; BEPS; KAI; FORC ID DOMAIN NUCLEATION; HIGH-RESOLUTION; CAPACITORS; HETEROSTRUCTURES; GENERATION; DENSITY; BIFEO3; WALLS; FILMS; MODEL AB Spatially resolved polarization switching In ferroelectric nanocapacitors was studied on the sub-25 nm scale using the first-order reversal curve (FORC) method. The chosen capacitor geometry allows both high-veracity observation of the domain structure and mapping of polarization switching in a uniform field, synergistically combining microstructural observations and probing of uniform-field polarization responses as relevant to device operation. A classical Kolmogorov-Avrami-Ishibashi model has been adapted to the voltage domain, and the individual switching dynamics of the FORC response curves are well approximated by the adapted model. The comparison with microstructures suggests a strong spatial variability of the switching dynamics inside the nanocapacitors. C1 [Kim, Yunseok; Kumar, Amit; Ovchinnikov, Oleg; Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Han, Hee; Lee, Woo] KRISS, Taejon 305340, South Korea. [Pantel, Daniel; Vrejoiu, Ionela; Hesse, Dietrich; Alexe, Marin] Max Planck Inst Microstruct Phys, D-06120 Halle, Saale, Germany. RP Kim, Y (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM kimy4@ornl.gov; sergei2@ornl.gov RI Lee, Woo/B-5268-2008; Kumar, Amit/C-9662-2012; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Alexe, Marin/K-3882-2016 OI Lee, Woo/0000-0003-4560-8901; Kumar, Amit/0000-0002-1194-5531; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Alexe, Marin/0000-0002-0386-3026 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; German Science Foundation (DFG) [SFB 762] FX This research was supported (S.V.K., Y.K.) by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division and partially performed at the Center for Nanophase Materials Sciences (S.V.K.), a DOE-BES user facility. The work of Max Planck Institute of Microstructure Physics was supported by German Science Foundation (DFG) via SFB 762. NR 55 TC 19 Z9 19 U1 5 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 491 EP 500 DI 10.1021/nn203831h PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300060 PM 22136402 ER PT J AU Tepavcevic, S Xiong, H Stamenkovic, VR Zuo, XB Balasubramanian, M Prakapenka, VB Johnson, CS Rajh, T AF Tepavcevic, Sanja Xiong, Hui Stamenkovic, Vojislav R. Zuo, Xiaobing Balasubramanian, Mahalingam Prakapenka, Vitali B. Johnson, Christopher S. Rajh, Tijana TI Nanostructured Bilayered Vanadium Oxide Electrodes for Rechargeable Sodium-Ion Batteries SO ACS NANO LA English DT Article DE nanostructured electrodes; electrochemical deposition; bilayered V2O5; sodium-ion battery ID LITHIUM BATTERIES; V2O5 NANOWIRES; INSERTION; CATHODES; INTERCALATION; ABSORPTION; TRANSITION; PENTOXIDE; AEROGEL AB Tailoring nanoarchitecture of materials offers unprecedented opportunities In utilization of their functional properties. Nanostructures of vanadium oxide, synthesized by electrochemical deposition, are studied as a cathode material for rechargeable Na-ion batteries. Ex situ and in situ synchrotron characterizations revealed the presence of an electrochemically responsive bilayered structure with adjustable intralayer spacing that accommodates intercalation of Na+ ions. Sodium intake induces organization of overall structure with appearance of both long- and short-range order, while deintercalation is accompanied with the loss of long-range order, whereas short-range order is preserved. Nanostructured electrodes achieve theoretical reversible capacity for Na2V2O5 stochiometry of 250 mAh/g. The stability evaluation during charge discharge cycles at room temperature revealed an efficient 3 V cathode material with superb performance: energy density of similar to 760 Wh/kg and power density of 1200 W/kg. These results demonstrate feasibility of development of the ambient temperature Na-ion rechargeable batteries by employment of electrodes with tailored nanoarchitectures. C1 [Stamenkovic, Vojislav R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Tepavcevic, Sanja; Xiong, Hui; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Zuo, Xiaobing; Balasubramanian, Mahalingam] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Prakapenka, Vitali B.] Univ Chicago, Ctr Adv Radiat Sources, Argonne, IL 60439 USA. RP Stamenkovic, VR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vrstamenkovic@anl.gov; cjohnson@anl.gov; rajh@anl.gov RI Xiong, Hui/C-4216-2011; Zuo, Xiaobing/F-1469-2010 OI Xiong, Hui/0000-0003-3126-1476; FU U.S. Department of Energy; U.S. DOE-BES [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSERC (Canada); National Science Foundation-Earth Sciences [EAR-0622171]; Department of Energy-Geosciences [DE-FG02-94ER14466] FX The authors would like to thank Dr. Yuzi Liu for HRTEM measurements and useful discussions. This work was supported by the U.S. Department of Energy, U.S. DOE-BES, under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials and Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Work at sector 20 and research at these facilities supported by the U.S. DOE, NSERC (Canada), and Sector 13 GeoSoilEnviroCARS by the National Science Foundation-Earth Sciences (EAR-0622171) and Department of Energy-Geosciences (DE-FG02-94ER14466). NR 30 TC 116 Z9 118 U1 27 U2 333 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 530 EP 538 DI 10.1021/nn203869a PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300064 PM 22148185 ER PT J AU Li, Q Han, CB Horton, SR Fuentes-Cabrera, M Sumpter, BG Lu, WC Bernholc, J Maksymovych, P Pan, MH AF Li, Qing Han, Chengbo Horton, Scott R. Fuentes-Cabrera, Miguel Sumpter, Bobby G. Lu, Wenchang Bernholc, Jerry Maksymovych, Petro Pan, Minghu TI Supramolecular Self-Assembly of pi-Conjugated Hydrocarbons via 2D Cooperative CH/pi Interaction SO ACS NANO LA English DT Article DE phenylacetylene; self-assembly; STM; supramolecule; hydrogen bonding; magic cluster ID SCANNING-TUNNELING-MICROSCOPY; INTERMOLECULAR INTERACTIONS; CRYSTAL-STRUCTURE; AU(111) SURFACE; MONOLAYER AB Supramolecular self-assembly on well-defined surfaces provides access to a multitude of nanoscale architectures, including clusters of distinct symmetry and size. The driving forces underlying supramolecular structures generally Involve both graphoepitaxy and weak directional nonconvalent interactions. Here we show that functionalizing a benzene molecule with an ethyne group introduces attractive interactions in a 2D geometry, which would otherwise be dominated by intermolecular repulsion. Furthermore, the attractive interactions enable supramolecular self-assembly, wherein a subtle balance between very weak CH/pi bonding and molecule-surface interactions produces a well-defined "magic" dimension and chirality of supramolecular clusters. The nature of the process is corroborated by extensive scanning tunneling microscopy/spectroscopy (STM/S) measurements and ab initio calculations, which emphasize the cooperative, multicenter characters of the CH/pi Interaction. This work points out new possibilities for chemical functionalization of pi-conjugated hydrocarbon molecules that may allow for the rational design of supramolecular clusters with a desired shape and size. C1 [Li, Qing; Horton, Scott R.; Fuentes-Cabrera, Miguel; Sumpter, Bobby G.; Maksymovych, Petro; Pan, Minghu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Han, Chengbo; Lu, Wenchang; Bernholc, Jerry] N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. [Han, Chengbo; Lu, Wenchang; Bernholc, Jerry] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Fuentes-Cabrera, Miguel; Sumpter, Bobby G.; Lu, Wenchang; Bernholc, Jerry] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Pan, MH (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM fuentescabma@ornl.gov; maksymovychp@ornl.gov; panm@ornl.gov RI Sumpter, Bobby/C-9459-2013; Fuentes-Cabrera, Miguel/Q-2437-2015; Maksymovych, Petro/C-3922-2016 OI Sumpter, Bobby/0000-0001-6341-0355; Fuentes-Cabrera, Miguel/0000-0001-7912-7079; Maksymovych, Petro/0000-0003-0822-8459 FU Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory; DOE [DE-FG02-98ER45685] FX This research was conducted at the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. The work at NCSU was supported by DOE Grant DE-FG02-98ER45685. The computations were performed using the resources of the CNMS and the National Center for Computational Sciences at Oak Ridge National Laboratory. NR 30 TC 21 Z9 21 U1 7 U2 99 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 566 EP 572 DI 10.1021/nn203952e PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300068 PM 22168531 ER PT J AU Johnson, GE Priest, T Laskin, J AF Johnson, Grant E. Priest, Thomas Laskin, Julia TI Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions SO ACS NANO LA English DT Article DE cluster; monodisperse; charge; self-assembled monolayer; electrospray ionization; soft landing ID ASSEMBLED MONOLAYER SURFACES; DENSITY-FUNCTIONAL CALCULATIONS; LIGAND-EXCHANGE REACTIONS; AU NANOPARTICLES SPONGES; ELECTROSPRAY-IONIZATION; METAL-CLUSTERS; PEPTIDE IONS; GAS-PHASE; ABSORPTION-SPECTROSCOPY; MOBILITY MEASUREMENTS AB Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas phase, and mass selection was employed to isolate a single ionic cluster species (Au11L53+, L = 1,3-bis(diphenylphosphino)propane), which was delivered to surfaces at well-controlled kinetic energies. Using in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS), it is demonstrated that the Au11L53+ cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-perfluorodecanethiol self-assembled monolayer (FSAM) on gold. In contrast, when deposited onto 16-mercaptohexadecanoic add (COOH-SAM) and 1-dodecanethiol (HSAM) surfaces on gold, the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the FSAM and HSAM surfaces are investigated using in situ Fourier transform ion cyclotron resonance (FT-ICR) SIMS. It is shown that an extremely slow interfacial (harp reduction occurs on the FSAM surface while an almost instantaneous neutralization takes place on the surface of the HSAM. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected Ions onto carefully selected substrates. C1 [Johnson, Grant E.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Johnson, GE (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, POB 999,MSIN K8-88, Richland, WA 99352 USA. EM grant.johnson@pnnl.gov; Julia.laskin@pnnl.gov RI Laskin, Julia/H-9974-2012; OI Laskin, Julia/0000-0002-4533-9644; Johnson, Grant/0000-0003-3352-4444 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Pacific Northwest National Laboratory (PNNL); DOE at Pacific Northwest National Laboratory (PNNL) FX The authors acknowledge support for this research by a grant from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL). This work was performed at the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. DOE of Biological and Environmental Research and located at PNNL PNNL is operated by Battelle for the U.S. DOE. T.P. acknowledges support from the DOE Science Undergraduate Laboratory Internship (SULI) program at Pacific Northwest National Laboratory (PNNL). G.E.J. is grateful for the support of the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL. NR 104 TC 22 Z9 22 U1 10 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 573 EP 582 DI 10.1021/nn2039565 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300069 PM 22136556 ER PT J AU Yan, HP Collins, BA Gann, E Wang, C Ade, H McNeill, CR AF Yan, Hongping Collins, Brian A. Gann, Eliot Wang, Cheng Ade, Harald McNeill, Christopher R. TI Correlating the Efficiency and Nanomorphology of Polymer Blend Solar Cells Utilizing Resonant Soft X-ray Scattering SO ACS NANO LA English DT Article DE bulk heterojunction; polymer blends; polymer solar cells; soft X-rays; X-ray scattering ID NANOSCALE PHASE-SEPARATION; PHOTOVOLTAIC DEVICES; MDMO-PPV; MORPHOLOGY CONTROL; FULLERENE BLENDS; FILL FACTOR; PERFORMANCE; PHOTOCURRENT; DISSOCIATION; ORGANIZATION AB Enhanced scattering contrast afforded by resonant soft X-ray scattering (R-SoXS) is used to probe the nanomorphology of all-polymer solar cells based on blends of the donor polymer poly(3-hexylthiophene) (P3HT) with either the acceptor polymer poly((9,9-dioctytfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazolel-2',2 ''-diyl) (F8TBT) or poly(N,N'-bis(2-octyldodecyl)-11-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-12-bithiophene)) (P(NDI20D-T2)). Both P3HT:F8TBT and P3HT:P(NDI20D-T2) blends processed from chloroform with subsequent annealing exhibit complicated morphologies with a hierarchy of phase separation. A bimodal distribution of domain sizes is observed for P3HT:P(NDI20D-T2) blends with small domains of size 10 nm that evolve with annealing and larger domains of size 100 nm that are insensitive to annealing. P3HT:F8TBT blends In contrast show a broader distribution of domain size but with the majority of this blend structured on the 10 nm length sole. For both P3HT:P(NDI20D-T2) and P3HT:F8TBT blends, an evolution in device performance is observed that is correlated with a coarsening and purification of domains on the 5-10 nm length scale. Grazing-Incidence wide-angle X-ray scattering (GI-WAXS) is also employed to probe material crystallinity, revealing P(NDI20D-T2) crystallites 25-40 nm in thickness that are embedded In the larger domains observed by R-SoXS. A higher degree of P3HT crystallinity Is also observed in blends with P(NDI20D-T2) compared to F8TBT with the propensity of the polymers to crystallize in P3HT:P(NDI20D-T2) blends hindering the structuring of morphology on the sub-10 nm length scale. This work also underscores the complementarity of R-SoXS and GI-WAXS, with R-SoXS measuring the size of compositionally distinguishable domains and GI-WAXS providing information regarding crystallinity and crystallite thickness. C1 [Yan, Hongping; Collins, Brian A.; Gann, Eliot; Ade, Harald] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Wang, Cheng] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [McNeill, Christopher R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England. RP Ade, H (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM harald_ade@ncsu.edu; christopher.mcneill@monash.edu RI Gann, Eliot/A-5246-2014; McNeill, Christopher/B-4530-2008; Wang, Cheng /E-7399-2012; Collins, Brian/M-5182-2013; Ade, Harald/E-7471-2011; YAN, HONGPING/N-7549-2013; Wang, Cheng/A-9815-2014 OI McNeill, Christopher/0000-0001-5221-878X; Collins, Brian/0000-0003-2047-8418; YAN, HONGPING/0000-0001-6235-4523; FU EPSRC in UK [EP/E051804/1]; ARC in Australia [FT100100275]; DOE [DE-AC02-05CH1123]; OS; BES; MSE [DE-FG02-98ER45737] FX This work was supported in the UK by the EPSRC (EP/E051804/1) and in Australia by the ARC (FT100100275). NCSU's contribution (GI-WAXS, R-SOXS) is supported by DOE, OS, BES, MSE (DE-FG02-98ER45737). Data were acquired at beamlines 11.0.1.2, 73.3, and 5.3.2.2 at the ALS, which is supported by DOE (DE-AC02-05CH1123). The authors thank Cambridge Display Technology Ltd. for the supply of F8TBT. NR 58 TC 94 Z9 94 U1 12 U2 96 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 677 EP 688 DI 10.1021/nn204150f PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300082 PM 22168639 ER PT J AU Li, XD Meng, GW Qin, SY Xu, QL Chu, ZQ Zhu, XG Kong, MG Li, AP AF Li, Xiangdong Meng, Guowen Qin, Shengyong Xu, Qiaoling Chu, Zhaoqin Zhu, Xiaoguang Kong, Mingguang Li, An-Ping TI Nanochannel-Directed Growth of Multi-Segment Nanowire Heterojunctions of Metallic Au1-xGex and Semiconducting Ge SO ACS NANO LA English DT Article DE germanium; gold; multiple segment hybrid nanowires; electrodeposition; chemical vapor deposition ID ANODIC ALUMINA; ARRAYS; FABRICATION; SENSORS AB We report on the synthesis of multi-segment nanowire (NW) junctions of Au1-xGex and Ge inside the nanochannels of porous anodic aluminum oxide template. The one-dimensional heterostructures are grown with a low-temperature chemical vapor deposition process, assisted by electrodeposited Au nanowires (AuNWs). The Au-catalyzed vapor liquid solid growth process occurs simultaneously in multiple locations along the nanochannel, which leads to multi-segment Au1-xGex/Ge heterojunctions. The structures of the as-grown hybrid NWs, analyzed by using transmission election microscopy and energy-dispersive X-ray spectroscopy elemental mapping, show dear compositional modulation with variable modulation period and controllable junction numbers. Remarkably, both GeNW and Au1-xGexNW segments are single crystalline with abrupt Interfaces and good crystallographic coherences. The electronic and transport properties of individual NW junctions are measured by using a multi-probe scanning tunneling microscope, which confirms the semiconducting nature of Ge segments and the metallic behavior of Au1-xGex segments, respectively. The high yield of multiple segment NW junctions of a metal semiconductor can facilitate the applications In nanoelectronics and optoelectronics that harness multiple functionalities of heterointerfaces. C1 [Li, Xiangdong; Meng, Guowen; Xu, Qiaoling; Chu, Zhaoqin; Zhu, Xiaoguang; Kong, Mingguang] Chinese Acad Sci, Key Lab Mat Phys, Inst Solid State Phys, Hefei 230031, Peoples R China. [Li, Xiangdong; Meng, Guowen; Xu, Qiaoling; Chu, Zhaoqin; Zhu, Xiaoguang; Kong, Mingguang] Chinese Acad Sci, Anhui Key Lab Nanomat & Nanostruct, Inst Solid State Phys, Hefei 230031, Peoples R China. [Qin, Shengyong; Li, An-Ping] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Meng, GW (reprint author), Chinese Acad Sci, Key Lab Mat Phys, Inst Solid State Phys, Hefei 230031, Peoples R China. EM gwmeng@issp.ac.cn; apli@ornl.gov RI Li, An-Ping/B-3191-2012; li, Xiangdong/K-2008-2013; Qin, Shengyong/A-7348-2012 OI Li, An-Ping/0000-0003-4400-7493; li, Xiangdong/0000-0003-2519-8757; FU Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy; National Natural Science Foundation of China [50525207, 50972145]; National Basic Research Program of China [2007CB936601]; China Postdoctoral Science Foundation [2011M501069] FX A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. The work was financially supported by the National Natural Science Foundation of China (Grant Nos. 50525207 and 50972145), National Basic Research Program of China (Grant No. 2007CB936601), and China Postdoctoral Science Foundation funded project (No. 2011M501069). NR 28 TC 8 Z9 9 U1 6 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 831 EP 836 DI 10.1021/nn2043466 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300097 PM 22195681 ER PT J AU Lowe, SB Dick, JAG Cohen, BE Stevens, MM AF Lowe, Stuart B. Dick, John A. G. Cohen, Bruce E. Stevens, Molly M. TI Multiplex Sensing of Protease and Kinase Enzyme Activity via Orthogonal Coupling of Quantum Dot Peptide Conjugates SO ACS NANO LA English DT Article DE quantum dots; multiplexing; FRET; biosensors; bionanotechnology; enzyme activity; breast cancer ID RESONANCE ENERGY-TRANSFER; BREAST-CANCER; PROGNOSTIC RELEVANCE; POOR-PROGNOSIS; NANOPARTICLE; AMPLIFICATION; INHIBITOR; UROKINASE; INVASION; THERAPY AB Nanoparticle-based labels are emerging as simpler and more sensitive alternatives to traditional fluorescent small molecules and radioactive reporters In biomarker assays. The determination of biomarker levels is a recommended clinical practice for the assessment of many diseases, and detection of multiple analytes in a single assay, known as multiplexing, can increase predictive accuracy. While multiplexed detection can also simplify assay procedures and reduce systematic variability, combining multiple assays into a single procedure can lead to complications such as substrate cross-reactivity, signal overlap, and loss of sensitivity. By combining the specificity of biomolecular interactions with the tunability of quantum dot optical properties, we have developed a detection system capable of simultaneous evaluation of the activity of two critical enzyme classes, proteases and kinases. We avoid cross-reactivity and signal overlap by synthesizing enzyme-specific peptide sequences with orthogonal terminal functionalization for attachment to quantum dots with distinct emission spectra. Enzyme activity is reported via binding of either gold nanoparticle peptide conjugates or FRET acceptor dye-labeled antibodies, which mediate changes in quantum dot emission spectra. To the best of our knowledge, this Is the first demonstration of the multiplexed sensing of the activity of two different classes of enzymes via a nanoparticle-based activity assay. Using the quantum dot-based assay described herein, we were able to detect the protease activity of urokinase-type plasminogen activator at concentrations >= 50 ng/mL and the kinase activity of human epidermal growth factor receptor 2 at concentrations >= 7.5 nM, levels that are clinically relevant for determination of breast cancer prognosis. The modular nature of this assay design allows for the detection of different classes of enzymes simultaneously and represents a generic platform for high-throughput enzyme screening in rapid disease diagnosis and drug discovery. C1 [Lowe, Stuart B.; Dick, John A. G.; Stevens, Molly M.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Lowe, Stuart B.; Dick, John A. G.; Stevens, Molly M.] Univ London Imperial Coll Sci Technol & Med, Inst Biomed Engn, London SW7 2AZ, England. [Stevens, Molly M.] Univ London Imperial Coll Sci Technol & Med, Dept Bioengn, London SW7 2AZ, England. [Cohen, Bruce E.] Lawrence Berkeley Natl Lab, Biol Nanostruct Facil, Mol Foundry, Berkeley, CA 94720 USA. RP Stevens, MM (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, Exhibit Rd, London SW7 2AZ, England. EM m.stevens@imperial.ac.uk FU EPSRC; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231] FX M.M.S. thanks the EPSRC for funding of S.B.L Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 34 TC 74 Z9 75 U1 11 U2 154 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 851 EP 857 DI 10.1021/nn204361s PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300100 PM 22148227 ER PT J AU Telg, H Duque, JG Staiger, M Tu, XM Hennrich, F Kappes, MM Zheng, M Maultzsch, J Thomsen, C Doorn, SK AF Telg, Hagen Duque, Juan G. Staiger, Matthias Tu, Xiaomin Hennrich, Frank Kappes, Manfred M. Zheng, Ming Maultzsch, Janina Thomsen, Christian Doorn, Stephen K. TI Chiral Index Dependence of the G(+) and G(-) Raman Modes in Semiconducting Carbon Nanotubes SO ACS NANO LA English DT Article DE single-wall carbon nanotubes; Raman spectroscopy; G mode; LO/TO phonons; diameter determination; (n,m) assignment ID SINGLE-WALL; SPECTROSCOPY; SCATTERING; SYMMETRY; GRAPHITE AB Raman spectroscopy on the radial breathing mode Is a common tool to determine the diameter d or chiral indices (n,m) of single-wall carbon nanotubes. In this work we present an alternative technique to determine d and (n,m) based on the high-energy G(-) mode. From resonant Raman scattering experiments on 14 highly purified single chirality (n,m) samples we obtain the diameter, chiral angle, and family dependence of the G(-) and G(+) peak position. Considering theoretical predictions we discuss the origin of these dependences with respect to rehybridization of the carbon orbitals, confinement, and electron-electron interactions. The relative Raman intensities of the two peaks have a systematic chiral angle dependence in agreement with theories considering the symmetry of nanotubes and the associated phonons. C1 [Telg, Hagen; Duque, Juan G.; Doorn, Stephen K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Staiger, Matthias; Maultzsch, Janina; Thomsen, Christian] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany. [Tu, Xiaomin; Zheng, Ming] Natl Inst Stand & Technol, Div Polymers, Gaithersburg, MD 20899 USA. [Hennrich, Frank; Kappes, Manfred M.] Karlsruher Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany. [Duque, Juan G.] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect C PCS, Los Alamos, NM 87545 USA. RP Telg, H (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. EM hagen@lanl.gov; skdoorn@lanl.gov RI Thomsen, Christian/E-2295-2012; Telg, Hagen/O-3348-2013; Thomsen, Christian/B-5014-2015; Maultzsch, Janina/A-4781-2017 OI Telg, Hagen/0000-0002-4911-2703; Thomsen, Christian/0000-0001-6057-1401; FU U.S. Department of Energy; NSF [CMS-060950]; European Research Council, ERC [259286]; DFG; Helmholtz Association FX H.T, J.G.D., and S.K.D. acknowledge support of the U.S. Department of Energy through the LANL-LDRD program. X.T. and M.Z. acknowledge the support of NSF Grant CMS-060950. J.M. acknowledges support from the European Research Council, ERC grant no. 259286. F.H. and M.K. acknowledge support by the DFG-funded Center for Functional Nanostructures (CFN) and by the Helmholtz Association. This work was performed in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences, user facility. NR 33 TC 30 Z9 30 U1 3 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 904 EP 911 DI 10.1021/nn2044356 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300107 PM 22175270 ER PT J AU Terlyga, O Bellout, H Bloom, F AF Terlyga, Olga Bellout, Hamid Bloom, Frederick TI GLOBAL EXISTENCE, UNIQUENESS, AND STABILITY FOR A NONLINEAR HYPERBOLIC-PARABOLIC PROBLEM IN PULSE COMBUSTION SO ACTA MATHEMATICA SCIENTIA LA English DT Article DE pulse combustion; hyperbolic-parabolic system; global existence; regularity ID PULSATING COMBUSTION; MODEL AB A global existence theorem is established for an initial-boundary value problem; with time-dependent boundary data, arising in a lumped parameter model of pulse combustion; the model in question gives rise to a nonlinear mixed hyperbolic-parabolic system. Using results previously established for the associated linear problem, a fixed point argument is employed to prove local existence for a regularized version of the nonlinear problem with artificial viscosity. Appropriate a-priori estimates are then derived which imply that the local existence result can be extended to a global existence theorem for the regularized problem. Finally, a different set of a priori estimates is generated which allows for taking the limit as the artificial viscosity parameter converges to zero; the corresponding solution of the regularized problem is then proven to converge to the unique solution of the initial-boundary value problem for the original, nonlinear, hyperbolic-parabolic system. C1 [Bellout, Hamid; Bloom, Frederick] No Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA. [Terlyga, Olga] Fermi Natl Lab, Batavia, IL 60510 USA. RP Bloom, F (reprint author), No Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA. EM terlyga@fnal.gov; bellout@math.niu.edu; bloom@math.niu.edu NR 22 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0252-9602 J9 ACTA MATH SCI JI Acta Math. Sci. PD JAN PY 2012 VL 32 IS 1 BP 41 EP 74 PG 34 WC Mathematics SC Mathematics GA 890BJ UT WOS:000300119800004 ER PT J AU Lim, H Kaman, T Yu, Y Mahadeo, V Xu, Y Zhang, H Glimm, J Dutta, S Sharp, DH Plohr, B AF Lim, H. Kaman, T. Yu, Y. Mahadeo, V. Xu, Y. Zhang, H. Glimm, J. Dutta, S. Sharp, D. H. Plohr, B. TI A MATHEMATICAL THEORY FOR LES CONVERGENCE SO ACTA MATHEMATICA SCIENTIA LA English DT Article DE numerical methods; turbuent mixing ID NUMERICAL SIMULATIONS; TURBULENCE; TRANSPORT; INSTABILITY; FLOW AB Practical simulations of turbulent processes are generally cutoff, with a grid resolution that stops within the inertial range, meaning that multiple active regions and length scales occur below the grid level and are not resolved. This is the regime of large eddy simulations (LES), in which the larger but not the smaller of the turbulent length scales are resolved. Solutions of the fluid Navier-Stokes equations, when considered in the inertial regime, are conventionally regarded as solutions of the Euler equations. In other words, the viscous and diffusive transport terms in the Navier-Stokes equations can be neglected in the inertial regime and in LES simulations, while the Euler equation becomes fundamental. For such simulations, significant new solution details emerge as the grid is refined. It follows that conventional notions of grid convergence are at risk of failure, and that a new, and weaker notion of convergence may be appropriate. It is generally understood that the LES or inertial regime is inherently fluctuating and its description must be statistical in nature. Here we develop such a point of view systematically, based on Young measures, which are measures depending on or indexed by space time points. In the Young measure dv(xi)(x,t), the random variable xi of the measure is a solution state variable, i.e., a solution dependent variable, representing momentum, density, energy and species concentrations, while the space time coordinates, x, t, serve to index the measure. Theoretical evidence suggests that convergence via Young measures is sufficiently weak to encompass the LES/inertial regime; numerical and theoretical evidence suggests that this notion may be required for passive scalar concentration and thermal degrees of freedom. Our objective in this research is twofold: turbulent simulations without recourse to adjustable parameters (calibration) and extension to more complex physics, without use of additional models or parameters, in both cases with validation through comparison to experimental data. C1 [Lim, H.; Kaman, T.; Yu, Y.; Mahadeo, V.; Xu, Y.; Zhang, H.; Glimm, J.] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Dutta, S.] Coll St Catherine, Madison, NJ USA. [Sharp, D. H.; Plohr, B.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Lim, H (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. EM hyulim@ams.sunysb.edu; tkaman@ams.sunysb.edu; yan2000@ams.sunsb.edu; vmahadeo@ams.sunysb.edu; yxu@ams.sunysb.edu; hazhang@ams.sunysb.edu; glimm@ams.sunysb.edu; srabastidutta@gmail.com; dhs@lanl.gov; plohr@lanl.gov FU Department of Energy [NEUP-09-349]; Battelle Energy Alliance LLC [00088495]; Leland Stanford Junior University [2175022040367A]; Army Research Office [W911NF0910306]; US Department of Energy [DEAC 5206NA25396]; DOE; Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357] FX Received November 2, 2011. This work is supported in part by the Nuclear Energy University Program of the Department of Energy, project NEUP-09-349, Battelle Energy Alliance LLC 00088495 (subaward with DOE as prime sponsor), Leland Stanford Junior University 2175022040367A (subaward with DOE as prime sponsor), Army Research Office W911NF0910306. The work of D.H. Sharp was supported by the US Department of Energy under Contract DEAC 5206NA25396.; Computational resources were provided by the Stony Brook Galaxy cluster and the Stony Brook/BNL New York Blue Gene/L IBM machine. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. NR 41 TC 5 Z9 5 U1 0 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0252-9602 J9 ACTA MATH SCI JI Acta Math. Sci. PD JAN PY 2012 VL 32 IS 1 BP 237 EP 258 PG 22 WC Mathematics SC Mathematics GA 890BJ UT WOS:000300119800015 ER PT J AU Gamazo, P Saaltink, MW Carrera, J Slooten, L Bea, S AF Gamazo, P. Saaltink, M. W. Carrera, J. Slooten, L. Bea, S. TI A consistent compositional formulation for multiphase reactive transport where chemistry affects hydrodynamics SO ADVANCES IN WATER RESOURCES LA English DT Article DE Multiphase reactive transport; Coupling effects; Arid soil evaporation; Hydrated minerals; Invariant point ID NATURAL-WATERS; POROUS-MEDIA; GROUNDWATER CONTAMINATION; ORGANIC-COMPOUNDS; MODEL DEVELOPMENT; SIMULATION; REMEDIATION; EVAPORATION; PREDICTION; COMPONENTS AB Multiphase reactive transport formulations usually decouple flow (i.e., phase conservation) from reactive transport calculations (i.e., species conservation). Decoupling is not appropriate when reactions affect flow controlling variables (such as the partial pressure of gaseous components or the activity of water). We present a consistent compositional formulation that couples the conservation of all components. No explicit conservation of phases mass is required since they result from the conservation of all species in each phase. The formulation acknowledges that constant activity species do not affect speciation and can be eliminated, which reduces the number of unknowns. We discuss the formulation, the numerical solution, and the implementation into an object oriented code. The advantages of the formulation are illustrated by simulating the effect of mineral dehydration (including invariant points) on the hydrodynamic processes in an unsaturated column that reaches extremely dry conditions. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Gamazo, P.] Univ Republ, Water Dept, Gral Rivera 50000, Salto, Uruguay. [Gamazo, P.; Saaltink, M. W.] Univ Politecn Cataluna, GHS, Dept Geotech Engn & Geosci, UPC BarcelonaTech, ES-08034 Barcelona, Spain. [Carrera, J.; Slooten, L.] CSIC, GHS, Inst Environm Assessment & Water Res IDAEA, E-08028 Barcelona, Spain. [Bea, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Gamazo, P (reprint author), Univ Republ, Water Dept, Gral Rivera 50000, Salto, Uruguay. EM pablogamazo@gmail.com RI Gamazo Rusnac, Pablo Andres/A-9253-2012; Bea, Sergio /A-9056-2012; OI Bea, Sergio /0000-0001-9237-4103; Saaltink, Maarten W./0000-0003-0553-4573 NR 45 TC 8 Z9 8 U1 1 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD JAN PY 2012 VL 35 BP 83 EP 93 DI 10.1016/j.advwatres.2011.09.006 PG 11 WC Water Resources SC Water Resources GA 888UV UT WOS:000300031000008 ER PT J AU Foston, MB McGaughey, J O'Neill, H Evans, BR Ragauskas, A AF Foston, Marcus B. McGaughey, Joseph O'Neill, Hugh Evans, Barbara R. Ragauskas, Arthur TI Deuterium incorporation in biomass cell wall components by NMR analysis SO ANALYST LA English DT Article ID BIOLOGY; RATIO; SANS AB A commercially available deuterated kale sample was analyzed for deuterium incorporation by ionic liquid solution H-2 and H-1 nuclear magnetic resonance (NMR). This protocol was found to effectively measure the percent deuterium incorporation at 33%, comparable to the 31% value determined by combustion. The solution NMR technique also suggested by a qualitative analysis that deuterium is preferentially incorporated into the carbohydrate components of the kale sample. C1 [Foston, Marcus B.; Ragauskas, Arthur] Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, Atlanta, GA 30332 USA. [McGaughey, Joseph; Evans, Barbara R.] Oak Ridge Natl Lab, Div Chem Sci, Mol Biosci & Biotechnol Grp, Oak Ridge, TN 37831 USA. [O'Neill, Hugh] Oak Ridge Natl Lab, Div Chem Sci, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. RP Ragauskas, A (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, Atlanta, GA 30332 USA. EM arthur.ragauskas@chemistry.gatech.edu OI O'Neill, Hugh/0000-0003-2966-5527; Ragauskas, Arthur/0000-0002-3536-554X FU Office of Biological and Environmental Research, U. S. Department of Energy [FWP ERKP752] FX This research is funded by the Genomic Science Program, Office of Biological and Environmental Research, U. S. Department of Energy, under FWP ERKP752. NR 17 TC 6 Z9 6 U1 2 U2 10 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 J9 ANALYST JI Analyst PY 2012 VL 137 IS 5 BP 1090 EP 1093 DI 10.1039/c2an16025k PG 4 WC Chemistry, Analytical SC Chemistry GA 888XR UT WOS:000300038400005 PM 22223179 ER PT J AU Kumari, H Mossine, AV Kline, SR Dennis, CL Fowler, DA Teat, SJ Barnes, CL Deakyne, CA Atwood, JL AF Kumari, Harshita Mossine, Andrew V. Kline, Steven R. Dennis, Cindi L. Fowler, Drew A. Teat, Simon J. Barnes, Charles L. Deakyne, Carol A. Atwood, Jerry L. TI Controlling the Self-Assembly of Metal-Seamed Organic Nanocapsules SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE molecular capsules; pyrogallol[4]arenes; small-angle neutron scattering; supramolecular chemistry ID ANGLE NEUTRON-SCATTERING C1 [Kumari, Harshita; Mossine, Andrew V.; Fowler, Drew A.; Barnes, Charles L.; Deakyne, Carol A.; Atwood, Jerry L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Kline, Steven R.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Dennis, Cindi L.] Natl Inst Stand & Technol, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Deakyne, CA (reprint author), Univ Missouri, Dept Chem, 601 S Coll Ave, Columbia, MO 65211 USA. EM deakynec@missouri.edu; atwoodj@missouri.edu FU National Science Foundation [DMR-0944772, CHE1012998] FX This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0944772 (S.R.K.) and CHE1012998 (J.L.A.). The use of specific trade names does not imply endorsement of products or companies by NIST but are used to fully describe the experimental procedures. NR 16 TC 45 Z9 45 U1 5 U2 32 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2012 VL 51 IS 6 BP 1452 EP 1454 DI 10.1002/anie.201107182 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 884VG UT WOS:000299736300031 PM 22294358 ER PT J AU You, LY Chen, SG Zhao, X Liu, Y Lan, WX Zhang, Y Lu, HJ Cao, CY Li, ZT AF You, Li-Yan Chen, Shi-Gui Zhao, Xin Liu, Yi Lan, Wen-Xian Zhang, Ying Lu, Hao-Jie Cao, Chun-Yang Li, Zhan-Ting TI C?H center dot center dot center dot O Hydrogen Bonding Induced Triazole Foldamers: Efficient Halogen Bonding Receptors for Organohalogens SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE foldamer; halogen bonds; hydrogen bonds; molecular recognition; nitrogen heterocycles ID SUPRAMOLECULAR CHEMISTRY; COMPLEXES; BINDING; COOPERATIVITY; AGGREGATION; RECOGNITION; PERSISTENT; IONS C1 [You, Li-Yan; Chen, Shi-Gui; Zhao, Xin; Lan, Wen-Xian; Cao, Chun-Yang; Li, Zhan-Ting] Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, Shanghai 200032, Peoples R China. [Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Zhang, Ying; Lu, Hao-Jie; Li, Zhan-Ting] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China. RP Zhao, X (reprint author), Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, 345 Lingling Lu, Shanghai 200032, Peoples R China. EM xzhao@mail.sioc.ac.cn; ztli@mail.sioc.ac.cn FU NSFC [20921091, 20974118]; STCSM [10J1412200, 09XD1405300] FX We thank NSFC (20921091 and 20974118) and STCSM (10J1412200 and 09XD1405300) for financial support. NR 60 TC 43 Z9 44 U1 6 U2 66 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2012 VL 51 IS 7 BP 1657 EP 1661 DI 10.1002/anie.201106996 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 887RJ UT WOS:000299946400029 PM 22238223 ER PT J AU Kosuda, KM Wittstock, A Friend, CM Baumer, M AF Kosuda, Kathryn M. Wittstock, Arne Friend, Cynthia M. Baeumer, Marcus TI Oxygen-Mediated Coupling of Alcohols over Nanoporous Gold Catalysts at Ambient Pressures SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE alcohols; cross-coupling; heterogeneous catalysis; nanoporous gold; selective oxidation ID AEROBIC OXIDATION; LOW-TEMPERATURE; CO OXIDATION; CHEMISTRY; METHANOL; ETHANOL; ACID C1 [Wittstock, Arne; Baeumer, Marcus] Univ Bremen, Zentrum Umweltforsch & Nachhaltige Technol, D-28359 Bremen, Germany. [Kosuda, Kathryn M.; Friend, Cynthia M.] Harvard Univ, Sch Engn & Appl Sci, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Wittstock, Arne] Lawrence Livermore Natl Lab, NSCL, Livermore, CA 94550 USA. [Wittstock, Arne; Baeumer, Marcus] Univ Bremen, Inst Angew & Phys Chem, D-28359 Bremen, Germany. RP Wittstock, A (reprint author), Univ Bremen, Zentrum Umweltforsch & Nachhaltige Technol, Leobener Str NW2, D-28359 Bremen, Germany. EM awittstock@uni-bremen.de RI Baumer, Marcus/S-5441-2016 OI Baumer, Marcus/0000-0002-8620-1764 FU NSF through Harvard NSEC [PHY-0646094]; MRSEC [DMR-0820484]; U.S. Department of Energy through LLNL [DE-AC52-07NA27344] FX This work was supported in part by the NSF through Harvard NSEC (PHY-0646094) and by MRSEC (DMR-0820484). A.W. was supported in part by the U.S. Department of Energy through LLNL under contract DE-AC52-07NA27344. NR 33 TC 57 Z9 59 U1 1 U2 84 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2012 VL 51 IS 7 BP 1698 EP 1701 DI 10.1002/anie.201107178 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 887RJ UT WOS:000299946400038 PM 22223430 ER PT J AU Burling, IR Yokelson, RJ Akagi, SK Urbanski, SP Wold, CE Griffith, DWT Johnson, TJ Reardon, J Weise, DR AF Burling, I. R. Yokelson, R. J. Akagi, S. K. Urbanski, S. P. Wold, C. E. Griffith, D. W. T. Johnson, T. J. Reardon, J. Weise, D. R. TI Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States (vol 11, pg 12197, 2011) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Correction C1 [Burling, I. R.; Yokelson, R. J.; Akagi, S. K.] Univ Montana, Dept Chem, Missoula, MT 59812 USA. [Urbanski, S. P.; Wold, C. E.; Reardon, J.] US Forest Serv, USDA, Rocky Mt Res Stn, Fire Sci Lab, Missoula, MT 59808 USA. [Griffith, D. W. T.] Univ Wollongong, Dept Chem, Wollongong, NSW 2500, Australia. [Johnson, T. J.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Weise, D. R.] US Forest Serv, USDA, Pacific SW Res Stn, Riverside, CA USA. RP Yokelson, RJ (reprint author), Univ Montana, Dept Chem, Missoula, MT 59812 USA. EM bob.yokelson@umontana.edu NR 1 TC 0 Z9 0 U1 0 U2 22 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2012 VL 12 IS 1 BP 103 EP 103 DI 10.5194/acp-12-103-2012 PG 1 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 892XZ UT WOS:000300320200003 ER PT J AU Kleinman, LI Daum, PH Lee, YN Lewis, ER Sedlacek, AJ Senum, GI Springston, SR Wang, J Hubbe, J Jayne, J Min, Q Yum, SS Allen, G AF Kleinman, L. I. Daum, P. H. Lee, Y. -N. Lewis, E. R. Sedlacek, A. J. Senum, G. I. Springston, S. R., III Wang, J. Hubbe, J. Jayne, J. Min, Q. Yum, S. S. Allen, G. TI Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MARINE STRATOCUMULUS CLOUDS; BOUNDARY-LAYER; OZONE CONCENTRATIONS; CONDENSATION NUCLEI; HYGROSCOPIC GROWTH; SOUTHEAST PACIFIC; ACTIVATION; AIR; PARTICLES; EVOLUTION AB During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O-3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 degrees C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (D-p > 100 nm) gives a linear relation up to a number concentration of similar to 150 cm(-3), followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that similar to 25% of aerosol with D-p > 100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the interstitial aerosol appears to have a background, upon which is superimposed a high frequency signal that contains the anti-correlation. The anti-correlation is a possible source of information on particle activation or evaporation. C1 [Kleinman, L. I.; Daum, P. H.; Lee, Y. -N.; Lewis, E. R.; Sedlacek, A. J.; Senum, G. I.; Springston, S. R., III; Wang, J.] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. [Hubbe, J.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Jayne, J.] Aerodyne Res Inc, Billerica, MA 01821 USA. [Min, Q.] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA. [Yum, S. S.] Yonsei Univ, Dept Atmospher Sci, Seoul 120749, South Korea. [Allen, G.] Univ Manchester, Ctr Atmospher Sci, Manchester M13 9PL, Lancs, England. RP Kleinman, LI (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. EM kleinman@bnl.gov RI Allen, Grant /A-7737-2013; Wang, Jian/G-9344-2011 OI Allen, Grant /0000-0002-7070-3620; FU Korean Meteorological Administration [RACS 2010-5001]; US DOE [DE-AC02-98CH10886] FX We thank chief pilot Bob Hannigan and the flight crew from PNNL for a job well done. Thanks to Robert McGraw of BNL for droplet evaporation calculations. We gratefully acknowledge the Atmospheric Science Program within the Office of Biological and Environmental Research of DOE for supporting field and analysis activities and for providing the G-1 aircraft. Use of a c-ToF-AMS provided by EMSL is appreciated. The VOCALS Regional Experiment owes its success to many people. We would like to single out Robert Wood (Univ. of Washington), Christopher Bretherton (Univ. of Washington), and C.'Roberto Mechoso (UCLA) for their organizational skills and scientific leadership. S. S. Yum is partially supported by the Korean Meteorological Administration Research and Development Program under Grant RACS 2010-5001. This research was performed under sponsorship of the US DOE under contracts DE-AC02-98CH10886. NR 55 TC 24 Z9 24 U1 0 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2012 VL 12 IS 1 BP 207 EP 223 DI 10.5194/acp-12-207-2012 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 892XZ UT WOS:000300320200010 ER PT J AU Lauvaux, T Schuh, AE Uliasz, M Richardson, S Miles, N Andrews, AE Sweeney, C Diaz, LI Martins, D Shepson, PB Davis, KJ AF Lauvaux, T. Schuh, A. E. Uliasz, M. Richardson, S. Miles, N. Andrews, A. E. Sweeney, C. Diaz, L. I. Martins, D. Shepson, P. B. Davis, K. J. TI Constraining the CO2 budget of the corn belt: exploring uncertainties from the assumptions in a mesoscale inverse system SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ATMOSPHERIC TRANSPORT MODELS; CARBON-DIOXIDE EXCHANGE; REGIONAL-SCALE FLUXES; SYNTHETIC DATA; PART 1; SINKS; LAND; SENSITIVITY; CONTINENT; AIRBORNE AB We performed an atmospheric inversion of the CO2 fluxes over Iowa and the surrounding states, from June to December 2007, at 20 km resolution and weekly timescale. Eight concentration towers were used to constrain the carbon balance in a 1000x1000 km(2) domain in this agricultural region of the US upper midwest. The CO2 concentrations of the boundaries derived from CarbonTracker were adjusted to match direct observations from aircraft profiles around the domain. The regional carbon balance ends up with a sink of 183 Tg C +/- 35 Tg C over the area for the period June-December, 2007. Potential bias from incorrect boundary conditions of about 0.55 ppm over the 7 months was corrected using mixing ratios from four different aircraft profile sites operated at a weekly time scale, acting as an additional source of uncertainty of 24 Tg C. We used two different prior flux estimates, the SiBCrop model and the inverse flux product from the CarbonTracker system. We show that inverse flux estimates using both priors converge to similar posterior estimates (20 Tg C difference), in our reference inversion, but some spatial structures from the prior fluxes remain in the posterior fluxes, revealing the importance of the prior flux resolution and distribution despite the large amount of atmospheric data available. The retrieved fluxes were compared to eddy flux towers in the corn and grassland areas, revealing an improvement in the seasonal cycles between the two compared to the prior fluxes, despite large absolute differences due to representation errors. The uncertainty of 34 Tg C (or 34 g C m(2)) was derived from the posterior uncertainty obtained with our reference inversion of about 25 to 30 Tg C and from sensitivity tests of the assumptions made in the inverse system, for a mean carbon balance over the region of -183 Tg C, slightly weaker than the reference. Because of the potential large bias (similar to 24 Tg C in this case) due to choice of background conditions, proportional to the surface but not to the regional flux, this methodology seems limited to regions with a large signal (sink or source), unless additional observations can be used to constrain the boundary inflow. C1 [Lauvaux, T.; Richardson, S.; Miles, N.; Diaz, L. I.; Martins, D.; Davis, K. J.] Penn State Univ, Dept Meteorol, Inversity Pk, PA USA. [Schuh, A. E.] NREL, Ft Collins, CO USA. [Shepson, P. B.] Purdue Univ, W Lafayette, IN 47907 USA. [Andrews, A. E.; Sweeney, C.] Natl Ocean & Atmospher Assoc, ESRL GMD, Boulder, CO USA. [Schuh, A. E.; Uliasz, M.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Lauvaux, T (reprint author), Penn State Univ, Dept Meteorol, Inversity Pk, PA USA. EM lauvaux@meteo.psu.edu RI Shepson, Paul/E-9955-2012; Andrews, Arlyn/K-3427-2012; OI Lauvaux, Thomas/0000-0002-7697-742X FU NOAA/ESRL division; CarbonTracker products; Office of Science (BER) US Department of Energy; US National Aeronautics and Space Administration; US National Oceanographic and Atmospheric Administration, Office of Global Programs FX We thank Andy Jacobson from NOAA/ESRL division for discussions and support with CarbonTracker products, Arlyn Andrews from NOAA/ESRL division for data support and management for the West Branch tall tower, Colm Sweeney and Gabrielle Petron from NOAA/ESRL division for data from the aircraft program, Tim Griffis from University of Minnesota for his comments and the eddy-covariance flux data from Rosemount, Shashi Verma and Andrew Suyker from University of Nebraska-Lincoln for eddy-covariance flux data from Mead, Tilden Meyers from NOAA/ARL division for eddy-covariance flux data from Brookings and Bondville, and Roser Matamala from Argonne National Laboratory for eddy-covariance flux data from Fermi. This research was supported by the Office of Science (BER) US Department of Energy, Terrestrial Carbon Program, the US National Aeronautics and Space Administration's Terrestrial Ecology Program, and the US National Oceanographic and Atmospheric Administration, Office of Global Programs, Global Carbon Cycle program. NR 60 TC 43 Z9 44 U1 0 U2 20 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2012 VL 12 IS 1 BP 337 EP 354 DI 10.5194/acp-12-337-2012 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 892XZ UT WOS:000300320200018 ER PT J AU Zuidema, P Leon, D Pazmany, A Cadeddu, M AF Zuidema, P. Leon, D. Pazmany, A. Cadeddu, M. TI Aircraft millimeter-wave passive sensing of cloud liquid water and water vapor during VOCALS-REx SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MARINE STRATOCUMULUS; SOUTHEAST PACIFIC; MODELS; PATH; RADIOMETER; OCEAN; PERMITTIVITY; FREQUENCIES; RETRIEVALS; VALIDATION AB Routine liquid water path measurements and water vapor path are valuable for process studies of the cloudy marine boundary layer and for the assessment of large-scale models. The VOCALS Regional Experiment respected this goal by including a small, inexpensive, upward-pointing millimeter-wavelength passive radiometer on the fourteen research flights of the NCAR C-130 plane, the G-band (183 GHz) Vapor Radiometer (GVR). The radiometer permitted above-cloud retrievals of the free-tropospheric water vapor path (WVP). Retrieved free-tropospheric (above-cloud) water vapor paths possessed a strong longitudinal gradient, with off-shore values of one to two mm and near-coastal values reaching tenmm. The VOCALS-REx free troposphere was drier than that of previous years. Cloud liquid water paths (LWPs) were retrieved from the sub-cloud and cloudbase aircraft legs through a combination of the GVR, remotely-sensed cloud boundary information, and in-situ thermodynamic data. The absolute (between-leg) and relative (within-leg) accuracy of the LWP retrievals at 1 Hz (similar to 100 m) resolution was estimated at 20 gm(-2) and 3 g m(-2) respectively for well-mixed conditions, and 25 g m(-2) absolute uncertainty for decoupled conditions where the input WVP specification was more uncertain. Retrieved liquid water paths matched adiabatic values derived from coincident cloud thickness measurements exceedingly well. A significant contribution of the GVR dataset was the extended information on the thin clouds, with 62% (28 %) of the retrieved LWPs < 100 (40) gm(-2). Coastal LWPs values were lower than those offshore. For the four dedicated 20 degrees S flights, the mean (median) coastal LWP was 67 (61) gm(-2), increasing to 166 (120) gm(-2) 1500 km offshore. The overall LWP cloud fraction from thirteen research flights was 63 %, higher than that of adiabatic LWPs at 40 %, but lower than the lidar-determined cloud cover of 85 %, further testifying to the frequent occurrence of thin clouds. C1 [Zuidema, P.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Leon, D.] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Pazmany, A.] Prosensing Inc, Amherst, MA USA. [Cadeddu, M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Zuidema, P (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM pzuidema@rsmas.miami.edu RI Zuidema, Paquita/C-9659-2013 OI Zuidema, Paquita/0000-0003-4719-372X FU NSF Large-Scale Dynamics Division [0745470]; VOCALS-REx PIs FX PZ acknowledges support from the NSF Large-Scale Dynamics Division under Award 0745470. We thank Walt Robinson and the VOCALS-REx PIs Rob Wood and Roberto Mechoso for their support and leadership. NR 45 TC 18 Z9 18 U1 0 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2012 VL 12 IS 1 BP 355 EP 369 DI 10.5194/acp-12-355-2012 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 892XZ UT WOS:000300320200019 ER PT J AU Feng, R Xenos, M Girdhar, G Kang, W Davenport, JW Deng, YF Bluestein, D AF Feng, Rui Xenos, Michalis Girdhar, Gaurav Kang, Wei Davenport, James W. Deng, Yuefan Bluestein, Danny TI Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD SO BIOMECHANICS AND MODELING IN MECHANOBIOLOGY LA English DT Article DE Viscous flow; Lennard-Jones potential; Computational fluid dynamics; Molecular dynamics; Discrete particle dynamics; Parallelcomputing ID SCALABLE MOLECULAR-DYNAMICS; LOW REYNOLDS-NUMBERS; BLUE-GENE/L SYSTEM; TRANSPORT-COEFFICIENTS; BOUNDARY-CONDITIONS; POROUS-MEDIA; FLUID; NAMD; HYDRODYNAMICS; PARALLEL AB Flow and stresses induced by blood flow acting on the blood cellular constituents can be represented to a certain extent by a continuum mechanics approach down to the order of the mu m level. However, the molecular effects of, e. g., adhesion/aggregation bonds of blood clotting can be on the order of nm. The coupling of the disparate length and timescales between such molecular levels and macroscopic transport represents a major computational challenge. To address this challenge, a multiscale numerical approach based on discrete particle dynamics (DPD) methodology derived from molecular dynamics (MD) principles is proposed. The feasibility of the approach was firstly tested for its ability to simulate viscous flow conditions. Simulations were conducted in low Reynolds numbers flows (Re = 25-33) through constricted tubes representing blood vessels with various degrees of stenosis. Multiple discrete particles interacting with each other were simulated, with 1.24-1.36 million particles representing the flow domain and 0.4 million particles representing the vessel wall. The computation was carried out on the massive parallel supercomputer NY BlueGene/L employing NAMD-a parallel MD package for high performance computing (HPC). Typical recirculation zones were formed distal to the stenoses. The velocity profiles and recirculation zones were in excellent agreement with computational fluid dynamics (CFD) 3D Navier-Stokes viscous fluid flow simulations and with classic numerical and experimental results by YC Fung in constricted tubes. This feasibility analysis demonstrates the potential of a methodology that widely departs from a continuum approach to simulate multiscale phenomena such as flow induced blood clotting. C1 [Xenos, Michalis; Girdhar, Gaurav; Bluestein, Danny] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11790 USA. [Feng, Rui; Davenport, James W.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Feng, Rui] Beihang Univ, Sch Comp Sci & Engn, Beijing 100083, Peoples R China. [Kang, Wei; Davenport, James W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Deng, Yuefan] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11790 USA. RP Bluestein, D (reprint author), SUNY Stony Brook, Dept Biomed Engn, HSC T18-030, Stony Brook, NY 11790 USA. EM danny.bluestein@sunysb.edu RI Kang, Wei/A-9784-2012; OI Kang, Wei/0000-0001-9989-0485; Deng, Yuefan/0000-0002-5224-3958; Xenos, Michalis/0000-0001-8441-1306 FU National Institute of Biomedical Imaging and Bioengineering [1R01 EB008004-01]; US Department of Energy [DE-AC02-98CH10886]; State of New York FX This publication was made possible by grant number 1R01 EB008004-01 (DB) from the National Institute of Biomedical Imaging and Bioengineering. This research utilized resources at the New York Center for Computational Sciences at Stony Brook University/Brookhaven National Laboratory, which is supported by the US Department of Energy under Contract No. DE-AC02-98CH10886 and by the State of New York. NR 40 TC 12 Z9 12 U1 1 U2 19 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-7959 J9 BIOMECH MODEL MECHAN JI Biomech. Model. Mechanobiol. PD JAN PY 2012 VL 11 IS 1-2 BP 119 EP 129 DI 10.1007/s10237-011-0297-z PG 11 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 891QB UT WOS:000300230600009 PM 21369918 ER PT J AU Torrens, PM Nara, A Li, X Zhu, HJ Griffin, WA Brown, SB AF Torrens, Paul M. Nara, Atsushi Li, Xun Zhu, Haojie Griffin, William A. Brown, Scott B. TI An extensible simulation environment and movement metrics for testing walking behavior in agent-based models SO COMPUTERS ENVIRONMENT AND URBAN SYSTEMS LA English DT Article DE Walking; Agent-based modeling; Movement; Trajectory measurement ID PEDESTRIAN BEHAVIOR; CROWD DYNAMICS; FRACTAL DIMENSION; SAFETY; PATHS; SEGREGATION; EVACUATION; NAVIGATION; MOBILITY; DOWNTOWN AB Human movement is a significant ingredient of many social, environmental, and technical systems, yet the importance of movement is often discounted in considering systems' complexity. Movement is commonly abstracted in agent-based modeling (which is perhaps the methodological vehicle for modeling complex systems), despite the influence of movement upon information exchange and adaptation in a system. In particular, agent-based models of urban pedestrians often treat movement in proxy form at the expense of faithfully treating movement behavior with realistic agency. There exists little consensus about which method is appropriate for representing movement in agent-based schemes. In this paper, we examine popularly-used methods to drive movement in agent-based models, first by introducing a methodology that can flexibly handle many representations of movement at many different scales and second, introducing a suite of tools to benchmark agent movement between models and against real-world trajectory data. We find that most popular movement schemes do a relatively poor job of representing movement, but that some schemes may well be "good enough" for some applications. We also discuss potential avenues for improving the representation of movement in agent-based frameworks. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Torrens, Paul M.; Nara, Atsushi; Li, Xun; Zhu, Haojie] Univ Maryland, Dept Geog, Geosimulat Res Lab, College Pk, MD 20742 USA. [Griffin, William A.] Arizona State Univ, Ctr Social Dynam & Complex, Tempe, AZ 85287 USA. [Brown, Scott B.] Idaho Natl Lab, Idaho Falls, ID 83402 USA. RP Torrens, PM (reprint author), Univ Maryland, Dept Geog, Geosimulat Res Lab, 2181 LeFrak Hall, College Pk, MD 20742 USA. EM torrens@geosimulation.com; atsushi.nara@asu.edu; Xun.Li@asu.edu; Haojie.Zhu@asu.edu; WILLIAM.GRIFFIN@asu.edu; scott.brown@spatial-reasoning.org OI Li, Xun/0000-0002-1367-2901 NR 102 TC 20 Z9 20 U1 1 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0198-9715 EI 1873-7587 J9 COMPUT ENVIRON URBAN JI Comput. Environ. Urban Syst. PD JAN PY 2012 VL 36 IS 1 BP 1 EP 17 DI 10.1016/j.compenvurbsys.2011.07.005 PG 17 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Studies; Geography; Operations Research & Management Science SC Computer Science; Engineering; Environmental Sciences & Ecology; Geography; Operations Research & Management Science GA 890EN UT WOS:000300128000001 ER PT J AU Middleton, RS Kuby, MJ Bielicki, JM AF Middleton, Richard S. Kuby, Michael J. Bielicki, Jeffrey M. TI Generating candidate networks for optimization: The CO2 capture and storage optimization problem SO COMPUTERS ENVIRONMENT AND URBAN SYSTEMS LA English DT Article DE CO2 capture and storage (CCS); Carbon sequestration; Network optimization; Network design; SimCCS; Infrastructure optimization ID GAS TRANSMISSION NETWORKS; CCS INFRASTRUCTURE; CARBON CAPTURE; SEQUESTRATION SITE; PIPELINE DESIGN; PLANNING-MODEL; COST; SYSTEM; GIS; TECHNOLOGY AB We develop a new framework for spatially optimizing infrastructure for CO2 capture and storage (CCS). CCS is a complex and challenging problem: domestically deploying CCS at a meaningful scale will require linking hundreds of coal-fired power plants with CO2 sequestration reservoirs through a dedicated and extensive (many tens-of-thousands of miles) CO2 pipeline network. We introduce a unique method for generating a candidate network from scratch, from which the optimization model selects the optimal set of arcs to form the pipeline network. This new generation method can be applied to any network optimization problem including transmission line, roads, and telecommunication applications. We demonstrate the model and candidate network methodology using a real example of capturing CO2 from coal-fired power plants in the US Midwest and storing the CO2 in depleted oil and gas fields. Results illustrate the critical need to balance CCS investments with generating a candidate network of arcs. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Middleton, Richard S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kuby, Michael J.] Arizona State Univ, Sch Geog Sci & Urban Planning, Tempe, AZ 85287 USA. [Bielicki, Jeffrey M.] Univ Minnesota, Humphrey Sch Publ Affairs, Minneapolis, MN 55455 USA. RP Middleton, RS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rsm@lanl.gov; mikekuby@asu.edu; jbielick@umn.edu RI Middleton, Richard/A-5470-2011; Bielicki, Jeffrey/D-4239-2016; OI Bielicki, Jeffrey/0000-0001-8449-9328; Middleton, Richard/0000-0002-8039-6601; Kuby, Michael/0000-0002-7988-5766 NR 57 TC 26 Z9 27 U1 4 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0198-9715 J9 COMPUT ENVIRON URBAN JI Comput. Environ. Urban Syst. PD JAN PY 2012 VL 36 IS 1 BP 18 EP 29 DI 10.1016/j.compenvurbsys.2011.08.002 PG 12 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Studies; Geography; Operations Research & Management Science SC Computer Science; Engineering; Environmental Sciences & Ecology; Geography; Operations Research & Management Science GA 890EN UT WOS:000300128000002 ER PT J AU Zhang, B Zhao, BT Huang, SH Zhang, RY Xu, P Wang, HL AF Zhang, Bin Zhao, Botao Huang, Shenghui Zhang, Ruiying Xu, Ping Wang, Hsing-Lin TI One-pot interfacial synthesis of Au nanoparticles and Au-polyaniline nanocomposites for catalytic applications SO CRYSTENGCOMM LA English DT Article ID CHEMICAL-DEPOSITION; FACILE SYNTHESIS; NANOFIBERS; PARTICLES; NANOTUBES; CHEMISTRY; CLUSTERS; GOLD AB We demonstrate here a facile one-pot interfacial synthesis of Au nanoparticles and Au-polyaniline nanocomposites through the polymerization of aniline by HAuCl4, and the nanocomposites are efficient catalysts for the reduction of rhodamine B. C1 [Zhang, Bin; Zhao, Botao; Huang, Shenghui; Zhang, Ruiying; Xu, Ping] Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. [Xu, Ping; Wang, Hsing-Lin] Los Alamos Natl Lab, C PCS, Los Alamos, NM 87545 USA. RP Xu, P (reprint author), Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. EM pxu@hit.edu.cn; hwang@lanl.gov RI Xu, Ping/I-1910-2013 OI Xu, Ping/0000-0002-1516-4986 FU NSFC [21101041, 20776032, 91122002]; China Postdoctoral Fund; Fundamental Research Funds for the Central Universities [HIT. NSRIF. 2010065, 2011017]; LANL FX PX thanks the support from the China Postdoctoral Fund, NSFC (no. 21101041, 20776032, 91122002), Fundamental Research Funds for the Central Universities (grant no. HIT. NSRIF. 2010065 and 2011017), and Director's Postdoctoral Fellow from LANL. NR 24 TC 34 Z9 34 U1 0 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1466-8033 J9 CRYSTENGCOMM JI Crystengcomm PY 2012 VL 14 IS 5 BP 1542 EP 1544 DI 10.1039/c2ce06396d PG 3 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 889AF UT WOS:000300045200006 ER PT J AU Dekker, SC Vrugt, JA Elkington, RJ AF Dekker, Stefan C. Vrugt, Jasper A. Elkington, Rebecca J. TI Significant variation in vegetation characteristics and dynamics from ecohydrological optimality of net carbon profit SO ECOHYDROLOGY LA English DT Article DE soil moisture dynamics; gas exchange; photosynthesis; optimality principle; net carbon profit; leaf area index; DiffeRential Evolution Adaptive Metropolis; eddy correlation measurements; Markov Chain Monte Carlo simulation; Douglas-fir ID HYDRAULIC CONDUCTIVITY; CANOPY PHOTOSYNTHESIS; TEMPERATURE RESPONSE; FOREST TRANSPIRATION; MODEL PARAMETERS; SOIL; LEAVES; OPTIMIZATION; SIMULATION; EVOLUTION AB Recent contributions to the ecological literature have questioned the continued usefulness of the classical model calibration paradigm in estimating parameters in coupled ecohydrological models. Schymanski (2007) and Schymanski et al. (2007, 2008) have demonstrated that the assumption of vegetation optimality precludes the need for site-specific data for estimating vegetation properties, transpiration fluxes, and CO2 assimilation. The goal of this article is twofold. We first show that significant advances in optimality-based vegetation modelling can be made if we embrace a novel concept of stochastic optimization that includes explicit recognition of parameter uncertainty. We adapted the original Vegetation Optimality Model (VOM) to a multi-layer soil and canopy vegetation optimality model, VOMmlsc with dynamically varying throughfall fraction. The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm is used to find parameter values with high values of net carbon profit (NCP), a proxy for biological fitness. We then show that significant variability exists in optimized vegetation properties and primarily transpiration fluxes from optimality of NCP. Seemingly, a myriad of vegetation species is possible that results in optimal values of NCP. Using data from a Douglas-fir plantation in The Netherlands, we found relative poor correspondence between modelled and measured ET and CO2-fluxes. The fitting of these two fluxes and values of the model parameters can be much improved when VOMmlsc is calibrated directly against these respective observations. Yet, the NCP values derived this way deviate considerably from their maximum possible value. This challenges the appropriateness of current weights to aggregate the various carbon costs and benefits into a single NCP scalar. Copyright (c) 2010 John Wiley & Sons, Ltd. C1 [Dekker, Stefan C.; Elkington, Rebecca J.] Univ Utrecht, Dept Environm Sci, NL-3508 TC Utrecht, Netherlands. [Vrugt, Jasper A.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. [Vrugt, Jasper A.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, NL-1018 WV Amsterdam, Netherlands. [Vrugt, Jasper A.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Dekker, SC (reprint author), Univ Utrecht, Dept Environm Sci, POB 80115, NL-3508 TC Utrecht, Netherlands. EM s.dekker@geo.uu.nl RI Dekker, Stefan/F-5581-2013; Vrugt, Jasper/C-3660-2008 OI Dekker, Stefan/0000-0001-7764-2464; FU Utrecht University; Los Alamos National Laboratory FX We acknowledge the many constructive and useful comments of the reviewers that helped us to improve our manuscript. In particular, we thank Stan Schymanski for his valuable comments and suggestions regarding the development of VOMmlsc, and Norman Bean for help with the figures. The first author is sponsored by a High Potential Program of Utrecht University, and the second author is supported by a J. Robert Oppenheimer Fellowship of the Los Alamos National Laboratory Postdoctoral Program. The source code of DREAM and VOMmlsc used throughout this article is written in MATLAB and can be obtained from the second author (jasper@uci.edu) upon request. NR 46 TC 7 Z9 7 U1 1 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1936-0584 EI 1936-0592 J9 ECOHYDROLOGY JI Ecohydrology PD JAN PY 2012 VL 5 IS 1 BP 1 EP 18 DI 10.1002/eco.177 PG 18 WC Ecology; Environmental Sciences; Water Resources SC Environmental Sciences & Ecology; Water Resources GA 885JZ UT WOS:000299776600001 ER PT J AU Deng, ZD Martinez, JJ Colotelo, AH Abel, TK LeBarge, AP Brown, RS Pflugrath, BD Mueller, RP Carlson, TJ Seaburg, AG Johnson, RL Ahmann, ML AF Deng, Z. Daniel Martinez, Jayson J. Colotelo, Alison H. Abel, Tylor K. LeBarge, Andrea P. Brown, Richard S. Pflugrath, Brett D. Mueller, Robert P. Carlson, Thomas J. Seaburg, Adam G. Johnson, Robert L. Ahmann, Martin L. TI Development of external and neutrally buoyant acoustic transmitters for juvenile salmon turbine passage evaluation SO FISHERIES RESEARCH LA English DT Article DE Juvenile Salmon; Turbine passage; Fish telemetry; Acoustic transmitter ID SWIMMING PERFORMANCE; RADIO TRANSMITTERS; CHINOOK SALMON; TELEMETRY TRANSMITTERS; RAINBOW-TROUT; SURGICAL IMPLANTATION; TAGGING LESION; SUTURE TYPE; FISH; SYSTEM AB Fish can sustain injury or mortality when they pass through hydroelectric facilities. To develop a method to monitor the passage and survival of juvenile salmonids without bias through turbines within the Federal Columbia River Power System, we developed and fabricated two designs of neutrally buoyant transmitters: Type A (sutured to the dorsal musculature of the fish anterior to the dorsal fin) and Type B (two-part design attached with wire pushed through the dorsal musculature, ventral to the dorsal fin). To determine the efficacy of the two designs under non-turbine passage-related conditions, fish had one of the tags attached and were held for 14 days to determine any potential effects of the tags on growth, survival and tissue damage. We also evaluated the attachment method by monitoring tag retention. These two neutrally buoyant tag designs were compared to nontagged individuals and those surgically implanted with current Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters and passive integrated responder (PIT) tags. In addition, two suture materials (Monocryl and Vicryl Rapide) were tested for attachment of Type A tags. When compared with non-tagged individuals, fish tagged with Type A tags did not differ significantly with respect to growth or mortality over a 14-d holding period. However, fish tagged with Type B transmitters had lower growth rates than the nontagged controls or other tag treatments. The efficacy of two designs was also compared to nontagged individuals under shear exposure. Fish were exposed to a submerged, 6.35-cm-diameter water jet at velocities ranging from 3.0 to 12.2 m/s in a water flume to simulate turbine conditions within the Columbia River basin. Throughout the shear exposure study, no mortalities or tag loss were observed. There was also no significant difference in the rates of shear injury between untagged fish and fish tagged with Type A or Type B tags. When tissue damage was assessed for tagged individuals exposed to shear forces, those tagged with Type A tags showed lower rates and severity of injury when compared to Type B-tagged fish. Overall, Type A tags may be a viable tag design for juvenile Chinook salmon passing through hydropower facilities. Published by Elsevier B.V. C1 [Deng, Z. Daniel; Martinez, Jayson J.; Colotelo, Alison H.; Abel, Tylor K.; LeBarge, Andrea P.; Brown, Richard S.; Pflugrath, Brett D.; Mueller, Robert P.; Carlson, Thomas J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Seaburg, Adam G.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98101 USA. [Johnson, Robert L.; Ahmann, Martin L.] USA, Corps Engineers, Walla Walla, WA 99362 USA. RP Deng, ZD (reprint author), POB 999,K9-33, Richland, WA 99352 USA. EM zhiqun.deng@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU U.S. Army Corps of Engineers (USACE), Portland District; U.S. Department of Energy [DE-AC05-76RL01830] FX The work described in this article was funded by the U.S. Army Corps of Engineers (USACE), Portland District. The authors thank USACE staff, including Brad Eppard, Dennis Schwartz, and Mike Langeslay, and the USACE Turbine Survival Technical Team, for their commitment, assistance, and oversight. Author appreciation also goes out to Duane Balvage, Andrea Currie, Marybeth Gay, Jill Janak, Curt Lavender, Tim Linley, Geoff McMichael, Mitchell Myjak, Jes Smart, Cory Overman, John Stephenson, Noel Tavan, Ricardo Walker, Mark Weiland, all of Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory animal facilities used in this research are AAALAC-certified; fish were handled in accordance with federal guidelines for the care and use of laboratory animals, and protocols for our study were approved by the Institutional Animal Care and Use Committee at Battelle - Pacific Northwest Division. The study was conducted at Pacific Northwest National Laboratory in Richland, WA, which is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 55 TC 13 Z9 13 U1 4 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 J9 FISH RES JI Fish Res. PD JAN PY 2012 VL 113 IS 1 BP 94 EP 105 DI 10.1016/j.fishres.2011.08.018 PG 12 WC Fisheries SC Fisheries GA 887EZ UT WOS:000299911000010 ER PT J AU Field, JJ Sheetz, KE Chandler, EV Hoover, EE Young, MD Ding, SY Sylvester, AW Kleinfeld, D Squier, JA AF Field, Jeffrey J. Sheetz, Kraig E. Chandler, Eric V. Hoover, Erich E. Young, Michael D. Ding, Shi-you Sylvester, Anne W. Kleinfeld, David Squier, Jeff A. TI Differential Multiphoton Laser Scanning Microscopy SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Fluorescence microscopy; nonlinear microscopy; nonlinear optics; second-harmonic generation (SHG); two-photon microscopy; ultrafast optics ID STOKES-RAMAN SCATTERING; PHOTONIC CRYSTAL FIBER; SUPERCONTINUUM LIGHT-SOURCE; 3RD HARMONIC-GENERATION; FLUORESCENCE MICROSCOPY; 2-PHOTON EXCITATION; MULTIFOCAL MICROSCOPY; COUNTING MICROSCOPY; RESOLUTION; COHERENT AB Multifocal multiphoton laser scanning microscopy (mfMPLSM) in the biological and medical sciences has the potential to become a ubiquitous tool for obtaining high-resolution images at video rates. While current implementations of mfMPLSM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for mfMPLSM in which whole-field detection with a single detector, rather than detection with a matrix of detectors, such as a charge-coupled device (CCD) camera, is implemented. This advance makes mfMPLSM fully compatible for use in imaging through scattering media. Further, we demonstrate that this method makes it possible to simultaneously obtain multiple images and view differences in excitation parameters in a single scan of the specimen. C1 [Field, Jeffrey J.; Chandler, Eric V.; Hoover, Erich E.; Young, Michael D.; Squier, Jeff A.] Colorado Sch Mines, Dept Phys, Ctr Microintegrated Opt Adv Bioimaging & Control, Golden, CO 80401 USA. [Sheetz, Kraig E.] US Mil Acad, Dept Phys & Nucl Engn, West Point, NY 10996 USA. [Ding, Shi-you] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sylvester, Anne W.] Univ Wyoming, Dept Mol Biol, Laramie, WY 82071 USA. [Kleinfeld, David] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Field, JJ (reprint author), Colorado Sch Mines, Dept Phys, Ctr Microintegrated Opt Adv Bioimaging & Control, Golden, CO 80401 USA. EM jjfield@gmail.com; kraigsheetz@gmail.com; echandle@mines.edu; ehoover@mines.edu; miyoung@mines.edu; Shi.you.Ding@nrel.gov; annesyl@uwyo.edu; dk@physics.ucsd.edu; jsquier@mines.edu FU National Institute for Biomedical Imaging and Bioengineering [BRP EB-003832]; National Science Foundation (Renewable Energy Materials Research Science and Engineering Center); Division of Biological Instrumentation [0501862] FX This work was supported by the National Institute for Biomedical Imaging and Bioengineering under Grant BRP EB-003832 and by the National Science Foundation (Renewable Energy Materials Research Science and Engineering Center). The work of A. W. Sylvester was supported by Division of Biological Instrumentation under Grant 0501862. NR 71 TC 4 Z9 4 U1 2 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 14 EP 28 DI 10.1109/JSTQE.2010.2077622 PG 15 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700004 PM 27390511 ER PT J AU Chollet, M Ahr, B Walko, DA Rose-Petruck, C Adams, B AF Chollet, Matthieu Ahr, Brian Walko, Donald A. Rose-Petruck, Christoph Adams, Bernhard TI 2-ps Hard X-Ray Streak Camera Measurements at Sector 7 Beamline of the Advanced Photon Source SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Diffraction; streak camera; time resolved; X-ray absorption near-edge spectroscopy (XANES); X-ray ID FEMTOSECOND TRANSIENT ABSORPTION; SOLVATED FE(CO)(5); DYNAMICS; SPECTROSCOPY; DISSOCIATION; TRANSITION; FTIR AB A hard X-ray streak camera capable of 2-ps time resolution is in operation at the Sector 7 beamline of the Advanced Photon Source. It is used for laser-pump, X-ray probe experiments using the Ti:Sapphire femtosecond laser system installed on the beamline. This streak camera, combined with standardized and prealigned experimental setups, can perform time-resolved liquid-phase absorption spectroscopy, reflectivity, and diffraction experiments. C1 [Chollet, Matthieu; Walko, Donald A.; Adams, Bernhard] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ahr, Brian; Rose-Petruck, Christoph] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Chollet, M (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM chollet@aps.anl.gov; brianahr@brown.edu; d-walko@anl.gov; crosepet@brown.ed; ams@aps.anl.gov FU U.S. Department of Energy (DOE) [DE-FG02-08ER15937, DE-AC02-06CH11357] FX This work was supported in part by the U.S. Department of Energy (DOE) under Grant DE-FG02-08ER15937 and in part by the U.S. DOE under Contract DE-AC02-06CH11357. NR 24 TC 2 Z9 3 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 66 EP 73 DI 10.1109/JSTQE.2011.2105464 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700008 ER PT J AU Wall, S Rini, M Dhesi, SS Schoenlein, RW Cavalleri, A AF Wall, Simon Rini, Matteo Dhesi, Sarnjeet S. Schoenlein, Robert W. Cavalleri, Andrea TI Advances in Ultrafast Control and Probing of Correlated-Electron Materials SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Manganites; photoinduced phase transitions; ultrafast spectroscopy; vibrational excitation ID X-RAY-ABSORPTION; INSULATOR-METAL TRANSITION; MAGNETORESISTIVE MANGANITE; SPECTROSCOPY; FIELD; PR0.7CA0.3MNO3; INSTABILITY; DISTORTION; DYNAMICS; PHASE AB In this paper, we present recent results on ultrafast control and probing of strongly correlated-electron materials. We focus on magnetoresistive manganites, applying excitation and probing wavelengths that cover the mid-IR to the soft X-rays. In analogy with near-equilibrium "filling" and "bandwidth" control of phase transitions, our approach uses both visible and mid-IR pulses to stimulate the dynamics by exciting either charges across electronic bandgaps or specific vibrational resonances. X-rays are used to unambiguously measure the microscopic electronic, orbital, and structural dynamics. Our experiments dissect and separate the nonequilibrium physics of these compounds, revealing the complex interplay and evolution of spin, lattice, charge, and orbital degrees of freedoms in the time domain. C1 [Wall, Simon; Cavalleri, Andrea] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Rini, Matteo; Schoenlein, Robert W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Dhesi, Sarnjeet S.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Cavalleri, Andrea] Univ Hamburg CFEL, Max Planck Res Dept Struct Dynam, D-22607 Hamburg, Germany. RP Wall, S (reprint author), Fritz Haber Inst, Dept Phys Chem, D-14195 Berlin, Germany. EM wall@fhi-berlin.mpg.de; matteo.rini@ec.europa.eu; dhesi@diamond.ac.uk; rwschoenlein@lbl.gov; andrea.cavalleri@mpsd.cfel.de RI Wall, Simon/E-3771-2012; Schoenlein, Robert/D-1301-2014 OI Wall, Simon/0000-0002-6136-0224; Schoenlein, Robert/0000-0002-6066-7566 FU U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231]; Scientific User Facilities Division [DE-AC02-05CH11231]; Alexander von Humboldt Foundation FX The work of M. Rini and R. W. Schoenlein at LBNL Materials Sciences Division and the Advanced Light Source was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and the Scientific User Facilities Division respectively under Contract DE-AC02-05CH11231. The work of S. Wall was supported by the Alexander von Humboldt Foundation. NR 49 TC 7 Z9 7 U1 2 U2 29 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 81 EP 91 DI 10.1109/JSTQE.2011.2105465 PG 11 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700010 ER PT J AU Zholents, A AF Zholents, Alexander TI Next-Generation X-Ray Free-Electron Lasers SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Attosecond (as); brightness; echo-enabled harmonic generation (EEHG); electron gun; emittance; femtosecond; free-electron laser (FEL); high-gain harmonic generation (HGHG); linac; oscillator; self-amplified spontaneous emission (SASE); self-seeding; X-rays; x-ray free-electron laser oscillator (XFELO) ID HARMONIC-GENERATION; EXTREME-ULTRAVIOLET; FEL OSCILLATOR; RADIATION; INTENSE; REGION; LIGHT; ACCELERATORS; PERFORMANCE; UNDULATOR AB Research frontiers for future free-electron lasers are discussed. Attention is given to ideas for improving the temporal coherence and obtaining subfemtosecond X-ray pulses. Improving brightness of the electron bunches is considered to be a major step forward for an electron beam accelerator simultaneously supporting multiple free-electron laser lines. C1 Argonne Natl Lab, Accelerator Syst Div, Argonne, IL 60439 USA. RP Zholents, A (reprint author), Argonne Natl Lab, Accelerator Syst Div, Argonne, IL 60439 USA. EM azholents@aps.anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Manuscript received December 7, 2010; revised January 10, 2011; accepted January 16, 2011. Date of publication April 5, 2011; date of current version January 31, 2012. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 95 TC 1 Z9 1 U1 2 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 248 EP 257 DI 10.1109/JSTQE.2011.2108641 PG 10 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700027 ER PT J AU Schlau-Cohen, GS Dawlaty, JM Fleming, GR AF Schlau-Cohen, Gabriela S. Dawlaty, Jahan M. Fleming, Graham R. TI Ultrafast Multidimensional Spectroscopy: Principles and Applications to Photosynthetic Systems SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Four-wave mixing; nonlinear optics; ultrafast optics ID 2-DIMENSIONAL ELECTRONIC SPECTROSCOPY; LIGHT-HARVESTING COMPLEX; 2D IR SPECTROSCOPY; QUANTUM COHERENCE; ENERGY-TRANSFER; PHYSIOLOGICAL TEMPERATURE; FEMTOSECOND SPECTROSCOPY; SPECTRAL INTERFEROMETRY; HIGHER-PLANTS; PHASE AB We present the utility of 2-D electronic spectroscopy for the investigation of energy transfer dynamics in photosynthetic light-harvesting systems. Elucidating ultrafast energy transfer within photosynthetic systems is difficult due to the large number of molecules and complex environments involved in the process. In many spectroscopic methods, these systems appear as overlapping peaks with broad linewidths, obscuring the details of the dynamics. 2-D spectroscopy is a nonlinear, ultrafast method that yields a correlation map between excitation and emission energies, and can track incoherent and coherent energy transfer processes with femtosecond resolution. A 2-D spectrum can provide important insight into the structure and the mechanisms behind the excited state dynamics. We review the principles behind 2-D spectroscopy and describe the content of a 2-D electronic spectrum. Several recent applications of this technique to the major light-harvesting complex of Photosystem II are presented, including monitoring the time scales of energy transfer processes, investigation of the excited state energies, and determination of the relative orientations of the excited state transition dipole moments. C1 [Schlau-Cohen, Gabriela S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schlau-Cohen, Gabriela S.; Dawlaty, Jahan M.; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Dawlaty, Jahan M.] Quantitat Biosci Inst, Berkeley, CA 94720 USA. RP Schlau-Cohen, GS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM grfleming@lbl.gov FU U.S. Department of Energy; Office of Basic Energy Sciences, the Office of Science [DE-AC02-05CH11231]; Division of Chemical Sciences, Geosciences, and Biosciences (at Lawrence Berkeley National Laboratory and University of California Berkeley) [DE-AC03-76SF000098]; Defense Advanced Research Projects Agency [N66001-09-1-2026]; American Association of University Women American; QB3 Distinguished Postdoctoral fellowship FX Manuscript received November 3, 2010; revised January 4, 2011; accepted January 21, 2011. Date of publication April 7, 2011; date of current version January 31, 2012. This work was supported by the U.S. Department of Energy, by the Office of Basic Energy Sciences, the Office of Science under Contract DE-AC02-05CH11231, and the Division of Chemical Sciences, Geosciences, and Biosciences under Grant DE-AC03-76SF000098 (at Lawrence Berkeley National Laboratory and University of California Berkeley), and by the Defense Advanced Research Projects Agency under Grant N66001-09-1-2026. The work of G. S. Schlau-Cohen was supported by the American Association of University Women American Dissertation Fellowship. The work of J. M. Dawlaty was supported by the QB3 Distinguished Postdoctoral fellowship. NR 73 TC 16 Z9 17 U1 4 U2 56 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 283 EP 295 DI 10.1109/JSTQE.2011.2112640 PG 13 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700030 ER PT J AU Bunermann, O Kornilov, O Leone, SR Neumark, DM Gessner, O AF Buenermann, Oliver Kornilov, Oleg Leone, Stephen R. Neumark, Daniel M. Gessner, Oliver TI Femtosecond Extreme Ultraviolet Ion Imaging of Ultrafast Dynamics in Electronically Excited Helium Nanodroplets SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Photochemistry; physics; photonics; UV sources ID SUPERFLUID-HELIUM; LIQUID-HELIUM; SURFACE-BARRIER; CLUSTERS; DROPLETS; MOLECULES; HE-4; PHOTOIONIZATION; SPECTROSCOPY; DENSITY AB A novel femtosecond extreme ultraviolet (EUV) ion-imaging technique is applied to study ultrafast dynamics in electronically excited helium nanodroplets. Ion mass spectra recorded by single-photon EUV ionization and by transient EUV-pump/IR-probe two-photon ionization differ significantly for EUV photon energies below and above similar to 24 eV, in agreement with recently performed synchrotron measurements. Pump-probe time-delay-dependent ion kinetic energy (KE) spectra exhibit two major contributions: a decaying high KE component and a rising low KE component, which are attributed to the different excitation regimes. A model is presented that describes the excitation energy dependence of the relaxation and ionization dynamics within the framework of bulk and surface states. The model is supported by recent ab initio calculations on electronically excited states of 25-atom clusters. An intraband relaxation mechanism is proposed that proceeds on a similar to 10-20-ps time scale and that corresponds to the transfer of electronic excitation in the Rydberg n = 2 manifold from bulk to surface states. C1 [Buenermann, Oliver] Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany. [Buenermann, Oliver; Kornilov, Oleg; Leone, Stephen R.; Neumark, Daniel M.; Gessner, Oliver] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ultrafast X Ray Sci Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Buenermann, Oliver; Kornilov, Oleg; Leone, Stephen R.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Bunermann, O (reprint author), Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany. EM ogessner@lbl.gov RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy [DE-AC02-05CH11231]; Deutsche Forschungsgemeinschaft FX Manuscript received October 16, 2010; revised December 14, 2010; accepted January 21, 2011. Date of publication April 7, 2011; date of current version January 31, 2012. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy under Contract DE-AC02-05CH11231. The tenure of O. Bunermann at the Ultrafast X-ray Science Laboratory was supported by a Research Fellowship from the Deutsche Forschungsgemeinschaft. NR 51 TC 8 Z9 8 U1 3 U2 21 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 308 EP 317 DI 10.1109/JSTQE.2011.2109054 PG 10 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700032 ER PT J AU Talbayev, D Chia, EEM Trugman, SA Zhu, JX Taylor, AJ AF Talbayev, Diyar Chia, Elbert E. M. Trugman, Stuart A. Zhu, Jian-Xin Taylor, Antoinette J. TI Relaxation of Photoinduced Quasi-Particles in Correlated Electron Metals SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Correlated electrons; heavy fermions; high-temperature superconductors; spin density wave (SDW); ultrafast optics ID NODELESS SUPERCONDUCTING GAPS; FERMI-SURFACE; UNCONVENTIONAL SUPERCONDUCTIVITY; PHOTOEMISSION-SPECTROSCOPY; FEMTOSECOND SPECTROSCOPY; ANTIFERROMAGNET UNIGA5; DYNAMICS; BA0.6K0.4FE2AS2; PSEUDOGAP; CRYSTAL AB We present our studies of photoinduced quasi-particle dynamics in correlated electron metals. At room temperature, these materials exhibit metallic behavior characterized by the presence of a Fermi surface. Electronic correlations lead to a modification of the low-energy electronic structure near the Fermi level resulting in the opening of gaps or partial gaps due to such phenomena as density waves or superconductivity. We describe the results of optical pump-probe studies of quasi-particle dynamics in the spin density wave metal UNiGa5, the heavy-fermion superconductor PuCoGa5, and the pnictide high-temperature superconductor (Ba,K)Fe2As2 C1 [Talbayev, Diyar] Yale Univ, Dept Chem, New Haven, CT 06511 USA. [Chia, Elbert E. M.] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore. [Trugman, Stuart A.; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Taylor, Antoinette J.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Talbayev, D (reprint author), Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06511 USA. EM diyar.talbayev@yale.edu; elbertchia@ntu.edu.sg; sat@lanl.gov; jxzhu@lanl.gov; ttaylor@lanl.gov RI Chia, Elbert/B-6996-2011; Talbayev, Diyar/C-5525-2009; OI Chia, Elbert/0000-0003-2066-0834; Talbayev, Diyar/0000-0003-3537-1656; Trugman, Stuart/0000-0002-6688-7228; Zhu, Jianxin/0000-0001-7991-3918 FU Los Alamos National Laboratory LDRD; Center for Integrated Nanotechnologies, U.S.; Singapore Ministry of Education AcRF [Tier 1 (RG 41/07), Tier 2 (ARC 23/08)]; National Research Foundation of Singapore [NRF-CRP4-2008-04]; DOE/BES Materials Science Division; Center for Integrated Nanotechnologies FX Manuscript received November 5, 2010; revised January 28, 2011; accepted January 29, 2011. Date of publication May 12, 2011; date of current version January 31, 2012. This work was supported in part by the Los Alamos National Laboratory LDRD program and the Center for Integrated Nanotechnologies, U.S., in part by the Singapore Ministry of Education AcRF under Grant Tier 1 (RG 41/07) and Grant Tier 2 (ARC 23/08), in part by the National Research Foundation of Singapore under Grant NRF-CRP4-2008-04, in part by the DOE/BES Materials Science Division, and in part by the Center for Integrated Nanotechnologies. NR 63 TC 6 Z9 6 U1 4 U2 23 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 340 EP 350 DI 10.1109/JSTQE.2011.2136373 PG 11 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700035 ER PT J AU Miao, JW Sandberg, RL Song, CY AF Miao, Jianwei Sandberg, Richard L. Song, Changyong TI Coherent X-Ray Diffraction Imaging SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Ankylography; coherent diffraction imaging (CDI); equally sloped tomography (EST); high harmonic generation (HHG); lensless imaging; oversampling; phase retrieval; X-ray free-electron lasers (XFEL) ID FREE-ELECTRON LASER; HIGH-HARMONIC-GENERATION; HIGH-ORDER HARMONICS; EQUALLY-SLOPED TOMOGRAPHY; PHASE-MATCHED GENERATION; FOURIER-TRANSFORM; HOLOGRAPHIC MICROSCOPY; WAVELENGTH RESOLUTION; NONLINEAR OPTICS; 32 NM AB For centuries, lens-based microscopy, such as optical, phase-contrast, fluorescence, confocal, and electron microscopy, has played an important role in the evolution of modern science and technology. In 1999, a novel form of microscopy, i.e., coherent diffraction imaging (also termed coherent diffraction microscopy or lensless imaging), was developed and transformed our conventional view of microscopy, in which the diffraction pattern of a noncrystalline specimen or a nanocrystal was first measured and then directly phased to obtain a high-resolution image. The well-known phase problem was solved by combining the oversampling method with iterative algorithms. In this paper, we will briefly discuss the principle of coherent diffraction imaging, present various implementation schemes of this imaging modality, and illustrate its broad applications in materials science, nanoscience, and biology. As coherent X-ray sources such as high harmonic generation and X-ray free-electron lasers are presently under rapid development worldwide, coherent diffraction imaging can potentially be applied to perform high-resolution imaging of materials/nanoscience and biological specimens at the femtosecond time scale. C1 [Miao, Jianwei] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Miao, Jianwei] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. [Sandberg, Richard L.] Los Alamos Natl Lab, Phys Chem & Adv Spect Grp, Div Chem, Los Alamos, NM 87544 USA. [Song, Changyong] RIKEN SPring 8 Ctr, Mikazuki, Hyogo 6795148, Japan. RP Miao, JW (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM miao@physics.ucla.edu; sandberg@lanl.gov; cysong@spring8.or.jp OI Sandberg, Richard/0000-0001-9719-8188 FU National Institute of Health [GM081409-01A1]; U.S. Department of Energy, Basic Energy Service [DE-FG02-06ER46276]; Los Alamos National Laboratory; RIKEN, Hyogo, Japan FX Manuscript received January 1, 2011; revised April 26, 2011; accepted May 14, 2011. Date of publication May 27, 2011; date of current version January 31, 2012. This work was supported in part by the National Institute of Health under Grant GM081409-01A1; U.S. Department of Energy, Basic Energy Service, under the Contract DE-FG02-06ER46276; and Los Alamos National Laboratory Director's Postdoctoral Fellowship. Use of the RIKEN beamline (BL29XUL) at SPring-8 Center was supported by RIKEN, Hyogo, Japan. NR 153 TC 42 Z9 42 U1 7 U2 77 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X EI 1558-4542 J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 399 EP 410 DI 10.1109/JSTQE.2011.2157306 PG 12 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700041 ER PT J AU DiChiara, AD Ghimire, S Blaga, CI Sistrunk, E Power, EP March, AM Miller, TA Reis, DA Agostini, P DiMauro, LF AF DiChiara, Anthony D. Ghimire, Shambhu Blaga, Cosmin I. Sistrunk, Emily Power, Erik P. March, Anne M. Miller, Terry A. Reis, David A. Agostini, Pierre DiMauro, Louis F. TI Scaling of High-Order Harmonic Generation in the Long Wavelength Limit of a Strong Laser Field SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Atomic physics; frequency conversion; laser amplifiers; optical propagation in absorbing media; photoionization ID MULTIPHOTON IONIZATION; THRESHOLD IONIZATION; PULSES; PHASE; GASES; PHYSICS; LIGHT; ATOMS; RADIATION; MODEL AB The development of intense, ultrashort, table-top lasers operating in the mid-infrared spectral region, offers many new avenues for strong-field physics. Atoms submitted to such radiation allow photoelectrons to acquire huge quiver energies well over an order of magnitude larger than the binding energy of the neutral. Consequently, many interesting phenomena arise. First, wavelength offers a convenient experimental knob to tune the ionization regime by controlling the Keldysh parameter. Second, high harmonic generation depends directly on the quiver energy and can, therefore, be pushed to unprecedented limits. Third, wavelength controls the spectral phase of harmonics, and hence the possibility to improve the generation of pulses in the attosecond regime. The use of long wavelength lasers is critical to studying high-order harmonic generation in condensed phase systems, because they facilitate harmonic generation within the transmission window of the material and increase the damage threshold. We review some of the recent discoveries in long wavelength driven high-order harmonic generation in the case of isolated atoms, bulk crystals, and liquid. C1 [DiChiara, Anthony D.; Blaga, Cosmin I.; Sistrunk, Emily; Miller, Terry A.; Agostini, Pierre; DiMauro, Louis F.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Ghimire, Shambhu; Reis, David A.] SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA 94025 USA. [Reis, David A.] Stanford Univ, Dept Photon Sci, Stanford, CA 94305 USA. [Reis, David A.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Power, Erik P.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [March, Anne M.] Argonne Natl Lab, XSD, Argonne, IL 60439 USA. RP DiChiara, AD (reprint author), Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. EM dichiara@mps.ohio-state.edu; shambhu@slac.stanford.edu; cblaga@mps.ohio-state.edu; sistrunk@mps.ohio-state.edu; eppower@umich.edu; amarch@anl.gov; tamiller@chemistry.ohio-state.edu; dreis@slac.stanford.edu; agostini@mps.ohio-state.edu; dimauro@mps.ohio-state.edu RI Miller, Terry/F-6607-2014 OI Miller, Terry/0000-0003-0731-8006 FU US Department of Energy/Basic Energy Sciences [DE-FG02-06ER15833X, DE-FG02-04ER15614]; National Science Foundation [PHY-0653022]; OSU Hagenlocker chair FX Manuscript received November 15, 2010; revised March 9, 2011; accepted May 14, 2011. Date of publication June 2, 2011; date of current version January 31, 2012. This work was supported by the US Department of Energy/Basic Energy Sciences contracts DE-FG02-06ER15833X and DE-FG02-04ER15614. The work of C. I. Blaga and E. Sistrunk was supported by the National Science Foundation under contract PHY-0653022, while the work of L. F. DiMauro was supported by the OSU Hagenlocker chair. NR 70 TC 5 Z9 5 U1 2 U2 29 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 419 EP 433 DI 10.1109/JSTQE.2011.2158391 PG 15 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700043 ER PT J AU Bravo, H Szapiro, BT Wachulak, PW Marconi, MC Chao, WL Anderson, EH Menoni, CS Rocca, JJ AF Bravo, Herman Szapiro, Ben T. Wachulak, Przemyslaw W. Marconi, Mario C. Chao, Weilun Anderson, Erik H. Menoni, Carmen S. Rocca, Jorge J. TI Demonstration of Nanomachining With Focused Extreme Ultraviolet Laser Beams SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Extreme ultraviolet (EUV) lasers; laser ablation; nanomachining; nanotechology ID X-RAY LASER; HZ REPETITION RATE; FEMTOSECOND LASER; ORGANIC POLYMERS; ABLATION; PULSES; RADIATION AB A major challenge in laser machining of microstructures is that of extending the spatial domain to the smaller dimensions of interest in nanotechnology. We demonstrate the feasibility of directly machining nanoscale structures with a focused extreme ultraviolet (EUV) laser beam. Clean sub-200-nm-wide trenches (130-nm full width at half maximum) were ablated on polymethyl methacrylate photoresist by focusing the 46.9-nm wavelength beam from a Ne-like Ar capillary discharge tabletop laser with a Fresnel zone plate lens. Considering that clean 82-nm holes were also ablated using the same laser, it can be expected that focused EUV laser light will enable the machining of significantly smaller features. C1 [Bravo, Herman; Marconi, Mario C.; Menoni, Carmen S.; Rocca, Jorge J.] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. [Szapiro, Ben T.] Univ South, Dept Phys, Sewanee, TN 37383 USA. [Wachulak, Przemyslaw W.] Mil Univ Technol, Inst Optoelect, Warsaw, Poland. [Chao, Weilun; Anderson, Erik H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr X Ray Opt, Berkeley, CA 94720 USA. RP Bravo, H (reprint author), Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. EM herman.bravo@colostate.edu; bszapiro@sewanee.edu; przemek@engr.colostate.edu; marconi@engr.colostate.edu; wlchao@lbl.gov; ehanderson@lbl.gov; c.menoni@ieee.org; Jorge.rocca@colostate.edu RI Menoni, Carmen/B-4989-2011 FU National Science Foundation (NSF) Engineering Research Center under NSF [EEC-0310717]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231] FX Manuscript received December 15, 2010; revised March 25, 2011; accepted May 14, 2011. Date of publication June 2, 2011; date of current version January 31, 2012. This work was supported by the National Science Foundation (NSF) Engineering Research Centers Program under NSF Award EEC-0310717, and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract DE-AC02-05CH11231 for E. H. Anderson and W. Chao NR 24 TC 16 Z9 16 U1 1 U2 26 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X EI 1558-4542 J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 443 EP 448 DI 10.1109/JSTQE.2011.2158392 PG 6 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700045 ER PT J AU Ritalahti, KM Justicia-Leon, SD Cusick, KD Ramos-Hernandez, N Rubin, M Dornbush, J Loffler, FE AF Ritalahti, Kirsti M. Justicia-Leon, Shandra D. Cusick, Kathleen D. Ramos-Hernandez, Natalia Rubin, Michael Dornbush, Jessica Loeffler, Frank E. TI Sphaerochaeta globosa gen. nov., sp nov and Sphaerochaeta pleomorpha sp nov., free-living, spherical spirochaetes SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID MICROBIAL DIVERSITY; FATTY-ACIDS; SPIROCHAETA; BACTERIOLOGY; INVOLVEMENT; ANTARCTICA; LEPTOSPIRA; ENRICHMENT; SEQUENCES; COMMITTEE AB Free-living bacteria with spherical cells 0.5-2.5 mu m in diameter were isolated from freshwater sediment. 16S rRNA gene sequence analysis placed the new isolates within the phylum Spirochaetes ('spirochaetes'). The isolates never displayed a helical morphology or motility. Growth occurred in the presence of 100 mg ampicillin l(-1) in complex and defined mineral salts medium amended with vitamins, yeast extract and monosaccharides, disaccharides or soluble starch as fermentable substrates. Two distinct isolates, designated Buddy(T) and Grapes(T), exhibited doubling times of 21 +/- 2 and 15 +/- 1 h in glucose-amended medium and grew at 15-37 and 15-30 degrees C. Optimum growth was observed between 25 and 30 degrees C and pH 6.5-7.5, with no growth below pH 5 or above pH 10. Hexose and pentose fermentation yielded ethanol, acetate and formate as major end products. Growth was strictly fermentative and anaerobic, but the isolates tolerated brief oxygen exposure. Nitrate, sulfate, thiosulfate and carbon dioxide were not used as electron acceptors, but soluble Fe(III) was reduced to Fe(II) in glucose-amended medium. The DNA G + C base contents of isolates Buddy(T) and Grapes(T) were 45.5-46.4 and 47.0-49.2 mol%, respectively. Phospholipid fatty acid (PLFA) profiles contained large proportions of C-14 : 0 and C-16 : 0 straight-chain saturated fatty acids; C-16 : 1 omega 7c and C-16 : 1 omega 9c dominated the mono-unsaturated PLFAs in isolate Grapes(T), whereas isolate Buddy(T) also possessed C-18 : 1 omega 5C, C-18 : 1 omega 7c and C-18 : 1 omega 9c fatty acids. Branched monoenoic acids accounted for up to 12.4 and 30% of the total PLFA in isolates Grapes(T) and Buddy(T), respectively. Based on their unique morphological features and the phylogenetic distance from their closest relatives, we propose the new genus, Sphaerochaeta gen. nov., to accommodate the new isolates within the novel species Sphaerocha eta globosa sp. nov. (type strain Buddy(T) = DSM 22777(T) =ATCC BAA-1886(T)) and Sphaerochaeta pleomorpha sp. nov. (type strain Grapes(T) = DSM 22778(T) =ATCC BAA-1885(T)). Sphaerochaeta globosa is the type species of the genus. C1 [Ritalahti, Kirsti M.; Cusick, Kathleen D.; Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Ritalahti, Kirsti M.; Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Justicia-Leon, Shandra D.; Ramos-Hernandez, Natalia; Rubin, Michael; Dornbush, Jessica] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [Justicia-Leon, Shandra D.; Ramos-Hernandez, Natalia; Rubin, Michael; Dornbush, Jessica] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. RP Loffler, FE (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. EM frank.loeffler@utk.edu RI Loeffler, Frank/M-8216-2013 FU National Science Foundation [0919251] FX We are indebted to John Breznak for encouragement and many helpful discussions, and Noha M. Mesbah for determining the G C content of isolates Buddy and Grapes. Appreciation to all the microscopists who participated in imaging, particularly Shirley Owens, Jeanette Taylor, and the late Rob Apkarian. Thanks also to Jarrod Pollock for help with the iron analysis. This material is based upon work supported by the National Science Foundation under grant no. 0919251. NR 35 TC 20 Z9 20 U1 5 U2 23 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1466-5026 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD JAN PY 2012 VL 62 BP 210 EP 216 DI 10.1099/ijs.0.023986-0 PN 1 PG 7 WC Microbiology SC Microbiology GA 890HR UT WOS:000300136200035 PM 21398503 ER PT J AU Brothers, MC Nesbitt, AE Hallock, MJ Rupasinghe, SG Tang, M Harris, J Baudry, J Schuler, MA Rienstra, CM AF Brothers, Michael C. Nesbitt, Anna E. Hallock, Michael J. Rupasinghe, Sanjeewa G. Tang, Ming Harris, Jason Baudry, Jerome Schuler, Mary A. Rienstra, Chad M. TI VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy SO JOURNAL OF BIOMOLECULAR NMR LA English DT Article DE Protein structure prediction; Homology modeling; Solid-state NMR spectroscopy; TALOS database; Chemical shift analysis ID SOLID-STATE NMR; PROTEIN-STRUCTURE DETERMINATION; MEMBRANE-PROTEINS; 3-DIMENSIONAL STRUCTURES; MOLECULAR-DYNAMICS; QUALITY ASSESSMENT; COUPLED RECEPTORS; DIPOLAR COUPLINGS; HIGH-THROUGHPUT; SPECTROSCOPY AB Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., C-13-C-13 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality. C1 [Rienstra, Chad M.] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA. [Brothers, Michael C.; Nesbitt, Anna E.; Hallock, Michael J.; Tang, Ming; Rienstra, Chad M.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Rupasinghe, Sanjeewa G.; Schuler, Mary A.] Univ Illinois, Dept Cell & Dev Biol, Urbana, IL 61801 USA. [Harris, Jason; Baudry, Jerome] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. [Baudry, Jerome] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37830 USA. [Schuler, Mary A.; Rienstra, Chad M.] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA. RP Rienstra, CM (reprint author), Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA. EM rienstra@illinois.edu RI Tang, Ming/A-5348-2010 OI Tang, Ming/0000-0001-7479-6206 FU National Institute of Health [R01GM79530, R01GM75937]; NRSA [F32 GM095344]; Ruth L. Kirschstein National Research Service; Chemical Biology Interface Training Program [GM070421-06]; Department of Homeland Security FX The authors thank the National Institute of Health for funding through R01GM79530, R01GM75937, NRSA (F32 GM095344), the Ruth L. Kirschstein National Research Service Award to AEN and the Chemical Biology Interface Training Program (GM070421-06) to MCB and the Department of Homeland Security Fellowship Program to MCB, as well as Dr. Ying Li, Dr. Aleksandra Kijac, and Dr. Andrew Nieuwkoop for early assistance on this project. NR 80 TC 2 Z9 2 U1 0 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0925-2738 J9 J BIOMOL NMR JI J. Biomol. NMR PD JAN PY 2012 VL 52 IS 1 BP 41 EP 56 DI 10.1007/s10858-011-9576-3 PG 16 WC Biochemistry & Molecular Biology; Spectroscopy SC Biochemistry & Molecular Biology; Spectroscopy GA 890TC UT WOS:000300167000006 PM 22183804 ER PT J AU Simonetti, DA Carr, RT Iglesia, E AF Simonetti, Dante A. Carr, Robert T. Iglesia, Enrique TI Acid strength and solvation effects on methylation, hydride transfer, and isomerization rates during catalytic homologation of C-1 species SO JOURNAL OF CATALYSIS LA English DT Article DE Dimethyl ether; Solid acid catalysis; Acid strength; Confinement effects; Zeolites; Carbenium ion; Homologation ID DENSITY-FUNCTIONAL THEORY; 2,2,3-TRIMETHYLBUTANE TRIPTANE; PROPANE CONVERSION; MOLECULAR-SIEVES; ALKANE SORPTION; LIGHT ALKANES; SOLID ACIDS; ZINC IODIDE; ZEOLITES; CRACKING AB Dimethyl ether (DME) homologation forms isobutane and triptane (2,2,3-trimethylbutane) with supra-equilibrium selectivities within C-4 and C-7 hydrocarbons on both mesoporous solid acids (SiO2-Al2O3, H3PW12O40/SiO2) and the acid forms of various zeolites (BEA, FAU, MFI) via methylation and hydride transfer steps that favor isobutane and triptane formation because of the relative stabilities of ion-pairs at transition states for chains along the preferred growth path. The stabilities of ion-pair transition states increase as acid sites become stronger and energies for charge separation decrease and as van der Waals interactions within pores become stronger, which respectively lead to higher rates on H3PW12O40/SiO2 and aluminosilicate zeolites than on amorphous SiO2-Al2O3. Solid acids with different strengths and abilities to solvate ion-pairs by confinement differ in selectivity because strength and solvation influence transition states for the hydride transfer, methylation, and isomerization steps to different extents. Stronger acid sites on H3PW/O-2(40)/SiO2 favor isomerization and hydride transfer over methylation: they lead to higher selectivities to n-butane and non-triptane C-7 isomers than the weaker acid sites on BEA, FAU, and mesoporous SiO2-Al2O3. This preference for hydride transfer and isomerization on stronger acids reflects transition states with more diffuse cationic charge, which interact less effectively with conjugate anions than more localized cations at methylation transition states. The latter recover a larger fraction of the energy required to form the ion-pair, and their stabilities are less sensitive to acid strength than for diffuse cations. Large-pore zeolites (BEA, FAU) form triptane with higher selectivity than SiO2-Al2O3 because confinement within large pores preferentially solvates the larger transition states for hydride transfer and methylation, which preserve the four-carbon backbone in triptane, over smaller transition states for alkoxide isomerization steps, which disrupt this backbone and cause growth beyond C-7 chains and subsequent facile beta-scission to form isobutane. MFI forms isobutane and triptane with much lower selectivity than mesoporous acids or large-pore zeolites, because smaller pores restrict the formation of bimolecular methylation and hydride transfer transition states required for chain growth and termination steps to a greater extent than those for monomolecular alkoxide isomerization. These data and their mechanistic interpretations show that the selective formation of isobutane and triptane from C-7 precursors like DME is favored on all acids as a result of the relative stability of methylation, hydride transfer, and isomerization transition states, but to a lesser extent when small confining voids and stronger acid sites preferentially stabilize monomolecular isomerization transition states. The observed effects of acid strength and confinement on rates and selectivities reflect the more effective stabilization of all ion-pairs on stronger acids and within solvating environments, but a preference for transition states with more diffuse charge on stronger acids and for ion-pairs with the appropriate solvation within voids of molecular dimensions. (C) 2011 Elsevier Inc. Al rights reserved. C1 [Simonetti, Dante A.; Carr, Robert T.; Iglesia, Enrique] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Iglesia, Enrique] EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM iglesia@cchem.berkeley.edu RI Iglesia, Enrique/D-9551-2017 OI Iglesia, Enrique/0000-0003-4109-1001 FU BP p.l.c; Chemical Sciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-FG02-03ER15479] FX We acknowledge partial financial support from BP p.l.c as part of the Methane Conversion Cooperative Program at the UC-Berkeley and from the Chemical Sciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy under Grant No. DE-FG02-03ER15479. We thank Rajamani Gounder for valuable discussions about thermochemical cycles in acid catalysis and about the effects of confinement in zeolite catalysis. We also thank Professor Matthew Neurock (University of Virginia) for useful discussions during the course of this study and Dr. Wei Qi for the synthesis of 5 wt.% H3PW12O40/SiO2 and the titration data on this sample. NR 47 TC 17 Z9 18 U1 9 U2 88 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JAN PY 2012 VL 285 IS 1 BP 19 EP 30 DI 10.1016/j.jcat.2011.09.007 PG 12 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 889LD UT WOS:000300074300004 ER PT J AU Wu, ZL Li, MJ Overbury, SH AF Wu, Zili Li, Meijun Overbury, Steven H. TI On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes SO JOURNAL OF CATALYSIS LA English DT Article DE Ceria nanoshapes; Rods; Cubes; Octahedra; CO oxidation; Structure dependence; In situ spectroscopy; Reaction mechanism ID GAS SHIFT REACTION; TRANSFORM INFRARED-SPECTROSCOPY; CERIUM OXIDE; ROOM-TEMPERATURE; CARBON-MONOXIDE; OXYGEN STORAGE; RAMAN-SPECTROSCOPY; CATALYTIC-ACTIVITY; ISOTOPIC EXCHANGE; VACANCY FORMATION AB CO oxidation is a model reaction for probing the redox property of ceria-based catalysts. In this study. CO oxidation was investigated over ceria nanocrystals with defined surface planes (nanoshapes) including rods ({1 1 0} + {1 0 0}), cubes ({1 0 0}), and octahedra ({1 1 1}). To understand the strong dependence of CO oxidation observed on these different ceria nanoshapes, in situ techniques including infrared and Raman spectroscopy coupled with online mass spectrometer, and temperature-programmed reduction (TPR) were employed to reveal how CO interacts with the different ceria surfaces, while the mobility of ceria lattice oxygen was investigated via oxygen isotopic exchange experiment. CO adsorption at room temperature leads to strongly bonded carbonate species on the more reactive surfaces of rods and cubes but weakly bonded ones on the rather inert octahedra surface. CO-TPR, proceeding via several channels including CO removal of lattice oxygen, surface water-gas shift reaction, and CO disproportionation reaction, reveals that the reducibility of these ceria nanoshapes is in line with their CO oxidation activity, i.e., rods > cubes > octahedra. The mobility of lattice oxygen also shows similar dependence. It is suggested that surface oxygen vacancy formation energy, defect sites, and coordinatively unsaturated sites on ceria play a direct role in facilitating both CO interaction with ceria surface and the reactivity and mobility of lattice oxygen. The oxygen vacancy formation energy, nature and amount of the defect and low coordination sites are intrinsically affected by the surface planes of the ceria nanoshapes. Several reaction pathways for CO oxidation over the ceria nanoshapes are proposed, and certain types of carbonates, especially those associated with reduced ceria surface, are considered among the reaction intermediates to form CO2, while the majority of carbonate species observed under CO oxidation condition are believed to be spectators. (C) 2011 Elsevier Inc. All rights reserved. C1 [Wu, Zili; Li, Meijun; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Wu, Zili; Overbury, Steven H.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Wu, ZL (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM wuz1@ornl.gov; overburysh@ornl.gov RI Wu, Zili/F-5905-2012; Overbury, Steven/C-5108-2016 OI Wu, Zili/0000-0002-4468-3240; Overbury, Steven/0000-0002-5137-3961 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy; Oak Ridge National Laboratory, by the Office of Basic Energy Science, US Department of Energy FX This Research is sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy. Part of the work including Raman and TEM/SEM was conducted